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Abstract—Particle accelerators are composed of various com-
ponents, and their properties are finely tuned to optimize certain
particle beam qualities as they accelerate. In particular, particle
colliders like the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Lab (BNL) are interested in maximizing
luminosity, a measure of the collision rate primarily determined
by the beam intensity (number of particles) and its beam size.
However, finding and maintaining optimum settings is a time-
consuming expert operator activity. This work proposes the use
of the Recurrent Proximal Policy Optimization (RPPO), a rein-
forcement learning algorithm, to find parameters of quadrupole
magnet strengths optimizing the beam qualities in the Booster
to AGS (Alternating Gradient Synchrotron) section of the RHIC
complex.

I. INTRODUCTION
In the field of accelerator physics, machine learning is

being increasingly used to optimize control of accelerator
subprocesses. Reinforcement Learning (RL) is particularly
fit for particle beam control optimization problems due to
accessibility to robust simulations and ample performance
metrics to determine agent rewards and goals.

The RHIC at BNL focuses on colliding beams of various
heavy ions with high luminosity (rate of collision) in order
to study the properties of fundamental matter like quarks and
gluons. The beam size (denoted as σ) is a measure of the
transverse width of a particle beam and is critical to luminosity
because colliding narrower (and therefore denser) beams of
particles increases the probability of the particles themselves
colliding. Charged particle beams are controlled through the

RHIC complex with various magnets, electric fields, and
other components. This work is concerned specifically with
the Booster to Alternating Gradient Synchrotron (BtA) trans-
fer line, a section of the RHIC complex that transfers the
particle beam between the Booster and AGS, two circular
synchrotron accelerators within the complex. During transfer
between synchrotrons, the optical focusing characteristics of
the beam must be “matched”, (see Sec. II), and will otherwise
cause beam size growth [1]. Tuning magnet strengths to
minimize optical mismatch is a complex task requiring expert
control. Adjusting multiple magnets simultaneously is a high-
dimensional challenge, and efficiency is crucial due to limited
beam time and noisy performance metrics. Currently, in the
BtA, gradient descent algorithms are used in simple simula-
tions to find initial settings, which are then manually fine-tuned
for improved efficiency. Previous studies have explored various
AI-based approaches to optimizing accelerator control, with
Bayesian Optimization (BO) and RL emerging as the most
successful methods [2], [3]. BO is generally more sample-
efficient and feasible for online learning, while RL, though
requiring a simulation, is more suited for continuous control
problems [2]. BO has been successfully applied to accelerator
optimizations, including photoinjector beamlines [4], laser-
plasma accelerators [5], and beam transfer lines [6].

RL, though less explored [2], has also demonstrated success
in accelerator control processes, such as beam envelope opti-
mization [7] and transverse beam tuning [8], among others [9]–IC
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[11]. Awal, Hetzel, et al. [12] used a modified Soft-Actor
Critic RL algorithm to minimize injection mismatch, achiev-
ing more efficient optimization than human experts, though
their approach relied on destructive measurements. In the
AGS, beam size is monitored using nondestructive but noisier
methods [13]. Therefore, this work proposes using Recurrent
Proximal Policy Optimization (RPPO) to optimize particle
beam control, minimizing injection mismatch with memory-
based neural networks that account for daily fluctuations in
accelerator operation, using only beam size in the reward
function to preserve the beam.

II. BOOSTER TO AGS TRANSFER LINE

A. BtA Background and Components

In an accelerator, there are several types of magnets respon-
sible for different navigational effects on the beam, but this
work aims to optimize the quadrupole (or focusing) magnets.
As the beam passes through a quadrupole, it focuses the
particles in the edge of the beam towards the beam pipe center.

Fig. 1. Booster to AGS transfer line schematic

The BtA is the line that transfers a particle beam from the
Booster synchrotron to the AGS and contains 15 quadrupole
magnets (among other components). These magnets confine
the particles within the beam pipe aperture and transversely
shapes the beam to be accepted into the AGS. This work is
interested in optimizing the strengths for a subset of these
magnets in order to minimize AGS injection mismatch.

B. Injection into AGS - Mismatch Effects

A set of chosen strengths for the quadrupoles in the BtA
will affect the particle beam motion (or dynamics). We pa-
rameterize the beam motion using optical parameters (β, α,
D, D′). The parameters β, α characterize the envelope of
the particle trajectories through the BtA and their slopes.
The parameters D, D′ characterize dispersive effects due to
variation in particle momenta [14]. They are defined separately
for the horizontal and vertical planes (denoted by subscript
x and y). In the BtA, we may assume Dy = D′

y = 0,
so our beam model is fully characterized by 6 parameters:
(βx, βy, αx, αy, Dx, D

′
x).

This work deals with two main kinds of injection mismatch,
1) amplitude mismatch and 2) dispersion mismatch. The
following equations [1] quantify the ratios of beam growth

caused by these effects, where σ0 is the initial beam size and
σr is the beam size after injection.

1) Amplitude Mismatch:

σ2

σ2
0

= 1 +
1

2

∣∣det∆J
∣∣ ≥ 1 (1)

2) Dispersion Mismatch:

σ2

σ2
0

= 1 +
1

2

(
∆D2 + (β∆D′ + α∆D)2

σ2
0

)
σ2
p (2)

where ∆D := D∗ −D denotes the deviation of D from the
optimal D∗ for injection, and similar for ∆D′ := D′∗ − D′

and ∆J := J∗ − J (defining γ = (1 + α2)/β),

J =

(
α β
−γ −α

)
, J∗ =

(
α∗ β∗

−γ∗ −α∗

)
The goal of this work is to find a set of quadrupole strengths

that minimize these ratios Eq. (1), (2) to 1 such that no beam
size growth takes place.

III. METHODOLOGY

A. Simulation using Bmad and Tao

To simulate the behavior of the BtA we use Bmad [15], a
toolkit for simulating charged particle dynamics, together with
Tao, a general purpose simulator. We use existing lattice files
that describe the beam dynamics of the BtA and dynamically
modify them using PyTao, a python library that interfaces
with Tao. Specifically, we use it to modify quadrupole magnet
strengths, described using current in Amps. Tao provides
measurements for each of the optical parameters inside of the
AGS, and these measurements are used with Eq. (1), (2) to
calculate a simulated beam size in each transverse direction
(σx and σy) and resultant beam size σr.

σ2
x

σ2
0x

= 1 +
1

2
|det∆Jx|+

∆D2
x + (βx∆D′

x + αx∆Dx)
2

2σ2
0x

σ2
px

σ2
y = σ2

0y

(
1 +

1

2
|det∆Jy|

)
σr :=

√
σ2
x + σ2

y, σ0 :=
√
σ2
0x + σ2

0y

(3)
Operationally reasonable values are used for nominal beam
values σ0x, σpxand σ0y . We assume perfect knowledge of σ0

with no measurement error because we can make an arbitrary
number of measurements upstream from injection to reduce
the measurement uncertainty.

B. Magnet Sensitivity Study: Feature selection for RL

The beam size growth is governed by six independent
optical parameters βx, βy , αx, αy , Dx, and D′

x, as expressed
by a function η (composite function of components of Eq. (3)):

ρ :=
σr

σ0
= η(βx, βy, αx, αy, Dx, D

′
x) = ξ(15 magnets) (4)

Since beam size also depends on 15 quadrupole magnets via
ξ (describing the simulation process), these magnets are not
independent. We aim to reduce the system to a set of 6 magnets



to provide a new function ξ̃ approximating the functional range
of ξ such that,

ρ = ξ(15 magnets) ∼= ξ̃(some 6 magnets) (5)

Though exact equality is unlikely, we seek 6 magnets that cap-
ture most of the range. Using a feature selection method based
on the GENFEATWEIGHT [16], we identify the 6 magnets that
account for the most variance in the optical parameter space.
We assume the magnets independently affect the output and
compute the Jacobian matrix J = ∂O

∂M , where O represents
output parameters and M the magnets. Ridge regression is
then applied to identify the most significant magnet weights,
selecting the top six. The process is described by Algorithm
1 below. The optimal α∗ = 7.54 × 10−8 for ridge regression
is found using the L-curve method [17]. We conclude through
this process that the most influential quadrupoles are,

(QV7, QV9, QV15, QH4, QH6, QH14) = (c1, . . . , c6) = c
(6)

(see Fig. 1) which are used in the states of the RL environment.

Algorithm 1 Feature Selection Algorithm (adapted from GEN-
FEATWEIGHT in [16])

Input: J ∈ Rm×n, Jacobian matrix
Output w⃗ ∈ Rm, importance weightings for m features

1: UΣV ⊤ ← SVD (J)
2: X ← argminX=(xi,j)∥J⊤X − V ∥2F + α

∑
i,j |xi,j |2

3: ∀i ∈ [m] , wi = max1≤h≤n |xi,h|

C. RL Formulation and Gym Environment

To apply RL for BtA particle beam control, the Markov
decision process (MDP) (S,A, γ,P,R) is chosen as follows.
Define the state space S = {(c;σr) ∈ R7} with c in Eq. (6)
and σr from Eq. (3), action space A = {(a1, . . . , a6) | ai ∈
[−5, 5]}, and the transition (probability) P : S×A×S → R+,

P (s(t),a(t), s(t+1)) := δ
(
c(t) + a(t), c(t+1)

)
(7)

where c(t), c(t+1) are the magnetic current components of
s(t), s(t+1) ∈ S respectively, and s(t), s(t+1) are states of
time step t and t + 1, γ ∈ [0, 1), R : S → R is a
reward defined and discussed later in Eq. 8, and δ(·, ·) is a
Kronecker delta function in Eq. (7), which essentially depicts
the interaction of the state and the action by the additive
manner: c(t+1) = c(t) + a(t), or sometimes we denote
a(t) = ∆c(t) := c(t+1)−c(t). That is, an action only interacts
with the first 6 components of a state. Technically speaking, σr

is not independent from the magnetic current c, but empirical
investigations suggest that the inclusion of σr is helpful for
seeking optimal configurations.

An agent (or a policy) π : S → A yields a trajectory starting
from s(1) in S: s(1) → s(2) → · · · → s(T ) where the trajectory
is also called an episode in RL, and the length of the episode is
T . For this work, T = 10 is set. While the original objective
of the RL is to find an optimal agent π∗, the focus of our
interest lies more in achieving the optimal final state s∗. In

the end, we seek the states {s(t)} that satisfy the condition
π(s(t)) = a(t) → 0 as t ≫ 1 and the optimal states are
defined as s∗ = limt≫1 s

(t).
Notably, the choice of our MDP imposes the constraint |c−

c(1)| ≤ 50 Amp for any c such that the beam settings are not
drastically unsuitable for use in the real machine.

Fig. 2. BtA RL formulation diagram

Environment: The RL environment was developed with
the Gymnasium package (formerly OpenAI Gym) [18] and
integrates the PyTao BtA simulation. To ensure robustness and
scalability to real-world scenarios, we apply domain random-
ization, a technique commonly used to facilitate simulation-
to-reality transfer [12], [19]. Variations in weather, minor
maintenance, and other random factors can affect beam dy-
namics. We simulate these effects by randomizing the initial
optical parameters O with noise from a triangular distribution
T ( (1− h)O, O, (1 + h)O), where h is set to cause up to
20% beam size growth (a reasonable estimate).

Typical measurement errors in the AGS, are simulated using
Gaussian noise N (0, µ σ0) added to each σr measurement in
the simulation, where µ represents the noise percentage. To
mitigate noise effects, we use a 15% trimmed mean of 20
samples for each measurement.

The Reward: R : S → R is defined as the composition of
R̃ : R→ R and the beam ratio ρ such that R(s) = R̃ ◦ ρ(s).
Recall ρ = σr

σ0
is related to the initial size σ0 and the final σr,

which is the consequence of a state s by non-trivial simulations
σr = σr(s). Ideally, we want the optimal result ρ∗ = 1, and
thus, we define a “good” ratio to be in the range ρ ≤ 1.15.

Two main considerations were made in shaping the reward
function: 1) The agent must be able to precisely converge
to near-optimal ratios and 2) not become stranded in the
large space of bad policies. The rationale is similar to that
of the leaky ReLu activation function [20], which is to aid
convergence by stopping neurons from becoming inactive from
negative input values. It allows positive values to proportion-
ally influence the output, while negative values still have some
gradient to deter neuron death. Similarly, we would like good
ratio values (ρ ≤ 1.15) to proportionally and aggressively
influence the gradient policy update while worse ratio values
still have some gradient to prevent agent confusion. To this
end, we design the function R̃ on ρ,

R̃(ρ) =

{
−66.67 (ρ− 1) + 10 if ρ ≤ 1.15

−kρ+ b otherwise
(8)

where the constant b is determined by the continuity condition
and k is a small positive value for a gentle slope.



Fig. 3. Piecewise function of R̃.

For clarity in evaluation, the range of R̃ ∈ [0, 10] on ρ ≤
1.15 is designed to have R̃(ρ∗) = 10 when the optimal ρ∗ = 1
is achieved. Empirically, it is found that k = 0.25 is suitable
for the agent to learn a descent policy. Other choices of (k, b)
are possible.

D. The RL Algorithm

We employ Stable Baselines3 [21] for our RL algorithm,
specifically utilizing the Recurrent Proximal Policy Opti-
mization (RPPO) from the sb3-contrib library, which in-
cludes community-contributed algorithms based on Stable
Baselines3. Vanilla Proximal Policy Optimization (PPO) is an
actor-critic deep RL algorithm that uses neural networks to
estimate both a value function (evaluating policy value) and a
policy function (producing the policy), updating their weights
to converge on an optimal policy [22]. RPPO enhances PPO by
incorporating Long Short-Term Memory (LSTM) architecture,
which improves the model’s temporal memory.

RPPO was selected for its LSTM-based architecture in both
policy and value networks, enabling the model to track hidden
states over time. This allows the agent to use intermediate
rewards to infer hidden domain elements (e.g., temperature
effects, maintenance) and converge on an improved solution
for specific domain instances.

IV. EXPERIMENTS

A. Simulation setup

The agent was trained across environments with varying
measurement noise levels: 0, 5, 10, 15, 20, 25, 30%, logging
the mean reward over 100 episodes. Each agent was trained
for 750k timesteps (sufficient for convergence) and repeated 5
times with 5 standardized random seeds per noise level for
consistency and reproducibility. The RPPO architecture for
both value and policy networks consists of 2 LSTM layers
with 256 units and 3 hidden layers with 64 neurons. Notable
hyperparameters were: learning rate 5× 10−4, clip range 0.1,
γ = 0.99, entropy coefficient 0.01, batch size 256, buffer size
1024. Vanilla PPO served as the baseline.

B. Training Convergence

In Fig. 4, RPPO demonstrates stable convergence to near-
optimal values (maximum episode reward is 100) for increas-
ing levels of measurement noise. We observe higher variation
in the mean reward as measurement noise is increased but a
limited effect on the overall convergence behavior.

Fig. 4. Mean reward for different noise levels (0, 10, 20, 30%) with variance
bands.

Fig. 5. Effect of measurement error on evaluation beam size

C. Noise Resilience

Fig. 5 shows the minimal impact of measurement noise,
with all results within The red line represents a 5% beam size
increase (ratio of 1.05), the practical limit below which im-
provements are indistinguishable due to instrumentation error.
Measuring performance against this benchmark ensures results
are both meaningful and near the practical optimum. Vanilla
PPO achieved less optimal beam size ratios, highlighting the
value of memory-based training for learning BtA hidden states.

V. CONCLUSION

In this work, we demonstrate the use of RL and RPPO
architecture for robust optimization of the Booster to AGS
transfer line for accelerator tuning. Based on data from previ-
ous RHIC runs, emittance at the AGS injection point (end of
the BtA) increases by 20-25% within 2-3 days without expert
intervention. A robust RL system capable of autonomously
limiting beam size growth to below 5% (Fig. 5) outperforms
state-of-the-art methods, preserving beam quality and enhanc-
ing luminosity at downstream collision points.
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