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ABSTRACT 

For very heavy quark masses, QCD predicts that the inclusive hadronic pro- 

duction of heavy quarks is governed by quark and gluon hard scattering sub- 

processes. On general grounds, one expects corrections of order p/i&, where 

CL - 300 MeV and MQ is the heavy quark mass. At the charm mass scale, such 

corrections could be important, possibly accounting for the anomalies observed in 

the nuclear number dependence, the longitudinal momentum distributions, and 

beam flavor dependence of charm hadroproduction. In this paper we present a 

general overview of such corrections. In particular, we discuss a “coalescence” 

correction, which substantially alters the cross section in situations where the 

heavy quark is known to have low velocity relative to one or more constituents 

of the spectator jet. In attractive channels the result is a large enhancement. In 

inclusive cross sections this final state interaction effect is suppressed by only a 

single power of the heavy quark mass. 
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1. Introduction 

The calculation of heavy quark production is one of the most important 

applications of &CD, both for predicting the production rate of new strongly 

interacting particles, and for assessing the backgrounds to other types of new 

physics. In a recent analysis, Collins, Soper, and Sterman’ have argued that the 

proof of factorization for massive lepton pairs2 in perturbative QCD can be gen- 

eralized to the production of heavy quarks, rn$ > Ah. However, this argument 

applies only to the inclusive cross section in leading order in the heavy quark 

mass, A&J. It leaves open the possibilities: (a) that there are large corrections 

to the inclusive cross section, scaling as ~/A&J ( w h ere p is a typical light hadron 

mass of order A=); and (b) that the perturbative Born term is completely un- 

reliable for a restricted class of kinematic configurations of a semi-inclusive cross 

section in which another particle is detected as well as the heavy quark-only 

the inclusive integral over the second particle need exhibit factorization. 

In fact, we can identify a specific non-perturbative effect, which we term “co- 

alescence”, that leads to effects of both types. For this purpose, it is useful to 

consider the semi-inclusive cross section in which the momentum of a spectator 

quark in the final state is measured. In this case, it has been argued3 that 

there are large enhancements to the cross section at low relative velocity between 

the spectator and the heavy quark in an attractive channel, analogous to the 

Schwinger correction4 to e+e- annihilation near the threshold for production of 

a heavy quark pair. In this paper, we explore QED analogues to heavy quark 

production that exhibit both asymptotic factorization for the inclusive cross sec- 

tion and, on the other hand, large non-perturbative corrections coming from low 

relative velocity configurations. 

The factorization analysis of Ref. 1 is largely limited to low order diagrams. 

However, there exists in QED an all orders (in Zcr) result, due to Bethe and 

Maximon, 5 for a closely analogous heavy particle production process-namely 

the Bethe-Heitler cross section for ultra-relativistic lepton pair production in a 
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strong Coulomb field. One may ask whether this all-orders result is consistent 

with factorization. In order to display the physics of this process as clearly as pos- 

sible, we shall present a new derivation of the Bethe Maximon results in Sec. 2, 

based on high energy eikonal analysis. The derivation explicitly demonstrates 

that the ultra-relativistic Bethe-Heitler cross section does, indeed, take a factor- 

ized form. This increases our confidence that the analogous factorization works 

in QCD to all orders in the strong coupling constant. 

One may also consider the Bethe Heitler cross section for lepton pair produc- 

tion in a strong Coulomb field in the case in which the negative lepton is produced 

with low velocity relative to the spectator nucleus. One obtains a significant en- 

hancement in the cross section.6 This effect results from the attractive binding 

force between the negative lepton and the positively-charged nucleus. In Sec. 3 

we analyze a similar situation of direct experimental interest: production of a 

heavy particle in the presence of a spectator system composed of light particles. 

Using the Coulomb approximation, we demonstrate that QED predicts a strong 

enhancement in the cross section when the heavy particle and spectator system 

have similar velocities and are in an attractive charge configuration. It takes the 

same form; namely, a Sommerfeld-like Coulomb correction factor to the Born 

cross section. We also show that such enhancements are entirely consistent with 

factorization for the inclusive cross section, yielding possibly large order p/M9 

higher twist corrections. 

In the final sections we assume that analogous results will obtain in QCD for 

heavy quark production in hadronic reactions. Replacing charge by color and the 

electromagnetic coupling by the strong coupling, we can pursue the impact of the 

specific results obtained in Sets. 2 and 3 upon important phenomenological issues 

for charm production. We conclude with an overview of theoretical predictions 

for non-perturbative QCD corrections to heavy quark production cross sections. 

Before proceeding, we wish to motivate the reader by enumerating the rea- 

sons why heavy quark hadroproduction plays a critical role in particle physics 
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phenomenology: 

1. For large quark mass or large jet transverse momentum compared to the 

QCD scale Am, the perturbative predictions are unambiguous and thus 

serve as important checks of QCD and the factorization theorems. 192 

- 2. Since the gg ---) && subprocess is generally dominant, heavy quark pro- 

duction cross sections give essential checks on the gluon distribution of 

hadrons . 

3. QCD predicts a number of novel features for the hadroproduction of heavy 

quarks, such as forward-backward asymmetries 73 in pp collisions, and 

exclusive channel dominance near threshold.g 

4. An understanding of heavy quark production is necessary to project the rate 

for new particle production-including new vector bosons, Higgs particles, 

supersymmetric hadrons, etc. 

5. Heavy quark events must be understood in order to unravel single and 

multiple prompt lepton signals, flavor mixing parameters, and backgrounds 

to rare processes. 

6. The muon content of high energy cosmic ray showers depends in detail on 

the properties of charm photoproduction and hadroproduction. lo 

7. Most interesting from the theoretical point of view are the intriguing anoma- 

lies in the data for charm hadroproduction, since they are difficult to explain 

from standard perturbative &CD. The observed XF charmed hadron distri- 

butions appear flatter than predicted by primary “fusion” subprocesses. 11J2J3 

The dependence of the cross section on the nuclear number in fixed target 

experiments is significantly less than additive. l4 The cross section for the 

charmed-strange baryon A+(csu) produced by incident C-(sdd) beams ap- 

pears anomalously large. 15J6 Finally there are hints from the EMC deeply 

inelastic muon scattering experiments 17 that the charmed sea distribution 

in the proton may be larger than predicted by standard evolution. An es- 
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sential question is then whether the charm mass scale is sufficiently large 

such that charm hadroproduction in all kinematic domains is safely in the 

QCD perturbative domain, or whether the above empirical anomalies might 

be providing new insights into physics at the interface between perturbative 

and non-perturbative &CD. 

Let us review the standard QCD analysis. The factorization formula 

1 1 

da=x dx, dxbG 
J / 

a/A(Xa,MQ)Gb/B(Xb,MQ) dsab+ea 
ab 0 0 

(1) 

gives the dominant contribution to the heavy quark production cross section to 

leading order in ~/MQ. We implicitly assume that we are integrating over a 

range of pi and mass of the QQ system, and that the transverse momenta of 

the individual Q and & are not much larger than MQ. One calculates ii as an 

expansion in aa( The factorization formula gives the total inclusive cross 

section. Thus diffractive processes, to the extent that they contribute at leading 

order in ~/MQ, are already included and should not be added separately.” 

Although the physical arguments are convincing, a complete proof that fac- 

torization gives the leading power law contribution to the cross section is highly 

non-trivial and has only been out1ined.l For instance, one difficult aspect of the 

analysis is the subtlety concerned with initial-state elastic interactions and their 

possible effect on color averaging.l’ An explicit demonstration that these inter- 

actions do not destroy factorization has not yet been given, except in the case 

where the subprocess amplitude corresponds to annihilation into a color singlet, 

as in massive lepton pair production.2 

The dominant short-distance subprocesses contributing to the inclusive heavy 

quark production cross section are the gg -+ QQ and qij --+ QQ fusion reactions. 

The dominant contribution to the integrated cross section from these processes 

arises from the region pi - MQ. The distribution of either heavy quark is rel- 

atively flat for small rapidity, but vanishes rapidly at large Feynman XF. How- 
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ever, we can also examine regions in which one of the heavy quarks is produced 

with pT 2 MQ. In these regions two-to-three subprocesses, such as gg + gQQ, 

begin to be as important as the two to two subprocesses. The former have 

been calculated in Refs. 7 and 8. (When pi is so much greater than MQ that 

ln(m/Mg) - l/a, a more complicated formula, involving, for instance, heavy 

quarks as constituents of the proton,20 is necessary.) 

As emphasized in Ref. 7, the region in which the final gluon has large pi and 

recoils against a QQ system with invariant mass - MQ is of special interest, as 

are the corresponding regions in 77 + 7&Q and 77 + g&Q in which the final 

7 and g, respectively, have large pi. In such configurations the Q and & are 

isolated kinematically and can have small relative velocity.. This is a convenient 

and important experimental testing ground for the non-perturbative corrections 

that are the focus of this paper. We shall return to discuss these processes in the 

conclusion. 

We conclude this introduction by summarizing the important uncertainties 

in theoretical predictions for heavy quark production. 

1. Higher order corrections in 08. Although the two-to-three tree subrocesses 

have been evaluated718 the virtual one-loop corrections to the two-to-two 

amplitudes have not yet been calculated. In view of the large color couplings 

of incident gluons, one might expect a large “K”-factor correction to the 

Born results. 

2. Order ,u/MQ corrections. We identify four such higher twist effects: 

(a) The relation between the heavy quark mass and the measured QQ 

bound state mass is uncertain. This results in a substantial numerical 

uncertainty in the charm quark production cross section; for higher 

mass quarks this sensitivity is considerably less. 

(b) As first shown for the Drell-Yan process, one must satisfy a “target 

length” condition” in order that inelastic initial state interactions 

do not ruin factorization: the active quark or gluon energy must be 
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(4 

large compared to a scale proportional to the length of the target: 

za s > MN LA p2 where p2 is a typical hadron scale and LA is the 

length of the target in its rest frame. 

It is possible for the incoming beam particle wave function to contain 

“intrinsic” heavy quark states, e.g. IqqqQQ). These have been ex- 

plored in Ref. 22. The probability of such virtual states scales as l/M;. 

These virtual states live for a time of order l/Mg in their rest frame, 

unless a collision provides the necessary energy for their materializa- 

tion. In normal collisions this energy is provided via a hard interaction 

and the net cross section is suppressed with respect to gluon fusion by 

p2/M&23 However, if one violates the target length condition given 

previously, by using a very thick nuclear target, then multiple soft col- 

lisions can accumulate to allow intrinsic heavy quarks to materialize 

with a cross section equal to the probability of the intrinsic state times 

the beam-nucleus elastic cross section.24 

(d) Interactions of spectator partons with the produced heavy quarks can 

lead to large order ~/MQ corrections to the totally inclusive heavy 

quark cross section and to significant enhancements of semi-inclusive 

cross sections in particular regions of phase space-the coalescence en- 

hancement. 

Of the above effects, intrinsic heavy quark states and the coalescence phe- 

nomena have the potential of providing a unique probe of the boundary between 

perturbative and non-perturbative &CD. The focus of this paper is upon the 

physics of coalescence, and its consistency with factorization. 



2. Production of Relativistic Muon Pairs in an External Coulomb 

Field 

In this section we will investigate the process 7 + pL+ + ~1~ in the presence of 

the Coulomb field of a nucleus of charge Ze (treated as point-like and infinitely 

massive). Our investigation extends and makes more precise the results in the 

appendix of Ref. 1 . We suppose that the photon energy is much larger than 

the muon mass M, so that the produced muons are highly relativistic. The 

ultra-relativistic cross section was calculated to all orders in the classic paper of 

Davies, Bethe and Maximon in 1954.5 The process of lepton pair production 

in a Coulomb field is of interest as a test of quantum electrodynamics, but our 

interest in it here stems from its similarity to heavy quark production in the 

gluon field of a hadron. We are, therefore, interested not so much in the results 

as in certain key features of the physics that are important in the derivation. In 

particular, we are interested in the dependence of the physics on the muon mass. 

In order to illustrate the physics in as simple a fashion as possible, we will 

replace the incident photon and the muons by scalar particles. The derivation 

including spin would involve a certain amount of added complexity without in- 

troducing any essential new physics. 

A byproduct of our investigation is a rederivation of the Davies-Bethe-Maxi- 

mon results (modified for scalar particles) using modern techniques that simplify 

the derivation enormously. 25 

We begin by defining the kinematics. We choose to work in the refer- 

ence frame of the nucleus. We will denote four vectors by their components 

VP = (V+,V-,V) where V* = (V” f V3)/21i2 and V denotes the transverse 

components of V p. The kinematics of the lowest order diagram are defined in 

fig. 1. We let the momentum of the incident photon be 

kP = (P,O,O) , (2) 

where P is to be very large, much larger than the muon mass M. The muon 
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momenta are 

ccl, = (zcP, [l: + M2]/2zcP,lc) , 

e; = (zDP, [l& + M2]/2zoP,1~) , 
(3) 

where we take the momentum fractions zc and ZD to be finite fractions of 1. The 

net momentum transfer qp from the field obeys q” = 0, so that 

q+ = -q- . (4 

From momentum conservation, we conclude that 

q- = [I& + M2]/2zcP + [I$ + M2]/2zoP , 

q = lC + 10 , (5) 

We now can make an important observation. Consider the muon line carrying 

momentum .f!D - q in the lowest order diagram, Fig. 1. We shall assume that 1% 

and l& are not much larger than M 2. This is indeed the case in the integration 

region that provides the dominant contribution to the total cross section. Then 

(t, - q)+ = ZDP - P 

(6) 

(.!D - q)- = -e, = -[I$ + M2]/2zcP - M2/P . 

Consequently the space-time separation Ax p between the two electromagnetic 

vertices obeys 

Ax- - l/P, Ax+ - P/M2 . (7) 

Thus both Ax+ and Ax- as viewed in the dimuon rest frame are of order l/M; 

Lorentz contraction factors M/P and P/M then give the result (7) in the nucleus 
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rest frame. Also, in order for the virtual muon to have a significant amplitude to 

propagate over the interval Axp, (Ax)~ cannot be much larger than Ax+Ax-: 

Ax - l/M. (8) 

Thus when the muon mass m is large, there must be short distance scattering: 

the interactions that create the muon pair take place within a space-time volume 

in the form of a hypercube with sides of length l/M as viewed in the dimuon 

rest frame. 

In the nucleus rest frame, this volume appears stretched by a factor P/M, 

so that the initial creation of the virtual muon pair occurs long before the pair 

reaches the region in which there is significant field, as indicated in Fig. 2. The 

transverse separation, r, between the muons, which is boost invariant, is of order 

M-l. 

We are now in a position to estimate the cross section and to determine 

what values of the impact parameter b give important contributions to the cross 

section. There are two cases: First, ]b] can be of order l/M. The contribution 

to the cross section from this region is of order 

a(Za)N7rb2 - ~~(ZCY)~/M~ (9) 

at order N + 1 in CY, N = 2,3,4 . . . . Second, ]b] can be much larger than l/M. 

In this case there is a partial cancellation because the muon pair is electrically 

neutral. The field interacts only with the electric dipole moment of the pair, 

which is of order e]r] - e/M. The interaction is proportional to the transverse 

gradient of the potential, integrated along the path of the muon pair: 

J dz ET - Ze 
/ 

dz ]b]/[z2 + b213j2 - Ze/]b] . 

Thus the contribution to the cross section from impact parameters large com- 
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pared to l/M is of order 

(Z2a3/M2) / d2b O(lbl >> 1/M)/b2 - (Z2~3/M2) !n(LM) . (10) 

Here we have noted that the integral is logarithmically divergent at large b and 

we have supposed that the Coulomb potential is cut off at distances greater than 

some large screening distance L (e.g. the size of the atom in which the muon 

pair is created). We shall discuss what happens if the infrared cutoff is removed 

later in this section. 

Equation (10) applies at lowest order in Zcr. At order (ZCY)~ we would have 

a contribution 

where, by hypothesis, bmin M >> 1. Thus, the higher order contributions in (2~) 

to the region lb\ > l/M are suppressed by powers of M. 

We may draw some conclusions from the discussion so far: 

1. The cross section is of order 1/M2, as expected on dimensional grounds in 

a theory with a dimensionless coupling. 

2. The b - l/M contribution is entirely controlled by short distances of order 

l/M. Thus it involves the running coupling a(p) at a mass scale p - M. 

The cross section will obtain contributions from this short distance region 

at all orders of Zcr. 

3. In the case of heavy lepton pair production 72 --+ r+r-Z on a realistic nu- 

cleus, the higher Born corrections (N > 2) will be suppressed by the factor 

[RAmT]-(N-2) since the nuclear form factor allows significant contributions 

only from the region b 2 RA. 

4. The b >> l/M contribution is partly controlled by long distances, which in 

the QCD analogue problem must be treated non-perturbatively. However, 
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only the lowest order in Zcr is important. We shall interpret the factor that 

represents the “soft” physics as the probability to find a photon in the field 

of the nucleus, analogous to the probability to find a gluon in a hadron. 

We now refine our conclusions by doing a detailed calculation. Since the 

muons are highly relativistic, an eikonal approximation suffices to treat their 

interaction with the external field. There are two main ingredients. The first is 

the energy denominator (or, more accurately, the k- denominator) for the virtual 

dimuon state before its encounter with the Coulomb field, which becomes a Bessel 

function after Fourier transforming from transverse momentum to transverse 

position: 

(2:)2 / 
&in e-i(Xc-X+C 

[kc2 + M2]/2zCP : [n2 + kf2]/2zgP (11) 
= (2zcz~P/2T)&(kfIXc - XDI) . 

The second ingredient is the eikonal phase x(x) accumulated by the muon as it 

travels through the Coulomb field at a transverse position x: 

00 
x(x) = -e 

J 
dx+A-(x+,0,x) = -2a h(4z;,/x2) , (12) 

-CO 

where we have supplied a length zmax as an infrared cutoff. Recall that we 

simplify the calculation a bit by using a spin zero initial photon and spin zero 

muons. Thus there are no numerator factors. The coupling between the scalar 

photon and the scalar quarks has dimensions of mass. We take it to be Me. (In 

the more complicated case of spin-112 quarks, the factor of M arises from the 

numerator factor.) Following the techniques found in Ref. 26and 1, we can write 
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the scattering amplitude as 

(C,DJSjA) = -6(1- zc - zo)2Mezczo / d2xcj d2xD exp[--i(lc s XC + 10 . x0)] 

x K0(Mlxc - XDI) {exp[ix(xc) - ;x(~D>] - 1) 

= -6(l - ZC - %D)2kfe%C%D /d2xc/ d2XD exp[--i(lc * XC + 1~ * XD)] 

x &)(&flxC - XDl) { [&/x”,liZa - l} . 

(13) 
Notice that because the muon and anti-muon have opposite charges the depen- 

dence on zmax cancels between the two eikonal phases. 

The cross section obtained from this scattering amplitude is 

da/dzcdzD = !j M2e2%C%D6(l - zc - ZD) (%)-’ / d2xC / d2XD 

x &(kflxC - xDl)‘(2 - [&,&]+iza - [x$/x&]-=) . 

(14 

The integral is easily performed. (The details are relegated to the Appendix.) 

The result is 

da/d2 = [da/d&,,, 

+ (e2/12rM2)a(l - i~)(Za)~[$~(l- iZa) + $(l + iZa) + 271 

= [d+z]Born (15) 

+ (e2/12rM2)2(1 - 2)2 C(-l)“s(zn + ~)(ZCX)~“+~ 
n=O 

where we have used 

z=zc, l-%=%D, (16) 

and where $(z) = d ln(I’(z))/dz, 7 = 0.577.. . is Euler’s constant, and <(IV) 

is the Riemann zeta function. We shall discuss the lowest order cross section, 

[do/d&m, below; it is infrared divergent for the unscreened Coulomb potential 

in the approximation used to derive Eq. (14). 

13 



Let us make three comments concerning the higher order terms in Eq. (15). 

First the result of Davies, Bethe and Maximon which includes spin for the incom- 

ing photon and leptons is similar but somewhat more complicated. Second, the 

physics behind this result, namely the eikonal approximation, is quite simple (al- 

though this simplicity is not evident in the Davies-Bethe-Maximon derivation). 

Third, as already noted by these authors, the higher order contributions come 

from the short distance region Ixcl, 1~~1 - l/M. 

We now turn to the Born term, paying special attention to the infrared 

behavior. We may write the Born term as 

[da/dz]B,,, = (M2e2/4n)(Ze2)2z(1 - z) 

d2-q 
(242- [q2 + q; : (l/L)212 

([(1-z)q-1A]2+M2)2 + ([aq+P;Z+MZ)Z 
(17) 

-2 
1 

[zq+A]z+Mz [(l-z)qi]2+~2 . 

We have written the result in terms of the transverse momentum q of the ex- 

changed photon and a relative transverse momentum A: 

q = lC + 10 lc=zq+A 

A = (1 - z) 1~ - zlD 10 = (1 - %)q - A . 
(18) 

The four terms correspond to the four diagrams shown in Fig. 3. The formula has 

been written in 2 - E transverse dimensions (with a dimensional regularization 

scale /J) for our later convenience. Equation (17) is the Born term obtained 

from Eq. (14) except for two modifications that affect the infrared behavior. 

First, we have supplied a mass l/L for the exchanged photon, which means 
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that the Coulomb field will be screened with a screening length L : A0 - 

(l/r) exp(-r/L). S econd, we have inserted the z-component, qz, of the photon 

momentum in the photon propagators. Using Eqs. (4) and (5) we have 

q; = (qZ - qO)2 = (-@q-)2 

= 2([1; + M2]/2zP + [l& + @ l/2(1 - z)P)2 (19) 

= (A2 + M2 + z(1 - z)q2)2/2z2(1 - z)~P’ . 

Since qi is proportional to 1/P2, it is ordinarily negligible. However, it is the 

only infrared cutoff in Eq. (17) in the case of an unscreened Coulomb field. The 

cutoff arises because, as the muon pair travels through the Coulomb field, there 

is a slowly varying phase factor exp(iq-z+) in its wave function. Thus the line 

integral 
CXY 

x(x) = -e 
/ 

dz+A- (z+, 0, x) 
-W 

should really have been (for the Born term) 

00 

x(x) = -e 
/ 

dz+eiqvz+A-(z+,O,x) 
-03 

in lowest order perturbation theory. This kinematic phase factor cuts off the 

contribution from large z+, and thus eventually cuts off the contribution from 

large impact parameters. 

We shall now write the Born term in the factorized form similar to that 

which would be used to calculate the cross section for heavy particle production 

in high energy hadron collisions, see Ref. 1. One must separate the part of the 

process that contains soft momentum transfers (and is thus not perturbatively 

calculable in the analogous QCD problem) from the perturbatively calculable 

hard scattering factor, which contains only momenta that are of order of the 
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heavy particle mass M. First, we divide the Born cross section into two pieces: 

an infrared sensitive piece and an ultraviolet sensitive remainder. The ultraviolet 

sensitive remainder corresponds to photonfnucleus + muon pair+nucleus hard 

scattering. Second, we write the infrared sensitive piece in a factorized form: a 

factor representing the distribution of photons in the Coulomb field convoluted 

with a hard scattering factor for the process photon + photon + muon pair. 

We begin with the separation of the Born cross section into an infrared sensi- 

tive piece and an ultraviolet sensitive remainder. We define the infrared sensitive 

piece as follows. We make the approximation q2 < A2, M2 under the integral 

signs and replace the resulting factor of (2q * A)2 by [4/(2 - e)]q2A2. (Here we 

use the fact that AiAj multiplies a rotationally invariant. integral which must 

be proportional to bii.) The resulting q-integral is divergent at large ]q] when 

E = 0, so we subtract the ultraviolet pole. With the normal choice of p, p - M, 

this is essentially equivalent to cutting off the q-integral at q2 - M2. This gives 

us the definition 

[da/dzlIR = (;) M2e4z(l - 2) [$-I /-“ 1 ;;;fE (A2 ;;2)4 

(27r)2--E [q2 + (A2 + M2)2/2i$ - z)T + (l/,5)2]” 

- (1/c)[(Ze)2/47r2] . 
1 

The ultraviolet sensitive term is constructed from the remainder [da/dz]B,,, - 

[da/dz]IR. When we take this difference under the integral signs, we see that the 

integration region q2 < M2 is now not important. Therefore, we may neglect 

the infrared cutoffs qi and (1/L)2. (Th e error thus introduced is smaller than the 

term retained by a power of l/LM or M/P.) This defines the ultraviolet sensitive 

term [da/dz]uv. The calculation of [da/dz]uv can be simplified by noting that 

the dimensionally regulated q-integral in [da/dz]IR equals 0 when the cutoffs qi 
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and (1/L)2 are removed. Thus [da/dz]uv equals [da/dz]Born with the cutoffs qz 

and (1/L)2 removed and the pole term from Eq. (20) subtracted. This pole term 

removes the pole at c = 0 that results from the infrared divergence in [da/dz]B,, 

when the cutoffs are removed. Thus 

[da/dz]uv = (1/4n)M2e2(Ze2)2z(l - z) 

d2+A 
J 

d2-Eq I 
(%)2--E pE (242--E [q2]2 

2 

X 
[=l+:]2+M2 - [(l-z)q&+M2 

(21) 

+ (1/c)(1/4n2)M2e2(Ze2)2z(l - z) / $$ (A2 tL2), . 

The last term is equal and opposite in sign to the l/c term in (20). 

The integral has the form 

[do/dz]uv = (e2/M2)(Ze2)2z(1 - z) {A l!n(p~/M2) + B} , (22) 

where p& s 47rp 2 e -7. This UV contribution corresponds to a hard scattering 

of 7 + nucleus -+ p+p- + nucleus. 

We can now study the infrared sensitive term, Eq. (20). A change of variables 

will make it apparent that this term has the proper factorized form. In the center 

of mass frame of the muon pair, the Coulomb field would look like a beam of 

photons. We define a variable zg that represents the momentum fraction carried 

by the photon that is absorbed by the muons: 

XB = I&l/MB = (A2 + M2)/21i22(1 - z)PMB . (23) 

Here MB is introduced in order to make XB dimensionless. It plays the role of 

the mass of the nucleus that produces the Coulomb field. The final result does 
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not, of course, depend on MB. Evidently the smallest value that XB can assume 

is 

X min = M2/21/2~(1 - z)PMB . (24) 

Using Xg as the integration variable in place of A2, we find that the infrared 

contribution to the cross section assumes the factorized form 

[da/d&t = 7 dXB&/B(XB) ds'ldz - 

Zmin 

We now discuss the factors in this expression. 

The hard scattering cross section da^/dz is 

e4Z(l - 2) (XB/Xmin - 1) 
dG/dz = 8=M2 

(xB/%d3 ’ 

(25) 

(26) 

The reader may check that this is precisely the lowest order cross section for 

(scalar) photon + photon + (scalar) p+ + (scalar) ~1~. 

The function f+,,B (XB) is 

e2 
f7,&B) = $ q 11’ / d2-Eq 

(2?~.)2-~ [q2 + x;M;+ (1/L)2]2 

- (1/c)[(ze)2/4r2XB] (27) 

= (l/XB)(ze/2r)2 [en {p~/[x$@ + (1/L)2]} - I] . 
This function represents the distribution of photons in the Coulomb field. The 

first expression in Eq. (27) for f7/B (Xg) may be independently derived by starting 

from the general definition27 

fy/B (XB) = (21'2/2rX~M~) 
s 

dy+exp(--iq-y+) (BIF(~+,o,o)-~F(o)~JB) 

(28) 
where IB) is the state of nucleus B at rest, q- = XBMB/~~/~, and FPV is the 

electromagnetic field strength operator. Write the momentum eigenstates in 
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terms of position eigenstates IR) ( normalized to (R/R’) = h3(R - R’) 

IB) = [~MB]‘/” / d3R IR) . 

Then using 

FCIV (x) operator IR) = FpV(X - R)claasical IR) 

with a screened Coulomb field for FpV(x - R),l,,i,,l, the result (27) follows. 

One should note two features. First, the definition of Ref. 27 (cf. Eq. (28)) 

requires that the operator product be renormalized by minimal subtraction. Thus 

the E = 0 pole in Eq. (27) is to be subtracted. Second, in the external field 

approximation used here, the nucleus can absorb any amount of momentum 

without recoiling. Thus momentum conservation is lost and Xg is not necessarily 

smaller than one. 

The integral in (25) can be performed analytically. The result when the 

screening cutoff l/L is removed is quite simple: 

daIR e2(Ze2)2z(l - 2) [8n]‘/2z(l - z)pP 1 5 
- = -- I (l/L = 

dz 96?rM2 M2 6 
0) . (29) 

The value of the renormalization scale /.L here is arbitrary, since the p dependence 

cancels between dqR/dz and dauv/dz as given in Eq. (22). A sensible choice is 

P - M, so that dauv/dz is not large. 

Notice the appearance of a logarithm of the initial photon energy, P/21/2, in 

the cross section result (29). This logarithm arises from the &(Xg) in the photon 

distribution function. The &(Xg) arises, in turn, from the small q behavior of 

the integrand for the photon distribution function. It reflects the probability to 

find a photon at a large transverse separation, Ibl - l/~gMg, from the nucleus. 

If the field is screened, then there is no h(P) in the cross section. 

19 



3. Model for Coalescence Enhancement 

In this section we shall consider a simple model for heavy quark production 

in which the effects of coalescence of the produced and spectator systems can 

be studied. Specifically, we examine a process as illustrated in Fig. 4, in which 

a heavy quark of mass M is produced and then interacts with a light spectator 

quark of mass m. We first examine the semi-inclusive cross section in which 

the spectator is detected in the final state. We find that the cross section is 

enhanced when the velocity of the light quark nearly matches that of the heavy 

quark. Next, we examine the inclusive cross section, in which the spectator quark 

is not observed and, in addition, the transverse momentum of the heavy quark 

is not observed. The factorization theorem guarantees that the effect on this 

inclusive cross section of such an interaction with a spectator is suppressed in the 

limit of large M. This suppression results from a cancellation, due to unitarity, 

between different kinematical regions of the semi-inclusive cross section. We will 

see how this (partial) cancellation works in detail in the model, and evaluate 

the remaining correction to the perturbative factorized prediction for the cross 

section. 

In the model, all quarks are scalars. The light quarks have mass m and 

the heavy quark has mass M > m. The Born subprocess is q + q --+ Q. (It 

is for reasons of simplicity that we choose a model in which a single heavy 

quark can be created from light quarks. An analogue of practical interest is 

gluino + quark + squark in a model of supersymmetry in which the gluino is 

light and the squark is heavy.) We choose to describe the process in a reference 

frame in which the heavy quark is nearly at rest. In this frame, we take hadron 

A to contain a high momentum quark that is active in the Born subprocess, a 

high momentum spectator quark, and a spectator quark that carries low momen- 

tum. These constituents of hadron A all carry transverse momentum of order 

m. We suppose that hadron B contains a high momentum quark that is active 

in the Born subprocess and a high momentum spectator quark. For reasons of 
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simplicity, we suppose that the hadron B constituents carry negligible transverse 

momentum. 

We now add an interaction between the slow spectator quark and the heavy 

quark. In order to mimic &CD, we work in an Abelian gauge theory in which the 

heavy quark has charge e and the light quark has charge -e. We choose to work 

in Coulomb gauge. Then the leading interaction between two slow particles is the 

Coulomb interaction. Thus we take the spectator-heavy quark interaction to be 

a Coulomb exchange. The resulting model is depicted in Fig. 4. Of course, one 

has to add the graph shown and its complex conjugate. A convenient choice of 

kinematic variables is shown in the figure. The three-momentum of each particle 

is indicated in a notation in which the z-component is given first, followed by a 

transverse vector standing for the transverse components. (We indicate S-vectors 

with an arrow, <, and, as in Sec. 2, transverse vectors are in bold type, q, while 

energy and z-components are explicitly indicated, or re-expressed in terms of q+ 

and q-.) 

We take hadron A to have a large momentum EA along the positive z-axis, 

while hadron B has a large momentum EB along the negative z-axis. (We take 

the incoming hadrons to have zero mass for simplicity.) 

We shall write the amplitude for this model using time ordered perturbation 

theory. We need several ingredients. The first is the heavy quark production 

vertex, which we take to be -iG. The second ingredient is the Coulomb poten- 

tial, +ie2/c2. The third ingredient is wave functions for the incoming hadrons. 

For hadron B, we use a wave function \EB(xB) such that I\kg(xg)12dxg is the 

probability to find the active quark with momentum fraction Xg. For hadron 

A, we use a wave function QA(XA, k;T) such that lqA(xA, k; I) 12dxA dk dc is the 

probability to find the active quark with momentum fraction XA and transverse 

momentum k and the slow spectator quark with momentum i. (For this section 

we adopt a notation such that dk is a 2-dimensional transverse integration, while 

di is a 3-dimensional integration.) Since the bound states are stable, the wave 
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functions may be taken to be real valued. The final ingredients that we need 

are the energies of the initial state, the intermediate state between the time the 

heavy quark was created and the time of the Coulomb interaction, and the final 

state. (We do not need the energies for the states before the heavy quark was 

formed because the corresponding energy denominators will be included in the 

bound state wave functions.) Referring to Fig. 4, we find 

EI=EA+EB, 

El = (~-xA)EA--~~+ (k + 1)2 + m2 m2 
2(1 - ~A)EA 

+(1-XB)EB+ 
2(1. - ~B)EB 

-km+ 
(i + aI2 

2m 
+M+ (’ -<I2 

E2 = (~-xA)EA-Z~+ (k + l)22tMm2 : (1 _ B)EB + m2 
2(1 - ~A)EA 

X 
2(1- ~B)EB 

i2 $2 
+m+g+M+%. 

(30) 

In writing these expressions, we have used the non-relativistic approximation 

for the slow particles and the extreme-relativistic approximation for the fast 

particles. 

We can now assemble these ingredients to form the cross section in which the 

slow spectator quark is detected. For the Born term we have 

[&lBarn = /dXB%(XB)2/dXAdkaA(XA,k;i)2 

x ~~(xAEA - XBEB - Pz)b2(k - P)(27r)6(E1 - E2). 

(31) 

For the first order terms depicted in Fig. 4, we have 
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[&],., order = J& JdXBW-d2 
X 

/ 
dxA dk \EA(XA, k; i) \EA(XA - qz/EA, k - q; 1” i- ij’) 

G2 
X ~~(xAEA - XBEB - l’=)b2(k - P) 

i 
X f? (246(EI - E2) 

EI - El + ic f2 
+ complex conjugate . 

(32) 
These expressions can be simplified by using the b-functions to eliminate the k, 

XA, and Xg integrations, with 

k=P (33) 

and 
M 

xA = SEA 
+ 4 + Pz + m 

SEA 

(34 
M 

xB = DEB 
+ -1, - Pz + m 

DEB ’ 

Here the first terms are the most important, but the small correction provided by 

the second terms will be needed for our calculation of the inclusive cross section 

because of a cancellation of the leading term in that cross section. Corrections 

of order i2/2m and F2/2M have been neglected relative to Pz and I, in the 

second terms of 

our calculation. 

been neglected. 

(34), in accordance with the non-relativistic approximation of 

Terms with more powers of EA or EB in the denominator have 

In the first order term, we use the energy conserving S-function to make the 

replacement EI + E2 in the energy denominator. Then Eq. (30) gives 

E 
2 
-E 

1 
= i2 - (i+ f>2 + F2 - (P -f)" 

2m 2M (35) 

23 



where ? is the relative velocity between the light and heavy quarks and ??ZR is 

the reduced mass of the heavy quark-light quark system: 

mM 
mR=M+m. 

Having made these manipulations in Eqs. (31) and (32), we obtain 

da [ 1 TG2 

dFdl! Born 
= ZEBU *A(xA~p;lf)~, 

(36) 

(37) 

and 

da [ 1 dFdli 1at order 

X \EA(XA- Q,/EA,P - C.&f) 
2 

I 

e2 
fsf+q'2/2mR p -2' 

(38) 

In writing Eq. (38), we have noted that we must take the expression computed 

from Eq. (32) and add its complex conjugate. The result is to change I/[? . f + 

f2/2mR + ic] to 2/[f . f + c2/2mR]p, where the P indicates a principle value 

prescription for the singularity. 
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Small Relative Velocity Approximation 

It is evident from Eq. (38) that the first order correction to the cross section 

is large when the relative velocity f is small. Let us therefore examine this cor- 

rection in the limit 9 < 1. We notice that the typical value of < that contributes 

to the integral (38) is of order IfI - ml f I. Thus, when f is very small we can 

set < = 0 inside the second factor of *A in Eq. (38). This approximation gives 

where 

I(‘) = 

A straightforward calculation gives 

I(V) = 7. 

Thus 

[-&I = [&]Bornll+yl 

(39) 

(40) 

(41) 

(42) 

in the small V approximation. We recognize this as the familiar first order 

correction to production of slow charged particles in a Coulomb field.6 At higher 

orders it becomes 6,28 

[&I = [&lBorn 1- ef~~/Zaf/V) (43) 

We learn from this example that the coalescence enhancement is large and 

that it does not cancel when one requires that a spectator quark be detected with 

velocity close to that of the heavy quark. In the QCD analogue of this model, 

the factor (;Y is to be replaced by o8 times a factor that depends on the color state 
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of the two quarks. For instance, if the heavy quark carries a 3 representation of 

color while the spectator carries a 3 representation and if the two quarks form 

a color singlet, then the factor cy: becomes $08. The typical momentum transfer 

in the coalescence interaction is mV, so the argument of o8 should be roughly 

mV, with m - 300 MeV. Of course, the use of perturbation theory is not strictly 

justified for such a small momentum transfer, so we only expect Eqs. (42) and 

(43) to be qualitatively correct when applied to &CD. 

Inclusive Cross Section 

Let us now return to Eqs. (37) and (38) for the first order correction to 

the cross section and integrate over the momentum of the slow spectator quark 

and over the transverse momentum of the heavy quark. It will prove convenient 

to describe the longitudinal momentum of the heavy quark by its rapidity Y 

and the longitudinal momentum of the light quark by its rapidity y. Since we 

are assuming a non-relativistic approximation for the heavy quark and spectator 

quark, these rapidities are given by 

Y M PZ/M , y M 1,/m. (44 

For the Born term, we obtain 

7TG2 
= ~2 

J 
dJ+‘~mdY*B(XB)2QA(XA,P,mY,1)2, (45) 

Born 

where 

xA=$l+Y+E(l-y)] , XB = $[I - Y + g(l - y)]. (46) 
A B 

If we neglect the m/M terms in zA and Xg then we obtain the standard factorized 
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form: 

da L-1 dY Born 
= gfA(zA)fB(zB), (47) 

where 

fA(zA) = 
J 

dPdlmdy\EA(ZA,P;my,1)2, 

(48) 

fB(zB) = *B(zB)2, 

and 

ZA = x”,(l+ Y) , fB = x;(l -Y), (49) 

with 

xi = M/2& , x; = M/2&. (50) 

For the first order term, we obtain, in terms of XA and Xg defined in Eq. 

(46) 3 

da L-1 dY 1” order 
= g 

J 
dPdlmdy- dq’ SPfj(Xg)’ 

cw3 

x *A(XA,p; my, 1) 

x *A XA+x;; (-2z),P--q;my+qJ+q) 

e2 
x [(y-Y)q~+v~q+~2/2mR]p -2’ 

We know on general grounds (see Ref. 1) that the large enhancement for 

small relative velocities that we noted in the previous subsection must cancel 

when we integrate over velocities and thus form the inclusive cross section. The 

enhancement arises because the intermediate state energy denominator becomes 

small when V is small. That is, there is an enhancement because the attractive 

27 



quark-quark interaction has a long time to happen when V is small. However, 

because time evolution is governed by a unitary matrix, interactions that happen 

long after the heavy quark has been produced do not affect the probability for 

the hard interaction that produced the heavy quark. 

We will not rely on the general argument here, but will explicitly display the 

cancellation that eliminates the leading term in the enhancement. To do so, let 

us make a change of integration variables: 

PI-P-q 

l’=l+q 

q’ = -q. 

(52) 

This change of variables has two virtues. First, the transverse momentum argu- 

ments of the two 54~ wave functions in Eq. (51) are mapped into each other: 

p = p’ - q’ P-q=P’ 

and 

1 = 1’ + q’ 1 + q = 1’. 

Second, the sign of the energy denominator is reversed: 

(Y-Y)%+ (J-&-g) .q+f] 
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Since we integrate over 1, q, and P, we can drop the primes: 

da L-1 KG2 df 
2 

dY =- 1” order M2S 
dP dl mdyc2T13 \EB zg - z&E--& 

x aA zA+zi2 
M 

-#E+gk-42 
> m m mR’ P-q;w+q,+f++q 

> 

e2 

’ [(Y - y)qZ + is”, + f2/2mR]p f2 ’ 

We see that we have obtained almost exactly the negative of the expression 

(51) for th e rs or fi t d er spectator contribution to the cross section. That is, the 

integrated contribution must be almost exactly zero. The only difference be- 

tween the two expressions (51) and (53) occurs in the longitudinal momentum 

arguments of the wave functions. If these functions did not depend on longitudi- 

nal momentum, then the spectator correction to the inclusive cross section (i.e. 

integrated over spectator momenta) would vanish. This is easy to understand on 

a heuristic basis. If the wave functions did not depend on the longitudinal mo- 

menta of the partons, then the longitudinal position of the two colliding partons 

would be exactly determined. Thus the time of formation of the heavy quark 

would be exactly determined and the effects of the interaction with the light 

quark would cancel exactly. This case may be contrasted with the case in which 

the heavy quark formation time is somewhat uncertain. Then one cancels an 

evolution operator U(oo, t) with an evolution operator U(oo,t’)t for the conju- 

gate state, where the times t and t’ are somewhat uncertain. An operator U(t’, t) 

is left over. 

We also see that the shifts in the longitudinal momentum arguments of the X4’s 

are of order m/M, which will evidently lead to a suppression of the coalescence 

contribution to the cross section by a factor m/M compared to the Born term. 
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The m/M factors are easy to understand. The natural time scale for the spectator 

interactions is l/m. The natural longitudinal size of a hadron is also l/m, but 

the fast quarks in the incoming hadrons are forced into Lorentz contracted disks 

of longitudinal size (l/m) x (m/M). Th e collision time of the fast quarks is 

thereby determined to within a time l/M. Thus the Lorentz contraction factor 

m/M -the factor appearing in the arguments of the wave functions-leads to a 

suppression of the contribution by a factor m/M. 

When we form the inclusive cross section we integrate over some regions where 

the Coulomb approximation in our model is not valid, since the spectator and 

the heavy quark do not have small relative velocity. Thus we keep the essential 

fact of unitarity in the model cross section, but lose the proper properties of 

one-photon exchange for particles with relativistic relative velocities. We thus 

expect corrections from the exchange of transversely-polarized photons or gluons, 

although such effects do not lead to low relative velocity distortions. We hope to 

improve the model in a future publication. 

We have seen from the above analysis that there is a large enhancement to 

the Born cross section when 11 < 1, but that this enhancement is nearly cancelled 

in the integrated cross section (assuming M > m). We conclude that there must 

be a depletion of the cross section in the region of moderate values of V. It is 

easy to see qualitatively how this comes about. The sign of the first order cross 

section in Eq. (38) is determined by the sign of the energy denominator 

?. (I’+ f2/2mR = & [(mRf + ff)2 - (mRv)2] - (54 

When V < 1, there are contributions to the @ integral in Eq. (38) from regions 

of both positive and negative values of the energy denominator. We have seen 

that the net result is positive. When V is larger, the dependence on {of the 

wave function must be considered. The wave function favors values of < near 

-i M -?nR?. In this region the energy denominator is negative. Thus a negative 

result is obtained. 
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We can exhibit the sensitivity of the cancellation to wave function variation 

more precisely: we extract the leading non-cancelling piece of the coalescence 

correction by taking the average of the expressions (51) and (53), writing the 

difference of wave functions with slightly different arguments as a derivative. We 

see that the leading contribution is of order m/M. After extracting this leading 

contribution, we neglect all of the small terms in the arguments of the wave 

functions. We also neglect the distinction between WZR and m. The result is 

da L-1 dY 1" order 
= g 

J 
dq’ dPd3mdy- 

@I3 

x GE&{ @B(S;[l - Y + A])” 

x @A(zi[l + Y - x],p; m(y - A), 1) (55) 

x \EA(&[l + Y - A], P - q; m(y - A) + qz, 1+ q)}A,o 
e2 

' [(Y - Y)qz + :- q + f2/2m]p c2 ’ 

From this form, it is apparent that X inside the curly brackets of (55) corresponds 

to a simultaneous shift in the rapidities of the heavy quark and the spectator 

quark within the wavefunction arguments. 

Further Development of the Model 

We have seen that the effects of interactions of the heavy quark with light 

spectator quarks is suppressed by a factor m/M if we integrate over the heavy 

quark transverse momentum and do not observe the spectator quarks. We now 

seek to further refine our understanding of the nature of the leading term that 

remains after the cancellation. To do so it will be helpful to consider an explicit 

model for the wave functions that appear in Eq. (55). 

We begin by replacing the squared wave function for hadron B by the parton 
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distribution function : 

%(xB)2 + f&B). (56) 

We replace the wave functions for hadron A by factorized distributions repre- 

senting: (1) G  aussian transverse momentum dependence; (2) zA dependence for 

the active quark as given by a standard parton distribution function; and, (3) 

y dependence for the spectator quark given by a probability p(y)dy with the 

function p(y) still to be modelled. Thus we write 

q&A, k; my, 1)“mdy = f&ZT&.l(y)dy$--&(k2+12)~~2. (57) 

We also adopt the definition 

r = qz/m. (58) 

Finally we shall use the appropriate relativistic generalization of the \E and f 

arguments given by the replacement (1 f Y) + efY. With this replacement we 

need no longer work in a frame where Y is small. 

Given these substitutions, Eq. (55) becomes 

da L-1 dY la’ order 
= aE [-&]Born/dyd+ Kr) 

x [P1’2(y)p1’2(y + 7) ( - ~)z~{~B(~~e-Y)fa(Cey)} 

- gb1~2(Y)P1/2(Y + r)}] , 

where 

J 
dp dl dq e-[P2+(P-q)2+12+(1+q)a1/2mz 

(59) 

(60) 

Here we may work in the m/M -+ 0 limit for V and thus take V = l/m. 
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The above form for I may be reduced to 

where 7 = (y - Y) + 712. 

The magnitude and sign of the first order correction, Eq. (59)) to the inclusive 

cross section da/dY are somewhat model dependent. However, a few general 

conclusions are possible. We focus on the case where the interaction of the heavy 

quarks with the spectators is attractive. We also assume that the spectator color 

distribution p(y) tends to be concentrated over a limited range of y, y M yc. In 

this case r will tend to be small in the integral of Eq. (59). We consider three 

configurations and work in the overall center-of-mass frame where EA = EB and 

xi = 
1. 

2. 

xi = M/,/Z 

Very fast heavy quarks with large Y such that XA = xieY + 1. In this 

case momentum conservation requires that the spectators are concentrated 

about a small value of ye. Since y - Y < 0, I < 0. For the typical behavior 

f(z) - (1 - z)+, th e 1 ogarithmic derivative term in Eq. (59) takes the 

form 

(1 - x%eY)P( 1 - xie-y)P 1 [ PxA PXB ~- 
= l-xA I l---B ’ 

The first term in the brackets of Eq. (59) is thus positive and becomes 

large since xA is near 1. The y derivatives of the second term in brackets 

will be negative for y < ye and positive for y > ye. Since I is smoothly 

behaved near y - yc, these two regions tend to cancel and this term will 

be small. Overall we see that the coefficient of m/M is negative and that 

it can become large in the XA --+ 1 limit of large Y. 

Similar rapidities, y - yo - Y, for the heavy quark and spectator. This cor- 

responds to momenta for the heavy quark and spectator system in the ratio 
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M/m, i.e. the heavy quark still has substantial Feynman XF. Depending 

upon the exact kinematic configuration the structure function argument XA 

may or may not be near an end point; the logarithmic derivative term in 

the brackets of Eq. (59) will be positive and could be significant in size. 

However, I(y - Y, 7) changes sign as we integrate y about yc - Y, and this 

term will tend to yield a small contribution of uncertain sign. The second 

term depends upon the correlation between the sign of I(y - Y, 7) and the 

y derivative of the p’s. For y < ye - Y, I is negative and the p derivative 

term is negative, while for y > yo - Y, I is positive and the p derivative 

term is also positive. Thus the regions combine to yield a possibly sizeable 

(depending upon how peaked p is) positive correction. 

3. A slow moving heavy quark with 0 < Y < Ymaz = Zr~(l/xi). The main 

concentration of p will correspond to a moderate value of ye. Typically y - 

Y > 0 and I is positive. The f derivative term in Eq. (59) will be positive 

and not particularly large. As in case 1 the p derivative term changes sign 

in a region where I varies smoothly, yielding a small contribution. Overall 

we can obtain a small positive correction. 

In all the above regions contributions from spectators contained in incoming 

hadron B must also be included, and serve to symmetrize the correction with 

respect to the beam and target directions when A E B. 

To obtain more definitive results would require the development of a detailed 

picture of the color correlations between the produced heavy quark Q and the 

spectator system that is singled out in the formula, Eq. (59). A sum over all 

such spectator systems is required. To the extent that these non-perturbative 

corrections can eventually be measured, we shall be able to learn more about such 

color correlations. However the above analysis indicates that the heavy quark 

inclusive cross section will be increased by terms of order m/M for all but very 

large rapidities, Y. 
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4. Anomalous Features of Charm Hadroproduction 

We now turn to an experimental review of those features of charm and bot- 

tom hadroproduction that may have a direct connection to the non-perturbative 

effects discussed in the preceding sections, or are closely related thereto. We first 

ask whether or not the existing data for heavy quark production agree with the 

leading order QCD predictions ? Recent measurements of the total cross section 

for b jets with pi > 5 GeV and IyI < 2, reported by the UAl collaboration2’ 

agree well with the lowest order QCD predictions. 3o The theory should be re- 

garded as having, perhaps, a factor of two uncertainty due to lack of knowledge of 

the precise gluon distribution functions and higher order corrections. It remains 

to be seen whether lowest order theory will also yield approximate agreement 

with experiment for pi < 5 GeV where the type of corrections we consider here 

are largest. 

Whether the data for charm hadroproduction agree with the leading order 

QCD predictions is problematic. For example, the leading fusion contributions 

predict cross sections which are essentially additive in the nucleon number of 

a nuclear target. The FNAL measurements of Ref. 14 however show an A- 

dependence characteristic of shadowing and diffraction. 

An important question for our work is whether there is evidence for a leading 

particle effect; i.e., a correlation of the produced charmed hadron with the hadron 

beam quantum numbers. This effect is not predicted by the leading order QCD 

predictions. 

The pp + hCX data 31 from the ISR gave the first indications that charm pro- 

duction may be much flatter in longitudinal momentum than expected from the 

very central gluon fusion subrocesses. This appears to be confirmed by Serpukhov 

data32 for 40 GeV neutron carbon collisions: dN/dxF(nN -+ A,X) - (1 - 

xF) le5*Oe5 for XF > 0.5. However, recent data from the LEBC-EHS experiment 
12 

- 

at the SPS for incident 400 GeV/c protons do not show a clear signal for he 
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production at large XF. The LEBC experiment has also taken data at Fermilab 

with a 800 GeV/c proton beam. l3 Neither LEBC experiment reports a leading 

particle effect for D production by protons, and the energy and normalization of 

the pp + DX cross section appears consistent with the simplest QCD estimates. 

The moderate growth in the magnitude of the D production cross section13 with 

energy also is difficult to reconcile with the ISR results. 

Experiments do appear to agree on evidence for a leading particle correlation 

for charmed hadrons produced by mesons. Recent data for high energy pion, and 

kaon beams measured by the ACCMOR” and LEBC-EHS12 collaborations at 

the SPS show sizeable contributions at large XF, although the statistics are not 

large. A sample curve from Ref. 12 is given in Fig. 5. 

Another intriguing anomaly in charm hadroproduction is seen in the WA- 

42 experiment l5 at the SPS, which reports copious production of the A+ (cm) 

charmed strange baryon in 135 GeV C- collisions on a beryllium target. Evidence 

for production of the A+ in neutron nucleus collisions has also been reported by 

the E-400 experiment at FNAL.16 In this latter experiment, the cross section 

appears to be fairly flat over the measured range of 0 < XF < .6, with A- 

dependence of order A *7g**12. In the WA-42 experiment the A+ is observed in 

the AK-X+X+ channel with a hard distribution (1 - XF)1’7*0*7 for XF > 0.6. (A 

schematic representation of this reaction, to which we shall refer later, is given in 

Fig. 6.) The corresponding cross section times branching ratio (taking the above 

form for all XF), for forward XF is 4.7 pb/nucleon assuming A1 dependence. If the 

branching ratio for the measured channel is 3% to 5% this implies a total cross 

section in the 100 to 150 pb range. Even larger cross sections might be expected 

for the production of charmed-strange (csd) baryons which carry two valence 

quarks of the C- (sdd). C er ainly the experimental results suggest the possibility t 

of systematically enhanced production of heavy quark states by hyperon and kaon 

beams. 

We now turn to a consideration of the extent to which the above anomalies can 
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be attributed to the pre-binding/coalescence enhancements discussed in detail in 

Sec. 3, or to other closely related non-perturbative effects. 

5. Breakdown of Factorization and Final State Interaction Effects 

Let us review from an intuitive point of view the impact of the calculations 

presented in Sets. 2 and 3. We first focus on the process 7 ---) p+p- in the 

presence of the Coulomb field of a nucleus. In Sec. 2 we found that this QED 

process fitted into the usual factorization formalism provided the muons could be 

considered as having relativistic velocities in the rest frame of the nucleus. Indeed 

the eikonal techniques we employed allowed us to obtain a direct understanding 

of the Born cross section in terms of a hard scattering process convoluted with 

the photon distribution function arising from the nucleus. However, we also 

know (and could demonstrate using techniques like those presented in the Sec. 

3) that for small velocities of one of the muons relative to the nucleus the Born 

cross section is completely unreliable. The cross section is strongly distorted for 

relative velocities v+ and v- of the p+ or /.L- with respect to the nucleus vh < Za 

by multiple soft Coulomb interactions6’28 

da (72 --) &X) = da0 aT. (62) 

Here da0 is the Bethe-Heitler cross section computed in Born approximation, and 

<+ = 27rZa/v+, c- = 27rZcr/v-. Th ese results are strictly valid for c+ < 1, but 

c- can be unrestricted. The effect of the correction factor is to distort the cross 

section toward small negative-lepton velocity (relative to the target rest frame). 

As v- =+ 0, the enhancement is so strong that even the threshold phase-space 

suppression factor in a0 is cancelled. Conversely, the cross section is exponentially 

damped when the positive lepton has low velocity. 

An analogous effect evidently would also occur in QCD for a heavy colored 

target, We can estimate3 this QCD prebinding effect by replacing z.Zcr + 

(4/3)7rra,(Q2) in the QED distortion factor, Eq. (62). (We take Q2 to be the 
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relative momentum of the c-quark and the spectator system and limit laBI 5 4.) 

Clearly this gives only a very rough estimate of physics controlled by QCD non- 

perturbative effects. The behavior predicted by this model indicates significant 

increases in the magnitude of the heavy quark production cross sections and 

significant skewing of the heavy particle momentum distribution towards large 

XF. (see Fig. 7.) 

This is not exactly the same as the configuration of interest in establishing 

a connection with the anomalies found in charm production. There the target 

is a color singlet composite of constituents that are relatively light compared to 

the charm mass scale. In Set 3 we analyzed the QED analogue of production of 

a single heavy colored object, Q, in the presence of such a target. We saw, as 

expected, that the inclusive cross section for production of Q exhibited factor- 

ization in leading order in MQ. However, we found corrections to the standard 

factorized formula for the inclusive cross section of relative order p/Mg; these 

corrections may be large for charm production. In addition, we examined the 

case in which spectator particle momenta are measured. In this case, an at- 

tractive spectator-heavy-quark interaction can dramatically enhance the cross 

section in the region in which the light spectator, q, is moving slowly relative to 

Q. We also saw that this low relative velocity enhancement must be compensated 

by depleting the cross section in regions where the q and Q have large relative 

velocity. 

We can now relate these findings to the experimental situations described 

in the previous section, which appear to exhibit anomalies relative to the per- 

turbative predictions based on factorization. First imagine producing a heavy 

quark, Q, at a given rapidity Y, and consider the cross section as a function of 

the spectator quark, q, rapidity y. When y - Y the cross section will be greatly 

enhanced, according to the QED analogue results of Sec. 3, if the q and Q are 

in an attractive channel. This situation corresponds physically to q and Q be- 

ing part of the same bound state. Thus we predict that charmed bound states 

formed from a charm quark of given Y and a spectator fragment (with y - Y) 
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will be substantially enhanced over estimates based on perturbative charm pro- 

duction followed by cross section-conserving “recombination” 33 of the charm 

quark with spectator quarks. However, to avoid inconsistency with the predicted 

higher twist nature of the inclusively integrated spectrum, there must be a com- 

pensating depletion of the cross section in other configurations, such as that in 

which y is sufficiently different from Y that the charm quark and spectator quark 

fragment independently into the observed final state hadrons. The net effect will 

be a redistribution of the inclusive charm cross section in favor of those charmed 

hadrons whose location in rapidity and whose quark content can both be clearly 

identified as requiring spectator quark content. This is what is observed, i.e. 

enhanced production of charm in the forward low pi region, especially when 

contained in hadrons, such as the A,, that are clearly most likely to arise as a 

combination of fast spectators with a charm quark of similar rapidity. 

As discussed in Sec. 3, the inclusively integrated spectrum depends upon 

the detailed distribution of color charge in the spectator system. Unless the 

heavy quark color is primarily balanced by that of a spectator of very similar 

rapidity, the enhancement of recombination bound states is likely to be rather 

closely compensated by depletion in the spectrum of hadrons containing the heavy 

quark that are formed by independent fragmentation. In the case of charm the 

higher twist restoring depletion would occur in the spectrum of hadrons that are 

most likely the result of independent fragmentation of the produced charm quark. 

Experimental determination of the inclusive heavy quark spectrum is not trivial. 

It requires summing over the inclusive cross sections for all hadrons containing 

the heavy quark. 

As we have emphasized, unlike final-state interaction corrections to hard scat- 

tering processes, the corrections discussed in this paper to semi-inclusive produc- 

tion of states containing a heavy quark and spectator in an attractive channel 

coherently enhance the production process and are not limited by unitarity to be 

of 0 (1). If there are strange quarks in the incident-hadron, then the distortion 

and enhancements in cross sections for spectator-containing hadrons are likely to 
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be magnified, since a strange quark tends to be more nonrelativistic than u or d 

quarks in a hadron and thus more effective in “capturing” the heavy quarks that 

tend to be produced moving slowly in the laboratory frame. This could explain 

the relatively copious production of the A+ (csu) in the C- fragmentation region, 

and suggests an important role of hyperon and strange meson beams for charm 

and heavy particle production experiments. 

Finally, we would like to point out that there are several tests of the basic 

Sommerfeld correction underlying coalescence that can be performed in the near 

future. In the attractive channel e+e- + QQ, near threshold, enhancements in 

the form of resonances occur, and these resonances are more or less dual to the 

enhanced perturbative cross section. A similar result is expected for the reaction 

e+e- +7Q& in the region where the final state 7 has large pi and the QQ system 

has low mass. In contrast, the reaction e+e- + g&Q corresponds to the QQ being 

in a repulsive color channel, and in the region where the g has high pi and the QQ 

invariant mass is low, a diminished cross section (with respect to the perturbative 

prediction) should be observed. One can compute in perturbation theory the 

magnitude of the repulsive color factor in this latter situation compared to that 

for the former attractive case. One obtains a 413 in the color singlet attractive 

channel and -l/6 in the color octet repulsive channel, where the relative sign 

indicates that the first is repulsive and the second attractive. This prediction may 

already be testable using available data. Similarly in the reaction gg + gQQ, 

studied perturbatively in Refs. 7 and 8, a high JPJ g trigger, coupled with low 

invariant mass for the QQ system corresponds to a repulsive QQ channel (on 

average) and overall suppression with respect to the lowest order perturbative 

prediction is predicted. Relative to the above color group factors this channel 

also has weight -l/6. In repulsive channels the Q and & would presumably end 

up in a QQ bound state rather infrequently, preferring to fragment independently 

into hadrons containing Q or &, respectively. Summing over all such production 

modes would be required before comparing to the perturbative prediction. 
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6. Intrinsic Heavy Quarks 

We turn now to a brief consideration of other non-perturbative and anoma- 

lous effects that could also play a role in explaining the experimental data re- 

viewed in Sec. 4. The intrinsic heavy quark concept, discussed in this section, 

is closely allied to the ideas of coalescence: the latter is a non-perturbative final 

state re-interaction effect, while the former arises from initial state interactions. 

Both are predicted to be higher-twist contributions at the fully integrated inclu- 

sive cross section level, but yield enhancements in special regions of phase space. 

Since the momentum of a charmed hadron tends to follow the momentum of the 

produced charmed quark (the Bjorken-Suzuki effect34 ), the longitudinal mo- 

mentum dependence of the charm hadroproduction data suggest that the charm 

quarks themselves have large momentum fraction in the nucleon. Such a pos- 

sibility can be checked by measurements of deep inelastic scattering of leptons 

on the charm constituents of the nucleon. The available high Q2 data from the 

EMC collaboration,l” as extracted from PN + ~PX data, seem to indicate an 

anomalously large c(x, Q2) distribution at large Q2 and XBj - 0.4 compared to 

that expected for the photon-gluon fusion diagrams or, equivalently, from QCD 

evolution. 35 Although the data has low statistics and thus could be misleading, 

it suggests the existence of mechanisms for charm production other than the 

standard photon-gluon fusion subprocess. 

Dimension-six contributions to the effective Lagrangian imply the existence 

of Fock states in the nucleon containing an extra QQ pair. 22 (See Fig. 8.) Even- 

tually nonperturbative methods such as lattice gauge theory or discretized light 

cone quant izat ion 36 should be able to determine the heavy particle content of 

meson and baryon wavefunctions. At this time we can deduce 2293’ the follow- 

ing semiquantitative properties for intrinsic states such as IuudQQ): (1) The 

probability of such states in the nucleon is nonzero and scales as rni”. (2) The 

maximal wave function configurations tend to have minimum off-shell energy, 
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corresponding to constituents of equal velocity or rapidity, i.e., 

Thus intrinsic heavy quarks tend to have the largest momentum fraction in the 

proton wave function, just opposite to the usual configuration expected for sea 

quarks. (3) The transverse momenta of the heavy quarks are roughly equal and 

opposite and of order mg, whereas the light quarks tend to have soft momenta 

set by the hadron wave function. (4) The effects are strongly dependent on the 

features of the valence wave function; the intrinsic heavy quark probability is thus 

presumably larger in baryons than in mesons, nonadditive in nucleon number in 

heavy nuclei, and sensitive to the presence of strange quarks. In deep-inelastic 

scattering on an intrinsic charm quark the heavy quark spectator will be found 

predominately in the target fragmentation region. 

The intrinsic charm structure function will not become fully observable unless 

the available energy is well above threshold: W = (q + P)~ >> PVfh = 4mt. 

The correct resealing variable for deep inelastic muon scattering is roughly x = 

“Bj + W,“,/W”, not x = XBj + m$/Q2 which is appropriate to charge-current 

single heavy quark excitation. 

The presence of a hard-valence-like charm distribution in the nucleon can, at 

least qualitatively, explain some of the anomalous features of the charm hadropro- 

duction data discussed above. The fact that the c and E as well as D and B 

distributions are harder than the corresponding strange particle distributions 

can be attributed to the fact that the skewing of quark distributions to large 

x only really becomes effective for quarks heavier than the average momentum 

scale in the nucleon. One can account for leading particle effects and the fairly 

flat A, ISR and Serpurkhov cross sections if there is coalescence of the intrinsic 

charm quarks with the u and d spectator quarks of the nucleon. We note that 

recombination itself cannot explain the comparable distributions observed in the 

LEBC experiment for proton production of D and D, unless it is the heavy quarks 
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that carry most of the momentum. Since the intrinsic contribution is associated 

with higher twist operators, it is suppressed by a factor of l/m; relative to the 

fusion contributions, and is thus unlikely to be very important for b or t-quark 

hadroproduction. 

The presence of intrinsic charm quarks in the nucleon also has implications 

for other hard scattering processes involving incident charmed quarks. In general, 

the charm quark in the nucleon will reflect both extrinsic and intrinsic (l/m:) 

contributions. Using QCD factorization this implies significant intrinsic charm 

contributions to hard scattering processes such as c + g --+ c + X at p$ >> 4m:, 

with the intrinsic contribution dominating the large z domain. The characteristic 

signal for such contributions is a E spectator jet in the beam fragmentation region. 

Similarly, heavier quarks and supersymmetric particles of mass & contribute to 

intrinsic Fock states in the nucleon at order 1/G2. The intrinsic G(z) or G(Z) 

distribution is again predicted to be largest at large Z. Hard scattering processes 

such as 4 + Q + 5 + 7 can produce purely electromagnetic monojet events. 

Note that the associated intrinsic supersymmetric partner appears in the beam 

fragmentation region. 

7. Diffractive Hard Processes 

We review this type of process as another example of a situation in which the 

results for heavy quark production cannot be obtained perturbatively, and, thus, 

experiments involving heavy quark production could shed light on the nature of 

non-perturbative &CD. The situation of interest is that where production of the 

heavy quark system occurs diffractively in the hadron collision, that is, without 

excitation of the target. Two pictures have been given for this process: 

(1) Diffractive excitation. 24 When a beam hadron fluctuates into a Fock 

state such that all of its constituents are at small relative impact parameter, it 

interacts minimally because of its small color dipole moment. Since the normal 

states interact strongly, the small impact valence Fock state materialize as qij 
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or qqq jets. In the case of intrinsic heavy quark Fock states qqqQ& with small 

transverse size, the incoming nucleon can be diffractively excited into a forward 

produced system containing a heavy quark pair. An analysis of such processes 

based on the Good and Walker two-component formalism is given in Ref. 24. 

(2) The Pomeron as a gluon source. 38 l8 If one treats the Pomeron as a com- 

posite system with gluon constituents, then the gluon-gluon fusion process leads 

to diffractively-produced heavy quark systems. The analysis of such processes is 

given in Ref. 38. 

Both pictures of diffractive production lead to similar final states and cross 

section estimates. In particular the total production rate has a predicted nominal 

nuclear number dependence cr - A2i3. However, the XF distribution of the heavy 

quarks system tends to be harder and the mass of the diffractive system smaller 

in the intrinsic charm picture. 39 

Experimental investigations of such processes could significantly further our 

understanding of non-perturbative &CD. 

8. Summary 

There is little doubt that the standard perturbative QCD predictions are 

accurate for very massive heavy quark production. Indeed, the two calculations 

in this paper confirm that corrections to the standard factorization formalism 

are suppressed by powers of the heavy quark mass. Nevertheless, there are in- 

teresting and important corrections at low transverse momentum in the beam 

and target fragmentation regions when the quark mass is not too large. These 

are the kinematic regions where intrinsic contributions may appear and coherent 

effects can occur as the produced quark and spectator fragments coalesce. As re- 

viewed here, the data appear to have anomalies in these regions. It is clearly very 

important to verify these effects, particularly leading particle effects, enhance- 

ments due to hyperon beams, the A-dependence, the importance of diffractive 

production, and leading particle effects. From the theoretical perspective, the 
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charm production data provide a window to the interface of perturbative and 

nonperturbative dynamics. 
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APPENDIX 

We wish to evaluate the integral (14) for the muon pair production cross 

section 

daldzcdzo = k M2e2zcz&j(1 - zc - zg)(27r)03 / d2xC / d2xo 

(A-1) 
x Ko(Mlxc - x4)2(2 - [x&/x&]+~‘~ - [x&/x$]-~‘~) . 

We begin by writing this integral in the form 

da/dzcdzo = i M2e2zcz&i(1 - zc - z~)(27r)-~ d2rKo(Mlr1)2r21(0) , (A.2) 

where the integral I(E) is defined by 

I(E) = r-2+2’ /d2xc/ d2xgIxcI-EIxgl-66(xc - xD - r) 
(A-3) 

x (2 - [xg/xg]+iza - [x~/x~]-iZQ) . 

(I(0) contains the infrared divergence discussed in Section 2. Here the parame- 

ter E, instead of a screening length, regulates this divergence.) On dimensional 

grounds, one knows that I( ) E is independent of r. Thus the integral of the Bessel 

function can be performed immediately to give 

/ d2r &(Mlrl> 2r2 = 2n/3M4 . (A.4 

This leaves the integral I(E). It can be evaluated by considering the integral, 

J(E) = 
J 

d2r exp(iq . r)r2-2EI(e) . (A-5) 

One one hand, 

J(r) = w(q2/4)-2+‘(r(2 - E)/l?(-1 + E))I(E) . (A4 

On the other hand, one can perform the integral for J(E) as a sum of products 
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of Fourier transforms of a pure power of 1x1: 

J(e) = /d2xC/ d2xD exp(iq - XC - iq . XD)IXCI-‘IXDJ-~ 

x (2 - [x&/x&]+iza - [x&/xg]-iza) 

= 27r2(q2/4)-2+E 
I 

r(1 - +)” 
r(+p - 

r-p- ++iza)r(l- +iza) 

1 r(+-iza)r(++iza) * 

(A-7) 
Thus we can identify 

I(E) = 27r 
{ 

r(-1+ E)r(l - +)2 
r(2 - +-y) c)2 

- r(-l+#E-iza)r(l- ~~-i~~)(++iz~)r(l- ++i.zh) 
r(2 - +(l+ +izc~)r(l+ ++izb) 

. 

(A-8) 
We can now expand about E = 0, using 

r(+)= (2/~)(1- ++.-.) , 

r(l-+) =l++, 

q-1 + C) = (i/~)(l + [I + 7~c + - - -1 , 

r(2-6)= l-[l-~]~+~~~ , 

where 7 = 0.577.. . is Euler’s constant. This gives 

I(E) = -27~(2~~)~[1/~+2]+27~(2a)~[$~(1- iZa)+ +!~(l+iZ~r)+27] 

= -2~(2a)2[l/~+2]+411~(-l)"5(2n+3)(Za)2"+4 , 
(A-9) 

n=O 

where c is the Riemann zeta function. 
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We can now assemble the result: 

da/dzcdzo = (e2/12nM2)zcz&(1 - zc - 20) 

x { -(ZCX)~[~/E + 21 + (Zc~)~[$(l - iZa) + $(l + iZa) + 271) . 
(A.lO) 

This is the result reported in Section 2. 

Notice that in Eq. (A.l) the dominant contributions come from Ixc - XD[ - 

l/M. However, there is an infrared divergence coming from the region [xc1 - 

lx~l > l/M. In the calculation, this divergence has been regulated by the factor 

(IxcIIx~l)-~. Th us contributions from this large impact parameter region appear 

as a factor of l/e in the calculation. Finally, as expected from the argument early 

in Sec. 2, this l/e appears only in the Born term. 
1 
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FIGURE CAPTIONS 

1. Lowest order diagram for lepton pair production on a heavy nucleus. 

2. Lepton pair production in the field of a nucleus, viewed from the nuclear 

rest frame. 

3. Four diagrams contributing to Eq. (17). 

4. Basic diagram illustrating the production of a single heavy quark, Q, in a 

hadron collision, via the subprocess qq + Q. Various spectators are shown. 

5. The XF distribution for r-p + DX at 360 GeV/c measured in the LEBC- 

EHS experiment (Ref. 12): (a) D mesons containing valence quarks of the 

pion; (b) nonvalence D mesons. The curves represent fits (1 - XF)~ with 

n = 1.8 and n = 7.9, respectively. 

6. Schematic representation of A+ production by hyperon beams. The multi- 

gluon exchange can represent either intrinsic heavy c~ contributions to the 

C- wavefunction (an initial state effect) or prebinding distortion from final 

state interactions. 

7. The Bethe-Heitler cross section 72 --+ .@f?-2 in Born approximation (solid 

curve) as a function of the positive lepton energy. The dotted curve shows 

the modified spectrum due to multiple scattering Zo -+ (4/3)a,(Q2). We 

have used cyB(Q2) = 47r/(poi?n(l + Q2/A2)), [aal < 4, where A = 200 MeV 

and Q2 is the 4-momentum squared of the lepton relative to the target. 

8. Representation of an intrinsic heavy quark Fock state in the proton. 
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