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ABSTRACT 
Current work on the dynamic collapse of stellar cores indicates that dissociation of the heavy 

nuclei is a critical factor in determining whether the outcome can be a supernova. A large fraction 
of the matter is in the form of heavy nuclei even at densities exceeding 1013 gem-3. A number 
of physical processes become important for the dissociation of the heavy nuclei at these high 
densities. Sufficient free nucleons are present that the effects of nuclear forces between them 
become significant. The conditions are such that the partial degeneracy of the neutrons cannot 
be neglected. The nuclei are in highly excited states, and their partition functions become large. 
The Coulomb lattice energy is also included in our considerations. The effects of these various 
processes on nuclear dissociation are examined. All of these processes except the Coulomb lattice 
energy have large effects on the temperature of nuclear dissociation for densities above 1013 

g cm-3. With increasing density the dissociation temperature levels off at ~ 1.1 x 1011 K when 
the density becomes greater than ~5 x 1013gcm“3. Implications of these results for stellar 
collapse calculations are discussed. 
Subject headings: dense matter — nuclear reactions — stars: collapsed 

I. INTRODUCTION 

In the final stage of evolution, stars with masses above ~ 8 M0 are expected to develop electron-degenerate 
cores of ~1.4M0 consisting of iron-peak elements (Arnett 1973). The combined effects of nuclear dissociation 
and electron capture then destabilize the core and lead to stellar collapse. A supernova may result if a significant 
fraction of the gravitational energy of collapse is deposited in the outer regions of the star (Colgate and White 
1966). However, the most recent numerical studies (Arnett 1977; Wilson 1977; Mazurek 1979) have given 
ambiguous results regarding the outcome. Somewhat different assumptions regarding the input physics can give 
an explosion (Wilson 1977) or total collapse (Mazurek 1979). The greatest uncertainty, perhaps, lies in the equation 
of state. 

Throughout the collapse the pressure is dominated by the leptons (electrons and electron neutrinos) and the 
free neutrons. Initially, the relativistically degenerate electrons overwhelmingly dominate the pressure. Electron 
capture thus plays a crucial role in destabilizing the core. As the densities exceed ~ 1011 g cm"3, the neutrinos from 
the electron capture become trapped (Mazurek 1976; Yueh and Buchler 1977; Arnett 1977; Tubbs 1978). The 
neutrino concentration grows until beta equilibrium between electron capture and neutrino absorption is estab- 
lished at densities around 1012 g cm“3. Beyond this the concentration of the degenerate leptons remains roughly 
constant, being depleted only by the relatively slow process of neutrino diffusion. The leptonic pressure now in- 
creases more rapidly with density; however, it alone cannot prevent further collapse. Since the leptons are 
relativistic, their adiobatic index is 4/3 and their pressure alone cannot stabilize the core. The nonleptonic pressure 
of the massive particles must therefore reverse the core’s collapse or cause it to bounce. 

The magnitude of the nonleptonic pressure is sensitive to the dissociation of the heavy nuclei. Although dis- 
sociation absorbs thermal energy, it also increases the number density of the heavy particles. There is therefore a 
tendency to enhance the pressure contribution of the nonleptonic component as dissociation increases the particle 
densities. Because of the competing decrease in pressure due to the absorption of thermal energy it is not possible 
to determine the growth of the nonleptonic pressure without detailed numerical calculations. But its enhancement 
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is determined by the mode of dissociation of the nuclei; hence, so is the point at which the bounce of the core 
occurs. 

The central density of the core at bounce apparently determines whether an explosion can result. Wilson’s 
(1977) calculations, which give a core bounce at central densities around 1013gcmr3, produce an explosion. 
Mazurek’s (1979) calculations show a core bounce at ~ 1014 g cm-3 and result in total collapse. The differences 
between the equations of state used may account for the differing results. 

This communication examines the uncertainties in the equation of state that arise from the dissociation of the 
heavy nuclei. This problem has been investigated by Lattimer and Ravenhall (1978). They formulate it in the con- 
text of a coexistence of two different nuclear phases, where the denser phase represents the existence of nuclei. 
Our approach to the problem of dissociation is quite similar to that using the usual Saha equation (cf., e.g., Bur- 
bidge et al. 1957). We incorporate the effects of nuclear and Coulomb forces, as well as the partial degeneracy of 
the free nucleons, through correction terms to the binding energy of each nucleus. The nuclear partition functions 
appear explicitly, and the equilibrium composition is determined on the basis of a network of discrete nuclei. The 
relative importance of each physical process can be examined individually. 

In particular, we define dissociation curves in the (/>, r)-plane by requiring that half of the matter be in the 
form of free nucleons. We then examine the changes in the dissociation curves that are effected by inclusion of the 
nuclear partition functions, the partial degeneracy of and the nuclear interaction between the free nucleons, and 
the Coulomb lattice energy. Section II presents our simplified method for incorporating these effects in a Saha like 
formalism. Section III presents dissociation curves, examines the relative importance of the various processes, and 
discusses the implications for calculations of hydrodynamic collapse. 

II. EQUILIBRIUM WITH INTERACTING NUCLEONS 

The equilibrium composition of the matter is obtained by minimizing the total Helmholtz free energy with respect 
to composition. The difficulty in this approach lies in determining the functional form of the free energy. In this 
investigation we do not attempt a rigorous derivation of the latter. Rather, we make simplifying assumptions to 
arrive at a plausible form, and use the result in the following section to examine possible effects on the equation 
of state in stellar collapse. 

Differences in the interactions between individual constituents make the free energy depend on the composition 
of the matter, as well as its temperature and density. We assume that the free energy of each constituent can be 
expressed as a sum of its usual noninteracting term plus separate contributions due to Coulomb and nuclear 
interactions. For the noninteracting free energies we use the expressions of a relativistic Fermi gas for the leptons, 
a Boltzmann gas for the nuclei, and a nonrelativistic Fermi gas for the nucleons. Minimization of the free energy 
with respect to the composition of each constituent then yields interacting chemical potentials with relations 
describing the nuclear and beta equilibria. The nuclear equilibrium condition for the nuclei and nucleons is then 
expressed in a Saha form with an effective binding energy of a nucleus that allows for nucleon degeneracy, and for 
both nuclear and Coulomb forces. 

a) Coulomb Energy 

A detailed study of the thermodynamic properties of a one-component plasma has been presented by Hansen 
(1973). The total free energy of the ion gas is expressible as a sum of two terms: that of a Boltzmann gas and a 
Coulomb interaction contribution. The Coulomb portion per ion particle is a product of kBT (Boltzmann’s con- 
stant times the temperature) and a dimensionless function Qz(a2kBT)lkBT that depends on the parameter 

r / ; ^ _ 1 (e2z2\ _ e2z513 /47r v AT \ r2(a2fcBr) _ ^ j _ k^T 3 X'Nopj 
1/3 

(1) 

where e is the charge of an electron, Z the proton number of the ion, a2 the ion-sphere radius, Xe the electron 
number per gram of matter in units of Avogadro’s number A0, and p is the mass density. Hansen’s Monte Carlo 
results for the dimensionless function are fitted to within 10% by 

Qz(azkBT) ~ 0.9Vz(azkBT) ( , 
kBT = [1 + 4ir2(azkBT)]112 ’ W 

The Coulomb free energy per gram is then 

Te oui ^ NoQz(azkBT)l A , (3) 

where A is the mass number of the nucleus. Note that Qz{azkBT) reduces to the Coulomb energy of a Wigner- 
Seitz sphere as Tz{azkBT) ->oo, and is roughly the energy per ion in the Debye-Hückel theory for Tz(azkBT) « 1. 
For the multicomponent plasma of interest we assume that each component contributes a Coulomb interaction 
term to the free energy of the form given by equation (3). 
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b) Nuclear Interaction Energy 

As the density becomes sufficiently high, the short-range nuclear forces become important for the free neutrons 
that are present. The particle densities of nuclei are lower than those of the neutrons by factors of roughly A~x. 
Because of the higher particle densities of the free neutron gas, its self-interaction gives the dominant contribution 
to the nuclear free energy. The presence of free protons increases the interaction energy of the neutron gas. The 
free-nucleon contribution therefore is a function of both the nucleon density and the free proton fraction. The main 
effect of the free nucleons on the nuclei is to reduce surface energies and hence to increase the nuclear binding 
energies. In the numerical results below, only the self-interaction of the free nucleons is accounted for. The thermo- 
dynamic properties of interacting nucleons at finite temperatures have been studied by Buchler and Coon (1977), 
El Eid and Hilf (1977), and Bowers, Gleeson, and Wheeler (1977). They present numerical results of the thermo- 
dynamic properties of the nucleon gas, but each calculation either fixes the proton fraction a priori or determines 
it on the basis of beta equilibrium without accounting for nuclei or neutrino trapping. Thus these results cannot be 
used readily to derive the nucleon free energy due to nuclear interaction. For expediency, we adopt the bulk inter- 
action energy at zero temperature (as given by Baym, Bethe, and Pethick 1971, and modified by Mackie 1976) for 
this free energy. The interaction energy per gram (/nuc) °f free nucleons is then given by 

Uc = N0W(k,ß), (4) 

with k3 = I.SttWoÍA^! + A^o)/* and ß = + Xi,o), where Xltl and Xlf0 are the mass fractions of free 
protons and neutrons, respectively, and the functional form of W as modified by Mackie (1976) is given in the 
Appendix. An explicit form for the binding energy of a nucleus in a sea of free nucleons is not presently available. 
We assume a function of the form Bz,a(^i,u X1>0), which becomes the usual binding energy of a nucleus 2?Zti4

0 in 
the limit + Ar

1>0->0. 

c) Helmholtz Free Energy 

The contribution of each constituent to the total free energy is F* = A^ where X{ is its fraction by mass and fi 
its free energy per gram. Using the notation 

(o) = 2 ^A,ZaA,Z » (5) 
A,Z 

where the sum is taken over all nuclei and nucleons, one can write the total free energy per gram as 

/=</0 + ^0F> + Fe
0 + Fv

0, (6) 

where for ^4 > 1 the interaction energy is 

ea,z = (ba,z + ôz)M ; (7) 
and for the nucleons 

£1,1 =W+Ql9 (8) 

Elto=W. (9) 

The superscript zero indicates the appropriate free energies for noninteracting particles. Equation (6) implicitly 
contains XV9 the neutrino number per gram in units of N09 and/v, the free energy of N0 neutrinos. The electron 
contribution is described similarly. 

d) Zeroth-Order Chemical Potentials 

For equal mass fractions, the particle density of a nucleus is down by a factor of A from that of the nucleons. 
Since the neutrons become only partially degenerate in current calculations, the chemical potential of a nucleus 
should be nearly that of a Boltzmann gas, 

exp Oa,zb !kBT) _ 
nA,Z 
Qa,z 

(10) 

where h is Planck’s constant, nAiZ = XAtZN0plA, and Ü.A¡Z is the internal partition function of the nucleus. The 
nucleons can become partially degenerate, so their chemical potential must be determined on the basis of a Fermi 
gas. Since they remain nonrelativistic throughout, their chemical potential satisfies (cf., e.g., Chiu 1968) 

2 p y^dy n±z //fWo\3'2 nn 

vWo exP (y ~ mi.z'V^bF) + i Oi.z \2TrkBTj 

where = Q1>0 = 2. The electrons are extremely relativistic, so their rest mass is negligible. Both the neutrinos 
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716 MAZUREK, LATTIMER, AND BROWN Vol. 229 

and the electrons are degenerate, so the Fermi expression for their chemical potentials must be used. For the rela- 
tivistic leptons, the chemical potentials are given by 

4n 
Í Jo 

y2dy  
exp O - f¿i0¡kBT) + 1 

= XtNoP (Jtc_Y 
ßi \kBT) ’ 

(12) 

where i denotes the electron or the neutrino, c is the speed of light, and Ov = ^Oe = 1, since helicity distinguishes 
the antiparticle nuetrino from the particle one. 

e) Equilibrium Composition 

The composition of equilibrium matter is obtained by minimization of/at constant p and T subject to charge 
neutrality and the conservation of baryon and lepton numbers. This standard procedure results in relations be- 
tween the total chemical potentials (/¿¡) of the matter’s constituents. The condition of equilibrium for the nuclear 
and Coulomb forces gives expressions for the chemical potentials of nuclei in terms of the chemical potentials 
of the free nucleons: p,AiZ = Zp.1A + (A - Z)ju.1>0. Equilibrium of the weak forces yields the beta reaction con- 
dition: pi i + Pe — Pi,o + Pv In terms of the zeroth order chemical potentials, the beta equilibrium condition is 

Most hydrodynamics calculations (Arnett 1977; Wilson 1977; Mazurek 1979) use the Boltzmann expression for 
the nonleptonic chemical potentials with modified nuclear binding energies. It is instructive to write the condition 
for equilibria of the Coulomb and nuclear forces in such a form. The effects of nucleon degeneracy, Coulomb 
lattice energies, and nuclear interactions then appear as modifications to a nuclear binding energy. Explicitly, 

Pa,z — Zpi'-F + (A ZKoB + Aa,z > (14) 

Aa,z = AA 2
deg + AA>z°°al + AA'Z

nuc, (15) 

AA,zdeg = Z(pul° - pltl
B) + (A - Z)(pUo° - Pi,oB), (16) 

A¿,zcoul = ZÔ! - ôz , (17) 

<3> + a - Z) <!) • m 

where Bltl = Blt0 = fV completes the definition of (B/A}, and /xB denotes Boltzmann chemical potentials. When 
exponentiated, equation (14) has the appearance of the usual nuclear Saha equation (cf., e.g., Burbidge et al 1957) 

nA,z = (19) 

Note that - A^z does not represent the binding energy of the nucleus. The reason for this is that the total energy 
per ion (%kBT + BA Z) and the chemical potential with interaction (^A,zB — ^a,z) must satisfy the thermo- 
dynamic identity 

d 
dnAtZ 

[nA,z&BT+ BA'Z)]T = -7*^ (20) 

where BAtz is the binding energy. From equation (10) it can be seen that the kinetic contributions cancel and BAtZ 
satisfies 

B A,Z = T2— (^A'z\ - 
dT\ T 

nA,Z 
A,Z 

dn AtZ 
(21) 

Therefore — AAtZ equals the nuclear binding energy only if both A¿>z.and BAfZ are constant. In the present instance 
this is not the case, and solutions with — AAtZ greater than zero that have nuclei present do exist. 

/) Solution Procedure 

An equilibrium network of 155 nuclei was used to solve for the equilibrium composition. The component 
nuclei of this network were chosen so as to give maximal representation around regions where the abundances 
peaked. These peaks generally occur in regions far from the valley of beta stability. Hence the binding energies 
of these nuclei have not been measured experimentally. We adopted Mackie’s (1976) mass formula to derive the 
relevant binding energies. For the nuclei under consideration, his results generally agree to within 5% with those 
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of Garvey et al. (1969). For fixed Xe and A^’s the equilibrium composition can be obtained through well known 
procedures (cf., e.g., Clifford and Taylor 1964). Generally the composition obtained gives a different kAtZ from 
the one initially used, so iteration must be used until a consistent solution is found. Once this is done, the neutrino 
chemical potential, and hence the total lepton number, is given by the beta equilibrium condition of equation (13). 

in. DISCUSSION 

This section examines the relative importance of nucleon degeneracy, Coulomb lattice energy, nuclear inter- 
actions, and partition functions in the dissociation of the heavy nuclei. We first give numerical expressions for the 
various effects. The relative importance of each can be estimated in the context of the Saha equation (19). In mag- 
nitude the Coulomb interaction energy is a small fraction of the corrections to the effective nuclear binding energies 
introduced by nucleon degeneracy and nuclear interactions. The nuclear partition functions play a significant role 
in preventing nuclear dissociation until the densities become sufficiently high for nuclear forces to become im- 
portant. The condition that one-half of the mass be in the form of free nucleons is used to define dissociation curves 
that result from the various processes discussed. The dissociation curves seem to level off with increasing densities 
at around kBT ä 10 MeV when all of the physical processes are included. 

a) Magnitudes of the Different Effects 
i) Nucleon Degeneracy 

The differences of the chemical potentials in equation (16) were computed using numerical techniques accurate 
to 0.1%. Cruder but analytic approximations for these quantities are possible. In particular, they can be expressed 
as unique functions of the Boltzmann chemical potential of equation (10), which can be written numerically for 
nucleons as 

7,n
B = 2.76 + lnXnp13 - |lnr10, (22) 

where t] represents the ratio of chemical potential to kBT, n denotes either neutrons or protons, p13 = p/1013 g 
cm-3, and 7’10 = T/1010 K. For a given r¡ the logarithm of the right side of equation (11) gives r¡B. Figure 1 shows 
log (i? — î)b) as a function of r¡B. The relation is nearly linear for r]B < 2.5. For ijB > 2.5 the gas is sufficiently 
degenerate that the zero-temperature approximation to the Fermi integral in equation (11) gives reasonable 
results. Combining the results of Figure 1 with equation (22) for low degeneracy, and using the zero-temperature 
approximation otherwise, gives 

^nÜv"8 = 4-26(W-9e^o-0-- , for r)n
B < 2.5 

= 0.8627,
1o|p^— exp 0?„B)j2,3 - ^nB| ’ otherwise . (23) 

This expression is accurate to within 5% for all 77/. 
ii) Nuclear Partition Functions 

We have adopted the semiempirical level density formulae of Gilbert and Cameron (1965) to determine nuclear 
partition functions. The increase in the partition functions has dramatic effects on the composition of the matter 

n* 
Fig. 1.—The difference between Fermi and Boltzmann chemical potentials as a function of the latter (in units of kBT) 
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for temperatures greater than kT £ 3 MeV. A representative nucleus of those that dominate the composition in 
the results below is 40P. Using the approximations given in the Appendix, its partition function is (a40 is = 
7.46/MeV) 

ln Ü40.15 ^ -1.82 + 6.43r10 + ln^[(6.43r1o)1/2] - i In T10 , (24) 

where the functional form of q(x) is given in the Appendix and its dependence on x is plotted in Figure 2. The 
mean excitation energy is given by 

<£>/MeV ä 0.43ir1o^-1[(6.43rlo)1/2]. (25) 

Equation (24) agrees with the numerical calculations of ln Q to within 5%. Equation (25) shows that the mean 
excitation energy increases rapidly with temperature, and for T10 > 7.5 it becomes greater than the binding 
energy. For such temperatures our assumption of Boltzmann nuclei with internal excitations breaks down. The 
free energy of the system of interacting nucleons in general will differ when the average energy of a single nucleon 
within the system is of the order of its separation energy. The approach used to derive the nuclear partition func- 
tions must be modified. 

The basic problem arises from the fact that some fraction of the very excited nuclear states contains single 
particles in the continuum, and a residual nucleus. Therefore the possibility exists that the multiplicity of such 
configurations may be overestimated if they are not removed from the partition functions of individual nuclei 
(Fowler, Engebrecht, and Woosley 1978). Note that typically many nuclei share the total excitation energy (Bethe 
1937). Thus there will in general be many more states without particles in the continuum. At an excitation energy 
of -16 MeV and for nuclear separation energies of ~8 MeV, Steve Koonin (Caltech, private communication) 
estimates that the fraction of levels with a single particle excited above its separation energy is <0.07. Our own 
estimates in the Appendix indicate that this fraction is very sensitive to the particle separation energies. For the 
neutron-rich nuclei, it can approach unity at excitation energies in the range 15-25 MeV. 

Of the states with particles in the continuum, the sharp resonances should be counted as bound states. Calcula- 
tions of nuclear partition functions with continuum single particle states subtracted out and sharp resonance states 
included are presented by Fowler et al. Their results show partition functions leveling off and becoming constant 
at average excitation energies ~ 10-13 MeV. Such results indicate that the nonresonant levels with particles in the 
continuum contribute appreciably to the total level density. However, Fowler et al. dealt with nuclei whose nucleon 
separation energies are >8 MeV. Our Table 2 in the Appendix shows that the fraction of all levels with particles 
above separation energies is below 0.1. Therefore we believe that the procedure used by these authors overesti- 
mates by a considerable amount the number of continuum single particle states that need to be subtracted out. 

The contribution from the sharp resonances which should be included in the partition functions is expected to 
be large (A. K. Kerman, MIT, private communication). Furthermore, putting n particles in m bound levels must 
necessarily give a Gaussian distribution, centered at half the binding energy of the nucleus. Therefore, one expects 
that the Fermi gas formula for nuclear level densities is valid at all energies that are small in comparison to the 
latter quantity, which is around 200-250 MeV. 

In the numerical calculations below, we have included only levels below 25 MeV. This cutoff in the partition 
functions is meant to approximate the subtraction of nonresonant levels with particles in the continuum. For the 
neutron-rich nuclei of interest, the fraction of all nuclear levels with continuum single particles can be large (cf. 

Fig. 2.—The mean excitation energy of a nucleus as a function of (aAtZkBT)112 (in units of kBT¡2) 
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Appendix). However, as noted above, many such levels are sharp resonances and should be included in the par- 
tition function. Because of this, we feel that the procedure with a 25 MeV cutoff probably underestimates the actual 
partition functions. 

iii) Nuclear Interaction Energies 

Equation (18) may be written in the form 
dW Anuc A,Z -Ba,z° + AW + (X1A + X1¡0) + (A-Z) 

8W 
8X1A ' ~/8Xli0, 

+ \~X,* + Z I ^^ + (A-Z) 2 
L A',2r>l A V^i'i ¿',^>1 A OA1,0 

(26) 

where BAtZ
0 is the binding energy of the nucleus in vacuum, and xa,z = Ba,z — Ba,z°- The terms in the last brackets 

represent the effects of the changes in binding energies of nuclei due to the interactions with the free nucleons. 
These terms could be determined by solving the pressure balance equation across the nuclear surface (eq. [2.6] in 
Mackie 1976). However, the complexity of such an approach makes it impractical when dealing with a network 
of over 100 nuclei. For simplicity we neglect this term in our numerical calculations below. The remaining ex- 
pression for the nuclear binding energy after some rearrangement is 

= —B 'A,Z + AIV + (Z-Aß){^^ + -40-, 
J 0 

(27) 

Table 1 gives Wand its relevant derivatives for typical values of (X1A + Xlf0)p and ß. 
For the purposes of the discussions below, this neglect of binding energy variations can be justified. The change 

in total binding energy in the presence of external nucleons is due to modifications in the Coulomb and surface 
energies of the nucleus. In a sea of free nucleons, the surface energy is decreased from its value in vacuum by the 
factor 

( 
i - - (Xltl + X^o) -P-Y13, 

Pnuc J 

where Wnnc and pnuc are the bulk energy and the matter density inside the nucleus (cf. eq. [4.15] in Mackie 
1976). The latter have typical values of Wnnc ä 16 MeV and pnuc ^ 2 x 1014gcm“3. Thus at low densities 
(p < 2 x 1013 gem-3) the decrease in the surface energy is represented by a factor between 0.85 and unity for 
Xltl + < 0.5. In addition, the density of external charged particles is low and the Coulomb energy does not 
change appreciably. Therefore, the change in the total binding energy is less than 1570 at low densities. For high 
densities (p > 2 x 1013 gem-3) it is necessary to distinguish between cold and hot matter. For hot (kT > 8 MeV) 
matter, the effects of nuclear partition functions determine the nuclei in equilibrium (cf. § III below). Since the 
influence of the nuclear binding energies is dramatically diminished, so are the effects of changes in Coulomb and 
surface energies. Such effects were studied by Lamb et al. (1979). They find that dissociation curves like those 
discussed below are relatively insensitive to changes in Coulomb and surface energies. On the other hand, for 
high densities and low temperatures, the influence of excited nuclear states diminishes. For sufficiently low tem- 
peratures, dramatic differences in the characteristics of the nuclei in equilibrium can result from differences in the 

TABLE 1 
Typical Values of the Free-Nucleon Interaction Energy and Its Derivatives (in MeV) 

(Xltl + Xlt0)p - mk, ß) -(dW/dXnh -(dwmk 

5.000E+12*. 
1.000E+13.. 
1.500E+13.. 
2.000E+13.. 
3.000E+13.. 
4.000E+13.. 
5.000E+13.. 
6.000E+13.. 
7.000E+13.. 
8.000E+13.. 
9.000E +13.. 
1.000E+14.. 

ß = 

1.066 
2.114 
3.076 
3.978 
5.649 
7.184 
8.611 
9.949 

11.208 
12.398 
13.525 
14.595 
0.1 

1.206 
2.382 
3.490 
4.546 
6.534 
8.386 

10.125 
11.765 
13.317 
14.788 
16.183 
17.509 
0.2 

1.314 
2.572 
3.770 
4.921 
7.102 
9.148 

11.078 
12.905 
14.637 
16.282 
17.845 
19.331 
0.3 

1.105 
1.998 
2.788 
3.508 
4.790 
5.910 
6.901 
7.781 
8.565 
9.262 
9.880 

10.424 
0.1 

1.219 
2.277 
3.241 
4.133 
5.746 
7.171 
8.438 
9.567 

10.570 
11.458 
12.239 
12.919 
0.2 

1.293 
2.451 
3.519 
4.515 
6.330 
7.943 
9.383 

10.668 
11.812 
12.825 
13.715 
13.490 
0.3 

1.986 
3.844 
5.795 
7.775 

11.717 
15.566 
19.286 
22.859 
26.278 
29.540 
32.643 
35.588 

0.1 

1.109 
2.049 
3.155 
4.343 
6.824 
9.341 

11.834 
14.271 
16.635 
18.915 
21.105 
23.201 

0.2 

1.073 
1.789 
2.515 
3.244 
4.689 
6.104 
7.479 
8.810 

10.096 
11.335 
12.526 
14.671 

0.3 

* Numbers following E denote powers of 10. 
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functional form of the surface energy (cf. the review of zero-temperature results by Canuto 1974). The dissociation 
curves presented below are hot at high densities. Our neglect of the Coulomb and surface modifications is in this 
sense justified. 

iv) Coulomb Lattice Energy 

The numerical forms of equations (1) and (17) are 

rz(azfcBr) = 0.490z5'3(zef>13)1/3:r1o-
1, 

and 

n/MeV = -0.380(jre/>13)1/3iZ5/3 1 + rz(azfcBT) '] Z[! + iV^bd] 

-1/2 

(28) 

(29) 

Thus Coulomb lattice energies are typically much below degeneracy energies if Xn ä Xe. This is the case for 
neutrons, and we use only the simple version of equation (29) with T = 0 in the numerical calculations below. 

b) Dissociation Curves 

To estimate the relative importance of each process above, we compute dissociation curves for a value of the 
total lepton number that is typically obtained in current hydrodynamic calculations (Xe + Xv x 0.33). Three 
cases are considered. In the first, the nucleons as well as the nuclei are treated like Boltzmann particles and only 
the ground-state spins are used for the nuclear partition functions. The second case uses the nuclear partition 
functions with the Gilbert and Cameron (1965) level densities and a 25 MeV cutoff; the other assumptions of case 
one are retained. Finally in the third case we treat the nucleons as Fermi particles, use the partition functions of 
case (2) for the nuclei, and include the nuclear and Coulomb interaction energies discussed above. 

i) The Effects of Partition Functions 

Figure 3 compares the results of the first two cases where the nucleons as well as the nuclei are treated as Boltz- 
mann particles. The curves give the line in the (p, T)-plane along which the composition of the matter consists of 
50% free nucleons with the remainder being in the form of heavier elements. The open circles show the path 
followed by the central region in Mazurek’s (1979) hydrodynamic calculations. His equation of state corresponds 
to case (2) above. The figure indicates that for p13 < 0.1 there is essentially no difference between the two dissocia- 
tion curves, and the effects of the partition functions on the dissociation of the heavy nuclei are negligible. The 
importance of partition functions increases steadily for the higher dissociation temperatures at greater densities. 
For p13 > 1 there is a considerable difference between the two dissociation curves. The path of the central zone in 
the hydrodynamic calculations seems to follow the dissociation curve at low densities. When the effects of the 

Fig. 3.—The effects of partition functions on nuclear dissociation. The curves are defined by the requirement that 50% of the 
matter be in the form of free nucleons. The path followed by the central region in Mazurek’s (1979) hydrodynamic calculations is 
also shown. The dynamic calculations used an equation of state corresponding to the upper solid line. 
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partition functions become important, the path drops below the dissociation curve, indicating that the compres- 
sional heating is not sufficient to dissociate the matter. 

The partition functions increase rapidly and at high temperatures become more important than the binding 
energies in determining the predominant species in equilibrium. This can be seen by writing equation (14) in the 
form 

&A,zBr 1 _ ^ ^i,iB i /1 _ BAfZ , In Qa,z 
kBT A kBT ^ \ AJ kBT ' AkBT A ’ 

(30) 

where the partition function has been factored out explicitly. At high temperatures vl“1 In 0.A Z^aAtZkBTIA9 
becoming comparable to BA Z¡AkBT. Thus the nuclei that dominate the composition are those that have the 
greatest aAiZ¡A. In the Gilbert and Cameron (1965) formulation the latter quantity is a linear function of the sum 
of the shell corrections for the neutrons and the protons. For Z < 50 their Table 3 indicates that the sum is greatest 
for Z æ 12 and (A — Z) x 23. Therefore nuclei with A ^ 35-40 dominate the composition in our calculations. 
Note that no particular species is predominant. Rather, the composition clusters around these values of A and Z, 
with several tens of different nuclei being present. 

ii) The Effects of Nuclear Forces 
Figure 4 compares the dissociation curve for the case of Boltzmann nuclei with partition functions and Boltz- 

mann nucleons to that of the case which also includes the Fermi behavior of the nucleons, the Coulomb lattice 
energy, and the nuclear interactions between nucleons. Again, both curves merge for densities below 1012 g cm-3. 
The nuclear forces induce dissociation at lower temperatures for densities above 1013 gem“3. The path followed 
in the collapse calculation crosses the latter curve at p13 ^ 2. Thus a calculation of collapse with nuclear forces 
included will lead to greater dissociation, and hence to a cooler collapse path. The pressure contribution of the 
free nucleons will be lower, and the core can be expected to bounce at greater densities. 

A rather significant aspect of the nuclear forces between nucleons that has not been taken into account in the 
current hydrodynamic calculations is the concomitant pressure reduction. For a Boltzmann gas of free nucleons 
the pressure reduction is given by the factor 

PmtlP = 1 - ^ (31) 

where p represents the pressure. This factor is plotted in Figure 5. Note that for densities where the nuclear forces 
enhance dissociation, the free nucleon pressure contribution is reduced significantly. This effect also serves to 
shift the bounce toward higher densities. 

c) Summary 
The shifts in dissociation curves with variations in input physics are large for p13 > 2. These large shifts indicate 

that at higher densities the uncertain physics will have dramatic effects on the equation of state for stellar collapse 

Fig. 4.—The solid lower line is the dissociation curve which includes the effects of nuclear and coulomb interaction energies, 
partition functions, and nucleon degeneracy. The legend to Fig. 3 describes the other features shown. 
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Fig. 5.—The ratio of the free-nucleon pressure with nuclear interaction to that without along the lower dissociation curve of 
Fig. 4 (cf. eq. [36]). 

work. The effects of this partial degeneracy of the free neutrons and the large partition functions of nuclei act to 
preserve the nuclei. Nuclear interaction between the free nucleons enhances dissociation. The effects of the Coulomb 
lattice energy are negligible. The interaction between free nucleons also decreases their pressure contribution. The 
greatest uncertainties in how the combination of these effects determines the equation of state lie at densities greater 
than Pi3 > 1. At densities below this, the above effects are small along the dissociation curve. The usual nuclear 
Saha equation with vacuum binding energies for the nuclei may be used to determine the composition of the 
lower densities. 

The dissociation curve with all processes included initially increases with increasing densities. It then levels off 
toward a limiting value of T^o ^ 11, for p13 > 5. This limiting temperature is roughly half the value obtained by 
Lattimer and Ravenhall (1978, their Fig. 5 with Tc evaluated at Xd # 0.2). Generally their dissociation curves lie 
closer to the top curve of our Figure 4. The reasons for this discrepancy are not readily apparent since the two 
approaches differ radically. One possible way that our results could be brought into closer agreement with theirs 
is through the neglect of our 25 MeV cutoff in the partition functions of the nuclei. The rapid increase in partition 
functions at the greater dissociation temperatures of higher densities would then tend to act counter to the effects 
of nuclear binding between free nucleons. Partition functions do not enter explicitly into the formalism of Lattimer 
and Ravenhall, and it is difficult to determine if this is indeed the problem. Further work will be required to 
determine the source of the discrepancy. 

Improvements in the input physics may change some of the details of our results. However, the importance of 
nuclear partition functions and nuclear interaction between free nucleons in determining the dissociation of the 
nuclei is clearly demonstrated by Figures 3 and 4. These effects become significant for pi3 > 1. In all of the dynamic 
calculations to date the core bounces at central densities above this value. The uncertainties in the input physics 
at these higher densities make the equation of state uncertain. Hence the results regarding the outcome of collapse 
are questionable. 

A comparison of the results of various dynamic calculations is shown in Figure 6. The temperature-density 
behavior of the central region during collapse that has been obtained in recent work is shown. All of the calcula- 
tions agree for />13 < 0.01. Since each calculation used a different initial model, the agreement indicates that the 
thermal behavior of the core is determined by the nuclear dissociation. Compressional energy is used up in disso- 
ciating heavy nuclei and in providing the 3kBTI2 of kinetic energy acquired by each nucleon that is freed. The core 
thus evolves near the dissociation curve. At these lower densities the input physics is well determined so that very 
similar results are obtained by the various researchers. 

As p1Q exceeds 0.1, discrepancies between the different results become pronounced. These discrepancies are 
probably due to differences in input physics. The results of Bruenn, Arnett, and Schramm (1977) show a markedly 
hotter collapse due to their neglect of the degeneracy of the neutrinos. A hotter collapse is obtained without 
neutrino degeneracy because all of the energy of the degenerate electrons is converted to heat. When the leptonic 
nature of neutrinos is taken into account, neutrino trapping and degeneracy results. This means that most of the 
energy of the electrons remains as zero-point energy of both electrons and neutrinos. Therefore, less energy is 
available for heating. 
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Fig. 6.—The temperature and density in the center of the stellar core during collapse. The results shown are those of Arnett 
(1977), Bruenn et al. (1977), Wilson (1977), and Mazurek (1979). 

The results of Arnett (1977) and Mazurek (1979) essentially agree up to the point where Arnett’s calculation 
stops (p13 ^ 1.5). Mazurek’s calculations included the effects of nuclear partition functions while Arnett’s did not. 
No differences in results appear, however, since the partition functions become important only at higher densities. 

Wilson’s (1977) results deviate significantly from those of the other calculations for /)13 > 0.4. His equation 
of state includes the effects of nuclear forces. Therefore, he obtains total dissociation of the nuclei at lower densities. 
The absorption of thermal energy by dissociation results in a cooler collapse. However, Wilson’s results indicate 
total dissociation even below the highest density point shown in Figure 6. Since 7\o ;$ 3 throughout his stellar 
core, this is at variance with our results. Figure 4 indicates that his central conditions fall considerably below our 
dissociation curve. 

The different equations of state used in collapse calculations give definite differences in the thermal behavior 
of the core. These differences in thermal behavior probably account for the different outcomes obtained by the 
calculations of Wilson (explosion) and of Mazurek (total collapse). A better understanding of the equation of 
state at the higher densities is needed to determine the outcome of stellar collapse. Specific areas that require 
further work include (a) finite temperature effects on the free energy arising from nuclear forces; (b) the effects 
of the free nucleons on the binding energy of the nuclei ; and (c) the behavior of nuclear partition functions at high 
temperatures. 

We are thankful to H. A. Bethe and D. Q. Lamb for useful discussions, and gladly acknowledge the hospitality 
of the Aspen Center for Physics where some of this work was completed. 

APPENDIX 

a) The Binding Energy of the Free Nucleons 

For completeness, we quote from Baym, Bethe, and Pethick (1971) the functional form of the bulk binding 
energy that was used in our calculations. The interested reader is referred to that work for more details. The 
expression is 

W(k,ß) = W(k9i)- 

W(k, 0) 

3h2k2N0 

10 

22/33 
"To" 

(1 - 3a4 + 2a6) + 

h2k2N0 
[< 

cc2(l - a2)2 

(3a4 - 2a6) + |Mp«» - ^ + 22'3^Ç^ 
(a4 - a6) 

(Al) 

where a = 1 — 2ß, ft = h/lir, and 

w(t,i) - 0MVN,(¡ - £)' - 1 + (A2) 
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To complete the specification oí W(Jc, ß), we have used Mackie’s (1976) expressions for 

W(k, 0) = 1.30k + 15.0k2 - 15.2k3 + 7.47ké , (A3) 

and 
= 23.2k - 142.k2 + 38.7k3 + 7.12k4, (A4) 

where W(k, 0) and i-ip
(0) are in MeV, k is in fm-1, and the remaining constants are: k0 = 1.34 fm-1; W0 = 15.5 

MeV; s = 27.1 MeV; K = 268 MeV. 
The remaining parameter is given by 

Mn<0>= W(k,0) + ■ (A5) 

Note that our W(k, ß) of equation (Al) omits the zero-temperature kinetic energy. 

b) The Nuclear Partition Functions at High Temperatures 

In the numerical results presented in § III, we have used the procedure given by Gilbert and Cameron (1965) 
to define the level density of excited states. This level density was integrated numerically to obtain the nuclear 
partition function. The level density has two functional forms which are joined smoothly at some transition energy. 
At low energies, the level density has an exponential form œ(E)a exp (Æ'/r), where w(E) is the level density (number 
per MeV) at excitation energy E, and r is the “nuclear temperature.” This form holds up to excitation energy Ex. 
They define a new variable U by subtracting pairing energies from the excitation energy. In terms of this variable 
the transition from the simple exponential form to a more complex expression occurs at 

UX = EX- Ef - Ea-z* = (2.5 + 150A-1) MeV, (A6) 

where Ez
p and k, _z

p represent the pairing energies in their model of the protons and neutrons, respectively. 
Above this energy, a level density based on the Fermi gas model (Bethe 1937) is used. The latter may be expressed 
as 

œ(U) = C 
exp (4a U Y12 

(4at03/2 ’ 
C = 

2 a 
3(0.1777)1/2 ^1/3 ’ 

(A7) 

where a/A depends linearly on the sum of the two shell corrections 

a/A = [0.00917(£/ + EA,Z
S) + (a¡A)0] MeV1 (A8) 

with (alA)0 equaling 0.142 and 0.120 for undeformed and deformed nuclei, respectively. For Z below 30 the 
deformed nuclei are taken to be those with 20 < Z < 30, and the undeformed ones are those with Z < 20. For 
heavier nuclei, the deformed ones are those which have Z or A — Z more than 3 units away from a magic number. 

At the high temperatures of interest the partition function is dominated by the levels at high energies above Ex. 
Thus the partition function is approximately given by 

where 

« £ exp (-¿)-(^ - C exp /.[gy (4W] , (A9) 

Jr* co 
QXp( — X + axll2)x~3l2dx . 

Xn 

We now derive a useful approximation to the partition function at high temperatures. Integration by parts yields 
,0° exp (—x + ax112) 

where 

Jo(*o, «) = 2*0 ~1/2 exp (-Xo + aXo112) + a 
* X 

dx = 2 exp («74) Í 
•'A *0i/2-a/2 

dx — 2/1(x0, a) . 

exp {—x2)dx. 

The explicit integral in equation (A 10) satisfies 

d f00 exp (—x + ax112) £ r 
daL x 

dx = I^Xo, a) . 

(A10) 

(All) 

(A 12) 
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In the limit a/2 — x0
li2 » 1, equation (A12) can be integrated to yield 

lim C exP (~* + dx = 2wi/2 C exp (\x2)dx + Ç —dx. (A13) 
(al2-x^wJXo X Jo Jo X 

Over the range of interest x0 ^ 1, so that the last term in equation (A 13) and the first term on the right side of 
equation (A10) are negligible. In this limit the partition function is given by 

0A,Z s 
CeXP {47r112 exp («W^bTT2]} , (A14) 

where 

q(a) = 2a exp (—a2) Í exp (x2)dx — 1 , (A 15) 
Jo 

and can be evaluated from the tables given by Karpov (1965). The mean excitation energy of the nucleus is given 
by 

/I7N ,, fC exp [(£/ + EA_zv)lkBT](kBTyi2 r 
- l¿A,z S (4a)^ ■1 

where in the integration we have set E — U. 
Note that in the main text aAfZ is used for a to distinguish it from the symbol for the ion-sphere radius az. 

knf 
(4akBT) 1/2 kBT 

(A 16) 

c) Fractions of Nuclear States with Single Particles Excited above Separation Energies 

We now estimate the fraction of the total nuclear levels below a given excitation energy that have particles 
excited above separation energies. Such levels will become significant only at higher excitation energies, and hence 
the level density will be that of equation (A7). We consider only the states with either one or two particles having 
energies in excess of that required for separation, and deal with neutrons and protons separately. For the purposes 
of this rough estimate of such levels, we assume that the variable a in equation (A8) is constant over the nuclear 
species that dominate the composition, with a = 1 MeV-1. The level densities depend only mildly on A. The 
nuclei that dominate the composition (cf. discussion in § III) fall in the range 35 < A < 40, and negligible error 
is introduced by keeping a constant. 

First consider the levels with a single particle excited above its separation energy. The excitation energy in such 
configurations is shared between the particle and the residual nucleus. For a fixed excitation energy of the residual 
nucleus, £¿-.1, the particle’s energy has a fixed value, and the multiplicity of levels is just a product of the number 
of directions that the particle can have and its spin multiplicity. The total number of such levels is then an integral 
over the possible level densities of the residual nucleus times the constant single particle multiplicity of levels. 
Explicitly, 

Ai(E^, £mln) Stt 
çEA-*nA 

*"min 
w{EA-1)dEA-.1 

2tt_C r 
a J, 

4a(E¿-A„¿) 

4aEmIn 

exp (xll2)dx 
x312 (A17) 

where Emin) is the total number of levels with a single particle above its separation energy for excitation 
energies below EA in the nucleus with mass number A, Emin is the minimum energy where equation (A7) is valid, 
An

A is the separation energy of the particle, and the subscript denotes either neutrons or protons. The integral 
in equation (A 17) can be transformed to give 

Ai(Ea, Eo) 
AttC eyi CVl ymin e Zdz 4nC eyi 

~ÿ?Jo (1 -z/y)2 
(A 18) 

where = [4a(EA-1 — kn
A)]112 and = (4aE0)

112. The rightmost expression in equation (A18) is accurate to 
better than 20% when y > 12 and ymin < 9, which is adequate for our purposes. 

Now consider the levels with two particles excited above their separation energies. For a given excitation energy 
of the residual nucleus, the two particles share the remaining energy. For a given energy of one of the particles, the 
energy of the second one is fixed and its level multiplicity is equal to that discussed above. The number of levels 
possible for the first particle is just equal to the total number of single particle levels below EA — An^ — A^-1 — 
Ea-2, where A/-1 is the separation energy of the second particle and ¿¿-2 is the excitation energy of the residual 
nucleus. An integral over the products of <x)(EA-2) with the two single particle level multiplicities then yields an 
estimate of the number of levels with two particles above their separation energies. Explicitly, 

A2(EA, Emin) — %7T 
" 1 1 Stt rEA-AnA 

»H 3/*3 J£mln 

[2mn(EA - A/ - An
A 1 EA-2)]3l2o(EA-2)dEA-2, (A19) 
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TABLE 2 
Upper Limit V on the Fractions of Levels with One Particle 
Excited Above Its Separation Energy for Various Nuclear 

Excitation and Particle Separation Energies (a = 7 MeV-1) 

E¡MéV 

(An^/MeV) 15 25 50 

4......  1.8 3.3 5.9 
6  4.1 (-1) 1.1 2.8 
8   8.1 (-2) 3.6 (-1) 1.3 

10  1.3 (-2) LI (-1) 6.0 ( —1) 
12  1.5 (—3) 3.0 (-2) 2.7 (-1) 
14  9.4 ( — 5) 7.7 (-3) 1.2 (-1) 
16  0 1.8 (-3) 5.2 (-2) 

Note.—Numbers in parentheses denote powers of 10. 

where mn is the mass of a nucleon, and «n
nuc is the density of either neutrons or protons in the nucleus. An upper 

limit is obtained by setting EA_2 = 0 in the square brackets of equation (A19). With the same approximation for 
the intergal as in equation (A 17), one obtains 

a2(£1 EmiD) < 
Sir / 1 \ /mny2

2\ 3,2 /4nC ev*\ 
T \Mn

nuo/ \2ah2 J ü2/ 
(A20) 

where j2 = [4a(EA - A/ - A/-1)]1'2. 
We now can compute upper limits to the fractions of nuclear levels with one and with two particles excited 

above their separation energies. The total number of levels below EA is 

A0(^, Emla) = r œ(E)dE * £ ^ > (A21) 

where y0 = (4aEA)112 and the previous integral approximation was used again. The fraction of levels with a single 
particle above its separation energy therefore satisfies 

~ 87r(^) exp - yo) = SiS • (A22) 

The fraction with two continuum particles satisfies 

A2< (8^ 
Ao~ 3 (n»nuc) (' 2ah2 ) \y2J 

exp (y2 - y0) = 8/ (A23) 

In general the separation energies for protons and for neutrons are different. Two particle separation energies 
vary with the constitutents of the pair. The nuclei of interest (cf. § III above) are neutron-rich. Typical neutron 
separation energies are 3-5 MeV, and those for protons are 16-20 MeV (cf. Table 4 of Garvey et al 1969). Tables 
2 and 3 show that for separation energies >16 MeV the levels with energetically separable particle contribute 

TABLE 3 
Upper Limit S2

8 on the Fractions of Levels with two Particles for Various 
Nuclear Excitations and Two-Particle Separation Energies {a — 1 MeV-1) 

E/MeV 

(An* + A/-1/MeV) 15 25 50 

6    6.6 (-2) 5.5 (-1) 4.9 
8      8.9 (-3) 1.5 (-1) 2.1 

10     8.6 (-4) 3.7 (-2) 9.1 (-1) 
12  4.7 (-5) 8.4 (-3) 3.8 (-1) 
14   5.6 (-7) 1.7 (-3) 1.5 (-1) 
16  0 2.8 (-4) 6.1 (-2) 

Note.—The density of either protons or neutrons in the nucleus was taken 
to be one-half of a typical nuclear density («n

nuo = 6.0 x 1037 cm-3). 
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negligibly to the total level number, even up to excitation energies of 50 MeV. Thus for the nuclei of interest, only 
states with neutrons above separation energies will be significant. Since the neutron separation energies are 3-5 
MeV for these nuclei, the fraction of states with one particle in the continuum is appreciable even at excitation 
energies as low as 15 MeV. Note that the two-particle S2

S becomes comparable to only at very high excitation 
(Ea > 50 MeV) and low separation (A/ ~ A/-1 < 4 MeV) energies. 
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