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Abstract

We report on a system (ps-BPM) that can measure the
< electron source vertical position and angular motion along
= w1th the vertical source size and angular size at a single
£ location in a synchrotron bend magnet beamline. This sys-
= tem uses a combination of a monochromator and a filter
£ with a K-edge to which the monochromator was tuned in
£ energy. Measurement of the vertical beam location without
£ the absorber and vertical edge location with the absorber
Z allows measurement of the source position and angle. The
E beam width and edge width give information about the ver-
S tical electron source size and angular distribution. In this
= work, we show a typical measurement with the ps-BPM
fmonitor and results that can be obtained from a single

2 measurement. By combining the analysis in the time and
= frequency domain, information on beam motion and size
—D can be extracted and identified. Examples of ps-BPM ap-
phcatlons are given.
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INTRODUCTION

Accurate measurements of the electron source size and
& divergence are becoming increasingly important at syn-
© chrotron facilities as the new generation light sources are
3:3 being built with the focus on achieving the smallest possi-
& ble emittance [1, 2].
o Currently available ways of measuring the source size
; are relying on direct imaging or interference-based tech-
mmques Direct imaging includes pmhole imaging [3, 4], im-
U aging with Kirkpatrick-Baez (KB) mirrors [5], Compound
£ Refractive Lenses (CRLs) [6] and Fresnel Zone Plates
%5 (FZP) [7, 8]. The interferometry based systems include
g double-slit diffraction [9-11], grating interferometry [12,
813], and mt-polarization [14].

In addition to the importance of measuring the source
g size at these new generation light sources, beam stability is
£ also of great concern. Real-time measurements of the posi-
g tion and angular position of the electron beam at a single
3 location will be a powerful tool as a monitor, a diagnostic

o element and in a feedback system.
E Here we present a new system, phase space Beam Posi-
= tion Monitor (ps-BPM), that measures, in real time, all four
B quantities (size, divergence, position, and angular position)
= £ of the electron source in the vertical plane from a single
£ measurement [15, 16].
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ps-BPM SYSTEM

The ps-BPM system uses the nearly monochromatic
beam provided by a crystal monochromator (in Bragg or
Laue geometry) around an absorption K-edge of a selected
filter element. Half of the horizontal fan of the beam is cov-
ered by the K-edge filter and the other half has no filter.
Both halves of the beam are imaged with an area detector.

The unfiltered beam side of the image is summed over a
horizontal width and the beam profile is shown in Fig. la.
This profile is fitted with a Gaussian function from which
the center location and the width of the beam are obtained.

For the filtered beam side the image data is also summed
over a horizontal width as shown in Fig. 1b. This profile is
then normalized by the unfiltered beam. The negative log-
arithm of this normalized filtered beam profile is taken to
convert the filtered data to an absorption profile which re-
sembles the step function associated with the K-edge of the
element as shown in Fig. lc. A spatial derivative is taken
of this step-like function forming a peak which is then also
fit by a Gaussian function from which we have an edge lo-
cation and width as shown in Fig. 1d.

SOURCE POSITION AND ANGLE
MEASUREMENTS

Filtered K-edge Side

It’s been shown previously [15] that the location of the
K-edge on the filtered K-edge side of the data is only sen-
sitive to the electron beam position and not to the angular
position of the electron beam. Therefore, the center of the
Gaussian fit of the filtered K-edge side (Veqge) is @ meas-
ure of the electron beam position (y,) as shown in Eq. 1,

Ye = Yedge - (1

®) i dy
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Figure 1: Beam and edge analysis of the ps-BPM system.
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Unfiltered Side
The unfiltered beam side of the data includes the position
and angular position of the electron source by,

Ybeam = DYe + Ye »
where D is the source-to-detector distance.
By having the two measurements at the same time, the an-
gular position of the source (y,) can be solved as,

ye( = (.Vbeam - yedge)/D .

SOURCE SIZE AND DIVERGENCE
MEASUREMENTS

Filtered K-edge Side

The spatial width of the Gaussian fit from the filtered K-
edge side of the beam, 0,44, includes contributions from
the natural width of the K-edge filter element, o

2

3)

!
yK—edge >

the angular acceptance of the monochromator, o,/ and
mono

the vertical size of the electron source, gy, all added in
quadrature as,

Uezdge = 0'3% + (Day;(—edge)z + (DO'yrrmmD)2 . 4)
The electron source size is then (Eq. 5),
2 2
O_y - \/O_ezd‘ge B (Do—yll(—edge) - (DO—Yr’nono) : (5)
Unfiltered Side

The measured spatial width of the unfiltered side, peqm,
is the combination of the electron source size, gy, diver-
gence, g, and the opening angle of the photon beam,
oy added in quadrature as,

Tpeam = 0y + (Doy)? + Doy )2 (6)

By having the opening angle of the photon beam, mod-
elled as a Gaussian, and the measured g, from the edge
side, we can solve for the divergence of the electron source,

k (7

_ 2
oy = E\/Gbeam -0} — (Day}r’h)2 .
This shows by having measurements of the unfiltered
beam side and the filtered K-edge side we can measure the
vertical position, angle, size and divergence of the electron
source at the same time. However, to arrive at these values

the contributions from g/ , 0.1 and o s need to
yK_edge Ymono Yph

be determined and is presented elsewhere [16].

RESULTS

Two examples of the application of the ps-BPM system
are presented to illustrate the ability to provide information
regarding the source and even beamline properties.

vp

Normal Operations

A typical measurement using the ps-BPM monitoring
system is shown here to demonstrate the full characteriza-
tion of the electron beam in the vertical direction during
normal operations of the CLS facility. The measurement
was performed at the Biomedical Imaging and Therapy
(BMIT) bend magnet (BM) beamline [17-19] at the Cana-
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dian Light Source. The photon energy is tuned to the bar-
ium K-edge at 37.441 keV by the Si (220) Double Crystal
Monochromator (DCM). The barium filter projected con-
centration is 35 mg-cm?. The images of the filtered and
unfiltered beam were recorded by a flat panel Hamamatsu
detector (Hamamatsu Photonics, Hamamatsu City, Shizu-
oka Pref., Japan) at D =20 m from the source. The detector
pixel size is 100100 um. A total of 3000 images were
taken with an acquisition time of 0.03 s for each image.

The measurement results are shown in Fig. 2. The source
position (y,) and angular position projected at the detector
location (Dy,) are shown as a function of time in Fig. 2a.
The numbers shown on the figures are the standard devia-
tion of the two positions over the entire measurement pe-
riod of 90 s. The standard deviation values are the direct
evaluation of the amplitude of beam motion. At the detec-
tor location, the angular motion of the source has larger ef-
fect than the source position motion.
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Figure 2: (a) The time evolution of y, (left) and Dy, (right).
(b) PSD functions of the two curves in (a). (c) The time
evolution of o, (left) and Do, (right). The light colored

and dark colored curves are for sampling time of 0.03 s and
0.9 s, respectively. (d) PSD functions of the light colored
curves in (c).
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3 o . .
§ The power spectral distribution (PSD) function, obtained (@) 0 . (b) 3.0
g from the Fourier transform of the time-dependent signal, . T1.0pm 55l =007 prad T
5 allows characterizing the measured beam position in the 5 . ' 4
= frequency domain. The PSD functions of the two curvesin - . g 2or R
“Flg 2a are shown in Fig. 2b, respectively. With the sam- 2 -10 A 5 15 .
S phng rate of 33 Hz, positional variations or vibrations up = = ok N
2 to 16.7 Hz can be detected. The beam position shows three -5 . 0sk
« characteristic peaks at 6.7, 14.2 and 14.9 Hz, which are oA A
2 clearly from the angular motion. The small frequency band YT ET R T T T I Y T
= around the 12.2 Hz peak shows up in both the source posi- Wiggler field (T) Wiggler field (T)
\dtlon and angular position. © 130 (d)zs,s
£ The source size (0y) and angular distribution projected T25um = 0.06 prad
§ on the detector (Do) are shown as a function of time in 125r BIF R
":«SFig. 2c¢. All curves are offset to their own average values, g 120 T g 245}
< which are indicated in the figure. The light colored curves < 2 °
g . . . . € st . o240
g are plotted in the original time scale (0.03 s steps). Since .. 6 5 0 0 o
-2 the beam size measurements are photon hungry, a longer 110} ¢ . 2351
g acqqlsltlon time is needed to improve its sensitivity [16]. I N
£ In Fig. 2c, the over plotted curves with dark colors were 00 10 20 30 40 00 10 20 30 40
$= obtained by averaging every 30 points (0.9 s). The standard Wiggler field (T) Wiggler field (T)

E deviation values shown in the figure are also for the aver-
Z aged curves which show the sensitivity of the system for
E each of the three parameters. An integration of 0.9 s is ad-
8 equate to reach the sensitivity of 4 um for source size meas-
» urement.

The corresponding PSD functions of the fast measure-
ment data (light colored curves in Fig. 2c) are shown in
= £ Fig. 2d. The PSD function for gy shows only random noise
= indicating that the present system is not fast enough to
% monitor source size changes on the millisecond scale. On
zthe other hand, the PSD function for Do,,r shows clear fre-
< quency peaks that are consistent with the ones observed in
3 the position plots (see Fig. 2b) which is an indication of
& adequate sensitivity.

©
'3 BMIT Wiggler Field Changes

The next example looks at the effects of the BMIT wig-
o gler on the BM source as the field is changed. The experi-
<" ment was performed at the Iodine K-edge (33.169 keV) by
A the Si (220) DCM at the beamline. The iodine filter pro-
O jected concentration is 60 mg-cm. The BM source param-
£ eters were measured at different magnetic fields of the
% BMIT wiggler.

g The extracted source size, divergence, position, and an-
& gular position are shown in Fig. 3 as a function of the wig-
£ gler field. All results are an average of 24 s. Varying the
g magnetic field of the wiggler alters the tune of the electron
S beam lattice which changes the source parameters at the
“ BM location. Figure 3a and 3b show the motion of the elec-
5 tron beam position and angle, respectively. Fig. 3¢ shows a
2 > continuous reduction in the BM source size as the wiggler
g Zfield increases. On the other hand, the source divergence
—* decreases at the beginning and reaches its minimum after
B the wiggler field raises above 2 T as shown in Fig. 3d.

CONCLUSION

We have shown how to use the ps-BPM system to char-
acterize source properties. The capability of monitoring
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Figure 3: Extracted (a) gy, (b) g/, (¢) Y., and (d) y; as a
function of the magnetic field of the BMIT wiggler. The
error bars are the standard deviation of 8 measurements of
3 s data.

source position, angular position, size, and divergence sim-
ultaneously is the unique feature of the ps-BPM monitor.
Combining the time and frequency domain studies, the ps-
BPM monitor can provide more systematic information
about the source and the beamline.

The system was used during (1) normal operations
where beam motions were found that are currently being
looked at to identify their origins and (2) while an insertion
device field was changed to assess the impact on beam mo-
tion and source size.
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