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A B S T R A C T

Using a combination of exact and approximate methods we study
a few different lattice quantum field theory models, ranging from
lattice spin models emulating the heavy-dense regime of quantum
chromodynamics, over Higgs-Yukawa models as a proxy for the Higgs
sector in the standard model, to pure Yang-Mills theories on the lattice.

The approximate methods consist mainly of extended mean field
theory, which has been adapted to the case of quantum field theories
from its more general sibling dynamical mean field theory, which is
mainly used in condensed matter physics. We also introduce mean
distribution theory, which is a generalization of mean field theory which
determines not only mean values of fields, but whole distributions, in a
self-consistent manner.

First and foremost, we extend the concept of extended mean field
theory by applying it to a series of models of increasing complexity.
Starting from the complex φ4 theory, which suffers from a “sign prob-
lem” in the usual formulation, we show that extended mean field theory
works very well for theories with a Gaussian fixed point and we are
able to reproduce the phase diagram of the model, obtained by exact
worm-algorithm simulations, to a high accuracy. Next, we study a Z3

spin model with complex external fields, both with extended mean field
theory and with exact Monte Carlo simulations. We show here that in
three dimensions the model has non-monotonic spatial propagators,
which can be interpreted as a liquid phase. Ultimately this may have
implications for the phase diagram of quantum chromodynamics and
for experimental signals in heavy-ion collisions.

We also investigate a Higgs-Yukawa model, which is a proxy for
the Higgs and fermion sector of the standard model, in the presence
of a higher dimension operator. Of particular interest is the finite
temperature phase transition of this model, which is relevant in the
context of electroweak baryogenesis. We determine the mass scale
needed for a first order transition with a Higgs mass given by the
experimental value and find that new particles should appear with
masses of one to a few TeV in order to make this scenario viable.
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Furthermore, we shed light on two concepts related to “beyond the
standard model” physics on the lattice. Namely, the spontaneous gauge-
symmetry breaking of gauge-Higgs unification and the signatures of
conformal symmetry breaking on the lattice.

Finally, we study pure Yang-Mills theories on the lattice. One part of
this is a study of compact U(1) gauge theory with a non-conventional,
so called “topological” action, which has no classical continuum limit.
We demonstrate that it nonetheless reproduces the physics of the stan-
dard Wilson action, in a certain sense even with superior properties.
The other part is a study of gauge theories, and spin models, with the
approximative mean distribution approach, which is applied to models
both with standard actions and with topological actions. We find that
the mean distribution approach improves, in some cases greatly, the
predictions of standard mean field theory. This is in particular the case
if a change of variables from symmetry-variant to symmetry-invariant
variables is made, e.g. from links to plaquettes for a gauge theory.
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Z U S A M M E N FA S S U N G

Mittels einer Kombination von exakten Methoden sowie Näherungs-
verfahren untersuchen wir verschiedene Gittermodelle der Quanten-
feldtheorie. Die Modelle reichen von Gitter-Spin-Modellen, welche das
schwere dichte Regime der Quantenchromodynamik emulieren, über
Higgs-Yukawa Modelle als einen Vertreter für den Higgs-Sektor im
Standardmodell, bis hin zu reinen Yang-Mills-Theorien auf dem Gitter.

Die Näherungsverfahren stammen im Wesentlichen aus der erweiter-
ten Molekularfeldtheorie, welche aus der allgemeineren dynamischen
Molekularfeldtheorie (die vor allem in der Physik der kondensierten
Materie verwendet wird) für den Fall der Quantenfeldtheorien ange-
passt wurde. Wir stellen auch den mittleren Verteilungsansatz vor -
eine Verallgemeinerung der Molekularfeldtheorie, die nicht nur die
Mittelwerte von Feldern, sondern sogar ganze Verteilungen in einer
selbstkonsistenten Weise bestimmt.

In erster Linie erweitern wir das Konzept der erweiterten Mole-
kularfeldtheorie indem wir sie an einer Reihe von Modellen mit zu-
nehmender Komplexität anwenden. Wir beginnen mit der komplexen
φ4-Theorie, die in der üblichen Formulierung von einem “Zeichenpro-
blem” leidet, und zeigen, dass die erweiterte Molekularfeldtheorie für
Theorien mit einem Gaußschen Fixpunkt sehr gut funktioniert. Wir sind
in der Lage das Phasendiagramm des Modells, welches auch durch
numerisch exakte Wurmalgorithmus-Simulationen zu erhalten ist, mit
einer hohen Genauigkeit zu reproduzieren. Als nächstes untersuchen
wir ein Z3 Spin-Modell mit komplexen externen Feldern sowohl mit
der erweiterten Molekularfeldtheorie als auch mit exakten Monte Carlo
Simulationen. Wir zeigen hier, dass das Modell in drei Dimensionen
nichtmonotone räumliche Korrelationsfunktionen aufweist, was als
Hinweis für eine flüssige Phase interpretiert werden kann. Dies kann
Auswirkungen auf das Phasendiagramm der Quantenchromodynamik
und für experimentelle Signale in Schwerionenkollisionen haben.

Weiters untersuchen wir ein Higgs-Yukawa-Modell, welches einen
Vertreter für die Higgs- und Fermionensektoren des Standardmodells
darstellt, in Gegenwart eines Operators höherer Dimension. Von be-
sonderem Interesse ist das Phasendiagramm des Modells bei endlicher
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Temperatur, das im Zusammenhang mit der elektroschwachen Baryoge-
nese relevant ist. Wir bestimmen die für einen Übergang erster Ordnung
benötigte Massenskala, wobei wir die Higgsmassedes experimentellen
Wertes als gegeben annehmen, und stellen fest, dass neue Teilchen
mit Massen von einem bis wenigen TeV erscheinen sollten, um dieses
Szenario rentabel zu machen.

Außerdem geben wir Aufschluss über zwei Konzepte der Physik “jen-
seits des Standardmodells” auf dem Gitter - die spontane Eichsymmetrie-
Brechung der Eich-Higgs-Vereinigung und die Signaturen der konfor-
men Symmetriebrechung auf dem Gitter.

Schlussendlich untersuchen wir reine Yang-Mills-Theorien auf dem
Gitter. Ein Teil davon ist eine Studie der kompakten U(1)-Eichtheorie
mit einer unkonventionellen - sogenannten “Topologischen” Wirkung
- die kein klassisches Kontinuumlimit hat. Wir zeigen, dass sie den-
noch die Physik der Standard- bzw. Wilsonwirkung wiedergibt, in
gewisser Weise mit besseren Eigenschaften. Der andere Teil ist eine
Studie von Eichtheorien und Spin-Modellen mit approximativem mitt-
leren Verteilungsansatz, der auf Modelle mit Standardwirkungen als
auch mit topologischen Wirkungen angewendet wird. Wir beobach-
ten, dass der mittlere Verteilungsansatz die Prognosen von Standard-
Molekularfeldtheorie verbessert, in einigen Fällen sogar signifikant.
Dies ist insbesondere der Fall wenn eine Variablentransformation von
einer Symmetrie-varianten zu Symmetrie-invarianten Variable besteht,
wie zum Beispiel von Links zu Plaquettes im Fall einer Eichtheorie.
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1
I N T R O D U C T I O N

Except in highly symmetric special cases, quantum field theorys (QFTs)
can not be solved exactly. For weakly coupled theories, perturba-
tion theory typically works well, but there are many examples, for
example quantum chromodynamics (QCD) at low energies, where non-
perturbative effects are essential. Since the seminal work of Wilson
on Lattice QCD [100], the lattice regularization, together either with
analytic or computational methods, has been the foremost approach for
studying such models. With ever-increasing computer power, lattice
calculations of in particular QCD have reached impressive accuracy and
are now in the state of both yielding experimental predictions as well
as vital input to perturbative calculations. However, some problems
remain out of reach from conventional computational methods, due
to for instance exponential degradation of the signal-to-noise ratio as
the volume in the calculation is increased. To ameliorate the situation
several directions should be considered. On the one hand, it is always
of interest to design or improve approximate methods which capture at
least the qualitative features of the models they are applied to. On the
other hand, constructing new, exact methods or reformulating the origi-
nal problem may also allow progress in the understanding of previously
impenetrable models.

Among the most serious obstacles in lattice QFT and computational
physics is the so-called “sign problem,” 1 which spoils the probabilistic
interpretation of the partition function and thus a foundation of the
otherwise powerful Monte Carlo method. A sign (or phase) problem
may have different origins. On the one hand, the statistics of the fields
might cause some configurations to appear with a negative (fermions) or
complex (anyons) weight. While it is possible, in principle, to consider
suitable subsets of the configuration space [25] or to use another set of
variables [35] to end up with only non-negative weights, appropriate
subsets or new variables have only been found for a small number of
models so far. On the other hand, the action itself can be complex,

1 Which is to say that the Boltzmann factors in the partition sum are not all non-negative
real numbers.
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leading to sign problems even in bosonic systems. A typical example
for this case is when a chemical potential µ is introduced, which creates
an asymmetry between particles and antiparticles. Also here, the sign
problem can sometimes be solved by considering a different set of
variables, like in the world-line Monte Carlo approach [45, 50]. Recent
progress in the understanding of the complex Langevin equations [1,
3] and gauge cooling [88] has promoted yet another approach for
simulating models with complex actions.

Mean field (MF) methods, although approximative, can be useful
alternatives. They are computationally cheap, and many results can be
obtained analytically, or at least semi-analytically. Furthermore, most
of the time the symmetries of the Lagrangian can be used to make
the action real, hence avoiding the sign problem. However, standard
MF methods have some obvious shortcomings. Although MF theory
is known to reproduce the correct qualitative critical behavior at and
above the upper critical dimension duc (up to logarithmic corrections at
duc), quantitative predictions are usually very approximative. Another
shortcoming of MF theory is that it cannot be used to determine correla-
tion functions or to study nonzero temperature. A simple extension of
mean field theory which aims to overcome these limitations is Extended
Mean Field Theory (EMFT) [80, 10], which incorporates self-consistency
at the level of the propagator.

EMFT can be seen as a simpler variation of Dynamical Mean Field
Theory (DMFT) which is a method widespread in the condensed matter
community and has been applied to both fermionic, bosonic and mixed
systems. As its name suggests it is a variation on standard MF theory.
The core merit of the method is the way an approximation to the two-
point correlation function is used in the self-consistency equations,
which leads to several nice properties. There is for example direct
control over the lattice on which the full theory is formulated, although
the effective EMFT action only contains the field at a single point in
space-time. Additionally it is possible to extract an approximation of
the mass through the correlation function.

Since MF methods in general, and EMFT in particular, maps the a
higher-dimensional model to a zero-dimensional one, the volume scal-
ing in the sign problem is removed and it is expected that EMFT will
not suffer from any sign problem. In many cases it is even possible
to completely get rid of the sign problem by a convenient choice of
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variables. In chapter 3 we apply EMFT to a model with a sign problem
due to a non-zero chemical potential.

It is also duly noted that some models with complex actions display
interesting physically phenomena which are closely related to the very
fact that the action is complex. An example is the possibility of models
with complex saddle point to develop a complex spectrum, which leads
to oscillating propagators.

Oscillating propagators have been the subject of several studies and
carry important information about the underlying physics. Patel [81, 83]
has argued that many-body correlations among the hadrons produced
in heavy-ion collisions may be oscillatory and has shown how those
signals can be related to properties of the quark-gluon plasma (QGP) [82].
The underlying idea is that the QGP can be described as a network of
quarks and of flux tubes into which the gluonic degrees of freedom
are concentrated. The flux tubes are assumed to interact mainly via
three-point vertices, from here on called junctions, where three flux
tubes join together to form an SU(3) singlet. It has been suggested
that this system behaves like a liquid with an oscillating two-body
spatial correlation between junctions and this structure might remain
as the QGP hadronizes. This would be the case if the string network
breaks up via pair production rather than via coalescence of junctions.
If that happens, then the oscillatory signature should persist also in the
two-body correlations of transversely outgoing hadrons.

Another situation when oscillating correlation functions may occur is
in a possible crystalline phase in the QCD phase diagram, which may
occur at high density and low temperature. The existence of such a
phase is supported by the exact solution of the (1 + 1)-dimensional
Gross-Neveu (GN) model at high density [95, 48]. While the system
described above may show liquid-like correlations, i.e. exponential
decay modulated by a cosine, the signature of a crystalline phase would
be a purely trigonometric correlation function.

To understand better when to expect such non-monotonic behavior,
Ogilvie et al. have in a series of papers [71, 78, 79] studied models
which break charge conjugation C, but remain invariant under the com-
bined action of C and complex conjugation K. QCD at nonzero chemical
potential µ has this property, but also simpler models like the Polyakov-
Nambu-Jona Lasinio (PNJL) model with nonzero µ, SU(3) (Polyakov
loop) spin models with nonzero µ, and even the three-state Potts model
with nonzero µ have the same property. So before tackling full QCD
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one can hope to learn the implications of this symmetry pattern from
simpler models, which may even in some cases be mapped to limiting
cases of QCD itself. It is well known that for QCD, the expectation value
of the Polyakov loop differs from the expectation value of its Hermitian
conjugate, 〈TrF L〉 6=

〈
TrF L†〉 when the chemical potential µ is nonzero.

However, the free energies are real because of the CK symmetry. As a
further consequence of the breaking of C, the transfer matrix T is not
Hermitian, which means that the eigenvalues are not all necessarily real.
Because of the invariance under CK, however, if λ is an eigenvalue of
T, then so is λ∗, i.e. the eigenvalues are either real or occur in complex
conjugate pairs. This is interesting because it implies, in the case where
complex eigenvalues occur, that the Polyakov loop correlator is non
monotonic. In general three scenarios are possible. Firstly, all eigen-
values can be real and the correlator is a conventional, exponentially
decaying function. Secondly, if the largest eigenvalue is real and the
next two are a complex-conjugate pair, then the correlator also decays
exponentially but is modulated by a cosine, and the system behaves
as a liquid. Finally, if the largest (in magnitude) eigenvalue is part of
a conjugated pair, then the correlator is a pure trigonometric function
and a crystalline behavior is observed. All these three cases have been
found by Ogilvie et al [71] in 1-dimensional models, which are to be
seen as dimensionally reduced effective models of (1 + 1)-dimensional
QCD at finite temperature, where the complete phase diagram can be
obtained using transfer-matrix methods. Recently [79] it has been pro-
posed that also higher dimensional models show these characteristics,
based on the fact that the 1-dimensional solution can be seen as the
first order in a character expansion. It has, however, to our knowledge,
not been demonstrated with first-principles lattice simulations that this
is actually the case.

Chapter 4 is devoted to the study of the Z3 spin model with nonzero
chemical potential µ in 1 and 3 dimensions, by the use of EMFT and
exact lattice simulations.

There are also other situations where a method like EMFT can be
of interest. For example, models which includes dynamical chiral
fermions are extremely expensive to simulate due to technical reasons.
For such models, a fast but accurate approximative method can be very
valuable, in part because it can guide the Monte Carlo simulations so
that valuable computer resources are spent where they yield maximum
return, but also because the approximative method can give reliable
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results about the properties of the model. One such model is the
Higgs-Yukawa sector of the Standard Model (SM), which contains the
Higgs field and the massive SM fermions. It is generally accepted that
the SM is an effective field theory which needs to be extended by an
ultraviolet (UV) completion at some energy scale. Depending on this
scale, higher dimension operators may or may not be relevant for the
infrared (IR) physics in the SM. Especially interesting is the possibility
of a first-order electroweak finite temperature (EWFT) transition, which
is relevant in the context of electroweak (EW) baryogenesis. The nature
of the transition is sensitive to both the Higgs boson mass and the scale
of the inevitable new physics.

Even before the Higgs boson was discovered several studies where
the SM couplings were run to very large energies were conducted. This
resulted in both upper and lower bounds on the Higgs mass stemming
from the triviality of the Higgs self-interaction and the EW vacuum
stability, respectively. Sandwiched between these bounds is a small
region of Higgs masses for which the SM can be run at least up to the
Planck scale [46, 28]. Due to the huge success of the SM when it comes
to explaining results from accelerator experiments it was predicted that
the Higgs mass would indeed lie inside this region and that the UV

completion of the SM would enter only at the Planck scale where gravity
becomes important. As the Atlas and CMS experiments announced the
discovery of a Higgs-like particle at 125 GeV, which is at least very close
to the special region, these speculations about no new physics before
the Planck scale got a lot of deserved attention. It is certainly interesting
and important to thoroughly investigate this possibility, see [46] and
references therein.

However, the apparent special value of the Higgs mass of course
in no way excludes new physics at a lower scale and we will in this
paper deal with generic aspects of UV completions at a fairly low
scale of a few to tens of TeV. It is well motivated to depart from the
arbitrarily postulated quartic self-interaction of the Higgs field for the
following reason. The SM does not include dark matter or gravity, so it
is only an effective theory anyway, and there is no reason to assume a
renormalizable Higgs sector. We may add higher-dimension operators,
which may not directly be relevant for the low energy physics but
which can, for example, play an important role for the stability of the
EW vacuum or in the context of EW baryogenesis, in an effective field
theory way. This will of course drastically change the running of the
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SM coupling constants so the question of whether the Higgs mass puts
the universe in a near critical state or not loses its relevance in this
context. For the purpose of generality it is useful to consider generic
higher-dimension operators instead of a specific UV extension of the
SM because then aspects common to a broad class of models can be
investigated. For example, it has previously been demonstrated [55,
56, 44], using the Functional Renormalization Group (FRG) and various
simplified versions of the SM, that the Higgs lower mass bound can
indeed be lowered when higher dimension operators are included.

Since the Yukawa coupling of the top quark is of order one, and be-
cause the phase transition of interest takes place at a finite temperature,
it is desirable to use a non-perturbative approach, i.e. a lattice regular-
ization of the model; for a perturbative study, see [57]. Unfortunately,
it is not known how to regularize chiral fermion interactions on the
lattice, which makes it impossible to study the full SM using a lattice
discretization. There are two sectors of the SM which can be studied
separately, the gauge-Higgs sector, consisting of the weak gauge bosons
and the Higgs field, and the Higgs-Yukawa sector, consisting of the
Higgs field and the SM fermions. For a study of the first, see [67, 41,
16, 91, 92]. In chapter 5, we investigate the latter, because of the large
contribution to the SM Higgs sector from the Higgs-top interaction. The
use of EMFT in this models allows us to obtain results with a computing
effort orders of magnitude smaller than with full Monte Carlo simula-
tions of the same model [32, 60, 36], at the same time as giving access
to the physical region in parameter space at which the Monte Carlo
simulations suffer from a sign problem. See also [31] for a study of the
Higgs-Yukawa model with an additional heavy fourth fermion family.

When it comes to questions about what the UV completion of the SM

is, one can but speculate. There are numerous possible scenarios and
so far the experiments at the Large Hadron Collider (LHC) has been
rather reluctant to give any clues. One suggestion that has seen some
popularity over the last years is the possibility of extra dimensions,
which in some instances can explain the origin of the Higgs field.

Dimensional reduction tells us that QCD at high temperature can be
effectively described as a 3d Yang-Mills theory, plus an adjoint Higgs
field generated by the static mode of the gauge field component A0,
i.e. by the Polyakov loop. Dimensional reduction also occurs in the
case of a compact extra dimension: a (4 + 1)d Yang-Mills theory is
effectively described as a 4d Yang-Mills, plus an adjoint Higgs field

6



introduction

coming from the Polyakov loop P5 in the extra dimension. This led
Hosotani [63, 62], in 1983, to the scenario of “gauge-Higgs unification”:
by a judicious choice of matter content and boundary conditions in the
extra dimension, the minimum of the effective potential for TrP5 can
be displaced from its trivial value A5 = 0. Then, the corresponding
4d adjoint Higgs field acquires a non-trivial vacuum expectation value,
which can [partially] break the gauge symmetry of the Yang-Mills
theory. While this scenario seems to be disfavored phenomenologically,
we are concerned here with a different aspect: how can one diagnose
the claimed breaking of gauge symmetry? In chapter 6 we will deal with
this question in some detail and we will see that the proposal presented
there actually applies also to genuine (gauge + Higgs) systems.

Other possible candidates for the physics beyond the Standard Model
(BSM) are (near-)conformal theories, for example walking Technicolor.
For these models to be phenomenologically relevant, large anomalous
dimensions are required at the infrared fixed point, which often cannot
be realized at weak coupling. Strongly coupled gauge theories are best
studied on the lattice but the lattice is a priori not well suited to study
(near-)conformal theories because of explicit breaking of rotational and
scale invariance through the UV and IR cutoffs, i.e. the lattice spacing a
and the finite extent of the lattice Lµ = Nµa, where Nµ is the number
of lattice sites in the direction µ. It is therefore of great importance
to properly understand how a conformal theory is deformed by the
lattice in order to correctly interpret potential remnant signatures of its
conformality, this will be addressed in chapter 7.

A further interesting direction of research within the field of lat-
tice QFT is the development of improved actions. In recent years lat-
tice QFT has seen a surge of efforts to construct new lattice actions
which aim at improving the approach to the continuum limit. The
best-known strategy is that advocated by Symanzik, where irrelevant
operators of higher and higher dimension are added to the “standard”
(e.g. Wilson plaquette) action, with coefficients adjusted perturbatively
or non-perturbatively to cancel discretization errors of the correspond-
ing power in the lattice spacing a [94, 99]. This kind of improvement is
thus a parametric one, allowing for a faster approach to the continuum
limit than exhibited by the “standard” action.

However, this is not the only possible strategy for improvement. It has
long been recognized that departure from the continuum limit is more
violent for large fields, so that suppressing these large fields produces
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a non-parametric improvement [73]. For instance, this happens when
one trades the Wilson action for the Manton action [74], based on the
length of the geodesic in group space, or for a “perfect” action [87]:
large fields, corresponding to small values of the plaquette trace, are
more suppressed than with the Wilson action, and at the same time
continuum behavior is better approximated for a given value of the
lattice spacing a.

A more radical suppression of large fields is achieved by imposing
a strict cutoff: for instance, in a spin model one can demand that
neighboring spin angles do not differ by more than a limiting value; or
in a gauge theory, one may require that the plaquette trace be larger
than a limiting value. The best-known example of the latter is the
positive-plaquette action for SU(2) lattice gauge theory [70, 27, 47].
While the approach to the continuum limit is also improved in this
strategy, an important side-effect may happen. Localized topological
defects can only form if the cutoff is not too restrictive. For instance,
an O(2) spin model on a square lattice can support vortices only if
the spins can rotate by π/2 or more between neighboring sites. If
not, the disordered phase of this system disappears entirely. Thus, the
cutoff may change the phase diagram of the model. A similar situation
occurs in lattice gauge theory: as pointed out by Lüscher [69], if the
plaquette trace is restricted to “admissible” values greater than about
0.97 (for SU(2)), changes in the topological charge become impossible,
and topology becomes well defined on the lattice. Topological sectors
arise as in the continuum theory.

In chapter 8, we consider the extreme strategy where the action
consists only of a cutoff. In other words, the action takes only two
values: 0 if all cutoff restrictions are satisfied, +∞ if not. This kind
of action has been called topological [22], because it does not have any
classical small-a limit, and the action remains invariant under small
admissible deformations of the field. A simple example of topological
action for an O(N) spin model is:

S = ∑
〈i,j〉

Rθ(Si · Sj), Rθ(x) =

{
0 x > cos θ

+∞ else
. (1.1)

Topological actions raise an interesting puzzle: as the constraint
between neighboring spins becomes more restrictive, the correlation
length increases and diverges; but what is the action associated with
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this continuum limit? Several studies have investigated different spin
models [22, 21, 23], and it has been shown in analytically solvable
O(N) models that the continuum limit is that associated with the usual,
sigma-model action. In higher dimensions numerical investigations
also support this claim very strongly.

Here we want to investigate the properties of a topological action
in a gauge theory, and consider the simplest case, namely compact
U(1) lattice gauge theory in 4 dimensions. Aside from the continuum
limit, we also want to study the phase diagram of this system. With the
Wilson action, a first-order phase transition separates a strong-coupling,
confining phase and a weak-coupling Coulomb phase. This phase
transition is associated with condensation of magnetic monopoles in
the strong-coupling phase [42]. With a topological action, the constraint
on the plaquette trace, when restrictive enough, is going to make it
impossible for magnetic monopoles to exist. This may completely alter
the phase diagram of the theory.

Finally, topological actions may be interesting for algorithmic reasons:
it may be computationally easier to move in the space of admissible
configurations since they all have the same action. While this does
not seem to be a significant effect for the Monte Carlo update of such
configurations, in spin models or in the gauge theory we study, we show
below that extracting the free energy (or equivalently here, the entropy)
is extremely simple numerically, and yields valuable information.

For EMFT, gauge-theories pose great challenges due to the local gauge
symmetry and there is no obvious way to apply a method like EMFT to
the type of topological action described above. However, it is always
of interest to think about other methods that allow easy extraction of
approximate results, even though the computer power available for
exact simulations is growing at an ever increasing pace. MF methods
are often qualitatively reliable in their self-consistent determination
of the long-distance physics, and have a wide range of applications,
with spin models as typical examples. For a gauge theory, formulated
in terms of the gauge links, however, it is questionable what a mean
link would mean, because of the local nature of the symmetry. This
can be addressed by fixing the gauge, but the MF solution will then in
general depend on the gauge-fixing parameter. Nevertheless, Drouffe
and Zuber developed techniques for a MF treatment of general Lattice
Gauge Theories in [43] and showed that for fixed βd, where β is the
inverse gauge coupling and d the dimension, the MF approximation can
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be considered the first term in a 1/d expansion. They established that
the MF approximation can be thought of as a resummation of the weak
coupling expansion in a particular gauge and that there is a first order
transition to a strong coupling phase at a critical value of β. Since it
becomes exact in the d→ ∞ limit, this MF approximation can be used
with some confidence in high-dimensional models [64].

The crucial problem of gauge invariance was tackled and solved by
Batrouni in a series of papers [17, 18], where he first changed variables
from gauge-variant links to gauge-invariant plaquettes. The associated
Jacobian is a product of lattice Bianchi identities, which enforce that
the product of the plaquette variables around an elementary cube is
the identity element. In the Abelian case this is easily understood,
since each link occurs twice (in opposite directions) and cancels in
this product, leaving the identity element. In the non-Abelian case the
plaquettes in each cube have to be parallel transported to a common
reference point in order for the cancellation to work. It is worth noting
that in two dimensions there are no cubes, so the Jacobian of the
transformation is trivial and the new degrees of freedom completely
decouple (up to global constraints).

This kind of change of variables can be performed for any gauge or
spin model whose variables are elements of some group. Apart from
gauge theories, examples include ZN-spin models, O(2)- and O(4)-spin
models and matrix-valued spin models. In spin models, the change
of variables is from spins to links and the Bianchi constraint dictates
that the product of the links around an elementary plaquette is the
identity element. A visualization of the transformation and the Bianchi
constraint for a 2d spin model is given in fig. 1.1.

Figure 1.1: The change of variables from spins si (left panel) to links lij
(right panel) that leads to the Bianchi identity l12l23l34l41(=

s1s†
2s2s†

3s3s†
4s4s†

1) = 1.
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Let us review the change of variables for a gauge theory [18]. The
original variables are links. The new ones are plaquettes. Under
the action of the original symmetry of the model, the new variables
transform within equivalence classes and it is possible to employ a
mean field analysis to determine the “mean equivalence class”. As
usual we first choose a set of live variables, which keep their original
dynamics and interact with an external bath of mean-valued fields.
Interactions are generated through the Jacobian, which is a product of
Bianchi identities represented by δ-functions

δ

(
∏

P∈∂C
UP − 1

)
, (1.2)

where P denotes a plaquette and ∂C denotes the oriented boundary
of the elementary cube C. The δ-functions can be represented by
a character expansion in which we can replace the characters at the
external sites by their expectation, or mean, values. Upon truncating the
number of representations, this yields a closed set of equations in the
expectation values which can be solved numerically. The method can
be systematically improved by increasing the number of representations
used and the size of the live domain.

While this method works surprisingly well, even at low truncation,
it determines the expectation value of the plaquette in only a few
representations. In chapter 9, we propose a method that self-consistently
determines the complete distribution of the plaquettes (or links) and
thus the expectation value in all representations. This is due to an
exact treatment of the lattice Bianchi identities which does not rely on
a character expansion. The only approximation then lies in the size
of the live domain which can be systematically enlarged, as in any
mean field method. It is worth noting that our method works best for
small β and low dimensions: it does not become exact in the infinite
dimension limit. In this way it can be seen as complementary to the
MF approach of [43]. We will however see that the mean distribution
approach proposed here actually works rather well for both small and
large β.

The rest of this thesis is structured as follows. In chapter 2 some
preliminaries to the main body of the thesis are given. In chapter 3 we
study complex φ4-theory in four dimensions using EMFT. This model
has a sign problem but can still be simulated after a change of variables
and thus serves as a benchmark for EMFT. In chapter 4 we look for
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signals of liquid-like behavior in the Z3-spin model with a chemical
potential, which serves as a proxy for heavy-dense QCD, using EMFT

and exact numerical simulations. We then investigate the EWFT phase
transition in the presence of higher-dimension operators by applying
EMFT to the Higgs-Yukawa sector of the SM. In the two following
chapters we study two phenomena related to BSM physics, the notion
of spontaneous gauge-symmetry breaking, related to the Hosotani
mechanism and gauge-Higgs unification, in chapter 6 and conformal-
symmetry breaking by the lattice, relevant for example in technicolor
models, in chapter 7. The last two chapters are devoted to lattice gauge
theories. In chapter 8 we study by exact numerical simulations the
compact U(1) lattice gauge theory by the use of a special kind of action,
called a topological action, which does not have a classical continuum
limit. The last chapter 9 introduces another generalization of mean field
theory, called the mean distribution approach, which is applied to spin
models and lattice gauge theories.

12



2
B A C K G R O U N D

2.1 lattice quantum field theory

The path-integral formulation by Feynman has proven to be an invalu-
able tool to evaluate S-matrix elements in QFTs, be they part of the
SM of particle physics or mere toy models. Even though the purist
may argue about the mathematical foundations of the path integral,
the remarkable calculations, mainly via perturbation theory, which the
formalism enables, and their agreement with experimental data can not
be contested. However, a naive evaluation of the path integral of even
simple field theories inevitably leads to infinities, which need to be
tamed by regularization, which generally involves the introduction of
an additional, artificial mass scale. Renormalization then ensures that
the final, physical result does not depend on any arbitrary parameters.
The main work horse of particle physics is perturbation theory, usually
coupled with dimensional regularization, which, through heroic efforts
by its practitioners, has brought unprecedented agreement between
theory and experiment.

However, perturbation theory requires weak couplings to justify the
inclusion of only the first few terms in the perturbative expansion. To
deal with strongly coupled theories, other methods are needed. To
date, the only general purpose, non-perturbative approach to QFTs is
to use a lattice regularization, i.e. a discretization of space-time. In
fact, introducing a finite lattice to evaluate the path integral on, is a
way to make it mathematically well defined, which makes the approach
appealing not only from the practitioners point of view. The rest of this
section will remind the reader of the main features of QFTs on a lattice.

As usual, the methodology is best explained by a hands-on example,
so let us consider the king of all text-book examples, the real φ4-theory,
which describes a real-valued, scalar field with a repulsive quartic
interaction. In Minkowski space its Lagrangian density is given by

L[ϕ] = 1
2

∂µ ϕ∂µ ϕ− m2
0

2
ϕ2 − g0

4!
ϕ4, (2.1)
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where m0 is the bare mass parameter and g0 is the bare quartic coupling.
Despite its simplicity, this model contains some interesting behavior.
There is a global Z2 symmetry and depending on the sign of m2

0, the
potential can have either a single global minimum at ϕ = 0 or two global

minima at ϕ = ±
√
−6m2

0/g0, and correspondingly a local maximum
at ϕ = 0. In the latter case, spontaneous symmetry breaking occurs.
Since the location of these symmetry-breaking minima goes to zero
smoothly with m2

0, there is a second order phase transition at m2
0 = 0.

This description is valid in the classical limit. In the quantum theory the
bare parameters will be renormalized such that the transition occurs at
vanishing renormalized mass mR instead. The shape of the potential in
the different phases is shown in fig. 2.1.

φ

V (φ)

0 φ

V (φ)

0 φ

V (φ)

0

V(ϕ)V(ϕ)V(ϕ)

ϕϕϕ

m2
0 > 0 m2

0 = 0 m2
0 < 0

Figure 2.1: The shape of the bare potential V(ϕ) in the φ4-theory for
m2

0 > 0 (left panel), for m2
0 = 0 (middle panel) and for m2

0 < 0
(right panel). The potential is always Z2 symmetric but a
spontaneous breaking of the symmetry and a second order
phase transition occur at m2

0 = 0 (classically), when the
ground state chooses either the left or the right minimum.

The partition function of the theory is then given by the path integral

Z =
∫
D[ϕ]e i

h̄ S, (2.2)

where the action S =
∫

ddxL is the integral of the Lagrangian density
over all of space-time and

∫
D[ϕ] formally denotes infinite-dimensional

integral over all the fields ϕ at all points of space-time. As is well known,
the i in front of the action leads to the interference between different
paths, which is at the core of quantum mechanics. However, from
a computational point-of-view, that is an extreme nuisance, which is
called the sign (or phase) problem, which makes it exponentially hard to
numerically evaluate observables in the path integral formalism. Hence,
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the first step to put the theory on a lattice and make it computationally
tractable, is to Wick rotate time to the imaginary axis. This will turn
the quantum problem into a statistical problem where instead of pure
interference, each configuration will be exponentially suppressed with
respect to the ground state, with a suppression factor given by the
difference of actions.

The Wick-rotated, Euclidean action SE and partition function ZE are
given by

SE =
∫

ddx
(

1
2

∂µφ∂µφ +
m2

0
2

ϕ2 +
g0

4!
ϕ4
)

, (2.3)

ZE =
∫
D[ϕ]e− 1

h̄ SE , (2.4)

where d is the dimension of space-time. Since the action is real,
e−SE/h̄/ZE plays the role of a probability distribution, i.e. it is the
Boltzmann factor in the language of statistical physics, and all the
methods of statistical physics are available to analyze the theory. In
principle, all information of the quantum problem on the real-time axis
is available also in the statistical-physics picture on the imaginary-time
axis, but just as the original evaluation of observables is exponentially
hard, so is the analytic continuation. However, some static properties of
the system, for example the mass spectrum, bound-state structure and
scattering phase shifts, are readily measurable also at imaginary times.

We are now ready to discretize Euclidean space-time and make
the number of degrees of freedom finite, and thus make the problem
computationally tractable. There is no unique way of discretizing
Euclidean space, but the most generally used scheme in lattice QFT is
to introduce a hyper-cubic lattice and a finite-difference scheme for
the derivatives. Any discretization with the correct continuum limit is
of course valid, and in general different choices will lead to different
discretization errors. A discretization with small discretization errors
will make the inevitable continuum extrapolation more robust but also
the simplicity of the scheme will play a role in the choice. Another
important issue is what to do at the boundary of the lattice. In the end,
we are interested in the system in an infinite volume1, so boundary
effects will not play a role, but also here different choices will lead to
different corrections to the infinite volume limit. The best choice of

1 Or in a box of finite extent, but then the boundary conditions are of course already
determined.
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boundary conditions depends on the problem at hand but the general
consensus is that periodic boundary conditions are the best choice in
most situations.

Taking the lattice to have Nµ sites in direction µ and an isotropic
lattice spacing a, it will have linear extents Lµ = aNµ and volume
V = ∏d

µ=1 Lµ. The total number of lattice sites is N = ∏d
µ=1 Nµ. The

field ϕ is defined on the lattice sites and is given by

ϕ(x + mNµ) = ϕ(x), m ∈ Z, (2.5)

xµ = anµ, nµ = 0, . . . , Nµ − 1. (2.6)

The space-time integrals will turn into finite sums and field derivative
to finite differences

∫
ddx → ad

N1−1

∑
n1=0
· · ·

Nd−1

∑
nd=0

≡ ad ∑
n

, (2.7)

∂µ ϕ(x)→ ϕx+aµ̂ − ϕx

a
, (2.8)

where µ̂ is the unit vector in the µ-direction. Also the integration
measure in the path integral simplifies and turns into a product measure
over the fields at all lattice sites

D[ϕ]→∏
x

dϕ(x). (2.9)

The lattice action now takes the form

SLatt = ad ∑
x

(
− 1

a2 ∑
µ

ϕ(x)ϕ(x + aµ̂) +
m2

0 + 2d/a2

2
ϕ(x)2 +

g0

4!
ϕ(x)4

)
.

(2.10)
Since a computer can only work with pure numbers we need to rewrite
the action purely in terms dimensionless quantities. We will work
with units where c = h̄ = 1, which means that the action itself is
dimensionless. In fact everything can be expressed in terms of its mass
dimension. Length has a mass dimension [L] = −1 so in order to cancel
the ad in the action it follows that

[ϕ] =
d− 2

2
, [g0] = d− 4. (2.11)

It is conventional to trade the bare parameters m0 and g0 for dimen-
sionless parameters κ and λ via the relations

a
d−2

2 ϕ(x) =
√

2κϕx, (am0)
2 =

1− 2λ

κ
− 2d, ad−4g0 = 6λ, (2.12)
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after which the lattice action can be written

SLatt = ∑
x

(
−2κ ∑

µ

ϕx ϕx+aµ̂ + ϕ2
x + λ(ϕ2

x − 1)2

)
. (2.13)

There is no longer any explicit dependence of the lattice spacing a.
Instead, it is implicitly determined by the parameters κ and λ. In order
to recover the continuum theory we need to take the continuum limit
a→ 0 somehow. All observables of the lattice system will be measured
in units of the lattice spacing, so for all practical purposes the lattice
spacing can be taken to be a = 1. This may seem counter intuitive
when we really want to let a → 0, but imagine for example that we
measure the lightest mass m of the excitation’s of the ϕ field. However,
what we really measure is am. Since the lightest mass is also the inverse
correlation length ξ = 1/m of the system we see that small values of
the mass, measured in units of the lattice spacing, corresponds to large
values of the correlation length, also in units of a. This is exactly what
can be considered an approach to the continuum limit, since if the field
is correlated over distances covering many lattice spacings, then it will
be blind to the discrete nature of the underlying lattice. It is well known
that the correlation length of a system diverges at a second-order phase
transition, and the phase diagram of the real φ4 model does feature
a critical line of second-order phase transitions. So in order to take
the continuum limit, we need to tune κ and λ to this line. As usual
in physics only relative quantities, like mass ratios, can be measured
on the lattice. In order to set an absolute scale some external input,
typically from experiment, is needed. However, up to this ambiguity
of scale, everything which comes out of the lattice simulation is in
principle a prediction which can be tested against experiment.

It is not always the case that the model under investigation features
a second order phase transition, this is for example true for many Yang-
Mills theories. In those cases the continuum limit must be taken by
other means, for example by exploiting asymptotic freedom, we will
not expand upon this here.

As the continuum limit is taken we have to be aware of boundary
effects, because as the correlation length grows larger the field will start
to interact with its mirror images at the periodic extensions of the lattice.
In order to prevent this, the thermodynamic limit N → ∞ should be
taken before the continuum limit. This is often impractical so usually
the continuum limit is taken at fixed physical volume L/ξ = const,

17



background

where after an infinite volume extrapolation L/ξ → ∞ can be attempted.
Oftentimes, however, finite volume corrections are of the form e−L/ξ

and are simply considered negligible if L/ξ & 5.

2.1.1 Lattice Simulations

Now that the lattice discretization and its generalities have been ex-
plained we turn to the more practical issue of how to use it to measure
observables. Even though the lattice discretization has made the num-
ber of degrees of freedom in the system finite, the path integral is still
an integral of exceedingly high dimension. For such an integral, the
only practical method of evaluation is to use Monte Carlo techniques,
which sample the configuration space randomly. The price to pay for
evaluating the integral with a random process is that there will always
be a statistical uncertainty in the result. The advantage, however, is that
under reasonable assumptions this uncertainty scales as the inverse
square root of the number of samples, i.e. to reduce the statistical
uncertainty by a factor N, the number of samples has to be increased by
a factor of N2, which means that it is possible to achieve arbitrary accu-
racy in polynomial time. Since the contribution of a field configuration
to the partition function is proportional to the exponential of minus
its action, only a fairly small subset of the huge configuration space
actually contributes significantly to the partition function. It is therefore
essential not to sample configuration space uniformly, but to propose
configurations with probability exactly given by their contribution to
the partition function. In this way, we can evaluate expectation values
in the given model with maximal efficiency. The problem is that we
do not know the underlying distribution, and even if we did, it is so
high dimensional that we could not store it in our computer, so how
can we sample configurations from it? The solution is called Markov
Chain Monte Carlo (MCMC) which relies on a random process called a
Markov Chain which will automatically generate samples from the tar-
get distribution, without actually having to store it. Many shelf-meters
of excellent texts have been written on this matter, see for example [20,
29], so we will not go further into the details. Instead, let us give an
example of a measurement. Given a model, for example the φ4-theory
in eq. (2.13), with action S[ϕ], we want to evaluate the expectation value
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of some observable O[ϕ], for example the square of the field ϕ2. The
integral we would like to evaluate is

〈O〉 =
∫
D[ϕ]O[ϕ]e−S[ϕ]
∫
D[ϕ]e−S[ϕ]

. (2.14)

This integral can be approximated by the sum over a finite number
Ns of sample configurations {ϕ(i)}Ns

i=1. If the probability of drawing
configuration ϕ(i) was pi then the corresponding term in the sum should
be weighted by 1/pi and we obtain

〈O〉 ≈ ∑Ns
i=1 O[ϕ(i)]e−S[ϕ(i)]p−1

i

∑Ns
i=1 e−S[ϕ(i)]p−1

i

. (2.15)

We see now that if pi = e−S[ϕ(i)]/Z as the Markov Chain will assure,
then the expectation value will simply be

〈O〉 ≈ 1
Ns

Ns

∑
i=1

O[ϕ(i)], (2.16)

with a statistical error

δ 〈O〉 ∝

√
var(O)

Ns
. (2.17)

2.1.2 The Sign Problem

So far, we have assumed that the action is real and thus that the
Boltzmann factor e−S can be interpreted as a probability. However,
this is not always the case, sometimes the action acquires a sign or a
phase, the most extreme case being the initial real-time path integral,
where the Boltzmann factor is a pure complex phase. Regardless of
whether the phase occurs just for a few configurations or for all, the
probability picture of the Boltzmann factor is spoiled. In principle,
there is a work-around to this problem, which consists of moving the
phase from the Boltzmann factor to the observable using the identity

〈O〉 =
∫
D[ϕ]Oe−S
∫
D[ϕ]e−S =

∫
D[ϕ]O[ϕ]e−iIm[S]e−Re[S]

∫
D[ϕ]e−Re[S]

∫
D[ϕ]e−iIm[S]e−Re[S]
∫
D[ϕ]e−Re[S]

=

〈
Oe−iIm[S]

〉
Re[S]〈

e−iIm[S]
〉

Re[S]

, (2.18)
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where only the absolute value of e−S is used to generate configurations.
However, closer inspection of the expectation value in the denominator
reveals that there is a problem. The partition function of the original
model can be expressed in terms of the free-energy density f as Z =

e−V f where V is the physical volume of the system. The model where
only the real part of the action is taken into account is also a valid
model, called the phase quenched version of the original model. Its
partition function can likewise be expressed in terms of its free-energy
density fpq as Zpq = e−V fpq . Since the two models are different, their
free energies will differ by some finite amount δ f and thus the ratio of
their partition functions will be given by Z/Zpq = e−Vδ f . But this ratio
is nothing else that the expectation value of the phase

〈
e−iIm[S]

〉
Re[S]

=

∫
D[ϕ]e−S

∫
D[ϕ]e−Re[S]

=
Z

Zpq
= e−Vδ f . (2.19)

In order to accurately measure this expectation value, the statistical
error must also be exponentially small in the volume, which would
require an exponential number of measurements. This is what is meant
by the sign problem. For some models with complex action it is possible
to find a change of variables with only non-negative weights in the
partition sum but there is no general solution to this problem and it
can be shown that solving the sign problem is equivalent to solving an
NP-hard problem [96].

After this very brief introduction to lattice QFT, let us turn to some
alternatives to simulating the full d-dimensional model.

2.2 mean field theory

Mean field (MF) theory is a very useful tool in almost any field of
physics and its historical importance can hardly be exaggerated. As an
approximation it is simple enough to be applicable and yield results in
almost any situation and yet, in many cases, it captures the qualitatively
important features of the model it is applied to. As such, MF theory
serves either as a last resort when all else fails or as first probe to shine
light on the general properties of a given model and to guide the choice
of a more sophisticated and accurate technique to attack the problem
with. There are of course many cases where MF theory is known to
completely fail, but any approximation has its limits of validity. The
MF-theory concept is also immense and it encompasses a multitude of
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formulations and variations of the general idea. It is far beyond the
scope of this thesis to in depth elucidate and rigorously formalize this
large field. Let us instead focus on a practical approach to the matter
and give examples of MF solutions to theories which will occur and
be relevant in the main part of the thesis and that will bring us more
directly to the various extensions to MF theory, in particular EMFT, that
will be explained in more detail in section 2.4. For readers familiar with
MF theory the rest of this section will contain nothing new and can thus
be skipped.

As stated above there are many ways of deriving the MF equations
of a given theory and even though the final equations may be the
same, different methods have different merits since they may make
various extensions and generalizations more or less accessible. The
derivation given below may not be the most sophisticated but it is quite
succinct and it will suffice for our purposes at the same time as being
susceptible to straightforward generalizations to DMFT and EMFT. Let
us for definiteness consider a real φ4-theory on a d-dimensional lattice.
The partition function is given by

Z =
∫
D[ϕ]∏

x
exp

(
−ϕ2

x − λ(ϕ2
x − 1)2 + 2κ

d

∑
µ=1

ϕx ϕx+µ̂

)
. (2.20)

In essence, we want to determine the mean field, i.e. vacuum expec-
tation value, of the field ϕ ∈ R in this model. The MF approximation
works by coupling a domain D of live sites, which are allowed to take
values on all of R, to an exterior bath Dc, the complement of D, where
the fields are fixed to the sought mean value. The mean value is then
tuned until the fields in D also on average take this value, in what is
called a self-consistency equation. This method of deriving the self-
consistency equation is sometimes called the cavity method, since the
live domain can be thought of as a cavity within the external bath.
The resulting MF action clearly neglects all interactions between the
fluctuations in the fields but serves as a first approximation and can be
shown to be exact in the limit where the coordination number of the
lattice goes to infinity (d→ ∞). To derive the self-consistency equation
we thus simply keep all integrals over the live fields in the partition
function (2.21), set all other fields equal to a constant m and throw away
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everything that does not explicitly depend on the value of a live field.
We then end up with

ZMF =
∫

∏
i∈D

dϕi eSMF , (2.21)

SMF = ∑
i∈D

{
ϕ2

i + λ
(

ϕ2
i − 1

)2 − 2κzimϕi − 2κ ∑′

〈i,j〉
ϕi ϕj

}
, (2.22)

where zi are the number of nearest neighbors of i ∈ D which lie in
Dc and the sum ∑′

〈i,j〉 denotes the sum over all nearest neighbors j
of i which are also inside D. Now, it is a straightforward matter to
determine, for example by fixed-point iteration, the self-consistent value
of m such that 〈ϕ〉ZMF

= m. Let us consider the solution when the live
domain D is a single site on a hyper-cubic lattice in d dimensions. The
partition function then takes a particularly simple form

ZMF =

∞∫

−∞

dϕ e−ϕ2−λ(ϕ2−1)
2
+4dκmϕ, (2.23)

with the self-consistency equation

m =

∞∫
−∞

dϕ ϕe−ϕ2−λ(ϕ2−1)
2
+4dκmϕ

∞∫
−∞

dϕ e−ϕ2−λ(ϕ2−1)2+4dκmϕ

. (2.24)

Close to the critical point we can expand in m and obtain a closed form
for the critical coupling κc, and for the magnetization as a function of
κ − κc. If we define

Mk =

∞∫
−∞

dϕ ϕke−ϕ2−λ(ϕ2−1)
2

∞∫
−∞

dϕ e−ϕ2−λ(ϕ2−1)2
(2.25)

the self-consistency equation becomes (up to order m3)

4dκM2m +
(4dκ)3

6
m3 (M4 − 3M2

2
)
= m, (2.26)

or equivalently, for m 6= 0,

κ =
1

4dM2

(
1 +

1
2M2

(
1− M4

3M2
2

)
m2
)

, (2.27)
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2.3 dynamical mean field theory

from which κc = (4dM2)−1 is immediately obtained. Since M4 ≤
3M2

2 for any λ > 0 we find that, for κ − κc small and positive, the
magnetization m behaves as

m =

√√√√2M2(κ − κc)

1− M4
3M2

2

, (2.28)

and thus the mean field value of the critical exponent β = 1/2. In
the limit λ → ∞ the Ising model is recovered from eq. (2.20) and
M4 = M2 = 1, which leads to the familiar results κc = (4d)−1 and
m =

√
3(κ − κc). For general λ the moments Mk can be expressed

in terms of modified Bessel functions but their exact form is not very
enlightening.

For other models an analogous derivation is typically possible and
it is also possible to consider for example models where there are
independent mean fields for ϕ and ϕ†, when ϕ ∈ C. The dimension
above which MF theory yields correct (mean-field) critical exponents is
called the upper critical dimension duc and for the φ4 model above it
is duc = 4. In the limit of infinite number of dimensions d (or infinite
coordination number z of the lattice), the sum over nearest neighbors
becomes equal to the space average of the field,

κϕ0
1
z ∑
〈0,j〉

ϕj →z→∞
κϕ0

1
V

∫
dx ϕx = κϕ0m. (2.29)

Thus, using translation invariance, the field at each point in space
couples only to itself locally and to the spatial average, and the partition
function eq. (2.20) reduces exactly to the MF partition function eq. (2.23).
Unless the translation invariance of the theory is spontaneously broken,
the MF approximation thus becomes exact in the limit of infinite number
of dimensions.

2.3 dynamical mean field theory

In addition to simply enlarging the live domain D, there are many ways
of generalize standard MF theory to include some of the fluctuations
between the fields. One such generalization which has seen much
success and many applications within the condensed matter community
is Dynamical Mean Field Theory [53, 52]. Here, the word “dynamical”
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refers to the fact that the mean field can fluctuate in one direction,
typically the Euclidean time direction, because of the special role time
plays in condensed matter physics, while remaining constant in the
(d− 1) other dimensions. The d-dimensional lattice problem is thus
mapped onto a 1-dimensional problem with non-local interactions
representing the influence of the remaining degrees of freedom. Due to
this dynamical dimension, DMFT gives access to correlation functions
which are localized in the frozen directions. If the dynamical dimension
is the imaginary-time axis, DMFT furthermore enables the calculation of
finite-temperature expectation values. Obtaining access to this kind of
information is an additional motivation to explore the DMFT approach.

In general, the effective 1-dimensional model must be solved numeri-
cally, for example using a (Quantum) Monte Carlo method [59]. As in
MF theory, the DMFT calculation involves a self-consistent computation
of the (dynamical) mean field, which in practice amounts to solving a
set of non-linear equations self-consistently. The increased complexity
arises from the fact that the field to be optimized is a function (or a
collection of functions) of one variable.

DMFT was initially developed for fermionic systems, but the theory
was later extended and successfully applied to bosonic lattice systems
[33, 13, 14] and Bose-Fermi mixtures [15]. The bosonic version of DMFT

can, with rather straightforward modifications, be applied to the ϕ4

QFT. It is thus an interesting question how well this approach, which
manifestly breaks Lorentz invariance, can capture the phase diagram
and critical behavior of lattice QFTs. In non-relativistic condensed-matter
systems it intuitively makes sense to treat space and time differently.
In the spatial dimensions the system is typically a crystal with fixed
lattice spacing(s) whereas time is a continuous variable. In other words,
the correlation function certainly behaves differently in the spatial and
in the temporal directions. For a relativistic QFT (at zero temperature)
this is, however, not the case, so the singling out of one dimension is
somewhat questionable: why should we neglect the effect of spatial
correlations but take temporal ones into account when they are related
by Lorentz transformations? A pragmatist’s answer to this question
could be “Let us just try it out, and see how well it works.” Another
way around this objection is to notice that a finite, periodic temporal
direction corresponds to a finite temperature in the system. Thus the
very breaking of Lorentz invariance can be an interesting and desired
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2.3 dynamical mean field theory

feature. The Lorentz invariance of the observables is then recovered by
extrapolating to zero temperature.

Also here it is beyond the scope of this thesis to give a full recapit-
ulation of DMFT and its extensions since there already exists excellent
review articles on the subject, see for example [53]. We will focus here
on the applications of DMFT to QFTs, and in particular bosonic QFTs, like
φ4-theory. In a nutshell, DMFT is like single-site MF theory for a world
line. Instead of just interacting with an external bath via en effective
external field, the field at a given spatial site is now also allowed to in-
teract with itself at a later time, via effective propagation in the external
bath. In other words, the goal is to self-consistently map the full model
to a 1-dimensional model with a non-local kernel ∆(t− t′), which cou-
ples the field ϕ(t) to the field ϕ(t′). In addition to the expectation value
of the field ϕ, now also the kernel ∆(t) has to be self-consistently deter-
mined. The new observable in the 1-dimensional model, as opposed
to the 0-dimensional one, is the time-dependent propagator along the
world line Gwl(t) and its Fourier transform G̃wl(ω). We want this to, as
closely as possible, match the point-to-point correlator of the full model
G(~0, t). The approximate matching between the full and the effective
models is done through the self-energy Σ. Quite generally we can
express the Green’s function of some interacting theory in momentum
space as

G̃(k, ω) =
1

G̃−1
0 (k, ω) + Σ̃(k, ω)

, (2.30)

where G̃−1
0 (k, ω) is the Green’s function of some reference theory which

can be calculated analytically. In the case of φ4-theory, this would be the
free, λ = 0, theory. Σ̃ is the self-energy which captures the interaction
effects. The “local” Green’s function, from ~x =~0 to ~x =~0, is obtained
by summing over all spatial momenta,

G̃loc(~x =~0, ω) = ∑
k

1
G̃−1

0 (k, ω) + Σ̃(k, ω)
, (2.31)

where the momentum sum (or integral) is normalized such that ∑k 1 =

1. The Green’s function of the world-line model also satisfies such a
relation,

G̃wl(ω) =
1

G̃−1
wl,0(ω) + Σ̃wl(ω)

, (2.32)

where G̃wl,0(ω) is likewise the Green’s function of some reference
system which can be calculated analytically. DMFT approximates the

25



background

exact self-energy Σ̃ with the self-energy Σ̃wl of the world-line model,
i.e. Σ̃(k, ω) ≈ Σ̃wl(ω) = G̃−1

wl (ω)− G̃−1
wl,0(ω), which can be substituted

in eq. (2.31). The approximate local Green’s function Gloc may then be
expressed as

G̃loc(ω) = ∑
k

1
G̃−1

0 (k, ω) + G̃−1
wl (ω)− G̃−1

wl,0(ω)
. (2.33)

The self-consistency condition identifies the local Green’s function
(2.31) with the world-line Green’s function (2.32), which thus implicitly
determines ∆ (we shall shortly see how ∆ enters the equation). The two
coupled self-consistency functional equations then read

G̃wl(ω) = G̃loc(ω), (2.34)

〈ϕ〉Swl
= φext. (2.35)

To understand how the world-line model is constructed from the
original model a concrete example is in order. We will consider the
same model as in the previous section, namely real φ4-theory on a
d-dimensional, hyper-cubic lattice. For clarity, let us repeat the partition
function here:

Z =
∫
D[ϕ]∏

x
exp

(
−ϕ2

x − λ(ϕ2
x − 1)2 + 2κ

d

∑
µ=1

ϕx ϕx+µ̂

)
. (2.36)

The derivation proceeds much in the same way as that for standard
MF theory. In fact, the self-consistency equation of the previous section
can be obtained as an intermediate result of the following derivation.
We assume that the global Z2 symmetry ϕ(x) → −ϕ(x) ∀x is sponta-
neously broken, since this is the more general case; the equations for
the symmetric phase can be easily obtained by setting the expectation
value of the field to zero. The expectation value of the field in the
broken-symmetry phase will then be determined self-consistently as in
standard MF theory.

We consider a lattice with Nd−1
s Nt sites (Ns can formally be taken to

be infinite) and denote by ϕ~i,t the field on the site (~i, t) = (x1, . . . , xd−1, t).
We then single out~i =~0 ≡ (0, . . . , 0) and call the world line at the spa-
tial origin, ϕint,t ≡ ϕ~0,t, the internal degrees of freedom. All other sites
are considered an external effective bath or external degrees of freedom,
ϕext,t = {ϕ~j,t :~j 6=~0}.
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2.3 dynamical mean field theory

We can write the action, eq. (2.36), as a sum of three terms, the
action of the world line Sint, the action of the external sites Sext and the
interaction of the world line with the external bath ∆S:

S = ∑
x

[
−2κ ∑

µ

ϕx+ν̂ ϕx + ϕ2
x + λ(ϕ2

x − 1)2

]

= Sint + ∆S + Sext, (2.37)

with

Sint = ∑
t

[
−2κϕint,t+1ϕint,t + ϕ2

int,t + λ
(

ϕ2
int,t − 1

)2
]

, (2.38)

∆S = −2κ ∑
t

∑
〈int,ext〉

ϕint,t ϕext,t, (2.39)

Sext = ∑
x 6=(~0,t)


−2κ ∑

µ

x+µ̂ 6=(~0,t)

ϕx+µ̂ ϕx + ϕ2
x + λ

(
ϕ2

x − 1
)2


 . (2.40)

The sum over 〈int, ext〉 is shorthand for the sum over all external
sites ext at time t which are nearest neighbors to the internal site int at
time t. A visual representation of this decomposition is given in fig. 2.2.

The surrounding bath is considered to be of infinite size and can
thus spontaneously break the symmetry and develop an expectation
value. The world-line subject to the action Sint can not spontaneously
break the symmetry, since d = 1 is the lower critical dimension of the
Ising universality class. At and below the lower critical dimension, the
system is always disordered since the entropy gain of introducing a
domain wall wins over the energy cost. In a 1-dimensional chain of
Ising spins the energy cost of breaking one bond is constant but it does
not cost any energy to move the broken bond along the chain. However,
via the interaction with the external bath, which in part acts as an
external field, the field in the world-line can also acquire an expectation
value. In order to account for this possibility we write,

ϕext,t = φext + δϕext,t, 〈ϕext,t〉 = φext, (2.41)

ϕint,t = φint + δϕint,t, 〈ϕint,t〉 = φint. (2.42)
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SextSint

∆S 

x

t

Figure 2.2: Graphical interpretation of the cavity method where the
action (2.37) is decomposed into an internal part, Sint, an
external part, Sext, and an interaction part, ∆S. The external
degrees of freedom are then integrated out after a Taylor-
expansion of the interaction, exp(−∆S).

Note that the two expectation values are not dynamical variables but
rather constants that can be tuned to achieve self-consistency. Inserting
this in ∆S yields,

∆S = −2κ ∑
t

(
2(d− 1)φextδϕint,t

+ δϕint,t ∑
〈int,ext〉

δϕext,t + 2(d− 1)φintδϕext,t

)
. (2.43)

There are three different terms which are dealt with differently. The
first term can be included in Sint. We assume small fluctuations around
the classical solution so the second term can be used to expand the
Boltzmann weight. The third term is independent of the internal
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2.3 dynamical mean field theory

degrees of freedom (φint is considered fixed) and is included in Sext. Let
us define

S1 = −4κ(d− 1)∑
t

φextδϕint,t, (2.44)

δS = −2κ ∑
t

∑
〈int,ext〉

δϕint,tδϕext,t ≡∑
t

δS(t), (2.45)

and expand exp(−δS) to get

Z = Zext

∫
Dϕint exp(−Sint − S1)ζ,

ζ = 1−∑
t
〈δS(t)〉ext +

1
2 ∑

t,t′
〈δS(t)δS(t′)〉ext + . . . , (2.46)

where Zext ≡
∫
D[ϕext] exp(−Sext) is the partition function of the action

including only ϕext,t. The expectation values are with respect to Zext.
The first order term in ζ is proportional to the expectation value of
δϕext which is zero by construction. The second-order term is non-zero
and we find,

〈δS(t)δS(t′)〉ext = 4κ2δϕint,t

[
∑

〈int,ext〉
∑′

〈int,ext〉
〈δϕext,tδϕext,t′〉ext

]
δϕint,t′

≡ 2δϕint,t∆(t− t′)δϕint,t′ , (2.47)

where the prime on the second sum means that there are two different
external sites. This corresponds to a field propagating in the effective
medium subjected to the unknown propagator, between creation and
annihilation at the spatial origin. This term is called “hybridization
function” ∆(t − t′). It originates from connected diagrams and will
be determined self-consistently by demanding that the local Green’s
function of the effective model coincide with the local Green’s function
of the full model, as explained above. ∆(t) is a real-valued function
but in more general cases where the field ϕ may have multiple compo-
nents, it will be matrix-valued. Here we can see that DMFT is a better
approximation at high dimensionality. We have already argued that MF

theory should be exact in d = ∞ and in MF theory quadratic fluctua-
tions are completely ignored. That means that expectation values like
〈δϕext,tδϕext,t′〉ext factorize and thus we recover eq. (2.24) if we ignore
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the contribution of δS. After the re-exponentiation eq. (2.46) we find
the world-line action,

Swl = ∑
t

[
−2κϕt+1ϕt + ϕ2

t + λ(ϕ2
t − 1)2 − 4κ(d− 1)φϕt

]

−∑
t,t′

δϕt∆(t− t′)δϕt′

= ∑
t

[
−2κϕt+1ϕt + ϕ2

t + λ(ϕ2
t − 1)2 − 2φ(2κ(d− 1)− ∆̃(0)ϕt

]

−∑
t,t′

ϕt∆(t− t′)ϕt′ (2.48)

= ∑
t,t′

ϕtG−1
wl,0(t− t′)ϕt′ + λ ∑

t
(ϕ2

t − 1)2 − h ∑
t

ϕt,

where G̃−1
wl,0(ω) = 1− 2κ cos(ω)− ∆̃(ω) is the inverse of the connected

two-point Green’s function of the free theory and h = 2φ
(

2κ(d− 1)− ∆̃(0)
)

plays the role of an external magnetic field. The DMFT procedure is
illustrated as a flowchart with an iterative loop in fig. 2.3.

Because of the non-local coupling ∆, this 1-dimensional system will
typically have to be solved using Monte Carlo methods, but since the
dimensionality has been reduced from four to one, a considerable speed-
up can be achieved compared to solving the original model. The result
is of course an approximation but for some models the approximation
is very good and a significant improvement over standard MF [10].

2.4 extended mean field theory

It was noted in [10] that the self-consistent self-energy, especially in high
dimensions (d & 4), only weakly depend on momentum and is well
described by a constant in Fourier space, and thus a contact term in real
space, see fig. 2.4. This leads us to consider a further simplification of
DMFT, where only the contact term in ∆ is retained. Since the effective
action is now 0-dimensional, like in standard MF, but there is an extra
external field related to the point-to-point correlator, this local-time
limit of DMFT has been dubbed Extended Mean Field Theory (EMFT).
This approximation was, with a slightly different motivation, first
introduced by Pankov [80]. EMFT, being 0-dimensional, treats all space-
time directions on equal footing, although the lattice still breaks the full
Lorentz symmetry down to the hyper-cubic symmetry. The temperature
can however still be controlled and can be either zero or nonzero. In

30
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World-line model (2.48)

1

∆0 and φext,0 or κ0

2

Gwl and 〈ϕ〉Swl

3

Gloc

4

∆n+1 and φext,n+1 or κn+1

5
Yes No

Print solution

1 Starting guess

2 World-line solver

3 Dyson equation (2.33)

4 Self-consistency equations
(2.34) and (2.35)

5 Convergence?

Figure 2.3: Schematic depiction of the DMFT procedure. For a given
quartic coupling λ and either κ or φext fixed we make a
guess for ∆ and the non-fixed variable. This defines an
impurity action via eq. (2.48). We then solve this effective
model for the Green’s function and the expectation value
of the field, 〈ϕ〉. The local Green’s function of the full
model is approximated via eq. (2.33). The self-consistency
equations (2.34) and (2.35) are then used to calculate new
values for ∆ and φext or κ. This procedure is iterated until
the self-consistency equations are satisfied.

31



background

short EMFT offers a minimal extension of standard MF theory which also
incorporates a mass renormalization, which is an essential component
in order to accurately approximate observables, especially in models
with Gaussian fixed points.
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Figure 2.4: The frequency-dependent part of the self-energy, normal-
ized to that of the inverse free propagator (i.e. divided by
2κ)), for λ = 1 (d = 2, 3) and λ = 2 (d = 4). The self-energy
is only weakly frequency-dependent, especially for larger
dimension, and can be further approximated by a constant,
in the EMFT approximation.

Although the EMFT action can be obtained from the world-line ac-
tion (2.48) by just dropping the non-local terms, let us repeat the deriva-
tion in a more general situation. Let ~ϕ be a field with real-valued
components and action

S = −2κ ∑
〈i,j〉

~ϕᵀ
i A~ϕj + ∑

i
V (~ϕi) , (2.49)

where A is an invertible, Hermitian matrix and V(~ϕ) is some general
potential which goes to infinity as |~ϕ| → ±∞. Expanding the field
around its expectation value ~ϕ = ~φext + δ~ϕ, the part of the action which
depends on the field at the origin is

S0 = −2κz~ϕᵀ
0 A~φext − 2κ ∑

〈0,j〉
δ~ϕᵀ

0 Aδ~ϕi + V (~ϕ0) , (2.50)

where z is the number of nearest neighbors on the lattice. We now
formally integrate over all fields except at the origin and truncate the
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2.4 extended mean field theory

induced couplings at second order, just as in DMFT. This is equivalent
to the substitution

2κ ∑
〈0,j〉

δ~ϕᵀ
0 Aδ~ϕi → δ~ϕᵀ

0 ∆δ~ϕ0, (2.51)

where ∆ is a symmetric matrix of a priori unknown couplings, which
play the role of a shift in the mass matrix. This interpretation of ∆ will
be even clearer when we give a concrete example of how it enters in
the self-consistency equations. To finish the derivation of the effective
action we re-express it in terms of the non-shifted field to obtain

SEMFT = −~ϕᵀ
0 ∆~ϕ0 + ~ϕᵀ

0 (2κzA− 2∆)~φext + V (~ϕ0) . (2.52)

To fully appreciate the full self-consistent model, let us go back to the
case of real φ4 theory in d dimensions. In this case the EMFT action is
given by

SEMFT = (1− ∆)ϕ2 + λ
(

ϕ2 − 1
)2 − 2ϕφext(2κd− ∆), (2.53)

where the external fields φext and ∆ are to be determined self-consistently.
The self-energy of the EMFT action is given by

ΣEMFT =
(

2
(〈

ϕ2〉− 〈ϕ〉2
))−1

+ 1− ∆. (2.54)

The free Green’s function in the full theory is given by G−1
0 (k) = 1−

2κ ∑d
µ=1 cos kµ and according to eqs. (2.33) to (2.35) the self-consistency

equations becomes

2
(〈

ϕ2〉− 〈ϕ〉2
)
= ∑

k

1
(

2
(
〈ϕ2〉 − 〈ϕ〉2

))−1
+ ∆− 2κ ∑d

µ=1 cos kµ

,

(2.55)

〈ϕ〉 = φext. (2.56)

It is now evident that the mass in the propagator is given by

M =
1
κ

((
2
(〈

ϕ2〉− 〈ϕ〉2
))−1

+ ∆− 2κ

)
, (2.57)

which constitutes a very attractive feature of EMFT. Even though the
effective action is 0-dimensional, we still have access to the ground-state
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mass, through the self-consistency equation of the variance of the field.
In the following chapters this will be used to draw conclusions about
the models studied there.

A few comments about the momentum sum in the self-consistency
eq. (2.55) are also in order. A priori, we are considering a model on a
d-dimensional lattice of size N1 × · · · × Nd, i.e. the sum over (bosonic)
momentum modes on the lattice is given by

∑
k
=

d

∏
i=1

1
Ni

Ni−1

∑
ni=0

, ki =
2πni

Ni
. (2.58)

The self-consistent solution thus depends on the lattice extent in the
different directions, which allows us, for example, to consider finite tem-
perature by making the extent of one of the directions smaller than the
others. In general there is no advantage to keep the spatial dimensions
finite since this would just induce finite size effects which are generally
undesirable. If we identify the last dimension with the temporal one,
the momentum sum thus usually takes one of the following forms

∑
k
=

π∫

−π

dd−1k
(2π)d−1 ×





1
Nt

∑Nt−1
nt=0 T > 0

π∫
−π

dk
(2π)

T = 0
. (2.59)

For the simple dispersion relation of a Gaussian free model we can
in addition factorize the summand in the momentum sum by the
introduction of an auxiliary variable

1
κM + 2κ ∑d

µ=1
(
1− cos kµ

) =

∞∫

0

dτ e−κMτ
d

∏
µ=1

e2κτ(cos kµ−1). (2.60)

The momentum integrals in all dimensions of infinite extent can now
be performed using

π∫

−π

dk
(2π)

e2κτ(cos kµ−1) = e−2κτ I0(2κτ) ≡ Î0(2κτ), (2.61)

where I0(x) is a modified cylindrical Bessel function and Î0(x) ∼ 1√
2πx

for x � 1. For zero temperature, the local Green’s function thus takes
the form

Gloc(M) =
1
κ

∞∫

0

dτ e−Mτ
(

Î0(2τ)
)d , (2.62)
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where it is clearly visible how the mass M guarantees an exponential
suppression of the integrand, although for d > 2, the integral will
converge also for M = 0. Expressing the momentum sum as a 1-
dimensional integral, instead of a d-dimensional one, makes the method
extremely computationally efficient.

In this simplified form some semi-analytic analysis of the self-consistent
system becomes possible. Especially the critical coupling κc can be deter-
mined exactly. Since the dimension d now enters only in the exponent
of a Bessel function, it is possible to extend the self-consistency equa-
tions from integer to real-valued dimensionality. Close to the phase
transition, where φext is very small, we can expand the exponential of
the action in powers of φext. It is convenient to define,

Z0 ≡
∫

dϕ exp
(
−SEMFT|φext=0

)
, (2.63)

Mk ≡
〈

ϕk
〉

Z0
. (2.64)

In Z0 we only discard the explicit dependence on φext but not the
implicit dependence in ∆, which will be determined below. In this
setup Mk actually depends on φext. A naive expansion to order O

(
φ4

ext
)

gives:

〈ϕ〉 = 2(2dκ − ∆)φextM2

+
8
6
(2dκ − ∆)3φ3

ext
(

M4 − 3M2
2
)

, (2.65)

GEMFT = 2
(

M2 + 2φ2
ext(2dκ − ∆)2 (M4 − 3M2

2
))

. (2.66)

Using the self-consistency condition 〈ϕ〉 = φext we can determine ∆ up
to order φ2

ext,

∆ = 2dκ − 1
2M2

+
φ2

ext

12M2
2

(
M4

M2
2
− 3
)

, (2.67)
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which leads to an effective action in terms of κ, φext and M2, M4, which
needs to be determined self-consistently. More precisely,

SEMFT =

(
1− 2dκ +

1
2M2

− φ2
ext

12M2
2

(
M4

M2
2
− 3
))

ϕ2 + λ
(

ϕ2 − 1
)2

,

(2.68)

Gloc =
1
κ

∫ ∞

0
dτ exp

[
−τ

φ2
ext

2κM2
2

(
1− M4

3M2
2

)]
Î0(2τ)d, (2.69)

GEMFT = 2M2 − 3φ2
ext

(
1− M4

3M2
2

)
, (2.70)

which defines our self-consistency equations. M4 already multiplies φ2
ext,

so, to order φ2
ext, we can use its value at φext = 0, i.e. M4 ≡ M4|φext=0.

However, the φ2
ext correction to M2 contributes and must be calculated.

We find,

M2 = M2|φext=0 −
φ2

ext
6

(
M4

(M2|φext=0)2 − 1
)

, (2.71)

which gives the Green’s function,

GEMFT = 2M2|φext=0 −
2φ2

ext
3

(
4− M4

(M2|φext=0)2

)
. (2.72)

M2|φext=0 must be determined self-consistently using the action in
eq. (2.68). Equating GEMFT and Gloc at φext = 0 yields,

2M2|φext=0 =
1

2κ

∫ ∞

0
dτ Î0(τ)

d, (2.73)

which defines the critical coupling. Just as in the MF case, M2|φext=0

has an expression in terms of modified Bessel functions but eq. (2.73)
still needs to be solved numerically. In the Ising limit the situation
simplifies since M4 = M2 = 1 and using limd→∞ d

∫ ∞
0 dτ Î0(τ)d = 1 we

recover the MF result.
It was found in [10] and commented upon in [80] that EMFT some-

times wrongly predicts the phase transition to be first order, when it is
in fact second order. This is related to how the κ which equates GEMFT

and Gloc behaves as a function of φext. The analysis with arbitrary λ

is quite involved but we can learn a lot by considering the Ising limit
where λ = ∞. We have to distinguish between two cases: when d > 4
the integral ∫ ∞

0
dτ τe−τd I0(τ)

d ≡ I′d (2.74)
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2.4 extended mean field theory

is finite and we can expand the exponential in eq. (2.69). After some
algebra we find,

κ =
Id

4
+

(
Id

4
− I′d

6Id

)
φ2

ext, (2.75)

Id =
∫ ∞

0
dτ e−τd I0(τ)

d. (2.76)

If the coefficient in front of φ2
ext is negative we have a first order tran-

sition because we will have a region with multiple solutions and this
indeed happens for d < 4.90249. For larger d the coefficient is positive
and we find a second order transition with critical exponent β = 1/2.

For d = 2 Gloc(M) diverges logarithmically as M→ 0, so we cannot
expect that EMFT will be accurate close to the transition. For 2 < d < 4
Gloc(0) is defined but it is easy to verify through the asymptotic form of
the integrand e−Mτ(4πτ)d/2 that Gloc(M) = Gloc(0)− AM

d−2
2 +O(M),

with A > 0 for M � 1. Since M ∝ φ2
ext, this means that for small

enough φext the self-consistency equation takes the form,

Id

2κ
− B

κ2
c

φd−2
ext = 2, (2.77)

for B > 0, which gives,

κ =
Id

4
− 32

B
I3
d

φd−2
ext . (2.78)

Again, due to the negative prefactor, the transition is first order. The
analysis for finite quartic couplings can be done numerically and in
fig. 2.5 we show the value of λ for which the transition turns second
order as a function of the dimension.

2.4.1 k-integrated Green’s functions

Our goal is to efficiently calculate the local Green’s function from the
Green’s function in momentum space. This is equivalent to integrating
it over all momenta,

Gxx =
∫ ddk
(2π)d G̃(k). (2.79)

The main complication is that we only know G̃−1(k) explicitly. Let us
consider the general case where we have N real or N/2 complex fields.

37



background

 0

 2

 4

 6

 8

 10

 4  4.2  4.4  4.6  4.8  5

λ
tr

i 
c
ri
ti
c
a
l

d

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100
 0.001  0.01  0.1  1

λ
tr

i 
c
ri
ti
c
a

l

d-dc(0)

First-order transition Second-order
transition

Figure 2.5: The tricritical quartic coupling for EMFT as a function of
dimension. The critical dimension at λ = 0 is dc(0) ≈ 4.00.
The inset shows a power law behavior as d approaches dc(0).

In this case the free Green’s functions form a diagonal N × N matrix
and the EMFT Green’s functions form a full matrix,

G̃(k) =

[
G−1

EMFT + ∆− 2
d

∑
ν=1

cos(kν − iµδν,t)Idd

]−1

(2.80)

≡ [A− ε(k, µ)Idd]
−1 ,

with the kinetic part

ε(k, µ) = 2
d

∑
ν=1

cos(kν − iµδν,t). (2.81)

The self-energy matrix A can be found by inverting the measured GEMFT.
Now, when N = 1, we can rewrite this in a form which allows for an
analytic integration of the d components of k,

1
a− ε(k, µ)

=
∫ ∞

0
dτ e−aτ

d

∏
ν=1

e2τ cos(kν−iµδν,t). (2.82)

We can integrate over k by using an integral representation of the
modified Bessel function of first order, I0(x),

I0(x) =
∫ π

−π

dk
2π

ex cos(k+z). (2.83)
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2.4 extended mean field theory

Note that the (complex) constant z is irrelevant. The final result reads

∫ ddk
(2π)d

1
a− ε(k, µ)

=
∫ ∞

0
dτ e−aτ Id

0 (2τ). (2.84)

To study finite volume (temperature) we simply replace the relevant
Bessel functions with what is obtained when the integral in eq. (2.83) is
replaced by a discrete sum.

We will now show that G̃(k) can be written as a sum of such in-
tegrable terms for any value of N. Since G̃−1(k) is symmetric and
the k dependence is only on the diagonal, G̃−1 is diagonalized by a
k-independent orthogonal matrix U which also diagonalizes G̃(k). The
eigenvalues which make up the diagonal D̃(k) = UᵀG̃(k)U are given
by (λi − ε(k, µ))−1 where {λi}N

i=1 are the N eigenvalues of A. Using
the k-independence of U we just have to integrate the elements of D̃(k),
which are all integrals of the form of eq. (2.84). The matrix elements
of G(0) are then trivially recovered by applying U. Explicitly they are
given by

(Gxx)ij =
N

∑
k=1

UikUjk

∫ ∞

0
dτ e−λkτ Id

0 (2τ). (2.85)

So, instead of performing one complicated d-dimensional integral for
each matrix element, we can diagonalize the matrix and compute N
1-dimensional integrals.
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3
E X T E N D E D M E A N F I E L D S T U D Y O F C O M P L E X
φ4 - T H E O RY AT F I N I T E D E N S I T Y A N D
T E M P E R AT U R E

3.1 introduction

In this chapter we review the derivation of the EMFT equations and apply
them to complex scalar ϕ4 theory with a nonzero chemical potential,
one of the simplest models with a sign problem which comes from
complex terms in the action. The chemical potential couples to a
conserved charge, which is a consequence of Noether’s theorem and
of the global U(1) symmetry. The model describes a relativistic Bose
gas and its properties are well studied. It is possible to map the model
to a so called world-line model [50], which is sign problem free and
thus susceptible to unbiased Monte Carlo simulations. We will take
advantage of this to evaluate the quality of the EMFT approximation.
The main focus of the study will be to determine the phase diagram in
the (µ, T)-plane.

The content of this chapter has been published in

• Oscar Akerlund et al. ”Extended Mean Field study of complex
φ4-theory at finite density and temperature.“ In: Phys. Rev. D
90 (6 Sept. 2014), p. 065008. arXiv: 1405.6613 [hep-lat]. url:
http://link.aps.org/doi/10.1103/PhysRevD.90.065008.

3.2 complex ϕ4
theory

ϕ4 theories are important quantum field theories in many respects. As
explained in chapter 2, even the simplest incarnation, with a single real
scalar field, exhibits interesting phenomena like spontaneous symmetry
breaking with a second-order phase transition. The U(1) symmetric
complex ϕ4 theory with nonzero chemical potential is one of the sim-
plest models which has a sign problem. One important application
of the latter is in the Standard Model Higgs sector, which consists of
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emft study of complex φ4 -theory at finite density and temperature

a two-component complex ϕ4 theory, which will be investigated in
greater detail in chapter 5.

In dimension higher than two, complex ϕ4 exhibits a second-order
phase transition as a function of the chemical potential µ. At low µ

the system is a dilute Bose gas which Bose condenses above a critical
chemical potential µc. We are mainly interested in the 4-dimensional
case but for the sake of generality we will work in d dimensions and
specify d only when necessary. The Lagrangian density of complex
scalar ϕ4 theory at finite chemical potential reads

L[ϕ(x)] = ∂ν ϕ∗(x)∂ν ϕ(x)−
(
m2

0 − µ2) |ϕ(x)|2 − λ|ϕ(x)|4 + iµj0(x),
(3.1)

jν(x) = ϕ∗(x)∂ν ϕ(x)− ∂ν ϕ∗(x)ϕ(x), (3.2)

using a d-dimensional Minkowski metric, (+,−, . . . ,−).
(
m2

0 − µ2) is a
physically irrelevant shift of the bare mass, which is convenient when
putting the theory on the lattice, where the µ2 will drop out. jν is
the conserved current due to the global continuous U(1) symmetry,
ϕ(x)↔ eiθ ϕ(x) ∀x, with the conserved charge

Q = i
∫

dd−1x j0(x). (3.3)

The charge represents the number of particles minus the number of
antiparticles, and a positive µ thus favors the creation of particles over
antiparticles and renders the Lagrangian density (and action) complex.

After Wick rotating time to the imaginary axis to obtain a Euclidean
metric, we discretize the action and put it on a regular d-dimensional
hypercubic lattice with lattice spacing a. The chemical potential is
associated with the (imaginary) time direction which will be referred
to as t. All parameters are understood to be in terms of the lattice
spacing, so we refrain from explicitly writing for example aµ instead of
µ without causing confusion. With η ≡ m2

0 + 2d we arrive at the lattice
action 1

S = ∑
x

(
η|ϕx|2 + λ|ϕx|4 −

d

∑
ν=1

[
e−µδν,t ϕ∗x ϕx+ν̂ + eµδν,t ϕ∗x ϕx−ν̂

])
.

(3.4)

1 In this chapter we will use a different notation from the one used in chapter 2 and
chapter 5 to facilitate the direct comparison with pre-existing Monte Carlo simulations.
It is a trivial matter to pass from one parametrization to another.
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3.3 mean field theory

Because of different couplings in the forward and backward time di-
rection the action is complex when µ 6= 0. This prevents the usual
probabilistic interpretation of the partition function and Monte Carlo
methods cannot be blindly applied. The sign problem can be circum-
vented by a change of variables which allows to express the action in
terms of world lines. The partition function can then be sampled using
a worm algorithm, see e.g. [45, 50]. Another alternative is to use a
complex Langevin method [1, 2]. We will approximate the model using
EMFT and show that it also avoids the sign problem.

3.3 mean field theory

The upper critical dimension of the complex ϕ4 theory is duc = 4, so we
expect that the MF solution will show a qualitatively correct behavior
and provide a first approximation to quantitative results. Taking the
action in eq. (3.4) and setting the field to its expectation value (“Weiss
field”), ϕx = 〈ϕ〉, for all x 6= 0, gives us the single-site MF action

SMF = η|ϕ0|2 + λ|ϕ0|4 − 4 〈ϕ〉Re[ϕ0](d− 1 + cosh(µ)). (3.5)

We have used the U(1) symmetry to rotate the expectation value to the
real axis. The magnitude of the expectation value, 〈ϕ〉, is determined
self-consistently by requiring

〈ϕ0〉SMF
= 〈ϕ〉 . (3.6)

It is easy to check that there is a second-order phase transition at a
critical chemical potential µc, whose exact value depends on d, η and λ.
By expanding exp(−SMF) in powers of 〈ϕ〉, demanding self-consistency
for 〈ϕ〉 and letting it go to zero, we find the critical chemical potential:

cosh µc(η, λ) =

√
λ

2 exp(−K2)√
πErfc(K) − 2K

+ (1− d), (3.7)

with K = η

2
√

λ
. We can determine the continuum limit in the MF

approximation by searching the critical value of η for which µc vanishes.
For d = 4 and λ = 1 we find ηc = 7.51366.
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3.4 extended mean field theory

3.4.1 Formalism

As explained in chapter 2, EMFT improves upon MF theory by taking also
quadratic fluctuations into account. Although a general derivation of
the self-consistency equations was given in section 2.4, let us give a de-
tailed account of the specific case at hand, because of the non-isotropic
hopping term. For convenience we will use a slightly unconventional
notation intended to make the derivation more transparent. The action,
eq. (3.4), in this notation reads

S = ∑
x

[
−∑

ν

Φ†
x+ν̂E(µδν,t)Φx+

η

2
|Φx|2+

λ

4
|Φx|4

]
, (3.8)

with

Φ† = (ϕ∗, ϕ), E(x) =
(

e−x 0
0 ex

)
. (3.9)

In the free case (λ = 0) the action is quadratic in Φ and the inverse of
the connected Green’s function in Fourier space can be expressed as a
matrix,

G̃−1
0 (k) =

〈
ΦΦ†

〉
c
=
〈

ΦΦ†
〉
− 〈Φ〉 〈Φ〉†

=




η − 2
d

∑
ν=1

cos (kν − iµδν,t) 0

0 η − 2
d

∑
ν=1

cos (kν + iµδν,t)


 , (3.10)

where the tilde denotes the Fourier transform. The full lattice Green’s
function can then be expressed as

G̃−1(k) = G̃−1
0 (k)− Σ̃(k), (3.11)

where Σ is the self-energy due to λ 6= 0. This point is paramount to
EMFT and similar methods. The Green’s function is known at some
point in parameter space, at λ = 0 in this case, and the deviation of
the full Green’s function from the known one can be quantified by a
function that depends on the interaction, λ. The aim is then to find a
simpler but (at least approximately) equivalent model which can be
solved more easily than the full model. If the simpler model yields

44



3.4 extended mean field theory

the same interaction-dependent deviation of the Green’s function as
the full model, solving the simpler model is equivalent to solving the
full model. If the simpler model is only approximately equivalent
then naturally an approximate solution is obtained. It can also happen
that the simpler model is a valid approximation only in some limited
regime such that it can only be used to determine some subset of all
observables of the full model. We will now derive an equivalent model
to eq. (3.4) which will turn out to be valid for local observables.

As in any MF approach we expand the field Φ around its (real) mean,
〈Φ〉 = φ̄: Φ = φ̄+ δΦ. Focusing on the field at the origin, Φ0, the
action can be written as

S = S0 + δS + Sext,

S0 =
η

2
|Φ0|2 +

λ

4
|Φ0|4 − 2φ̄ᵀΦ0(d− 1 + cosh(µ)),

δS = −∑
±ν

δΦ†
0+ν̂E(±µδν,t)δΦ0. (3.12)

The term Sext does not depend on ϕ0 and is irrelevant for our purpose.
The term δS contains the interaction of Φ0 with its nearest neighbors
Φ0±ν̂, which are to be integrated out. The field at those sites is collec-
tively denoted by ϕext. The integration over ϕext is formally done by
replacing δS by its cumulant expansion with respect to Sext,

Z =
∫

dϕ0Dϕext e−S0−δS−Sext =
∫

dϕ0 e−S0−〈δS〉Cext , (3.13)

where 〈δS〉Cext denotes the cumulant expansion. To second order in the
fluctuation δΦ0 it reads:

〈δS〉Cext ≈
〈

∑
±ν

δΦ†
ν̂E(±µδν,t)δΦ0

〉

Sext

+
1
2

〈
∑
±ν

δΦ†
ν̂E(±µδν,t)δΦ0 ∑

±ρ

δΦ†
ρ̂E(±µδρ,t)δΦ0

〉

Sext

(3.14)

= 0 +
1
2
δΦ†

0∆δΦ0.

The first term is zero because 〈δΦν̂〉Sext
= 0 by definition and ∆ is an

unknown real, symmetric matrix which is related to the second term
and will be determined self-consistently. ∆ is given by a sum of real
bosonic propagators and is therefore real. It is symmetric since the
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fields commute, i.e.
〈

ϕi ϕj
〉
=
〈

ϕj ϕi
〉
. In our case we can parametrize ∆

as

∆ =

(
∆11 ∆12

∆12 ∆11

)
. (3.15)

We truncate the cumulant expansion at quadratic order in δΦ for
simplicity. In principle, keeping-higher order terms provides a way
to systematically improve the approximation but it may be hard to
find suitable self-consistency conditions for the higher-order couplings.
Inserting the truncated expansion in eq. (3.13) and using δΦ0 = Φ0− φ̄
yields an effective one-site action

SEMFT =
1
2

Φ† (ηId2 − ∆)Φ +
λ

4
|Φ|4 (3.16)

− 2φRe[ϕ](2(d− 1 + cosh(µ))− ∆11 − ∆12).

Since the EMFT action is real, 0-dimensional and bounded from below,
the partition function and all observables can easily be calculated via a
numerical integration scheme over two variables.

Like the full Green’s function above, the EMFT Green’s function can
be expressed as a free part and a self-energy,

G−1
EMFT = ηId2 − ∆− ΣEMFT. (3.17)

Replacing the full self-energy in eq. (3.11) by the EMFT self-energy com-
pletes the mapping. It should now be noted that since the effective
EMFT model is a single site model, we can only expect it to correctly
reproduce local observables. If we had taken the entire cumulant ex-
pansion in eq. (3.14) then the effective action would exactly correspond
to the full theory and would generate all local observables. Substituting
ΣEMFT into eq. (3.11) yields

G̃−1(k) ≈ G−1
EMFT + ∆− 2

d

∑
ν=1

cos (kν − iµδν,t) Id2. (3.18)

Notice that we here have neglected that the imaginary part of the two
diagonal elements in G̃ differ. On the one hand this is justified since
after integrating over all k the result will be real. On the other hand
it allows us to easily invert the propagator and one can show that the
neglected terms in G̃(k) are regular as kt goes to zero whereas the
propagator itself diverges at the critical point, so this approximation
will at most change the UV behavior of the theory.
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3.4 extended mean field theory

In order to fix ∆ we need to identify the local full lattice Green’s
function with the EMFT Green’s function, which together with the
self-consistency for φ yields a set of three coupled self-consistency
equations,

φ = 〈ϕ〉SEMFT
, (3.19)

∫ ddk
(2π)d G̃(k) ≡ Gxx = GEMFT, (3.20)

where the matrix eq. (3.20) yields two independent equations, one
for the diagonal element and one for the off-diagonal element. These
equations are satisfied at stationary points of the (approximate) local
free energy functional [84].

In order not to be hampered by high dimensionality and/or many
components in the field it is important to evaluate the k integral in
an efficient way. By diagonalizing G̃−1(k) we can transform the d-
dimensional integral into a 1-dimensional one, which gives

G±xx =
1
2

∫ ∞

0
dτ

(
e
−τ
(

1
2〈(Reϕ)2〉+∆11+∆12

)

(3.21)

±e
−τ
(

1
2〈(Imϕ)2〉+∆11−∆12

))
(I0(2τ))d,

where G+
xx is the diagonal element, G−xx the off-diagonal element and

I0(x) is the zeroth modified Bessel function of the first kind. More de-
tails on the transformation of the integral can be found in section 2.4.1.

3.4.2 Finite lattices

Because the self-consistency eq. (3.20) involves a k sum, the results
will depend on how we define our lattice model. For example, we can
treat nonzero temperature simply by summing over a finite number
of time-like momenta, kt. We can equally well consider a finite sized
spatial box. In fact, we can easily study the model on any hypercubic
lattice with (Nx, Ny, Nz, Nt) ∈ {2, . . . , ∞}.

3.4.3 Observables

Through the self-consistency equations we have direct access to the
expectation value of the field and the local Green’s function. Another
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interesting and nontrivial observable is the density, n, which is defined
as the partial derivative of the free energy, or logarithm of the partition
function, with respect to the chemical potential. By recasting the nearest
neighbor interaction of the original action, eq. (3.4), in Fourier space
one finds that the density can be expressed as

n = 2 sinh µ 〈ϕ〉2+2
(

sinh µ
∫ ddk
(2π)d Re[〈ϕ∗(k)ϕ(k)〉c] cos(kt) (3.22)

− cosh µ
∫ ddk
(2π)d Im[〈ϕ∗(k)ϕ(k)〉c] sin(kt)

)
.

The correlator 〈ϕ∗(k)ϕ(k)〉c is nothing else than the connected Green’s
function, which in our local approximation is given by the diagonal
elements of G̃(k). Below, we show that the two weighted integrals
cancel at zero temperature and exhibit a weak µ dependence at nonzero
temperatures. This is exactly the (pseudo) Silver Blaze behavior [37].

To show that the the two integrals cancel, we assume here that µ ≥ 0
but note that the density is odd in µ. We have to deal with the two
integrals

IR ≡ sinh µ
∫ ddk

(2π)d Re[〈ϕ∗(k)ϕ(k)〉c] cos(kt), (3.23)

II ≡ cosh µ
∫ ddk

(2π)d Im[〈ϕ∗(k)ϕ(k)〉c] sin(kt), (3.24)

where the correlator is the diagonal element of G̃(k). To decouple
kt from the other momenta we use the same trick as in section 2.4.1.
Considering only the integral over kt we have

IR ∝ sinh µ
∫ dkt

2π
Re [exp (2τ cos(kt − iµ))] cos(kt), (3.25)

II ∝ cosh µ
∫ dkt

2π
Im [exp (2τ cos(kt − iµ))] sin(kt), (3.26)

where τ is an auxiliary integration variable. Noting that everything
not depending on kt is the same for the two terms we find after some
algebra that the difference

IR − II ∝ Re
[∫ dkt

2π
exp(2τ cos(kt − iµ))

(
exp(i(kt − iµ))

− exp(−i(kt − iµ))
)]

. (3.27)
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This expression can be further simplified using the modified Bessel
function identity

exp(z cos(w)) =
∞

∑
l=−∞

Il(z) exp(iwl). (3.28)

The integrand is just a sum of weighted exponentials, exp(iktn) for
integer n, and the kt integral is non-vanishing only when n = 0. This
selects I−1(2τ) and I1(2τ), which are identical for real arguments,
hence the difference vanishes. If we consider a nonzero temperature the
momentum can only take discrete values, kt =

2π
Nt

n, n ∈ {0, . . . , Nt− 1},
and the sum over n yields a nonzero contribution when l + 1 = ±mNt.
Combining the two we find

IR − II ∝
∞

∑
l=1

(INt l−1(2τ)− INt l+1(2τ)) sinh(µNtl)

=
Nt

τ

∞

∑
l=1

l INt l(2τ) sinh(µNtl), (3.29)

which is positive and goes to zero as Nt → ∞.

3.4.4 Extra constraints

We have demonstrated that EMFT produces an approximation of the full
Green’s function. It is therefore tempting to extract observables from
it, the prime example being the masses of ϕ1,2, m2

i = G−1
ii (0). This is

also fine as long as one keeps in mind that the resulting masses are
only approximate. In particular one may obtain a nonzero mass for ϕ2

although the Nambu-Goldstone theorem tells us it must be zero. That
this may happen can be quite easily demonstrated. Consider the (exact)
local propagator,

Gxx =
∫

dk (G̃0(k)−1 − Σ̃(k))−1 (3.30)

≡ Z−1
∫

dk (M2
exact + k̂2 − ̂̃Σ(k))−1,

where k̂ is the lattice momentum, ̂̃Σ(k) only contains terms higher
than quadratic in k, and Z is the wave function renormalization. This
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is matched to the EMFT local propagator through the self-consistency
eq. (3.20),

GEMFT =
∫

dk (G̃0(k)−1 − ΣEMFT)
−1 ≡

∫
dk (M2

EMFT + k̂2)−1. (3.31)

Comparing the two equations above we see that M2
exact and M2

EMFT
do not have to coincide for the local Green’s functions to be equal.
Thus, whilst ZM2

exact is the curvature of the effective potential and has
a zero eigenvalue, the same need not apply to M2

EMFT. This argument
is independent of whether we truncate the cumulant expansion or
not. We can of course explicitly calculate the effective potential, which
by construction respects the U(1) symmetry and correctly has a flat
direction at its minimum. Another option is to slightly modify the EMFT

equations to force the Goldstone mode to be massless by introducing
an extra constraint.

To do so we first extract the mass matrix M 2 from eq. (3.18):

G̃−1(~0, kt) ∝ M 2 + k2
t Id2 (3.32)

=
G−1

EMFT + ∆

cosh µ
− 2(d + cosh µ− 1)

cosh µ
Id2 + k2

t Id2.

As we have seen above, there is no guarantee that there will be massless
mass eigenstates at the self-consistent fixed point. We will enforce this
by hand with an additional parameter. It is a fact that the momentum
dependence of the interacting Green’s function differs from that of the
free Green’s function so it is natural to introduce the new parameter in
such a way that the momentum dependence is changed. Consider the
substitution,

Σ(k)→ ΣEMFT, (3.33)

that we made in eq. (3.11) to obtain eq. (3.18) via eq. (3.17). We now
propose the alternative substitution

Σ(k)→ ΣEMFT + 2(Z− 1)
d

∑
ν=1

cos(kν − iµδν,t)Id2 (3.34)

which leads to

G̃−1(k) ≈ G−1
EMFT + ∆− 2Z

d

∑
ν=1

cos (kν − iµδν,t) Id2 (3.35)
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Table 3.1: Comparison of the critical chemical potential, µc(T = 0) of
four-dimensional complex ϕ4-theory at λ = 1 obtained by MF

theory, EMFT, Monte Carlo [50] and complex Langevin [2].
η 9.00 7.44
Mean field theory 1.12908 -
EMFT 1.14582 0.17202
Monte Carlo 1.146(1) 0.170(1)
Complex Langevin ≈ 1.15 -

and the mass matrix

M 2 =
G−1

EMFT + ∆

Z cosh µ
− 2(d + cosh µ− 1)

cosh µ
Id2. (3.36)

The wave function renormalization Z is fixed by the condition that the
Goldstone boson is massless. The implementation of this change in the
algorithm is straightforward. Although theoretically cleaner, we find
that the introduction of the parameter Z has a negligible impact on
the numerical solution: In the vicinity of the phase transition (Z− 1)
is smaller than 10−4. This is because the Goldstone boson is almost
massless already and only a very small correction is needed.

3.5 results

Just as in the real ϕ4 theory [10] we find that EMFT predicts the location
of the phase transition, in this case the critical chemical potential µc,
with high accuracy. In table 3.1 we summarize µc at zero temperature
for two values of η at λ = 1 for MF theory, EMFT, Monte Carlo [50] and
complex Langevin [2].

We ultimately want to apply EMFT to models with nonzero tempera-
ture, but as a first test we will study the finite volume behavior since
it is more predictable. Let us vary the spatial extent of the lattice and
consider the finite volume corrections to µc. These arise since the par-
ticles interact with their mirror images on the periodically continued
lattice. Because the interaction is repulsive the mass will get a positive
correction at finite volume, m(L) > m(∞). The interaction is through
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particle exchange and hence the potential is of the Yukawa type. The
potential in four dimensions is given by

V(r) ∝
1
r2 (mr)K1(mr), (3.37)

where K1(x) is a modified Bessel function which decays exponentially
for large arguments. The distance between two mirror particles is
L = aNs. The decay is thus governed by mL = (amR)Ns which allows
us to measure amR by considering lattices of different sizes. Unless mL
is rather large it is important to consider particles which wind around
the periodic dimensions more than once. At criticality the correlation
length diverges, i.e. the inverse propagator vanishes at k = 0. From the
general form of the propagator (eq. (3.10)),

G−1(k) = Z

(
(amR)

2 + 4 ∑
ν

sin
(

akν − iaµδν,t

2

)2
)

, (3.38)

we obtain amR = 2 sinh(aµc/2), which reduces to mR = µc in the con-
tinuum limit. In fig. 3.1 we plot (µc(L)− µc(∞))/µc(∞) as a function
of µc(∞)L for two different values of η together with the expected
behavior, eq. (3.37), with the mass mR fixed to its infinite volume value
m(∞). The results are largely independent of η, i.e. the finite lattice
spacing effects are negligible, and the mass in eq. (3.37) is clearly given
by µc(∞). We also see that at small volumes the mirror images at dis-
tances larger than L start to play a role, but since we will work directly
in the thermodynamic limit in the following, this is of no concern to us.

3.5.1 Finite temperature

One major advantage of EMFT over standard MF theory is the access to
finite temperature effects. To turn on temperature we simply truncate
the sum over kt in eq. (3.20) at some finite value of Nt. This lets us
define a temperature in lattice units, aT = N−1

t , or in units of the
chemical potential, T/µ = ((aµ)Nt)−1. By solving the self-consistency
equations at different values of Nt we can obtain all observables as a
function of the temperature at fixed lattice spacing. Our main result is
the (T/µc, µ/µc) phase diagram which is shown in fig. 3.2. We have
determined it for two lattice spacings, η = 9 and η = 7.44, to allow for
a direct comparison with Monte Carlo results obtained by Gattringer
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Figure 3.1: The relative deviation of the critical chemical potential µc

due to finite size effects as a function of the spatial extent
of the lattice, L, on an L3 ×∞ lattice. We fit the amplitude
of a sum of Yukawa potentials, eq. (3.37), taking mirror
particles up to the distance rmax into account. In both cases
the common amplitude of the Yukawa potentials is the only
free parameter. The mass is fixed to µc(∞).

and Kloiber [50]. In Ref. [50] the authors used a world-line formulation
of the partition function, which has no sign problem, and sampled the
configuration space with a Monte Carlo algorithm. The agreement is
excellent at all temperatures and for both values of η.

Also the EMFT estimate of the density as a function of µ at various
temperatures agrees with the Monte Carlo results to high accuracy.
Again we compare to the Monte Carlo simulations in [50] with λ = 1,
η = 9 and λ = 1, η = 7.44. The result is shown in fig. 3.3. At
η = 9 (left panel) the finite volume effects in the Monte Carlo data are
small and the EMFT and Monte Carlo results agree almost perfectly.
Since the nonzero temperature contribution to the density, eq. (3.22), is
closely related to the Green’s function at separation a, we conclude that
EMFT is not restricted to predicting the local Green’s function Gxx. At
η = 7.44 (right panel), we are closer to the continuum limit, which means
that the physical volume of the lattice is smaller in the Monte Carlo
simulation. This manifests itself as a rounding of the phase transition.
This rounding is absent in EMFT since the volume in these calculations
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Figure 3.2: (T/µc(T = 0), µ/µc(T = 0)) phase diagram of complex ϕ4

theory at λ = 1 obtained by EMFT and world line Monte
Carlo (Gattringer and Kloiber [50]). The two different blue
symbols correspond to different observables used in deter-
mining the transition point, × for the variance of ϕ and ∗ for
the density. We have used two values of η and the results
agree very well for both.

is always infinite. Away from the transition the two methods agree very
well also at the smaller value of η.

3.5.2 Dimensional reduction

At nonzero temperature the theory is expected to undergo a dimen-
sional reduction near the phase transition. This is because the time
extent of the lattice becomes much smaller than the correlation length.
In a lattice simulation of the full model it might be hard to see this
happening for three reasons. Firstly, it is expensive to increase the
lattice volume, hence the time extent might not be a small enough
fraction of the spatial extent. Secondly, due to the Ginzburg criterion,
the correlation length must not be small compared to the time extent or
the system will not realize dimensional reduction. Lastly, finite lattice
spacing corrections are of the form a2 and might conceal the true critical
behavior when large. All this taken together provides a considerable
challenge for Monte Carlo simulations.
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Figure 3.3: The density n, eq. (3.22), as a function on µ for a few dif-
ferent temperatures, T/µc ≡ 1/(Ntµc(T = 0)), at λ = 1,
η = 9 (left panel) and λ = 1, η = 7.44 (right panel). The
Monte Carlo data [50] were obtained on a N3

s × Nt lattice
with Ns = 20 for η = 9 and Ns = 24 for η = 7.44. The small
temperature differences come from slightly different values
of µc(T = 0), see table 3.1. The EMFT results are obtained in
the thermodynamic limit, i.e. Ns = ∞.

EMFT works best in the thermodynamic limit and does not suffer
from critical slowing down close to the continuum limit and can thus
overcome all these problems. EMFT is, in other words, well suited for
an investigation of dimensional reduction. When T > 0 we expect that
the critical exponents change from MF to those of the three-dimensional
XY-model universality class. Two critical exponents easily accessible
to us are β and ν. fig. 3.4 shows the expectation value of the field
and the correlation length as a function of µ− µc for zero and nonzero
temperatures. At zero temperature we find β = ν = 0.50. For finite
temperature the power laws change to approximately 1/3 which is not
the behavior expected for the 3d XY-model (β ≈ 0.33, ν ≈ 0.67) but
rather what is expected close to a genuine first-order transition in three
dimensions.

3.5.3 First-order transition

We have seen that the four-dimensional model dimensionally reduces
as temperature is turned on, but the EMFT incorrectly predicts a first
order transition in this case. The strength of this first-order transition is
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Figure 3.4: The expectation value of the field, 〈Reϕ〉 (left panel), and
the correlation length, ξ (right panel), as a function of the
distance to the critical chemical potential for a few different
temperatures at λ = 1 and η = 7.44 on a log-log scale. We
see how the power law changes from 0.5 at zero temper-
ature to approximately 1/3 at finite temperature for both
observables. To increase readability the curves have been
multiplied by cT = 15, 5, 1 and 0.1, going from top to bot-
tom.

however quite weak, which can be seen from the value of the correlation
length in fig. 3.4 (notice the shift of the curves). Although EMFT still
produces quantitatively good predictions of various observables such
as the critical chemical potential and the density, this is of course an
undesired feature. It is interesting to quantify the strength of the first-
order transition, which can be done by determining how the jump in
the expectation value depends on the temperature. We define 〈φ〉J to be
the value of 〈ϕ〉 at the chemical potential where ∂ 〈ϕ〉 /∂µ = ∞ (cf. left
panel of fig. 3.4). In fig. 3.5 we plot 〈φ〉J /µc versus T/µc. 〈φ〉J grows
slightly less than linearly in T but seems to approach a linear behavior
with a coefficient of about 0.14 as we approach the continuum limit.

56



3.5 results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

〈φ
〉 J
/

µ c

T/µc

η = 9

η = 7.44

η = 7.41

Figure 3.5: The expectation value of the field at the chemical potential
where ∂ 〈ϕ〉 /∂µ = ∞ as a function of the temperature, both
made dimensionless by division by µc(T = 0).

57





4
O S C I L L AT I N G P R O PA G AT O R S I N H E AV Y- D E N S E
Q C D

4.1 introduction

In this chapter we study the Z3 spin model with nonzero chemical
potential µ in 1 and 3 dimensions and show that a complex mass
spectrum can occur in both cases. The motivation for this investigation
is two-fold. On the one hand, it can be shown analytically [71] that one-
dimensional models with complex saddle points will sometimes have a
complex mass spectrum and it has been conjectured [79] that this also
holds in higher dimensions. From a purely conceptual point of view,
it is thus interesting to confirm this conjecture via lattice simulations.
On the other hand, oscillating propagators due to a complex mass
spectrum can also have interesting phenomenological implications, in
particular in the context of heavy-ion collisions [82]. EMFT can be used
to quickly scan the parameter space of the model we want to study and
thus find interesting regions which can be further investigated using
Monte Carlo simulations.

The content of this chapter has been published in

• Oscar Akerlund, Philippe de Forcrand, and Tobias Rindlisbacher.

”Oscillating propagators in heavy-dense QCD.“ in: (2016). Sub-
mitted to JHEP. arXiv: 1602.02925 [hep-lat].

4.2 model

As mentioned in the introduction (chapter 1), it has been suggested [82]
that the conditions in the fireball after a heavy-ion collision might be
such that the baryon-number correlations have an oscillatory character.
This conjecture is based on an effective flux-tube model introduced
in [81, 83] which can be mapped into an XY-model with external
magnetic fields which break charge symmetry, such that it falls in the
same category of models discussed above. Another flux-tube model,
which can be mapped into a three-state Potts model, is treated in [38].
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In general, the Hamiltonian and partition function for such a flux-tube
model are given by

H = σ ∑
x,ν
|lx,ν|+ m ∑

x
|qx|+ v ∑

x
|jx|, Z = ∑

{lx,ν,qx ,jx}
e−β(H−µ ∑x qx), (4.1)

where lx,ν denote flux tubes with string tension σ living on the links, qx

denote quarks with mass m and chemical potential µ living on the sites
and jx denote junctions with vertex energy v living on the sites. All
occupation numbers are integer valued and, depending on their allowed
range and on whether v is zero or nonzero, the model can be mapped
to either an XY model or a ZN spin model. The junctions j call for
further explanation. In SU(N), they are related to the invariant ε-tensor,
i.e. N flux lines emanating from N (anti-)quarks join at a junction and
form an SU(N) singlet, and thus the (anti-)quarks together with the
flux lines are identified with a (anti-)baryon.

The model we will be studying is the three-states Potts model with
nonzero chemical potential or, more accurately, the Z3 spin model with
complex external fields 1. In d dimensions, it can be seen as the crudest
approximation of (d + 1)-dimensional QCD in the heavy-dense limit.
The action is given by

S = −β ∑
〈i,j〉

(
PiP†

j + P†
i Pj

)
− 2 ∑

i
(hRRePi + ihIImPi) , (4.2)

and the Z3 spins P ∈ {1, ei 2π
3 , e−i 2π

3 } at each site represent the center of
the Polyakov loops TrF L. The usual interpretation of the external fields
is hR = e−M/T cosh(µ/T), hI = e−M/T sinh(µ/T), where M and µ are
the mass and chemical potential of the quarks respectively [12], but one
can consider also alternative mappings, for example to the flux-tube
model described in [38] 2. We will primarily use the first mapping but
will evaluate the results also in the light of the second one.

In the formulation (4.2) the action is complex, and the model clearly
suffers from a sign problem, but as long as hR, hI ∈ R and hR > |hI |,
which corresponds to the physical case of M, µ ∈ R, there exists a
sign-problem free representation 3 that can be sampled by a worm

1 It may be worth pointing out that this type of model is often called a 3-state Potts
model. This is not entirely accurate since the Z3 spin model (4.2) is only equivalent to
a 3-state Potts model if hI = 0.

2 See especially eqs. (14-18) in that reference.
3 This is essentially going back to the representation in terms of flux-tube variables
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algorithm. The model can however be interesting in its own right also
in the unphysical region hI > hR. In one dimension the model can be
solved for general external fields using a transfer-matrix method and
we can use EMFT to obtain an approximate solution in any number of
dimensions.

4.2.1 Transfer matrix

In (0 + 1) dimensions the partition function of a chain of N Z3 spins
with periodic boundary conditions is given by

Z = Tr TN , T ∝




e2β+2hR e−β+
hR
2 ei

√
3hI
2 e−β+

hR
2 e−i

√
3hI
2

e−β+
hR
2 ei

√
3hI
2 e2β−hR ei

√
3hI e−β−hR

e−β+
hR
2 e−i

√
3hI
2 e−β−hR e2β−hR e−i

√
3hI




(4.3)
where T is the transfer matrix. It is easy to verify that the characteristic
polynomial of T is a cubic polynomial with real coefficients so there are
either three real roots or one real root and a pair of complex conjugate
roots, as claimed above. For a given β, it is now straightforward to
determine the phase diagram which contains the three phases described
in the introduction. The phase diagram at fixed β = 0.08 can be seen
in fig. 4.1. The color coding and labels are as follows: I (blue) marks
the region where all eigenvalues of T are real. In Ia they are all positive
and the connected correlator is a pure sum of exponentials. In Ib two
eigenvalues are negative (the product of all three, i.e. the determinant
of T, is always positive) and the connected correlator is in general a sum
of two oscillating functions with wavelength 2, due to factors (−1)t.
Depending on how the signs and magnitudes of the eigenvalues are
distributed, this may or may not be detectable on a discrete lattice. II
(green) denotes the region where the largest eigenvalue is real and the
other two are a complex conjugate pair. The connected correlator is
a cosine-modulated exponential, this is characteristic of a liquid. III
(red) marks the region where the complex conjugate pair is larger in
magnitude than the real eigenvalue and the connected correlator at long
distance is a pure trigonometric function, this is the long-range order
characteristic of a crystal. The two black lines bound the wedge where
hR > |hI | and mark the region where the flux-variables representation
is sign-problem free and the worm algorithm can be used. It is evident
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that the crystalline phase is out of reach of the worm algorithm but
some parts of the liquid phase lie within the physical region hR > |hI |,
so that the non-monotonic behavior of the connected correlator there
can be reproduced by lattice simulations. Initially the transfer-matrix
method is only defined for integer separations but it is straight forward
to extend it to any real separation via the matrix power-function. In the
liquid phase, the connected correlator is exactly given by

〈 f (P(0)) f (P(t))†〉c = a f
(
cosh

(
mR t̂

)
cos

(
mI t̂
)

cos φ f

+ sinh
(
mR t̂

)
sin
(
mI t̂
)

sin φ f
)

, (4.4)

where t̂ = t− Nt/2 and f (P) is either P, ReP or ImP. The parameters
a f and φ f can be calculated from the eigenvectors of T. These functions
can be directly compared to the correlators obtained by the worm
algorithm and will serve as a consistency check for the algorithm before
going on to three dimensions where no exact results are available. Note
that the correlator is even under time-reversal. This is different from
the behavior seen in other models [51, 85] where the chemical potential
is attached to time-like lattice links.
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Figure 4.1: Phase diagram of the 1d Z3 spin model in the (hR, hI)-plane
for fixed β = 0.08. The crystalline phase III is outside the
region of parameter space where the worm algorithm can
be applied but the liquid phase II is susceptible to lattice
simulations. For a more detailed description of the phases
see the text. The phase diagram is periodic in hI with period
π/
√

3
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A comment about this “phase diagram” is in order. Actually, the
different phases are not separated by phase transitions in the strict
sense; there is no singularity in the free energy anywhere in the (hR, hI)-
plane, since the zeros of the characteristic polynomial of T are smooth
functions over the whole plane. Instead, the boundary of the different
phases are disorder lines, which mark a smooth change in the character-
istic of the correlator, for example from a non-oscillatory exponential
decay to an oscillatory exponential decay. In general, however, it is
not necessarily so that the change from non-oscillatory to oscillatory
behavior take place at a disorder line, it can also occur at a first order
transition, as is evident from for example the water-vapor transition.

4.2.2 EMFT solution

In more than one dimension, and especially in the physically interesting
case of three dimensions, the transfer-matrix method is not practical
anymore. It is reasonable to assume that the structure of the phase
diagram will remain [79] but one is totally at a loss when it comes to the
exact location of the disorder lines. In the light of the one-dimensional
results, it is unlikely that the crystalline phase can be probed by lattice
simulations, but one may hope to find evidence of a liquid phase. In this
case the three largest eigenvalues of the transfer matrix will be given
by (up to a trivial overall multiplicative, real constant) λ0 = 1, λ1 =

e−mR−imI , λ2 = e−mR+imI , where mR, mI > 0 are real numbers chosen
to paramterize the eigenvalues. The decay of the spin-spin correlator
will thus be governed by

〈
P(0)P†(r)

〉
∼ e−mRr cos(mIr). It becomes

clear that our prospects for detecting this characteristic behavior of
the correlator depend rather sensitively on mR and mI ; we require a
point in phase space where mR is not too large at the same time as
mI is not too small, so that the first maximum in the correlator occurs
before the signal is too damped. Much time and effort can be saved by
quickly, albeit approximately, solving the model for extended regions of
parameter space. Mean field theory is one candidate which falls short
since it does not give access to the mass spectrum. EMFT, as we have
already seen, does exactly that and is thus an apt choice.

Once again, it will be instructive to go through the derivation of the
effective action and self-consistency equations in some detail. This is
because we now expect the mass spectrum to be complex, whereas
it has previously been real. It will be useful to consider the real part
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ReP and the imaginary part ImP of the Potts spin P as independent
variables here. Since the imaginary part of the action (4.2) is odd in
ImP, the expectation value of iImP will be real and we have 〈P〉 =
〈ReP〉 + 〈iImP〉 6= 〈ReP〉 − 〈iImP〉 =

〈
P†〉. The Z3 spin P is then

decomposed into its mean value and fluctuations around the mean,

P = 〈ReP〉+ δReP + 〈iImP〉+ iδImP, (4.5)

P† = 〈ReP〉+ δReP− 〈iImP〉+−iδImP.

We now formally integrate out all fields except the one at the origin
and assume that this amounts to the introduction of effective couplings
for the bilinears δRePδReP, δImPδImP and δRePδImP [9]. The effective
EMFT action can then be written

SEMFT =− (ReP)2 ∆1 − (ImP)2 ∆2 − 2iRePImP∆3

− 2ReP (hR + 〈ReP〉 (2dβ− ∆1) + 〈iImP〉∆3) (4.6)

− 2iImP (hI + 〈iImP〉 (2dβ− ∆2)− 〈ReP〉∆3) .

So far we have not assumed anything about the variables P so the
effective action above is generally valid for any action of the form (4.2).
For P ∈ Z3 the action can be simplified slightly by using (ImP)2 =

1− (ReP)2 and ReP = − 1
2 whenever ImP 6= 0. We then obtain

SEMFT = − (ReP)2 (∆1 − ∆2)− 2RePh̃R −
2√
3

iImPh̃I , (4.7)

h̃R = hR + 〈ReP〉 (2dβ− ∆1) + 〈iImP〉∆3, (4.8)

h̃I√
3
= hI + 〈iImP〉 (2dβ− ∆2)−

(
〈ReP〉+ 1

2

)
∆3. (4.9)

Defining log γ = − 3
4 (∆1 − ∆2)− 3h̃R, it is straightforward to calculate

all expectation values of the model

〈ReP〉 = 1− γ cos h̃I

1 + 2γ cos h̃I
〈iImP〉 =

√
3γ sin h̃I

1 + 2γ cos h̃I
(4.10)

〈
(ReP)2

〉
=

1 + 1
2 γ cos h̃I

1 + 2γ cos h̃I

〈
(ImP)2

〉
= −

3
2 γ cos h̃I

1 + 2γ cos h̃I
(4.11)

〈iImPReP〉 = −
√

3
2 γ sin h̃I

1 + 2γ cos h̃I
. (4.12)
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It is obvious how to self-consistently determine the linear expectation
values, whereas the bilinears may need some more explanation. The
details of their determination will reveal how a complex spectrum can
arise. As usual in EMFT [9], we fix the effective quadratic couplings ∆i
by matching the bi-linear expectation values to an approximation to the
point-to-point correlator of the full model,

GEMFT,c =
∫

ddk Gc(k) =
∫

ddk
[

G−1
0,c (k) + Σ(k)

]−1

≈
∫

ddk
[

G−1
0,c (k) + ΣEMFT

]−1
. (4.13)

This is a matrix equation where G0,c(k) is the connected Green’s function
of the free theory. It is not immediately clear what the free theory of
a spin model is, but the approximation above is in fact valid for any
choice. A good choice will be close to the model we want to study
and at the same time allow for an efficient numerical treatment. We
have chosen the free model to have the same action as the original
Z3 model, eq. (4.2), but with the variables P ranging freely over the
complex plane. With this choice the free connected Green’s function
is given by G−1

0,c = −2βId2 ∑ν cos kν. The self-energy Σ(k) in eq. (4.13)
then arises due to the restriction of the field to take values in Z3. The
EMFT self-energy ΣEMFT is likewise identified as the difference between
the variance of eq. (4.6) with (ReP, ImP) ∈ R2 and the variance when
P ∈ Z3 and is given by G−1

EMFT,c + ∆, with

GEMFT,c = 2




〈
(ReP)2

〉
c

−i 〈iImPReP〉c
−i 〈iImPReP〉c

〈
(ImP)2

〉
c


 , (4.14)

∆ =

(
∆1 i∆3

i∆3 ∆2

)
, (4.15)

with the central moments 〈AB〉c = 〈AB〉 − 〈A〉 〈B〉. Hence, the final
self-consistency equation becomes

GEMFT,c =
∫

ddk

[
G−1

EMFT,c + ∆− 2βId2 ∑
ν

cos kν

]−1

. (4.16)

It is clear that G−1
EMFT,c + ∆ − 2βId2 ≡ βM plays the role of a mass

matrix and we should diagonalize it to obtain the mass spectrum. It
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will also be vastly more efficient to integrate over the momenta when
M is diagonal. The mass matrix can be parametrized as

M =

(
a + b ic

ic a− b

)
, (4.17)

where a, b, c ∈ R. The eigenvalues are then given by m± = a±
√

b2 − c2,
such that if |c| > |b| the spectrum will consist of a pair of complex
conjugated masses mR ± imI with mR = a and mI =

√
c2 − b2. This

implies cosine-modulated exponential fall-off in the correlators in the
(ReP, ImP) basis, as expected. By solving the model in the (hR, hI)-
plane, a phase diagram analogous to what was obtained in one dimen-
sion with the transfer matrix, fig. 4.1, can be constructed by studying
the behavior of the masses. In fig. 4.2 we show the results for fixed
β = 0.08, with the most interesting features being the disorder lines (in
red), where the masses are degenerate, and the blue dashed lines where
the real part of the complex masses vanishes. Beyond these lines the mo-
mentum integral in the self-consistency equation no longer converges,
since the integrand is no longer decaying at large distances. One may
guess that with purely imaginary masses, the system would enter a crys-
talline phase with a purely trigonometric correlator but there is no way
to verify that using EMFT. This phase diagram can then be compared
both to the mapping (hR, hI) → (e−M/T cosh(µ/T), e−M/T sinh(µ/T))
and to the alternative mapping in [38]. It is found that the second
case covers a subspace of M, µ ∈ R and there are indeed regions in
parameter space where the mapping is valid and where one expects a
complex spectrum. However, in that region hR is substantially larger
than hI which means in the M, µ variables that both M and µ are rather
small, which is presumably far away from the region where the model
is expected to be a valid approximation of QCD.

Now that an approximate phase diagram has been obtained, we can
select points in the liquid phase which are favorable in terms of mR and
mI where full Monte Carlo simulations using the worm algorithm will
be performed.
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Figure 4.2: Phase diagram of the 3d three-states Potts model at fixed
β = 0.08 obtained by EMFT. The thick red lines are disorder
lines where the mass spectrum turns complex and on the
dashed blue lines the real part of the mass vanishes. Those
lines bound the region of convergence of EMFT. Inside the
wedge bounded by the thin black lines the model (4.2) is
sign-problem free and the blue region marks the image of
the map from the standard Z3 model to the flux-tube model
of [38].
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4.3 results

For our lattice simulations we used the flux-variables representation
described in [72],

Z ∝ ∑
{l}

∑
{n}

∏
x,ν

L|lx,ν|∏
x

Snx ∏
x

∆

(
∑
ν

(lx,ν − lx−ν̂,ν) + ns

)
, (4.18)

with quark occupation number nx ∈ {−1, 0, 1} on each site and flux
occupation number lx,ν ∈ {−1, 0, 1} on each link. In terms of the
original parameters the link and site weights are given by

L =
1− e−3β

1 + 2e−3β
, (4.19)

Sn = 1 + 2e−3e−
M
T cosh µ

T cos
(√

3e−
M
T sinh

µ

T
− n

2π

3

)
. (4.20)

Gauss’ law requires that the flux at each site is a multiple of three and
is encoded in ∆(n) = δn mod 3,0. Allowed configurations consist of flux-
tube networks with or without attached quarks. If there are no quarks
attached the flux-network can be thought of as a glueball. There are
also neutral networks with any number of quarks and an equal number
of anti-quarks attached, for example networks connecting one quark
with an anti-quark can be thought of as mesons. The third possibility is
to have a surplus of 3n (anti-)quarks. This is equivalent to having the
junctions of the network to sum up to n, we say that the network has
junction charge n. These charged networks are associated with baryons.

The worm algorithm generates a Markov chain of allowed configu-
rations by temporarily violating the constraint, something which can
be exploited to obtain improved estimators for spin-spin correlation
functions. In addition to the usual

〈
P(0)P†(x)

〉
we use a modification

introduced in [85, 86], which allows us access to improved estimators of
also 〈ReP(0)ReP(x)〉 and 〈ImP(0)ImP(x)〉. This is crucial because the
best signal-to-noise ratio will be found in the correlator of the imaginary
parts of the spins, since it has the smallest constant background. We
first reproduced the results obtained by the transfer matrix method
in one dimension in order to verify that the algorithm was properly
implemented. A typical correlator in the liquid phase is shown in
fig. 4.3 and there is perfect agreement with the analytic result for all
three propagators. It should be noted that the real part of the mass mR
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is in general always large when the imaginary part mI is of order one
or larger, this makes it very difficult to resolve the first local maximum
of the correlator.
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Figure 4.3: Two components of the spin-spin correlator in one dimen-
sion for β = 0.5, e−M/T = 0.02 and µ/T = 3.689. There is
a clear oscillation in both correlators and the result agrees
perfectly with the exact result obtained using the transfer
matrix. The complex mass is given by m± ≈ 1.306± 0.663i.

We also measured the junction-junction correlator on the configura-
tions generated by the worm algorithm. The junction jx takes the value
n if 3n, n ∈ Z units of flux flow into the site x. With the flux variables
described above there are in general four types of junctions, depicted
in fig. 4.4 but in one dimension only junction A with one quark and
two in-going fluxes (or its reverse) attached to the site is possible. In
fig. 4.5 we show the correlation between positive j+ and negative j−
junctions for two different parameter values. Here the oscillation is
even clearer due to a less noisy observable, although we do not have an
improved estimator for this correlator. The dashed line is obtained by
fitting the amplitude and phase in eq. (4.4) while keeping the masses
fixed at the exact values obtained by the transfer matrix. The mass
is the same as for the spin-spin correlator since the junction is a local
object and there is only one (complex) mass in the one-dimensional
case. It should be noted that these parameter values have been selected
to give a maximally clear first maximum in the oscillation. For general
parameter values in the liquid phase it is only possible to see the first
minimum, while the first maximum is drowned in noise. This will be
especially true in three dimensions where the real part of the mass is
larger than in the one-dimensional case.
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Figure 4.4: The different junctions allowed in the flux-variable repre-
sentation of the Z3 model described in the text. The red
crosses represent quarks and the lines represent the directed
flux-tubes. The junction is located in the center of each
network where the flux sums up to three. Note that the
quarks bounding the network may also be replaced by arbi-
trary larger networks of charge one. In one dimension only
junction A is possible. The three-dimensional junction D is
only present in dimension three or higher.
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Figure 4.5: The junction-junction correlator in one dimension for β =

0.5, e−M/T = 0.02 and µ/T = 3.689 (left panel) and for β =

1.2, e−M/T = 0.0042 and µ/T = 4 (right panel). The signal
of oscillation is even clearer than in the spin-spin correlator
since this observable is less noisy, cf. fig. 4.3. The fits are
given by eq. (4.4) with the mass fixed at the value obtained
with the transfer matrix.
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We then move to the physically interesting case of three dimensions,
and guided by the phase diagram calculated by EMFT we select a few
points assumed to be in the liquid phase and look for the corresponding
signals in the correlators. Also here, however, the damping of the
correlator is always strong, as is illustrated in fig. 4.6. In the left panel
mR and mI , obtained by EMFT, are plotted as a function of tanh µ/T for
fixed M/T and β and in the right panel mI is plotted as a function of
mR to emphasize the approximately linear growth relation. Both masses
increase with µ/T. As a consequence, it is typically only possible to
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Figure 4.6: Left: the masses obtained by EMFT as a function of
tanh µ/T = hI/hR for fixed β = 0.08 and e−M/T = 0.05.
Right: imaginary part versus real part of the complex mass,
for the same parameters as in the left panel. The feature
that the real part rises approximatively linearly with the
imaginary part is generic, as is the fairly large value of the
real part at µ = 0. In the part of the curve to the left of the
cusp, both masses are real and their half-difference is shown
as a function of their half-sum.

resolve the first minimum of the oscillating correlator. In fig. 4.7 we
show correlators of ImP, as a function of the Euclidean distance r =√

x2 + y2 + z2, obtained by our worm simulations for three different
values of the chemical potential µ/T ∈ {2.0, 2.5, 3.3} at fixed β = 0.08
and e−M/T = 0.05. For all µ there is a clear minimum whose position
moves toward zero and whose width decreases as the chemical potential
increases. This suggests that the imaginary part of the mass increases
with µ, as it does in one dimension and as EMFT predicts. However,
there is a clear staggered component in the correlators, which makes it
very hard to fit the data to a simple ansatz. The staggered nature of the
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correlators most likely stems from the size and shape of the junctions,
shown in fig. 4.4. Also, in neither of these correlators is it possible to see
a maximum. This is not very surprising, but a discernible maximum
would be indisputable evidence of a complex spectrum.
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Figure 4.7: The correlator of the imaginary part of the spins for three
different chemical potentials µ at fixed β = 0.08 and
e−M/T = 0.05. The minimum of the correlator moves to-
wards zero and its width decreases as µ increases, suggest-
ing that the imaginary part of the mass increases with µ,
as expected. The significant staggered contribution to the
correlator makes a fit to the data difficult. The data sets are
shifted vertically for clarity and the data points at r ≤ 1 are
far above the shown data points, i.e. we have zoomed in on
the minimum of the correlators.

If the mass spectrum is complex and the system behaves like a liquid
then the junction-junction correlator should also show the characteristic,
oscillatory behavior seen in the 1d model. Since the junction-junction
correlator is less noisy than the spin-spin one, one may even hope
that a maximum of the oscillating correlator can be resolved, thus
establishing the complex spectrum without doubt. In fig. 4.8 we show
two junction-junction correlators for β = 0.08, e−M/T and µ/T = 3.3.
In the left panel we show the correlator of the absolute values of the
junctions whereas in the right panel the sign of the junctions is also
taken into account. The difference of scales of the two correlators comes
from the fact that they are both normalized to one at large distances
and that 〈|j|〉 ∼ 3 〈j〉. To emphasize the staggered component of the
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correlators we plot the correlators on the two different sub-lattices
with different colors. Inspecting first the charge-insensitive correlator
(left panel) we see that there is indeed a depletion in the density of
junctions of any type within distance [1, 2.5] of a junction but it is
not possible to tell if this minimum is followed by a maximum. In
the charge-sensitive correlator (right panel) there is a clear maximum
in the correlator in roughly the same interval, but only in one of the
sub-lattices. This strong staggered dependence is of course a lattice
artifact. It should however be noted that for smaller values of µ/T
(and thus longer wavelength oscillations, cf. fig. 4.7) there is a clear,
broader, minimum in both correlators and on both sub-lattices, which
indicates that the effect is not merely a staggered effect, although the
maximum which is predicted to follow is completely damped away.
All in all, the behavior of the different correlators strongly suggests
that there is a complex mass spectrum at the investigated parameter
values, and that the prediction in [79] that the phase structure observed
in one-dimension has an analogue also in three dimensions is correct.
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Figure 4.8: The correlator of the absolute value of the junction number
(left panel) and the correlator of the junction number (right
panel) for β = 0.08, e−M/T = 0.05 and µ/T = 3.3 on a 123

lattice. The depletion in the left correlator and the enhance-
ment in the right correlator around distance 2 support the
proposition that the system behaves as a liquid. However,
the strong staggered character still leaves some doubt. In
the right panel, the data point at

√
2 and 2 are far below

0.99 and are omitted such that it can be clearly seen that the
points at

√
3 and

√
5 are above 1.
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For comparison we also measured the junction correlators in two
dimensions and also here there is a strong staggered effect, as can be
seen in fig. 4.9. In this case the junction-junction correlator in the right
panel of fig. 4.9 seems to display a local maximum on both sublattices,
but there is a large phase difference between the two, which may be
the reason why it is so difficult to observe the local maximum in three
dimensions.
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Figure 4.9: The correlator of the absolute value of the junction number
(left panel) and the correlator of the junction number (right
panel) for β = 0.26, e−M/T = 0.04 and µ/T = 3 on a 162

lattice. The depletion in the left correlator and the enhance-
ment in the right correlator around distance 2 is similar to
what is seen in three dimensions, see fig. 4.8. In this case
the correlators on both sublattices shows a maximum in
the right panel, but there is a rather large phase difference
between the two components.

Finally, we measured some statistics of the flux-tube networks and
the junctions. Using the labeling of fig. 4.4 we find that the ratio of
C to D junctions is very close to 3/2 and the ratio of B to A junctions
is very close to 4, both in full agreement with entropic arguments.
The ratio of pure-flux junctions (C&D) to flux-quark junction (A&B)
depends on the parameters but for the parameter values we used the
flux-quark junctions typically outnumber the pure-flux junctions by
a factor 10, reflecting the energy cost of the additional flux tube. In
fig. 4.10 we show the histograms of the distribution of the flux-network
size, the number of junctions in a network and the network charge for
β = 0.08, e−M/T = 0.05 and µ = 2.0 on a 123 lattice.
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Figure 4.10: Histograms of the distribution of flux-network size, the
number of junctions in a network and the network charge
for β = 0.08, e−M/T = 0.05 and µ = 2.0 on a 123 lattice.
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5
T H E H I G G S - Y U K AWA M O D E L W I T H H I G H E R
D I M E N S I O N O P E R AT O R S V I A E M F T

5.1 introduction

In this chapter we exclusively rely on EMFT to study the Higgs and
fermion sector of the SM, which is an example of a Higgs-Yukawa
model. We will in particular be interested in the EWFT phase transition
and how it is affected by higher-dimension operators. The order of
this phase transition is crucial for the viability of EW baryogenesis,
which demands out-of-equilibrium conditions1, which can only be
satisfied of the transition is first order. The reason EMFT is useful here
is because of the substantial cost of simulating the full model with
dynamical quarks, which can not even be done at physical parameter
values without encountering a sign problem. At the same time the large
Yukawa coupling of the top quark and the finite temperature call for a
non-perturbative approach.

The content of this chapter has been published in

• Oscar Akerlund and Philippe de Forcrand. ”Higgs-Yukawa model
with higher dimension operators via extended mean field theory.“
In: Phys. Rev. D 93.3 (2016), p. 035015. arXiv: 1508.07959

[hep-lat].

5.2 higgs-yukawa model

The Higgs-Yukawa model is a simplified version of the SM Higgs sector
where the gauge degrees of freedom are neglected. The components of
the model are the scalar complex doublet ϕ and the fermion doublets
Ψ f . These couple to ϕ via Yukawa couplings with coupling constants
y f , which also determine the tree level fermion masses m f = y f v after
symmetry breaking, via the Higgs field expectation value 〈ϕ〉 ≡ (0, v)ᵀ.
Since the top quark is orders of magnitude heavier than the other

1 This is only one of the three Sakharov conditions. The other two, Baryon-number and
CP-symmetry violating interactions are both present in the SM.
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the higgs-yukawa model with higher dimension operators via emft

fermions, it is common, and well justified, to restrict the fermion content
to solely the top-bottom doublet Ψ = (t, b)ᵀ = (tL, tR, bL, bR)

ᵀ. In these
fields the Euclidean continuum action is given by

Scont[Ψ, Ψ, ϕ] = SH[ϕ] + SF[Ψ, Ψ, ϕ], (5.1)

with

SH[ϕ] =
∫

d4x
{

1
2
|∂µ ϕ|2 + 1

2
m2

0|ϕ|2 + λ̂|ϕ|4
}

, (5.2)

SF[Ψ, Ψ, ϕ] =
∫

d4x
{

Ψ/∂Ψ + ybΨL ϕbR + ytΨL ϕ̃tR + h.c.
}

, (5.3)

where ϕ̃ = iτ2ϕ†, τ2 is the second Pauli matrix and ΨL/R = (tL/R, bL/R)
ᵀ.

The other fermions (quarks and leptons) can, if desired, be added in a
completely analogous way.

In this study we will mainly be interested in the broken-symmetry
phase and for notational convenience we will exploit the global SU(2)
symmetry to make the expectation value of ϕ real and sit entirely in
the lower component of ϕ, i.e. we parametrize

ϕ(x) =
(

g2(x) + ig1(x)
v + h(x)− ig3(x)

)
, 〈ϕ〉 =

(
0
v

)
, (5.4)

where v + h(x) is the Higgs field and gi(x) are the three Nambu-
Goldstone modes.

For the Higgs self-interaction we will consider higher dimension
operators, in addition to the renormalizable φ4 interaction. The simplest
extension is to add a dimension six contact term with six Higgs fields,
(ϕ† ϕ)3, as studied by FRG in [44], but operators of any dimension could
just as well be included. Let us for now simply group these higher
order terms in a “new physics”, or BSM, action 2

SNP[ϕ] =
dmax

∑
d=6

nd

∑
i=1

Ci,d
Oi

d

Md−4
BSM

, (5.5)

where Oi
d is an operator of mass dimension d, nd is the number of oper-

ators with dimension d, Ci,d are the Wilson coefficients and MBSM is the
energy scale of the new physics, typically the mass of the lightest medi-
ator particle. Apart from ϕ6 there is a second operator of dimension six,

2 We consider here only operators in the pure Higgs sector, for a complete list of
dimension 6 operators see [58]
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O2
6 = |∂µ ϕ† ϕ|2, but it can be neglected if one assumes an approximate

custodial symmetry [89]. Also, if included, the zero-temperature phase
transition will always be first order in the EMFT approximation. Nat-
urally (naively), at low energy E, the effects of the higher-dimension
operators are suppressed by factors (E/MBSM)d−4.

5.3 diagonalizing the overlap operator for arbitrary con-
stant higgs field

To efficiently, albeit approximately, integrate out the fermions we con-
sider the Higgs field to be very slowly varying in space-time. Since
we are primarily interested in the infrared properties of the model this
assumption is reasonable. We thus assume that the fermions see a
constant Higgs field, therefore the fermionic interaction can be diago-
nalized by going to Fourier space and the fermion determinant can be
calculated without much effort.

Due to the global SU(2) invariance, the fermion determinant can
only depend on the magnitude of the Higgs field, |ϕ|2 = (v + h)2 +

g2
1 + g2

2 + g2
3. Note that it depends on all the fields in ϕ and not only

on the expectation value. To simplify the derivation we apply an SU(2)
transformation such that ϕ = (0, |ϕ|)ᵀ. Then, the different fermion
flavors decouple and we have

SF = ∑
f

Nc, f

∫
d4x f̄ M f f , M f ≡ /∂ + y f |ϕ|I4, (5.6)

where Nc, f is the number of colors for each fermion f , i.e. one for
the leptons and three for the quarks. Unless otherwise specified, we
will include all SM fermions except the neutrinos with their Yukawa
couplings set via the tree level relation y f = m f /v.

For the model to be a realistic approximation of the SM Higgs sector it
is important that the fermions be chiral. This is ensured by implement-
ing the Neuberger overlap operator [77] when putting the fermions on
the lattice. The overlap operator D(ov) satisfies an exact lattice chiral
symmetry which approaches the usual chiral symmetry in the contin-
uum limit a → 0, a being the lattice spacing. Since we work with an
effective model with a finite cut-off, this term will never completely go
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away, but as long as the cut-off is well above the top mass the effects
should be small. The overlap operator is given by

D(ov) =
ρ

a

(
I4 +

A√
A† A

)
, A = D(W) − ρ

a
, 0 < ρ ≤ 2r, (5.7)

where D(W) is the usual Wilson operator with negative bare mass M0

and Wilson parameter r, and ρ is a dimension-less parameter. In our
calculations we will adopt the common choices of r = 1/2, ρ = 1. The
lattice action is constructed by the following replacements:

/∂ → D(ov), f̄L,R fR,L = f̄ PR,LP̂R,L f , (5.8)

P̂R,L =
I4 ± γ5(I4 − ρ−1D(ov))

2
= PR,L ∓

γ5

2ρ
D(ov), (5.9)

after which the fermion operator, eq. (5.6), becomes

M(ov)
f = D(ov) + y f |ϕ|

(
I4 −

1
2ρ

D(ov)
)

. (5.10)

In order to determine the fermion contribution to the action we will
have to calculate the determinant, or equivalently the trace log, of
this operator. This is most convenient in Fourier space where D(ov) is
diagonal. For a given 4-momentum p, its four eigenvalues come as
complex conjugate pairs ν(p), ν†(p), each with multiplicity two, where

ν(p) = ρ


1 +

i
√

p̃2 + r
2 p̂2 − ρ√

p̃2 +
( r

2 p̂2 − ρ
)2


 , (5.11)

p̃2 = ∑
µ

sin2(pµ), p̂2 = 4 ∑
µ

sin2
( pµ

2

)
. (5.12)

Since the “mass term” y f |ϕ| is real, the determinant of M(ov)
f is real as

well and the trace log takes the form of a real integral

TrLog
(

M(ov)
f

)
= 2

∫ d4 p
(2π)4 log|ν(p) + y f |ϕ|

(
1− ν(p)

2ρ

)
|2, (5.13)

which can be calculated quite efficiently. Actually, since it only depends
on one variable, y f |ϕ|, and will have to be evaluated very often, it will
prove advantageous to precalculate it on a discrete set of values and
interpolate to intermediate points. In summary, to a first approximation
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the effect of the fermions is the addition of an SU(2) symmetric contact
term to the Higgs potential.

It should be noted that the determinant is only positive for generic
Yukawa couplings in the approximation that the Higgs field is constant.
Otherwise the Higgs field will fluctuate in the complex plane and
introduce a sign problem, unless the fermions in each doublet have
degenerate Yukawa couplings.

5.4 the effective action and emft solution

For definiteness we will consider only the |φ|6 term in SNP, eq. (5.5).
Since we have no handle on the Wilson coefficient C1,6 of this term we
will set it to 1 and introduce λ6 ≡ (aMBSM)−2 where a is the lattice
spacing. With the approximate treatment of the fermions above, we
end up with the lattice action

S[ϕ] = ∑
x

{
− κ ∑

µ

ϕ†
x ϕx+µ̂ + h.c. + |ϕx|2 + λ̂

(
|ϕx|2 − 1

)2

+ ∑
f

Nc, f TrLog
(

M f (y f
√

2κ|ϕ0|)
)
+ λ̂6|φ|6

}
, (5.14)

in terms of the conventional ϕ4 parameters

aϕ(x) =
√

2κϕx, (am0)
2 =

1− 2λ̂

κ
− 8 (5.15)

λ̂ = 4κ2λ, λ̂6 = 8κ3λ6.

This action is quite similar to the complex ϕ4 model in chapter 3 and
we can adopt the vector notation used there,

Φ
ᵀ
x = (hx, g1,x, g2,x, g3,x)

ᵀ + (v̂, 0, 0, 0)ᵀ ≡ δΦ
ᵀ
x + 〈Φ〉ᵀ , (5.16)

with v̂ = av/
√

2κ, to derive the EMFT equations in an analogous fashion.
Concentrating on the field at the origin, Φ0, the hopping part of the
action can be expressed as

∆S = −2κ ∑
±µ

δΦ
ᵀ
0δΦµ̂ − 4dκv̂h0. (5.17)

The lattice without the origin is considered an external bath and will
be self-consistently integrated out. This is equivalent to replacing the
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nearest-neighbor interaction term in eq. (5.17) by its cumulant expansion
with respect to the external bath. Truncating the expansion at second
order we obtain the following effective action:

SEMFT = Φᵀ(I − ∆)Φ + λ̂
(
‖Φ‖2 − 1

)2

+ ∑
f

Nc, f TrLog
(

M(ov)
f

(
y f
√

2κ‖Φ‖
))

(5.18)

− 2v̂(v̂ + h)(2dκ − ∆1) + λ̂6‖Φ‖3,

where ∆ emulates propagation in the external bath. A closer inspection
of the cumulant expansion reveals

∆ = 2κ2 ∑
±µ,ρ

〈
δΦµδΦ

ᵀ
ρ

〉
ext

= 2κ2 ∑
±µ,ρ

diag
〈(

hµhρ, g1,µg1,ρ, g2,µg2,ρ, g3,µg3,ρ
)〉

ext

≡ diag(∆1, ∆2, ∆2, ∆2), (5.19)

where the diagonal form follows from the symmetries of the action.
Since the action is still symmetric with respect to O(3) rotations of
g1, g2, g3 it is practical to rewrite the action in terms of two variables

(v̂ + h0) = φh, (5.20)
√

g2
1,0 + g2

2,0 + g2
3,0 = φg, (5.21)

in which ∆ = diag(∆1, ∆2) and
〈

g2
i,0

〉
=
〈

φ2
g

〉
/3. The EMFT action is

then given by

SEMFT = (1− ∆1)φ
2
h + (1− ∆2)φ

2
g + λ̂

(
φ2

h + φ2
g − 1

)2

+ ∑
f

Nc, f TrLog
(

M(ov)
f

(
y f
√

2κ
√

φ2
h + φ2

g

))
(5.22)

− 2v̂φh(2dκ − ∆1) + λ̂6

(
φ2

h + φ2
g

)3
,

and the partition function becomes

ZEMFT = N
∫

dφhdφg φ2
g exp (−SEMFT) , (5.23)
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where N is an irrelevant normalization constant. The unknown param-
eters v and ∆ can then self-consistently be determined via the three
self-consistency equations

〈φh〉 = v̂, (5.24)

2
〈
φ2

h
〉

c =
∫ d4 p
(2π)4

1
1

2〈φ2
h〉c

+ ∆1 − 2κZh ∑µ cos(pµ)
, (5.25)

2
〈

φ2
g

〉

3
=
∫ d4 p
(2π)4

1
3

2〈φ2
g〉 + ∆2 − 2κZh ∑µ cos(pµ)

, (5.26)

where
〈
φ2

h

〉
c =

〈
φ2

h

〉
− 〈φh〉2 and the wave function renormalization

Zh is chosen such that the Nambu-Goldstone bosons are exactly mass-
less, see section 3.4.4. The last two equations enforce that the con-
nected 2-point function, from the origin to the origin, is equal to its
momentum-space expression. The four- (or d-) dimensional integrals
can be transformed into one-dimensional integrals by using the identity

∫ dd p
(2π)d

1
a−∑µ cos(pµ)

=

∞∫

0

dτe−aτ (I0(τ))
d , (5.27)

where I0(x) is a modified Bessel function of the first kind. See sec-
tion 2.4.1 for more details.

5.4.1 Scale setting and observables

In order to examine the effect of different cut-offs and possible higher
dimension operators on the Higgs boson mass we need to set the scale
of the lattice calculations. This is most naturally done by fixing the
Higgs field expectation value v to its phenomenological value. In terms
of lattice variables we have

v =

√
2κv̂
a

= 246 GeV, (5.28)

which, given v̂, determines the value of the cut-off Λ = 1/a. Further-
more, we want to use physical quark masses, so we fix the Yukawa
couplings using the tree level relation m f = y f v. We can now deter-
mine the Higgs boson mass Mh in GeV as a function of the parameters
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of the Higgs potential by evaluating the inverse propagator at zero
momentum:

G−1
h (p) =

1
2
〈
φ2

h

〉
c
+ ∆1 − 2κZh ∑

µ

cos(pµ)

→
p→0

κZh((aMh)
2 + (ap)2), (5.29)

⇒ M2
h =

(
1

2
〈
φ2

h

〉
c
+ ∆1 − 8κZh

)
Λ2

κZh
.

5.5 results

In order to assess how well our EMFT method works in the presence of
fermions, we compare it to already existing full Monte Carlo results and
results obtained using an analytic, approximate method, the Contraint
Effective Potential (CEP) [36]. In fig. 5.1 we show the Higgs expectation
value in lattice units v̂ as a function of the hopping parameter κ at two
different values of the new coupling, λ6 = 0.1 in the upper panel and
λ6 = 1.0 in the lower one. Each color represents a different value of the
quartic coupling λ. In this comparison only the top and bottom quarks
are included with degenerate Yukawa couplings yb = yt = 175/246
and color factors Nc,b = Nc,t = 1. It is clear that EMFT (solid lines) is a
very good approximation and gives results close to the Monte Carlo
results (symbols) in all cases, in contrast to CEP (dotted lines) which
works acceptably well for small values of λ6 only. This is not surprising
since the CEP calculations in [60] are perturbative, whereas EMFT is fully
non-perturbative.

It is quite remarkable that EMFT reproduces the expectation value to
such a high accuracy. This was of course observed already in chapter 3,
where the complex φ4 theory was studied. The main reason for the
success is probably the way EMFT deals with the mass renormalization
and the fact that close to a Gaussian fixed point, a mass renormalization
is in principle all that is needed to accurately describe the model.
However, EMFT works well also in an extended region away from the
fixed point, even where there is a strong first order transition, as can be
seen in fig. 5.1.

For our actual results we will adopt a slightly different point of view
on the model than the authors of [36]. Indeed, consider the origin of the
higher dimension operators. Generically they stem from UV completion
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Figure 5.1: The Higgs vacuum expectation value in lattice units as a
function of the coupling κ at various λ, for λ6 = 0.1 (left
panel) and λ6 = 1 (right panel). The solid lines are EMFT

calculations from this work and the pluses and dashed
lines are full Monte Carlo simulations and CEP calculations
respectively, both taken from [60]. The EMFT results follow
the Monte Carlo data closely for both values of λ6, whereas
the CEP calculation gives reasonably accurate results for the
upper, perturbative value only.

of the SM and are thus associated with an energy scale which is typically
the mass of the lightest of the “new” particles which couple to the Higgs
field. Let us call this energy scale MBSM. It is natural to assume that
the coupling of this particle to the Higgs field is of order one, such
that the coefficient in front of the |φ|6 operator will be M−2

BSM with
the corresponding dimensionless coupling λ6 = (aMBSM)−2. Notice,
moreover, that Λ = a−1, not MBSM, is the cutoff of the effective model,
since it is directly related to the maximum energy scale probed by the
lattice action. In order to justify the effective treatment of particles
heavier than MBSM the cutoff Λ has to be sufficiently small. This leads
to a hierarchy of scales condition, aMh � 1 . aMBSM, which in turn
means λ6 . 1 in the broken symmetry phase. As (aMBSM) is decreased
towards 1, more and more terms in the effective action would have to
be taken into account in order to maintain a good approximation of the
underlying model.

It is quite challenging to preserve a good separation of scales while
at the same time keeping the physical volume large, and hence any
lattice simulation is susceptible to large finite size effects. This is
particularly true in a theory with massless modes, like the one we
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study here. In EMFT one generally works directly in the thermodynamic
limit but in order to demonstrate the power law corrections coming
from the Nambu-Goldstone modes, we have solved the self-consistency
equations in a finite volume. In fig. 5.2 we show the relative error on
the Higgs mass as a function of the box size. The scale separation factor
is aMBSM =

√
10 (λ6 = 0.1) for all values of a and we have marked both

where the size of the correction is 50% of the mass itself and where
an Ns = 32 lattice would be for two different lattice spacings. This
demonstrates the need for very big lattices before one can even see the
asymptotic power law scaling.
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Figure 5.2: Finite volume relative correction to the Higgs mass for
two different lattice spacings calculated with EMFT with
λ6 = 1/10 and Mh = ξ−1 = 125 GeV. The horizontal line cor-
responds to a 50% correction. In order to see the asymptotic
(ξ/L)3 corrections due to the massless Nambu-Goldstone
modes, rather large lattices are needed, which poses a chal-
lenge to full Monte Carlo simulations. In EMFT one can
avoid the problem of thermodynamic extrapolation entirely
by working directly in the thermodynamic limit.

5.5.1 The zero-temperature phase diagram

It is most convenient to present the phase diagram in the (unphysical)
bare parameters κ, λ and λ6. One can then pass to physical units via
the Higgs expectation value in the broken phase. In fig. 5.1 one can see
that the transition turns from second- to first-order as λ is made more
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negative and in fig. 5.3 we show how the tricritical point depends on λ6.
For λ below the line the κ-driven transition is first order and above it is
second order 3. Next, we fix λ6 and look at the transition in the (λ, κ)-
plane. An example, where λ6 = 1/4, can be seen in fig. 5.4. The color
of the line denotes the order of the transition, blue for second order and
red for first order. The star marks the tricritical point and the arrow
denotes how it moves as the number of lattice sites in the temporal
direction Nt is decreased (see below for more details). The location of
the tricritical point is obtained by fitting the critical vev on the first-
order side with a power law 〈φ〉c (λ) = c (λc − λ)b. There is a region
close to the second-order line where one can perform calculations at a
small lattice spacing a and since it is not possible to take the continuum
limit of this effective theory anyway, it may also be viable to stay close
to the transition on the first-order side. In fact, it turns out that a first
order finite temperature transition will be found only there, denoted by
the gray shaded area in the figure.
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Figure 5.3: The tricritical point at zero temperature. For λ below the
line the transition is first order and above it is second order.

5.5.2 Higgs mass lower bound

Given a specific form of the Higgs potential, the lower bound on the
Higgs mass is simply given by the minimal mass obtainable in the given

3 In the absence of gauge fields there is always a symmetric phase and a broken phase
separated by a phase transition, never a crossover
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Figure 5.4: Zero- and finite-temperature transition in the (λ, κ)-plane
at fixed λ6 = 1/4. The transition turns from second to first
order at the first-order endpoint marked by the star. The
color of the line denotes the order of the transition, blue for
second order and red for first order. As the lattice size is
reduced in the temporal direction the endpoint moves along
the arrow, and thus the gray shaded area marks the region
in the plane where the finite temperature transition is first
order.
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parameter space of the potential 4. For a pure ϕ4 potential it is found
that the Higgs mass decreases when λ decreases and the lower bound
is thus obtained at vanishing quartic coupling. In the Higgs-Yukawa
model, this lower bound turns out to be just above 40 GeV and a positive
λ is needed to bring the Higgs mass up to 125 GeV. A negative coupling
is obviously prohibited by the requirement of a bounded action. By
introducing higher dimension operators, we can have a stable vacuum
even at negative quartic coupling, and it is plausible that this could
lead to an even lower Higgs mass. This was first demonstrated in [55],
using the FRG on a chiral Z2 Higgs-Yukawa model. Analogous results
were also obtained using the Higgs-Yukawa model described above at
physical values of the top and bottom masses in [56] and using the chiral
Z2 Higgs-Yukawa model plus an SU(3) gauge sector in [44]. Later,
the authors of [36] came to similar conclusions using nonperturbative
Monte Carlo simulations and perturbative CEP calculations of the above
described Higgs-Yukawa model with mass-degenerate top and bottom
masses. Common to all these studies is that they add a φ6 operator
to the Higgs potential and when its coupling constant λ6 is positive,
the Higgs mass can be further reduced by making the quartic coupling
λ more and more negative. At some point, in the lattice regularized
models, the phase transition between the symmetric and broken phases
turns first order (see fig. 5.3) and there is a hard lower bound on the
lattice spacing a. Since the model is only effective this is in itself not
a problem, but, since one wants aMh � 1, it bounds the region in
parameter space where simulations are useful.

Typically one finds that the Higgs mass goes to zero as one ap-
proaches the tricritical point from the second-order side although before
zero is obtained one runs into subtle issues regarding new local minima
of the effective action 5. This means that the Higgs mass can in general
be lowered by a large if not arbitrary amount, from its lower bound in
the λ6 = 0 case. This is demonstrated in fig. 5.5, where the Higgs mass
Mh is plotted as a function of aMh for a few different values of aMBSM

and λ, together with the SM lower bound obtained at λ = 0. As λ is
made more negative one approaches the regime of first-order transition

4 Note that the effective potential can feature local minima, which may have a smaller
curvature than the global one. We are not interested in those.

5 This scenario is however quite tricky to study in an effective model setup since the
higher field value at the new minimum reduces the separation of the dynamical and
the cut-off scales which might make the effective model less precise
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and the Higgs mass decreases and can take values well below the SM

lower bound.
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Figure 5.5: The Higgs mass Mh as a function of aMh for various combi-
nations of aMBSM and λ, together with the SM lower bound
on the Higgs mass obtained at MBSM = ∞ and λ = 0. In
the presence of a φ6 operator a negative value of λ is al-
lowed and the Higgs mass can be lowered well below the
SM bound, as indicated by the arrows.

All in all it is clear that in the presence of higher dimension operators
the lower bound on the Higgs mass loses its meaning. In fact, one
may argue that this is a null statement since the lower bound was
calculated under the assumption that there is only the SM, and clearly
new operators will change the running of the couplings.

5.5.3 Finite temperature

Let us now turn to the MBSM dependence of the finite temperature
transition. In gauge-Higgs systems it has been demonstrated that
introducing a ϕ6 operator makes the phase transition stronger [57,
91, 92], which in turn means that the critical mass, up to which the
transition is first order, increases. If it would increase past the observed
Higgs boson mass, electroweak baryogenesis might become possible
again. Here, we present our findings using EMFT. Still in the infinite
volume limit, we can introduce a non-zero temperature T = 1/(aNt)

by using a finite number Nt of lattice points in the temporal direction.
This gives us control over the temperature in discrete steps (for a fixed
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lattice spacing), so in order to get a good resolution one would need
to work with rather fine lattices. However, this limits the range of
available MBSM because of the condition of scale separation aMBSM & 1.
To overcome this problem we will determine the linear response of the
system and then extrapolate to the desired temperature. Alternatively,
to continuously vary the temperature, one could use a lattice action
with anisotropic couplings.

The observables of main interest are the critical Higgs mass for which
the transition turns first order and the critical temperature. Another
interesting observable is the Higgs mass for which the vev at the
transition is of the same order as the critical temperature, which is
the actual condition for a viable EW baryogenesis. All observables
depend on both MBSM and the lattice spacing a so we need to calculate
them in a two dimensional parameter space. The starting point for
determining this dependence is to obtain the phase diagram as in
fig. 5.4 for various aMBSM and Nt values, and then to determine how
the first-order endpoint moves as a function of Nt. This is illustrated
by the star and the arrow in fig. 5.4. The finite temperature transition
will be first order in the region between the T = 0 first-order line and
the trajectory of the first-order endpoint, denoted by the shaded region
in fig. 5.4. We find that the endpoint moves on a straight line in the
(κ, λ)-plane, as can be seen in fig. 5.6 for λ6 = 1/4. By determining the
lattice spacing a and the Higgs mass Mh at zero temperature along this
line we can obtain the critical Higgs mass as a function of the BSM scale,
shown in fig. 5.7. In fig. 5.8 we show how the critical Higgs mass for
λ6 = 1/4 changes for different strengths of the first order transition,
measured in terms of φc/Tc where φc is the critical Higgs expectation
value at the phase transition. In both of these figures the color of the
line gives the critical temperature Tc in GeV.

Since our model is an effective one, we do not expect that the resulting
curve is independent of the lattice spacing. Indeed, in the range of
2 ≤ aMBSM ≤ 4 we find that the critical Higgs mass varies by about
ten percent. This is in itself not a direct measure of the systematic
uncertainties of the study since the choice of only including the ϕ6

operator introduces uncertainties which are hard to quantify, especially
at the lower end of the interval. Moreover, different implementations of
a UV cutoff will give somewhat different results. With there caveats, the
variation of the critical line in the (Mh, MBSM)-plane gives a measure
of the uncertainties within the model itself. The final result is that
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trajectory is very well described by a straight line.
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Figure 5.8: The critical Higgs mass below which the finite tempera-
ture transition is first order for aMBSM = 2 and different
strengths of the transition measured in terms of φc/Tc where
φc is the critical Higgs vev at the transition. The color coding
gives the transition temperature in GeV.

for a Higgs mass of 125 GeV a BSM scale of around 1.5 TeV is needed
to make the EW finite temperature phase transition first order, and
this result changes only slightly even if we demand that the transition
should be strongly first order with φc/Tc & 1. This result is interesting
since in many supersymmetric extensions of the SM one expects to
find the lightest superpartners around this mass scale. The final scale
separations (aMh � 1� aMBSM) at the tricritical point for the different
values of aMBSM are listed in table 5.1 and it is evident that the validity
of the effective model is somewhat strained, but not completely spoiled,
due to the rather small separations.

Table 5.1: Separations of three scales in units of the inverse lattice spac-
ing at the tricritical point for different values of aMBSM.

MBSM a−1 Mh

2 1 0.19
3 1 0.26
4 1 0.29

Finally, to quantify the influence of our nonperturbative treatment of
the fermions we repeated the calculations considering just the Higgs
sector and found that, after all, the fermions contribute only percent-
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level corrections to the purely bosonic case, see fig. 5.9. Remarkably,
the sign of the correction depends on the value of aMBSM. We also
note that the BSM scale of ≈ 1.5 TeV needed for a first-order finite-
temperature transition is in good agreement with what one obtains in
the gauge-Higgs model with a φ6-term [91, 92]. This could be used as
an argument for leaving out the SM fermions and gauge fields from the
simulations while studying higher dimension operators in the context
of EW baryogenesis, and for including them perturbatively only.
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Figure 5.9: The critical Higgs mass below which the finite temperature
transition is first order for various values of aMBSM with
and without the SM fermions. The correction due to the
fermions (shown by the arrows) is small and of indefinite
sign.
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6
G A U G E - I N VA R I A N T S I G N AT U R E S O F
S P O N TA N E O U S G A U G E - S Y M M E T RY B R E A K I N G B Y
T H E H O S O TA N I M E C H A N I S M

6.1 introduction

In this chapter we study the possibility of spontaneous gauge-symmetry
breaking and how to detect it in a reliable way. Although Elitzur’s
theorem forbids the spontaneous breaking of gauge symmetries, there
are a few ways to circumvent it, one being the Higgs mechanism.
Another related possibility arises if one or more dimensions are compact.
Then, non-contractible loops of gauge fields à la Aharonov-Bohm can
form and acquire nonzero expectation values, which in turn breaks the
gauge symmetry. This leads to the concept of gauge-Higgs unification
and the Hosotani mechanism [62, 63], where a component of the gauge
field in a compact extra dimension plays the role of the Higgs field and
thus mimics the Higgs mechanism. Here we investigate this possibility
in the nonperturbative framework of the lattice and show how to detect
this breaking, without fixing the gauge.

The content of this chapter has been published in

• Oscar Akerlund and Philippe de Forcrand. ”Gauge-invariant sig-
natures of spontaneous gauge symmetry breaking by the Hosotani
mechanism.“ In: PoS LATTICE2014 (2015), p. 272. arXiv: 1503.
00429 [hep-lat].

6.2 the hosotani mechanism

Hosotani originally considered an SU(3) gauge theory with adjoint
fermion fields in (4 + 1) dimensions. The fifth dimension is taken to be
compact and he showed that if the matter fields obey periodic boundary
conditions in the extra dimension, then the minimum of the perturbative
effective potential Veff(Tr P5) can be displaced from the trivial one
(fig. 6.1 left) to one of the nontirvial ones depicted in fig. 6.1 middle
and right. This is because the adjoint matter fields have an opposite
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Figure 6.1: Contour lines of the effective potential Veff(TrP5) in the two
independent angles of P5, resulting from different matter
contents and boundary conditions in the extra dimension.
Black dots mark the minima in each case.

contribution to Veff than the gauge fields. The three different cases
have been dubbed “deconfined”, “split” and “reconfined”, respectively.
The argument does not depend strongly on the number of dimensions
and the three phases exist also in (3 + 1) dimensions, as was found
in [39], in a project aimed at understanding center symmetry breaking
in QCD(Adj) as proposed by Unsal et al. [97, 68].

To understand the character at each of the minima, it is useful to
consider the diagonal form of the SU(3) matrix P5 which minimizes
the potential in the different cases. They are given by




+1 0 0
0 +1 0
0 0 +1


 “deconfined′′, (6.1)



−1 0 0
0 −1 0
0 0 +1


 “split′′, (6.2)




e+i 2π
3 0 0

0 e−i 2π
3 0

0 0 1


 “reconfined′′. (6.3)

The symmetry-breaking pattern of the different minima is now
evident. We just have to determine which gauge transformations
P5 ← Ω†P5Ω, Ω ∈ SU(3) take a minimizing P5 to another minimizing
element. The identity matrix of the “deconfined” phase is invariant
under any gauge transformation, so the symmetry group is SU(3). This
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is not the case for the other two phases though. In the “split” case, P5 is
left unchanged only if Ω ∈ SU(2)×U(1). In the “reconfined” case, P5

is left unchanged only if Ω = exp(iθ3λ3 + iθ8λ8), i.e. Ω ∈ U(1)×U(1).
So, even if the action is invariant under any SU(3) gauge transfor-
mation, the split and reconfined vacua are not and thus it is justified
to speak of gauge-symmetry breaking, even though the expectation
〈A5〉 is actually zero due to gauge transformations which permute the
eigenvalues of P5. However, this is analogous to the situation with the
ordinary Higgs mechanism: one says that the gauge symmetry “breaks”
when the Higgs field “develops an expectation value”, although the
action remains gauge-invariant and the expectation value 〈φ〉 remains
exactly zero (in the absence of gauge-fixing).

Nevertheless, the three phases certainly have different long-distance
physics. In four dimensions the deconfined phase has eight gluons,
the split phase has three gluons and one photon, whereas the recon-
fined phase has two photons. In the phases with photons, a Coulomb
potential between corresponding probe charges will arise. However,
the remnant gauge symmetry will “scramble” the corresponding SU(2)
and U(1) subgroups differently at each lattice size, and the different
physics will be hard to detect.

Take for example the “split” SU(2)×U(1) phase. Naively one would
try to detect the Coulomb potential by looking for a perimeter law
in the SU(3) Wilson loops. However, in addition to the U(1) factor,
there is also an SU(2) element associated to each link, and those will
contribute an area law to the trace of such loops. It is therefore more
difficult than naively anticipated to detect the above phenomena by
looking at the IR properties of the effective 4d theory. One way around
this may be to fix the gauge1, with a gauge condition which minimizes
the magnitude of the SU(3) link elements which do not belong to
SU(2)×U(1) or U(1)×U(1). The latter is the well-known Maximal
Abelian gauge. Here, we want to study gauge-invariant observables,
and follow a different route.

6.3 gauge symmetry breaking seen in a gauge-invariant way

One possibility is to study the gauge-invariant eigenvalues of P5, and
in particular the quadratic fluctuations m−2

k = 〈(Ā5
k − 〈Ā5

k〉)2〉 of the

1 No signal was found by Jim Hetrick, as presented in [61].
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Figure 6.2: Mass squared of the Higgs field, as a function of the size of
the extra dimension, for two adjoint fermions. In the split
phase, the two Abelian components of the Higgs field have
different masses. Perturbative calculation and figure from
[40].

static mode Ā5 defined via P5 = exp(igL5Ā5
k
λk). These fluctuations

determine the Higgs mass squared. If the gauge symmetry is realized,
the mass must must necessarily be the same for all k. Conversely, if
there is a k-dependence in the masses, then the symmetry must be
broken. The masses can be obtained from Monte Carlo simulations
or from an expansion of the effective potential around the minimum
of each phase. These analytic results are shown in fig. 6.2 [40]. The
fluctuations about the deconfined vacuum is isotropic in color space
as expected. The same is true in the reconfined phase, even though
the symmetry is supposed to be broken here. The reason for this
is that there is a locally enforced Z3 symmetry in P5 which protects
against a mass splitting. However, in the split phase a mass splitting is
indeed observed, the fluctuations of Ā5 in the λ3 and λ8 directions are
different and consequently Veff(Ā5) is elliptical, not spherical, in the
split phase. However, this interesting phenomenon is of no relevance to
long-distance 4d physics, because the Higgs mass is of order 1/L5.

6.3.1 Abelian flux

We propose to characterize the symmetry-breaking pattern by monitor-
ing the stability of topological excitations which are stable with respect
to one of the gauge subgroups, but unstable with respect to the whole
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introduction of one unit of xy magnetic flux every 50 sweeps.
The dotted line is the leading prediction. Flux states are
long-lived and cause a shift of the in-plane plaquette.

gauge group. The simplest example of such an excitation is an Abelian
flux through some plane xy, which is only stable with respect to U(1)
due to Π1 (U(1)) = Z, while Π1 (SU(3)) = Π1 (SU(2)) = 1. The
presence of such a flux will affect the expectation value of the gauge-
invariant plaquettes, so it is possible to detect the gauge-symmetry
breaking without fixing the gauge. Another examples of such topologi-
cal excitations are monopoles of different kinds.

Let us first give a detailed account of the situation with an xy Abelian
flux. For simplicity we consider a U(1) gauge theory on an Lx × Ly ×
Lz × Lt lattice. A configuration of B units of flux can be prepared by
starting from a “cold” configuration Uµ(x) = 1 ∀x, µ and then arranging
the links so that each xy plaquette Pxy is equal to exp(i 2πB

Lx Ly
). One

can then perform usual Monte Carlo updates and monitor the gauge-
invariant flux action: ∆ = 〈TrUPxz〉 − 〈TrUPxy〉, where the difference is
taken to isolate the effect of the xy flux. Classically, ∆ = 1− cos 2π

Lx Ly
≈

2π2

L2
x L2

y
. The leading effect of fluctuations is to modify Pxy and Pxz in

the same way, so that ∆ ∼ 〈TrUPxz〉(1− cos 2π
Lx Ly

B) for B units of flux.
This simple prediction is completely consistent with the numerical
simulation of fig. 6.3, where B is incremented every 50 Monte Carlo
sweeps. Flux states are extremely stable, since for their decay one xy
plaquette in each plane must go through angle π. This only happens at
the right edge of the figure.

99



detecting gauge-symmetry breaking

The situation in the case of SU(3) gauge-symmetry breaking is very
similar to the above description. The starting “cold” configuration will
be one that minimizes the total lattice action, which for the split and
reconfined phases is different from the trivial configuration. Neverthe-
less, a xy flux can be introduced in some specific U(1) subgroup in an
analogous fashion and then ordinary updates of the full SU(3) gauge
links can be performed with respect to an action which is expected
to induce gauge-symmetry breaking. A simpler and computationally
much cheaper alternative to dynamical adjoint fermions is to apply an
external potential hFReTrP5 + hA|TrP5|2, as was originally done in [75].

As previously mentioned, under the action of the full SU(3) symme-
try, the subgroup in which the flux was introduced is locally scrambled
and in order to unscramble it, one would be required to fix the gauge.
However, it is actually not necessary to gauge-fix in order to ascertain
whether the U(1) flux is still there, it is sufficient to monitor the gauge-
invariant excess action in the xy planes, namely ∆ = 〈TrUPxz〉− 〈TrUPxy〉,
just like in the pure U(1) case.

Figure 6.4 shows the results of such an experiment in the reconfined
phase (SU(3)→ U(1)×U(1)). On the y-axis, ∆ has been normalized to
its value in the pure U(1) case. Interestingly, the excess action depends
on the U(1) subgroup where the flux is introduced. The reason is the
following. In all cases, a U(1) angle θ = 2π

Lx Ly
is introduced in each xy

plaquette. The corresponding action is 1− Tr(eiθ) ≈ 1
2 θ2 in the pure

U(1) system. But in the SU(3) system, if the flux is introduced in the
λ3 subgroup, the corresponding action is 1− 1

3 Tr{diag(eiθ , e−iθ , 1)} ≈
1
3 θ2. And if the flux is introduced in the λ8 subgroup, the action is
1− 1

3 Tr{diag(eiθ , eiθ , e−2iθ)} ≈ θ2. Thus, a magnetic flux in the λ3 or λ8

subgroup incurs an action equal to 2/3 or 2 times that in a U(1) system,
respectively. This is precisely what fig. 6.4 shows, with horizontal
dotted lines corresponding to 2/3 (subgroup λ3), 2 (subgroup λ8) or
14/3 (2 units of flux in λ3 plus 1 unit in λ8). Note that these topological
excitations are extremely stable: their sudden decay after 1000 Monte
Carlo sweeps is due to our turning off the external potential which
maintained the reconfined phase. Then, the full SU(3) gauge symmetry
is immediately restored, and the U(1) fluxes can freely unwind.
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Figure 6.4: In an SU(3) system in the reconfined phase (U(1)×U(1)),
magnetic flux is introduced in the xy plane. The correspond-
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U(1) system, is shown for several flux combinations in the
λ3 and λ8 subgroups. The dotted lines show the classi-
cal predictions. After 1000 sweeps, the gauge-symmetry
breaking potential is turned off: the full gauge-symmetry is
restored and the flux states decay immediately.

6.3.2 Magnetic monopoles

The next topological defect we have considered is a magnetic monopole,
which is visible via its gauge-invariant 3d magnetic flux through the 6

faces of an elementary cube (see fig. 6.5 left). Actually, we are interested
in a classical monopole, obtained by minimizing the action of a 3d U(1)
lattice of size L3 containing one monopole. To enforce the presence
of one monopole, we introduce a flux π through 3 of the faces of the
lattice, and choose charge-conjugated periodic boundary conditions in
each of the 3 directions, Uµ(x + L) = U∗µ(x). The resulting construction,
fig. 6.5 right, is the analogue of the DeGrand-Toussaint monopole on
the left, but on the scale L instead of a. It was already used in [98] to
measure the monopole mass, but the numerical results presented there
turn out to be incorrect.

Figure 6.6 left shows the minimum energy (measured by cooling) of
a U(1) magnetic monopole induced by the above boundary conditions,
as a function of the size L of the cubic lattice. To understand its
L-dependence, consider first a monopole of charge QM = 2π/e in
the continuum. The energy of the magnetic field inside a sphere of
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radius R is E(R) = 2π
∫ R

0 dr r2 B(r)2. It is UV-divergent, and the lattice
spacing a will cutoff the integral and regularize the divergence. In
the infrared, since B(r) = QM/(4πr2) as dictated by Gauss’ law, one

obtains E(R = ∞)− E(R) = Q2
M

8π

∫ ∞
R dr1/r2 = 1

e2
π

2R . This calculation is
slightly modified in a cubic box with C-periodic boundary conditions.
The boundary conditions generate an infinite array of mirror charges,
arranged in a cubic array of spacing L and alternating in sign, as in an
Na+Cl− crystal. They interact via a 1/r potential, so that the energy of

the array is proportional to α3 = ∑′ijk
(−1)i+j+k√

i2+j2+k2
= −1.74756.., which is

called Madelung’s constant. The resulting monopole energy correction
is E(R = ∞) − E(R) = 1

e2
α3
2

π
L = 2.745..

L . This is precisely the 1/L
dependence seen in fig. 6.6 left. Since its origin is infrared, this term is
universal, i.e. independent of the lattice action considered. The leading
term of course depends on the form of the ultraviolet cutoff, and thus
is action-dependent. The additional, 1/L3, tiny corrections come from
(a/L)2 lattice corrections to the continuum Coulomb potential.

Now, as in the case of U(1) fluxes, we can introduce a U(1) monopole
in a subgroup of an SU(3) configuration. If the gauge symmetry is
broken by the external Polyakov loop potential, the U(1) monopole
is stable, and we can measure its energy by cooling. The results are
shown fig. 6.6 right. First, the monopole energy depends on the U(1)
subgroup chosen, just like for fluxes. This fact was first noticed in
Ref. [34] which used Maximal Abelian gauge and Abelian projection to
isolate the monopoles. Here, we obtain precise values for the monopole
energies in the thermodynamic limit: contrary to the energies of flux
states, the monopole energies are not obtained by applying a simple
factor to the U(1) case, because the UV-regularization of the monopole
field differs in the different subgroups. Nevertheless, the coefficient of
the 1/L correction, which comes from IR effects, varies as for flux states:
it is 2/3 and 2 times the U(1) value for subgroups spanned by λ3 and
λ8, respectively. Moreover, the 1/L3 coefficients scale in the same way,
since they are all caused by the same lattice distortion of the Coulomb
potential.
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Figure 6.5: (left) DeGrand-Toussaint magnetic monopole in an elemen-
tary cube of size a. (right) The same construction on the scale
L of the whole lattice ensures the presence of a magnetic
monopole somewhere inside. Charge-conjugated bound-
ary conditions are required to obtain non-zero fluxes at the
boundary.
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Figure 6.6: (left) Minimum action of a U(1) magnetic monopole as a
function of the size L of the cubic lattice. The 1/L correction
is caused by the cubic array of image-charges with alternat-
ing signs, and its magnitude is exactly given by Madelung’s
constant. (right) Same, for a U(1) magnetic monopole in
the λ3 or λ8 sector of an SU(3) system in the reconfined
(U(1) × U(1)) phase. The two types of monopoles have
different masses. The 1/L correction is given by the corre-
spondingly rescaled Madelung constant.
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7
D E F O R M AT I O N S O F I N F R A R E D - C O N F O R M A L
T H E O R I E S I N T W O D I M E N S I O N S

7.1 introduction

In this chapter we investigate another aspect of BSM physics, namely the
notion that the Higgs boson could arise and be light due to a (nearly)
scale-invariant extension of the SM. In order to evaluate the viability of
such a theory on the lattice, it is important to be able to unambiguously
determine whether a model is (nearly) conformal. This is no trivial
matter since the lattice breaks conformal invariance explicitly, and a
careful analysis has to be performed in order to disentangle the effects
of the lattice from the true nature of the model, for example the weak
breaking of scale invariance due to a small mass term.

The content of this chapter has been published in

• Oscar Akerlund and Philippe de Forcrand. ”Deformations of
infrared-conformal theories in two dimensions.“ In: PoS LAT-
TICE2014 (2014), p. 243. arXiv: 1410.1178 [hep-lat].

7.2 deformed correlators

To understand how a nonzero mass deforms a conformal model it is
useful to look at the (Euclidean) two-point correlator of a conformal
field with anomalous scaling dimension ∆, i.e. with a coordinate

space two-point function G(x) ∝ (x2)−
d−2

2 −∆, where d is the space-time
dimension. Power counting tells us that the propagator in Fourier space
is G̃(p) ∝ (p2)−1+∆ from which the free, massless case ∆ = 0 is evident.
One can introduce a mass deformation in the usual sense by shifting the
pole of the propagator from zero to im for which G̃(p) = (p2 +m2)−1+∆.
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The zero spatial momentum euclidean time propagator is then given
by a one-dimensional Fourier transform:

G(t,~p = 0) ∝
∫

dω G̃
(

p = (ω,~0)
)

e−iωt (7.1)

=
∫

dω (ω2 + m2)−1+∆e−iωt ∝
(

t
m

) 1
2−∆

K 1
2−∆

(mt).

In the infrared (mt� 1) an expansion of the Bessel function reveals that
the usual exponential decay due to the mass is modified by a power
law in t:

G(t,~p = 0) ∝
e−mt

t∆ . (7.2)

This relation has been used in [65] as a method to extract anomalous
scaling dimensions. However, it relies on a very strong assumption.
Namely, the way to introduce a mass deformation is not unique. It has
been pointed out [93] that a massless correlator with anomalous dimen-
sion ∆ can be viewed as a field with a continuous mass distribution
given by a power law with parameter (∆− 1), since

(
p2)−1+∆

=
sin ∆π

π

∫ ∞

0
dM2

(
M2)∆−1

p2 + M2 . (7.3)

Then, a finite mass deformation can be introduced by making the mass
distribution (M2)∆−1 discrete with a finite mass spacing. The correlator
will then change from a power law to an infinite sum of exponentials,
which is conceptually different from a single exponential with a power
correction. This second description offers a smooth transition from
a scale invariant correlator to the familiar exponential correlator of a
gapped system which is not present in the first. The second view will
also be shown to be the correct one in the analysis of the critical Ising
model below.

7.3 the 2d critical ising model

The 2d critical Ising model is the textbook example of a conformal
field theory. Everything about this model is known and the analytic
expression for the two-point function on a torus is particularly useful for
our purposes. However, first recall the form of the two-point function
in R2:

〈σ(0, 0)σ(x, t)〉 ∝
(
x2 + t2)− 1

8 (7.4)
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where the power law decay is governed by the scaling dimension ∆ = 1
8

of the periodic spin field. On a torus of size Ls × Lt ≡ L× (τL) the
expression is slightly more complicated [66]

〈σ(0, 0)σ(x, t)〉 =

4

∑
ν=1
|ϑν(

z
2 , q)||2πη(iτ)3

ϑ1(z, q)
|

1
4

4

∑
ν=2
|ϑν(0, q)|

, (7.5)

z =
π

L
(x + it) , q = e−πτ,

but the scaling dimension is still present in the exponent 1
4 = 2∆.

ϑν(z, q) are the Jacobi theta functions which are quasi-doubly periodic
in z and η(z) is the Dedekind eta function. The nome q will often
be referred to as a geometry factor since it depends on the aspect
ratio τ. It is worth noting that although the size L explicitly breaks
scale invariance, the correlation function is completely independent of
L when expressed in the dimensionless variables ( x

L , t
L ) (see fig. 7.1).

Actually, by taking a small z expansion of the two-point function on
the torus, eq. (7.5), one obtains the R2-result, eq. (7.4). However, since a
generic model can have distinct fixed points in the ultraviolet and the
infrared it will be useful to study the infrared properties of eq. (7.5).

While eq. (7.5) is the exact solution it does not allow for an analytic
summation over x, required to extract the zero spatial momentum
temporal correlator. However, this is possible if we expand in powers
of the geometry factor q (which is small even for a unit aspect ratio).
The resulting correlator is given by

C(tL, q, L) ∝ cosh
(

π
4L tL

)
+

∞

∑
n=1

{
cnq2n cosh (mntL)

+ĉnqn+ 1
4 cosh (m̂ntL)

}
, (7.6)
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where tL = t− τL
2 , mn = 4π

L (n + 1
16 ), m̂n = 2π

L (n− 1
8 ) and, up to O(q2),

cn =

(
Γ(n + 1

8 )

n!Γ( 1
8 )

)2

+ 2Γ( 7
8 )

2

⌊ 2n
L

⌋

∑
m=0

Γ( 7
8 − n + mL

2 )−1Γ(1 + n + mL
2 )−1

Γ( 7
8 − n− mL

2 )Γ(1 + n− mL
2 )

(7.7)

ĉn =
n

∑
m=0

m

∑
r=max(0,2m−n)

n+r−2m

∑
p=0

(−1)r
(− 1

8
m

)( 1
2

n + r + p− 2m

)

×
(

n + r + p− 2m
2p

)(
m
r

)
(7.8)

×
r

∑
k=0

(
r
k

)


(

2p
p + r− 2k

)
+ 2

⌊
r+p

L

⌋

∑
q=1

(
2p

p + r− 2k + qL

)

 .

We now see clearly that 4π
L ( 2π

L ) plays the role of a mass spacing in
mn(m̂n)and that we obtain a continuous distribution of masses in the
L → ∞ limit. This is even clearer if we consider the τ = ∞, i.e.
cylindrical geometry, and L� 1 limit of the correlator:

C(t, 0, L) ∝
∞

∑
n=0

(
Γ(n + 1

8 )

n!Γ( 1
8 )

)2

e−
4π
L (n+ 1

16 )t, (7.9)

Γ(n + 1
8 )

n!
= n−

7
8 (1 +O(1/n)) . (7.10)

Going back to Fourier space with the L→ ∞ limit in mind one gets

C(ω, 0, L→ ∞) ∝
1
L

∞

∑
n=0

(
L2

n2

) 7
8 8π n

L(
4π n

L

)2
+ ω2

(7.11)

≈
∫ ∞

0
dM 2M

(M2)−
7
8

M2 + ω2 =
∫ ∞

0
dM2 (M2)

1
8−1

M2 + ω2 ,

which is exactly the relation eq. (7.3) for a conformal propagator. This
shows how to obtain a massless correlator with an anomalous scaling
dimension as the limit of a model with a scale. Also, this result casts
doubt on the applicability to a cylindrical system of the description (7.2)
where the pole of the anomalous propagator is shifted.
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Figure 7.1: Zero-momentum correlators (left) and effective masses (right)
of the critical 2d Ising model for various lattice sizes L×
(τL). Note the false plateau of the effective mass far away
from the lowest mass for τ = 1.

At finite aspect ratio the second infinite sum in eq. (7.6) contributes
more excited states with half the mass spacing. One finds that unless τ

is larger than around four, these new states actually lead to a false mass
plateau above π/(4L) but the correlators still match after a rescaling
of all dimensions which is consistent with the underlying conformal
invariance. The effect of a small aspect ratio on the effective mass can
be seen in fig. 7.1 (right).

Away from criticality, the solution of the 2d Ising model on a torus
is not available. Therefore, we move to another model where a mass
deformation can easily be introduced.

7.4 the sommerfield model

The Sommerfield model [90]

L = ψ̄(i/∂ − e /A)ψ− 1
4

FµνFµν +
m2

0
2

Aµ Aµ (7.12)

is the Schwinger model with a mass term for the vector boson. The
mass term breaks gauge invariance but makes it possible to construct a
conserved axial current which protects the chiral symmetry. Since there
is no chiral condensate, 〈ψ̄ψ〉, the theory remains scale invariant for any
value of the bi-fermion field anomalous scaling dimension between zero
and minus one. This is in contrast to what happens in the one-flavor
Schwinger model which stays scale-invariant due to the bi-fermion field
having an anomalous scaling dimension of minus one which yields a
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dimensionless condensate. In the Sommerfield model it turns out that
the anomalous dimension can be tuned by changing the dimensionless

ratio πm2
0

e2 .
The model is solved [90, 54] by introducing a Hodge decomposition

of the gauge field Aµ = ∂µV + εµν∂νA and a rotation of the fermion
field Ψ = eie(V+Aγ5)ψ. In these new variables the Lagrangian is that of
a free fermion and two scalar bosons:

L = iΨ̄/∂Ψ +
m2

0
2

∂µV∂µV +
1
2
A(∂µ∂µ)2A− m2

2
∂µA∂µA. (7.13)

The shift in the mass m2 = m2
0 +

e2

π comes from the change in the
measure due to the eieAγ5 part of the fermion transformation, just as in
the Schwinger model.

Since the “new” fermion Ψ is free it is easy to calculate its n-point
functions which can then be dressed by the bosonic contribution to
obtain the n-point functions of the original fermion fields ψ. We demon-
strate the procedure by calculating the two-point function

〈0|Tψα(x)ψ∗β(0)|0〉 = 〈0|Te−ie(V(x)+A(x)γ5)eie(V(0)+A(0)γ5)|0〉 (7.14)

× 〈0|TΨα(x)Ψ∗β(0)|0〉.

Ψα, α ∈ {1, 2} are the different chiralities of the fermion spinor and
we have γ5Ψ1 = Ψ1, γ5Ψ2 = −Ψ2. Using the free bosonic propagators
which can be read off from eq. (7.13),

∫
d2x eipx〈0|TV(x)V(0)|0〉 = 1

m2
0 p2

, (7.15)

∫
d2x eipx〈0|TA(x)A(0)|0〉 = 1

m2

(
1

p2 + m2 −
1
p2

)
, (7.16)

we obtain

〈0|Tψα(x)ψ∗β(0)|0〉 = C0(x)C(x)2δαβ−1Sαβ
0 , (7.17)

Sαβ
0 ≡ 〈0|TΨα(x)Ψ∗β(0)|0〉, (7.18)
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where

C(x) = exp
[

e2

m2 ((D(x, m)− D(0, m))− (D(x, 0)− D(0, 0)))
]

,

(7.19)

C0(x) = exp
[

e2

m2
0
(D(x, 0)− D(0, 0))

]
, (7.20)

D(x, m) =
∫ d2 p

(2π)2
e−ipx

p2 + m2 . (7.21)

The pseudo-scalar π0 can be decomposed into the difference of two
fermions bilinears,

π0 ≡ ψ̄γ5ψ = ψ∗2 ψ1 − ψ∗1 ψ2 ≡ O −O∗, (7.22)

〈π0π∗0〉 = 2 〈OO∗〉 − 2Re [〈OO〉] . (7.23)

The “unparticle” operator O is composite and related to the product of
two fermion operators

ψ∗2(x2)ψ1(x1) = c(x1 − x2)O(x) + · · · (7.24)

through an operator product expansion. In correlators 〈O(t)O(0)〉
where t � |x1 − x2| the coefficient c(x1 − x2) can safely be dropped
and O(t) can be considered a local operator. The resulting two-point
functions can be obtained from the corresponding fermionic four-point
functions and are found to be

〈0|TO(x)O(0)∗|0〉 = C(x)4|S12
0 (x)|2, (7.25)

〈0|TO(x)O(0)|0〉 = C(x)−4S12
0 (x)2. (7.26)

The asymptotic behavior of the bosonic correction is

C(x) ∝

{
1, xm� 1

(x2)−γO/4, xm� 1
, γO = − e2

πm2 = − 1

1 + m2
0π

e2

, (7.27)

which makes it clear that γO is the anomalous dimension of O in the
infrared. It can be varied between 0 for the free case, e = 0, and −1 for
the Schwinger case, m0 = 0. Since 〈0|TO(x)O(0)|0〉 decays faster than
〈0|TO(x)O(0)∗|0〉 by a factor of (x2)2γO (even exponentially on a finite
lattice) the pseudo-scalar correlator will be dominated by the latter and
we will focus on it from now on.
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7.4.1 On the lattice

To study the Sommerfield model on a lattice of size Ls × Lt = (aNs)×
(aNt) we substitute the continuous momentum p with its lattice coun-
terpart

ap̃s,t = sin
2π

Ns,t
(n + qs,t), ap̂s,t = 2 sin

πn
Ns,t

, (7.28)

n ∈ {0, 1, 2, . . . N − 1}, qs,t ∈ {0, 1
2},

for fermions and bosons respectively, and all integrals with finite sums.
The value of qs,t determines the boundary conditions of the fermions.
In the spatial direction they can be either periodic (pbc, qs = 0) or anti-
periodic (apbc, qs =

1
2 ) whereas in the temporal direction only apbc, i.e.

qt =
1
2 , is allowed. The main effect of the spatial boundary conditions

concerns the lower bound on the spatial momentum, | p̃s| ≥ 2πqs/Ls

which, in the case of apbc, leads to a nonzero mass gap as that seen in
the Ising model.

7.4.2 Results

If a fermion mass term is added to the Sommerfield Lagrangian chiral
symmetry is explicitly broken but the method of solution remains the
same, one just has to replace the massless fermion propagators by
their massive counterparts. With this observation we can measure
the “unparticle” mass as a function of the mass deformation. First,
the mass is shifted from zero to 2πγO (cf. Ising model with ∆ =

1 + γ). Furthermore, we can extract the anomalous mass dimension
γm through the relation LmO ∝ Lm1/ym

q where ym = 1 + γm is the total
mass dimension. The results with ym = 1 fixed at its exact value1 are
displayed in the upper left panel of fig. 7.2. Clearly, the data are not well
described by the naive scaling ansatz. Our first attempt at improving
the data collapse is to consider discretization errors of mO (upper right
panel). Another approach is to consider an Ns-dependent anomalous
dimension which runs towards its fixed point value as Ns → ∞ (lower
left panel). Yet another approach is to consider corrections to scaling. In
this case the naive scaling relation is changed to include also the first

1 This value can most easily be derived by considering the point-to-point correlator, esp.
the condensate, and noticing that the mq dependence is that of a free fermion model.
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Figure 7.2: (Shifted) “unparticle” mass, mO, as a function of the bare
mass deformation, mq, and three different strategies to im-
prove the data collapse. Note that the exact value of the
anomalous mass dimension is ym = 1. The results are
obtained with periodic boundary conditions.

irrelevant operator and the result is displayed in the lower right panel
of fig. 7.2. It is evident that all three methods greatly improve the data
collapse and the resulting anomalous dimensions are close to the exact
result. It is not obvious which method is the correct one but the issue
could possibly be settled by calculating the next irrelevant operator and
comparing its exponent with the fitted ω.
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8
U(1) L AT T I C E G A U G E T H E O RY W I T H A
T O P O L O G I C A L A C T I O N

8.1 introduction

In this chapter we use a non-standard, so-called topological, action to
study compact U(1) lattice gauge theory. The terminology comes from
the fact that the action restricts the degrees of freedom to a subspace
of the total phase space, on which the action is constant, such that it is
invariant under smooth deformations of the degrees of freedom. An
example of such an action is a spin model where each spin is restricted
to be within some angle within each of its nearest neighbors. Since
the action is constant, it does not allow for a derivative expansion, and
thus no classical continuum limit exists. Nevertheless, it can be shown
in some simple cases that such an action can reproduce the correct
quantum continuum limit, and it is conjectured that this is the case also
in more general cases. The motivation for considering such an action
can be to improve the approach to the quantum continuum limit, as
well as algorithmic advantages over conventional lattice actions. Apart
from that, the very (non-)relation between the classical and quantum
continuum limits is interesting to investigate on its own right.

The content of this chapter has been published in

• Oscar Akerlund and Philippe de Forcrand. ”U(1) lattice gauge
theory with a topological action.“ In: JHEP 06 (2015), p. 183.
arXiv: 1505.02666 [hep-lat].

8.2 the action

In a gauge theory, the obvious analogue of restricting the angles be-
tween the neighboring spins of the spin model is to restrict the real
part of the trace of each plaquette. The action then depends on one
parameter α and is given by

e−S =

{
1 ReTrUP > α ∀P

0 else
, (8.1)
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u(1) lattice gauge theory with a topological action

where P denotes a plaquette. Note that this formulation is independent
of the gauge group but that we from now on consider only U(1) where
ReTrUP = cos θP. We could thus equally well consider a restriction
of the plaquette angle θP with |θP mod 2π| < δmax ≡ arccos α. It is
also important to note that the link angles, being gauge variant, are
completely unrestricted. The most efficient way to generate configu-
rations is to apply heatbath updates to the links one at a time under
the constraint that no plaquette angle exceeds the allowed value. In
principle this is realized by just uniformly sampling the interval [0, 2π]

until an acceptable angle has been found but in some cases it might
be more efficient to explicitly construct the allowed range of values for
the link to be updated. Note that a Metropolis update based on the
old value may not be ergodic since the admissible region of link angles
may not be connected. See fig. 8.1. However, there are some additional
caveats to this kind of single link update which will become clear in the
discussion of the magnetic monopoles.

s1

s2

s3

s2
s1

s3

δmax > π/2 δmax < π/2

Figure 8.1: Forbidden regions (hatched areas) and allowed regions
(black lines) for the angle of a link surrounded by three
(the others are omitted for clarity) staples si. When the
restriction angle δmax > π/2 (left panel) the region can be
disconnected whereas if it is smaller than π/2 (right panel)
it will always be connected. δmax is the angle between an
arrow and the edge of the hatched area opposite to it.
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8.3 magnetic monopoles

An elementary cube on the lattice contains q magnetic monopoles if
the outward oriented, physical (θP ∈ [−π, π[) plaquette angles of its
faces sum up to 2πq [42]. It is easy to check that q ∈ {0,±1,±2}
and that a cube with q monopoles must have at least one face with
physical plaquette angle |θP| ≥ |q|π/3. This immediately tells us that
for δmax < π/3 there cannot be any monopoles and the topological
action does not describe the same (lattice) physics as the Wilson action 1.
In fact, a change of variables from link to rescaled plaquette angles
θP/δmax can be used to see that all δmax < π/3 are equivalent up to
trivial rescalings. Let us therefore concentrate on angles larger than
that.

One might think that if there is a deconfinement transition at some
restriction angle δmax then it should be at δmax = π/3 since this angle
separates the region of no monopoles from a region with monopoles.
This turns out to be wrong. In a sense this is analogous to the situation
with the Wilson action. At the deconfinement transition the monopole
density jumps down, but it does not jump to zero. The system can
sustain a small density of monopoles without being confining. The
same happens for the topological action with a deconfinement transition
at a significantly larger restriction angle than π/3. Still, there is a non-
analyticity in the monopole density at δmax = π/3, which we investigate
further in section 8.7 (see figs. 8.9 and 8.10).

8.3.1 Creating monopoles

To study how the monopoles depend on the cutoff angle δmax it is
important to understand what the lowest monopole excitation is. It
is well known that every monopole is connected to an anti-monopole
via a Dirac string and that the monopole worldlines must form closed
loops on the dual lattice. The shortest such loop has four vertices and
Euclidean length 2

√
2a where a is the lattice spacing, and the smallest

excitation is thus two monopoles and two anti-monopoles each located
in one of the four cubes sharing a single plaquette. See fig. 8.2 for an
illustration.

1 However, it should also be noted that the U(1) monopole is a lattice artifact which
disappears in the continuum limit also for the Wilson action.
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+

+

−

−t

x

y, z

Figure 8.2: The smallest possible nontrivial loop of monopoles world
lines which has Euclidean length 2

√
2a. The y and z dimen-

sions are collapsed into one so that each cube is represented
by a plaquette and each plaquette by a link. The fat link rep-
resents the plaquette shared by all four cubes which contain
a monopole. A +(−) in a plaquette symbolizes a posi-
tively(negatively) charged monopole in the corresponding
cube.

It is also important to consider how such a configuration is cre-
ated from a configuration with zero monopoles. In order to create a
monopole in a given cube we need to change its flux by 2π at the same
time as we respect the constraints on the plaquette angles. It is therefore
relevant to investigate the smallest constraint angle for which a change
of 2π in the flux is possible. If we update a single edge of a cube we
will change two of its six plaquettes. The sum of these changes must be
2π and the required angles can be minimized by letting the change be
distributed equally over all involved plaquettes. Hence, the restriction
on the plaquette angles gives δmax > π/2 to create a monopole with a
single link update. This means that for π/2 > δmax > π/3 the single
link update is not ergodic and cannot be used on its own. To have an
ergodic algorithm we need to update at least three faces of a cube at
the same time, which can only be done by updating more than one link
at a time, as illustrated in fig. 8.3. The minimal update to achieve this is
shown in the lower part of fig. 8.3 where two links of a given plaquette
are updated together. This update changes three plaquettes in each
of the four cubes sharing the plaquette common to the two updated
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links, and we thus have a chance to create four monopoles down to
δmax = π/3 as required.

π ±π

π

±π

Figure 8.3: Monopole creation with a single link update (upper panel)
and a multiple link update (lower panel). The fat links are the
ones updated and the flux of π is spread over the plaquettes
on the right which means that the single link update is
ergodic down to δmax = π/2 and the two-link one to π/3.

8.4 the helicity modulus

The helicity modulus was first introduced in the 2d XY-model [76]
where it quantifies the response of the system to a twist in the bound-
ary conditions. Because the twist is a boundary effect the helicity
modulus is an order parameter for a system with one massive (finite
correlation length) and one massless (infinite correlation length) phase.
This is precisely the case of 4d lattice U(1) gauge theory where the
confining phase features massive photons whereas they are massless in
the Coulomb phase. In the context of a gauge theory the twisted bound-
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ary conditions can also be thought of as an external electromagnetic
flux [98]. More precisely, we define the helicity modulus as

h ≡ ∂2 f (φ)
∂φ2

∣∣∣∣
φ=0

, (8.2)

where f is the free energy density in the presence of the external flux φ.
The flux is introduced by the replacement

cos(θP)→ cos(θP + φ) (8.3)

for all plaquettes in a given stack of plaquettes, i.e. all plaquettes in
the set {Pµν(x) | µ = µ0, ν = ν0; xµ = x0, xν = y0}. The orientation and
position of the pierced stack is arbitrary and with a suitable change of
variables the flux can also be spread out evenly over the (µ0, ν0)-planes.
For the Wilson action h is a simple difference of expectation values

h = β


〈cos θP〉 − β

〈(
∑

stack
sin θP

)2〉
 , (8.4)

where the sum in the second term is over all plaquettes in the stack
defined above. For the topological action on the other hand, it is not
possible to explicitly perform the derivatives. However, since the action
for each configuration is the same, the free energy is given solely by
the entropy, i.e. by the number of configurations with a given flux φ.
This can be measured by promoting the flux to a dynamical variable,
which is updated along with the link angles [23]. By measuring the
probability distribution p(φ) (via a histogram method for example) of
the visited fluxes one thus obtains the full 2π periodic free energy [98]
and the helicity modulus

h = − ∂2 log p(φ)
∂φ2

∣∣∣∣
φ=0

. (8.5)

Alternatively, and more accurately, one can use all the global informa-
tion from p(φ) = e− f (φ) and fit it to the classical ansatz [98]

f (φ) = − log ∑
k

e−
βR
2 (φ−2πk)2

= − log ϑ3

(
φ

2
; e−

1
2βR

)
− 1

2
log 2πβR,

(8.6)
where βR plays the role of the renormalized coupling in the Coulomb
phase and ϑ3(z, q) is a Jacobi theta function. From this ansatz we can
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extract the curvature at φ = 0, i.e. h, analytically and we thus obtain
both the helicity modulus and the renormalized coupling at the same
time. We further note that they approach each other exponentially
fast for large βR. Together with eq. (8.4) we see that this means that
βR ≈ h→ β− 1/4 as β→ ∞, which is to say that the coupling constant
is not renormalized in the continuum limit which is of course common
knowledge.

8.5 continuum limit

It is important to dwell a little on the matter of a continuum limit for
the topological action. Since all the plaquettes are forced to unity when
δmax → 0 one expects that in this limit the correlation length diverges
and thus that it defines a continuum limit. This point of view was
examined more thoroughly by Budczies and Zirnbauer in [30]. These
authors consider a general weight function wt(UP), which is a function
of a plaquette variable UP and some parameter (coupling) t. Granted
that there exists a tc such that wtc(UP) = δ(Up − id) and that for t 6= tc

the weight function is some smeared version of the δ-function, then the
lattice gauge theory with partition function

Zt =
∫

d[U] ∏
P

wt(UP) (8.7)

has a continuum limit as t → tc. Furthermore, the authors claim that
under “favorable conditions”, the continuum theory will be Yang-Mills
theory. It is not precisely defined what conditions are considered
favorable, but close to the identity element, the plaquette variable is
well approximated by UP = eia2FP ≈ 1+ ia2FP− a4F2

P. Thus, in order for
the continuum action to be ∝

∫
TrF2 the weight function wt certainly

has to satisfy some conditions on the moments of the tangent vectors of
the Lie group. At the very least the first moment must vanish and the
second moment needs to exist and have the correct sign. The authors
indeed give an example in [30] of a weight function, in two dimensions
and for gauge group U(N), which satisfies the δ-function condition
but which has the wrong continuum limit. The problem is identified
with the non-existence of the second moment for the considered weight
function.

The topological action which we use clearly satisfies the δ-function
constraint since the weight function has support only on a compact
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region of width ±δmax around the identity element and thus goes to
δ(UP− id) as δmax → 0. Because of the compact support and invariance
under Hermitian conjugation we also conclude that the first moment
vanishes and that the second is positive as it should. It is therefore
probable that this action will have the correct quantum continuum limit
and indeed all numerical evidence suggests that it does.

A simple check one can perform is to use for wt(UP) a combination
of angle restriction and Wilson plaquette term with negative β. By
taking δmax → 0 the action still satisfies the δ-function constraint but
the negative value of β will try to bend the distribution in the wrong
direction to make the second moment of wt negative. Clearly, for a
fixed value of β the action will still be almost flat as long as δmax is
small enough, so in order to change the continuum limit, β needs to be
taken to −∞ at the same time as δmax → 0. Then, if the magnitude of β

is large enough we expect that the continuum limit is spoiled. This can
also be observed in numerical simulations, and although it is somewhat
of a pathological example it still gives some insight as to when one can
expect to obtain the correct continuum limit.

8.6 free energy

Here, we show how to evaluate the free energy, analytically in a 1d toy
model, and numerically for more realistic cases.

8.6.1 1d XY model

Consider a periodic chain of N spins si ∈ O(2) with a topological action
which restricts the angle of each link `i = sis†

i+1 to be smaller than δmax.
Let `i = exp(iθi), θi ∈ [−δmax, δmax]. The partition function of this
model then takes a very simple form,

Z =

δmax∫

−δmax

N

∏
i=1

dθi

2δmax
δ

(
exp

(
i

N

∑
i=1

θi

)
− 1

)
(8.8)

and describes a collection of N non-interacting, constrained links with
the only condition that the product of all links is one. The normalization
of the angle integrals serves to keep Z finite as the number of links is
taken to infinity and is just a subtraction of the ground state energy.
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The total angle can take values 2πm, m ∈ {−
⌊

Nδmax
2π

⌋
, . . . ,

⌊
Nδmax

2π

⌋
}

and thus m is the winding number or topological charge of the system.
The partition function can be expressed solely in terms of the total
angle by convoluting the uniform distributions of the individual links
N times. The distribution of the sum of N i.i.d. uniform variables
converges very rapidly to the normal distribution, in this case with zero
mean and variance Nδ2

max/3. Anticipating the N → ∞ limit we thus
neglect the small deviations from the normal distribution and write

Z =

√
3

2πNδ2
max

Nδmax∫

−Nδmax

dθ exp
(
− 3θ2

2Nδ2
max

)
δ (exp (iθ)− 1)

=

√
3

(2π)3/2α

b√Nαc
∑

m=−b√Nαc
exp

(
−3

2

(m
α

)2
)

, (8.9)

where we have defined α ≡
√

Nδmax
2π . We can now take N → ∞ whilst

keeping α fixed to obtain

Z =

√
3

(2π)3/2α

∞

∑
m=−∞

exp
(
−3

2

(m
α

)2
)
=

√
3

(2π)3/2α
ϑ3

(
exp

(
− 3

2α2

))
,

(8.10)
where ϑ3(q) ≡ ϑ3(0, q) is the third Jacobi elliptic theta function. Since
the sum in the partition function is over the winding number m it
is straightforward to calculate

〈
m2〉 and the topological susceptibility

χt = 1
β

〈
m2〉. In the limit β = Na ∝ α2 → ∞ (where a is the lattice

spacing) one should find χt =
1

4π2 I where I is the moment of inertia
of the quantum rotor which the model describes [22]. This allows us

to determine α in terms of β and I and the result is α =

√
3β/I
2π which

leads to

Z =

√
I

2πβ
ϑ3

(
exp

(
−2π2 I

β

))
. (8.11)

With Poisson’s summation formula we can go from the winding number
representation to the energy representation in which

Z = ϑ3

(
exp

(
− β

2I

))
=

∞

∑
k=−∞

exp
(
− k2β

2I

)
. (8.12)
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It is now evident that the excited states are doubly degenerate and the
energy differences are Ek − E0 = k2

2I as is well known. The topological
susceptibility is given in the two representations by

χt =
exp

(
− 2π2 I

β

)
ϑ′3
(

exp
(
− 2π2 I

β

))

βϑ3

(
exp

(
− 2π2 I

β

))

=
1

4π2 I


1− β

exp
(
− β

2I

)
ϑ′3
(

exp
(
− β

2I

))

ϑ3

(
exp

(
− β

2I

))


 . (8.13)

Since the elliptic function and its derivative are analytic functions
∀β ∈ R+ there is no phase transition but there are two distinct regimes
with a rather abrupt crossover. In the low temperature regime, β/I & 10,
the partition function is almost independent of β and the topological sus-
ceptibility is very close to its zero temperature value (4π2 I)−1 whereas
in the high temperature region, β/I . 10, the partition function is
approximately

√
2πβ and χt rapidly drops to zero.

Note that, when Nδmax < 2π, topological excitations are forbidden
and χt = 0. However, the continuum limit is obtained while keeping
Nδ2

max fixed, so that the lattice spacing varies ∝ δ2
max. Therefore, in

this 1d model the parameter region where χt = 0 disappears in the
continuum limit.

8.6.2 Higher dimensions and gauge theories

In higher dimensions, due to the lattice Bianchi identities, the integra-
tion over the constrained variables no longer factorizes and we can not
calculate the partition function analytically anymore. However, in the
small δmax regime where there are no topological defects the partition
function must be

Z = (2δmax)
nd.o.f (8.14)

(or one, depending on the normalization), where nd.o.f is the number of
independent degrees of freedom. As the topological defects are turned
on, the functional dependence on δmax will change and there will be
a high order and practically undetectable phase transition. As δmax

is further increased the topological defects will start to play a more
important role and eventually the real phase transition of the model will
occur. If one would have access to the partition function, or free energy,
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one could directly extract the properties of the transition. Fortunately,
since the topological action is constant, the partition function is pure
entropy and can thus be measured by Monte Carlo simulations by
simply counting the number of configurations at a given value of
δmax. In fig. 8.4 we show the derivative of the free energy density
f = −V−1 log Z with respect to δmax for the 2d XY-model (left panel)
and the 4d U(1) gauge theory (right panel) for various lattice volumes,
obtained by Monte Carlo simulations. It is clear that the derivative is
smooth in the XY-model where the transition is of infinite order (BKT)
and that it is discontinuous in the U(1) case where the transition is first
order.
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Figure 8.4: The derivative ∂ f /∂δmax of the free energy density f =

−V−1 log Z for the 2d XY-model (left panel) and the 4d U(1)
gauge theory (right panel) as obtained from Monte Carlo
simulations with a topological action. There is a clear dis-
tinction between the smooth derivative in the XY-model
which has an infinite order phase transition and the dis-
continuous behavior, signaling a first order transition, in
the U(1) gauge theory. The vertical line marks the critical
restriction cos δc. In the case of the XY-model it has been
taken from [23] where it was extracted from a fit of the
diverging correlation length.

8.7 results

Let us now turn to the numerical results. Primarily what we are
interested in is the phase structure of the model and the order of
the possible deconfinement transition. To this end we have measured
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u(1) lattice gauge theory with a topological action

the monopole density and the helicity modulus as a function of the
restriction cos δmax. We compare these results with the corresponding
observables obtained with the Wilson action in figs. 8.5 and 8.6: it is
obvious that the transition is even weaker than the weak first order
transition seen with the Wilson action. We can try to quantify the
strength of the transition by fitting the helicity modulus in the confining
phase using a simple model of a first order transition [26, 98]

h(x) =
h+

1 + X−1 exp (−V∆ f (x− xc))
, (8.15)

where h+ is the helicity modulus in the Coulomb phase (which is
assumed to be constant), ∆ f is the latent heat, X is an anisotropy factor
between the two phases and x is the coupling, either β or cos δmax. After
taking finite size effects into account the best fit is shown as the lines in
fig. 8.6. The data is well described by the ansatz and one finds that the
fitted value of the latent heat for the topological action is about half of
what it is using the Wilson action, which is consistent with the weaker
transition seen in the monopole density.

To further establish that the transition really is first order we show
histograms of the monopole density close to the transition for three
different volumes in fig. 8.7. A double peak structure is formed and
enhanced as the volume increases, which is a clear indication that
the transition is first order. Also the Monte Carlo history shows clear
tunneling events between two metastable states. Together with the
discontinuity in the first derivative of the free energy with respect to the
cutoff we conclude that the topological action has a first order transition
at δmax ≈ 1.95.

To determine the characteristics of the two phases we look at how
Wilson loops of different sizes behave. Naively, we expect an area law
when δmax is close to π since the interaction between plaquettes will be
very weak, as for the Wilson action where β� 1. This can be seen in the
left panel of fig. 8.1. If the forbidden regions become very narrow then
the individual links are hardly influenced by their neighbors and each
plaquette angle is more or less uniformly distributed in the interval
[−δmax, δmax] which gives an average plaquette trace of sin(δmax)/δmax.
For a loop with area A, this is raised to the A’th power. For restrictions
δmax close to zero on the other hand, the links are heavily influenced
by their neighbors (right panel of fig. 8.1) and the total angle of the
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Figure 8.5: The monopole density n for the topological action (left panel)
and the Wilson action (right panel). For the Wilson action
the first order nature of the transition is rather evident even
for a 124 lattice whereas for the topological action we have
to go to much larger lattices to see a fairly distinct jump.
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loop should depend on the perimeter rather than the area. This is
demonstrated in fig. 8.8 where we show the Creutz ratios

χ(R) = − log
〈W(R, R)〉 〈W(R− 1, R− 1)〉
〈W(R, R− 1)〉 〈W(R− 1, R)〉 , (8.16)

where W(I, J) is a planar, rectangular Wilson loop with sides I and J.
We have performed the R → ∞ extrapolation under the assumption
that the corrections are of the form e−R. Note that this is not a precise
measurement of the string tension but rather a characterization of the
two phases. We have also checked that the magnitude of the Polyakov
loop acquires a vacuum expectation value in the low monopole density
phase.
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Figure 8.8: The Creutz ratios χ(R) given by eq. (8.16) as well as an
R→ ∞ extrapolation assuming corrections of the form e−R

as a function of the restriction cos δmax obtained on an 84

lattice. There is a clear transition between a confining phase
with nonzero string tension and a deconfined phase with
an perimeter law for the Wilson loops.

Another interesting thing to investigate is how the monopole density
depends on the renormalized coupling. The monopole mass is propor-
tional to βR = e−2

R and the density decreases exponentially with the
mass. This is a statement about physics so it gives us a direct way to
compare the two actions. In fig. 8.9 we show the monopole density as a
function of the renormalized coupling and we see a clear exponential
decay as expected. For the topological action the decay is significantly
faster, which could be interpreted as a reduction in the discretization
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errors: for a given effective coupling, there are fewer lattice artifacts
(monopoles) that disturb the order of the system. For δmax < π/3 the
density is even strictly zero and the model is completely insensitive (up
to trivial rescalings) to further reduction of δmax.
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Figure 8.9: The monopole density in the Coulomb phase as a function
of the renormalized coupling βR, for the topological and
the Wilson actions. The different rates of decay could be
attributed to different lattice spacings for the two actions.

With a mix of single- and two-link updates we have been able to
measure the monopole density down to densities around 10−8. The
exponential dependence on cos δmax persists to δmax ≈ 1.69 after which
the density smoothly changes into a power law in (1/2− cos δmax) with
an exponent which is fitted to be 11.70(6) as can be seen in fig. 8.10. We
tentatively ascribe this change of functional behavior to the approach of
a phase transition. A naive argument, which works well in the 2d XY-
model, leads to a monopole density which is polynomial in the small
deviation (δmax − π/3). The argument is based on convolutions of
(near) uniform plaquette or link distributions. To create a single vortex
in the spin model close to the threshold π/2 we need to convolve the
link angle distribution four times, which makes the joint distribution ∝
(4δmax − θ)3 for the cumulative angle θ around a plaquette. This needs
to be evaluated at θ = 2π (one vortex) which gives a vortex probability
∝ (δmax − π/2)3. Vortices always come in pairs so we expect that the
density is proportional to (δmax − π/2)6 which is in good agreement
with what we have obtained from Monte Carlo simulations. By a similar
argument one would expect a monopole density ∝ (δmax − π/3)20 due
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Figure 8.10: The monopole density for the topological action as a
function of the restriction. There seems to be a smooth
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to six plaquettes in 4 cubes containing a monopole. The deviation in the
power law from the predicted 20 to the observed ≈ 12 is rather large,
but the argument does not take into account that the 4 monopoles are
not independent of each other, so it is not so surprising that one finds a
smaller exponent.
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9
M E A N D I S T R I B U T I O N A P P R O A C H T O S P I N A N D
G A U G E T H E O R I E S

9.1 introduction

In this final chapter we introduce another generalization of MF theory,
which not only determines the mean value of the variable in question,
but a more general “mean distribution” over the values it can take. By
doing so, a more realistic coupling of the field to its surrounding can
be achieved, at the same time as more observables, even nonlocal ones
like masses, become available. This new approach can be applied quite
generally to a large number of models, but we will in particular study
it in conjunction with a change of variables from the local, symmetry-
variant variables to extended, symmetry-invariant variables, e.g. links
instead of spins for a spin model or plaquettes instead of links in
a gauge theory. The advantage of such a variable transformation is
obvious in the case of a gauge theory, since the problem of determining
the mean value of a gauge-dependent object, which would require
gauge fixing, is circumvented.

The content of this chapter has been published in

• Oscar Akerlund and Philippe de Forcrand. ”Mean Distribution
Approach to Spin and Gauge Theories.“ In: Nucl. Phys. B 905

(2016), pp. 1–15. arXiv: 1601.01175 [hep-lat].

9.2 method

9.2.1 Mean Field Theory

Let us for completeness give a very brief reminder of standard MF

theory. Consider for definiteness a lattice model with a single type of
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variables s which live on the lattice sites. The lattice action is assumed
to be translation invariant and of the form

S = −1
2 ∑

i,j
J|i−j|s

†
i sj + ∑

i
V(si), (9.1)

where i, j labels the lattice sites and V(s) is some local potential. Let us
now split the original lattice into a live domain D and an external bath
Dc. The variables {si | i ∈ Dc} all take a constant “mean” value s. The
MF action then becomes (up to a constant)

SMF = −1
2 ∑

i,j∈D
J|i−j|s

†
i sj + ∑

i∈D

(
V(si)− ∑

j∈Dc

J|i−j|s
†
i s

)
, (9.2)

where s is determined by the self-consistency condition that the average
value of s in the domain D is equal to the average value in the external
bath,

〈s〉 =

∫
∏
i∈D

dsi sie−SMF

∫
∏
i∈D

dsi e−SMF

!
= s. (9.3)

Once s has been determined the mean field action (9.2) can be used to
measure other observables local to the domain D.

9.2.2 Mean Distribution Theory

To generalize the MF approach we relax the condition that the fields
at the live sites interact only with the mean value of the external bath.
Instead, the fields in the external bath are allowed to vary and take
different values distributed according to a mean distribution. The self-
consistency condition is thus that the distribution of the variables in
the live domain equals the distribution in the bath.

Consider a real scalar theory for illustration purposes. Starting from
the action

S = −2κ ∑
〈i,j〉

φiφj + ∑
i

V (φi) , (9.4)

with nearest neighbor coupling κ and a general on-site potential V, we
expand the field φ ≡ δφ +φ around its mean value φ and integrate out
all the fields except the field at the origin φ0 = φ+ δφ0 and its nearest
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neighbors, denoted φi, i = 1, . . . , z, where z is the coordination number
of the lattice. The partition function can then be written

Z =
∫

dφ0 e−V(φ0)+2zκφ̄δφ0

∫ z

∏
i=1

dδφi pJ(δφ1, . . . , δφz)e2κδφ0 ∑z
i=1 δφi , (9.5)

where pJ(δφ1, . . . , δφz) is a joint distribution function for the fields
around the origin and absorbs everything not explicitly depending of
δφ0 into its normalization. So far everything is exact and, given a way
to compute pJ , we could obtain all local observables, for example 〈φn

0 〉.
Now, pJ is in general not known, so we will have to make some ansatz
and determine the best distribution compatible with this ansatz. In stan-
dard MF theory the ansatz is pJ(δφ1, . . . , δφz) = ∏z

i=1 δ(δφi) and only φ

is left to be determined as explained above. In the mean distribution
approach we will assume that the distribution is a product distribution
pJ(δφ1, . . . , δφz) = ∏z

i=1 p(δφi) and determine p self-consistently to be
equal to the distribution of δφ0, i.e.

p(δφ0) =
1
Z

e−V(δφ0+φ̄)+2zκφ̄δφ0

(〈
e2κδφ0δφi

〉
p(δφi)

)z

, (9.6)

where 〈 f (φ)〉p(φ) =
∫

dφ p(φ) f (φ). The mean value φ has to be adjusted
such that the distribution p has zero mean. After p and φ have been
determined any observable, even observables extending outside the live
domain, can be extracted under the assumption that every plaquette
is distributed according to p. Local observables are given by simple
expectation values with respect to the distribution p.

This strategy can also be applied to spin and gauge models, taking
as variables the links and plaquettes respectively, as discussed in the
introduction. For a gauge theory, the starting point is the partition
function in the plaquette formulation

Z =
∫

∏
P

dUP ∏
C

δ

(
∏

P∈∂C
UP − 1

)
e−S[UP], (9.7)

where S[Up] is any action which is a sum over the individual plaque-
ttes, for example the Wilson action S[UP] = β ∑P(1− ReTrUP), or a
topological action as described in chapter 8, see also [22], where the
action is constant but the traces of the plaquette variables are limited to
a compact region around the identity.
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The difference to the mean plaquette method is that it is not assumed
that the external plaquettes take some average value, but rather that they
are distributed according to a mean distribution. More specifically, we
assume that there exists a mean distribution for the real part of the trace
of the plaquettes and that the other degrees of freedom are uniformly
distributed with respect to the Haar measure. Such a distribution must
exist and it can be measured for example by Monte Carlo simulations.
For definiteness let us consider compact U(1) gauge theory with a
single plaquette P0 as the live domain. The plaquette variables UP =

eiθP ∈ U(1) can be represented with a single real parameter θP ∈
[0, 2π] and the real part of the trace is cos θP. Our goal is to obtain an
approximation to the distribution p (cos θP0), or equivalently p (θP0) =

Z (θP0) /Z, where

Z(θP0) = e−S[UP0 ]
∫

∏
P 6=P0

dUP e−S[UP] ∏
C

δ

(
∏

P′∈∂C
U′P − 1

)
, (9.8)

Z =
∫

dUP0 Z(θP0). (9.9)

To obtain a finite number of integrals we now make the approximation
that all plaquettes which do not share a cube with P0 are independently
distributed according to some distribution p(θ). Clearly this neglects
some correlations among the plaquettes but this can be improved by
taking a larger live domain. Again, let C denote an elementary cube
with boundary ∂C and P denote a plaquette. We define

UC ≡ ∏
P∈∂C

UP, (9.10)

C0 ≡ {C | P0 ∈ ∂C}, (9.11)

PC ≡ {P | ∃C ∈ C0 : P ∈ ∂C, P 6= P0}, (9.12)

i.e. C0 is the set of all cubes containing P0, and PC is the set of plaquettes,
excluding P0, making up C0. The sought distribution is then determined
by the self-consistency equation

p (θP0) =

e−S[UP0 ]
∫

∏
P∈PC

dUP p (θP)∏
C∈C0

δ (UC − 1)

∫
dUP0 e−S[UP0 ]

∫
∏

P∈PC
dUP p (θP)∏

C∈C0

δ (UC − 1)
. (9.13)

This self-consistency equation is solved by iterative substitution: given
an initial guess for the distribution p(0) (θP0), it is a straightforward
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task to integrate out the external plaquettes and obtain the next iterate
p(1) (θP0) from eq. (9.13), and to iterate the procedure until a fixed point
is reached, i.e. p(n+1) (θP0) = p(n) (θP0). This is a functional equation,
which is solved numerically by replacing the distribution p by a set of
values on a fine grid in θP or by a truncated expansion in a functional
basis. In this paper we have chosen to discretize the distribution on a
grid. As mentioned above, this can be done in a completely analogous
way also for spin models and for different types of actions. In Fig. 9.1
we compare the distributions of plaquettes in the 4d U(1) lattice gauge
theory with the Wilson action close to the critical coupling (left panel)
and with the topological action at the critical restriction δc (right panel),
obtained by Monte Carlo on an 84 lattice and by the mean distribution
approach with the normalized action eβ cos θP . Below we give more
details for a selection of models along with numerical results.
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Figure 9.1: The distribution of plaquettes angles p(θP) in the 4d U(1)
lattice gauge theory with the Wilson action close to the
critical coupling (left panel) and with the topological action
at the critical restriction δc (right panel) obtained by Monte
Carlo on an 84 lattice and by the mean distribution approach,
together with the Haar measure.

9.3 spin models

We will start by applying the method to a few spin models, namely Z2,
Z4 and the U(1) symmetric XY-model and we will explain the proce-
dure as we go along. Afterwards, only minor adjustments are needed
in order to treat gauge theories. We will derive the self-consistency
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equations in an unspecified number of dimensions although graphical
illustrations will be given in two dimensions for obvious reasons.

Let us start with an Abelian spin model with a global ZN symmetry.
The partition function is given by

Z = ∑
{s}

exp

(
β ∑
〈i,j〉

Re sis†
j

)
, (9.14)

where si = ei 2π
N ni , ni ∈ {1, · · · , N}(∈ ZN). In the usual MF approach we

would self-consistently determine the mean value of si by letting one
or more live sites fluctuate in an external bath of mean valued spins.
However, Batrouni [17, 19] noticed that by self-consistently determining
the mean value of the links, or internal energy, Uij ≡ sis†

j , much better
estimates of for example the critical temperature could be obtained for
a given live domain. Thus, we first change variables from spins to links.
The Jacobian of this change of variables is a product of lattice Bianchi
identities, δ (UP − 1), one for each plaquette 1. This can be verified by
introducing the link variables Uij via

∫
dUij δ

(
Uijsjs†

i − 1
)

and integrat-
ing out the spins in a pedestrian manner. Since the Boltzmann weight
factorizes over the link variables, all link interactions are induced by
the Bianchi identities and hence the transformation trivially solves the
one dimensional spin chain where there are no plaquettes 2.

As mentioned above, each δ-function can be represented by a sum
over the characters of all the irreducible representations of the group.
For ZN this is merely a geometric series, δ (UP − 1) = 1

N ∑N−1
n=0 Un

P.
Since only the real part enters in the action it is convenient to reshuffle
the sum so that we sum only over real combinations of the variables,

δ (UP − 1) ∝ 1 + UN/2
P δN

even +
b N−1

2 c
∑
n=1

(
Un

P + U−n
P
)

, (9.15)

where δN
even is 1 if N is even and 0 otherwise.

The next step is to choose a domain of live links. In this step,
imagination is the limiting factor; for a given number of live links
there can be many different choices and it is not known to us if there
is a way to decide which is the optimal one. The simplest choice is of
course to keep only one link alive but in our 2d examples we will make

1 On a periodic lattice there are also global Bianchi identities but they play no role here.
2 Up to a global constraint in the case of periodic boundary conditions
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9.3 spin models

use also of a nine-link domain [19] to see how the results improve with
larger domains. These two domains are shown in the left (one link)
and right (nine links) panels of Fig. 9.2. In the case of a single live link,
there are 2(d− 1) plaquettes and thus there are 2(d− 1) δ-functions of
the type in eq. (9.15).

Figure 9.2: Two choices of domains of live links for 2d spin models. The
live links are denoted by the solid lines, whereas the dashed
lines denote links which are assumed to take mean values
or to be distributed according to the mean distribution. The
left panel shows the unique domain with one live link and
the right panel shows one of many domains with nine live
links.

9.3.1 Mean link approach

Let us for simplicity consider the case of one live link, denoted U0. The
external links, denoted Uk by some enumeration ij → k, are fixed to
the mean value by demanding that Un

k = U−n
k = 〈U〉n , ∀k 6= 0. Each

plaquette containing the live link also contains three external links, and
the δ-function eq. (9.15) becomes

δ (UP − 1) ∝ 1 + 〈U〉3N/2 (−1)n0 δN
even + 2

b N−1
2 c

∑
n=1
〈U〉3n cos

2πn0n
N

. (9.16)

For large N it is best to perform the sum analytically to obtain (for
N = 2M)

δ (UP − 1) ∝
1− (−1)n0 〈U〉3M

1 + 〈U〉6 − 2 〈U〉3 cos πn0
M

. (9.17)
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For U(1) we define πn0
M = θ0 as M→ ∞ and since 〈U〉 < 1 we get

δ (UP − 1) ∝
(

1 + 〈U〉6 − 2 〈U〉3 cos θ0

)−1
, (9.18)

which can efficiently be dealt with by numerical integration. The
partition functions for the single live link for Z2, Z4 and U(1) 3 spin
models then become

ZZ2 ∝ ∑
U0=±1

eβU0
(

1 + 〈U〉3 U0

)2(d−1)
, (9.19)

ZZ4 ∝
3

∑
n0=0

eβ cos πn0
2

(
1 + 〈U〉6 (−1)n0 + 2 〈U〉3 cos

πn0

2

)2(d−1)
, (9.20)

ZU(1) ∝
δ∫

−δ

dθ eβ cos θ
(

1 + 〈U〉6 − 2 〈U〉3 cos θ
)−2(d−1)

. (9.21)

In the U(1) case, eq. (9.21) applies both to the standard action (β ≥
0, δ = π) and to the topological action (β = 0, δ ≤ π).

9.3.2 Mean distribution approach

In the mean distribution approach we sum over the external links
assuming they each obey a mean distribution p(U), for which a one-
to-one mapping to the set of moments {〈Un〉} exists. The difference
between the two methods becomes apparent when expressed in terms
of the moments, which are obtained by integrating the distributions of
the external links against the δ-function given by the Bianchi constraint
in eq. (9.15)

∑
{U1,U2,U3}

p(U1)p(U2)p(U3)δ(UP − 1) = 1 +
〈

UN/2
〉3

UN/2
0 δN

even (9.22)

+ 2
b N−1

2 c
∑
n=1
〈Un〉3 cos

2πn0n
N

.

Comparing to eq (9.16), we see that for N ≤ 3 there is only one moment
and the two methods are thus equivalent, but for larger N the mean link

3 The U(1) Wilson action is defined by δ = π, β 6= 0 and the topological action by
δ < π, β = 0.
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9.4 gauge theories

approach makes the approximation 〈Un〉 = 〈U〉n whereas the mean
distribution approach treats all moments correctly.

Thus, for small N we do not expect much difference between the two
approaches, and this is indeed confirmed by explicit calculations. For
U(1), however, there are infinitely many moments which are treated
incorrectly by the mean link approach and this renders the mean distri-
bution approach conceptually more appealing.

By using the Bianchi identities, one link per plaquette can be inte-
grated out, giving

ZU(1) =

δ∫

−δ

dθ eβ cos θ




δ∫

−δ

dθ1dθ2 p(θ1)p(θ2)
2

∑
n=−2

p(2πn− θ − θ1 − θ2)




2(d−1)

.

(9.23)
It is often convenient not to work solely with distributions of single
links, but also of multiple links, which are defined in the obvious way,

pN(Θ) ≡
∫ N

∏
i=1

dθi p(θi)δ

(
N

∑
i=1

θi −Θ

)
, (9.24)

and can efficiently be calculated recursively. The above partition func-
tion then simplifies slightly to

ZU(1) =

δ∫

−δ

dθ eβ cos θ




2δ∫

−2δ

dΘ p2(Θ)
2

∑
n=−2

p(2πn− θ −Θ)




2(d−1)

. (9.25)

In Figs. 9.3 and 9.4 we show results for 2d Z2, Z4 and U(1) spin
models, the latter for the Wilson action S = β ∑〈ij〉 Re sis†

j and the
topological action eS = ∏〈ij〉Θ

(
δ− |θi − θj|

)
. Note the remarkable

accuracy of the mean distribution approach in the latter case, even
when there is only one live link.

9.4 gauge theories

To extend the formalism from spin models to gauge theories, we merely
have to change from links and plaquettes to plaquettes and cubes.
The partition function for a U(1) gauge theory analogous to eq.(9.21)
becomes

ZU(1) =

δ∫

−δ

dθ eβ cos θ
(

1 + 〈U〉10 − 2 〈U〉5 cos θ
)−2(d−2)

(9.26)
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Figure 9.3: (left) Mean-field and mean-link approximation in the 2d
Ising model for two choices of live domains. (Right) Mean-
link and mean-distribution in the 2d Z4 model. In the Ising
case, mean-link and mean-distribution are equivalent.
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Figure 9.4: The mean link in the 2d XY spin model as a function of the
Wilson coupling β (left panel) and of the restriction δ (right
panel) from Monte Carlo, from the mean link and from the
mean distribution methods.
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9.4 gauge theories

in the mean plaquette approach and

ZU(1) =

δ∫

−δ

dθ eβ cos θ




4δ∫

−4δ

dΘ p4(Θ)
3

∑
n=−3

p(2πn− θ −Θ)




2(d−2)

(9.27)

in the mean distribution approach. Results for d = 4 are shown in
Fig. 9.5 for the Wilson action (left panel) and for the topological action
(right panel).
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Figure 9.5: The mean plaquette in the 4d U(1) gauge theory as a func-
tion of the Wilson coupling β (left panel) and the restriction δ

(right panel) from Monte Carlo, and from the mean plaquette
and the mean distribution methods.

Another nice feature of the mean distribution approach is that other
observables become available, like for instance the monopole density
in the U(1) gauge theory, under the assumption that each plaquette
is distributed according to the mean distribution p. A cube is said to
contain q monopoles if the sum of its outward oriented plaquette angles
sums up to 2πq. Given the distribution p(θ) of plaquette angles the
(unnormalized) probability pq of finding q monopoles in a cube is given
by

pq =
∫ 6

∏
i=1

dθi p(θi)δ

(
6

∑
i=1

θi − 2qπ

)
, q ∈ {−2,−1, 0, 1, 2} (9.28)

and the monopole density nmonop is given by

nmonop =
2p1 + 4p2

p0 + 2p1 + 2p2
. (9.29)

In Fig. 9.6 we show the monopole densities for 4d U(1) gauge theory
as obtained by Monte Carlo simulations and by the mean distribution
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approach. Note that the monopole extends outside of the domain
of a single live plaquette, which was used to determine the mean
distribution p. The left panel shows results for the Wilson action and in
the right panel the topological action is used.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2

n
m
o
n
o
p

β

βc

4d U(1) LGT

Wilson action

Con�ning Coulomb

Monte Carlo
Mean dist., one live plaquette

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3

n
m
o
n
o
p

δ

δc

4d U(1) LGT

Topological action

Con�ningCoulomb

Monte Carlo
Mean dist., one live plaquette

Figure 9.6: The monopole density in the 4d U(1) gauge theory as a func-
tion of the Wilson coupling β (left panel) and the restriction
δ (right panel) from Monte Carlo and the mean distribution
method.

We can also treat SU(2) Yang-Mills theory without much difficulty.
For the mean plaquette approach we need the character expansion of
the δ-function

δ (UC − 1) ∝
∞

∑
n=0

(n + 1)
sin(n + 1)θC

sin θC
, (9.30)

where θC is related to the trace of the cube matrix UC through TrUC =

2 cos θC.
In the mean plaquette approach we again make the substitution

UC → U0 〈U〉5 in the case of a single live plaquette. The above delta
function then becomes

δ
(

U0 〈U〉5 − 1
)

∝
∞

∑
n=0
〈U〉5n (n + 1)

sin(n + 1)θ0

sin θ0

∝
(

1 + 〈U〉10 − 2 cos θ0 〈U〉5
)−2

. (9.31)

For SU(2), the analogue of a restriction δ on the plaquette angle is a
restriction on the trace of the plaquette matrix to the domain [2α, 2],
where −1 ≤ α < 1. If we define a0 ≡ 1

2 Tr U0 = cos θ0 the approximate
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9.4 gauge theories

SU(2) partition function can be written 4 in a way very similar to the
U(1) partition function (9.26)

ZSU(2) =

1∫

α

da0

√
1− a2

0 eβa0
(

1 + 〈U〉10 − 2 〈U〉5 a0

)−4(d−2)
, (9.32)

from which 〈U〉 can be easily obtained as a function of α and β.
The mean distribution approach works in a completely analogous

way as for U(1), but let us go through the details anyway, since there
are now extra angular variables to be integrated out. The starting point
is again an elementary cube on the lattice. Five of the cubes faces
have their trace distributed according to the distribution p(a0) and we
want to calculate the distribution of the sixth face compatible with the
Bianchi identity UC = 1. In other words, taking U6 as the live plaquette,
we want to evaluate

p̃(a0,6) ∝
∫

dΩ6

∫ 5

∏
i=1
{dUi p (a0,i)} δ

(
6

∏
i=1

Ui − 1

)∣∣∣∣∣
TrU6=2a0,6

, (9.33)

where we have decomposed U6 = Ω6Û6Ω†
6 with Û6 a diagonal SU(2)

matrix with trace 2a0,6, i.e. Ω6 is the angular part of U6. To facilitate the
calculation we recursively combine the product of four of the plaquette
matrices into one matrix, U1U2U3U4 → Ũ, by pairwise convolution of
distributions (with p1(a0) ≡ p(a0))

p2i(ã0) ∝
1√

1− ã2
0

∫
dΩ̃dU1dU2 pi (a0,1) pi (a0,2) δ

(
U1U2Ũ† − 1

)∣∣∣∣
TrŨ=2ã0

∝
1√

1− ã2
0

1∫

αi

da0,1

√
1− a2

0,1da0,2

√
1− a2

0,2 pi(a0,1)pi(a0,2)

(9.34)

×
1∫

−1

d cos θ12 δ
(

ã0 − a0,1a0,2 −
√

1− a2
0,1

√
1− a2

0,2 cos θ12

)

=
1√

1− ã2
0

1∫

αi

da0,1da0,2 pi (a0,1) pi (a0,2) χ|ã0−a0,1a0,2|≤
√

1−a2
0,1

√
1−a2

0,2
,

4 The SU(2) Wilson action is defined by α = −1, β 6= 0 and the topological action by
α > −1, β = 0.
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where α1 ≡ α, α2i = max(2αi − 1,−1) and χA is the characteristic
function on the domain A. The domain of integration in the (a0,1, a0,2)-
plane is simply connected with parametrizable boundaries and comes
from the condition that the argument of the delta function has a zero
for some cos θ12 ∈ [−1, 1]. We then obtain for the sought distribution

p̃(a0,6) ∝
∫

dΩ6

∫
dU5 p (a0,5)

∫
dŨ p4 (ã0) δ

(
ŨU5U6 − 1

)∣∣∣∣
TrU6=2a0,6

,

(9.35)
where it is now easy to integrate out Ũ = U†

6 U†
5 . If we denote by θ56

the angle between U5 and U6, the angular integral over Ω6 contributes
just a multiplicative constant and we obtain

p̃(a0,6) ∝
1∫

α

da0,5

√
1− a2

0,5 (9.36)

×
1∫

−1

d cos θ56 p(a0,5)p4

(
a0,5a0,6 −

√
1− a2

0,5

√
1− a2

0,6 cos θ56

)
,

which can be evaluated numerically in a straightforward manner. In
the end, since there are 2(d− 2) cubes sharing the plaquette P0, and

since the a priori probability for P0 to have trace 2a0 is
√

1− a2
0eβa0 ,

with respect to the uniform measure, we obtain for one live plaquette

ZSU(2) =

1∫

α

da0

√
1− a2

0 p(a0) =

1∫

α

da0

√
1− a2

0eβa0 p̃(a0)
2(d−2)

=

1∫

α

da0

√
1− a2

0eβa0




1∫

α

dx
√

1− x2 p(x) (9.37)

×
1∫

−1

d cos θ p4

(
a0x−

√
1− a2

0

√
1− x2 cos θ

)


2(d−2)

,

which also defines the functional self-consistency equation for p(a0).
Results for the Wilson and topological actions can be seen in Fig. 9.7

in the left and right panels, respectively 5.

5 Our results for the mean plaquette approach differ a little from those of [17], because we
imposed the Bianchi constraint exactly rather than truncating its character expansion.
Surprisingly, truncation gives better results.

146



9.4 gauge theories

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

〈T
rU
〉/
2

β

4d SU(2) LGT

Wilson action

Monte Carlo

Mean plaquette [3,4]

Mean distribution (this work)

Mean link [1]

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

〈T
rU
〉/
2

α

4d SU(2) LGT

Topological action

Monte Carlo

Mean plaquette

Mean distribution
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quette method and the mean distribution method. For com-
parison the mean link result obtained with the formalism
in [43] is also shown in the left panel.

For SU(3) one can proceed in an analogous manner, only the angular
integrals are now more involved and the trace of the plaquette depends
on two diagonal generators so the resulting distribution function needs
to be two dimensional.
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10
D I S C U S S I O N

In general, the quantum field theories that make up the SM of particle
physics are not exactly solvable. In the strongly coupled sector of QCD

one has to resort to numerical methods and if one wishes to study the
system at finite density, then even the conventional numerical methods
break down. That is one of the reasons why it is of interest to develop
approximate methods, which aim at describing at least part of the
physical properties of the model at hand. In fact, except for a few
idealized situations, most physical systems appearing in nature are too
complicated to solve exactly even in the numerical sense. However, as
described in the main body of this thesis, we can still learn much by
applying approximate methods, of which mean-field related approaches
are an important sub-class. The main focus of this work has been EMFT,
which can be thought of as a simplification of DMFT, a method which
is widely used in condensed matter physics, a field of research which
is particularly familiar with the intractability of exact solutions. This
family of approximations has however, to our knowledge, not found
its way into the particle physics community, although, as the content
of this thesis shows, there are many situations where DMFT and in
particular EMFT work excellently.

With the purpose of assessing the applicability of EMFT to QFTs we
first studied the complex φ4 theory, a model for which conventional
Monte Carlo simulations suffer from a sign problem, but for which an
exact, sign-problem free formulation can be found. It is thus possible
to compare the EMFT approximation to numerically exact results in
this case. We found that it works especially well in four dimensions
at zero temperature where it correctly predicts a second-order phase
transition with mean field exponents and a quantitatively very accurate
value of the critical chemical potential. EMFT was also shown to be a
computationally cheap method for probing the system at finite tem-
perature. Although it incorrectly predicts a first-order transition due
to dimensional reduction, the estimates of observables like the critical
chemical potential and the density agree very well with state of the art
Monte Carlo simulations [50]. These properties establish EMFT as a very
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useful tool for the study of the existence and whereabouts of phase
transitions, even though EMFT might have problems distinguishing a
weak first-order transition from a second-order transition. Due to its
simplicity and low computational cost, it can serve as a complement
and guide to more sophisticated methods.

This last direction was then explored in a study of the Z3 spin model
in three dimensions with charge-symmetry breaking external fields. The
purpose of the study was to investigate the possibility that models with
complex saddle points may have a complex mass spectrum and thus
oscillating propagators, something which can be shown analytically
in one dimension and has been conjectured to hold also in higher
dimensions. The existence of these oscillating spatial correlators would
have interesting implications for the phase diagram of QCD and possible
experimental signatures in heavy-ion collisions.

Using unbiased Monte Carlo simulations at parameter values sug-
gested by EMFT calculations, we have shown that the Z3 spin model
has non-monotonic spatial correlators, both in the original spin vari-
ables and in the flux variables, for some regions in parameter space.
This strongly suggests that the spectrum in these regions is complex
and this claim is also backed up by EMFT calculations of the three-
dimensional model. Of special interest is the oscillatory nature of the
junction-junction correlator, which is the analogue of the baryon-baryon
correlator in heavy-dense QCD, for some regions of parameter space.
We have also shown that the worm algorithm works when the mass
spectrum is complex by reproducing the exact 1-dimensional results.
The phase diagram in one dimension contains regions where the system
behaves like a liquid, with exponentially damped oscillations, and like a
crystal with a purely oscillatory correlator. In general, it is expected [79]
that these features carry over also to higher dimensions. For those re-
gions of parameter space where the model has a sign-problem free
representation we have only found evidence of the liquid phase with
exponentially damped but oscillating correlations between spins, as
well as between junctions. We have found no evidence of a crystalline
phase and it is probable that it lies beyond the reach of the worm
algorithm in three dimensions, as it does in one dimension. It should
also be noted that even the liquid phase may lie in an unphysical region
of parameter space. A complex mass spectrum can only be found in
a parameter region where the mass M of the underlying heavy quark
satisfies M � T, whereas the validity of the effective description of

150



discussion

QCD by a Z3 spin model requires M� T. This situation may change if
the junctions are given a nonzero weight as in [82], but this possibility
has not been investigated here. However, whatever the values of the
other parameters, introducing a junction weight will further damp the
signal we want to measure, making the search yet more difficult.

These findings support the claim that in general, it is plausible that
models without charge-conjugation symmetry, but invariance under the
combined action of charge conjugation and complex conjugation, will
have regions with a complex mass spectrum in their phase diagram.
However, more work is needed before precise statements can be made
about whether or not this is a phenomenon which occurs under physical
conditions. This first proof of principle should encourage the study
of more realistic models, and the search for experimental signals in
heavy-ion collisions as advocated in [82].

Next, we considered a model which contains also fermions, the Higgs-
fermion sector of the SM, which is an example of a so called Higgs-
Yukawa model. Since we were interested in the order of the Extended
Mean Field Theory phase transition it was useful that there already
exist some Monte Carlo simulations of this model [36], especially since
it has been found that EMFT sometimes gets the order of the phase
transition wrong. However, we found that EMFT agrees very well with
the full Monte Carlo simulations, also in the region where the transition
is strongly first order. Furthermore, we went beyond what is possible
for Monte Carlo simulations by working directly in the thermodynamic
limit and by lifting the mass degeneracy of the top and bottom quarks,
something which would cause a sign problem in the Monte Carlo
simulations, as well as including all other SM fermions. In the main part
of the investigation we studied the EW finite temperature transition in
the presence of a ϕ6 term in the Higgs potential and thus obtained the
critical Higgs mass for which this transition turns first order, something
which has not been done non-perturbatively before. We found that
with a BSM scale of about 1.5 TeV the transition turns first order for a
Higgs mass of Mh = 125 GeV. At this point the effective model shows
a separation of roughly a factor 3 between the relevant scales Mh, a−1

and MBSM. The value of MBSM decreases only slightly if we demand a
strong first order transition with φc/Tc & 1. This scale is consistent with
what is found in the gauge-Higgs model [91, 92], where the EW gauge
fields are taken into account but the fermions are neglected, as well as
in the perturbative study [57]. The scale is also only mildly dependent
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on the exact value of the lattice cutoff 1/a within the window between
Mh and MBSM. It is however difficult to assess the effect of neglecting
other higher order operators. We further showed that removing the
fermions altogether shifts the critical Higgs mass by a few percent only,
establishing that the Higgs sector itself is the dominating driving factor
of the transition. To confirm that the gauge and fermion sectors always
yield small contributions to the critical mass it would be interesting to
study a model with different higher dimension operators, in particular
one including both the Higgs field and the gauge fields.

On the topic of possible extensions of the SM there are of course a myr-
iad of different suggestions. One of those is the concept of gauge-Higgs
unification via the Hosotani mechanism, which requires a compact
extra dimension. It has been shown using the perturbative effective
potential that gauge loops winding around the extra dimension can ac-
quire an expectation value à la Arahanov-Bohm and thus destabilize the
classical vacuum and break the gauge symmetry. We have investigated
the possibility of gauge-symmetry breaking non-perturbatively on the
lattice as well as devised a procedure for diagnosing gauge-symmetry
breaking to a U(1) subgroup in a gauge invariant way. This is done by
monitoring topological excitations, Abelian fluxes and monopoles in
this case, which are stable in the U(1) subgroup but decay in the full
symmetry group. We found that the perturbative predictions are not
spoiled by non-perturbative effects.

The general procedure is also applicable when the symmetry breaks
to other subgroups, only the topological excitations to monitor changes.
For example, to diagnose gauge-symmetry breaking to an SU(2) sub-
group, one should monitor the stability of a ’t Hooft-Polyakov monopole.
Finally, it is clear that our approach can be used without change to
diagnose gauge-symmetry breaking in an ordinary gauge-Higgs system.
Note that our construction is completely non-local, so that it does not
contradict the Fradkin-Shenker argument against the existence of a local
order parameter distinguishing the Higgs and the confining regimes.

Another possible extension of the SM is walking technicolor, which
refers to technicolor models which show extremely slow running, hence
walking, of the coupling due to the vicinity of a conformal fixed point.
They also require large anomalous dimensions, which calls for non-
perturbative methods, i.e. lattice simulations. Although a finite lattice
explicitly breaks conformal invariance, some of the scale invariance
is still encoded in the lattice correlator which is left invariant when
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all dimensions are rescaled, i.e. all masses in the system are directly
proportional to the lattice extent. We have also demonstrated how
the full conformal correlator is obtained in the infinite volume limit
from a continuous distribution of massive states. In the presence of
a mass deformation we also found that the extraction of the mass
anomalous dimension can be subject to some ambiguity when it comes
to subleading effects.

In a slightly different direction, but in the same general spirit of
supplementing or improving standard lattice simulations, we studied
a so called “topological” action, which is constant but restricted in
parameter space, and thus invariant under smooth deformations. We
simulated the U(1) lattice gauge theory using this type of action and
found that it describes the same physics as the Wilson action, i.e. there is
a confining strong coupling phase where magnetic monopoles condense
and Wilson loops follow an area law, separated by a (weak) first order
transition from a Coulomb phase with an exponentially suppressed
monopole density and a perimeter law for the Wilson loops. We have,
in this specific case, not found any concrete advantages which would
motivate the choice of this action over the Wilson action although at a
given value of the effective coupling in the Coulomb phase there are
significantly fewer monopoles (lattice artifacts). This is in line with
other known cases where a topological action reduces discretization
errors [22, 21, 23]. Perhaps the most interesting approach is to search
for optimized combinations of a standard action and constrained fields.
For works in this direction, where the restriction is fixed to Lüscher’s
“admissibility condition”, see [24, 49]. An interesting feature of the
topological action is the direct access to the free energy itself.

One interesting open question is the nature of the extra transition at
δmax = π/3 where there is a non-analyticity in the monopole density as
it goes from nonzero to strictly zero. A similar phenomenon occurs at
δmax = π/2 for an XY model, and when plaquettes become restricted
by the “admissibility condition” in gauge theories. One may argue,
however, in the U(1) case at least, that this transition will have no impact
on the physics because the monopole density close to the transition is
extremely small anyway.

Finally, to come back to variations of the mean-field approximation
we developed an approached dubbed the mean distribution approach,
which self-consistently determines the whole distribution over allowed
field values for a local quantity, and not only its mean value. In con-
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junction, we also studied the effect of determining the mean value of
different types of local variables. It has been shown before [19] that
determining a self-consistent mean-link gives a much better approxi-
mation than the traditional mean-field. Furthermore, the symmetry-
invariant mean link can be generalized to a mean plaquette in gauge
theories [17]. Here, we have shown that the approximation can be fur-
ther improved by determining the self-consistent mean distribution of
links or plaquettes. The extension from a self-consistent determination
of the symmetry invariant mean link or plaquette to a self-consistent de-
termination of the entire distribution of links and plaquettes is shown to
improve upon the results obtained by Batrouni in his seminal work [17,
18]. Especially appealing is the fact that the mean distribution approach
yields a non-trivial result for the whole range of couplings and not
just in the strong coupling regime, which is sometimes the case for the
mean link/plaquette approach, or just in the weak coupling regime
which is accessible to the mean field treatment of [43]. Indeed, the
mean distribution approach gives a nearly correct answer when the
correlation length is not too large, and by enlarging the live domain the
exact result is approached systematically for any value of the coupling.
As the domain of live variables is enlarged, the mean link/plaquette
and the mean distribution results tend to approach each other but
since determining the full mean distribution does not require much
additional computer time it should always be desirable to do so.

Furthermore, another appealing feature of the mean distribution
approach is that once the distribution has been self-consistently deter-
mined, other local observables, like the vortex or monopole densities
become readily available. Finally, the whole approach applies to non-
Abelian models as well.

10.1 outlook

One of the most interesting directions in which to further develop
EMFT or DMFT is the inclusion of gauge fields such that the method
can be applied to the gauge theories of the SM. Since the gauge fields
interact via plaquettes a small cluster of live sites would be needed in
the formulation. The concept of cluster DMFT is however already widely
used in the condensed matter community, so no new knowledge is
actually needed in that regard. However, it seems a non-trivial fact to
construct the non-local effective action in terms of only gauge-invariant
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objects. Furthermore, since the propagator enters explicitly in the self-
consistency equations, one would ideally need an analytic expression
for it in some limit of the theory. It is unclear what that would be. A
simpler option may be to abandon the group-valued gauge links of
lattice gauge theory and work directly with the Lie-algebra fields of the
continuum formulation. The downside of this approach is that gauge
fixing is needed in order to properly define the gauge propagators, and
since the effective action will be approximate, it is not to be expected
that the final result will be independent of the gauge-fixing parameter.

However, as discussed in the introduction there are yet many in-
teresting models where EMFT can be applied, either as the principal
method of investigation, or as a first probe before computationally more
expensive methods are applied. The same can be said about the mean
distribution approach. The main direction of improvement would be
to also include matter fields into the self-consistency equations, so that
physically more relevant models can be studied.

When it comes to the more concrete results presented in this thesis,
the most interesting is probably the one about the Higgs-Yukawa model.
It is clear that the model studied here is a crude simplification of the full
SM plus a generic UV completion. There are gauge interactions missing
as well as many other possible dimension six operators, and then of
course all higher dimension operators. There is also some room to vary
the exact value of the Wilson coefficients, but the general result that the
mass scale needed to make the EWFT phase transition first order, and
thus EW baryogenesis viable, can not be too high should be valid. If
this scenario is actually realized in nature, then it should be detectable
at the LHC, either by direct detection of the state responsible for the
effective φ6 operator, or as indirect deviations from SM predictions due
to other higher dimension operators.
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N O TAT I O N

mathematical objects

symbol meaning

Z Partition function
S Action
G(x) Bosonic propagator in coordinate space
G̃(k) Bosonic propagator in Fourier space
S(x) Fermionic propagator in coordinate space
S̃(k) Fermionic propagator in Fourier space
Σ Self-energy
p(x) Probability distribution
µ Chemical potential
f Free energy density

lattice parameters

symbol meaning

a Lattice spaing
N Total number of lattice sites
Nν Number of lattice sites in ν direction
V Lattice volume
Lν Lattice extent in ν direction
z Number of nearest neighbors
k̂ lattice momenum
ν̂ Unit vector in ν direction
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A C R O N Y M S

MF mean field

DMFT Dynamical Mean Field Theory

EMFT Extended Mean Field Theory

QFT quantum field theory

LHC Large Hadron Collider

SM Standard Model

EWFT electroweak finite temperature

EW electroweak

UV ultraviolet

IR infrared

BSM beyond the Standard Model

FRG Functional Renormalization Group

QCD quantum chromodynamics

QGP quark-gluon plasma

GN Gross-Neveu

PNJL Polyakov-Nambu-Jona Lasinio

MCMC Markov Chain Monte Carlo

CEP Contraint Effective Potential
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