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Abstract

The existence of a significant non-baryonic component to the Universe is
widely accepted, with worldwide efforts underway trying to detect this so-called
dark matter. The ZEPLIN-III detector utilises liquid xenon (Xe) as a target
medium in the search for the expected rare interactions of Weakly Interacting
Massive Particles, or WIMPs, with ordinary baryonic matter. The neutralino,
arising in supersymmetric extensions to the standard model of particle physics,
provides a particularly well-motivated candidate. The ZEPLIN-III experiment,
operating in two-phase (liquid/gas) mode, measures both the scintillation and
ionisation signatures produced during an interaction.

The first science run (FSR) of ZEPLIN-III was performed during three months
in 2008. The run culminated in a published result which excluded a WIMP-
nucleon interaction cross-section above 8.1 x 107% pb for a 60 GeVc=2 WIMP at
the 90% confidence level.

ZEPLIN-III then entered an upgrade period where the photomultiplier tube
(PMT) array, previously the dominant source of background, was replaced with
new, ultra-low background, PMTs. The radio-contamination of components used
to make these PMTs has been thoroughly studied and their impact on the back-
ground rates in ZEPLIN-III characterised. Additionally, a new 1.5 tonne plastic
scintillator veto detector was constructed, increasing the ability to reject WIMP-
like signals caused by neutron induced nuclear recoil events and improving the
~-ray discrimination capability of ZEPLIN-IIL.

The second science run (SSR) of ZEPLIN-III began in June 2010 and contin-
ued for 6 months, with a projected upper limit for the interaction cross-section
of 1.52 x 1078 pb for a 55 GeVe=2 WIMP at the 90% confidence level.
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Chapter 1

Introduction

For almost 75 years, cosmology has been evolving to the point where we have
what would appear to be an elegant and successful description of our Universe.
Many astrophysical observables can now be described by one model containing
just 6 parameters. ACDM (Cold Dark Matter, where A denotes the inclusion
of a cosmological constant) explains the accelerating expansion of the Universe,
the cosmic microwave background and the observed distribution of matter on
the largest scales. ACDM is also capable of describing the velocities of galaxies

within clusters and the velocity of matter in spiral galaxies.

The major problem facing the ACDM model is that the combination of all
astrophysical observables produces a result that lends only 4-5% of the mass of
the Universe to baryonic matter. This means that a large proportion of the mass

of the Universe must be of non-baryonic origin. The ACDM model points towards
23% of this being Cold Dark Matter.

Contemporaneously, in particle physics, a proposed solution to the hierar-
chy problem was developed. Supersymmetry postulates a new family of super-
symmetric partners to each of the standard model particles. These particles differ
in spin to their standard model partners by %h. Supersymmetry is described as a
broken symmetry as no evidence of supersymmetric particles has been seen in the
mass-energy range of the known standard model particles (<172.7 GeVc™2, the
mass of the top quark) meaning the supersymmetric partners of standard model
particles must have masses exceeding those of the standard model. Most Mini-

mal Supersymmetric Models (MSSM) predict that the Lightest Supersymmetric



Particle (LSP) would have a mass in the 100-1000 GeVc¢™2 range and also predict
that this particle could be stable. If this is true, then it is reasonable to assume
that this particle constitutes the vast majority (if not all) of the non-baryonic
mass. Some particle physics models also predict that this LSP will interact with

baryonic matter via the weak nuclear interaction.

These independent predictions, when taken together, complement each-other
elegantly. A problem discovered in cosmology “solved” by a potential solution to
a problem in particle physics and vice-versa. A direct detection of dark matter
particles by observable interaction with baryonic matter would solve two of the

biggest problems in modern science at the same time.

The ZEPLIN-III collaboration is a multi-national collaboration involving the
University of Edinburgh, Imperial College London, the STFC Rutherford Ap-
pleton Laboratory, LIP-Coimbra and ITEP Moscow. The collaboration is one
of many searching for the elusive signal that would confirm that dark matter
not only exists, but interacts with baryonic matter via a known mechanism.
The ZEPLIN-III detector is based at the Boulby Potash mine in Redcar and
Cleveland, UK. The detector uses liquid Xe as a detector medium and detects
interactions using the principles of scintillation and ionisation. The detector is
designed to have a sensitivity to a WIMP-nucleon weak interaction cross-section
of order ~107 pb ( 107%° c¢m?). Chapter 4| of this thesis will concentrate on the
design and commissioning of the detector culminating in a three month engineer-
ing science run. Chapter [5| concentrates on the radio-assaying measurements and
background simulation of the components used in the upgrade of the ZEPLIN-III
system. Chapter [6] concentrates on the ZEPLIN-III veto detector, in particular,
detector design and manufacture leading to the detectors calibration and analysis
of science data. Chapter [7| concentrates on the re-commissioning of ZEPLIN-III
in preparation for a second science run, the detector calibration, daily monitoring,
data analysis and finally the calculation of an upper limit on the WIMP-nucleon

weak interaction cross-section assuming a null detection.

The ZEPLIN-III collaboration provides a unique situation, not present in
other particle physics experiments. The collaboration is sufficiently large to pro-
duce cutting edge scientific results but it is also small enough that each and every
member is able (and, indeed, is required) to take leading roles in many aspects

of the experimental process. Within ZEPLIN-III, I have taken leading roles in
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the calibration and parameterisation of the detector, including the characterisa-
tion of radiological impurities of the detector components. I have also taken a
leading role in defining and parameterising data cuts to remove spurious events,
which would be dominant above the detection of any (rare) potential WIMP
interactions.

During the upgrade period of ZEPLIN-III, I took a leading role in the radio-
assaying of components for the upgraded photo-multipier tube (PMT) array and
veto detector. This included measuring the radio-activity of individual compo-
nents and assessing the resultant impact on the backgrounds in ZEPLIN-III.

During the second science run (SSR) I maintained a leading role in the cali-
bration of and analysis of data from ZEPLIN-III itself. T also took a leading role
in building, testing and installing the ZEPLIN-III veto detector. I also took a
leading role in the measurement of the response of the plastic scintillator, syn-
chronisation of veto detector data with ZEPLIN-III data and its analysis.






Chapter 2

The Dark Matter Problem

For centuries, humankind has striven to understand how the Universe works
on the largest scale (beginning with early astronomical observations) and the
smallest scale. Until less than 100 years ago, it was believed that luminous
matter constituted all of the mass in the Universe. Modern estimates now place
this figure at around 1% of the mass-energy content. This, plus another 4%
of mass not found in stars, (e.g. interstellar gas) means that only 5% of the
entire Universe is composed of baryonic (standard model) matter. Evidence also
shows that the mass-energy content of the Universe is comprised of a 28% mass
component and a 72% energy component. This suggests that 23% of the Universe
is composed of non-luminous, non-baryonic, matter.

Research into the nature of missing (or “dark”) matter has been the subject of
experimental and theoretical endeavour for almost three quarters of a century and
remains one of the greatest unanswered questions in science [I]. The following
chapter will outline how cosmology and particle physics have converged to lead us
to the assumed Universal mass-energy components, beginning with an overview
of the cosmological and particulate theories underlying the ideas and leading on

to outlining the actual observations that support the theoretical postulations.

2.1 Cosmological Origins

The Big Bang theory is one of two key principles underpinning the current ideas

behind modern cosmology. The other is the so-called cosmological principle which



6 2.1 Cosmological Origins

states that the Universe is both isotropic and homogeneous. In effect, we do not
hold a special place in the Universe and, wherever we look, the laws of physics

remain the same.

The idea that the Universe is expanding was first potulated by Edwin Hubble
in his studies of distant galaxies. Hubble found that these galaxies were receding

at a velocity ¢ proportional to their distance away 7

The constant of proportionality in this equation, Hy, is known as Hubble’s param-
eter at the present time. The most recent measurements using Cepheid variables
have set a value of Hy = 72 + 8 (km/s)/Mpc [2].

This law suggests that, at earlier times, the galaxies in our Universe were
closer together. If this theory is extrapolated back to the beginning of time, it
leads to the conclusion that the Universe has evolved from a single point source
(size at most ~ the Planck distance) of infinite temperature and density, known
as a singularity. The transition from this singularity to a tenable state of matter

and energy is known as the Big Bang.

Another source of evidence comes from the observation that the average num-
ber of galaxies per unit volume in the Universe is almost constant across the sky.
This holds for the present epoch but has also been directly observed in the cos-
mic microwave background, which was discovered by Penzias and Wilson in 1965
[3]. The Cosmic Background Explorer (COBE) and the Wilkinson Microwave
Anisotropy Probe (WMAP) have found no anisotropies above the 107> and 107°
scale respectively and it is expected that the Planck satellite will further constrain

these values.

The theory of General Relativity, attributed to Albert Einstein [4], is a frame-
work by which the gravitation and curvature of space can be equated. At the
centre of this theory are the so-called Einstein field equations. For an isotropic
and homogeneous Universe, the expansion (or collapse) of space with mass den-
sity p and pressure p is given by the Friedmann equations. These equations are
derived from the Friedmann-Lemaitre-Robertson-Walker (FLRW) [2] solution of

Einstein’s field equations of general relativity.

The relative expansion rate of the Universe can be calculated by solving the
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Einstein field equations, as long as the matter and energy content of the Universe
is known. Assuming the cosmological principle is valid, energy and matter can

be described as a perfect fluid:

p
T = (p+ )0y + DG, (2.2)
where T}, is a tensor relating energy and momentum, g,, is a metric tensor, p is
the pressure of the fluid and p the density. Pressure and density can be related

by the equation of state:

p=(y—1)pc. (2.3)

This equation of state can be neatly solved using just three values for +. In
the past, the Universe was dominated by radiation. In this radiation dominated

era, v,= 3 which gives p, = 1p,c%.

This is a good approximation for the early
Universe which was hot and dense and where matter and radiation were in near
thermal equilibrium. The present time is described by ~,,=1 which leads to p,,
= 0. This is a good description of the current matter dominated Universe where
the pressure-free matter dominates over the energy density of the electromagnetic
radiation in the Universe. In the future, it is expected that vacuum energy will
dominate. In this case v, = 0 giving p, = -p,c?. It is thought that there was
a brief period in the history of the Universe where a similar equation of state
existed. During this period, known as inflation and occurring 1073¢ s after the

big bang, vacuum energy pressure caused a rapid expansion.

Solutions of the Einstein field equations lead to the so called “Friedmann-

equations” one of which is described below:

H? — = 2.4
~—~—~— + a? 3 Ps ( )
Expansion ~~ S——

Curvature Density

where the terms describe the expansion, curvature and energy-mass density of

the Universe.

In a flat universe with no curvature (v = 0), equation reduces to an

equation that describes a so-called critical density:
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Figure 2.1: A graphical representation of various scenarios for Universal evolution

dependent on the mass-energy composition. When comparing to equation 2.6
Q=Q,,+Q,.

3H?
- 8rG

If the density is greater than p., a closed Universe is described which will

Pe (2.5)

eventually contract to a “Big Crunch”. If the density is less than p., an open
Universe is described which will expand indefinitely. A graphical representation
of this can be seen in Figure 2.1, The density parameter () is the ratio of the

actual Universal density compared to the critical density:

p 8nG

With ©Q = 1 representing a flat universe, the individual components due to
each constituent of the Universe can be calculated. ) is, therefore composed of
a constituent part for radiation (€2,.), matter (€2,,) in both baryonic (£2,) and non-

baryonic (€2;) forms, and dark energy (€24). The latest calculated values for each
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of these components are given in Section [2.3.1, ACDM predicts a Universe which
is open and accelerating and, even without the inclusion of dark energy, there is

still a requirement for a significant dark matter component in the Universe.

2.2 Observational Evidence

2.2.1 Redshift Measurements of Galactic Clusters

In 1933, Fritz Zwicky was the first to propose the idea of missing mass or dark
matter [5]. Zwicky looked at eight galaxies in the Coma cluster. He assumed that
the cluster was spherically symmetric so that the mutual gravitational forces
of the galaxies attract each one towards the centre and that, on average, the
outermost galaxies would obey Newtonian mechanics under the influence of a
mass equal to that of the cluster. Zwicky determined the average velocity of the
galaxies by measuring the Doppler shifting of emitted light and also determined
the radius of the mass of the cluster.

Zwicky was then able to use the virial theorem to calculate the total mass
needed to produce the galactic motions observed. At the same time, assuming
that the amount of light emitted is proportional to the mass of the object, he
calculated an independent value for the mass of the cluster. When comparing the
two answers, Zwicky realised that the virial mass calculation gave a mass about
400 times greater than the luminous mass. This suggested that a large proportion
of the mass was non-luminous. Zwicky did not try to postulate the nature of this
dark matter but suggested that gravitational lensing would be a viable technique

to measure the mass of galaxies.

2.2.2 Gravitational Lensing

The first gravitationally lensed objects were seen in the 1960s. Even so, it is only
relatively recently that Zwicky’s predictions that gravitational lensing could be
used to determine galactic masses has been proven correct. Gravitational lensing
exploits the fact that, in accordance with the laws of general relativity, light
will follow the curved space caused by a massive object. This being the case,

the object (when viewed from the earth) becomes distorted to an extent directly
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Figure 2.2: Gravitational lensing is used to determine the distribution of mass
through the effect of the curvature of space-time due to the mass of the interme-
diate body. The schematic shows this effect and how a distant object would be
observed.

proportional to the mass of the intermediate object (see Figure .

Strong lensing occurs when the intermediate object is very large and the lensed
object is close by. The light from the object is able to take multiple paths, usually
causing a series of distorted arcs around the object (see Figure . Very rarely,
if the intermediate object it directly in the line-of-sight between the observer and
the distant object, a complete halo may be formed around the object, known as
an “Einstein Ring”.

The properties of the arced light (curvature, geometry, number of arcs, etc.)
are used to determine the mass distribution of the lensing object. The cosmolog-
ical constant can be constrained by determining the volume of space between the
observer and the source. Surveys of radio lensing galaxies give a result for the
energy density of the Universe (due to the cosmological constant) of 2, ~ 0.73.
If the properties of the source object vary with time, the images observed will
also vary. Due to the curvature of space-time around the lensing object, there are
time delays in the changes in the images that can be used to calculate the Hubble

constant, Hy, the value of which is consistent with independent measurements
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SLACSJ0737+3216

1 arcsec
o L —— s 1 £

Figure 2.3: Colour composite image of the SLACSJ0737+3216 gravitational lens
system, made from Hubble (blue and green) and Keck (red) data. The blue ring is
the tiny background galaxy, stretched by the gravitational pull of the foreground
lens galaxy at the centre of the image [6].
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[7]. The Cosmic Lens All Sky Survey (CLASS) has observed 22 lensing systems
in detail and, from determining their parameters, found results consistent with a

flat Universe and a cosmological constant with €, = 0.317037 [8].

2.2.3 Galactic Rotation Curves

Spiral galaxies, including our own galaxy, the Milky Way, and the nearby An-
dromeda galaxy, M31, consist of a central bulge and a thin disk. The disk is
stabilised against radial collapse by angular momentum conservation. By mea-
suring the orbital velocities of the disk using the red-shift of spectral lines, one
can determine the orbital velocity as a function of radius. The luminosity of
the galaxy falls exponentially with radius so it would be expected that most of
the galactic mass would be concentrated within a few scale-lengths of the central

bulge. If this were the case, the orbital velocity outside the central bulge would

Vrot (1) = 1/ w, (2.7)

where Gy is the universal gravitational constant and M is the central mass of the

follow Kepler’s third law:

galaxy contained within a radius, r. The velocity would then behave in analogy

~1/2 The galactic curves of around 1000 galaxies

to the Keplarian law v, ~ 1
have been collected through optical studies [0, 10} [1T].

Purely optical studies do not provide the most convincing evidence for un-
expected galactic rotation curves, (this arises from the study of the 21 cm radio
emission from galactic hydrogen), since optical observations only allow informa-
tion to be gathered out to about 2 - 4 scale lengths of the central bulge. The
emission of hydrogen lines can be observed to much greater radii. It is also possi-
ble to observe the ratios of the two CO transitions (wavelengths 2.6 and 1.3 mm)
out to large radii to trace the abundance of galactic hydrogen. Figure [2.4] shows
that, in almost all cases, the orbital velocity remains constant after a sharp rise
near the galactic centre.

The difference between observed and expected rotation curves can be at-
tributed to the gravitational effects of dark matter. A constant orbital velocity
can be obtained by placing the galaxy in a spherical ‘halo’ component so that the

total mass M(r) oc r and the density p(r) oc r=2 (see Figure [2.5).
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Figure 2.4: Rotation curves for many spiral galaxies obtained by several different
methods (optical, H, I, Ha and CO line spectroscopy). The rotation curves
generally show a steep rise in velocity close to the centre followed by a constant
velocity out to large radii [12].
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Figure 2.5: Rotation curve for the galaxy NGC 3198. The graph shows the
disk and dark matter halo contributions that would lead to the observed galactic
rotation curve [12].



2. THE DARK MATTER PROBLEM 15

2.2.4 Modified Newtonian Dynamics (“MOND”)

Modified Newtonian Dynamics (MOND) [I3] is an empirical theory proposed
to explain observed galactic rotation curves without the need for an unknown
dark matter component. It suggests that, at very small accelerations (a < cHy ~
7x1071% m s72), there may be deviations from Newtonian gravity. The Newtonian
acceleration, ay can be modified as ay — anp(a/ag), where ag is a natural
constant of rate 1.2 x 107% m s72. The function p ~ 1 for a > ag, and pu ~ a/ag
for a < ag. At large radii, the accelerations experienced by objects become
comparable to ag, and in a simple circular orbit, v = /G May. In effect, at large

radii, radial dependence vanishes and a flat velocity profile is seen.

When applied to the Coma cluster, however, MOND predicted a mass x4
greater than the actual mass. Two solutions were proposed where the first was
that ag is about 4x greater for clusters than for galaxies; the second was that
there is some kind of clumping of dark matter on the scale of a cluster but not on
the scale of a galaxy. Dark matter clumping would, effectively, rule out cold dark
matter but would be compatible with a ~ 2 eVe™2 neutrino [14]. The density of
these neutrinos would be €2, =~ 0.1. Having neutrinos as a dark matter candidate
would require a large component of additional baryonic dark matter but a 2 eVe =2
neutrino mass dark matter component has been ruled out to a > 95% confidence

limit [I5] using studies of large-scale structure.

An alternative version of MOND was hypothesised to apply to the evolution
of large-scale structure in the Universe [16] which was found to be compatible
with observations of the cosmic microwave background and type la supernovae.
Again, the mass deficit in the Universe was overcome by postulating a 2 eVc¢ ™2
neutrino with no need for dark matter. However, studies of strong lensing galaxies
show an incompatibility with this MOND framework without the inclusion of a

significant dark matter component.

A recent addition to the plethora of theorised dark matter alternatives is the
idea of Conformal Cyclical Cosmology (CCC) [17]. This theory proposes the
existence of a time before the big bang where events happen that directly effect
events within our universe. The theory proposes that these events would be
observed as concentric rings of anomalously low temperature variance. The paper

claims that such concentric formations have been observed with a confidence level
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Figure 2.6: An artist’s impression of the interaction in the Bullet cluster collision.
The interstellar gas collides, causing a shock front in the X-ray spectrum, whereas
the dark matter components and, indeed, galaxies pass by each other relatively
undisturbed.

of 60 in both the WMAP T7-year data and the BOOMERanG98 data. These

claims have been refuted by several sources [18, [19] 20].

An interesting feature in the Bullet cluster (see Figure was discovered
in 2006 [21I]. The Bullet cluster is a pair of galaxy clusters which have collided.
Observed in the visible spectrum, it is possible to see that the galaxies contained
in the two clusters pass by each other without being greatly altered, apart from
some gravitational slowing. The hot interstellar gas (which makes up the majority
of the ordinary, baryonic matter in the cluster) interacts electromagnetically,
causing the gases of both clusters to slow much more than the galaxies. In
a MOND framework, by definition, dark matter does not exist so it would be

reasonable to expect that the lensing mass of the cluster would follow the hot
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interstellar gas. However, weak lensing shows that the majority of the mass from
each of the two clusters passes through the mass of other and the majority of the
mass is located in the same region as the visible galaxies. This provides support
that the majority of mass in the cluster is in the form of non-interacting (or, at
least, weakly interacting) matter.

Recent studies of the collision dynamics of the bullet cluster have cast into
doubt the strength of this argument for dark matter. It has been argued that the
shock velocity observed is 23% higher than should be reasonably expected in a
cold dark matter scenario [22]. MOND is an idea that will evolve with time and,
while it is possible that supersymmetry and weakly interacting dark matter may
be discovered in the near future, it is important to remember that alternative

theories should be considered.

2.3 ACDM

ACDM is a model of the Universe built upon the Friedmann equations (see equa-
tion for one example) which gives a description of the history of the Universe.
Directly after the big bang, is a period known as the very early universe. Any
ideas concerning this period are purely speculative as accelerator experiments
have not been able to probe the energies needed to provide any significant in-
sight. It is proposed (after this very early period) that the Universe then moves
through three stages of force unification. The first of these is the Planck epoch
(up to 107%3 s after the big bang) where, if supersymmetry is correct, the four
fundamental forces of electromagnetism, gravitation and the weak and strong nu-
clear forces would all have the same strength. The Grand Unified Theory (GUT)
epoch follows (1073 s — 1073¢ s) in which gravitation begins to separate from
the fundamental gauge interactions: electromagnetism and the strong and weak
nuclear forces. After this (10736 s — 1072 s) comes the electroweak epoch in
which electromagnetism and the weak nuclear force are unified. The transition
from the GUT to electroweak epochs triggers a period of exponential expansion
in the Universe known as the inflationary epoch.

According to the ACDM model, dark energy is present as a property of space
itself, beginning immediately following the inflationary epoch (1073¢ s — 10732
s), as described by the equation of state. ACDM says nothing about the funda-
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Figure 2.7: A timeline of the evolution of the Universe, starting with the Big
Bang on the left and ending with the present day on the right. The transition
from an opaque to a transparent universe (the origin of the CMB) is represented
by the “Afterglow Light Pattern”.

mental physical origin of dark energy but it represents the energy density of a
flat universe. Observations indicate that it has existed for at least 9 billion years
[23].

The ACDM model also explains observations of large-scale structure (galaxies,
clusters, superclusters, etc.), and the primordial fluctuations in the early universe
(t < 380,000 yr) which were the seeds for the larger structure. As the temper-
ature of the Universe reached ~ 1 eV (3000 K), neutral H atoms were able to
form, photons decoupled from baryons and the Universe became transparent to
radiation for the first time. Today we see the remnants of this decoupling as
the Cosmic Microwave Background (CMB). Figure shows a graphic of the

evolution of the Universe from the Big Bang to the current epoch.
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2.3.1 The CMB

If the Universe evolved from an early, extremely high density stage, as proposed
in the Big Bang model, one would expect in this early phase (before galaxy or
star formation) a hot, dense, plasma where matter and radiation were in equi-
librium. The temperature and, hence, energy of the Universe would have been
high enough that electrons were dissociated from atomic nuclei. Photons would
undergo continuous Thomson scattering from the free electrons, resulting in an
opaque Universe. After the plasma cooled down (due to expansion) to ~ 10° K,
protons and electrons would form neutral hydrogen and the atoms would decouple
from the photons. At this point, the Universe would have become transparent.
The last scattering photons became a blackbody relic of the Big Bang, perme-
ating the Universe with radiation. As the Universe expanded and cooled, the
photons red-shifted to become the Cosmic Microwave Background radiation we

observe today.

It was in 1948 that George Gamow, Ralph Alpher and Robert Herman [24], 25]
hypothesised that, as a remnant of the primordial plasma, there should be a
thermal relic with a black-body spectrum at a temperature of the order of T" ~
3 — 10 K. It was only in 1964 that A.A. Penzias and R.W. Wilson discovered
an excess radio background at A = 7.35 ¢cm corresponding to a temperature of
2.5 - 4.5 K [3]. The most complete (if not the most recent) study of the CMB
comes from the Wilkinson Microwave Anisotropy Probe (WMAP) [26] 27] and
an all-sky map of temperature anisotropies is shown in Figure In this figure,

the temperature (and hence, density) fluctuations are obvious.

The temperature fluctuations are only ~ 100 pK. The local galactic plane
runs along the major axis of the plot and the Coma cluster is near to the top of
the minor axis. The average temperature is in excellent agreement with a single
temperature black-body spectrum of 2.725K. The results are the most precise
blackbody spectrum ever measured with a temperature of 2.725 £+ 0.002 K and

illustrate the predictions of the Big Bang theory to an extraordinary degree.

The detection of the CMB and its blackbody spectrum are the best evidence
for the Big Bang theory after the discovery of the expansion of the Universe
by Hubble. Measurements have shown the CMB to be isotropic to <100 uK,

supporting the idea of an homogeneous early universe. If the current epoch is
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considered, however, it is obvious that there are massive temperature and density
differences between galaxies, galaxy clusters and the space in between. In the
ACDM model, quantum fluctuations in the early universe can give rise to density
fluctuations (following inflation) manifested as over-densities that do not collapse
under the force of self gravity until they reach their own particle horizon and
every point within the region of over-density is in causal contact with every other
point. After this, the perturbation will collapse until it reaches the Jean’s length.
The radiation pressure will counteract gravity and acoustic oscillations will occur.
These are visible in the CMB power spectrum (see Figure as a series of peaks
with a higher multipole moment than the mean value.

The position of the first peak at [ &~ 100 gives the scale of the baryon acoustic
oscillations (rs = 147 & 2 Mpc [28]). The ratio of the heights of the first and
second acoustic peaks in Figure [2.9) is a sensitive probe of the baryon density
and gives €, = 0.0457 £+ 0.0018 for h = 0.7 [28]. Through the Saches-Wolfe
effect (gravitational redshift of CMB photons) WMAP is also sensitive to the
total matter density of the Universe, €2,,,. The result for one year of data (2, =
0.27£0.06 [28]) was, more recently, confirmed and improved with the analysis of a
five year dataset. This, in combination with large-scale structure and supernova
data give a result of Q,, = 0.279 £ 0.008 [29]. ,, combined with the current
best estimate of the age of the Universe, combine to give a value for the Hubble
constant of Hy = 7173 km s~' Mpc~'. This result is consistent with the value
determined using Type la supernovae observations (discussed in Section .

In summary, WMAP (and, shortly, Planck) gives the best estimate for €, £2,,
and Hy (see Figure 2.8). These values can be constrained (and indeed others
determined) by combining CMB data with observations of Type la supernovae
and large-scale structure. The current best values for the composition of the
Universe according to the ACDM model are summarised in Table 2.1}

2.3.2 Large-scale Structure

Rigorous constraints can be placed on the cosmological model as well as the dark
matter distribution by observation and analysis of large-scale structure in the
Universe. The structure of galaxies along with clusters of galaxies and, indeed,

the space between them, can be described using linear perturbation theory [31].
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Figure 2.8: WMAP 5-year measurement of temperature anisotropies in the CMB
[29]. The temperature difference between blue and red is ~ AT = 100uK and
corresponds to matter density fluctuations. These perturbations are thought to
have been caused by quantum fluctuations in the very early universe which were
amplified by inflation and became gravitational potential differences which led to
large-scale structure formation.

Parameter Value
Qior 1.005 &£ 0.006
O 0.046 &+ 0.002

Qm 0.279 £ 0.008
Qg 0.233 £ 0.007
Qp 0.721 £ 0.015
Q, < 0.013

h 0.71 £ 0.013

Table 2.1: The cosmological parameters estimated by the most recent astrophys-
ical observations.
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Figure 2.9: CMB angular power spectrum from WMAP 5-year data [30]. The
black line is the best fit ACDM model to the WMAP data.
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In effect, the small anisotropies in the early Universe can be described using
large-scale structures seen in the present epoch. If this idea is correct, evidence of
baryon acoustic oscillations should be detectable in large-scale structure similar to
those seen in the power spectrum of the CMB (Figure[2.9). The Sloan Digital Sky
Survey (SDSS) has mapped the positions and absolute luminosities of around 100
million celestial objects [32]. The survey measured the geometry of the Universe
through the distance-redshift relationship and through this, it was possible to
extract the oscillatory features in the power spectrum.

Approximately 47,000 luminous red galaxies were used for this analysis [33],
with a typical redshift of z = 0.37. Redshift is a unit of astrophysical distance
related to the recession velocity of distant objects. Redshift is determined by
observations electromagnetic radiation emitted from distant objects. Due to the
Doppler effect, the wavelengths of expected spectral features are shifted in pro-
portion to the recession velocity of the object relative to the observer. Redshift

(2) is calculated as follows:

o )\ - >\0bs
= o
where \ is the expected wavelength of the spectral feature studied and Ay, is the

z

(2.8)

observed wavelength.

Some evidence of baryon acoustic oscillation was seen (at a level of 3.40) at
a scale of ~ 100 Mpc which is in agreement with the WMAP value quoted in
Section [2.3.1] The amplitude of the detected oscillation is small enough that,
combined with using a ACDM model, it is not compatible with a large baryonic
fraction of the total mass of the Universe (),,. This means that a large dark
matter component is required in the early universe (z ~ 1100) to account for the

observed large-scale structure in the current epoch.

2.3.3 Big Bang Nucleosynthesis

As described in Section [2.2.1] it is clear that luminous matter only accounts
for a small fraction of the total amount of matter in the Universe. Big Bang
Nucleosynthesis (BBN) studies can put constraints on the abundances of elements
in the primordial universe and, in turn, put constraints on the overall baryonic

component of the matter mass. It is also possible to determine if the non-luminous
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component is hidden in the form of massive compact halo objects (MACHOs, see
Section [2.4.1)).

At t < 0.1 s after the Big Bang, the neutron:proton ratio was maintained
in thermal equilibrium. This was due to the Universe being sufficiently hot and

dense. Between 0.1 s and 1 s, the ratio followed the form:

n mp—m
—=e T, (2.9)
p
where n and p are the number densities of neutrons an protons, respectively. The
masses of the neutron and proton are given by m,, and m, respectively and 7" is

the average temperature of the Universe at that epoch.

At ~ 1 s, the temperature fell below the mass difference of the neutron and
the proton and the equilibrium reaction rate became lower than the rate of the
expansion of the Universe. This meant that the neutron:proton ratio froze out
at about 1:6, a ratio which dropped slowly due to neutron decay. The half-life of
the neutron is &~ 615 s and, without further reactions, the Universe today would

be made entirely of hydrogen.

At t ~ 200 s, BBN began. The reaction that preserves the neutron is deuteron
formation (p + n — d + 7). At 200s, the temperature of the Universe was
T ~ 80 keV. At temperatures higher than this, the fusion reaction is in thermal
equilibrium (p + n = d + 7) meaning deuterons photo-dissociate to a proton and
a neutron as quickly as they are produced. Once the temperature had dropped
to < 80 keV, the production of 3He, *He and 7Li could follow.

It is possible to estimate the abundances of elements in the Universe today by
using calculations of nucleosynthesis at these early times [34]. The abundances
are constrained by comparing predicted values with measured values (see Figure
2.10). Studies of deuterium absorption lines in quasar spectra from hydrogen
clouds between the Earth and the quasar give a result of €2, = 0.038 £0.002. The
primordial abundances of *He and 7Li relative to H imply Q, = 0.023 £ 0.007.
These two values, combined with the WMAP value given in Section provide
compelling evidence that, not only is there a lack of baryonic matter needed to
account for the total mass content of the Universe, but there is also not enough

luminous matter to account for the total baryonic mass content of the Universe.
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Figure 2.10: The curves show several elemental abundances relative to hydrogen
as a function of the baryon fraction of the Universe [35]
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2.3.4 Type Ia Supernovae

Type Ia supernovae occur in binary systems with a white dwarf and a companion
red giant or main sequence star. They occur when the white dwarf has a mass <
1.4 Mg, and accretes material from the companion. When the white dwarf mass
exceeds the Chandrasekhar limit of 1.4 Mg, its electron degeneracy pressure is no
longer sufficient to prevent gravitational collapse and the white dwarf undergoes
a thermo-nuclear explosion. The fact that type Ia supernovae all occur with the
same mass means that they can be considered as “standard candles”, meaning
that each supernova has broadly the same intensity and luminosity. By studying
type la supernovae to high redshift values, their apparent magnitudes can be used
as a measure of distance and expansion rate over cosmological distances [36]. A
deviation in the Hubble law will be dependent on a deceleration parameter g,
which is related to €2, and Q4 by:

qo = _% = QTm — Qa(to).

(2.10)

For these large redshifts, the luminosity depends on the matter and energy
density composition of the Universe. It is therefore possible to measure the ap-
parent luminosities of supernovae as a function of redshift and plot contours for
varying matter/energy compositions. The High-Z Supernova Search (HZT) [37]
and the Supernova Cosmology Project (SCP) [38] survey type Ia supernovae be-
tween redshift z = 0.01 — 1.7. Results from these projects, combined with values
of Hy from CMB studies, imply that the expansion of the Universe is increasing
with time due to a non-zero A energy contribution. In effect, distant supernovae
are further away than expected [39, [40]. The best fit to the SCP data shows a
mass contribution of €2, ~ 0.25 and an energy contribution of Q, ~ 0.75 (see
Figure . The HZT finds (assuming Qi = 1) that the mass contribution
Q= 0.29 £ 0.05 and energy contribution 24 = 0.71 £ 0.05.

Combining the WMAP results with these results gives an overall estimate for
the dark energy content of the Universe of 2y = 0.72 4 0.04.
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2.3.5 Concordance Cosmology

It is possible to combine the ideas proposed in sections - to derive
an overall idea of the constraints that can be placed on the mass/energy ratio
in the Universe. Figure shows the 1, 2 and 30 allowed regions in 2, — Q
parameter space with constraints placed by the ideas discussed in Sections [2.3.1
- Looking deeper at how the matter component is composed, there is a
wealth of evidence that a large proportion of the mass of the Universe is non-
luminous and also non-baryonic. The next section of this thesis will discuss the

possible origin of this matter.

2.4 Dark Matter Candidates

2.4.1 MACHOs

Massive Compact Halo Objects (MACHOs) are any astrophysical objects that
could be used to explain the apparent presence of dark matter in galactic halos.
Examples of MACHOs are white or red dwarfs, neutron stars and stellar black
holes or even unassociated planets (outside a planetary system). MACHOs can
be detected when they pass in front of a luminous object. The gravitational po-
tential of the object will bend the light causing the object to appear brighter.
This phenomenon is called microlensing and is exactly the same process as grav-
itational lensing described in Section [2.2.2]

The possibility of the missing mass problem being solved by the presence of
large non-luminous but baryonic objects has been ruled out most conclusively in
two different ways. Big Bang nucleosynthesis constraints on the abundance of
baryonic matter in the early Universe means there cannot be enough baryonic
matter in the present epoch to explain the missing mass [42]. The other method
by which MACHOs have been ruled out as candidate dark matter is through
gravitational lensing as mentioned above. The abundance of MACHOs found by

this method is too sparse to account for the missing mass [43].
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No Big Bang

Figure 2.12: The 1, 2 and 30 allowed regions in €),, — {24 parameter space.
The allowed regions are based on type Ia supernovae constraints (blue), large-
scale structure (BAO) constraints (green) and CMB constraints (orange). The
combined allowed region is shaded grey [41].
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2.4.2 Neutrinos

If dark matter was able to interact via the strong or electromagnetic forces, it
is reasonable to expect that dark matter would have bound to neutrons and
protons when the temperature of the Universe fell below the energy needed for
quark confinement. This would manifest itself in anomalous isotopes of normal
matter, which have not been observed [44]. This being the case, the weak nuclear
force is the only force, other than gravitation, through which dark matter can
interact. Within the the standard model framework, the only particle that will
fit this limitation is the neutrino.

It is possible to calculate the contribution of neutrinos to the total mass of

the Universe (2, as a function of their combined masses ¥m,,:

G

Q, =——
3H2

n,Xm,,, (2.11)

where n, is the number density of neutrinos in the current epoch. When neu-
trinos decoupled from other particles, at time = 1 second after the Big Bang,
the Universe still had a temperature ~ 1 MeV. Light neutrinos with mass < 1
MeV are, therefore, relativistic. These relativistic neutrinos are referred to as
“hot dark matter”. The total density contribution for a Dirac neutrino (half for

a Majorana neutrino) can be written [45]:

Eml’i -2

T 93 eV

This assumes a neutrino number density of n, = 113 cm™ [46, 31].

Q, (2.12)

The experimental limits on the (electron) neutrino mass are dominated by ex-
periments that determine the kinematics of triton decay $H —3 H +e~ + 1, which
give a current upper limit of m,, < 2.3 eV [47]. Next generation experiments are
expected to improve on this upper limit [48].

Astrophysical observations can be used to place limits on the mass of all
neutrinos. The current best limit is set as ¥m,, < 0.65 eV [49]. With masses
this small, neutrinos produced at the big bang would be relativistic and would,
therefore, damp out the growth of density perturbations needed for large-scale
structure evolution. Dark matter must, therefore, be produced non-thermally

and be non-relativistic at the point of decoupling [50]. Simulations have been
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run that use various starting points for dark matter scenarios and it is a cold

dark matter framework that leads to the formation of large-scale structure as

seen today (see Figure [2.13)).

2.4.3 Axions

Axions were proposed to explain the lack of CP violation in the strong interaction
[52, 53]. It was originally proposed that axions would interact strongly with
matter, but no evidence of this has been seen. New models for axions have been
proposed to circumvent the limits set by dark matter detectors that have not yet
been able to detect them [54) 55] 56 [57].

Axions are produced by two distinct mechanisms. At the point when free
quarks are bound into hadrons (the QCD phase transition), a Bose-Einstein con-
densate of axions is produced. These particles would behave as cold dark matter.
Axions can also be created through the decay of strings formed at the so-called
“Peccei-Quinn” phase transition [58, 59] and this is thought to be the dominant

mechanism for axion production as long as inflation occurs after this point.

The properties of axions are set by the mass m,. The smaller the mass,
the more weakly an axion couples to protons and electrons. Many astrophysical
arguments come together to suggest that the mass of the axion is < 1072 eV [60].
If it is required that the Universe should not be “over-closed”, then Q,h% < 1. In
this case, m, > 1 peV and if strings play an important role then the limit, set
by cosmology, is closer to 1 meV. This means that there is only a small window
within which axions can exist of 1073 eV < m, < 1072 eV [60].

Through the addition of extra dimensions, so-called “Kaluza-Klein” axions
can have masses of up to 12 keV and this gives an excellent discovery potential
[61]. Axions provide a potential and interesting candidate for cold dark matter.
With such small masses, however, axions alone cannot form the dominant matter
content of the Universe [62]. Axions are, potentially, discoverable through their
weak coupling to electromagnetism [63]. It is possible that the axions could reso-
nantly decay to two photons in the presence of a strong magnetic field and efforts
have been made to look for this signature decay [64] but no positive discovery

has yet been made.
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Figure 2.13: Results of the millennium simulation, run at the Durham University
Centre for Computational Cosmology [51]. The remarkable similarity between
the 2dFGRS (blue) and simulation (red) results can be seen.
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Particle ~Symbol Spin Superparticle Symbol Spin

Quark q 1/2  Squark q 0
Electron e 1/2  Selectron é 0
Muon i 1/2  Smuon i 0
Tau T 1/2  Stau T 0
W W 1 Wino W 1/2
v/ Z 1 Zino 7 1/2
Photon 1 Photino o 1/2
Gluon g 1 Gluino g 1/2
Higgs H 0  Higgsino H 1/2

Table 2.2: The particles of the standard model and their superpartners.

2.4.4 Supersymmetry and WIMPs as DM candidates
2.4.4.1 Supersymmetry

In particle physics, supersymmetry (SUSY) is a symmetry that relates standard
model particles of one spin to other particles that differ by half a unit of spin and
are known as superpartners. The theory of SUSY, if it is an unbroken symmetry,
states that for every type of boson, there exists a corresponding type of fermion
with the same mass and quantum numbers. Since no evidence of supersymmetric
particles has been seen in particle accelerators and a plethora of standard model
particles have, it is expected that SUSY is, in-fact, a broken symmetry. This
allows superpartners of standard model particles to have much higher masses.
Standard model bosons (B) are related to their fermion (F') superpartners

using the following transformations:

Qo |[F) = [B) and Qq |B) = [F), (2.13)

where (), are spin-1/2 Hermitian generators. For fermion — boson translations,
spin goes from 1/2 — 0. For boson — fermion translations spin goes from 1
(except the Higgs boson, which has spin 0) — 1/2 as shown in Table 2.2]

SUSY is a useful tool for solving the so-called “hierarchy problem” in particle
physics. In-fact, it was an attempt to solve the hierarchy problem that led to the
development of SUSY in the first place. In basic terms, the hierarchy problem

asks the question why the weak force is 1032 times stronger than gravity. Both
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Figure 2.14: One-loop quantum corrections to the Higgs mass parameter Am?
due to (a) a Dirac fermion f, and (b) a scalar S.

the weak force and gravity are determined by constants of nature, the Fermi cou-
pling constant (Gr) and Newton’s constant (G) respectively. The question then
arises as to why the Higgs mass is so much lighter than the Planck mass (grand
unification energy). Given the large quantum contributions to the Higgs boson
mass, one would expect its mass to be close to the Planck mass. This disparity

is only possible through some incredibly detailed fine tuning of corrections.

SUSY is the most popular theory for solving the hierarchy problem. It allows
the Higgs mass to avoid large quantum corrections by removing the power-law
divergences of the radiative corrections to the Higgs mass. Figure shows that

quantum corrections due to scalar particles cancel with those due to fermions.

Additional motivation comes from the fact that the unification of forces at
high energies is expected and vital for a grand unified theory (GUT). A GUT is
a theory in which (at high enough energies) the three gauge interactions, elec-
tromagnetic, strong and weak, merge into one single interaction with a single
coupling constant. In the standard model, the electromagnetic and weak cou-
pling constants converge at ~ 100 GeV, but the strong force does not. Figure
shows the running of the three coupling constants for the electromagnetic,
weak and strong forces with and without a SUSY component. When a SUSY

component is assumed, the three forces unify at the 10'® GeV scale [45].

The Minimal Supersymmetric Standard Model (MSSM), is an extension to

the Standard Model that attempts to add as few new parameters as possible. In
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the MSSM, the higgsino and gauginos are weak eigenstates, meaning that they
are able to mix to form mass eigenstates that are superpartners of the neutral
Higgs bosons with gauge bosons. Four combinations are formed and these are
known as ‘neutralinos’.

One of the problems with MSSM is that the new couplings in the theory
can cause lepton and baryon number violating interactions Lepton and baryon
number conservation has been tested very precisely by experimentation and the
non-conservation would be visible on all energy scales. To solve this problem, a
new concept is introduced called R-parity. R-parity is described by the following
equation [45]:

R — (_1)2j+3B+L’ (214>

where spin is denoted j, baryon number B and lepton number L. Standard model
particles have R = 1 and supersymmetric particles R = —1. With R-parity con-
served, the lightest supersymmetric particle (LSP) cannot decay. Annihilation
and creation of supersymmetric particles can only occur in pairs and supersym-
metric particles will decay to lighter supersymmetric particles until they reach
the LSP (see Figure . The LSP is stable, colourless and has zero charge,

making it an ideal candidate for dark matter.

2.4.4.2 WIMPs as Dark Matter

Weakly Interacting Massive Particle (WIMP) is a phrase coined to cover a variety
of possible Dark Matter candidates including (but not limited to) LSP candidates
such as neutralinos [66] and sneutrinos [62]. For most of the MSSM parameter
space, however, the lightest of the four neutralino eigenstates, x9, is the LSP
and this will, henceforth, be referred to as the WIMP. Limits on the mass of the
WIMP have been set by accelerators and CMB studies. Accelerators give a lower
mass limit of 37 GeVc™? [67] (limited by the maximum centre of mass collision
energies obtained and for coupling to W/Z bosons, not photons) and WMAP
gives an upper limit of 500 GeVc™2 [68] (determined by measurements of €2,,).
In many models, the WIMP is a Majorana particle. This means that it is
a spin fracl2 particle that is identical to it’s anti-particle and is able to self-

annihilate (xy = x). During the Big Bang, WIMPs were produced along with
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Figure 2.16: potential decay mechanism for the discovery of SUSY at the LHC.
the final decay branches see two sleptons each decaying to a lepton-neutralino
pair [65].
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all other SUSY particles. Whilst the temperature of the Universe was > m,,
WIMPs were in thermal equilibrium with other particles. The production of
WIMPs occurred through, for example, lepton annihilation, Il — yx (where [
signifies a lepton), and annihilation of WIMPs occurred through, e.g. xx — 1.
As the Universe expanded, it reached a scale where the density of WIMPs
fell to a point where the probability of annihilation became close to zero. At
this point, the cosmological abundance of WIMPs “froze out” to the abundance
seen in the present epoch, as shown in Figure 2.17] The present mass-density
parameter for the WIMP can be calculated quite easily, given the critical density
of the Universe as p. ~ 107°h% GeV cm™3 [45]:
Qh? = My 3 X 10727 cm? s_l‘ (2.15)
Pe <UAU>

The WIMP annihilation reation rate can be estimated as (g4v) ~ 1072 c¢m? s7!

which leads to a value of €2, of between 0.06 and 0.35. This is in agreement with
the missing mass value of Q,; = 0.233 £ 0.007 given in Table [2.1]

The fact that the value for €, derived through particle physics and the value
for €4 derived through cosmology are in such good agreement is remarkable. This
agreement provides the strongest evidence that the missing mass in the Universe

can be described most elegantly using a cold dark matter scenario.

2.5 Summary

In summary, the evidence for the presence of a significant dark matter compo-
nent in the mass of the Universe is almost, though not entirely, conclusive. Com-
plementary studies in both cosmology and particle physics propose a scenario
whereby luminous mass only contributes a small fraction of the mass-energy con-
tent of the Universe. On a cosmological scale, these studies suggest that the
mass of the Universe is dominated by non-luminous, non-baryonic matter which
is thought to be cold. For particle physics, the presence of this dark matter may
solve the mass-hierarchy problem and help to unify the fundamental forces of
nature at the GUT scale.
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Chapter 3

Detection of Dark Matter and
the ZEPLIN-—III Instrument

The preceding chapter discussed the evidence supporting the postulate that a non-
luminous, non-baryonic component comprises ~23 % of the mass-energy budget
of the Universe. The chapter also presented evidence that the dominant form
of this matter is a weakly interacting particle with a mass between 10 and 1000
GeVe2. If this is the case, there are two major pathways to the discovery of this
particle: direct and indirect detection. Supersymmetry may be discovered at the
LHC, but these data alone could not identify a supersymmetric particle as the

dominant galactic dark matter component.

3.1 Indirect Detection Techniques

Indirect dark matter detectors are designed to detect the products of WIMP
annihilation. This is dependent on the Majorana mechanism of WIMP self-
annihilation to produce 7-rays and particle-antiparticle pairs. The rate of an-
nihilation seen is dependent on the square of the density of dark matter. This
being the case, indirect searches concentrate on areas of high mass such as the
Galactic centre.

If WIMPs are Majorana particles, it is possible for them to annihilate to form
standard model particles. Amongst these particles are anti-protons and positrons

which will have an energy spectrum that extends to a maximum equivalent to the
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mass of the annihilating particles. Many experiments exploit the fact that the
annihilation positrons will, themselves, annihilate with electrons, emitting a tell-
tale 511 keV ~-ray signature (equal to the rest energy of the electron/positron).
There are, currently, several experiments looking for this signature, including
EGRET [69], FERMI [70], INTEGRAL [71] and MAGIC [72].

Anti-particles can also be produced through the well known interactions be-
tween cosmic rays and the interstellar medium. These interactions produce a
cosmic-ray background spectrum with an energy-dependent positron fraction.
This spectrum is fairly well known and deviations from this could provide evi-
dence for dark matter annihilation. However, any excess could also be due to
positron emission from pulsars, so there would be difficulty claiming a detection.

The PAMELA [73] and ATIC [74] experiments have recently observed a
positron excess above the expected model for the background (see Figure
for PAMELA results). The two collaborations have stated that an excess of
positrons has been seen that can be attributed to either an astrophysical source
or dark matter annihilation products. Some theoreticians have seized on this
result, postulating a number of exotic theories that tie this result into a positive
detection of dark matter annihilation. However, alternative models have been

proposed in which the excess flux is consistent with well known pulsars [75].

3.2 Direct Detection Techniques

As discussed in Section [2.4.4.2] the favoured dark matter model gives a neutralino
as the lightest supersymmetric particle that is able to interact weakly with matter.
The opportunity to both detect the particle that provides the biggest contribution
to the missing mass problem, and to give the first experimental evidence for
particle physics beyond the standard model, means that many experiments have
been devised to perform a direct detection of WIMPs.

A WIMP will either couple to the spin of a target nucleus or to its mass.
These two cases are generally referred to as spin-dependent and spin-independent
scattering respectively. Spin-independent scattering benefits from the coherent
summation of the scattering amplitudes from each nucleon in the nucleus. Spin-
dependent scattering, since paired nucleon spins sum to zero, is only possible on

target nuclei with an unpaired nucleon. The particle shell model assumes that
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the net nuclear spin is due to the spin of the single unpaired protons or neutrons
and, thus, vanishes for even nuclei. The WIMP may also couple to a combination
of both the mass and the spin of the target nucleus.

Due to having a relatively large mass it is expected that WIMPs will interact
via a WIMP-nuclear recoil. In the absence of excited states of the WIMP or the
target nuclei at the low energies accessible due to the kinetic energy of the WIMP,
this interaction is expected to be elastic and, as such, the energy transfer can be
calculated via simple mechanics. The energy transfer spectrum is dependent on
three main factors: the mass of the WIMP, the mass of the target material and
the velocity of the WIMP. The dependence of rate on WIMP mass is shown in
Figures 3.2

The expected event rate can be calculated to first approximation quite easily
using the following equation:

R x NT&cr (v), (3.1)
My
where R is the expected rate, Ny the number of target nuclei, p, the local dark
matter number density, m, the WIMP mass, o the WIMP-nuclear interaction
cross section and (v) the average WIMP velocity.

This, however, is a rather simplified view as there are several astrophysical and

nuclear physics factors that need to be taken into account. The energy dependent

differential rate is given as:

dR Lo d

N 2
dER x mX dER <U>, (3 )

which is usually described in terms of differential rate unit (dru) which is defined
as counts/kg/keV /day. The average WIMP velocity is described by:

(v) = / o, (3.3)

VUmin

and, thus:

dR Vescape
iEn x NT:;—[;U/ vf(v)dv. (3.4)

Umin

The upper limit on the WIMP velocity is, formally, infinite but, in practice,
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the escape velocity from the Galactic halo is used where 498 km s™! < Vescape <
608 km s~! [76]. The parameter vy, defines the smallest velocity needed to
produce a detectable energy (where EF%* is the maximum recoil energy possible

for the minimum velocity vy,;,) and is given by:

ER¥my
Vmnin = RQT (3.5)
where my is the mass of the target nucleus and p is the reduced mass of the
WIMP-target nucleus system. For a head on collision, with my = m, = 100
GeVe? and demanding a minimum nuclear recoil energy of 50 keV, a minimum
WIMP velocity of ~ 220 km s™! is necessary.
Assuming a Maxwellian dark matter velocity distribution, the integral term

in equation |3.4] can be rewritten:

Vescape 2
/ vf(v)dv o exp (7) : (3.6)

0

Since the WIMP velocity is related to the recoil energy Er (equation , we
find that the differential event rate for WIMPs falls exponentially with Fg:

dR R —Fgr
_dER = k'_Eb exp ( k’EO ) 5 (37)

where R is the total rate, Ey = m,v3/2 and k = 4u/(m, + my).

While equation [3.9) provides a good basis for the differential dark matter rate,
there are two important corrections which must be considered. The first is a
correction for the Earth’s velocity relative to the galactic frame and the second
corrects for the structure of the target nucleus.

To make a correction to the differential rate due to the velocity of the Earth,
one must consider three velocities. v, g is the WIMP velocity in the Earth (or
detector) frame, v, ¢ is the WIMP velocity in the Galactic frame and v ¢ is the
Earth’s velocity in the Galactic frame of reference. Unsurprisingly, simple vector
subtraction gives us a value for ¥, p = 0, ¢ — Up¢ = 220 km s~ [77, [78].

The second correction is due to the form-factor of the target nucleus. The
form-factor describes the spatial extent of a nucleus. The scattering of electrons

from a point-like nucleus is described via Rutherford scattering but this is only
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Figure 3.3: Form-factor measurements for several potential detector materials.

For Xe, the characteristic diffraction minima can be seen at nuclear recoil energies
of 100 keV and ~300 keV.

correct for small values of momentum transfer (¢). For large values of ¢, the

(;z_g) - (3_;) |F@, (33)

where F'(g?) is the Fourier transform of the (charge or mass) nuclear density, o

cross-sections become:

is the scattering cross-section and €2 is the scattering angle.

As seen in Figure [3.3] the form-factor drops more slowly for lighter target
nuclei, but this fact must also be combined with the results seen in Figure [3.4]
where it can be seen that lighter target nuclei expect a lower initial rate [79].
Figure [3.3] also reveals another important factor in dark matter detection. It is
essential for detectors to have very low thresholds to take advantage of F'(¢)* — 1

at low recoil energies.

Having taken the Earth velocity and form-factor into account, the differential
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Figure 3.4: Expected event rate for several species of detector material assuming
a WIMP mass of 100 GeVc 2 [85]. The solid lines represent the differential rate
expected per unit energy and the dashed lines represent the integrated rate over
all energies.

rate becomes:
dR R

—Ep
N g .
dE; _ kE, (Er)exp ( kE, ) (3.9)

which shows the multiplicative nature of the form-factor correction. The differ-
ential rate can, therefore, be expected to drop as momentum transfer increases
with minima at 100 keV and ~300 keV for a Xe target.

There are numerous experiments world-wide which use various different de-
tection techniques and detector media [80]. The current world leading results
have been performed using Xe and Ge detection systems [81, [82], 83 [84].

Figure|3.4|shows the expected recoil spectra for various detector material given
a WIMP with mass 100 GeVe=2 and a WIMP-nuclear cross-section of OxN =
2 x 1077 pb. If Ge is taken as an example in this plot, it can be seen that the
integrated rate above a 10 keV threshold is ~ 5 x 1072 kg=! day~!. This is

equivalent to a rate of 1 interaction per kilogram every 20 days.
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Due to the extremely low event rates expected in dark matter detection, it
is vital that all sources of background are removed. One of the largest poten-
tial sources of background is cosmic-rays. Any surface-based detector would be
swamped with cosmic-rays and cosmic-ray induced backgrounds. This being the
case, rare event physics (not just dark matter detection) is consigned to some of
the deepest laboratories on earth. There are two possible methods for achieving
the required depth. One is to base a laboratory in a deep mine and the other is
to base a laboratory within a mountain. Each technique can provide thousands
of metres of rock protection, often described using the units m.w.e. or metres of
water equivalent. Reviews of current underground facilities are given in [86] and
[87] and a plot of some of the larger facilities and their depth (m.w.e.) is given
in Figure 3.5

It is also essential that the detector itself, along with its shielding, must be
constructed using low background materials (this is discussed in depth in Chapter
. Finally, even the rock surrounding the facility can introduce unwanted levels
of background into the detector, whether it be from rock-borne radioactivity or
air-borne from radon. These additional backgrounds are minimised through the
installation of shielding and the use of other techniques.

In direct dark matter detection, there are three different energy deposition
channels that are used for detection: scintillation, ionisation and lattice vibra-
tions. It is common (though not universal) practice to use two of these channels
as an aid to discrimination between the nuclear recoils associated with a WIMP-
nuclear event and electron recoils. Figure 3.6/ shows the three energy deposition
channels and the experiments that use one or two of them as methods for WIMP

detection.

3.3 The ZEPLIN-III Detector

ZEPLIN-III (ZonEd Proportional scintillation in LIquid Noble gases) is a third
generation detector designed, built and run in the UK. The ZEPLIN project was
initially devised under the umbrella of the UKDMC (UK Dark Matter Collabo-
ration) which included Imperial College London, the Rutherford Appleton Lab-
oratory, University of Sheffield, Royal Holloway, Birkbeck College, Queen Mary
London, Nottingham University and the University of Edinburgh. Initially, the
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Figure 3.5: The muon intensity (number of muons per square metre per year) as a
function of depth in some of the largest underground laboratories. The colouring
of the data points gives an idea of the depth of the facilities in terms of rock
overburden.



3. DETECTION OF DARK MATTER AND THE ZEPLIN-III
INSTRUMENT 51

Figure 3.6: The three energy deposition channels for dark matter nuclear recoils:
scintillation, ionisation and heat. A number of experiments that take advantage
of the different channels are shown for comparison.
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collaboration concentrated on using Nal as a detector material [88], leading to
the NATIAD experiment (an array of Nal detectors) that gave published results
in 2003 [89] and 2005 [90].

The inclusion of international collaborators (UCLA, Texas A&M, University
of Rochester, LIP-Coimbra, ITEP Moscow) brought the knowledge, equipment
and finance needed to allow the development of more complex detection systems
with greater WIMP sensitivity. This marked the beginning of the use of liquid Xe
as a detector material [91] along with (including collaboration with Occidental
College, Los Angeles) the investigation of directional dark matter signals using
the low pressure DRIFT detectors [92, [93].

ZEPLIN-I was the first of the three ZEPLIN detectors and was a single phase
(scintillation only) detector which used pulse shape analysis to discriminate be-
tween nuclear recoils and electron recoils. It had a liquid Xe mass of 5 kg and
operated from mid-2001 until late 2002. ZEPLIN-I set a world leading limit on
the WIMP-nuclear cross section of 1.1 x 107¢ pb for an 80 GeVe=2 WIMP mass
[94].

ZEPLIN-II was a dual phase (scintillation and ionisation) detector with a
liquid Xe mass of 31 kg. ZEPLIN-II built upon R&D performed at CERN [05]
96, 97], Imperial College London [98] and ITEP [99]. The whole system was
meticulously designed and simulated [100} 10T}, 102] resulting in an expected
background of < 40 nuclear recoil events/year. However, when the data was
analysed, it was found that there was much more background than expected.
This was found to be due to radon progeny introduced at one of the initial
purification stages. Although this had an effect on the final result, a strong limit
of 6.6 x 1077 pb [103] was published in 2007.

At the end of ZEPLIN-II, the UKDMC ceased to exist and the ZEPLIN
programme was taken forward by the ZEPLIN-III collaboration which includes
groups from Imperial College London, the STFC Rutherford Appleton Labora-
tory, the University of Edinburgh, LIP-Coimbra and ITEP Moscow. The author
joined the collaboration at this point, so this thesis will concentrate on the re-
search and work performed for, and results from, the ZEPLIN-III project, in-

cluding design, simulation, calibration and data analysis.
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Figure 3.7: Close up view of the ZEPLIN-III target volume. The PMTs, anode,
cathode and PMT grid are labelled. In addition to this, the gas and liquid phases
of the target vessel are shown.

3.4 The ZEPLIN-III Detector

3.4.1 The Target Vessel

ZEPLIN-III was designed in parallel to ZEPLIN-II. It represented a step away
from the ZEPLIN-II design which used a reasonably deep liquid phase (total
liquid/gas thickness of 14 cm) and was viewed using PMTs above the volume.
ZEPLIN-III, on the other hand, uses a shallow geometry in the liquid phase
(total liquid/gas thickness of 40 mm) and the PMTs are submerged within the
liquid, viewing the active volume from below. The PMTs were submerged in the
liquid to allow a boost in light yield of the instrument which acts to lower the
energy threshold for detection. This high light yield is extremely important as
the expected energy spectrum for WIMP-nuclear scattering falls exponentially

at low energies. A schematic view of the ZEPLIN-III target vessel is shown in
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Figure [3.7]

The electric field in the liquid and gas phase of ZEPLIN-III can be calculated
fairly easily. All that is needed is the liquid level (or gas thickness) and the relative
permittivity of the gas and liquid phases. For the liquid phase, the electric field

is calculated as follows:

%
(2 xdy) +dr

where ¢; and ¢, are the relative permittivities in the liquid and gas phases, respec-

E, =

(3.10)

tively, and d; and d, are the thicknesses of the liquid and gas phases, respectively.
Here V' is the potential difference between the cathode and anode used to define
the electric field across the Xe volume. The field in the gas is, roughly, double
that in the liquid:

E, =< xE. (3.11)
€9

Unlike other two-phase detection systems, the drift field in ZEPLIN-III is
attained by applying a voltage to a wire grid cathode and an anode mirror (the
mirror allows light reflection to boost the ZEPLIN-III light yield further) without
the need for a dedicated charge extraction grid or field shaping rings [104]. During
the second science run (see Chapter 7)), ZEPLIN-III operated using a liquid
thickness of ~36 mm, a gas thickness of ~4 mm and an anode-cathode potential
difference of 15 kV. Equations and yield an electric field in the liquid
phase of 3.42 kV/cm and an electric field in the gas phase of 6.69 kV /cm. In the
first science run, ZEPLIN-III operated with an electric field of 3.88 kV/cm in
the liquid phase and 7.60 kV /cm in the gas phase. The geometry of ZEPLIN-III
allows a very uniform electric field across the active region. In addition to the
cathode and anode, a second grid, the PMT grid, is found below the cathode
grid. The PMT grid is held at the same voltage as the PMTs and is designed to
apply a reverse electric field (relative to the active volume) as an aid to rejection
of low energy background radiation from the PMTs. Background from the PMTs
would produce scintillation signals but electrons would not be able to drift to the
liquid surface. This would give rise to signals that contained a primary but no

secondary signal. Figure[3.8/shows a simulation of the electric field in ZEPLIN-III
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Figure 3.8: A simulation of the electric field found in the active volume in
ZEPLIN-IIT demonstrating the excellent uniformity in the central region. The
liquid phase (blue) is at 3.88 kV/cm and the gas phase (green) is at 7.60 kV /cm.
The yellow region, directly below the liquid phase, is the reverse field region.
Edge effects due to detector surfaces can be observed, highlighting the need for
fiducialisation in analysis [105].

and highlights the uniformity:.

In order to reduce the levels of background in the detector, the vacuum and
target vessels are constructed using oxygen free copper. To form the dome, the
copper has been electron beam welded. This is a process whereby a beam of high
velocity electrons is used to melt separate pieces of the copper material together.
This allows a very clean weld with none of the (relatively) radioactive deposits
found in standard welding. Other components used in the construction of the de-
tector have been radio-assayed in order to ascertain and minimise their individual
contributions to the radiation budget for ZEPLIN-III (see Chapter || for a full
description of how the radiation budget is calculated). During the first science
run of ZEPLIN-III, 31 2-inch low background PMTs (ETL D730/9829Q) were
used. The PMT array provided excellent 3D position reconstruction which helps
to aid the rejection of background from surfaces and multiply scattered events
(remembering that WIMPs are not expected to multiply scatter due to their low
interaction cross-section). The performance of each PMT was characterised with
low temperature tests carried out at Imperial College [106], before the array was
installed into the detector. The PMTs are surrounded by a tight fitting PMT
screen which aids the reduction of PMT crosstalk and reduces the possibility of
scintillation occurring in volumes between the PMTs being detected. The PMT
array is shown in Figure ??7. Also shown in Figure [3.9] are the numerical values

for each pmt.
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Figure 3.9: The ZEPLIN-III PMT array shown photographically (left) and graph-
ically (right). The copper PMT screen which acts to isolate each PMT from its
neighbours is seen in the photograph.

In the first science run, the PMT dominated background in the detector. This
being the case, an additional set of ultra-low background PMTs was developed
in partnership with ETEL (Electron Tube Enterprises Ltd) designed to reduce
the overall background in ZEPLIN-III by a factor of at least 10. Individual
components for the PMTs were radio-assayed in order to find the cleanest possible

components (see Chapter [5)).

3.4.2 Detector Cooling

The Xe is maintained in liquid phase using liquid N,. There is an internal lig-
uid Ny reservoir located below the target vessel but within the vacuum jacket
(to maintain thermal isolation) capable of holding 36 litres, enough to cool the
detector for 1 day without the need for refilling. This is advantageous as it has
been observed that the refill process induces spurious signals in the data. There
are two thermal links between this reservoir and the target vessel. The first link
is a conduction path provided by flexible bundles of thick copper wires thermally
anchored to a hollow copper cooling flange attached to the underside of the tar-

get vessel. The copper wires are intentionally flexible to decouple acoustic and
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mechanical noise from the liquid Ny reservoir in the target vessel. The other end
of the bundle dips into the liquid nitrogen and the thermal impedance depends
on the depth of the liquid.

A second thermal path is provided by a direct connection between the ni-
trogen reservoir and a hollow cooling flange. This allows cold boil-off gas to
be used as additional coolant and provides the means for active thermal control
with minimum cryogen usage, which is important during stand-alone operation
underground.

The thermal stability of the system is of paramount importance to the quality
of the data produced. Excellent thermal stability is reflected in the pressure
stability of the system and, hence, the stability of the liquid level and gas phase
thickness and density. The temperature control unit monitors the temperature
of the liquid Ny input braid. If this temperature exceeds the temperature set-
point defined by the unit, the control valves are oriented such that liquid N, gas
boil-off reaches the cooling flange and the temperature begins to decrease. As the
temperature falls below the set-point, the valves reverse and cooling is no longer
provided. Naturally, the input braid begins to heat up. The cooling system
allows the braid temperature to be maintained to a stability of AT'<1 K with an
oscillation period of ~30 minutes (seen in Figure [3.10). The time constant for a
reaction to temperature change for the pressure in ZEPLIN-III is much longer
than the period of the temperature oscillation so pressure remains constant to
within 0.01 bar. Figure [3.11] shows the stability of the system. Any pressure
variation in the corrected pressure measurement (labelled TARC in Figure

is corrected in data analysis.

3.5 Liquid Xe as a Detection Medium

Liquid Xe has a number of properties that make it a good choice for dark matter
detection. Liquid Xe has a very high scintillation yield and is transparent to its
own scintillation light which means, as far as scintillation light is concerned, large
volumes can be used without sensitivity loss. Liquid Xe also scintillates in the
middle of the UV spectrum (A = 175 nm) [I07] which means the light can be
detected by photo-multiplier tubes (PMTs) with reasonable quantum efficiency
without the need for wavelength shifting materials [108].
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Figure 3.10: Plots of the temperature within ZEPLIN-III over a 12 hour period.
The temperature set-point is denoted by the pink “SP 1”7 line and the braid
temperature by the brown “Br L” line. The 30 minute periodicity can easily be
seen.
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Figure 3.11: Plot of the pressure within ZEPLIN-III over a 12 hour period. The
pressure within the target vessel (light blue) varies very slowly. The plot shows
an apparent deviation in the pressure of the vessel but this is mirrored in the
ambient pressure reading and the purple line (TARC, measured on the right-
hand axis) shows the target pressure corrected for changes in ambient pressure
which remains approximately flat to within 0.01 bar.
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Very high sensitivity is also achieved in the ionisation channel. It is possible
to drift free electrons through large volumes of liquid with the only limiting factor
being electronegative impurities in the liquid. It is also important to note that Xe
is itself relatively radio-pure, intrinsically containing no long lived isotopes. The
longest lived isotope in naturally occurring Xe is '*"Xe with a half-life ¢/, = 36
days. This isotope will 3~ decay with a typical endpoint energy of FEz- > 287
keV. The decay is accompanied by at least 1 v-ray with typically £, > 145 keV.
The isotope 2"Xe may be produced by the neutron activation of 26Xe, though
the isotopic abundance in natural Xe is only ~0.01%. Another form of internal
radiation may be from the double-3~ decay of ¥%Xe which is expected to have a
Q value of 2458 keV [109]. The currently measured upper limit on the half-life of
this reaction (either 2v or Ov) is t1,5 > 4.4 x 10% yr [110].

Another source of background to be aware of is the 8Kr contamination found
in all commercial Xe. 8°Kr is a 3~ emitting isotope with a half-life of ¢; 2 = 10.8
yr. The Xe used in ZEPLIN-III is Xe sourced from ITEP Moscow and has an
age of >40 years, meaning it has been through ~4 half-lives, greatly reducing
the 8Kr contamination. *Kr is an anthropogenic isotope, related to the nuclear
power and weapons industry. This being the case, the purest Xe would be that
extracted from the atmosphere prior to the nuclear age.

Liquid Xe is a dense material (~ 3 g/cm) meaning that a large mass can
occupy a relatively small volume. This reduces the size of vessel needed to hold a
specific mass when compared to other media such as Ar. This relative reduction
in material helps to reduce unwanted backgrounds in a detection system. Large
masses of Xe also provide an excellent level of self-shielding. Low energy and
surface nuclear recoil backgrounds are absorbed by the outer regions of Xe, leaving
an ultra-low background volume of Xe in the centre. This Xe self shielding has
been exploited by the XMASS collaboration [I11] to produce a single phase liquid
Xe system with high sensitivity.

3.5.1 Available Signal and Primary Scintillation

Energy deposition via particle interactions in Xe leave atoms in both excited and
ionised states. Excited Xe atoms combine with un-excited Xe atoms to form an

exciton in a matter of a few picoseconds:
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Xe* 4 Xe — Xej, (3.12)

which decays to:

Xe; — 2Xe + 7, (3.13)

where v is an ultraviolet photon of wavelength 178 nm [I07]. This process pro-
duces scintillation light with two different time constants, 3 ns for the singlet and
27 ns for the triplet [91] known as ‘exciton’ luminescence.

At the same time, ionised Xe atoms combine with non-ionised Xe atoms to
form an Xej molecule [112]:

Xe" + Xe — Xey . (3.14)

In the absence of an electric field, this recombines to form an excited Xe atom
and heat:

Xed + e~ — Xe* + heat, (3.15)

which will then release an additional scintillation photon following equations [3.12]
and [3.13] This process is known as ‘recombination’ luminescence. The two routes
for luminescence become important when trying to discriminate between electron
and nuclear recoils at zero electric field. It has been observed that the ratio be-
tween the two states depends on the type of particle interaction. In the case
of nuclear recoils, recombination is fast and, as a result, scintillation emission
is dominated by exciton luminescence alone. However, in the case of electron
recoils, with a longer ionisation track topology, recombination luminescence be-
comes important, yielding an apparent time constant in the region of 24-46 ns
[113, 114] (see Figure . In this figure, 0-field background data is presented
and the time constant of ~30 ns is in excellent agreement with the published
range.

Another important factor to consider is the variation in scintillation yield given
by electron recoils and nuclear recoils. The energy loss by nuclear collisions and
the higher excitation density of nuclear recoils compared to electron recoils are the

factors that decide this difference, known as relative scintillation efficiency (Leg).
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Figure 3.12: The average charge arrival distribution for ZEPLIN-III pulses that
are unsaturated. The low background nature of the detector means that the dis-
tribution is completely dominated by electron recoil recombination luminescence

with an average time of ~30 ns.
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Although dark matter detectors search for nuclear recoil events, mono-energetic
calibration is performed using vy-ray sources. Due to this, it is important to
understand the conversion between electron recoil energy (E..) and nuclear recoil
energy (E,,). The difference between the energy deposited in a nuclear recoil and
an electron recoil is known as either the ‘quenching’ or the Lindhard effect [I15].
The energy scales F.. and E,, are related to each-other as follows:
E, = Lee X %, (3.16)
Leg Sy
where S, and S,, are field dependent suppression factors for electron and nuclear
recoils, respectively.

The measurement of Lg is not simple. Until relatively recently, measurements
of Leg had only been taken down to ~ 10 keV,, [116] 117, 118, 119, [120]. New
measurements, however, see signals down to 5 keV,,, [121] (see Figure for de-
tails of measurements). Measurements down to 10 keV,,, suggested that the value
for Leg was, roughly, a constant 0.2. The more recent measurements, however,
suggest that L.g may begin to fall at even lower energies. These measurements
rely on a linear response to electron recoil energy down to low energies which has
not yet been conclusively proven.

A potential reason for the non-linearity seen in L.g measurements has been
proposed by Manzur et al [124]. They propose that Leg can be split into three

discrete effects:

Leff = Gncl X Gesc X el (317)

The first term of the equation, gy, describes the Lindhard effect. The second
term, Qese, describes the reduction of light yield due to the escape of electrons
produced by ionisation that thermalise outside the Onsager radius and therefore
become free from recombination, even in the absence of an electric field [125].
This effect had been observed in electron recoils but it is only relatively recently
that it has been suggested the same effect may be a factor in the scintillation yield
reduction for nuclear recoils [124]. The final term, g, describes the scintillation
light quenched by biexcitonic collision which describes why the measured L.g are
much smaller than those calculated using gnq only [123]. Biexcitonic collisions

involve two excitons combining and producing only a single photon instead of
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Figure 3.13: The relative scintillation yield in LXe (L.g) measured by several
experiments. The different values are as follows: (o) - Aprile et al, 2009 [121];
(A) - Aprile et al, 2005 [119]; (LJ) - Chepel et al, 2006 [120]; (¢) - Akimov et
al, 2002 [118]; (V) - Arneodo et al, 2000 [116]; (x) - Bernabei et al, 2001 [117].
The solid line is the result from a best fit of the XENON10 AmBe experimental
and Monte Carlo data [122]. Also shown is the theoretical prediction of Hitachi
(dashed line) [123]



3. DETECTION OF DARK MATTER AND THE ZEPLIN-III
INSTRUMENT 65

0.35

0.3

0.25

o
N

o
e
(&)

Relative Scintillation Efficiency
o

0.05

4 10 40 107
Energy [keV ]

Figure 3.14: Leg values measured by ZEPLIN-III (red shade), XENONI10 (grey
shade) and Manzur et al. The dashed line shows the theoretical value calculated

using equation [£.2]

two. These three effects combine to form a good description of a value for Leg
which reduces at low energies. Figure [3.14] shows recent data from XENON10,
ZEPLIN-III and Manzur et al [124]. The ZEPLIN-III result is discussed in more
detail in Section .10l

3.5.2 Secondary Ionisation Signal

Under an electric field, the ion recombination process is suppressed. This means
that the scintillation yield is quenched when compared to its zero field value.
By applying an electric field, it is possible to extract electrons from the inter-
action site and these can then be detected independently. In detectors such as
ZEPLIN-III, this is achieved through detection of electroluminescence in which
the ionisation signal is converted into proportional photon signal in a gaseous Xe

phase [126].

Given standard ZEPLIN-III operating parameters of ~3.5 kV /cm, electrons
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Figure 3.15: The measured electron drift velocity versus electric field in liquid
Xe. The equivalent drift velocity for a 3.5 kV/cm drift field is marked.
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! (see Figure

are drifted through the liquid Xe phase at a velocity of ~2300 m s~
. The field dependence of suppression varies for different species (see Figure
.When looking at this figure, it is easy to see that the light from electron
recoils is heavily suppressed due to the dominance of recombination luminescence.
The free electrons that would recombine with the nucleus to form scintillation are
instead drifted to the gas phase and ionised. It is no surprise that the ionisation
yield for electron recoils increase is inversely proportional to the fall in scintillation
yield. It is also apparent that the dependence of scintillation and ionisation yield
on electric field strength is much weaker for nuclear recoils, since the scintillation
from nuclear recoils is dominated by exciton luminescence. The scintillation from
the other heavy species, a-particles, is also dominated by exciton luminescence

and therefore displays the same weak field dependence as nuclear recoils.

As electrons drift through the liquid phase towards the gas phase, they may
be trapped by electronegative contaminants such as Oy and N,O, amongst oth-
ers. The capture cross-section for these contaminants varies with electric field.
The cross-section for capture by Os decreases with electric field whilst the cross-
section for Ny,O increases with field. The various measurements of the effect of

contaminants in liquid noble gases (including Xe) are discussed in [12§].

Once the electrons reach the liquid surface, the electric field can lead to cross-
phase emission. The phase change acts as a potential barrier to the electrons
and they will only be able to cross if they have been given enough energy by the
electric field. This being the case, the fraction of electrons extracted to the gas
phase depends on the electric field strength. With a field of 5 kV /cm, electrons
reaching the liquid surface can be extracted with nearly 100% efficiency [129)].

This can be seen clearly in Figure |3.17]

Electrons that overcome the liquid/gas barrier are accelerated through the
high electric field in the gas and, occasionally, will collide with a Xe atom. This

excites the Xe atoms, generating electroluminescence (proportional scintillation):

e+ Xe — e+ Xe¥,
Xe* +2Xe - Xej + Xe, (3.18)
Xe; — 2Xe+ hv,
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Figure 3.16: Field dependence of scintillation and ionisation yield in L.Xe for 122
keVe. electron recoils (ER), 56.5 keV,,, nuclear recoils (NR) and alphas [127].
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Figure 3.17: Measurement of the cross-phase emission probability for electrons
in liquid Xe [129]. The line shows the parameterisation utilised in ZEPLIN-III
detector simulations [130].
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where hv is a delayed electroluminescence signal. The energy deposited in the
gas phase is much higher than the energy deposited in the liquid phase, giving
rise to secondary signals which are large when compared to primary signals.
Contamination can occur in the gas phase of the detector which will act to
suppress the ionisation yield when the detector is operational with its nominal
electric field. A contamination of <1% of N5 can cause the drift velocity in the gas
phase to increase significantly, the increase being most prominent at low electric
field values. This means that electrons drift through the gaseous phase of the
detector much more quickly, reducing the amplitude of the ionisation signal. At
values of electric field where extraction should begin to occur (around 2 kV/cm,
see Figure in contaminated Xe, the electroluminescence signal size will be
much less than expected in pure Xe. This is because the time allowed for energy
deposition will decrease and, hence, the signal amplitude will decrease. Figure
shows the drift velocity for various mixtures of gases, clearly showing that
small concentrations of nitrogen can have a big effect on drift velocity. Such an

effect was seen in the commissioning period of the second science run.
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portation of electrons in gas mixtures) [131] in comparison with values calculated

for pure Xe (TJS calculator). Ny gas gives the most significant increase in drift

velocity [132].
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Chapter 4

ZEPLIN—III First Science Run

The First Science Run (FSR) of the ZEPLIN-III dark matter search experiment
started during February 2008 and continued through to June 2008. It consisted
of 84 days of high quality, shielded, science data and daily calibrations. Section
3.4.1| gives an overview of the ZEPLIN-III construction though a more detailed
description of the hardware is available in [133].

The collaborative nature of the ZEPLIN-III project means that some of the
work within this chapter has been led by other people. However, I personally
played a major role in most aspects of the FSR including the debugging and op-
timisation of the data reduction code (ZE3RA), optimisation of the event selecting
and parameterising golden code, the ongoing daily analysis of 5"Co calibration
data, the studying of mis-parameterised events and, most significantly, analysis
of the calibration and science data. In order to give a more complete overview of

the science run, I have included information about all aspects of the run.

4.1 Data Acquisition

The PMT array of ZEPLIN-III consists of 31 elements; each PMT signal is split
between amplified and non-amplified channels, equating to 62 channels of data
which must be recorded. The data acquisition is performed using 8-bit ACQIRIS
digitisers sampling at a rate of 500 MHz. Waveforms are centred on the trigger

point (the system triggers using the sum of the amplified channels) and extend
18 us before and after. This means that the full drift time of ZEPLIN-III is
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included in any waveform. An event that triggers from a secondary gas ionisation
(S2) signal with a drift time of 15 us will have a primary liquid scintillation (S1)
signal at ~-15 us and an event that triggers from an S1 signal with the same drift
time would have a S2 signal beginning at ~15 us that would not extend beyond
the maximum 18 ps timeline.

The signals from the 31 PMTs are normalised by passing through attenuators
and are then split. One channel is recorded un-amplified as a low sensitivity (LS)
channel and the other is amplified by a fast 10x amplifier and is recorded as a high
sensitivity (HS) channel. This dual channel recording allows for the recording of
large secondary pulses whilst being able to maintain a high level of sensitivity for
small primary signals. In software, it is possible to select whether the HS channel
or LS channel is used in event parameterisation based on the size of the pulse
being studied and if amplifier saturation has occurred.

The amplified HS signals are passed into a summing amplifier before integra-
tion (500 ns) and differentiation (500 ns) by a timing filter amplifier. This signal
passes to a fast discriminator, set to a -80 mV threshold, which outputs to an
external gate generator triggering the digitisers.

This unit is inhibited for 1 ms after each event. Studies of the trigger have
shown that the trigger threshold is equivalent to ~11 ionisation electrons emitted
from the liquid surface, or ~0.2 keV for nuclear recoils. The threshold was set at
this level to avoid excess triggering from single electron emission. The waveforms
are recorded by custom LINUX software that writes to file using two processor
cores to reduce detector dead time.

Data is then compressed and transported on data tapes to RAL where it
is uploaded to a central data repository. The data is reduced using an Apple
XGRID system with 28 processor cores combining to give an overall processing
speed of 72 GHz. During the FSR, 15.5 TB of compressed data were acquired.

4.2 Pulse Identification

Pulse identification in ZEPLIN-III is performed using custom designed LINUX
software. This package is called ZESRA (ZEPLIN 3 Reduction & Analysis)
and was developed by collaborators at LIP-Coimbra. ZE3RA is designed to

ascribe pulse parameters to raw waveforms without making any sort of physical
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assumptions. This method of pulse analysis removes any bias in the data analysis
process which could jeopardise the blindness of the result. The ZE3RA package
includes an event display allowing instant visualisation of recorded events.

The first stage of the reduction process involves an accurate determination of
the baseline of the waveform. A 2 us sample is extracted from the start of the
timeline and is used to determine the mean of the baseline as well as the noise
level (RMS). The baseline may be misidentified if a pulse with a large width
is located at the beginning of the timeline. However, this is not an issue as any
waveform displaying these characteristics will not pass the event selection criteria
described in Section The baseline of each channel is determined individually
and a software trigger threshold of 3 x RMS set. This means pulses must have
size > 3x RMS to be considered for parameterisation.

Once a baseline has been identified and a threshold characterised, pulse iden-
tification can proceed. Pulse identification is implemented on both the HS and LS
channels giving two sets of pulse parameterisations per ZEPLIN-III event. This
is particularly important for small signals where pulses in individual channels
could be washed out by PMT noise in the LS channel but would be identifiable
in the HS channel and also for large signals that would saturate the HS amplifiers
but would still give a clear and complete signal in the LS channel. In addition to
individual channels, a HS and LS sum channel is computed for quick identification
of events.

Once parameterisation is complete, the pulses are ordered by decreasing area
and the 10 largest are retained and written to an hbook n-tuple. Within the
n-tuple, pulses are identified by two indices (pulse = 1-10, channel = 1-64) and
waveforms by a single index (channel = 1-64). The sum channels are identified
as indices 32 and 64 for HS and LS, respectively. The parameters identified and
recorded by ZE3RA are shown in Table

4.3 Event Selection

The event selection process is completed using a so-called “golden code”. The
code is designed to select events containing a single S1 and a single S2 event.
The golden code assumes that WIMPs will only scatter once in the detector

(the probability of multiple scatters is vanishingly small, given the elastic scatter
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Parameter Block

Parameters

Event

Event number and time

Detector Slow Control

Trigger rate, detector temperature and pressures,
liquid level

High Voltage

Electrode and PMT voltages and current

External Environment

Lab temperature and pressure

Baseline and RMS noise values, number

Waveform of pulses stored
Pulse saturation flag
Start time of pulse
Pulse amplitude
Pulse width at 10%
Pulse

and 50% of maximum

Pulse area integrated above threshold
and total integrated pulse area

Mean charge arrival time

Table 4.1: Parameters recorded in the ZE3RA hbook n-tuple.

cross-section) giving only one S1 and one S2.

The event selection process can be split into 4 distinct sections:

e First Pass Cuts - Golden rule: to select one S1 and one S2.

e First Pass Cuts - Voltage cuts: to remove any data with spurious anode,

cathode or PMT voltages or currents.

e First Pass Cuts - Waveform cuts: to remove any events with wild

waveforms, HS/LS inconsistencies and DAq mistriggers.

e Second Pass Cuts - Refine event selection using newly calculated param-

eters.

Any event that passes all these cuts is then written to a “golden” n-tuple for

further analysis. In order to aid in the analysis of data, the golden code also

records a number of counters which record the number of events that fail each

stage of the golden code, the total livetime of the data reduced and, finally, the

number of events which pass the golden code. This is useful for the definition of

detector efficiency.
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4.3.1 First Pass Cuts

The initial stage of the golden code is concerned with the selection of primary
and secondary signals. The first stage of the pulse selection is to look for an
S2 signal. This is achieved by stipulating certain parameters by which a pulse
may be considered of the right size and form to be an S2. The selection criteria
at this point, depend on the mean charge arrival time of the pulse (defined as
s2tau, the time required to reach 50% of the rise time of the pulse) which must
be >150 ns as determined by the width of the gas gap and the strength of the
electric field. Also required is that the pulse be greater than a specific integrated
area (s2area of 0.5 V.ns) This cut specifically prevents the identification of single
electron emission from the liquid surface as an S2 pulse (as such emission would

satisfy the s2tau requirement for an S2 signal).

There is also a process of optical feedback that may occur in the detector
whereby electrons are emitted from the cathode grid. As the cathode grid is
found at the bottom of the drift volume, the drift time of the electrons will be
the full potential drift time of ZEPLIN-III. For this reason, signals near to the

maximum drift time (>15 us) are ignored in pulse selection.

Finally, cuts are also applied to remove amplifier overshoot and the production
of small S2 like signals in the tail of a true S2 signal. Amplifier overshoot is what
happens when saturation occurs in one of the amplifiers and manifests itself as a
low amplitude, wide signal directly after the S2 pulse. This is removed by looking
in the low sensitivity (non-amplified) channel to see if the same pulse is visible.
If it isn’t, it is not counted as an S2 signal. An example of amplifier overshoot

can be seen in Figure {4.1|

Large S2 signals are often associated with multiple feedback and single elec-
tron signals which may be clustered together by ZE3RA and given parameters
sufficient for a naive analysis to identify them as true S2 signals. The golden code
will ignore these candidate events if their area is less than 5% of that of the main

S2 signal in the waveform. An example of such an event is shown in Figure [4.2]

Once an S2 signal has been identified, the golden code begins the process
of identifying S1 pulses. This is a more difficult process for several reasons.
Firstly, the noisy tails in S2 signals (which happen quite frequently) can give

rise to multiple S1-like signals which occurs only if the signals are not clustered.
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Figure 4.1: A typical example of amplifier overshoot in ZEPLIN-III. A large
signal is seen following the ionisation pulse in the HS channel but not in the LS
channel.

Figure 4.2: A typical example of where ZE3RA has clustered noisy pulse tail
events together to give an S2 like signal.
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Figure 4.3: A typical example of PMT afterpulsing in ZEPLIN-III. The after-
pulsing can be seen as small pulses subsequent to an S1 signal.

To remove the risk of these being identified as S1 signals, a rule is introduced
whereby candidate S1 signals must precede the identified S2 pulse.

In addition to the pulses seen after S2 pulses, signals are also seen after S1
signals. These signals are associated with PMT afterpulsing where electrons are
emitted from somewhere along the dynode chain. The electrons are accelerated
along the remainder of the dynode chain giving rise to an above 3 RMS threshold,
S1 like, signal. In order to identify PMT afterpulsing, a survey is taken of all
pulses subsequent to an identified S1 signal. If the pulses occur within a specific
time-window, and if each signal is associated with a single PMT, then the pulse
is not counted as an S1 signal. An example of PMT afterpulsing can be seen
in Figure Afterpulsing windows are individual to PMTs and, as such, these
pulses are easily identified. In addition, the afterpulse candidate must be smaller
than the main S1 candidate pulse.

These pulse characterisation criteria are applied to all waveforms in a dataset

and the number of S1 and S2 signals identified per waveform. In order to proceed
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beyond this point, an event must have only a single S1 and a single S2.

4.3.2 Waveform and Voltage Cuts

Fluctuations in the baseline of the waveforms can cause incorrect parameterisa-
tion of pulses in data. To avoid this occurring, the baseline and noise on each
channel must fall between fixed values. In addition to this, consistency is required
between HS and LS channels in both timing and pulse area.

Voltage cuts are also applied to the data. Any fluctuations in PMT, anode or
cathode voltage or current will cause the expected pulse parameters to change.
In order to avoid any problems due to this, cuts were placed on all voltage and

current values.

4.3.3 Golden Parameters

Following the application of the basic cuts, other pulse parameters are calculated.
All parameters are calculated using the HS channel unless saturation is observed,

in which case the LS channel is used. The golden variables are listed below.

e File and event information: fil, dat, day, daqtime, lastime - File number,
date, day of run (since 27/02/08), time since first golden event and time
since last ZE3RA event. The lastime measurement is used to calculate
trigger rates and detector dead-time, even when events have been discarded

by the golden code.
e Pulse ID: slid, s2id - Pulse index (1-10) for S1 and S2 pulse.

e Pulse Saturation: sisat, s2sat - Flag for saturation of S1 and S2 signals
in the LS channel

e Pulse timing information: sitime, s2time, dtime - The time (within the
individual timeline) of S1 and S2 pulses and the difference between the

two, equivalent to the event drift time.

e Pulse Width: sitau, s2tau, slwid50, s2wid50 - The mean charge arrival
time for S1 and S2 pulses and the pulse width at 50% of the amplitude.
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e Pulse Size: slamp, s2amp, slarea, s2area, slareape, s2areape - Amplitudes
of S2 and S1 and their corrected areas in both V.ns and number of photo-

electrons.

e Pulse Energy: energy, estar - Energy measured by S1 area and by a com-

bination of S1+S2 energy.

e Peak PMTs: sipeak, s2peak - PMT which sees the most light for S1 and S2

signals.
e S1 Fold: sIfold - The n-fold coincidence level of the S1 signal.

e Corrections: corlife, corpress, corfield, cordiff, corlevel, cortilt - Correction
factors due to electron lifetime, pressure, electric field, charge diffusion,

liquid level and detector tilt.

The pulse areas are corrected for light-collection non-uniformity and varia-
tions in gain between PMTs through application of a flat-fielding correction. For
s2area, corrections are applied for the mean electron lifetime (purity), detector
tilt, field variations and liquid level variations. These corrections are only applied
to S2 pulses as only the electroluminescence signal is dependent on these parame-
ters. The cordiff correction is applied to s2tau to flatten the relationship between
mean charge collection time and drift time. The relationship is not uniform due
to the diffusion of the electron cloud through the liquid. This effect is more
prominent for events with longer drift times. Figure 4.4] shows this correction

which allows for easier data cuts at a later stage.

4.3.4 Second Pass Cuts

Once values for sltau, s2tau and dtime have been calculated, it is possible to
apply tighter cuts to ensure that all pulses are correctly assigned as an S1 or an
S2. A new cut is applied on the mean charge arrival time of S1 (5< sltau <40
ns) and S2 (400< s2tau <1100 ns). These cuts are defined by analysis of the
mean charge arrival distribution in both cases and ensure that only pulses close

to the mean of the distribution are included.
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Figure 4.4: The uncorrected (left) and corrected (right) s2tau parameter. Flat-
tening this distribution allows for easier data cuts at a later analysis stage

In addition to this, a cut is placed on the electron drift time to remove events
with unphysical values. The cut is set (100< dtime <18000 ns) to remove events
at the liquid surface or below the level of the cathode grid.

4.3.5 Position Reconstruction

The importance of a precise position reconstruction in ZEPLIN-III data cannot
be overstated. The position reconstruction is vital for the calculation of light
collection non-uniformities in the PMT array and the removal of events that have
one S2 signal associated with two (or more) coincident S1 signals (see Section
which are more likely to appear with long drift times or larger radii.

In ZEPLIN-III, the vertical (z) position of an event is determined by the drift
time. As mentioned previously, the full drift time of ZEPLIN-IIT is 14 us (the drift
time position of the cathode grid) and this equates to a maximum drift distance
of 36 mm. The drift time distribution for the FSR data, displayed in Figure [4.5]
is relatively uniform with peaks at both low and high values of drift time. This is
expected as the PMT array and liquid surface scatters both dominate background
in ZEPLIN-IIT for the FSR. The former provides background radiation and the
latter has no Xe self-shielding for external radiation.
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Figure 4.5: The drift time distribution for ZEPLIN-III FSR data. The increased
rates at low and high values of drift time are from increased rates due to liquid
surface scatters and PMT v-rays respectively.

Several complementary methods are used to determine the position of an event
in the horizontal (zy) plane. Firstly, a simple (yet sufficiently accurate for detector
commissioning tests) centroid algorithm was developed to give an zy position
calculated by using the PMT location weighted by the signal observed in the PMT
(corrected for light collection variability). To improve upon this, a second method
was developed that included a correction based upon simulations of expected
signal output versus position in the zy plane. This improved confidence in event

position out to greater radii than could be expected from a centroid position
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calculation alone.

In order to utilise the full radial capability of ZEPLIN-III, a more advanced
position reconstruction algorithm (known as Mercury reconstruction) was devel-
oped. This method utilises the spatial response profile of the PMTs for position
reconstruction. A 2D Gaussian response function describes the signal expected
in each PMT dependent on the zy position of the event. A least squares min-
imisation is performed in order to match the PMT hit pattern of an event to the
response curve of all PMTs simultaneously in order to extract a location and en-
ergy for each event. This minimisation is performed on S1 and S2 pulses yielding
the energy and zy position of each event. The precision of the reconstruction has
problems with very small S1 events where few photoelectrons are detected.

The method relies on the fact that each PMT has the same position-dependent
response as all others. An example factor that would prevent this from being
true would be if the outer PMTs were close to the walls of the detector. Here,
reflections from the walls would distort the response function leading to poor
position reconstruction. The Gaussian response of PMT1 is shown in Figure
[4.6] This, along with the responses of all 31 PMTs, is used to predict the true
position and energy of any given pulse in a ZEPLIN-III timeline. The Mercury
reconstruction provides a new set of parameters which are used for post reduction
analysis of the ZEPLIN-III data. These parameters are described in Table [4.2]
Figure describes the coordinates used to describe the geometry of the target

volume.

4.4 Detector Stability

Many parameters are monitored in order to inform adjustment of the experimen-
tal setup or correction of the data. Most of the parameters are monitored by the
detector slow control systems (temperature, pressure and liquid level) but there
are other parameters that may only be monitored using the data itself.

An automatic routine was developed to analyse daily "Co data (used to mon-
itor the stability of the Xe purity, detector tilt and energy calibration) and the
daily, unblinded 10% of the science run data. 90% of the data remained blinded
in order that the final analysis would not be biased by knowledge of any event

distributions in the WIMP search region. This was developed to allow a repro-
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Figure 4.6: The bell-shaped response function of PMT1. The z-axis shows the
signal intensity while the z and y axes define event position in the zy plane. The
parameters s2ym and s2xm describe the pulse position in the xy-plane while
s2am and s2em describe the integrated area of the pulse and the reconstructed
energy respectively. These parameters are described in Table
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Figure 4.7: The coordinates used in ZEPLIN-III analysis. The upper graphic
shows the zy and z (defined using the dtime parameter) coordinates and the lower
diagram shows the r and 6 parameters which describe the target volume geometry
in terms of cylindrical polar coordinates. These parameters are described in Table
4.2
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Parameters Description

slzm, slym
s2xm,s2ym
sirhom, slthetam
s2rhom,s2thetam
slrmsm, s2rmsm  The RMS of the spatial hit pattern for S1 and S2
slem, s2em Event energy calculated from S1 and S2
slelm S1 energy calculated using S2 position
Measures the y? goodness-of-fit
from the least squares minimisation
The distance between the event locations
measured by S1 and S2

z and y positions measured from S1 or S2

r and 6 polar coordinates as measured by S1 or S2

slchim, s2chim

s12dism

Table 4.2: Additional parameters calculated by the mercury algorithm. The
co-ordinate system used is defined in Figure [4.7]

ducible analysis that did not require any user input, thus avoiding any user error
or variability in input parameters. The routine used in the FSR is described
below, with details, in the following subsections:

1) Process daily "Co data with no corrections.

e Xenon purity routine - outputs electron lifetime measurements.

e Energy calibration - outputs S1 and S2 energy calibrations in keV/nVs

2) Reprocess daily *’Co data with parameters calculated from 1).

e Measure tilt of the detector - outputs magnitude and phase of detector tilt.
e Channel amplification consistency check.

e Light yield calibration.

3) Process 10% of daily background data - Using S2 and S1 energy calibration

and electron lifetime measurements calculated in 1) & 2).

e DRU routine - produces a daily differential energy spectrum.



88 4.4 Detector Stability

4.4.1 Xenon Purity Measurements

The purity of the Xe volume is important in the maximisation of available fidu-
cial volume. Trapping of electrons by electronegative contaminants as they drift
through the liquid phase of the detector is the major cause of variability in S2
signal size as a function of depth. In order to monitor and correct for this, a
measurement of S2/S1 as a function of drift time can be made. Since the S1
signal is (largely) unaffected, the ratio of S1 to S2 will vary with depth, giving
a measure of the electron lifetime. An exponential fit is applied to the resultant
measurement.

The event rate as a function of depth falls exponentially due to the low energy
nature of the 7-rays associated with the 3 decay of "Co. Due to this, it is
necessary to boost slice statistics at longer drift times by increasing the size of
the energy interval used for slicing and fitting of the data. A typical electron
lifetime measurement is shown in Figure |4.8| and the historical trend throughout
the FSR is shown in Figure 4.9 ZEPLIN-III is designed with an all metal target
chamber in order to maintain the purity of the Xe (organic compounds can be
outgassed from materials such as PTFE).

Before the FSR, an electron lifetime of ~20 us was achieved and this improved
to around 40 us at the end of the run. This was due to the application of a con-
stant electric field in the detector whilst the Xe was not recirculated, leaving the
system isolated. With no new electronegative contaminants added, the negatively
charged ions produced through electronegative attachment drift away from the

fiducial volume.

4.4.2 Enmnergy Calibration

The stability of the energy calibration was monitored using the daily 5"Co. A
Gaussian fit was applied to the 122/136 keV peaks (associated with the § decay
of 57Co to 5"Ni) which fitted the top of the photo-peak for both S1 (top 50%) and
S2 (top 30%) signals.

This peak distribution was compared to the calibration performed on the
first day of the FSR and a shift was calculated. A typical calibration histogram
is show in Figure and the behaviour with time of both S2 and S1 energy
calibrations is shown in Figure .11} These are stable to within a few percent.
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Figure 4.8: A typical daily measurement of the S2/S1 ratio which yields an
electron lifetime fit. These data are acquired using a 5"Co run.
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Figure 4.9: The historical trend of electron lifetime throughout the duration of
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Figure 4.10: Fitting of the S1 spectrum from a ®*’Co energy calibration. The left
hand plot shows the fit to the top 50% of the data and the right hand plot shows
the histogram in comparison to the reference data.

The measurement of the 122/136 keV peak allows the energy scale of electron
recoils to be set, converting from the DAq scale of nV.s (voltage*ns) to keV. It
should be noted that this only sets the scale for electron recoil energies. Nuclear
recoils are quenched, so a second energy scale is defined. The process of setting
this energy scale is described in Section [4.10]

In addition to measuring the stability of the S1 and S2 energy calibrations,
the °"Co data can be used to calculate the energy resolution of ZEPLIN-III. In
order to calculate the energy resolution, a Monte-Carlo simulation is performed
for a 57Co calibration run. A smearing function is applied to the simulated data
until it matches the experimental data. The width of this smearing function is
used to define the resolution. Figure shows the energy resolution measured
in the FSR. The energy resolution is described by the following equation:

o 06

E VE
where o/FE is the energy resolution. For the 122.1 keV peak in ®’Co, this is
calculated as 5.4%.

(4.1)
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Figure 4.11: The historical trend of the S1 and S2 energy calibrations throughout
the FSR.
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4.4.3 Detector Tilt and Liquid Level

The Boulby facility is located in a seam of rock salt with potash seams above and
below. Both rock salt and potash are soft rocks so the laboratory is subject to
geological movement. This being the case, it is important to monitor the tilt of
ZEPLIN-III in order to correct for the non-uniformity of the gas gap thickness.

The width of S2 pulses is determined by the width of the gas phase in a 2-
phase detector (with amplitude determined by the number of electrons accelerated
through the gas phase). Any variation in the liquid level of the system will lead
to incomparable data if it is not corrected. The liquid level of the detector is
monitored using three separate copper rods, each of which has its capacitance
measured. As the liquid level increases or decreases, the capacitance also rises
and falls linearly.

Also of interest is any variation in gas gap across the surface of the detector
which would be associated with a non-uniform S2 width response across the
surface of the liquid. The variation in tilt is measured by plotting the width of
the S2 pulses at half maximum (s2wid50) as a function of the angular position
(s2theta). To this, a sinusoidal function is fitted and the amplitude and phase
recorded.

At the start of the run, the detector tilt measured ~1 mrad and at the end
~2 mrad. The detector level was not manually corrected through the FSR as the
tilting rate was relatively low and the run was fairly short. Figure [£.13] shows a
typical plot of s2wid50 as a function of s2theta. Figure shows the historical
trend of the detector tilt over the duration of the FSR.

4.4.4 Channel Amplifier Stability Check

The outputs from the 31 PMTs are recorded and analysed assuming that there is
a constant 10x difference between low and high sensitivity channels. For average
sized pulses, the relationship should be linear. Sensitivity to the small signals
in the LS channel is reduced and large signals cause amplifier saturation in the
HS channel. These factors cause deviation from the linear relationship but it is
possible to check the amplifier stability using only the central region of the plot.

During the FSR, the amplifier stability was checked daily and no deviation

from a linear relationship between signal size in the HS and scaled LS channels
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Figure 4.13: A typical levelling plot for ZEPLIN-III during the FSR. A sinusoidal
relationship can be observed between s2wid50 and s2theta.
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was observed.

4.5 Multiple Scintillation Single Ionisation Events

Perhaps the most challenging aspect of ZEPLIN-III data analysis is the presence
of events in which two (or more) scatters occur in so-called dead regions of xenon.
These are regions where ionisation cannot be extracted to the liquid surface, such
as regions where no electric field is applied, or a reverse field is applied (such as
between the cathode grid and PMT grid). Regions in which Multiple Scintillation,
Single Tonisation (MSSI) events are prevalent are highlighted in Figure[d.15] Both
scintillation signals are detected but only one ionisation signals occurs.

These MSSI events appear, in data, to be consistent with the parameters
required for a golden event. This is because the S1 signals are coincident in
time, appearing to be a single, large S1 signal. The additional S1 signal helps to
reduce the S2/S1 ratio, artificially pushing the event down in S2/S1 parameter
space. In extreme cases, this leakage can contaminate the area of parameter space
containing the nuclear recoil band, potentially giving rise to false signals in the
WIMP search region.

The severity of the shift in S2/S1 compared to the true value of the individual
S52:S1 pair is determined by the size of the second S1 signal in comparison to
the initial S1 signal. If the second S1 signal is large, the event is more likely to
have similar parameters to those expected of a nuclear recoil event (lower value
of S2/S1).

During the FSR, the PMTs form the dominant source of background. This
being the case, most of the MSSI events will first scatter in the region labelled A
in figure . In this region, no electric field is applied (the PMTs and PMT grid
are held at the same voltage), so electrons are not drifted in recoils that occur in
this region. Both region B and region C contribute fewer MSSI events. Events
from region B are due to the reverse field region between the cathode and the
PMT grid and the events from region C are due to non-vertical field lines found
towards the edge of the liquid region that do not allow ionisation electrons to be
drifted to the liquid surface. The reverse field region, however, remains important
to reduce the background from [-decay and photo-absorption signals from low

energy y-rays emitted by the PMTs.
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Figure 4.15: Diagram of the ZEPLIN-III target geometry highlighting the three
regions in which ionisation signals may be lost. Region A is the region in between
PMT faces where there is no electric field. Region B is a region of high reverse
field between the cathode and PMT grid. Region C is where non-vertical field
lines prevent ionisation signals from reaching the liquid surface.

4.5.1 Removing MSSI Events

Through study of S1 only events (coming, mainly, from the reverse field region),
it was possible to define analysis parameters by which the MSSI events deviated
from the expected event distributions. The two parameters used for MSSI removal
where sIrmsm and s2chim.

The first parameter, sirmsm gives the spatial RMS value for each recon-
structed event. Figure [4.16| shows that a significant fraction of MSSI events from
below the nuclear recoil median line have low RMS values in comparison to the
main population of events. A cut was developed to remove these events with-
out removing a significant number of events from the AmBe data run used to
determine WIMP detection efficiency (see Section [4.7)).

The second parameter used to remove MSSI events was the x? goodness-of-
fit parameter from the position reconstruction algorithm. Events with multiple
vertices due to scattering, should have scintillation hit patterns across the PMT's
which do not agree with those expected for single scatter events. Due to this,
MSSI events can be cut for events with a y? value above those seen in the main

population. This was a very powerful cut which removed most of the MSSI events
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with only a small efficiency penalty in the WIMP search region.

4.6 Fiducialisation

The full active mass of liquid Xe in ZEPLIN-III is ~12 kg. By design, it is not
possible to utilise the whole volume due to the dead regions described in section
These dead regions exist to remove low energy background radiation emitted
by the PMT array. To remove events from these regions, cuts are applied to
define a fiducial volume in ZEPLIN-III. The parameters used to define these cuts
are, in the xy-plane, slrhom and s2rhom and, in the z direction, dtime.

The maximum allowable drift time was found by producing a plot of S2/S1 as
a function of drift time. Close to the cathode grid, the electric field increases and
becomes non-uniform. This leads to an anomalous S2/S1 response in this region
and defines the maximum drift time. Figure shows S2/S1 as a function of
drift time and the position of the cathode inferred from this.

In the zy-plane, a cut is applied such that only events within a radius of
150mm are accepted. This allows self-shielding from low radiation emitted by

the copper displacement rings found at the edge of the detector.

4.7 AmBe Calibration

The detector must be calibrated to expected WIMP signatures, namely, elastic
nuclear recoils. To this end, exposure to an americium-beryllium (AmBe) source
is performed. Neutron calibrations are essential for both the definition of the
WIMP search region with the calculation of efficiencies, and the calculation of
the neutron/~-ray discrimination power. The AmBe calibration used to define
the WIMP search region in the ZEPLIN-III FSR was carried out on 24" and
25" May 2008 and gave a combined run time of approximately 5 hours. The
potential calibration time for an AmBe calibration is limited due to the neutron
activation of metalwork in the ZEPLIN-III target volume. This activation causes
the production of excited states of ¥'Xe and 12Xe which increase background
levels in the detector (activation is discussed again in section [7.1.1). The AmBe
run length of 5 hours is chosen so that the additional background has returned

to the standard background level within a few days.
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Figure 4.17: The definition of maximum allowable drift time in ZEPLIN-III. The
position of the cathode is highlighted.
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Figure 4.19: Functional fits to the means of each 1 kev,, slice of the AmBe data
(left) and to the standard deviation (right).

ulation of the AmBe data and slicing it into 1 keV bins. A log-normal fit is
applied to these slices and the means and widths of each recorded. For the FSR,
the median of the nuclear recoil distribution is described by a power law of the
form p = logy, ((0.929 + 0.006) e~ (0-540£0.003)) * The width of the distribution is
described by o = (0.179 & 0.013) ¢~ (0-295%0.028),

Figure [4.20 shows the fitted parameters for p and o and Figure [£.20] shows
the S2/S1 vs energy parameter space plot for the AmBe calibration run. The
median of the nuclear recoil band (also referred to as the 50% line) is highlighted
in red and £10 bands are shown in blue.

4.8 Y7Cs Calibration

In order to improve the level of statistics and give a comparable representation of
the expected electron recoil background, a 37Cs run was taken over a period of
9 days. The source was placed within both the lead and polypropylene shielding
and retracted so as to attain an optimal event rate.

The spatial distribution of the *”Cs calibration is shown in Figure 4.21] The
data shows a much more uniform distribution in the z direction which is consistent

with the expected distribution due to the, relatively, higher energy ~-rays being
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Figure 4.20: The S2/S1 vs energy plot for the FSR AmBe calibration data.
The red line highlights the median of the nuclear recoil band and the blue lines
highlight the +10 bands. The second event population seen is due to inelastic
neutron recoils where the Xe nucleus is excited. The nucleus de-excites with the
emission of a characteristic 40 keV ~v-ray.
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able to probe greater depths of liquid (as compared to ®’Co). A comparison of the
AmBe nuclear recoil data and '37Cs data is shown in Figure [4.22] The electron
recoil population exhibits similar behaviour to that observed in previous two-
phase Xe experiments, but with tighter distributions, a more pronounced upturn
at low energies and larger separation from the nuclear recoil population. The
improvement in discrimination at higher fields is one of the most important results
in the ZEPLIN-III experiment. The calculation of a numerical discrimination
power is discussed in Section [4.11]

In addition to the calculation of discrimination power, ¥7Cs is used to gener-
ate low energy electron recoils in the Xe volume. The higher energy of the v-ray
associated with the decay of ¥Cs (662 keV in comparison to 122/137 keV for
>7Co) means that low energy recoils can be generated through Compton scatter-
ing. This is not possible with a ®’Co source as the lower energy ~-rays are at an
energy where photo-absorption dominates meaning very few low energy scatters

will occur.

4.9 The 10% Science Data Sample and Defining
a WIMP Search Region

In order to calculate event parameters, tune data cuts, and monitor stability in
ZEPLIN-III, it was decided that 10% (every 10 file of the dataset) of the science
data would be unblinded. In order to avoid biasing the analysis (potentially
leading to removal or false identification of a WIMP signal) all science data is
blinded. Opening (unblinding) 10% of this data to perform analysis is equivalent
to a 10% efficiency loss in the final result. A comparison between the mean and
the standard deviation of the 3"Cs calibration data and the 10% background data
showed excellent agreement. However, the background data showed many fewer
outliers at lower values of S2/S1 than the *"Cs data (in effect, the background
had proportionally fewer MSSI events). The developed MSSI cuts were more
effective at rejecting events in the background data so it was decided that the
background data would be used to characterise the electron recoil population.
This difference occurs because 7Cs is, effectively, a point source of radiation

whereas the true background radiation is emitted from 47 around the detector.
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Figure 4.22: Scatter plot showing the nuclear recoil population of the AmBe
calibration (red) and the electron recoil population from the '37Cs calibration
(blue). The 50% nuclear recoil line is shown in red for reference.
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A second reason for the poor representation of the background is the fact that
the 37Cs source triggers ZEPLIN-III at a higher rate than background radiation.
The difference is due to the increase in resistivity of the bialkali PMT photo-
cathode at low temperatures [134] [135], [136]. An increase in resistivity enhances
localised charging of the photocathode and this, in turn, attenuates and distorts
electric fields of the input optics. This effect is countered somewhat by the instal-
lation of a set of metal tracks below the photocathode. These tracks decrease the
resistivity of the photocathode but also increase the non-uniformity by creating
regions where the ability of the PMT to neutralise the charge produced in the
emission of electrons from the photocathode is changed. The increase in cathode
non-uniformity coupled with the localised charging cause an overall decrease in
the mean response of the PMT. This reduction in response is dependent on the
rate, distribution and intensity of the radiation source. The disagreement be-
tween background and '*7Cs data is consistent with the increased rate of energy
deposition in the liquid Xe volume. Figure [4.23| shows the excellent agreement
between mean and standard deviation values between WIMP search data and
137Cs. The differences described only becomes apparent when looking at the tails
of the distribution.

By comparison of the 10% dataset and the AmBe nuclear recoil calibration,
a WIMP search region was defined. It is necessary to define a region (the “box”)
that is sensitive to nuclear recoil events but that is free from background contam-
ination. The box was defined with an upper limit in log(S2/S1) phase space set
by the median of the nuclear recoil population, p,,(E), with a lower limit set at
oy (E) — 20, (E).

The lower and upper bounds in terms of energy, are set using the detector
efficiencies and backgrounds. The lower limit is set at 2 keV,, which is the lower
threshold of ZEPLIN-III. Below this, low threshold data shows a precipitous fall
in detection efficiency. The upper limit in energy is set by the probability of MSSI
leakage below the log(S2/S1) acceptance line which increases with increasing
energy while the signal probability is falling exponentially. As a consequence of
this, the upper bound is set at 16 keV,.. Section showed that the expected
WIMP-recoil spectrum peaks at low energies and falls at an exponential rate. Due
to this, above 16 keV,. there is little to gain in terms of additional signal while

the electron recoil band gets wider. This box was defined prior to the unblinding
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of the full dataset and remained unchanged. The box includes 47.7% of nuclear

recoil acceptance from 2-16 keV,, before any cuts have been applied to the data.

4.10 WIMP Search Data

As discussed in Section [3.5.1] the differing energy deposition process of nuclear
recoils and electron recoils results in a different scintillation response, requiring
a conversion between energy scales. In previous experiments (ZEPLIN-II and
XENON10) a flat energy conversion factor between keV,, and keV, was applied.

The conversion in energy is calculated using the following formula:

Se
LespSn

where L.y is the zero-field relative scintillation efficiency and S, and S, are the

E,. = Eeea (42>

field suppression factors for electrons and neutrons. The energy-dependent nu-
clear recoil detection efficiency is calculated through comparison between experi-
mental and and simulated AmBe spectra. At the operating fields of ZEPLIN-III,
the field suppression factors are S, = 0.36 and S,, = 0.9 [127].

Using the energy independent field suppression terms, a conversion of F,, =
2.09F,. can be calculated. Figure shows the comparison between simulated
(solid red curve) and experimental (blue shaded region) values. The simulated
values are scaled using a conversion factor of 2.09. Figure shows a clear
mis-match between the simulated and experimental data. This mismatch could
be described by one of two causes. The first would require a loss in detection
efficiency at low energies that had not been accounted for. Each potential source
of efficiency loss was checked and verified and it was found that this could not
explain the mismatch. The efficiencies for each stage of the ZEPLIN-IIT FSR are
listed in Table [£.3]

The second explanation for this is because the L.ss term has an energy de-
pendence. The reason for the energy dependence of this term has already been
discussed in Section [3.5.1] It is important to note that the theory behind the
energy dependence of the relative scintillation efficiency was constructed after
the effect had been seen in both ZEPLIN-IIT and XENON10. This is why the

detection efficiency was investigated before an energy dependent L.r; was used.
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Figure 4.24: Discrimination scatter plot showing the 10% sample of science data
from the ZEPLIN-III FSR. The WIMP search region is shown (red) along with
+10 (blue dashed) lines. With 10% of data, no events are seen in the WIMP
search region. The extended red curve represents the median of the elastic nuclear
recoil band of the AmBe data.
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Energy Independent Efficiencies

Effect Efficiency Method
Deadtime 91.7% Measured
Hardware upper threshold 100% On-off comparison
. Visual inspection
ZE3RA pulse finding (1) 96.0% Hand caleulation
Event reconstruction (2,3) 91.9% Visual inspection
Selection Cuts (5) 73.0% On-off compare
WIMP box acceptance 47.7% Calculation
Energy Dependent Efficiencies
Effect Threshold Method
Two data-sets
. Visual inspection
Hardware (S2) trigger S1 = 0.5 keVg, Modelling
Pulser tests
Software S1 area S1 < 1 keVg, Two datg—sets
Calculation
Scatter plots
Calculation
Software S1 3-fold S1 = 1.7 keVege

2-fold data-set analyses

Table 4.3: Calculated efficiencies for the ZEPLIN-IIT FSR.

Figure 4.26| shows Figure replotted as a relative efficiency between simula-
tion and data. It shows a distinct fall below 10 keV,.. The functional fit can
be converted into an L.¢; which is used to give an energy dependent version of
Equation . The energy dependent L.sy is shown in Figure m

The science run lasted for 83 days between 27t February and 20" May 2008
with an average 84% duty-cycle. This gave a raw exposure of 847 kg.days from a
12 kg active target which lead to a post fiducialisation exposure of 126.7 kg.days.
Over this time, the detector remained stable, with all operational parameters
monitored and corrections applied where needed.

A proportion of 90% of the data had been left blinded with the intention of
performing a blind analysis but this was not possible for two reasons. The first
of these was that a weakness was found in the Mercury reconstruction code after
the data had already been processed once. Secondly, as previously discussed,

the 137Cs calibration did not accurately represent the tail of the electron recoil
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Figure 4.25: Comparison of simulated and experimental data from AmBe calibra-
tions (both standard and low threshold). A large discrepancy is observed below
~10 keV,. which is not explained by instrumental efficiencies. Taken from [83].

distribution, making it impossible to characterise the electron recoil leakage into

the WIMP search region. Consequently, a non-blind analysis was performed on
the full 100% dataset.

4.10.1 Expected Events in the WIMP Box

Due to the misrepresentation of the data using the 37Cs, the decision was taken to

use the electron recoil population from the science data to determine the expected

number of events in the WIMP search box. The electron recoil population was
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Figure 4.26: Relative efficiency for detection below ~10 keV.. The functional fit
to the data is used to define L.f. Taken from [83].

0.3

nuclear recoil energy, keVnr

Figure 4.27: The energy conversion factor for the FSR in ZEPLIN-III. The value
is a combination of L.sf and S,, and £1o bands are shown. Taken from [83].
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selected and sliced into 1 keV, and the resulting log;o(S2/S1) fitted with a Skew-

Gauss function of the form:

Gz | Az, w a)=

T—T¢c
AV2  (@ae? /a w1 2
— 00

2w T2dt 4.3
e cTd, (43)

which reduces to:

1 (z—x¢)? a T — Te
G Az, w, ) = 2w |1 — , 4.4
(x| A xe, w, @) w\/ﬂe [ +67’f(\/§ ” )} (4.4)

where er f stands for the Gaussian error function.

Three separate methods where utilised to fit each slice of the electron recoil
distribution. Firstly, a standard x? minimisation was used. In addition to this,
a maximum likelihood (ML) method with a Poisson distribution was used. The
motivation for using the ML method was to account correctly for low statistics
in the tail of the electron recoil distribution - the region of most interest. The
third method is an extension to the ML analysis which consists of finding the best
ML fit to the data which simultaneously maximises the probability of getting the

observed number of events ns in each energy slice.

For each energy bin, the fitted G (x; .., w, o) were used to estimate the number

of events (pest) in the box for the limits bounded by the energy slice ([liow, lhign]):

lhigh
fest = / Gz | A z,w, a)dr. (4.5)
!

low

The S2/S1 bounds are defined using the functional form of the AmBe nuclear
recoil distribution median. This leads to a stepped box (unlike the curve described
in Figure . The stepped box allows much more simple mathematics without
radically altering the final result. Examples of the skew-Gaussian fit are shown
in Figure [4.28 The observed and expected values for events in the box are
summarised in Table and the parameters included in the fits for each energy
slice are shown in Figure 4.29, The weighted ML method gives an expectation of
(11.64+3.0) events.

The final discrimination plot is shown in Figure showing 7 events that
fell along the upper edge of the WIMP search region. The fact that they all fall
along the upper edge of the search region suggests that they are likely to be due to
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Figure 4.28: Example skew Gaussian fits to the FSR electron recoil distribution.
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Figure 4.29: Weighted ML parameters. The plots show values for the parameters

given in Equation
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[Eloun Ehigh[u kevee Ilow [high Nobs Mest

12,3] -0.52  -0.25 0 0.15
(3,4] -0.57  -0.33 0 0.14
[4, 5] -0.62  -0.38 1 0.96
[5,6] -0.65 -0.43 0 0.8
6,7 -0.68 -0.47 1 0.98
[7,8] -0.70  -0.50 1 0.99
8,9] -0.73  -0.53 0 0.75
[9,10] -0.75  -0.56 1 1
[10,11] -0.76  -0.58 0 0.4
[11,12] -0.78 -0.60 2 1
[12,13] -0.80 -0.62 1 1.2
(13, 14] -0.81  -0.64 0 0.7
(14, 15] -0.82 -0.66 1 1.08
[15,16] -0.84 -0.67 0 1.5
Total &8 11.64

Table 4.4: The observed and estimated event values in the sliced energy bins.

leakage from the electron recoil population. The spatial distribution of the FSR
data with the 7 events highlighted is shown in Figure [4.31] The data can be used
to calculate the discrimination power of ZEPLIN-III. The discrimination power
describes the ratio of events that are described as nuclear recoil events (by falling
within the WIMP search region) compared to the number that fall outside this
region. For 2-16 keV,., it can be seen that 7 events fall in the box and ~36500

events fall outside the box. This equates to a discrimination power of ~1/5200.

In addition to the electron leakage expectation, simulations are used to cal-
culate the expected rate of nuclear recoil events in the WIMP search box. As
has been previously mentioned, the PMT array provides the dominant source of
~v-ray background in the FSR. In addition to this, the PMT array provides the
dominant source of neutron background through a,n reactions and spontaneous
fission from 23%/235U and 232Th. Simulations show an expected rate of about 25
events/year above 10 keV,,. This rate reduces to <1 event/year for single scat-
ter events [I130]. Although this is a low rate, this limits the length of time that
ZEPLIN-III can run before it becomes background limited. This means that,

after ~1 year, it is expected that the data will include an event from a single
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Figure 4.30: Final discrimination plot for the ZEPLIN-IIT FSR. The 7 events in
the box are highlighted.
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Figure 4.31: Drift time (left) and xy distribution (right) for data in the FSR.
The events in the region of interest are highlighted showing a fairly flat positional
dependence.

scatter elastic nuclear recoil. In the FSR, this is indistinguishable from a WIMP
recoil and, therefore there would be a large uncertainty in the identification of
a WIMP-recoil signal. As the FSR lasted only 83 days, it was far from being
background limited.

4.11 FSR Limit Calculation

The limit calculation for the FSR data-set is based on three pieces of informa-
tion about the data plotted in Figure The first of these is the reasonable
assumption that any expected electron-recoil background falling in the search
box should, preferentially, fall in the top part. Based on this, the WIMP search
region is divided into two regions which have significantly different probabili-
ties of containing electron-recoil events based on the expectation analysis using
the electron-recoil population in the data. Figure (taken from [83]) shows
the WIMP box divided into nuclear-recoil acceptance percentiles as derived from
AmBe data. This is motivated by the fact that a standard Feldman-Cousins [137]
analysis given an observed rate lower than the expected rate (11.6+3.0 expected,
7 observed) gives an artificially low signal limit. It is, however, possible to follow

a standard Feldman-Cousins analysis by truncating the expected rate to be equal
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Figure 4.32: The WIMP-search box with the vertical axis remapped onto nuclear-
recoil percentiles. The positions of the 7 events falling within the box are shown
as well as other events just outside the box. The horizontal dashed line separates
the box into two regions with an area ratio of 1:4 [83].

to the observed rate. This method is acceptable as it results in a conservative
signal rate upper limit.

Given the nuclear-recoil acceptance percentile representation, any positive
WIMP signal should populate this parameter space uniformly. The dashed line
is set so as to contain all leakage events above the line and have an empty box
below the line. The ratio of box area above and below the dashed line is 1:4.

The second piece of information necessary for the limit calculation is the fact
that no events fall in the lower part of the box. The final piece of information is
that there may be up to 7 signal events in the upper box.

A classical one sided limit (90% confidence level) calculation determines the
value under which 10% of repeated experiments would return zero events in the

lower box and up to 7 events in the upper box. This can be represented in terms
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of poisson probabilities as:

P =0,m, < 7lu) = P(n = 0[fu) x 3P (ny =il (L= f)u) = 0.1, (46)

1=0

where n; and n,, are the number of events in the lower and upper box respectively,
i is the WIMP expectation value in the whole box and f is the fraction of the
box where the dashed line in Figure represents the upper bound.

Over the range f = 0.74 — 0.84, the calculated result is 2.30/f. A calculated
fraction for the maximum allowed area under the dashed line that excludes all
events is f = 0.84. The upper limit is driven almost entirely by the fact that
the region under the box is empty and, as such, the second term in the Poisson
probability function remains close to unity regardless of the value of f.

The value . = 2.30 is regarded as the classical 90% upper limit on zero. A two
sided 90% confidence level upper limit on zero is given, by a Feldman-Cousins
statistical approach, as p = 2.44. For the published limit, a conservative value of
f = 0.8 was used as below this, the probability of the box containing background
is close to zero.

Given a value for f of 0.8, the 90% confidence upper limit becomes p = 3.05.
With this value of u, there is a 54% probability that the upper fraction of the box
contains no WIMP events, a 33% chance of there being one WIMP event and a
13% chance of there being >2 WIMP events.

4.12 Calculating Limits

Once an upper limit has been placed on the number of events seen in the box,
it is possible to begin the process of setting an upper limit on the cross section
for both spin-independent and spin-dependent WIMP-nucleon scattering cross-
sections. This section will go step by step through the process of setting the
upper limit including the numerical factors, mathematics and corrections needed.
This section will only discuss the formulae needed for this specific limit analysis
but a full review of this process is provided in [138].

Section describes the calculation of an expected differential spectrum for
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a WIMP-nucleon scatter. Equation gives the expected differential equation
for this spectrum. In order to calculate the spin-independent and spin-dependent

WIMP-nucleon cross-sections, the form factor term F?(gr,) must be modified.

4.12.1 The Spin-Independent Form Factors

In the spin-independent calculation, the form factor is calculated as:

F%(qry,) = [3 [sin(qrn) — qrncos(qrn)/(qrn)g}z} e~ (@)?, (4.7)

The exponential term in this equation acts to dampen the form factor. This is
due to the fact that the nuclei have, in essence, a ‘soft edge’. This means that the
charge density falls to zero over the finite skin thickness of the nuclei, resulting
in a damping of the form factor. In the case of xenon, s = 0.9 fm and r, = 5.6

fm.

4.12.2 The Spin-Dependent Form Factors

In the spin-dependent calculation, the two isotopes ??Xe and *'Xe must be
considered. This is due to the fact that these isotopes contain an odd-neutron
and, as such, make Xe targets sensitive to the WIMP-neutron interaction.
Having calculated the momentum transfer for each energy recoil, the form
factor may be calculated. In the case of the spin-dependent interaction, this is
slightly more complicated than in the spin-independent case. The momentum
transfer is parameterised using the Bonn-CD structure functions [139] and fitted
with a 6'® order polynomial which gives a reasonable functional description of the
structure functions. There are three spin structure functions to consider Sy, Sp1
and Sp; and these can be trivially combined to give an overall spin contribution

for each momentum transfer:

S(q) = agSoo(q) + a3511(q) + aoa1S01(q), (4.8)

where, for a neutron, ap = 1.00 and a; = —1.00 and, for a proton, ay = 1.00
and a; = 1.00 giving a positive Sy; contribution for the proton and a negative
contribution for the neutron.

The form factors for ?Xe and !3'Xe can then be calculated using:
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F*(q) = 505 (4.9)

where S(0) is the combined Bonn-CD structure function for zero-momentum

transfer.

The calculations diverge again at this point as the form factor is folded into

the differential rate calculation:

dR 01120 —c2ER/Eo 2
— =" "F(qry), 4.10
E For e (g7n) (4.10)

where Epr is the energy of the recoiling nucleus. This gives the expected spin-
independent and spin-dependent differential spectra for a Xe detector but does

not allow for the intrinsic characteristics of the detector.

The first detector characteristic considered is the energy resolution of the
detector. As described previously, this was calculated as 5.4% at 122 keV,, when
contributions from the S1 and S2 channels are combined, this is highlighted in
Figure [4.12, The contribution from each energy bin is smeared using a normal
distribution. The mean of this distribution is given by the centre of the energy
bin (i.e. for 1-2 keV,e, the mean would be 1.5 keV,,) and the variance (width) is
given by the detector resolution (o) for the specific energy range. This smearing
is applied to the entire spectrum and an expected rate contribution in each energy

bin due to all other energy bins is calculated.

Finally, the characteristic efficiencies of the detector are folded in. These
efficiencies can be found in Table and also in [83]. The efficiencies include a
calculated efficiency of 73% for the selection cuts including the fiducial cuts and
cuts applied to remove MSSI events. The event selection efficiency is calculated
by applying selection cuts to the AmBe calibration data and calculating the loss

of nuclear recoil events in the WIMP search box.

Once all efficiencies have been included, the expected differential spectrum for
WIMP nuclear recoils for both spin-independent and spin-dependent interactions

can be calculated. An example spectrum is shown in Figure [4.33]
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Figure 4.33: An expected differential spectrum for spin-independent WIMP-
nuclear recoils. The black line shows the spectrum with just the form-factor

correction and the red shows the spectrum after the detector efficiencies have
been folded in.
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4.13 Comparing Expectation with Data

As with the form factor measurements, the calculations for spin-dependent and
spin-independent cross section limits diverge at this point. The spin-independent
calculation is relatively simple, relying on only two equations. The first describes

the relationship between the measured and expected rates and the WIMP-nuclear

3

interaction. For an assumed local dark matter density of 0.3 GeVc 2cm ™ and

an average (as described by a Maxwellian distribution) WIMP velocity of 220 km

s~

R, o 1 GeVe2\? PD Vo
— =943 t
r (1 pb) ( 1 <0.3 Gch*Zcm*?’) 220km s~ o

(4.11)
where Ry is the total rate from the expected WIMP-nuclear recoil spectrum, r is
the observed rate and tru is in units of events/kg/day. This equation is reduced
to:

Ro Do A (pb)
— = —, (4.12)
r Ha
where f14 is the reduced mass for the WIMP-target system and o4 is the WIMP-
nuclear cross-section.

In dark matter searches, it is customary to give a cross-section in terms of
the WIMP-nucleon interaction, o, _,. This is done to remove the dependence on
the target species to give a value that is comparable to, for example, argon or
germanium detectors.

In the case of a spin-independent limit calculation, it is simply a case of

normalising the calculation to a specific nucleus of atomic mass A:

7y (p) = (ﬂ>2 (42) 72 00 (1.13)

HA
where p; is the reduced mass for the WIMP-target system for a target mass
A=1.
Equations and are combined to form a calculation for the WIMP-
nucleon cross section that requires no knowledge of the WIMP-nuclear cross-

section:
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en 00 = (45 ) 2 o0 (114)

All that remains in order to calculate a cross-section is to solve the equation
for an array of potential WIMP masses. This is usually done in the range of 10-
10,000 GeVe~2 in order to satisfy a full range of theoretical values. The calculated
data are then plotted and a minimum calculated. The cross-section is then quoted
as the minimum value but with the specific WIMP mass quoted.

The calculation for the spin-dependent cross-sections is somewhat more com-
plicated. Firstly, the calculation must be performed for both the 12?Xe and *'Xe
components. The WIMP-nuclear cross-section is calculated using equation [4.12]
normalised to the abundance of the specific isotope in the Xe used in ZEPLIN-
IT1. Naturally occurring xenon contains 26.4% and 21.2% of '*Xe and '3'Xe (by
number), respectively. However, in the ZEPLIN-IIT xenon, the levels of 3¢Xe
and '3*Xe are depleted. The depletion boosts the abundance of 2Xe and *'Xe
to 29.5% and 23.7%, respectively.

The isotope specific WIMP-proton and WIMP-neutron interaction cross-sections

can then be calculated using the following equation [138]:

Opm  Blgm 1 J

= 4.15
oA 4 p? (Sp7n>2 J+1’ ( )

where p, n denotes proton and neutron respectively, (S, ,,) is the spin factor and
J is the angular momentum of the odd neutron in both isotopes.

The values for WIMP-proton and WIMP-neutron cross-sections for the two
Xe isotopes are then combined to give an overall spin-dependent cross-sections
for the ZEPLIN-III xenon.

4.14 Results from the ZEPLIN-III FSR

The analysis of the 847 kg.days (~450 kg.days fiducial) of data from the FSR of
ZEPLIN-III gave a signal lower limit consistent with zero and a spin-independent
WIMP-nucleon elastic interaction cross-section of 8.1 x 10~® pb for a WIMP
mass of 60 GeVe? at 90% confidence level [83]. This makes ZEPLIN-III the

most sensitive liquid noble gas detector for WIMP masses above 80 GeVe=2 and
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Figure 4.34: 90% confidence upper limit to the WIMP-nucleon elastic scattering
cross-section as derived from the FSR of ZEPLIN-III for a spin-independent in-
teraction. For comparison, the experimental results from XENON10 [141] and

CDMS-IT [147).

also the most sensitive European dark matter device.

In the spin-dependent channel, the combine cross-sections for WIMP-neutron
and WIMP-proton interaction cross-sections are o, = 1.9 x 1072 pb and o, =
4.1 x 102 pb, respectively [140].

A second analysis was performed using the Bonn-A parameterisation of spin
structures. This was done for comparison with other dark matter search exper-
iments and gives more favourable (i.e. more sensitive) results. However, the
Bonn-CD parameterisation is a more recent and accurate parameterisation of the
spin structure functions when compared to Bonn-A.

The results of the first science run of ZEPLIN-III were a remarkable success,
delivering a sensitivity almost exactly as expected. The detector also showed the

best discrimination power for a 2-phase liquid noble gas detection system. The



4. ZEPLIN-III FIRST SCIENCE RUN 129

T \\HVH‘
’

T \_UM-HT T T TTTTI

WIMP—neutron cross—section (ag,), pb

L ‘\‘\,MH \T

T \HHH‘ T \HH‘\‘ \,’HHH‘

WIMP—proton cross—section (a,), pb

3 @ ! !
10 L I | I O | I I N |

10 10 10° 10*

WIMP mass, GeV/c’

Figure 4.35: Upper limits for the WIMP-neutron and WIMP-proton spin-
dependent cross-sections. In addition to ZEPLIN-III, other Xe experiments are
shown in black: ZEPLIN-I [143], ZEPLIN-II [143] and XENON10 (Bonn-A) [144].
Also shown are curves from CDMS-II [142], COUPP[145], EDELWEISS [146],
KIMS [147], NAIAD [90], PICASSO [148] and SIMPLE [149]. The hatched are
is the tip of the 95% probability region for neutralinos in CMSSM [150]



130 4.14 Results from the ZEPLIN-III FSR

first science run was intended as an engineering run to test all the systems. In
order to improve the result from this run, the detector entered a period of upgrade.
To improve the sensitivity of ZEPLIN-III a new PMT array was developed with
a much lower intrinsic background than that of the array used in the first science

run. The next chapter gives detail on the development of the PMT array.



Chapter 5

Component Radiation

Measurements

In rare event searches, it is essential to know the radiation budget of the system
to a level of accuracy not needed in many other experiments. Not only is it
important to know the budget but it is important to know the effect each source of
radiation will have on the result as a whole so that expected rates and spectra for
both ~-ray induced electron-recoil background and neutron induced nuclear-recoil
background can be accurately calculated. Only then can a signal in ZEPLIN-III
be assessed as being above the expected level of background or not. For this
reason, components that are not shielded from the detection volume must be
radio-assayed in order to minimise and understand their impacts. The Boulby
underground facility plays host to a high-purity germanium (HPGe) detector.
This detector has been widely used for both environmental measurements and
component measurements in the past [I51]. T personally lead the work on the
radio-assaying of the various components for use in the ZEPLIN-III experiment.
The radio-assaying tests were performed in order to test the components to be
used in the upgrade of ZEPLIN-III in order to reduce and characterise the exact
backgrounds in the system. For the second science run, a PMT background
reduction of 10x over the background from the first science run PMT array was

targeted.

In any naturally sourced material, the dominant source of radioactivity comes

from uranium, thorium and potassium contamination. It is also common for
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Decay Isotope Energy (keV) Branching Ratio Source Reaction

2387 295 0.436 2iph—2MTh
352 0.304 Hiph—2MThH
609 0.266 2B —214Pg
1765 0.356 214Bi—211Po
232Th 239 0.177 22pp—212B;
583 0.342 2081 —208p
911 0.428 228 Ac—228Th
2615 0.147 2081 208pp
0K 1460 0.11 WK —1Ca

Table 5.1: The peaks of interest for 28U, 2*2Th and “°K observed in the HPGe
detector.

cosmogenically produced %Co to provide contamination. The elements 2**U and
232Th follow the decay chains shown in figures and [5.2]

Following the trend of mass number along each decay chain, it is clear to see
that each decay chain proceeds via either o or 5~ decay. The process of 5~ decay
causes emission of an electron, often leaving the daughter nucleus in an excited
state. Through a process of de-excitation, v-rays of varying energies are emitted
which are characteristic of the decay from parent to daughter nucleus. A specific
parent nucleus may 8~ decay and leave an excited daughter nucleus in more than

one way, leading to a different de-excitation pattern.

In the decay from 2*Bi—3*Po, the 8~ -decay will leave an excited nucleus
with an energy of 1765 keV, 16.9% of the time. This excited state can decay via
emission of a 1765 keV ~-ray directly to the ground state. The decay also leaves a
21"Po daughter nucleus with an excitation energy of 1729 keV 17.5% of the time.
The preferred de-excitation route of this energy level involves 2 characteristic ~-
rays. The route taken is to emit a vy-ray with an energy of 1120 keV followed by
the emission of a y-ray with an energy of 609 keV (to the ground-state) giving a

total energy of 1729 keV, the initial excitation energy.
Also of importance in the decay of both 233U and 232Th is o decay. A typical

« particle from a radioactive decay has energy of 5-6 MeV due to the Geiger-
Nuttal law [152]. If this « particle collides with an atom containing a loosely

bound neutron (in the case of ?Be, used in an AmBe neutron source, the binding
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Figure 5.1: The decay scheme for U [152].
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Figure 5.2: The decay scheme for ?*Th [152].
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energy of the unpaired neutron is ~1.7 MeV), it is possible that a neutron can

be released through an (a,n) reaction [153], [154] for example:

a+?Be -2 C+n. (5.1)

The radioactive ) value for this reaction is 5.7 MeV and the decay chain of
28U provides « particles with energies of up to 7.8 MeV making this reaction
energetically possible. Of course, there are other naturally occurring elemental
isotopes with loosely bound neutrons so it is possible for neutrons with a broad
range of kinetic energies to be produced.

The HPGe detector in the Boulby facility is shielded from rock-borne radioac-
tivity by a combination of 20 cm of lead and 20 cm of copper shielding. Simulation
shows this to be effective at excluding >99% of external ~-ray radiation from the
system from non-gaseous sources. This being the case, the background seen by
the detector is dominated by radiation within the shielding itself and from radi-
ation introduced into the system from ??2Rn. As radioactive contaminant energy
peaks are visible in both background and sample data sets, it is important to
analyse live time normalised, background-subtracted spectra. When an acquired
background spectrum is viewed, characteristic energy peaks can easily be seen.
Figure [5.3| shows a typical energy spectrum and Table summarises the energy
peaks seen, their intensities and the original S~ -decay source parent-daughter

pair.

5.1 Simulation

An HPGe detector is not 100% efficient across all energies. The efficiency of the
detector is also affected by radiation self absorption in the sample being measured.
The level of self absorption is sample specific and depends on factors including
the sample mass, shape, density and position within the detector setup. For this
reason, it is important to ascertain an energy dependent efficiency of the detector.

A GEANT4 [155] Monte-Carlo simulation has been created for the HPGe
detector located in the low background lab (see Figure . In this simulation,
both the lead (Pb) and copper (Cu) shielding are represented. Also included are
the HPGe crystal and the steel enclosure.
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Figure 5.3: Typical background spectrum for the HPGe detector based at the
Boulby facility. Key energy peaks are labelled.
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Figure 5.4: The GEANT4 simulation of the HPGe detector. The green box
represents the Pb shielding and the red box the Cu shielding. The white cylinder
represents the Ge crystal whilst the blue cylinder represents the steel enclosure
around the crystal.

Once a simulation of the detector setup has been created, it is possible to
add sample materials into the simulation (this is shown in Figure with the
simulated PMT test shown next to the actual experimental setup). If isotropic
v-rays (with a flat energy spectrum) are then fired from the sample, it is possible
to build a picture of the sample specific detection energy as a function of ~-
ray energy. This then accounts for self absorption from the sample, affecting
the detection efficiency of emitted y-rays. The germanium crystal is treated as
a “sensitive” volume in the simulation which means that any energy deposited
within the volume by a v-ray is recorded. The simulation runs event by event so

for each ~-ray emitted, its total deposited energy is recorded.

The simulation is run such that several million isotropic events are fired from

a simulated sample (GEANT4 allows chemical structure and density, amongst
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Figure 5.5: Simulation and actual placement of the ZEPLIN-IIT veto PMTs in
the HPGe detector.

other things, to be factored in) and the energy deposited in the sensitive volume
can be collected with minimal statistical uncertainty. Figure[5.6/shows the sample

specific efficiency for the simulation of PMTs used in the veto detector.

5.2 Calculating a Final Concentration

A Gaussian fit is applied to each of the peaks of interest observed (detailed in
Table in the recorded HPGe spectrum and the resultant distribution can
be integrated to give a number of counts contributing to the peak. The values
for the fits obtained using a background spectrum are scaled for exposure time
and then subtracted from the sample spectrum to give an overall count rate for
each peak of interest. Once the data is acquired and fitted, and the GEANT4
efficiency for that energy applied, a concentration for each of the contaminants
can be calculated.

Initially, the number of atoms of ?*?Th needed (N;) to give one disintegration

1
N; = <E) t1/2, (5.2)

per day can be calculated:
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Figure 5.6: The energy dependent efficiency for a sample of 3 veto PMTs placed
on the HPGe detector head.
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where the half-life, ¢,/ is given in days. This equation can be modified in order
to calculate the mass concentration needed to give one disintegration per day per

kilogram:

(1 Aty
o () A o

where N4 is Avagadro’s constant.

At this point, the values should be scaled using the isotope mass fraction. In
the case of 232Th this is approximately equal to 1. For a chain of n decays (for
Th and U), the above equations must be multiplied by 1/n. In the case of ?*Th,
n = 10; for U, there is the added complication that 95.6% of primary decays are
22U (n = 14), and 4.4% are **U (n = 11), giving n = 13.87 overall.

Additional multiplicative factors are included to account for the probability
of producing /5 and y-ray events (n, and ng) giving an overall equation for mass

concentration to give one disintegration per day of:

. 1 Aitl/g nﬂ,nﬁf
C<h12> Na ( n ) (54)

This equation can then be scaled to give a relationship between Bq/kg and parts

per million or billion (ppm or ppb). Using the necessary values for potassium,

thorium and uranium, the following conversion factors can be calculated:

1 ppm K = 0.0309 Bq/keg,
1 ppb Th = 0.00406 Bq/kg, (5.5)
1 ppb U = 0.0129 Bq/kg.

A value for Bq/kg can then be calculated using the detector efficiency, eff,
branching ratio of each decay, br, the mass of the sample, m, and the background

subtracted rate of each peak, ratey:

Bq _ rateps
__1'16X105((eff><br><m))' (5.6)
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5.3 Calculating Errors

The statistical nature of counting events in the HPGe detector where concen-
trations of contaminants are, by design, low means that a standard statistical
error is pertinent. A brief summary of error analysis is included since, for many
samples, only upper limits on contaminations can be calculated. Errors on the
sample and background counts are independent and can therefore be combined

in quadrature as follows:

sample livetime background livetime

2 2
error — \/ (\/ sample Counts) N <\/background counts) ‘ (5.7)

The final value for the ppm/ppb contamination is calculated using a weighted
mean taken from the contamination and the error on the contamination (derived

using the error on the counts):

(B2t i)
ppb/ppm = -— . -
(A—+A—++A—>

, (5.8)

where z is the individual contamination calculated for each peak and Ax is the
error on each peak. The overall energy can also be calculated, where n is the

number of counts:

NG

1 1
A2 T Az Tt A

(5.9)

A(ppm/ppb) = .
( )

A summary of the contaminations of various ZEPLIN-III and veto compo-

1
2
T

nents can be found in Table [5.2] which shows the wealth of information obtained
using this technique. The samples measured were components required for the
second science run upgrades to the PMT array and components required in the
veto detector (discussed in the following chapter). In addition to this, the re-
duced background expected from the PMTs in the second science run required
a deeper knowledge of background from other components such as the electric

feedthroughs (made from ceramic material) and the polypropylene shielding.
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Table 5.2: Radiological content with statistical uncertainties where appropriate
of veto components as assayed either by direct observation of v-ray emission
(HPGe) or through mass spectroscopy techniques (ICP-MS/OES).

Component Mass, kg Radiological content
U (ppb) Th (ppb) K (ppm)

HPGe measurements

Plastic scintillator 1057.0  0.240.3  0.1£0.7  0.2£0.6
PTFE inner wrap 8.9 1.3+0.2  0.2+40.5 1.2404
Silicone 0.1 29404  05£0.8 5.7+£1.1
PTFE tape 3.1 3.2+1.3 6.1£1.1  3.9£1.0
Veto PMTs 6.2 38.0+£0.8 21.1+1.2 65.54+2.4
PMT preamplifiers 0.7 8.44+1.7 13.2£2.2 10.1£1.7
PMT base 5.5 12.7£1.4 14.8+£2.4 20.2+2.4
Epoxy 70.0 2.5+0.6  0.9+£0.3 0.6+0.1
Gd oxide 8.0 0.9£0.1 1.2+£0.3 1.7£1.1
ICP-MS/OES

Copper tape 26.0 1.940.2 29404 14.0£2.0
PTFE inner wrap 8.8 2.0£1.0 5.0£1.0 <4
Veto PMTs 6.2 30.2+2.2  30.0£3.7  60£2.2
PMT preamplifiers 0.7 10.3£0.5  29.7£3.2  244+3.7
PMT base 5.5 13+3.4 194+2.0 21£3.0
Polypropylene 510 <1 <1 <H
PMT mounting 15.8 30£7.8 <10 <10
Cabling 30.2 110£5.4  2043.2 29+7.3
Connectors 2.1 <10 <10 <4
Optical gel 0.3 <1 <1 <1

Gd oxide 8.0 2.5£0.5  3.4=£0.7 <4
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5.4 The Impact of Contaminants in ZEPLIN—
111

Once the contamination due to individual radio-isotopes has been found, it is
necessary to model the v-ray and neutron emission from each component within a
simulation that includes an accurate ZEPLIN-III geometry in order to determine
whether a sample contamination is acceptable for components used in the upgrade
and, if so, what the impact in the detector is in terms of both nuclear recoils and
electron recoils.

The simulations for the ZEPLIN-III detector [I30] were performed primarily
using the GEANT4 package, as well as custom built libraries and the ROOT
analysis framework [I56]. GEANT4 is an object-oriented toolkit, written in the
C++ programming language, and is used for the simulation of the passage of
particles through matter. Thus, it provides an ideal environment for establishing
theoretical rates of particle interaction in the ZEPLIN-III detector, with end-to-
end simulation.

The simulation package required the ability to handle very low energy nuclear
recoils ~ few keV, as well as the simultaneous presence of neutrons with ener-
gies up to ~ 10 MeV. Furthermore, accurate simulation of recoil events in the
detector requires each neutron to be handled individually with all interactions
recorded event by event. GEANT4 is not the only simulation package available
and, as such, other packages such as MCNP [157] or FLUKA [I58] were consid-
ered. These other packages, however, did not achieve the detail across the whole
energy spectrum achieved with GEANT4. In FLUKA, for example, interactions
with neutrons with energy below 20 MeV are not treated on an individual basis.
Instead they are averaged and treated statistically.

The structure of the simulations can broadly be broken into several sections
that deal with aspects of physics processes included in the simulation, geometry
of the matter present, the step-by-step running of the simulation, and the output
of statistics & results generated in running the simulation.

The object-oriented nature of GEANT4 allows for the simple addition of spe-
cific models into the simulation as required by the user. The ZEPLIN-III simula-
tion itself includes a number of libraries and classes to fully represent almost all

possible interaction processes. The most important model used in the simulation
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is that which allows particle transport through material. The simulation also
uses low energy models for v-rays including Rayleigh and Compton scattering,
the photo-electric effect, and ~-ray conversion. The simulation also includes ion-
isation and Bremsstrahlung for electrons and positrons and pair production and
capture for muons. Ionisation models for hadrons and multiple scattering models
for all charged particles were also included. Scintillation, electroluminescence and
radioactive decay models were registered to simulate the light emission process
in the Xe volume.

ZEPLIN-III is designed for the identification of nuclear recoils and, within
the liquid volume, these can be produced by four distinct processes with varying

significance:

Elastic Scattering - Elastic scattering, leaving the nucleus with no excited
states, is the interaction most significant in dark matter searches. Elastic scatter-
ing is the favoured process by which WIMPs are expected to interact with atomic
nuclei. GEANT4 samples the differential neutron cross-section of the nuclei to
give a final state through the use of two supported representations. Where data
is available, a tabulation of the differential cross-section as a function of scat-
tering angle is used. Where data is not available, statistical predictions for the

cross-sections are used.

Inelastic Scattering - Postulated as another method by which WIMPs can
interact with matter [159], the inelastic interaction (n,n’y) is the process by which
a neutron scatters off a nucleus leaving the nucleus in an excited state. The
final state is given by the neutron, recoiling nucleus and daughter products from
the decay of the excited nucleus. As well as y-ray emission, the de-excitation
may also result in the emission of an a-particle. The GEANT4 model includes
a number of possible final states. The energy and angular distribution of the
interaction products are determined by tabulated values or as a series of Legendre

polynomials as described for elastic scattering.

Fission - This process is unimportant for component contaminations in ZEPLIN—
III. However, fission processes become important for muon-induced neutron stud-
ies. In fission, the neutron is captured by the nucleus which then decays by split-

ting into at least two fragments. For neutron induced fission in GEANT4, the
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four most common fission channels are used. Neutron yield is tabulated as a func-
tion of both incoming and outgoing neutron energy. The angular distributions
are, again, either taken from a tabulated source or inferred using Legendre poly-
nomials. There are no known fissile isotopes of Xe, although, *Xe (produced
as a uranium fission product in nuclear reactors) has the largest known neutron

capture cross-section.

Radiative Capture - This is a process which becomes important when consid-
ering the capture of thermal neutrons by both hydrogen and gadolinium in the
ZEPLIN-III shielding. Radiative capture occurs when a slow moving neutron
is captured by the target nucleus with the daughter nucleus de-exciting via the
emission of a photon (n, 7). The final state is described using photon multiplic-
ities or photon production cross-sections, as well as the angular distributions of

the emitted photons.

The models are chosen and registered in the user defined “Physics List” along
with specific particles to be included. At this point, it is also possible to apply
energy cuts to be placed on particles. These cuts define an energy, below which
a particle is not permitted to generate a secondary particle through its own in-
teractions. This is useful in reducing the processing time per event by neglecting

any interactions that have no significant impact on the result of the simulation.

5.4.1 Electron Recoil Background Impact

Using the conversion factors developed in equation [5.5] it is trivial to calculate a

v-ray flux in terms of y-rays/kg/day. For each of the isotopes, this is as follows:

1 ppm of K emits 2310 ~-rays/kg/day,
1 ppb of Th emits 958 ~-rays/kg/day, (5.10)
1 ppb of U emits 278 ~y-rays/kg/day.

Given the mass and contamination of the sample, and the branching ratio of
each of the isotopes of interest, an energy spectrum for +-ray emission from the
sample can be calculated. The dominant sources of electron recoil background

in the second science run of ZEPLIN-III are the polypropylene shielding, the
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PMT array, the ceramic high voltage feedthroughs and the veto detector (plastic
scintillator, PMTs, PTFE wrapping, etc.).

For each of the contributing components, a y-ray spectrum was fired and
the energy deposition in ZEPLIN-III recorded. Figure shows the resultant
expected single scatter spectrum. The spectrum shows an expected rate of 0.82+
0.05 events/kg/day /keVe. for energies below 100 keVee.

5.4.2 Neutron Impact

As ZEPLIN-III is designed to detect the nuclear recoil signature of a WIMP-
nucleon interaction, it is of paramount importance to understand the neutron
background of the detector. The neutron emission spectrum for components in
ZEPLIN-III is, as in all cases, sample dependent. The SOURCES-4A code [160]
is a code which calculates the neutron production rates and spectra from (a,n)
reactions, spontaneous fission and delayed neutron emission due to radionuclide
decay from U & Th content. This code can be modified according to the source
material, density and mass to give a spectrum for neutron emission. This value
can be normalised in order to give a value for neutrons emitted, per second,
per centimetre cubed, per z ppb. The value of x is the value measured in the
HPGe detector (see Section Typically, 10 ppb is used to generate the neutron
spectrum which is then normalised to the actual U and Th contaminations. Figure
b.8 shows the result of the SOURCES-4A run in the case of several ZEPLIN-III
components.

An integration is performed across the spectrum to find the total number of
neutrons/s/cm?/10 ppb. This number is then the base number and each energy
bin in the spectrum is the relevant proportion of this. In the example of the
PMT array, the total neutron flux is (in n/s/cm?®/10 pp) 3.28x107° for Th and
1.16x10® for U.

The numbers quoted above can be converted into a number of neutrons emit-
ted per year for the ZEPLIN-III PMTs. In the case of U, 21.5 neutrons are
emitted per year and for Th, 8.7 neutrons are emitted. Of course, this number is
purely statistical (0.5 of a neutron is not possible) but these numbers are scaled
to millions of neutrons generated in the simulation. If one million neutrons were

generated, this would equate to ~33,000 years of livetime. Given all the processes
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Figure 5.7: Simulated ~-ray background from dominant ZEPLIN-III components.
Shown are, the veto (light blue), the ceramic feedthroughs (dark blue), the PMT
array (black), the polypropylene shielding (pink) and the total background (bold,
dark blue).
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Figure 5.8: Simulated neutron spectra for several sources of external and internal
neutrons in ZEPLIN-III. The rate is normalised to the total number of neutrons
emitted. Shown are Pb (blue) which makes up the y-ray shielding in ZEPLIN—
III, NaCl (green) which is the main component of the rock surrounding the lab
and CHy (red) which represents the neutron shielding in ZEPLIN-III.
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associated with a single neutron event, it is useful to use a large computing grid to
reduce the time taken to reach an answer. Each neutron event takes >5x longer
to compute than a single y-ray event as a neutron is likely to interact many times.

Integrating over energies above 5 keV,,, an expected neutron single scatter
rate due to the PMT array of 0.27 events per year is calculated in an 8kg fiducial
mass. The energy dependent single scatter rate is shown in Figure [5.9]

Figure shows the single scatter rate expected from all the components
used in the electron recoil background simulation. In addition to these compo-
nents, the nuclear recoil rate from the cavern rock is included as this contributes
a nuclear recoil background level of the same order of magnitude as the ZEPLIN-
IIT PMTs. The ~-rays associated with the rock surrounding the laboratory are
not included in the 7y-ray background simulation as they are effectively moder-
ated by the lead shielding and, therefore, only provide a negligible electron recoil
background in ZEPLIN-III.

Similar simulations have been performed for all ZEPLIN-III components fol-
lowing exactly the same method. For the second science run, a total single scatter
neutron rate of ~0.6 neutrons per year is expected for energies >5 keV,, (with
100% nuclear recoil acceptance). For an assumed veto neutron tagging efficiency
of ~60% (see Section for full calculation), this reduces to ~ 0.2 un-vetoed
neutrons per year for energies >5 keV,;, which includes the WIMP search region
(defined in Section [1.9).

With the radio-assaying process completed, the PMT array was manufactured
ready for use in the second science run. Having reduced the background level of
internal components, the sensitivity of ZEPLIN-III can be further improved with
the installation of a veto detector, designed to reject signals that are consistent

with background. The veto detection system is discussed in the following chapter.
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Chapter 6

The ZEPLIN-III Veto Detector

Following the first science run of ZEPLIN-III, the detector underwent a period
of upgrade in order to improve the WIMP-nucleon interaction cross-section sen-
sitivity. Included in this upgrade period was the commissioning and installation
of a veto detector designed to tag and reject neutron and ~v-ray signals in coin-
cidence with ZEPLIN-III. The ZEPLIN-III veto detector (hereby referred to as,
simply, “the veto”) was designed, constructed and commissioned by the Univer-
sity of Edinburgh with help from ITEP, Moscow. As such, I led much of the work
described here.

The veto is built in a modular structure with slabs of plastic scintillator op-
tically coupled with low background PMTs. These slabs, in turn, rest upon
modules of gadolinium loaded polypropylene. The gadolinium is included to aid
in the capture of neutrons coming from both the outside and inside of the detec-
tor. As well as the tagging and rejection of events in ZEPLIN-III, the veto also
acts as a diagnostic tool, identifying and diagnosing spurious events. The back-
ground rejection capabilities of the veto are of paramount importance in allowing
ZEPLIN-III to reach its second science run (SSR) sensitivity goal of 1072 pb for
the spin independent WIMP-nucleon cross-section [161].

6.1 Veto Design and Construction

The veto may be considered in two sections, the barrel section which surrounds
ZEPLIN-III vertically and the roof section which sits above ZEPLIN-III. The
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barrel section is constructed from 32 modules of gadolinium loaded polypropy-
lene and 32 modules of plastic scintillator. The 32 scintillator modules are a
uniform length of 100 cm and provide coverage around ZEPLIN-III. The scin-
tillator module is then seated in its reSPEctive polypropylene base section and
clamped using copper retaining plates. The roof section of the veto is constructed
from 25 modules that combine to form a circular roof section which rest upon
a cylindrical Gd-loaded polypropylene plug. The 1057 kg of scintillator material
is polystyrene based UPS- 923A (p-terphenyl 2%, POPOP 0.02%) produced by
Amcrys-H, Kharkov, Ukraine. The plastic emits scintillation light at a wave-
length of 420nm with a rise time of 0.9 ns and a decay time of 3.3 ns. The

complete veto gives > 37 steradian coverage of the ZEPLIN-III instrument.

The 32 polypropylene sections and the roof plug of the veto are loaded with
gadolinium to a level of 0.5% (by weight) in the form of gadolinium oxide powder.
This value was optimised using a Monte-Carlo simulation in which the percentage
of gadolinium loading was varied from 0-10%. Figure shows that the idealised
tagging efficiency (no threshold) rises to a maximum of ~80% for a gadolinium
loading of 0.5%.

Natural gadolinium has a neutron cross-section of 49,000 barns (1 barn =
1072* e¢m?, which is the highest neutron capture cross-section of any naturally
occurring element. Gadolinium itself is a heavy element and '%2Gd is a radioiso-
tope which decays via the emission of an a-particle. To reach the stable isotope
140Ce, two further a-particles are emitted. This fact was a cause for concern as
there was a potential for these particles to interact with a loosely bound neutron,
causing neutron emission. The SOURCES-4A code is used to give an expected
neutron emission spectrum for CHy (an accurate representation of polypropylene)
with a concentration of 10 ppb of %2Gd. An integrated neutron production rate
of 1.74x107'" n/s/cm? is calculated. Given that the CHy is actually loaded with
a concentration of 0.5% by weight, the shielding has 0.5 x 107 ppb of naturally oc-
curring gadolinium (actually Gd2O3 but the mass fraction of oxygen is included).
The isotope %2Gd has a 0.2% abundance in natural gadolinium which means that
the concentration of 2Gd in the CH, shielding is actually 10* ppb. Normalis-
ing the 10 ppb neutron production rate to this value gives a neutron production
rate of 1.74x1071 n/s/cm?. This rate is approximately 1000 times less than the

rate of neutrons produced by uranium and thorium (1.2x107° n/s/cm?) contam-
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Figure 6.1: A CAD drawing of the veto in situ with ZEPLIN-III and surrounded
by the lead castle. In the centre is the ZEPLINIII detector (labelled A) show-
ing the copper vacuum vessel enclosing the Xe target and the LN2 vessel below
it. Forming a barrel around ZEPLINIII are the 32 Gd-loaded polypropylene
pieces and roof plug (labelled B and hatched). Surrounding these are the active
scintillator modules (C) with PMTs housed in cups and recessed into the lower
polypropylene structure. The 20 roof modules of scintillator (D) rest on the roof
plug. The lower polypropylene structure (E) contains no Gd and rests on a copper
and a lead base (F). Finally, the lead castle (G) envelopes the assembly [162].
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inants in the CH, shielding. This means the effect of the a-particle emitting 1*2Gd
isotope is negligible compared to the effect of the heavy metal contamination of
the CH; shielding itself.

When neutrons enter the polypropylene shielding, they are moderated via the
process of hydrogen scattering. The energy loss per interaction is maximised due
to neutrons and protons having almost identical masses. Once they have reached
thermal energies, it is possible for them to undergo radiative capture. The isotope
upon which this most often occurs is *’Gd (15.7% natural abundance). This is
due to the fact that the ground state of *®*Gd is the most stable isotope of
gadolinium. The capture of a neutron onto *"Gd to form '%8Gd is energetically
favourable and requires minimal angular momentum transfer. In effect, the wave-

function for 7Gd + n is almost identical to the wave-function for °8Gd.

Although natural gadolinium has a neutron capture cross-section of 49,000
barns, %"Gd alone has a neutron capture cross section of 225,000 barns for ther-
mal neutrons. This is around 66 times as large as the capture cross section of
the °B(n,a)"Li reaction. Boron loading of liquid scintillator has been proposed
as an alternative method by which to capture thermal neutrons in dark matter

experiments [164].

The neutron capture reaction can be described as follows:

PIGd 4+ n =% Gd + v + 7.94 MeV. (6.1)

The excited state of 8Gd typically decays via the emission of 3-4 y-rays with a
total energy equal to that of the Q-value, 7.94 MeV. The experimental spectrum
for this decay is shown in Figure[6.3] The y-ray emission has a characteristic time
of (10.4+0.3) us (see Figure from the time the neutron enters the loaded
material. This characteristic time is dependent on the geometry of ZEPLIN-III.
In a purely hydrocarbon system, the mean emission time would be much longer
and would lead to the release of a single 2.2 MeV ~-ray following radiative capture
by H.

The gadolinium loading is achieved through the machining of grooves into
the polypropylene sections and the backfilling of the sections using a mixture of
gadolinium oxide and epoxy resin. Simulations showed that for neutron tagging,

provided the pitch of the grooves did not exceed ~15 mm, the difference between
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Figure 6.2: The veto tagging efficiency and mean ~-ray emission times for various
gadolinium loading fractions. Data is taken from an idealised simulation with no
energy threshold [163].
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grooves and a uniform distribution of gadolinium is negligible. Tests show that the
gadolinium oxide powder remains in a uniform suSPEnsion during the period of
time taken for the epoxy to dry meaning that neutron capture is equally efficient
across the whole volume [163].

The veto scintillator slabs are optically coupled to individual 3-inch ETEL
9302KB PMTs. These low background PMTs were selected in order to reduce
the radioactive impact in both ZEPLIN-III and the veto. Given the fact that
the active Xe volume of ZEPLIN-III is situated towards the top of the detector,
the scintillator slabs were orientated such that the PMTs were as far from the Xe
volume as possible.

The PMTs are connected to pre-amplifiers developed at the University of
Edinburgh. These pre-amplifiers serve two purposes. The first, and most impor-
tant of these, is to match the impedance of the PMT output signal to the in-
put impedance of the data acquisition system (DAq) analog-to-digital converter
(ADC) cards. As the PMTs were bought “off the shelf”, they have an output
impedance of 1M(2 whereas the ADCs require an input impedance of 502. The
pre-amplifiers also provide a factor 10 gain increase which allows better resolution

of low energy events but limits the full energy scale. Details of the veto energy
range can be found in Section [6.2]

Also optically coupled to each of the veto scintillator slabs is a single fibre-
optic cable. This is installed so that, once a week, a data run can be performed
whilst flashing an LED of consistent voltage which serves to monitor the light
attenuation length stability of the plastic scintillator. This is discussed in more
detail in Section [6.3l

Finally, once the veto is constructed around ZEPLIN-III, the 20 cm lead
shielding can be built up. The veto and lead shielding is designed so that
ZEPLIN-III and all its ancillary systems (gas system, levelling and electronics)
can be accommodated. To serve this purpose, slots are machined into the base of
the veto which act as feedthroughs for pipes and wires. Any unused slots are filled
with wedges that sit flush within the groove and any used slots have machined
wedges inserted that allow the passage of pipes and wires out of the detector but
minimise the loss of shielding coverage. The lead roof of the castle is at a height
such that the curvature of the fibre-optics feeding into the roof slabs is not so

great as to impede transmission of light or, indeed, fracture the fibre-optic cable.
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Figure 6.5: The polypropylene veto barrel pictured surrounding ZEPLIN-III. The
recesses in which the veto PMT's rest can be seen toward the bottom of the barrel
sections.
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Figure 6.6: The scintillator sections installed into the polypropylene. The four
cables: high voltage, signal, pre-amp and LED fibre-optic can be seen.
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Figure 6.7: The lead castle built up to the level of the veto roof, the lead roof is
built onto this leaving enough room for the LED fibre-optic cables which can be
seen attached to the lower part of the roof scintillator slabs.
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6.2 Veto Calibration

The calibration of the veto was performed both inside and outside the lead castle.
The programme of calibration began with the testing of individual PMTs in order
to measure their individual quantum efficiencies and the gain dependence of the
single photoelectron signal (SPE). Subsequently, tests were run to determine the
full energy range of the slabs at given PMT gain levels and a final operational

voltage was set.

6.2.1 PMT Quantum Efficiencies

The quantum efficiency of a PMT is a probability function defined as the ratio
of input light photons to output electrons from the PMT photocathode. This
quantum efficiency is dependent on an array of factors but the factor on which it
depends the most is the wavelength of the incident light. The quantum efficiency
of a PMT is always quoted as a percentage efficiency at a SPEcific wavelength.
For ETEL type 9302KB PMTs, the quantum efficiency for a typical unit is (as
quoted by the manufacturer) 30.1% at 360nm [I08]. As mentioned previously,
the veto emits light at 420 nm so it is important to know the quantum efficiency
at this wavelength.

Three of the PMTs were sent to ETEL for individual quantum efficiency test-
ing. The quoted values are the averages across the entire photocathode surface
(typically, the efficiency varies with position on the photocathode). As the scin-
tillator plastic emits light at 420nm, it was requested that ETEL send values
for quantum efficiency at this wavelength. The three values given were 26.52%,
25.46% and 26.37%.

In order to calculate the quantum efficiencies of all PMTs, a dedicated LED
run was performed for each with a blue LED illuminating the photocathode. The
run lasted 100s and the LED and PMTs were held at fixed distances from each
other. The gains of the PMTs were equalised across the runs using the position of
both the SPE and LED peaks, and it is the integrated area of the LED peak that
gives the quantum efficiency. All measurements were normalised to the absolute
quantum efficiency of the 3 PMTs measured by ETEL.

This method can be applied to all PMTs and an average value (due to three
separate reference points) can be calculated. The result is plotted in Figure[6.11]
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Figure 6.8: The wavelength dependent quantum efficiency for a typical ETEL
type 9302KB PMT. The peak quantum efficiency is measured to be 30.1% at
360nm [108].
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Figure 6.10: The LED signal in the same PMT as used in Figure Given the
LED feature peaks at acquisition channel 684. Setting a threshold of 10 phe is
equivalent to an acquisition channel of 140, which is well removed from the SPE
feature and means only LED signal is counted.
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The average quantum efficiency for the PMT's used in the veto is 26.2% at 420nm.

6.2.2 Setting an Energy Scale

Once the quantum efficiency of each PMT has been determined, it is matched to
one of the veto slabs. The matching of PMT to slab was decided based on the
gains and quantum efficiency of each PMT and the bulk attenuation length (BAL)
of each slab. The attenuation length is defined as the length of plastic needed for
a beam of light to reach 1/e of its original intensity. A single PMT was selected
for the tests and a ??Na source was also used. #*Na produces characteristic back
to back 511 keV ~-rays due to positron emission and subsequent electron-positron
annihilation, as well as 1275 keV ~-rays due to the positron emission leaving an
excited state.

Energy SPEctra were acquired for varying positions along the length of the
slab and the position dependent size of the 511 keV signal was mapped. If this

=/l the value of [ gives

data is fitted with an exponential function of the form e
the characteristic length for a photon of light to reach 1/e of it’s original size
(the BAL). Prior to calibrating each slab, the gains of each PMT were adjusted
such that the SPE signal from each PMT fell at the same pulse height. This is
done to normalise the response of the PMTs to SPE level signals. The energy
range in terms of the number of photoelectrons can, in theory, be set trivially.
This is accomplished by calculating the position of the SPE peak in the data in
terms of a DAq ADC channel. A maximum number of photoelectrons can then
be calculated given that the ADC cards have a full scale of 2'* channels (14 bit
ADC cards).

In practice, it is not so simple. The shape of an acquired veto pulse is such that
the pulse height does not scale linearly with number of photoelectrons. Using the
acquired SPEctra, it is possible to work out the number of photoelectrons that

the mean of the LED distribution represents by using the following relationship:

Niphe = <§>2 (6.2)

where p is the mean of the LED distribution and o its width.
For the range of LED voltages, a plot of pulse height against calculated number

of photoelectrons can be produced. A functional fit to this provides the correction
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Figure 6.11: The measured quantum efficiency for all veto PMTs deduced using
the values measured by ETEL. The fit shows an average value (from a gaussian
fit) of 26.24% at 420nm.
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to the data needed to remove the pulse height non-linearity. The veto DAq has
a voltage full scale of 2.25 V. Two volts of this full scale is dedicated to positive
going signals while the remaining 0.25 V is used to record pulse undershoot (large
pulses often undershoot the baseline during their decay). This means that, in
terms of ADC channels, the maximum pulse height achievable is 2/2.25 x 2
which is 14,564. If this maximum channel number is inserted into the correction
function, a maximum photoelectron level of 85.1 is calculated.

The exact full-scale can be verified by the detailed simulation of the experi-
mental setup. Using a simulation of a single veto slab with a 37Cs source placed
at the end, it is possible to estimate a spectrum for the expected signal in a veto
slab. The simulation takes into account all the physical characteristics of the
veto slab, including photon generation and propagation, and also the quantum
efficiency of the PMT attached. Once a simulated spectrum has been produced,
it can be compared with the (corrected) spectrum from an experimental run.
This source data allows an energy range in terms of electron volts to be set for
each slab. The 3"Cs spectrum peaks at 32 photoelectrons, this peak corresponds
to the Compton edge of the *7Cs spectrum at ~400 keV and is associated with
the S-decay of 37Cs into a metastable state of 1¥"Ba. Given a full scale of 85
photoelectrons, it is possible to say that our energy full scale for this slab is 1.06
MeV. However, this energy range is only SPEcific to an energy deposition at the
far end of the slab. As the source is moved closer to the PMT, the number of
photoelectrons seen by the PMT increases for any SPEcific energy so the full
energy range decreases. The absolute decrease is proportional to the BAL of the
module. Although an 85 photoelectron full range is possible, the veto must be
sensitive to both low energy ~-rays and high energy neutrons/muons. In order
to achieve a useful sensitivity at low energies, the veto slabs were set such that a

full range of 65 photoelectrons was available.

6.3 Veto Science Data Analysis

6.3.1 Data Synchronisation

Data from ZEPLIN-III and the veto are recorded using independent DAq sys-

tems. In order to allow the efficient vetoing of unwanted signals, it is essential
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that the two data streams remain synchronised. In the case of ZEPLIN-III this
is achieved using a dedicated synchronisation unit developed at the University of
Edinburgh.

The unit contains a 1 MHz clock and 32-bit counter that sends an identical
digital stamp to both acquisition systems following a trigger from ZEPLIN-III
or the veto detector. The 1 MHz generator allows a 1 MHz counting rate. This
generator signal feeds into two 32-bit counters, one for each of the DAq systems.
With a rate of 1 MHz, ~70 minutes passes before the two counters reset to zero.
The 32-bit output of the two counters is read out by two ribbon cables, one of
which connects directly to the veto DAq and the other of which is fed into the
ZEPLIN-IIT DAq system. A typical example of an event synchronised using the
unit timestamp is shown in Figure [6.14

Independently of the synchronisation unit, a number of further methods en-
suring synchronisation are implemented in the analysis of matching ZEPLIN-III
and veto detector events. All the ZEPLIN-III computers, including those used
by the data acquisitions systems, are synchronised to the same time server. As
such, since the average trigger rate is only 0.4 Hz, the first synchronisation check
simply ensures that the absolute time of an event given by the data acquisition
clocks agree to within 4 ms of the resolution of the time server.

The time server synchronisation is subject to slow drifting so, rather than rely
solely on this, the time difference between the two DAq systems (taken from the
computer’s clock) is monitored and this may be no more than 1 ms different to
the preceding or subsequent event. Figure [6.15 shows this time difference over
a period of several days. The synchronisation of the data is performed off-line
(after the data has been acquired) so comparison with events that occur later in
time is trivial.

Finally, pulse parameters from identical timelines fed into both ZEPLIN-III
and the veto detector must agree. This check takes advantage of the summed
signal from all ZEPLIN-IIT PMTs that is shaped and used to trigger the acqui-
sition systems. This timeline is recorded in both the ZEPLIN-III and the veto
detector data acquisitions allowing an event-by-event direct comparison of unique
parameters such as the number of pulses recorded, their start times, and their
amplitudes. An example of a synchronised event is shown in Figure [6.16] The

parameters of the two trigger signals are used for data matching.
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Figure 6.14: A comparison of timelines in ZEPLIN-III (top) and the veto (bot-
tom). This shows a typical electron recoil event with a prompt coincidence signal
in the veto (after timeline offset correction). In this event, the two synchronisation
values are identical.
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Figure 6.15: The difference between the ZEPLIN-IIIT and veto DAq timestamps for
data post 100801. An event whose time difference is consistent with surrounding
events is registered as synchronised.
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Figure 6.16: Veto (top) and ZEPLIN-III (bottom) events synchronised using
ZEPLIN-III sum output. A time difference of 12 us can be seen between each of
the two pulses in the timeline.



176 6.3 Veto Science Data Analysis

More than 97% of all ZEPLIN-III triggers from the analysed data have suc-
cessfully matched veto system timelines. The less than 3% of ZEPLIN-III events
that do not have synchronised veto timelines are of course not removed from
further analysis, but simply have no veto capability available to them, which
effects the final tagging efficiencies. Figure [6.17] shows the synchronisation of
the ZEPLIN-III data over the duration of the Second Science Run (SSR). There
are days where the tagging efficiency is reduced but these can be identified as
days where extended calibration data were taken or where operating parameters
moved away from their acceptable limits (e.g. increases in event rate or detector
temperature/pressure fluctuations). Figure shows the proportion of events

which were synchronised as a function of time through the SSR.

The default operation of the veto detector has been in a combination of “slave’
and “master’ modes. In slave mode, timelines from all modules are recorded
when an external trigger sourced from the ZEPLIN-III instrument is received.
As such, the veto detector is guaranteed to record data when ZEPLIN-III it-
self has recorded an event, obviating the need for a separate hardware-enforced
trigger and associated efficiency loss at low energies. The additional diagnostic
benefit of this is that the veto detector provides an independent and continuous
measurement of the event rate in ZEPLIN-III, without probing blinded data. In
master mode, when certain conditions are met, the veto system triggers indepen-
dently of ZEPLIN-III. In the present configuration this happens when three or
more veto module PMTs register at least 10 photoelectrons in the same event.
The threshold has been set so as to record an event rate of approximately 2 Hz
from self triggers, in keeping with data volume constraints (the veto detector gen-
erates ~20% the data volume of the ZEPLIN-III instrument). This allows for an
independent measure of background from the detector surroundings, eSPEcially
ambient neutrons from the laboratory rock. A multiplicity (i.e., the number of
veto modules in which a pulse is simultaneously seen) of three modules with a 10
photoelectron threshold is preferable over a multiplicity of two modules with the
higher threshold of 32 photoelectrons (maintaining a 2 Hz event rate) since the
efficiency for detection of ambient neutrons is almost 10% greater in the former

arrangement.
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Figure 6.17: A comparison between total events (black) and synched events (red)
for the entire golden dataset up to 101010.
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6.3.2 Detector Rate

It is possible to determine the intrinsic rate of the veto independently of ZEPLIN—
[II. Figure[6.19|shows the cumulative background rate spectrum in the veto, high-
lighting several features of interest. The spectrum extends to approximately 65
photoelectrons (equivalent to several MeV of energy deposited across the array).
The fall-off at this point is due to pulse height saturation, determined by the
range of the ADCs and the gain settings of the PMTs.

The first feature of interest is at low photoelectron values. This distribution
can be attributed to the single photo-electron rate, intrinsic to each PMT. This
feature is due to the thermal emission of single electrons from the PMT pho-
tocathode which then are accelerated and multiplied across the dynode chain,

leaving a characteristic peak at a calibrated value of 1 photoelectron.

The second feature of the spectrum in Figure is an exponentially falling
background due to radiological contamination within the PMTs. This feature
is related to the decay of *°K and dominates for values between 2-15 photoelec-
trons. The “°K decay has an 89% [-decay branching ratio with an end-point
energy of 1.31 MeV. For a refractive index of 1.49 at 400 nm, 3 radiation emitted
from the potassium generators in the PMT behind the photocathode will produce
Cherenkov photons in the window when the electron energy exceeds 178 keV. The
potassium generators are a byproduct of the photocathode evaporation process.
The potassium generators are installed so that the glass envelope of the PMT may
be produced as a single piece to reduce the risk of vacuum loss in the PMT. Once
the envelope has been produced, a current is applied across the potassium gener-
ators which causes the evaporation of the potassium. The rate due to Cherenkov
light is supplemented by Bremsstrahlung radiation in the window and, to a lesser
extent due to § radiation with energies in the tail of the distribution that are
able to escape the window and interact in the veto scintillator. The slope and

magnitude of this feature are entirely consistent with expectation [166].

Finally, the third feature of the spectrum is the exponential distribution of
pulses at higher energies. This component is due to v-ray emission from U and
Th decay chains and y-rays associated with the decay of *°K, and are of particular
importance for ZEPLIN-III in terms of background. The rate of ~-ray emission

includes contributions from all of the veto components such as the plastic scintilla-
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tor and the PMTs. The spectrum shows a rate of ~80 Hz with no photoelectron
threshold. This is consistent with the simulated expectation presented in Ref.
[162] providing evidence that the radio-contamination values calculated in the
radio-assay process (see Section [5) are correct. The veto itself contributes negli-
gible background to ZEPLIN-III at a rate of 0.03 single scatter neutron events
per year in the WIMP search region.

The background signal rate is important as it can be used to define the prob-
ability of an event in ZEPLIN-III being accidentally vetoed. This accidental tag-
ging rate is determined individually for both prompt ~-ray detection (associated
with a ~-ray induced electron recoil in ZEPLIN-III) and delayed y-ray detection
(associated with ~-ray emission following the radiative capture of a neutron).
The accidental tagging rate depends on three factors: the energy threshold for

acceptance, the pulse timing and slab multiplicity.

6.3.3 ~-ray Tagging

Following a ~-ray Compton scatter in the Xe target, the electron recoil energy
deposition may cause both the ZEPLIN-IIT and veto DAq systems to trigger (see
Section [6.3.1]). Following the interaction in the Xe, the scattered v-ray may exit
ZEPLIN-III and interact in the veto scintillator, producing a prompt coincident
signal. Parameters for the identification of these prompt v-ray signals must be
determined. This includes determining the optimised prompt coincidence window
and the setting of an appropriate veto detector threshold. The identification
parameters must optimise the tagging efficiency whilst minimising the rate of
accidental coincidences. Once identified, a prompt v-ray tagging efficiency can
be determined.

In order to determine a prompt acceptance window, it is necessary to deter-
mine the time difference between ZEPLIN-III and veto timelines. Prompt signals
will be coincident with the S1 signal in ZEPLIN-III. Figure shows the distri-
bution of S1 pulse times, peaking at -2.02 pus with a width, o =0.01 us. The same
process is used to determine the time of coincident prompt pulses in the veto.
Figure[6.21] shows a histogram of veto pulse start times. The peak at 17.6 us rep-
resents pulses coincident with S1 triggered events in ZEPLIN-III. The peak has

a FWHM of 0.23 ps which provides a minimum acceptance window for prompt
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Figure 6.19: The shaded area shows the background signal rate in the full veto
detector array as a function of photoelectron threshold. All pulses are consid-
ered irreSPEctive of multiplicity, and, as such, the rate shown is cumulative with
decreasing applied threshold. Statistical errors are too small to be seen on this
scale. The data rate is truncated at 65 photoelectrons where pulse height satura-
tion takes effect. The fit to the data is composed of three well resolved components
made up of SPEs, internal background from the veto detector PMTs, and v-ray
background from radiological contamination within surrounding materials and
the veto detector itself.
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1

signals of 0.4 us, largely due to the sampling rate of 100 us™. However, other

methods may be used to optimise this window and these are discussed later.

Having determined the position of the S1 trigger pulse in ZEPLIN-III and the
position of the corresponding prompt coincidence pulse in the veto, the process of
prompt coincidence tagging may begin. Before this can be done, it is important
to consider low energy recoil events where the ZEPLIN-IIT DAq is triggered by
the S2 signal. In order to identify these events, the acceptance window is not in a
fixed position on the veto timeline. Rather, the position of the window associated
with the position of the identified S1 pulse time.

The first step to tagging prompt events is to define an acceptance window. In
order to optimise the size of this window, a fixed threshold of 2 photoelectrons
is set (signals must be >2 photoelectrons to be considered) and the size of the
window, centred on the mean of the prompt veto pulse distribution, is slowly
increased.

Figure shows this results of increasing this window. The tagging rate
increases rapidly as the window increases until it reaches a point where any addi-
tional tagging is due to additional accidental tagging alone. The inset in Figure
shows how it is possible to extract the accidental tagging rate in the prompt
window using the accidental rate increase for larger windows. A line is fitted to
the data between 0.8 and 1.2 us which is extrapolated down to an acceptance
window of 0 pus. The difference between this 0 value and the value of the line at
the chosen window size defines the accidental rate. For an acceptance window of
0.4 ps, the accidental rate is 0.3% for a threshold of >2 photoelectrons. For a
window larger than this, any increase in tagging efficiency is due to an increase
in accidental rate.

It is possible to verify the accidental rate calculated using the data in Figure
by applying the 0.4 us acceptance window to a region of the ZEPLIN-III
timeline which is far from the expected prompt coincident signal region (~17.7
us). Figure shows the results of setting a fixed acceptance window whilst
increasing the energy threshold. For a threshold of >2 photoelectrons, the tagging
efficiency is 0.4%. There is a ~25% discrepancy between this result and that of
the method described by the previous method. This is, however to be expected
due to the fact that, in Figure [6.22] a tagging efficiency above the accidental rate
of 27.85% is seen. This means that roughly 1/4 of all accidentally tagged pulses
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Figure 6.20: The primary signal (S1) start time in ZEPLIN-III. The large plot
shows that, for S1 triggers, the S1 start time must be greater than ~-2.075 us.
The inlayed plot, on a logarithmic scale, shows that this is well separated from
S2 triggered events
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Figure 6.21: A histogram of the pulse start times from 14-19 ps in the veto
detector when triggered by ZEPLIN-III. The peak at 17.6 us is from pulses in
the veto detector that are in prompt coincidence with the S1 signals that triggered
ZEPLIN-III. Signals in prompt coincidence with the S1 where ZEPLIN-III was
triggered by S2, however, are contained within a 16 us region before the peak.
Pulses occurring after this peak cannot be in prompt coincidence with events in
ZEPLIN-III, and represent the background rate in the veto detector itself. Insert:
the pulse start times in the veto detector for the full 320 us timeline recorded.
The single peak at low times is that seen at 17.6 us, with the region around it
enlarged in the main histogram.
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Figure 6.22: The efficiency for tagging prompt coincidence events between
ZEPLIN-III and the veto detector, as a function of acceptance window width.
The efficiency rises rapidly as the window is opened to 0.4 us, but beyond this
any increases in efficiency merely reflect the linear inclusion of accidental coinci-
dence events. The inlayed plot shows that the accidental rate distribution can be
extrapolated to give an accidental rate of 0.3% for a window of 0.4 us.
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will occur in coincidence (within the 0.4 us defined by the window) with a true
prompt tagging pulse.

The tagging efficiency can be increased further by the application of fiducial
cuts in ZEPLIN-IIT. Without any cuts and a threshold of >2 photoelectrons, the
tagging efficiency is ~25.5%. Using the same cuts defined in Section [4.6] the
prompt tagging efficiency becomes (28.0+£0.2)%. Figure shows the effect of
the application of fiducial cuts.

The prompt tagging efficiency represents a significant improvement over the
veto system used in the ZEPLIN-I and ZEPLIN-II experiments and exceeds
initial design SPEcifications. This is as a result of successful operation at the
low threshold of only 2 photoelectrons (equating to ~40 keV of energy deposition
in the scintillator) and a narrow coincidence window mitigating the effects of
background rate in a large tonne-scale external veto device that also doubles as
shielding for the ZEPLIN-III instrument.

In addition to background rejection, the significant ~-ray tagging efficiency
further enhances the effectiveness of the veto detector as a diagnostic aid. In par-
ticular, it provides an independent estimate of the v-ray background in ZEPLIN-
ITI, which is eSPEcially important at low energies where particle discrimination is
not perfect. If a small population of WIMP candidates is found in ZEPLIN-III,
the (lack of) prompt tagging can rule out (to some confidence level) a significant
~v-ray component. In addition, a discrepancy between predicted and observed
tagging efficiencies in the science exposure could indicate that electron recoil
backgrounds have a significant 3 contribution, such as that expected from %Kr
or surface contamination. The 28% of the science data tagged as prompt 7-ray
events can also be unblinded and used to characterise the background of the SSR

without jeopardising the blindness of the data in the WIMP search region.

6.3.4 Neutron Tagging

The main purpose of the veto is to provide tagging of nuclear recoil events. With-
out the ability to tag neutron induced nuclear recoil events, it would be impossible
to distinguish between low energy neutron scatters and WIMP interactions. In
the case of a positive signal, the significance of the veto is greatly enhanced (see

section As described in Section neutrons are captured by *’Gd leading
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Figure 6.23: A plot of the percentage of events accidentally tagged in a 0.4 us
window as prompt coincidences with signals in ZEPLIN-III, as a function of
veto detector threshold. Vertical errors, cumulative with increasing photoelec-
tron value, are indicated by the filled area. The windows selected to measure this
rate deliberately exclude the prompt window and the pre-trigger region where
genuine prompt coincidences with ZEPLIN-III pulses are found. For the prompt
tag threshold of 2 photoelectrons equivalent signal in the veto detector, the prob-
ability that a tagged event is not correlated with the signal in ZEPLIN-III is
0.4%.



188 6.3 Veto Science Data Analysis

35
w |l - nomfiducialised
.~ fiducialised
o S T e
S
N
& : AN : : : : : :
2 ISR TS OIS Do SR SN SO SOOI SO
s 20 J Bt RO G
S R SR
FE S
‘5.4 o N;\‘ - \;jh ——
E 10 b ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L
s Lo A T S N,
0 | | | | | L \ L | | |
0 2 4 6 8 10 12 14 16 18 20

Veto threshold (number of photoelectrons)

Figure 6.24: The percentage of coincident events satisfying the prompt tag as a
function of veto detector threshold, for all synchronised ZEPLIN-III events in the
target Xe as well as for the fiducialised target. No additional cuts or restrictions
have been applied to the the data.
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to the emission of delayed v-rays. Figure [6.4] shows the expected distribution of

neutron capture times.

As discussed in Section [5.4.2] there is an expectation of 0.4 single scatter
neutron induced nuclear recoils per year in the WIMP search region. This being
the case, the neutron tagging power of the veto must be calculated using AmBe
calibration data. Using the same method as described in Section [4.7] the elastic
nuclear recoil population is selected. This selection was taken across the full avail-
able energy range and between +2¢ of the mean of the population. Figure [6.25

shows the AmBe calibration and the selected elastic nuclear recoil population.

Having selected elastic nuclear recoil events, it is possible to determine the
neutron tagging efficiency. Figure [6.4] suggests that an acceptance window of 70
us should allow the effective capture of most neutrons. As with the tagging of
prompt y-rays, it is important to determine the level of accidental tagging rate as
a function of energy threshold. Figure|6.26|shows that a 70 us acceptance window
with a threshold of >10 photoelectrons gives an accidental tagging efficiency of
0.8%. This accidental rate is determined in the same way as the prompt tagging
accidental rate is in Figure [6.23] The 70 ps window is moved to a region of the
veto timeline that is far away from the expected signal region, giving a region

populated only by a background signal.

An accidental tagging efficiency of <1% was judged to be a reasonable ac-
cidental rate. As previously mentioned, only 0.4 single scatter neutron induced
nuclear recoils are expected per year in the WIMP search region and, because
of this, it is unreasonable to remove large amounts of background data in or-
der to tag a neutron event that may not occur over the duration of the SSR.
The 10 photoelectron threshold with no slab multiplicity requirement is found to
yield an efficiency and accidental coincidence rate equivalent to a multiplicity of
2 modules recording a total of at least 8 photoelectrons. The rate of accidental
coincidences for delayed tags remains low despite a lower photoelectron threshold
as a result of the stronger dependence on multiplicity for background ~-rays that
make up the accidental rate. Combining the two selection criteria, i.e., higher
photoelectron threshold with no multiplicity and lower photoelectron threshold
with a multiplicity of 2, does not result in a gain in efficiency since they each
tag correlated datasets. For the same reason, however, the accidental coincidence

rate is increased. As such, the delay tag selection criteria is only that a combined
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Figure 6.25: A density plot of S2/S1 against S1 for events from an AmBe calibra-
tion dataset showing the separation between nuclear and electron recoil bands.
Only fiducialised single scatter events are shown with no additional cuts to the
data. The mean of the density distribution of the elastic nuclear recoils is indi-
cated by the dashed line. The solid lines to either side mark 20 from the mean
and define the events selected for analysis of the response of the veto detector to
neutrons - primarily the tagging, delay time, multiplicity, and energy distribu-

tions.
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Figure 6.26: Accidental tagging percentage for a 70 us acceptance window as a
function of energy threshold. A threshold of >10 phe gives an accidental tagging
rate of 0.8%. A line is included to guide the eye.
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minimum of 10 photoelectrons equivalent signal be detected within the delay win-
dow, with no minimum multiplicity condition, although any pulses distributed

across multiple modules must be in coincidence with all others.

Having determined the parameters that produce an acceptable level of ac-
cidental tagging, the window is applied to the region of the veto timeline im-
mediately following the prompt window. Figure [6.27] shows the time difference
between the S1 pulse in the ZEPLIN-III timeline and the pulse in the veto time-
line that is identified as the delayed coincident pulse from the neutron capture.
Fitting to the data and removing the flat background associated with the acci-
dental tagging rate gives excellent agreement with the simulated capture time.
The characteristic times of the fits to both the simulated and experimental data

are (10.440.3) ps and (10.7+0.5) us and are in agreement within errors.

The characteristic capture times can be used to determine the Gd concentra-
tion in the polypropylene shielding. Figure shows the characteristic capture
time for thermalised neutrons as a function of Gadolinium concentration. A char-
acteristic capture time of (10.7+0.5) us is equivalent to a Gd concentration of
(0.4240.03)% (by weight) which is very close to the 0.5% Gd loading fraction
required to give the optimised neutron tagging efficiency (as shown in Figure
52).

Given the confidence that neutrons were being tagged as expected, it is pos-
sible to look at the energy dependent neutron tagging efficiency. The energy of
the ~-rays emitted following the capture of thermalised neutrons is independent
of the energy of the neutron recoil energy. This is due to the fact that the an-
gular distribution of the interacting neutrons in the xenon is destroyed through
proton recoils in the polypropylene and thermalisation prior to capture. Figure
[6.29] shows the dru spectrum for nuclear recoil events in the AmBe dataset. The
spectrum falls as expected for higher energy recoils, this is because neutron scat-
ters will preferentially scatter with the deposition of a small amount of energy
transferred to the recoiling Xe nucleus (because of the large difference in the size
of a neutron and a Xe nucleus). The rate of tagged events follows the AmBe
spectrum at a ~constant fraction and this is verified in Figure [6.30, The average
tagging fraction for the 2-20 keV., WIMP search region is (58.8+0.5)% and this
tagging fraction remains constant between 0-100 keV,, as expected, although the

uncertainties in the tagging efficiency do increase with falling statistics.
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Figure 6.27: The measured distributions of pulse times in the veto array, relative
to the S1 signal from nuclear elastic scatters in ZEPLIN-III, for events that
satisfy neutron selection cuts is shown as the open histogram. A the fit to the
data, indicated by the solid line, yields a characteristic decay time of (10.740.5)
pus.  The shaded histogram overlaid is the predicted distribution from Monte
Carlo simulations, showing good agreement, with a characteristic timescale of
(10.4£0.3) us.
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Figure 6.28: A plot of the characteristic time for delayed coincidence signals from
neutrons against Gd concentration within the passive shielding, as calculated by
Monte Carlo simulations. The solid line is a fit to the data points. The measured
characteristic time of (10.740.5) us corresponds to an average Gd concentration
of (0.4240.03)% within the Gd-loaded polypropylene.
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Figure 6.29: A dru plot for elastic nuclear recoil events (red) compared with
tagged nuclear recoil events (blue).
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For a definition of the full neutron tagging efficiency, captures occurring in the
prompt window must also be considered. In data, such neutron captures would
be vetoed by the prompt tag but it is not easy to get the rate of these tags using
the AmBe calibration data.

The emission of a neutron from the AmBe source occurs through the Be (a,n)
reaction. In coincidence with this reaction, high energy ~v-rays (mostly 4.44 MeV)
are emitted. These v-rays are identified as prompt tags in the veto and their rate
dominates any neutron captures occurring within the prompt window. The high
energy vy-rays are indistinguishable from those emitted in the de-excitation of the
1%8Gd nucleus after radiative capture and, as such, it is impossible to measure
the number of neutron tags in the prompt acceptance window directly.

It is possible, through extrapolation of the delayed time distribution for neu-
tron capture, to estimate the fraction of neutron tags in the prompt window. A
Gaussian fit to the lower edge of the distribution predicts an additional (1.7+0.1)%
of neutron tags falling in the prompt window. Monte Carlo simulation pre-
dicts a tagging fraction of (60.7+0.1)% for a 10 photoelecton threshold of which
(1.540.1)% are within the prompt window [162]. The combined (prompt+delayed)
tagging fraction is measured as (60.540.5)% which is in excellent agreement with

the simulated value.

6.4 Tagging Fractions in Science Data

Having defined the parameters required to tag prompt and delayed events, the
tagging requirements can be applied to WIMP search data. This can be done
without jeopardising the blindness of the WIMP search data by SPEcifying that
the WIMP search region remain blinded except for vetoed events which are,
necessarily, not signal. Figure shows the energy dependent prompt (PTAG)
and delayed (DTAG) tagging rates as a function of recoil energy in ZEPLIN—
III. As the WIMP search region (and, in-fact, all data below the nuclear recoil
mean) remained blinded, the tagging criteria are applied to electron recoil data
only. Both the PTAG and DTAG rates should increase or decrease relative to the
background rate. The right hand plot in Figure|6.33|shows the energy dependence
of delayed tagging is, indeed flat, with an efficiency of (0.75+0.17)% which is
consistent with the 0.8% expected.
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Figure 6.30: The delayed neutron tagging efficiency as a function of nuclear recoil
energy deposition in ZEPLIN-III. The average tagging efficiency is (58.840.2)%
for single scatters in the 2-20 keV,, energy WIMP acceptance window in ZEPLIN—
ITI. This efficiency remains constant since the probability for detection of ~-
rays following radiative capture of the neutron and the de-excitation of 1**Gd is
independent of the neutron energy following the scatter in the Xe.



198 6.4 Tagging Fractions in Science Data

The left hand plot in Figure|6.33|shows the energy dependent tagging fraction
of the prompt tagging. In the WIMP search region of 2-20 keV,, a fit to the data
gives a tagging fraction of (26.841.3)%, in agreement with the expected fraction
when the 97% synchronisation efficiency is accounted for. However, it is clear to
see that there is a deviation from the flat tagging efficiency at >160 keV.. The
reason for this is due to neutron activation of '?*Xe and '?'Xe. The peak which
causes the deviation seen is from 3! Xe with an energy of 164 keV. Given that
the absorption length in liquid Xe at an energy of 160 keV is ~5.9 mm [167], it
is unlikely that a ~-ray emitted through the de-excitation of ¥1™Xe would leave
the Xe volume and, if it did, the energy would be below the threshold needed
to give a signal in the veto plastic scintillator. This means that dips in tagging
efficiency should be expected at any energy where a known ~-ray is emitted.
Above ~295 keV, the path length for Compton scattering becomes shorter than
that for photoelectric absorption so the effect of apparent loss of tagging efficiency

is mitigated. The attenuation length for y-ray radiation is shown in Figure [6.31]

6.4.1 Simulated Tagging Efficiency

The dominant sources of background in the SSR of ZEPLIN-IIT were calculated
in Section 5} Figure [5.7] shows their individual contributions in the ZEPLIN-III
background as a function of dru. The simulation shows a cumulative rate of
0.731 dru at 10 keV,, and is made up of four components, the PMTs (0.35 dru -
of which 92% comes from the glass envelope and 8% comes from the potassium
generators), the veto scintillator (0.077 dru), the ceramic feedthroughs (0.074
dru) and the polypropylene shielding (0.23 dru).

The ZEPLIN-III simulation is run in order to ascertain the tagging efficiencies
for y-rays emitted from each of these components and a weighted average taken
to give the expected tagging efficiency for all contributions. The polypropylene
shielding gives us an expected tagging fraction of only 4% but this is mitigated by
the ~-ray emission in the veto scintillator plastic giving a 99% tagging efficiency
(the break-up of the nucleus giving large energy depositions in the scintillator that
is tagged with near unity efficiency). The simulated tagging efficiencies are shown
in Table and the weighted average of all tagging efficiencies gives an expected
tagging efficiency of (27.0+£0.6)% which is in good agreement with the measured
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Figure 6.31: The interaction length of photons in liquid Xe. The key defines
the three different processes with the thick black line giving the total interaction
length. At the ~160 keV energy of the ¥'™Xe ~-ray, the interaction is domi-
nated by the photoelectric effect. Also marked is 295 keV, the point at which
the interaction lengths for the photoelectric effect and Compton scattering are
identical. Above this energy, Compton scattering begins to dominate, leading to
~v-rays that can be detected by the veto.
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Figure 6.32: A histogram of the differential rate of background events in the fidu-
cial target of ZEPLIN-III in the SSR (solid line - labelled Background). This rate
is over an order of magnitude lower than that in the first science run as a result of
the upgrades to the instrument. Overlaid are histograms of the differential rates
of all events tagged as only prompt coincidences (labelled PTAG), approximately
0.3 of the total rate, and events tagged as only delayed coincidences (labelled
DTAG). The latter population is comprised of accidentally coincident delayed
tags, and represent 0.8% of the electron recoil background.
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Figure 6.33: The prompt tagging rate as a fraction of total rate (left). The
tagging fraction is approximately uniform with dips in the tagging fraction above
140 keV, due to the photo-absorption of v-rays emitted from excited states
of 12Xe and ¥'Xe due to the neutron activation of Xe. The delayed tagging
fraction is shown on the right. This rate is ~0.8% and is not affected by the
photo-absorption peaks seen in the prompt tagging distribution. This is entirely
consistent with the accidental tagging rate.
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Component dru  Tagging Fraction

PMT envelope 0.322 0.25140.007
PMT K generators 0.028 0.316£0.006
Plastic Scintillator — 0.077 0.9904+0.001

Shielding 0.230 0.042+0.004
Ceramics 0.074 0.2974+0.002
Total 0.731 0.270+0.006

Table 6.1: Simulated tagging fractions for v-ray background contributing com-
ponents. The total tagging fraction is an average weighted by the individual dru
contributions from each component.

tagging efficiency of (28.0+0.2)%. The simulation does not account for the 0.4%
accidental tagging rate which, when included in the simulated calculation, gives

excellent agreement within errors.

6.4.2 Position Dependence

In addition to calculating an energy dependent tagging fraction for electron recoil
events in background, it is also possible to define a position dependent tagging
fraction. The position dependence can be split into two contributions, an zy
and a depth dependence. The depth dependence is measured by slicing the Xe
volume into drift time sections and applying the prompt tagging parameters. The
upper right-hand plot in Figure [6.34] shows the tagging fraction for each of these
slices. The tagging fraction increases for events closer to the liquid surface. The
dependence can be further split into contributions from the barrel only and the
roof only. The dependence is shown in Figure [6.35 There appears to be a very
slight depth dependence for prompt -ray signals tagged in the roof and a rather
stronger depth dependence for events tagged in the barrel.

The radial dependence can be explained by the fact that y-rays which scatter
towards the top of the liquid volume have a wider solid angle available to reach
the scintillator in the barrel without passing through any detector materials such
as the copper base of the target chamber. This means that, on average, y-rays
which scatter higher in the liquid volume are less likely to be attenuated, giving

a signal in the veto.
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The xy dependence is measured by taking a radial slices and applying the
prompt tagging parameters. The lower right-hand plot in Figure shows the
tagging fraction for each of these slices. The radial dependence is much less
obvious than the depth dependence in the inner most radial slice, (23.54+2.5)%,
and the outer most radial slice, (25.5+0.5)%, are within errors of each other.
As with the depth dependence, Figure shows that any radial dependence is
dominated by tagging in the barrel. This figure suggests that tagging is boosted
in the barrel for events which occur in the outer radii and is expected as v-rays
scattering in the central Xe volume have, as with the depth dependence, a smaller

solid angle for scattering that does not pass through detector materials.
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Figure 6.35: The depth dependent tagging fraction for the roof (left) and the
barrel (right) of the veto. The roof shows very little depth dependence which
suggests that the depth dependence shown in Figure|6.34]is dominated by tagging
in the barrel.

6.5 Using the Veto to Confirm a Signal

A generic veto detector is a powerful tool in setting a confidence level for the
detection of a WIMP signal. The efficiency, 7, for vetoing a background signal
gives the relative exposure of vetoed to un-vetoed events in a background sample:
1—T’_—n. Once this ratio has been calculated, it is possible to set a confidence interval
for the signal using the profile likelihood ratio (PLR) [168] as implemented in the
ROOT class TRolke [169]. Figure shows the number of signal events that
would constitute a 30 evidence for a signal as a function of n in the case of an
experiment with a single background.

In ZEPLIN-IIT and similar experiments, the background is described by both
nuclear-recoil and electron-recoil populations. These each have different tagging
efficiencies which would have to be summed. The discrimination of a 2-phase
detector means that the electron-recoil background and, to a lesser extent, the
nuclear-recoil background are distributed differently in more parameters than just
veto tagging efficiency. For example, as discussed in Section , S2/S1, pulse-

shape, energy and multiplicity are key additional parameters that may be used to
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Figure 6.36: The radially dependent tagging fraction for the roof (left) and the
barrel (right) of the veto. As with the depth dependence, the roof shows very little
radial dependence which suggests that the radial dependence shown in Figure [6.34
is, again, dominated by tagging in the barrel.

reject a background only hypothesis in the WIMP search region. The combination
of the counting method used in Figure [6.37] and these additional discrimination
parameters would require fewer un-vetoed events to give a 3o signal result. With
an efficiency of 60% for rejection of nuclear recoil background, only 5 un-vetoed
events would be required to give 30 evidence of a WIMP signal. For a dominant
background of -rays with a tagging efficiency of 26%, ~13 events are required.
The limit is for a veto with 100% efficiency where only 1 un-vetoed event would
be sufficient.

The veto detector is not designed to simply reject neutron induced nuclear
recoil signals. This chapter has shown that it also provides identification and
diagnosis of electron-recoil background events. This becomes useful in the un-
blinding of ZEPLIN-III science data (discussed in Chapter @ where some 30%
of the data (due to the combination of prompt tagging and accidental delayed
tagging) may be viewed without risk of jeopardising the blindness of the WIMP
search region and without reducing the overall exposure of the SSR. During the
FSR, only 10% of the data was used and this had to be removed from the exposure

due to the signal region being undefined and, therefore, unblinded. This allows



6. THE ZEPLIN-III VETO DETECTOR 207

45—

40

35

30

25

20

15

10

Un-vetoed events for 3-c evidence of signal

.
- IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

] ] ] ] ] ]
0.2 0.3 04 05 0.6 07
Veto efficiency for a single background

()

Figure 6.37: The effect of veto efficiency on discovery power for a generic rare
event search with a single background and no additional discrimination. N7 is the
number of tagged events observed and calculated confidence levels are calculated
as in [168].

1



208 6.5 Using the Veto to Confirm a Signal

the study and removal of MSSI events (see Section through the definition
and application of data quality cuts. With the additional power gained in the
case of a positive signal, the veto represents an important and highly effective
addition to the ZEPLIN-III detector.



Chapter 7

ZEPLIN—III Second Science Run

7.1 ZEPLIN-III Upgrades

The Second Science Run (SSR) represents the final science goal of ZEPLIN-III.
In order to achieve a sensitivity beyond that of the First Science Run (FSR),
upgrades were made to many of the systems. The two foremost upgrades came in
the form of the installation of the veto detector (discussed in depth in Chapter @
and the installation of new, ultra low background PMTs (the component assaying
and simulated impact of these is discussed in Chapter . In addition to this,
several improvements were made to the calibration systems and improvements
were made to some of the ancillary systems in order to improve both detector
characterisation, monitoring and run duty cycle (the length of time, per day, the
detector runs in WIMP search mode). The following chapter highlights work
done by myself during the final months of my PhD studies together with other
members of the ZEPLIN-III collaboration.

7.1.1 PMT Upgrades

Firstly, and most importantly, the PMT array was upgraded. The PMTs used
in the first science run were replaced with the tubes developed by ETEL using
the radio-assayed components, details of which were discussed in Chapter 5] The
PMTs contributed the dominant source of background in the FSR and it was
expected that the new array would reduce the background rate to ~10 % that
of the FSR. Figure [7.1] shows a comparison between FSR and SSR simulations.
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The FSR background rate was dominated by the rate from PMTs whereas, in
the SSR, the expected background from the PMTs is comparable to that of the
backgrounds from the polypropylene shielding, the veto detector and the ceramic
electronic feedthroughs.

The signal blinded data for the period 01/08/10-31/08/10 was used for veri-
fication of the predicted backgrounds and electron equivalent energy scale. The
dataset used consisted of 680.7 hours live-time, which equates to 181.5 kg.days
of data. A neutron calibration was performed during this period on 25/08/10.
During a neutron calibration, it is expected that a degree of neutron activation
will occur in the Xe volume [I70]. The activation occurs through thermal neutron
capture onto 2*Xe and 3%Xe or by fast neutron inelastic scattering onto ?°Xe
and ¥'Xe. The resultant ?"Xe and *™Xe states have half lives of 8.9 and
11.8 days respectively. 12"Xe de-excites with the emission of a 236 keV ~-ray
and 13'mXe de-excites with the emission of a 164 keV ~-ray. The half lives of
the two de-excitation modes are such that they will return to ~background level
within days of activation and the energies of the y-rays are far from the WIMP
search region between 5-50 keV,,. Figure shows the two activation peaks
expected [I70] and Figure shows energy spectra both before and after the
AmBe calibration. The activation peaks can be seen clearly.

The data taken from before the AmBe calibration run and the simulated
background show good agreement (see Figure . There is a deviation from
agreement seen at the level of the excitation peaks (164keV) but this is due to
residual activation from a previous AmBe calibration taken during July.

Finally, the background can be compared to the levels seen in the FSR of
ZEPLIN-IIIL. Figure shows the comparison between the two science runs.
The FSR, dominated by the PMT array, shows an average single scatter event
rate of (11.3340.18) events/kg/keV./day whereas the SSR backgrounds shows
an average of (0.5840.07) events/kg/keV,./day. This represents a 20x reduction

in background between the first and second science runs.

Figure shows an apparent decrease in the background reduction above
100 keVee, but this is artificial. In the FSR, a saturation cut was applied in
the ZEPLIN-III DAq system in order to reduce the amount of output data.
Storage limitations were a factor in the application of the cut. Since this cut was

applied in hardware, it is not possible to recover the data for the purpose of this
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Figure 7.1: Comparison between simulations of expected electron recoil back-

ground in the FSR and SSR of ZEPLIN-III. In the FSR, the rate was dominated

by the PMTs but in the SSR, the background rate from the PMTs is comparable

to that of other sources.
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Figure 7.2: An excitation spectrum for a Xenon sample taken after 5 days of
activation by a 2°2Cf source. The 164keV and 236keV levels due to de-excitation
~-rays from 31" Xe and '?"Xe can be seen.
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Figure 7.3: A comparison between data taken before (left) and after (right) the
AmBe calibration of 100825. A clear increase can be seen at the 164keV and
236keV levels due to de-excitation v-rays from 3'™Xe and ?Xe respectively.

plot. Furthermore, as described in Section the veto tagging efficiency is
in excellent agreement with simulation if contamination levels are adopted that
match the background seen in ZEPLIN-III (shown in Figure [7.4)).

7.1.2 Additional Upgrades

In addition to the installation of the new PMT array and the veto detector,
several upgrades were made to ancillary systems. In order to ensure the repro-
ducibility and consistency of daily *’Co calibration runs was optimised, a source
delivery system was retrofitted to the lead castle externally and to the ZEPLIN—
III copper dome internally. This system, combined with an electronic insertion
device, ensures that the ®”Co source is located in the same position for all daily
calibrations.

A so-called “phantom-grid” was installed above the Xe volume in order to
further improve the calibration and position reconstruction of ZEPLIN-III data.
The phantom grid is shown in Figure A dedicated *"Co run was taken in

order to fully characterise the phantom grid for use in the position reconstruction



214 7.1 ZEPLIN-III Upgrades

10

—— Total

—— PMTs

———  Polypropylene
Veto
———  Feedthroughs
[ | Data

differential rate, evt/kg/day/keVee

10 |
1

L L L P R . . . P
0 20 40 60 80 100 120 140

160 180 200

Energy, keVee

Figure 7.4: A comparison of data and simulated electron recoil background in
the ZEPLIN-IIT SSR. The data is represented by the yellow histogram and the
simulation is represented by the thick blue line. An excellent agreement can be
seen up to the point where the ¥1"Xe de-excitation y-ray causes a rate increase.
The increased rate is residual activation from an AmBe calibration performed in
July.
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Figure 7.5: Comparison of true backgrounds from the FSR and SSR of ZEPLIN—
[TI. The black line represents the FSR simulation and the shaded blue region the
SSR simulation. The backgrounds begin to converge above ~100 keV., due to
the hardware saturation cut applied to reduce the data rate in the FSR. Due to

the lower overall rate, no such saturation cut is applied in the SSR.
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Figure 7.6: The phantom grid installed above the ZEPLIN-IIT Xe volume. The
grid is placed in an exact position to allow comparison of °"Co data with simula-
tion.
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Figure 7.7: A comparison of data and simulation for the phantom grid *'Co
data. In the zy-plane (left), the difference between data and simulation is almost
indiscernible and the agreement in the individual = and y distributions (right) is
excellent.

analysis. A comparison of ®”Co data versus simulation is shown in Figure
which shows the agreement between simulated and observed results. It is the
simulated result that is used to define the response of the PMT array as discussed
in Section [£.3.5] The phantom alone gives a position sensitivity of ~2 mm in the

xy-plane which is further improved by the position reconstruction algorithm.

Finally, the data acquisition and calibration mechanism was fully automated.
This allows for the optimisation of the detector duty cycle and minimises hu-
man interference which may alter the operational parameters of the detector.
ZEPLIN-III ran with a duty cycle of 96% which is a 12% improvement over the
FSR. The lost 4% is taken up by the daily 5"Co runs and the weekly PMT LED
calibration (described in [I71]).

The upgrade to ZEPLIN-III was completed and on 26" June 2010, the SSR
began. This run lasted until 14" January 2011, giving 190 days (with calibration
days removed) of science data. The stability monitoring and calibration of the
SSR of ZEPLIN-III followed exactly the same method as the FSR (see Chapter

4) so no discussion of the methods is found in this chapter. The remainder of
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this chapter will discuss the cuts used in and efficiencies calculated for the SSR
and the calculation of a projected, preliminary WIMP-nucleon scattering cross-
section. This result is preliminary because, at the time of writing, analysis of the

full dataset is incomplete.

7.2 Golden Analysis

Although the background from the SSR PMT array is 20 times lower than that
of the FSR, they are prototype tubes. The array is much less uniform than that
found in the FSR, with quantum efficiencies ranging from 16.4% to 35.6% and gain
responses varying by factors of >10. The varying response of the PMTs causes
erroneous results in position and energy reconstruction and more sophisticated

cuts are needed to remove these.

7.2.1 Setting a WIMP Search Region

As in the FSR, the WIMP search region is defined using an AmBe calibration.
The elastic recoil population is selected, sliced into energy ranges and fitted.
Figure[7.8 shows a selection of these energy slices that are fitted using a Gaussian
distribution.

Having calculated the mean and widths of the distribution, the resultant val-
ues can be plotted and fitted to give the description of the elastic recoil mean
and width. Figure[7.9[shows the mean and sigma measurements and Figure [7.10
shows the resultant WIMP search box plotted from 0-16 keV. and extending
from the mean (i) of the distribution to pu — 20. In addition, a larger box is de-
fined from 0-40 keV,. and for the S2/S1 range of u*7 . This larger box is defined
as part of the unblinding process. Once data quality cuts have been defined, all
data outside the large box will be unblinded. If no problems are seen then the
large box (minus the small box) is unblinded. Finally, if everything is as expected
in the large box, the small box (WIMP search region) is unblinded.

With the addition of the veto, the unblinding of the data followed a different
path to that chosen in the FSR. Instead of using 10% of the data for the definition
of the cuts, all data tagged by the veto - (28.0+0.2)% from prompt tags and 0.8%
accidental delayed tags - was unblinded. This represented about 30% of the data
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Figure 7.8: Fits to energy ranges in the AmBe elastic recoil population fitted with
Gaussian distributions (the fit ranges are selected by hand). The size of energy
slices increases at higher energies to account for a lower number of events.
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Figure 7.9: The results of the AmBe energy slice fitting are plotted. Fits to the
data give the parameters for the mean and standard deviation, o, of the elastic
nuclear recoil population.

set where the events selected would not be consistent with WIMP recoils. It
would be possible to unblind all data outside the WIMP search region but the
development of cuts may lead to small changes in the distribution of the AmBe
elastic recoil population and changes in the energy scales, so this has not yet been
done.

All parameters associated with the tagging of ZEPLIN-III events by the veto
are fixed and, as such, it was safe to unblind these data without fear of jeopar-
dising the blindness of the WIMP search region since a WIMP recoil will not be
tagged by the veto.

7.2.2 Data Quality Cuts

In the SSR, the fiducial cuts on the Xe volume are slightly less stringent than
were implemented in the FSR. In the z, or drift-time, axis, a range of (0.5 <
dtime < 14) us was used, which equates to a distance of 32 mm, as well as a
radial cut of 160mm. This equates to a fiducial volume of 7.6 kg. The 190 days
of data and ~96% duty cycle leads to a fiducial exposure of 1312 kg.days.

The vetoed data was plotted and the box defined in Section was applied.
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Figure 7.10: The WIMP search region superimposed on the AmBe calibration
data. The green line represents the mean while the green box represents the
WIMP search region. The red box is defined as part of the unblinding procedure.
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Further quality cuts were then defined. Most of the applied cuts only removed a
few outlying events but a particularly powerful cut was found using the energy
dependence of the s2rmsm parameter. Figure shows the distribution of the
AmBe data and the cut applied which removes unwanted events from inside the
WIMP search region without removing a large proportion of the AmBe elastic
nuclear recoil population. The cut removes ~25% of events in the WIMP search
region with a loss of only 6% of the AmBe elastic recoil band. The energy
dependent efficiency of the cut is shown in Figure The efficiency is linear

with energy in the region of interest

After the application of additional cuts, the number of events in the WIMP
search region was reduced to zero as seen in Figure [7.13] For the remainder of
this chapter, a quality cut efficiency similar to that seen in the FSR (70%) is
assumed. It is anticipated that the final efficiency will be greater than this when

analysis and quality cuts are finalised. The preliminary results thus far, presented
in Figure [7.13] highlight the quality of the SSR data.

7.3 Setting a Limit

Given the fact that the vetoed data is clean and represents ~ 30% of the data in
the full ZEPLIN-III data-set, it is possible to calculate a projected limit if the
unblinding procedure does not reveal any events above expectation in the WIMP
search region. As analysis of some of the key parameters in the calculation is still

ongoing, some assumptions have to be made.

The first assumption is that the WIMP search region will contain the same
number of events as the expectation value calculated from analysis of the elec-
tron recoil population which would make the data set consistent with 0 observed
events. If the data shows, as in the FSR, that the number of expected events
is greater than the number observed, it is reasonable to reduce the number of
expected events as this will result in a conservative upper limit. If the number of
expected events is greater than observed, Feldmann-Cousins analysis will give an
artificially low limit. Using a standard Feldman-Cousins statistical method (see
Section , 0 observed events is equivalent to an upper limit of 2.44 events at

a 90% confidence level.
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Figure 7.11: The s2rmsm distribution as a function of energy in AmBe data.
Superimposed on top are leakage and MSSI events that fall close to or in the
large box as described previously. The green line represents the cut applied, above
which events are rejected as poorly parameterised. No other cuts are applied.
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Figure 7.13: A post fiducialisation discrimination plot using preliminary cuts to
remove all events that fall within the WIMP search region. This shows that, even
without optimisation of cuts, all vetoed events can be removed from the WIMP
search region.
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Figure 7.14: The measured L.¢s curve for the SSR is shown in blue. The curve
shows a less extreme fall off than measured for the FSR (red).

7.3.1 Relative Scintillation Efficiency

For the SSR, a new relative scintillation efficiency is calculated. The curve for the
FSR showed the same characteristic fall as measurements by other experiments
but was much more severe (see Figure . The analysis of AmBe data in the
SSR did not show quite as extreme a deficit between data and simulation at low
energies and this was found to be due to a systematic error that was removing
low energy events due to mis-identification of noise pulses as true signals.

The efficiency calculated for the data quality cuts can be combined with the
fiducialised exposure of 1312 kg.days to give a final corrected exposure of 918.4
kg.days. This assumes that all the other efficiencies listed in table increase
to 100%. The detector dead time, due to the 10x reduction in rate, does, in-fact
increase to ~100% and improvements in the reconstruction and pulse finding

algorithms has pushed the other efficiencies up to close to 100%.
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Figure 7.15: The energy conversion between keV. and keV, used in the SSR.
This conversion is calculated using the Leg. A 2°¢ order polynomial fit (E =

Po+ p1w + pew?) describes the data. The fit parameters are shown in the statistics
box.
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7.4 Calculating Results

Given the efficiencies and the energy conversion factors, it is possible to calcu-
late projected limits for the spin-independent WIMP-nucleon cross section. The
spin-independent WIMP-nucleon cross-section is calculated to be 1.52 x 1078 pb
for a 55 GeVe=2 WIMP. This would provide the most sensitive measurement of
the spin-independent WIMP-nucleon cross-section, surpassing the current most
sensitive measurement by the XENON100 experiment with a cross-section upper
limit of 3.3 x 1078 pb for a 55 GeVe=2 WIMP. Figure shows the comparison
between this projected result and the nearest competitive results. The projected
result would be the first to probe the 95% allowed region for a WIMP signal in
the mSUGRA model.

Given that ZEPLIN-IIT was originally meant to run for 2 years (delivery of the
PMTs by ETEL was severely delayed), it is possible to predict the limit reached
if it had been possible for this length of run to be performed. A 190 day run
represents ~25 % of a full 2 year run and, as such, it is reasonable to expect that,
given identical operational parameters, an exposure of ~3700 kg.days (given a
70% data quality cut efficiency) would be recorded. Again, assuming that the
number of events seen in the box matches the expected number, a 2 sided 90%
confidence level upper limit on the number of WIMP induced nuclear recoil signal
events in the box of 2.44 could be defined. These assumptions lead to a projected
upper limit on the spin-independent WIMP-nucleon cross-section of 3.79 x 10~
pb for a 55 GeVc=2? WIMP.

This calculated limit does not represent the published limit for the SSR,
merely a projection of what may be achieved given a basic analysis of the data
and a few key assumptions. It is expected that the full dataset will be unblinded
shortly, after which a more rigorous analysis may be performed. In addition to
this, improved limits on the spin-dependent cross-sections for the WIMP-neutron
and WIMP-proton cross-sections will be calculated and published. Of course, this
assumes a limit from a null result. ZEPLIN-III is a discovery device and has a
sensitivity that begins to probe the favoured parameter space for a WIMP signal.
The vetoed data necessarily excludes any WIMP signal so it is entirely possible

that the unblinding of the full SSR dataset may provide a positive signal.



7. ZEPLIN-IIT SECOND SCIENCE RUN 229

-5
10
----- ZEPLIN-III FSR
—— ZEPLIN-III SSR
---------- ZEPLIN-III 2 YEAR
—— EDELWEISS-I1I
P ——  XENONI100
"& 107 —  CDMS-11
g 3
S P
e |~
% o
4 o
N -7
S 10
< =
) -
~ L
) B
=
= o
A L
S
-8
= 10 =
-9
10

10° 10
mass, GeV/c

Figure 7.16: The projected result from the SSR of ZEPLIN-III (solid black curve).
The result would represent the most sensitive measurement of an upper limit on
the spin-independent WIMP-nucleon cross-section so far and would be the first to
probe the 95% allowed region for a WIMP signal in the mSUGRA model (green
hatched region). The detector is also capable of probing the 95% allowed region
under the CMSSM model (red hatch). Also included is a projected limit for a 2
year run of ZEPLIN-III.
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Chapter 8
Conclusions

A wealth of evidence is available to support the hypothesis that the WIMP consti-
tutes the dominant dark matter component in the universe. Three of the five most
sensitive upper limits on the spin-independent WIMP-nucleon cross-section have
been produced by two-phase xenon detectors probing signals through measure-
ment of scintillation and ionisation. The ZEPLIN-III detector has the potential
to detect dark matter for the first time, or to produce the world’s most stringent

limit to date.

The ZEPLIN-III experiment is based at the Boulby mine facility where 2800
m.w.e of rock provides a reduction in muon flux by a factor of ~ 10°. In addition
to this, the placement of the lab in a seam of low background salt and a combi-
nation of lead and polypropylene shielding reduces the y-ray and neutron flux by

a factor of ~ 10° giving a near ideal location for a rare event search experiment.

The first science run of ZEPLIN-IIT began in February 2008 and lasted for 3
months. During the analysis of the data, an important limitation of the ZEPLIN—
IIT design was observed (although it had already been predicted). The main
source causing leakage of nuclear recoil background were events with two scat-
tering vertices, one of which occurs in a so-called “dead” region of the detector.
This is a region in which no electric field operates or where the electric field is
distorted meaning charge cannot be extracted from the liquid surface and acceler-
ated through the gas phase to give a secondary, ionisation, signal. These events,
coupled with an initial weakness in the position reconstruction algorithm, meant

that the analysis of the first science run was performed un-blinded.
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Despite this limitation, ZEPLIN-III produced a competitive spin-independent
90% confidence level upper limit of 8.1 x 107% pb for a 60 GeVc=2 [83]. In the
the spin-dependent channel, ZEPLIN-III produced a limit of 1.9 x 10~2 pb which
exceeded the previous most sensitive spin-dependent result for an upper limit on
the WIMP-neutron cross-section. In addition to this, the first science run yielded
an upper limit on the WIMP-proton cross section of 4.1 x 1072 pb [140].

After the first science run, ZEPLIN-III entered an upgrade period. This
included the installation of a new PMT array. The PMT array gave almost a
20x reduction in the electron recoil background whilst reducing the single-scatter
nuclear recoil background (in the WIMP search region) to 0.6 neutrons per year.
To further reduce this background, a tonne scale plastic scintillator veto detector
was installed around the Xe volume. The veto detector is measured to have a
neutron tagging efficiency of ~61% which allows the 0.6 neutrons per year emitted

from ZEPLIN-III components to reduce to 0.2 un-vetoed events per year.

The veto [162] also provides the ability to tag prompt 7-rays associated with
electron-recoil backgrounds in ZEPLIN-III which yields two important results.
The first of these is that the background is reduced. The second, and more
important, result is that ~30% of the data can be unblinded without the risk of
unblinding potential WIMP signal events. This allows the development of data
quality cuts to remove spurious MSSI events that reduce discrimination and (in
the un-vetoed 60% of the data) can even give events that appear to be consistent
with a WIMP recoil. Fitting the electron recoil population of the vetoed events
can also be used to predict the number of electron recoil events that will be seen
in the WIMP search region, which is another key feature. This is all achieved

with no loss of exposure.

In addition to the installation of the veto, the PMT array of ZEPLIN-III was
upgraded. The PMT array was developed in collaboration with ETEL during
the first science run of ZEPLIN-III with all components being radio-assayed and
simulated in order to test the impact each would have on the final backgrounds
in the second science run of ZEPLIN-III. As with the installation of the veto,
the low intrinsic radioactive background of the upgraded PMT array serves more
than one purpose. The first of these is that the nuclear recoil background is
reduced. This means that ZEPLIN-III could, in theory, run for two years before

any WIMP-recoil signal sensitivity becomes background limited.
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The second advantage of the improved PMT array is the reduction of the v-ray
induced electron recoil background. This reduction improves the discrimination
of ZEPLIN-III and also reduces the rate of MSSI events. In addition to this, the
reduction in background leads to an overall reduction in the intrinsic trigger rate
of the ZEPLIN-III detector. The 90% reduction with respect to the first science
run reduces the dead time of the system to near 0 and reduces the data storage
needs by 90%.

Matching the measured electron recoil background to that expected from sim-
ulation yields a fantastic agreement (independently corroborated by the veto).
This confirms that the radio-assaying and simulation of the components used
in the upgraded PMT array, the veto detector and the ceramic high voltage
feedthroughs gave correct results and that the backgrounds in ZEPLIN-III are
well understood.

Having run for ~6 months (long before the system has the potential to become
background limited), the second science run of ZEPLIN-IIIT ended. The main
challenge in the analysis of the second science run data was the fact that the
upgraded PMT array, although reducing the backgrounds to a rate 20x less than
the first science run, was comprised of prototype tubes. Unfortunately, this meant
that the response of the array in regards, for example, gain or light yield was not
particularly uniform. This non-uniformity made the development of the position
and energy reconstruction algorithm more difficult than it had been in the first
science run but this was helped, in part, by the installation of a “phantom grid”
above the Xe target volume. This grid is used to cast a shadow on the *"Co data
which, through comparison to simulated data, helps to define the expected signal
response of the detector.

After the run was complete, the vetoed data was analysed in order to develop
data quality cuts to remove MSSI events. A fully empty box was produced with
an efficiency greater than 70%, defined using an on-off application of the cuts to
AmBe calibration data. Using this conservative efficiency, a second science run
fiducial exposure of 1312 kg.days was calculated. At the time of submission, this
was the status of the analysis of the second science run data.

This being the case, a projected upper limit on the spin-independent WIMP-
nucleon cross-section was calculated. The limit was calculated using the assump-
tion that the full unblinded dataset would also contain 0 events in the WIMP
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search region and that this would match the expected number of events from the
analysis of the electron recoil background extrapolated into the WIMP search
region.

This assumption, along with the application of a new relative scintillation ef-
ficiency curve yields a projected result for an upper limit on the spin-independent
interaction of 1.52 x 1078 pb for a 55 GeVe=2 WIMP. This result would represent
the most sensitive measurement of the WIMP-nucleon scattering cross-section to
date and would be the first result to probe the 95% allowed region for a WIMP
signal in the mSUGRA model of dark matter. The same assumptions used to
calculate the limit for the 190 day run can also be used to calculate a projected
limit in the case that ZEPLIN-III was able to run for 2 years. In the absence
of any neutron induced nuclear recoils, an upper limit of 3.79 x 10~ pb can be
calculated, again, for a 55 GeVe=2 WIMP. These projected results suggest that,
although the upgraded PMT array has caused problems, ZEPLIN-III has the
potential to reach the sensitivity predicted during its design phase. However, it
is possible that unforeseen efficiency losses may increase these upper limits some-
what. It is pertinent to add that the unblinding of the data may reveal a signal
above the expected background consistent with WIMP recoils as the projected
sensitivity allows for this.

In the event of a null result, the future for the development of 2-phase Xe
detectors is bright. The XENON100 experiment is currently running in the
Gran-Sasso laboratory in Italy. With a ~40 kg fiducial volume, this promises
a sensitivity of below 1 x 107 pb. In addition to this, the LUX collaboration are
in the process of characterising a detector with a 350 kg total volume of Xe. This
is currently undergoing surface tests at the Homestake facility, South Dakota,
USA, with a view to being installed underground in the near future. Finally,
the XMASS detector is operating in the Kamioka facility in Japan, though it is
not entirely clear what stage this single phase detection system is at in terms of
yielding a result.

There are also tonne scale detectors in both the design and development
stages. XENONIT appears to be the closest to being constructed, but other
detectors, from the LUX collaboration and others, are also under development.
It seems that 2 phase liquid noble gas, especially Xe, detectors are those favoured

to give a possible discovery of dark matter through WIMP-nucleon scattering.
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