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Abstract. Event selection in the ATLAS High Level Trigger is accomplished to a large extent
by reusing software components and event selection algorithms developed and tested in an offline
environment. Many of these offline software modules are not specifically designed to run in a
heavily multi-threaded online data flow environment. The ATLAS High Level Trigger (HLT)
framework based on the GAUDI and ATLAS ATHENA frameworks, forms the interface layer,
which allows the execution of the HLT selection and monitoring code within the online run
control and data flow software. While such an approach provides a unified environment for
trigger event selection across all of ATLAS, it also poses strict requirements on the reused
software components in terms of performance, memory usage and stability. Experience of
running the HLT selection software in the different environments and especially on large multi-
node trigger farms has been gained in several commissioning periods using preloaded Monte
Carlo events, in data taking periods with cosmic events and in a short period with proton
beams from LHC. The contribution discusses the architectural aspects of the HLT framework,
its performance and its software environment within the ATLAS computing, trigger and data
flow projects. Emphasis is also put on the architectural implications for the software by the use
of multi-core processors in the computing farms and the experiences gained with multi-threading
and multi-process technologies.

1. Introduction
ATLAS [1] is one of the two large general purpose experiments at the Large Hadron Collider
LHC at CERN. It covers a widely diversified physics program [2], ranging from discovery physics
to precision measurements of Standard Model parameters and understanding the mechanism of
electroweak symmetry breaking. Hardware construction and installation is to a large extent
completed and a description of the apparatus can be found elsewhere [3]. At the design
luminosity of 1034 cm−2s−1 the LHC will produce pp-collisions with a center of mass energy of√

s = 14 TeV and with a bunch crossing rate of 40 MHz. About 25 overlapping interactions per
bunch crossing from inelastic pp interactions are expected at these operational parameters. To
keep interesting physics processes and to reduce the 109 interactions per second to an acceptable
event output rate of a few hundred Hz for offline analysis highly selective trigger systems are
required. In a first stage the LHC is expected to deliver colliding beams in 2009 with a center
of mass energy of

√
s = 10 TeV and a luminosity of 1031 cm−2s−1. Physics programs and

commissioning efforts use therefore these operational parameters for startup preparations.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 022024 doi:10.1088/1742-6596/219/2/022024

c© 2010 IOP Publishing Ltd 1



2. The ATLAS Trigger
Online event selection in the ATLAS trigger is done in three levels, with the hardware based
Level-1 trigger and the two software based triggers, Level-2 and Event Filter (EF). Level-2 and
EF together form the High Level Trigger (HLT) [4] [5]. The event selection in the HLT triggers
proceeds in steps for feature extraction and hypothesis decisions. At the end of each step the
step results are checked against physics signatures defined in trigger menus. While the Level-2
reconstructs localized regions, the EF attempts a full offline-like event reconstruction guided by
the Level-2 Result with more complete calibration, alignment and magnetic field data.

The Level-1 trigger [6] is implemented in custom hardware and reduces the initial event rate
to about 75 kHz. It can be upgraded to 100 kHz. The Level-1 decision is based on data from
the calorimeters and the muon detectors. For accepted events small localized regions in pseudo
rapidity η and azimuthal angle φ centered on the high pT objects identified by the Level-1 trigger
are determined. Each Region of Interest (RoI) contains the type and the thresholds passed of
the associated high pT candidate objects.

The Level-2 trigger’s selection process is guided by the RoI information and uses full
granularity event data within a RoI from all detectors for it’s decision process. In this way,
only 2-4% of the full event data are transfered to the Level-2 trigger. The selection algorithms
request data from the Read Out Buffers (ROB) for specific detectors in a RoI for each processing
step. The data are held in the ROBs until the Level-2 trigger accepts or rejects the event. The
Level-2 output rate is about 3 kHz with typical event decision times of 40 ms for a current
quad-core CPU with 2 GHz clock frequency.

If an event is accepted by Level-2, the Event Builder collects all the event data fragments
from the ROBs. The complete event is then made available to the EF for the final stage of
trigger selection. Here, more complex algorithms provide a further rate reduction to about 200
Hz with typical event decision times of up to 4 s.

3. High Level Trigger Hardware and Software Environment
It is foreseen to install for the final HLT event selection farm 17 racks with Level-2 processors
and 62 racks with EF processors. Each rack hosts 31 one unit high machines with two CPU
sockets. The processors are network booted and every rack has its own local file server. Out of
the 79 racks in total 28 racks will be freely configurable either for use in Level-2 or in EF. In this
way processing power can be distributed according needs to Level-2 or EF. Presently the ATLAS
HLT processor farm consists of 27 dual use HLT processor racks, which corresponds to about
35% of the foreseen number of HLT processor racks for Level-2 and EF. Most of the installed
processors are based on quad-core Intel Harpertown [7] CPUs with 2.5 GHz clock frequency and
2 Gbyte of memory per processor core.

Level-2 event selection algorithms run inside the Level-2 Processing Units [8] [9] (L2PU). Each
L2PU can process events in parallel in concurrent worker-threads. Multi-threading minimizes
overheads from context-switching and avoids stalling the CPU when waiting for requested RoI
data from the readout system, or when publishing monitoring information. While this ansatz
allows for an efficient use of multi-CPU and multi-core processor resources, it requires that
all software running in the L2PU is thread-safe. The technical aspects of multi-threading
are handled by the data flow software itself, including creation and deletion of threads and
synchronization of resources. The EF uses more offline-like HLT selection software and executes
it in concurrent EF Processing Tasks (EFPT). The EFPTs are controlled by the EF data flow
software, which provides also full event data via shared memory to the processing tasks.

All aspects of data movement and application control are handled by the online data flow
and run control software. To a large extent these software components use multi-threading
technologies to deal with asynchronous service and control requests. The ATLAS HLT
framework, with the so called HLT Steering Controller [10], interfaces the HLT event selection
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Figure 1. Schematic view of an ATHENA service which reads in online specific detector
conditions from the online Information Service IS and presents them to the event selection
algorithms in the same format as the corresponding service implementation does in offline.
There the data are read directly from the offline conditions database. In this way algorithms have
complete transparent access to their conditions data. The arrow between the online Information
Service and the offline conditions database indicates that selected data delivered by IS are also
archived asynchronously to the conditions database.

algorithms to the online run control and data flow software, which completely controls it in
terms of finite state machine transitions and management of the event loop. The HLT Steering
Controller provides for the HLT event selection software the access to the online configuration
system and the access to event data, either directly from ROBs in Level-2 or from full events
in EF. Further it handles error conditions arising from algorithm execution in the online data
flow context. After the event selection code has finished processing the event, it packs the
detailed event decision record into a raw data fragment and forwards it, together with the
event streaming information, to the online data flow. In the online environment the HLT event
selection framework [11] is a software layer inside the HLT framework and constitutes the run
environment for the trigger algorithms. It is common to Level-2 and EF and is composed of four
main components. The HLT Steering schedules the HLT Algorithms corresponding to the input
seed, so that all necessary data for a trigger decision are produced. Event specific quantities are
passed between HLT algorithms as C++ objects, which are defined in the Event Data Model
(EDM [11]). These objects are posted by HLT algorithms to Data Managers, which allow HLT
algorithms processing later in the chain to retrieve and further analyze these data. This allows
also to hide platform- and storage technology-specific details of data access from the algorithms.
The HLT Algorithms are organized in sequences and reconstruct either new event quantities or
check trigger hypotheses with previously computed event features.

Since the EF provides an offline-like, process based, environment, the HLT event selection
software is naturally based on the ATLAS offline reconstruction and analysis environment
ATHENA [12], which itself is build on the GAUDI [13] framework. This allows for an efficient
code reuse from a large software basis with many contributors and the implementation of a
“physicist-friendly” environment for trigger algorithm development. With a common code base
for the online and the offline software, the HLT guarantees also the consistency of trigger
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performance evaluations, which are mostly performed in an offline setup. Examples of re-
utilized components are the storage manager, the EDM, the detector description, the services
for handling conditions data and many reconstruction tools, which are already developed by the
offline community. Only the HLT Steering framework and certain specialized trigger algorithms
remain HLT specific developments. Also the HLT framework is based to a large extent on the
ATHENA architecture and re-uses whenever possible core offline services online. Examples are
services which handle the complex ATLAS detector description, the alignment and conditions
data and the conversion of event data to high level EDM objects. A key feature for providing
transparent access mechanisms to data in offline and online, is GAUDIs name based service
architecture. It allows to implement services with different online back-ends and to configure
them with the same name as in offline. Algorithms will retrieve the services according to their
name and their abstract interface definition without knowing the detailed implementation. An
example is the access to data fragments in the ROBs for Level-2, where a special online ROB
data provider service directly contacts over the network the ATLAS readout system, retrieves
the required fragments and presents them to the selection algorithms as if they would have been
read from a complete raw data event like in offline. Further examples include services which
read selected detector conditions data from the online information system and present them to
the algorithms as if they would have been retrieved from the offline conditions database. This
situation is shown schematically in figure 1. A special case forms the online job configuration
service, where the complete trigger configuration is read from a database instead of from Python
job setup scripts, as in offline.

4. Software Development Model
A similar development model as in offline has been adopted for HLT code. Since the same
interfaces are available in the EFPT and the L2PU environment the code developed in the
offline environment can be directly downloaded in binary form to the HLT processors. Figure 2
shows this relation between an online data flow setup and an offline development environment
for HLT software.

However, testing of HLT code is more complicated since it runs inside the L2PU and EFPT

Figure 2. A typical development and prototype setup. ATHENA is the basic algorithm
execution environment. It is shared by the online and the offline environments. Algorithms are
developed in the offline environment and tested e.g. with the L2PU emulator athenaMT or the
EFPT emulator athenaPT. The same binary libraries containing the event selection algorithms
are then used in real data flow setups.
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Figure 3. A schematic view of the dependency structure of the AtlasHLT software project
within the ATLAS software projects. The AtlasHLT software project depends on most of the
other software projects and is therefore last in the build sequence.

data flow applications and requires, therefore, that developers setup data flow systems. The data
flow software can be configured to run either as a single or multi-node system. A single node
system starts all the required data flow and infrastructure applications in the same processing
node, while a multi-node system distributes them over various nodes. The setup of a complex
data flow system for application testing is in both cases a nontrivial task and requires also access
to the necessary hardware resources.

Two command line applications, athenaMT [14] and athenaPT were therefore created, which
emulate internally the run environment of a L2PU or of a EFPT. They are written in Python
and share to a large extent a common code basis. Differences arise only in the way the HLT event
selection software accesses raw data and in the emulation of the multi-threaded event selection
in Level-2. To simulate the raw data access via network requests for Level-2, athenaMT loads
the raw data fragments for each event into memory and provides them on algorithm request to
the event selection software. In a similar way athenaPT provides the full raw event to the HLT
code. Both emulators allow in an interactive mode to cycle through the ATLAS trigger finite
state machine for testing if newly created code is compatible with trigger operation. Command
line options and debug aids for the emulators have been implemented as close as possible to the
ones available with the offline ATHENA run script. In this respect developers with an “offline
background” can more easily get acquainted with HLT development and they need not to be
familiar with detailed technical aspects of the data flow software. Further in their development
process they are also shielded from changes in the data flow part of the software. They can
concentrate exclusively on the HLT software and are able to perform a large variety of tests
with these command line applications. It is clear, however, that the final certification of the
HLT software has to be done on a large distributed system.

5. The AtlasHLT Project
The packages which belong to the HLT framework form the so called AtlasHLT software project.
It is structured like other offline software projects [15] and uses the same version control, build
and testing tools. Due to its nature as an interface between data flow and offline, it is the
only ATLAS software project which can directly depend on data flow software and on all other
ATLAS software projects (see also figure 3). For this reason the AtlasHLT software project is
built as the last software project after all other dependencies are ready. It is clear that due to its
dependency structure the releases of the AtlasHLT project have to be coordinated with trigger
and data acquisition (TDAQ) releases and with offline releases. However other dependencies
between these two projects already exist due to the common use of LCG [16] software and the
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Figure 4. Example of an automatic memory leak test for Level-2 code run every night after
the AtlasHLT developer builds. The graph shows the memory usage for the tested framework
and selection code as a function of the number of processed events. The upper curve shows
the evolution of the virtual memory and the lower curve the evolution of the real memory. For
Level-2 performance targets require memory leaks to be smaller than about 10 bytes/event. The
exact location of a leak has to be localized by developers with other tools.

common software project tdaq-common, which mainly hosts the code for the ATLAS raw event
data format.

Developers administrate their software components with the ATLAS Tag Collector and every
night a new test release is built. Also every night automatic code tests are launched using
mainly the emulator applications athenaMT and athenaPT. Simple single node data flow setups
complement the test suite with automatic code tests in data flow partitions. Figure 4 shows
an example of a memory leak test, performed with the release test suite. Since the reused
offline code modules are executed in the trigger orders of magnitude more often than on the
offline reconstruction farms, testing of code robustness and careful control of memory leaks is of
great importance. For example performance targets for the trigger require memory leaks in the
Level-2 to be smaller than 10 bytes/event and to be less than 1 kbyte/event in the EF. In close
collaboration with offline developers performance monitoring tools have been developed which
help to follow the execution time and memory evolution of the code over the different release
cycles in the offline and in the AtlasHLT projects.

6. Operational Experience
The HLT framework has been used now for over five years. It was first deployed in a setup
with detector components for the ATLAS test beam in 2004 [17]. It was used for many data
taking periods with cosmics in 2007 and 2008, including the combined ATLAS cosmic runs, and
it was configured in pass through mode for the first LHC events in September 2008. These
data taking periods exercised all core software components from algorithm configuration with
the trigger database to event streaming initiated by algorithm decisions. For example for the
cosmic data taking period starting September 13, 2008, 216 million events were handled by the
HLT framework with a data volume of 453 Tbyte in 400000 files (see figure 5). About 3% of
the events which caused data taking problems, mainly due to corrupted raw data fragments or
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Figure 5. Number of cosmic events recorded with different triggers in the ATLAS cosmic run
starting September 13, 2008.

Figure 6. Input rate in Hz (y-axis) to the Level-2 trigger in a test run lasting seven hours.
Simulated data were preloaded into the read out system and pushed through a setup with 2880
Level-2 Processing Units, which corresponds to about 70% of the final Level-2 system size. A
rate of 60 kHz could be sustained. The sharp drops in rate are caused by system cron jobs.

event time outs, were written to the debug stream. Events from this stream were re-analyzed
by re-running the trigger event selection code offline and they were eventually re-injected into
the analysis sample. For reprocessing these events and debugging the various problems the
emulators athenaMT/PT were used.

While cosmic data taking provides an invaluable operational experience with an integrated
detector setup, the TDAQ system and the HLT framework are not pushed to their performance
and throughput limits. These limits were explored in several “TDAQ Technical Runs”. For
these periods the read out system was preloaded with simulated data. The data fragments
from different sub detectors were assigned in a realistic way to the read out drivers and the full
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Figure 7. Processing time for rejected events in Level-2. These events will constitute more
than 95 % of the events handled by Level-2. The timing is well within the expected processing
time of about 40 ms for the used CPU type.

HLT event selection menu for a luminosity of 1031 cm−2s−1 was configured. All available HLT
processors were attributed to the Level-2 farm running 2880 L2PU instances, which corresponds
to about 70 % of the final system. In a seven hour long run, an input rate of 60 kHz could be
sustained (figure 6). This value corresponds to about 80 % of the design value. With less than
40 ms processing time (figure 7) for rejected events in Level-2, the HLT code performs within
the expected limits on the used HLT processors.

7. Event Parallelism and Multi-Core Processors
The original ATLAS design for the HLT event selection applications exploits event parallelism
for reaching the required event throughput. In Level-2 concurrent worker threads execute the
selection code on each processor in parallel, while concurrent processing tasks work in parallel
on the full events provided to the EF. A typical HLT processor consisted of a dual CPU machine
with a single core CPU per socket. Performance for these CPUs would increase with increasing
clock frequency. It was foreseen to start on each Level-2 processor one instance of a L2PU
application with up to three worker threads and two instances of EFPTs per EF processor.

It quickly became obvious that it is very difficult to maintain thread safe HLT event
selection code in a concurrent development environment with many contributors fron different
subsystems and with differnt experience. The availability of the same algorithm interfaces in
HLT allowed a very fast development and deployment of new selection chains by reusing many
components already developed in offline. These components were not always designed to run in
a multi-threaded environment and a redesign had often far reaching consequences for key core
components in offline. While in the beginning certain selection chains could run multi-threaded,
it proved to be very difficult to maintain this capability over release cycles. Another major
problem arose from the basic system libraries themselves. During tests it was observed that the
event throughput in a L2PU didn’t scale in the expected way with the number of worker-threads.
This was due to the use of a common memory pool for container objects in the default memory
allocation scheme of the Standard Template Library (STL). This resulted in frequent mutual
blocking of the worker threads as figure 8 shows. The event processing model of Level-2 favors
a scheme where every thread allocates its own memory pool. Such an allocation scheme was
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Figure 8. Event processing in three concurrent worker threads. It can be seen that for a
substantial fraction of time the worker threads block each other during event processing. This
is due to an inefficient memory allocation scheme used in an older version of the C++ Standard
Template Library.
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Figure 9. Scaling of the event throughput rate with the number of HLT selection process
instances on a dual CPU quad-core machine. There is almost linear scaling up to 8 process
instances, i.e. one process instance per CPU core. Running more selection processes than
available CPU cores does not improve the throughput anymore.

available in the STL and after optimizing the code with it, the expected scaling behavior was
observed. However, external utility libraries had to be also compiled with this allocation scheme
and were not always available in this form. This made it very difficult to run even thread safe
code in an efficient way. As a consequence the L2PU is now configured to run with one HLT event
selection worker thread, but it still uses all the multi-threaded infrastructure for data retrieval,
monitoring and run control. The required throughput is achieved by starting one L2PU instance
per CPU core. With the end of the “frequency scaling area” and the introduction of multi-core
CPUs with lower clock frequency the number of applications per HLT processor is multiplied by
the total number of available CPU cores, since one L2PU and one EFPT application is launched
per core. While an almost linear increase of the event throughput with the number of HLT
applications is observed (figure 9), the required resources, like available system memory and
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number of network connections, increase also. The expected launch of many-core processors
in the coming years, i.e. processors which provide e.g. 64 and more hardware threads per
processor die, and the possible use of less machines with more concentrated computing power
to run the HLT selection applications at the same decision rate as now, would also require more
available bandwidth for data input to the processors. On the other hand, by running the different
selection levels in one machine, the input bandwidth requirements could be relaxed due to the
increased time spent on an event. Both scenarios will however require further enhancements to
the framework to optimize the use of multi- and many-core systems (see also Refs. [18], [19]).

8. Conclusions
The presented implementation of the HLT framework enables the reuse of offline software
components throughout the ATLAS High Level Triggers. It realizes a homogeneous software
and development environment from the Level-2 trigger to offline and allows to benefit from a big
developer community and software base. Close collaboration with the offline developers made it
possible to reach the execution speed, robustness and memory leak targets necessary for trigger
operation. The HLT framework with the event selection algorithms has now been successfully
used in many data taking periods and provides the expected throughput. The ability to develop,
test and optimize trigger algorithms in offline is successfully used to establish the ATLAS HLT
selection menu. The recent changes in processor technology and the move to multi- and many-
core processors requires, however, further framework developments to support optimally these
hardware platforms.
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