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ABSTRACT

For very heavy quark masses, QCD predicts that the inclusive hadronic pro-
duction of heavy quarks is governed by quark and gluon hard scattering sub-
processes. On general grounds, one expects corrections of order u/Mg, where
p ~ 300 MeV and Mg is the heavy quark mass. At the charm mass scale, such
corrections could be important, possibly accounting for the anomalies observed in
the nuclear number dependence, the longitudinal momentum distributions, and
beam flavor dependence of charm hadroproduction. In this paper we present a
general overview of such corrections. In particular, we discuss a “coalescence”
correction, which substantially alters the cross section in situations where the
heavy quark is known to have low velocity relative to one or more constituents
of the spectator jet. In attractive channels the result is a large enhancement. In
inclusive cross sections this final state interaction effect is suppressed by only a

single power of the heavy quark mass.
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1. Introduction

The calculation of heavy quark production is one of the most important
applications of QCD, both for predicting the production rate of new strongly
interacting particles, and for assessing the backgrounds to other types of new
physics. In a recent analysis, Collins, Soper, and Sterman’ have argued that the
proof of factorization for massive lepton pa.irs2 in perturbative QCD can be gen-
eralized to the production of heavy quarks, mz > A%ﬁ-. However, this argument
applies only to the inclusive cross section in leading order in the heavy quark
mass, Mg. It leaves open the possibilities: (a) that there are large corrections
to the inclusive cross section, scaling as u/Mg (where p is a typical light hadron
mass of order Ay;z); and (b) that the perturbative Born term is completely un-
reliable for a restricted class of kinematic configurations of a semi-inclusive cross
section in which another particle is detected as well as the heavy quark—only

the inclusive integral over the second particle need exhibit factorization.

In fact, we can identify a specific non-perturbative effect, which we term “co-
alescence”, that leads to effects of both types. For this purpose, it is useful to
consider the semi-inclusive cross section in which the momentum of a spectator
quark in the final state is measured. In this case, it has been a,rgued3 that
there are large enhancements to the cross section at low relative velocity between
the spectator and the heavy quark in an attractive channel, analogous to the
Schwinger correction® to ete— annihilation near the threshold for production of
a heavy quark pair. In this paper, we explore QED analogues to heavy quark
production that exhibit both asymptotic factorization for the inclusive cross sec-
tion and, on the other hand, large non-perturbative corrections coming from low

relative velocity configurations.

The factorization analysis of Ref. 1 is largely limited to low order diagrams.
However, there exists in QED an all orders (in Za) result, due to Bethe and
Ma.ximon,5 for a closely analogous heavy particle production process—namely

the Bethe-Heitler cross section for ultra-relativistic lepton pair production in a



strong Coulomb field. One may ask whether this all-orders result is consistent
with factorization. In order to display the physics of this process as clearly as pos-
sible, we shall present a new derivation of the Bethe Maximon results in Sec. 2,
based on high energy eikonal analysis. The derivation explicitly demonstrates
that the ultra-relativistic Bethe-Heitler cross section does, indeed, take a factor-
ized form. This increases our confidence that the analogous factorization works

in QCD to all orders in the strong coupling constant.

One may also consider the Bethe Heitler cross section for lepton pair produc-
tion in a strong Coulomb field in the case in which the negative lepton is produced
with low velocity relative to the spectator nucleus. One obtains a significant en-
hancement in the cross section.® This effect results from the attractive binding
force between the negative lepton and the positively-charged nucleus. In Sec. 3
we analyze a similar situation of direct experimental interest: production of a
heavy particle in the presence of a spectator system composed of light particles.
Using the Coulomb approximation, we demonstrate that QED predicts a strong
enhancement in the cross section when the heavy particle and spectator system
have similar velocities and are in an attractive charge configuration. It takes the
same form; namely, a Sommerfeld-like Coulomb correction factor to the Born
cross section. We also show that such enhancements are entirely consistent with
factorization for the inclusive cross section, yielding possibly large order u/Mg

higher twist corrections.

In the final sections we assume that analogous results will obtain in QCD for
heavy quark production in hadronic reactions. Replacing charge by color and the
electromagnetic coupling by the strong coupling, we can pursue the impact of the
specific results obtained in Secs. 2 and 3 upon important phenomenological issues
for charm production. We conclude with an overview of theoretical predictions

for non-perturbative QCD corrections to heavy quark production cross sections.

Before proceeding, we wish to motivate the reader by enumerating the rea-

sons why heavy quark hadroproduction plays a critical role in particle physics



phenomenology:

1. For large quark mass or large jet transverse momentum compared to the
QCD scale Ayfs, the perturbative predictions are unambiguous and thus

serve as important checks of QCD and the factorization theorems. 2

2. Since the gg — QQ subprocess is generally dominant, heavy quark pro-
duction cross sections give essential checks on the gluon distribution of

hadrons.

3. QCD predicts a number of novel features for the hadroproduction of heavy
quarks, such as forward-backward a.symmetries7’8 in pp collisions, and

. . 9
exclusive channel dominance near threshold.

4. An understanding of heavy quark production is necessary to project the rate
for new particle production—including new vector bosons, Higgs particles,

supersymmetric hadrons, etc.

5. Heavy quark events must be understood in order to unravel single and
multiple prompt lepton signals, flavor mixing parameters, and backgrounds

to rare processes.

6. The muon content of high energy cosmic ray showers depends in detail on

the properties of charm photoproduction and ha,droproduction.10

7. Most interesting from the theoretical point of view are the intriguing anoma-
lies in the data for charm hadroproduction, since they are difficult to explain
from standard perturbative QCD. The observed zr charmed hadron distri-
butions appear flatter than predicted by primary “fusion” subprocesses. 11,12,13

The dependence of the cross section on the nuclear number in fixed target

experiments is significantly less than additive.’* The cross section for the

charmed-strange baryon A*(csu) produced by incident ¥~ (sdd) beams ap-
pears anomalously la.rge.ls’16 Finally there are hints from the EMC deeply
inelastic muon scattering experirnents17 that the charmed sea distribution

in the proton may be larger than predicted by standard evolution. An es-



sential question is then whether the charm mass scale is sufficiently large
such that charm hadroproduction in all kinematic domains is safely in the
QCD perturbative domain, or whether the above empirical anomalies might
be providing new insights into physics at the interface between perturbative

and non-perturbative QCD.
Let us review the standard QCD analysis. The factorization formula

1

1
do = Z/dza/dzb Ga/A(xasMQ)Gb/B(zbaMQ) do b ca (1)
ab 0

gives the dominant contribution to the heavy quark production cross section to
leading order in u/Mg. We implicitly assume that we are integrating over a
range of pr and mass of the QQ system, and that the transverse momenta of
the individual Q and Q are not much larger than Mg. One calculates G as an
expansion in a; (Mg) The factorization formula gives the total inclusive cross
section. Thus diffractive processes, to the extent that they contribute at leading

order in u/Mg, are already included and should not be added separately. 18

Although the physical arguments are convincing, a complete proof that fac-
torization gives the leading power law contribution to the cross section is highly
non-trivial and has only been outlined.! For instance, one difficult aspect of the
analysis is the subtlety concerned with initial-state elastic interactions and their
possible effect on color a.veraging.19 An explicit demonstration that these inter-
actions do not destroy factorization has not yet been given, except in the case
where the subprocess amplitude corresponds to annihilation into a color singlet,

. . . .2
as in massive lepton pair production.

The dominant short-distance subprocesses contributing to the inclusive heavy
quark production cross section are the gg — QQ and ¢g — QQ fusion reactions.
The dominant contribution to the integrated cross section from these processes
arises from the region pr ~ Mg. The distribution of either heavy quark is rel-

atively flat for small rapidity, but vanishes rapidly at large Feynman zz. How-



ever, we can also examine regions in which one of the heavy quarks is produced
with pr = Mg. In these regions two-to-three subprocesses, such as gg — gQqQ,
begin to be as important as the two to two subprocesses. The former have
been calculated in Refs. 7 and 8. (When pr is so much greater than Mg that
In(pr /Mg) ~ 1/as, a more complicated formula, involving, for instance, heavy

quarks as constituents of the proton,?'0 is necessary.)

As emphasized in Ref. 7, the region in which the final gluon has large pr and
recoils against a QQ system with invariant mass ~ Mg, is of special interest, as
are the corresponding regions in vy — YQQ and 4y — ¢QQ in which the final
~ and g, respectively, have large pr. In such configurations the Q and Q are
isolated kinematically and can have small relative velocity. This is a convenient
and important experimental testing ground for the non-perturbative corrections
that are the focus of this paper. We shall return to discuss these processes in the

conclusion.

We conclude this introduction by summarizing the important uncertainties

in theoretical predictions for heavy quark production.

1. Higher order corrections in a;. Although the two-to-three tree subrocesses
have been evaluated® the virtual one-loop corrections to the two-to-two
amplitudes have not yet been calculated. In view of the large color couplings
of incident gluons, one might expect a large “K”—factor correction to the

Born results.
2. Order p/Mg corrections. We identify four such higher twist effects:

(a) The relation between the heavy quark mass and the measured QQ
bound state mass is uncertain. This results in a substantial numerical
uncertainty in the charm quark production cross section; for higher

mass quarks this sensitivity is considerably less.

(b) As first shown for the Drell-Yan process, one must satisfy a “target
length” condition‘21 in order that inelastic initial state interactions

do not ruin factorization: the active quark or gluon energy must be



large compared to a scale proportional to the length of the target:
ZTy8 > My Lap? where u? is a typical hadron scale and L4 is the

length of the target in its rest frame.

(c) It is possible for the incoming beam particle wave function to contain
“intrinsic” heavy quark states, e.g. |qqu§>. These have been ex-
plored in Ref. 22. The probability of such virtual states scales as 1 /Mé
These virtual states live for a time of order 1/Mg in their rest frame,
unless a collision provides the necessary energy for their materializa-
tion. In normal collisions this energy is provided via a hard interaction
and the net cross section is suppressed with respect to gluon fusion by
u? /Mé.23 However, if one violates the target lehgth condition given
previously, by using a very thick nuclear target, then multiple soft col-
lisions can accumulate to allow intrinsic heavy quarks to materialize
with a cross section equal to the probability of the intrinsic state times

) . 24
the beam-nucleus elastic cross section.

(d) Interactions of spectator partons with the produced heavy quarks can
lead to large order u/Mg corrections to the totally inclusive heavy
quark cross section and to significant enhancements of semi-inclusive
cross sections in particular regions of phase space—the coalescence en-

hancement.

Of the above effects, intrinsic heavy quark states and the coalescence phe-
nomena have the potential of providing a unique probe of the boundary between
perturbative and non-perturbative QCD. The focus of this paper is upon the

physics of coalescence, and its consistency with factorization.



2. Production of Relativistic Muon Pairs in an External Coulomb
Field

In this section we will investigate the process ¥ — p + u~ in the presence of
the Coulomb field of a nucleus of charge Ze (treated as point-like and infinitely
massive). Our investigation extends and makes more precise the results in the
appendix of Ref. 1 . We suppose that the photon energy is much larger than
the muon mass M, so that the produced muons are highly relativistic. The
ultra-relativistic cross section was calculated to all orders in the classic paper of
Davies, Bethe and Maximon in 1954.° The process of lepton pair production
in a Coulomb field is of interest as a test of quantum electrodynamics, but our
interest in it here stems from its similarity to heavy quark production in the
gluon field of a hadron. We are, therefore, interested not so much in the results
as in certain key features of the physics that are important in the derivation. In

particular, we are interested in the dependence of the physics on the muon mass.

In order to illustrate the physics in as simple a fashion as possible, we will
replace the incident photon and the muons by scalar particles. The derivation
including spin would involve a certain amount of added complexity without in-

troducing any essential new physics.

A byproduct of our investigation is a rederivation of the Davies-Bethe-Maxi-
mon results (modified for scalar particles) using modern techniques that simplify

e 25
the derivation enormously.

We begin by defining the kinematics. We choose to work in the refer-
ence frame of the nucleus. We will denote four vectors by their components
V# = (V+,V~,V) where V¥ = (V0 £ V3)/21/2 and V denotes the transverse
components of V#. The kinematics of the lowest order diagram are defined in

fig. 1. We let the momentum of the incident photon be
k* = (P,0,0) , (2)

where P is to be very large, much larger than the muon mass M. The muon



momenta are

¢, = (2¢c P, 12 + M?]|/22¢cP,1¢c) , -
3
¢ = (zpP, 15 + M%) /22pP,1p) ,

where we take the momentum fractions 2o and zp to be finite fractions of 1. The

net momentum transfer g* from the field obeys ¢° = 0, so that

From momentum conservation, we conclude that

qg = [l%v +M2]/2ch+ [l%) +M2]/2zDP ,
q=1lc+1p, (5)
zc+zD=1+q+/le .

We now can make an important observation. Consider the muon line carrying
momentum £p — ¢ in the lowest order diagram, Fig. 1. We shall assume that 1%
and l% are not much larger than M?2. This is indeed the case in the integration

region that provides the dominant contribution to the total cross section. Then
(ZD — q)+ fad zDP ~ P
(6)
(¢p —q)” = —t5 = —[1Z + M?|/22¢cP ~ M?/P .

Consequently the space-time separation Az# between the two electromagnetic

vertices obeys

Az~ ~1/P, Azt ~ P/M? . (7)

Thus both Az and Az~ as viewed in the dimuon rest frame are of order 1/M;

Lorentz contraction factors M/P and P/M then give the result (7) in the nucleus

9



rest frame. Also, in order for the virtual muon to have a significant amplitude to

propagate over the interval Az#, (Ax)? cannot be much larger than Azt Az~:
Ax ~1/M . (8)

Thus when the muon mass m is large, there must be short distance scattering:
the interactions that create the muon pair take place within a space-time volume

in the form of a hypercube with sides of length 1/M as viewed in the dimuon

rest frame.

In the nucleus rest frame, this volume appears stretched by a factor P/M,
so that the initial creation of the virtual muon pair occurs long before the pair
reaches the region in which there is significant field, as indicated in Fig. 2. The
transverse separation, r, between the muons, which is boost invariant, is of order
M1,

We are now in a position to estimate the cross section and to determine
what values of the impact parameter b give important contributions to the cross

section. There are two cases: First, |b| can be of order 1/M. The contribution

to the cross section from this region is of order
a(Za)N7b? ~ a(Za)N | M? (9)

at order N+ 1in a, N =2,3,4.... Second, |b| can be much larger than 1/M.
In this case there is a partial cancellation because the muon pair is electrically
neutral. The field interacts only with the electric dipole moment of the pair,
which is of order e|r| ~ ¢/M. The interaction is proportional to the transverse

gradient of the potential, integrated along the path of the muon pair:
/dz Er ~ Ze/dz Ib]/[22 + b**/2 ~ Ze/|b] .

Thus the contribution to the cross section from impact parameters large com-

10



pared to 1/M is of order
(Z%a®/M?) / d®b 4(|b| > 1/M)/b® ~ (2203 /M?) tn(LM) . (10)

Here we have noted that the integral is logarithmically divergent at large b and
we have supposed that the Coulomb potential is cut off at distances greater than
some large screening distance L (e.g. the size of the atom in which the muon
pair is created). We shall discuss what happens if the infrared cutoff is removed

later in this section.

Equation (10) applies at lowest order in Za. At order (Za)" we would have

a contribution
a(Za/M)N/dzb 6(|b| > bmin)/|b|N ~ oz(Zoz)N(l/Mz)(l/bminM)N"2 ,

where, by hypothesis, byin M > 1. Thus, the higher order contributions in (Za)
to the region |b| > 1/M are suppressed by powers of M.

We may draw some conclusions from the discussion so far:

1. The cross section is of order 1/M?, as expected on dimensional grounds in

a theory with a dimensionless coupling.

2. The b ~ 1/M contribution is entirely controlled by short distances of order
1/M. Thus it involves the running coupling a(u) at a mass scale p ~ M.
The cross section will obtain contributions from this short distance region

at all orders of Za.

3. In the case of heavy lepton pair production ¥Z — 7¥7~Z on a realistic nu-
cleus, the higher Born corrections (N > 2) will be suppressed by the factor
(R Amf]_(N —2) since the nuclear form factor allows significant contributions

only from the region b < Ry.

4. The b > 1/M contribution is partly controlled by long distances, which in

the QCD analogue problem must be treated non-perturbatively. However,

11



only the lowest order in Za is important. We shall interpret the factor that
represents the “soft” physics as the probability to find a photon in the field

of the nucleus, analogous to the probability to find a gluon in a hadron.

We now refine our conclusions by doing a detailed calculation. Since the
muons are highly relativistic, an eikonal approximation suffices to treat their
interaction with the external field. There are two main ingredients. The first is
the energy denominator (or, more accurately, the s~ denominator) for the virtual
dimuon state before its encounter with the Coulomb field, which becomes a Bessel
function after Fourier transforming from transverse momentum to transverse

position:

1 /dztc e~ t(xc—xp)x :
(2n)? [5? + M?]/220P + [&? + M?]/22pP  (11)
= (2z02pP/27) Ko(M|xc —Xxp|) -

The second ingredient is the eikonal phase x(x) accumulated by the muon as it

travels through the Coulomb field at a transverse position x:

x(x) = —e / dzt A~ (z1,0,x) = —Za In(422,, /x?) , (12)

—0

where we have supplied a length zn.x as an infrared cutoff. Recall that we
simplify the calculation a bit by using a spin zero initial photon and spin zero
muons. Thus there are no numerator factors. The coupling between the scalar
photon and the scalar quarks has dimensions of mass. We take it to be Me. (In
the more complicated case of spin-1/2 quarks, the factor of M arises from the

numerator factor.) Following the techniques found in Ref. 26and 1, we can write

12



the scattering amplitude as

(C,D|S|A) = —6(1 — z¢ — zp)2Mezczp / d*xc / d*xp exp[—t(l¢ - x¢ + 1p - xp)]
x Ko(M|xc —xpl|) {exp[i x(xc) — i x(xp)] — 1}
= —6(1 — z¢ — 2p)2Mezc2p / dsz / dsz exp[—t(l¢ - x¢ + 1p - xp)]
x Ko(Mlxc —xpl) {x&/xp|Z* -1} .
(13)
Notice that because the muon and anti-muon have opposite charges the depen-

dence on zm.x cancels between the two eikonal phases.
The cross section obtained from this scattering amplitude is

do/dzcdzp = %M2e2z02D5(1 — z¢c — zp)(27)~3 / d*xc / d*xp
(14)

x Ko(Mixc —xp|)2(2 — [ /xb] 2% — [xk /x| 22 .

The integral is easily performed. (The details are relegated to the Appendix.)

The result is

do/dz = [do/dz]|Born
+ (e2/127M%)2(1 — 2)(Z Q) [W(1 —iZa) + P(1 +iZa) + 27]

= [da/dz]Born (15)
+ (32/127I'M2)z(1 — z)2 i(—l)“g(Zn + 3)(Za)2n+4
n=0

where we have used

z=1zc, 1-z=2zp, (16)
and where 9(z) = d €n(T'(z))/dz, v = 0.577... is Euler’s constant, and ¢(NV)
is the Riemann zeta function. We shall discuss the lowest order cross section,

[do/dz]|Born, below; it is infrared divergent for the unscreened Coulomb potential

in the approximation used to derive Eq. (14).

13



Let us make three comments concerning the higher order terms in Eq. (15).
First the result of Davies, Bethe and Maximon which includes spin for the incom-
ing photon and leptons is similar but somewhat more complicated. Second, the
physics behind this result, namely the eikonal approximation, is quite simple (al-
though this simplicity is not evident in the Davies-Bethe-Maximon derivation).
Third, as already noted by these authors, the higher order contributions come

from the short distance region |x¢|, |xp| ~ 1/M.

We now turn to the Born term, paying special attention to the infrared

behavior. We may write the Born term as

[do/dz]Born = (M?€?/47)(Ze?)?2(1 — 2)

cf EA [ &g :

X W@ W 14 (27r)2—e [q2 + qg -+ (1/L)2]2
1 . (17)
“\(@=2)a-AF+M2) " (ea+ AF + M2

1 1
-2 [zq+A]2+M2 [(1_z)q_A]2+M2}-

We have written the result in terms of the transverse momentum ¢ of the ex-

changed photon and a relative transverse momentum A:

q=1lc+1p Ic=2q+ A
(18)
A=(1-2)1c-2lp Ip=(1-2)q—A.

The four terms correspond to the four diagrams shown in Fig. 3. The formula has
been written in 2 — € transverse dimensions (with a dimensional regularization
scale u) for our later convenience. Equation (17) is the Born term obtained
from Eq. (14) except for two modifications that affect the infrared behavior.

First, we have supplied a mass 1/L for the exchanged photon, which means

14



that the Coulomb field will be screened with a screening length L : A° ~
(1/r)exp(—r/L). Second, we have inserted the z-component, ¢,, of the photon

momentum in the photon propagators. Using Eqs. (4) and (5) we have
q: — (qz _ q0)2 — (___21/2q—)2
= 2([1% + M?]/22P + [1 + M?|/2(1 - 2) P)? (19)
= (A% + M? + 2(1 - 2)q?)?/222(1 — 2)?P? .

Since ¢2 is proportional to 1/P2?, it is ordinarily negligible. However, it is the
only infrared cutoff in Eq. (17) in the case of an unscreened Coulomb field. The
cutoff arises because, as the muon pair travels through the Coulomb field, there
is a slowly varying phase factor exp(tg—z™) in its wave function. Thus the line

integral
o0
x(x) = —e / dzt A~ (z%,0,x)
- 00

should really have been (for the Born term)
0
x(x) = —e / dzted 2" A~ (z,0,x%)
-0

in lowest order perturbation theory. This kinematic phase factor cuts off the
contribution from large =+, and thus eventually cuts off the contribution from

large impact parameters.

We shall now write the Born term in the factorized form similar to that
which would be used to calculate the cross section for heavy particle production
in high energy hadron collisions, see Ref. 1. One must separate the part of the
process that contains soft momentum transfers (and is thus not perturbatively
calculable in the analogous QCD problem) from the perturbatively calculable

hard scattering factor, which contains only momenta that are of order of the

15



heavy particle mass M. First, we divide the Born cross section into two pieces:
an infrared sensitive piece and an ultraviolet sensitive remainder. The ultraviolet
sensitive remainder corresponds to photon+nucleus — muon pair+nucleus hard
scattering. Second, we write the infrared sensitive piece in a factorized form: a
factor representing the distribution of photons in the Coulomb field convoluted

with a hard scattering factor for the process photon + photon — muon pair.

We begin with the separation of the Born cross section into an infrared sensi-
tive piece and an ultraviolet sensitive remainder. We define the infrared sensitive
piece as follows. We make the approximation q* < A2, M? under the integral
signs and replace the resulting factor of (2q - A)% by [4/(2 — €)]q2 A2. (Here we
use the fact that A*AJ multiplies a rotationally invariant integral which must
be proportional to 6¥/.) The resulting q-integral is divergent at large |q| when
€ = 0, so we subtract the ultraviolet pole. With the normal choice of u, u ~ M,
this is essentially equivalent to cutting off the g-integral at g2 ~ M?2. This gives
us the definition

(o dz]m = G) M2etz(1 — 2) [%] u / (‘;:;ﬁe & ijw?)‘*

(Ze)2 . d2—eq q2
V7 ¥ ] @) (@ + (A% + M?2)?/222(1 — 2)2PE + (1/L)2)2

- (1/6)[(26)2/47f2]} :

(20)

The ultraviolet sensitive term is constructed from the remainder [do/dz|Born —
[do/dz)ir. When we take this difference under the integral signs, we see that the
integration region q? < M? is now not important. Therefore, we may neglect
the infrared cutoffs ¢2 and (1/L)2. (The error thus introduced is smaller than the
term retained by a power of 1/LM or M/P.) This defines the ultraviolet sensitive
term [do/dz]uv. The calculation of [do/dz]yv can be simplified by noting that

the dimensionally regulated g-integral in [do/dz|ir equals 0 when the cutoffs ¢Z

16



and (1/L)? are removed. Thus [do/dz]yy equals [do/dz|pom With the cutoffs g2
and (1/L)? removed and the pole term from Eq. (20) subtracted. This pole term
removes the pole at ¢ = 0 that results from the infrared divergence in [do/dz|Born

when the cutoffs are removed. Thus

[do/dzluv = (1/47)M2e2(Ze?)%2(1 — 2)

e d2—eA . d2—eq L
“ ) emret ] o (@
1 1 ’ (21)
| et AR+ M? (1 —2)a- AP + M?
/a0 -8 [ TR A

The last term is equal and opposite in sign to the 1/e term in (20).

The integral has the form

[do/dzluy = (e2/M?)(Ze?)?2(1 — z) {A tn(uk/M?) + B} . (22)

where ”’iﬁ = 47u2e~ 7. This UV contribution corresponds to a hard scattering

of v+ nucleus — utu~ + nucleus.

We can now study the infrared sensitive term, Eq. (20). A change of variables
will make it apparent that this term has the proper factorized form. In the center
of mass frame of the muon pair, the Coulomb field would look like a beam of
photons. We define a variable zg that represents the momentum fraction carried

by the photon that is absorbed by the muons:
zB = |¢:|/Mp = (A? + M?)/2'/%2(1 — 2)PMp . (23)

Here Mg is introduced in order to make zg dimensionless. It plays the role of

the mass of the nucleus that produces the Coulomb field. The final result does
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not, of course, depend on Mp. Evidently the smallest value that g can assume
is

Tmin = M?/2'/%2(1 — 2) PMp . (24)
Using zp as the integration variable in place of A%, we find that the infrared

contribution to the cross section assumes the factorized form

oo

[da/dZ]IR = / dzqu/B(xB) d«’i/dz . (25)

Zmin
We now discuss the factors in this expression.

The hard scattering cross section do/dz is

d5 /dz = e4z(1 —2) (zB/Tmin — 1) .

8TM? (zB/Tmin)® (26)

The reader may check that this is precisely the lowest order cross section for

(scalar) photon + photon — (scalar) ut + (scalar) u~.

The function f,/p(zB) is

B 1 (Ze)2 ¢ dZ-—-eq qZ
f1/(zB) = zg « / (2m)2-¢ [q? + 2L M + (1/L)2)?
— (1/9)[(Ze)? [4n*z ] (27)

= (1/z5)(Ze/2m)? [tn {ulrs/[s5 M + (1/L))} - 1] .

This function represents the distribution of photons in the Coulomb field. The
first expression in Eq. (27) for £, /B (zp) may be independently derived by starting

from the general definition 2’

f’Y/B(xB) = (21/2/27“5BMB) / dy+ eXP(_iq_y-i-) <BIF(y+,0,O)_VF(O)V_|B>
(28)
where |B) is the state of nucleus B at rest, ¢~ = zBMB/Zl/z, and FM is the

electromagnetic field strength operator. Write the momentum eigenstates in

18



terms of position eigenstates |R) (normalized to (R|R') = 63(R — R')
|B) = [2Mp]'/? / d*R|R) .

Then using

FrY (z)operator |R> = F#V(x - R)cla.ssica.l |R>

with a screened Coulomb field for F*(z — R) jagsical, the result (27) follows.
One should note two features. First, the definition of Ref. 27 (c.f. Eq. (28))
requires that the operator product be renormalized by minimal subtraction. Thus
the ¢ = 0 pole in Eq. (27) is to be subtracted. Second, in the external field
approximation used here, the nucleus can absorb any amount of momentum
without recoiling. Thus momentum conservation is lost and zp is not necessarily

smaller than one.

The integral in (25) can be performed analytically. The result when the

screening cutoff 1/L is removed is quite simple:

dz 96w M?2

doir _ €2(Ze?)?2(1 —2) [87]1/22(1 — z)uP| 5 .
{Kn[ A ] _E} (1/L=0). (29)

The value of the renormalization scale x here is arbitrary, since the u dependence

cancels between doig /dz and doyy/dz as given in Eq. (22). A sensible choice is

u ~ M, so that doyvy/dz is not large.

Notice the appearance of a logarithm of the initial photon energy, P/ 21/2 in
the cross section result (29). This logarithm arises from the n(zp) in the photon
distribution function. The én(zp) arises, in turn, from the small ¢ behavior of
the integrand for the photon distribution function. It reflects the probability to
find a photon at a large transverse separation, |b| ~ 1/zpMp, from the nucleus.

If the field is screened, then there is no £n(P) in the cross section.
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3. Model for Coalescence Enhancement

In this section we shall consider a simple model for heavy quark production
in which the effects of coalescence of the produced and spectator systems can
be studied. Specifically, we examine a process as illustrated in Fig. 4, in which
a heavy quark of mass M is produced and then interacts with a light spectator
quark of mass m. We first examine the semi-inclusive cross section in which
the spectator is detected in the final state. We find that the cross section is
enhanced when the velocity of the light quark nearly matches that of the heavy
quark. Next, we examine the inclusive cross section, in which the spectator quark
is not observed and, in addition, the transverse momentum of the heavy quark
is not observed. The factorization theorem guarantees that the effect on this
inclusive cross section of such an interaction with a spectator is suppressed in the
limit of large M. This suppression results from a cancellation, due to unitarity,
between different kinematical regions of the semi-inclusive cross section. We will
see how this (partial) cancellation works in detail in the model, and evaluate
the remaining correction to the perturbative factorized prediction for the cross

section.

In the model, all quarks are scalars. The light quarks have mass m and
the heavy quark has mass M > m. The Born subprocess is ¢+ ¢ — Q. (It
is for reasons of simplicity that we choose a model in which a single heavy
quark can be created from light quarks. An analogue of practical interest is
gluino + quark — squark in a model of supersymmetry in which the gluino is
light and the squark is heavy.) We choose to describe the process in a reference
frame in which the heavy quark is nearly at rest. In this frame, we take hadron
A to contain a high momentum quark that is active in the Born subprocess, a
high momentum spectator quark, and a spectator quark that carries low momen-
tum. These constituents of hadron A all carry transverse momentum of order
m. We suppose that hadron B contains a high momentum quark that is active

in the Born subprocess and a high momentum spectator quark. For reasons of
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simplicity, we suppose that the hadron B constituents carry negligible transverse

momentum.

We now add an interaction between the slow spectator quark and the heavy
quark. In order to mimic QCD, we work in an Abelian gauge theory in which the
heavy quark has charge e and the light quark has charge —e. We choose to work
in Coulomb gauge. Then the leading interaction between two slow particles is the
Coulomb interaction. Thus we take the spectator-heavy quark interaction to be
a Coulomb exchange. The resulting model is depicted in Fig. 4. Of course, one
has to add the graph shown and its complex conjugate. A convenient choice of
kinematic variables is shown in the figure. The three-momentum of each particle
is indicated in a notation in which the z-component is givén first, followed by a
transverse vector standing for the transverse components. (We indicate 3-vectors
with an arrow, ¢, and, as in Sec. 2, transverse vectors are in bold type, q, while
energy and z-components are explicitly indicated, or re-expressed in terms of ¢*

and ¢”.)

We take hadron A to have a large momentum F 4 along the positive z-axis,
while hadron B has a large momentum Ep along the negative z-axis. (We take

the incoming hadrons to have zero mass for simplicity.)

We shall write the amplitude for this model using time ordered perturbation
theory. We need several ingredients. The first is the heavy quark production
vertex, which we take to be —1G. The second ingredient is the Coulomb poten-
tial, +¢e2/g2%. The third ingredient is wave functions for the incoming hadrons.
For hadron B, we use a wave function ¥p(zg) such that |¥g(zg)|*dzp is the
probability to find the active quark with momentum fraction zp. For hadron
A, we use a wave function \IIA(zA,k;f) such that |\IIA(xA,k;f)|2dzA dk di is the
probability to find the active quark with momentum fraction z4 and transverse
momentum k and the slow spectator quark with momentum l. (For this section
we adopt a notation such that dk is a 2-dimensional transverse integration, while

di’ is a 3-dimensional integration.) Since the bound states are stable, the wave
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functions may be taken to be real valued. The final ingredients that we need
are the energies of the initial state, the intermediate state between the time the
heavy quark was created and the time of the Coulomb interaction, and the final
state. (We do not need the energies for the states before the heavy quark was
formed because the corresponding energy denominators will be included in the

bound state wave functions.) Referring to Fig. 4, we find

E;=E4+ Ep,

E1:(1—xA)EA—IZ+%+(1‘xB)EB+ﬁa;—EB
+m+(f+nf)j+M+(_I32—Ti)2, (30)

E2:(l—xA)EA—lz+%(£F_l)z2c'—A—;g:+(l_xB)EB+m
+m+%+M+f—A;-

In writing these expressions, we have used the non-relativistic approximation
for the slow particles and the extreme-relativistic approximation for the fast

particles.

We can now assemble these ingredients to form the cross section in which the

slow spectator quark is detected. For the Born term we have

[‘f—‘ﬂ] = /de \IIB(a:B)zjdzAdk Ua(za, ;1)
del Born (31)
2

X m&(xAEA —zgEp — Pz)éz(k —P)(27)6(Er — E»).

For the first order terms depicted in Fig. 4, we have
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do / g / .
= = —— d:E \I’ r
[dP dl ] 14t order (27!’)3 B B( B)

x / doadk Ua(za, kD) Ua(za — g5/ Bark — @i + )

2

G 2

X M&(zAEA - xBEB - Pz)6 (k - P)

. . 2

? re

—— — (27)0(Er - E
XEI—E1+i€q_‘2(7T)( I 2)

+ complex conjugate .

(32)

These expressions can be simplified by using the é-functions to eliminate the k,

T4, and zp integrations, with
k=P (33)

and
2E 4 2E 4

Tp=
(34)

2FEp 2Fp )

B =

Here the first terms are the most important, but the small correction provided by
the second terms will be needed for our calculation of the inclusive cross section
because of a cancellation of the leading term in that cross section. Corrections
of order [2 /2m and P2 /2M have been neglected relative to P, and I, in the
second terms of (34), in accordance with the non-relativistic approximation of
our calculation. Terms with more powers of E4 or Eg in the denominator have

been neglected.

In the first order term, we use the energy conserving é-function to make the

replacement E; — E3 in the energy denominator. Then Eq. (30) gives

*-('+q?* P*-(P-q)

Ey, —FE =
—-V.q— ,
1 2mp
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where V is the relative velocity between the light and heavy quarks and mpg is

the reduced mass of the heavy quark-light quark system:

. I P
V=",
m M
(36)
m mM
B M+m
Having made these manipulations in Egs. (31) and (32), we obtain
do TG? =,
—— = Vp(zp)® Ya(za, P;i)?, 37
5] = e Yalea i) 7

and

do TG? dq "
— = VUpg(zp 2/ U 4(z4,P;1
[dP dl :|1" order M3s ( ) (27[‘)3 ( )

X Ua(za—qz/Ea,P — q;l + q)

2 e?
V-q+ q*z/sz]P FEh
(39)
In writing Eq. (38), we have noted that we must take the expression computed
from Eq. (32) and add its complex conjugate. The result is to change 1/ [17 -7+
q%/2mp + i€ to 2/[‘7 - @ + @%/2mpg]p, where the P indicates a principle value
prescription for the singularity.
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Small Relative Velocity Approzimation

It is evident from Eq. (38) that the first order correction to the cross section
is large when the relative velocity V is small. Let us therefore examine this cor-
rection in the limit V < 1. We notice that the typical value of ¢ that contributes
to the integral (38) is of order |§'| ~ m|V |. Thus, when V is very small we can

set ¢ = 0 inside the second factor of ¥4 in Eq. (38). This approximation gives

[‘f_‘Q] _ [L] ), (39)
dP dl 1%torder dP dl Born
where
— 2
wvy= [ |2 A (40)
(27)* |V - +q2/2mp]| p 4

A straightforward calculation gives

I(V) = f‘;a- (41)

Thus

do do To
[dP dl] [dP di ]Born{ 14 } (42)

in the small V approximation. We recognize this as the familiar first order
correction to production of slow charged particles in a Coulomb field.® At higher

. 6,28
orders it becomes ™’

do do 2ralV
—| = |—=—= (43)
dP di dP dl' | porn 1 — exp(—21at/V')

We learn from this example that the coalescence enhancement is large and
that it does not cancel when one requires that a spectator quark be detected with
velocity close to that of the heavy quark. In the QCD analogue of this model,

the factor a is to be replaced by «a; times a factor that depends on the color state
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of the two quarks. For instance, if the heavy quark carries a 3 representation of
color while the spectator carries a 3 representation and if the two quarks form
a color singlet, then the factor a becomes %as. The typical momentum transfer
in the coalescence interaction is mV, so the argument of a, should be roughly
mV, with m ~ 300 MeV. Of course, the use of perturbation theory is not strictly
justified for such a small momentum transfer, so we only expect Egs. (42) and

(43) to be qualitatively correct when applied to QCD.
Inclusive Cross Section

Let us now return to Egs. (37) and (38) for the first order correction to
the cross section and integrate over the momentum of the slow spectator quark
and over the transverse momentum of the heavy quark. It will prove convenient
to describe the longitudinal momentum of the heavy quark by its rapidity Y
and the longitudinal momentum of the light quark by its rapidity y. Since we
are assuming a non-relativistic approximation for the heavy quark and spectator

quark, these rapidities are given by

Y ~ P,/M , y =l /m. (44)

For the Born term, we obtain

da 7TG'2
- == dPdlmdy ¥ 2y P 12, .
[dY]Bom M?s / mdy ¥p(zp)* Ca(z4, P, my,]) (45)
where
M m M .

If we neglect the m/M terms in z4 and zp then we obtain the standard factorized
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form:

do G2
[W] 5 = mfA(fA)fB(i'B), (47)
orn
where
fA(:iA) = /delmdy \IIA(:EA,P;my,l)z,
(48)
f8(zB) = ¥5(zB)%,
and
Fa=2%(1+Y) , zp=2z3(1-Y), (49)
with
4 =M/2E, , 13=M/2Ep. (50)

For the first order term, we obtain, in terms of x4 and zp defined in Eq.
(46),

—

do TG? dq
— = —— [ dPdlmdy—— 2
[dy]w i~ 5 | T ATl V(o)

X \IIA(:EA’P; my, l)

m
x W4 ($A+$?4M (—2%) , P—q; my+q,, 1+q>
2 e?

X = =
[(y—Y)g:+V-q+ q2/2mg|p q2

We know on general grounds (see Ref. 1) that the large enhancement for
small relative velocities that we noted in the previous subsection must cancel
when we integrate over velocities and thus form the inclusive cross section. The
enhancement arises because the intermediate state energy denominator becomes

small when V is small. That is, there is an enhancement because the attractive
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quark-quark interaction has a long time to happen when V is small. However,
because time evolution is governed by a unitary matrix, interactions that happen
long after the heavy quark has been produced do not affect the probability for
the hard interaction that produced the heavy quark.

We will not rely on the general argument here, but will explicitly display the
cancellation that eliminates the leading term in the enhancement. To do so, let

us make a change of integration variables:

Y =y+gq./mgr

Qz:_Qz
(52)
P=P-q
I'=1+q
q=-q

This change of variables has two virtues. First, the transverse momentum argu-

ments of the two ¥p wave functions in Eq. (51) are mapped into each other:
P=P -( P-q=P

and

1=1+4 l1+q=1.

Second, the sign of the energy denominator is reversed:

[(U_Y)Qz'i‘ (% — %) q+ ;:R]

‘ ll PI q—‘IZ
_ () _ ! s = . ] R
= [(y Y)q, + (m M) d+5
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Since we integrate over 1,q, and P, we can drop the primes:
do TG? dq m q; 2
— = dPdlm
|:de| 1°t order M?s / (2 )3 < xBM mpg
X Wy xA+:z:A 23—(1— ,P; my + qzl
M mp M™

m qz qz m
x ¥ 0 — 2— 2 ,P—q; —qz, 1

o -2 e?
(y=Y)g:+V -q+ q2/2mpglp ¢

(53)

We see that we have obtained almost exactly the negative of the expression
(561) for the first order spectator contribution to the cross section. That is, the
integrated contribution must be almost exactly zero. The only difference be-
tween the two expressions (51) and (53) occurs in the longitudinal momentum
arguments of the wave functions. If these functions did not depend on longitudi-
nal momentum, then the spectator correction to the inclusive cross section (i.e.
integrated over spectator momenta) would vanish. This is easy to understand on
a heuristic basis. If the wave functions did not depend on the longitudinal mo-
menta of the partons, then the longitudinal position of the two colliding partons
would be exactly determined. Thus the time of formation of the heavy quark
would be exactly determined and the effects of the interaction with the light
quark would cancel exactly. This case may be contrasted with the case in which
the heavy quark formation time is somewhat uncertain. Then one cancels an
evolution operator U{oco,t) with an evolution operator U(oco,t')! for the conju-
gate state, where the times ¢ and t' are somewhat uncertain. An operator U(t,t)

is left over.

We also see that the shifts in the longitudinal momentum arguments of the ¥’s
are of order m/M, which will evidently lead to a suppression of the coalescence

contribution to the cross section by a factor m/M compared to the Born term.

29



The m /M factors are easy to understand. The natural time scale for the spectator
interactions is 1/m. The natural longitudinal size of a hadron is also 1/m, but
the fast quarks in the incoming hadrons are forced into Lorentz contracted disks
of longitudinal size (1/m) x (m/M). The collision time of the fast quarks is
thereby determined to within a time 1/M. Thus the Lorentz contraction factor
m/M —the factor appearing in the arguments of the wave functions-leads to a

suppression of the contribution by a factor m/M.

When we form the inclusive cross section we integrate over some regions where
the Coulomb approximation in our model is not valid, since the spectator and
the heavy quark do not have small relative velocity. Thus we keep the essential
fact of unitarity in the model cross section, but lose the proper properties of
one-photon exchange for particles with relativistic relative velocities. We thus
expect corrections from the exchange of transversely-polarized photons or gluons,
although such effects do not lead to low relative velocity distortions. We hope to

improve the model in a future publication.

We have seen from the above analysis that there is a large enhancement to
the Born cross section when v < 1, but that this enhancement is nearly cancelled
in the integrated cross section (assuming M > m). We conclude that there must
be a depletion of the cross section in the region of moderate values of v. It is
easy to see qualitatively how this comes about. The sign of the first order cross

section in Eq. (38) is determined by the sign of the energy denominator

V.q+q/2mp = ﬁ ((ma? +d)? — (maV)?]. (54)
When V < 1, there are contributions to the g-integral in Eq. (38) from regions
of both positive and negative values of the energy denominator. We have seen
that the net result is positive. When V is larger, the dependence on ¢ of the
wave function must be considered. The wave function favors values of ¢ near
I~ —m RV. In this region the energy denominator is negative. Thus a negative

result is obtained.
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We can exhibit the sensitivity of the cancellation to wave function variation
more precisely: we extract the leading non-cancelling piece of the coalescence
correction by taking the average of the expressions (51) and (53), writing the
difference of wave functions with slightly different arguments as a derivative. We
see that the leading contribution is of order m/M. After extracting this leading
contribution, we neglect all of the small terms in the arguments of the wave

functions. We also neglect the distinction between mgr and m. The result is

do TG? / dq
—_— =—— | dP dlmdy——
|:in| 1¢t order M?2s Y (27‘-)3

m qz a 0 2
X Wu(zh[1+Y - AlLP; m{y — ), 1 (55)
A

X \IIA(x%[1+Y - AL, P—q;m(y— ) + ¢, l+q)}’\

1 e?
((y—Y)g: +V-q+ q%/2m]p q2°

=0

X

From this form, it is apparent that X inside the curly brackets of (55) corresponds
to a simultaneous shift in the rapidities of the heavy quark and the spectator

quark within the wavefunction arguments.
Further Development of the Model

We have seen that the effects of interactions of the heavy quark with light
spectator quarks is suppressed by a factor m/M if we integrate over the heavy
quark transverse momentum and do not observe the spectator quarks. We now
seek to further refine our understanding of the nature of the leading term that
remains after the cancellation. To do so it will be helpful to consider an explicit

model for the wave functions that appear in Eq. (55).

We begin by replacing the squared wave function for hadron B by the parton
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distribution function :
‘I’B(.'I:B)2 — fB(-'EB)- (56)

We replace the wave functions for hadron A by factorized distributions repre-
senting: (1) Gaussian transverse momentum dependence; (2) z4 dependence for
the active quark as given by a standard parton distribution function; and, (3)
y dependence for the spectator quark given by a probability p(y)dy with the
function p(y) still to be modelled. Thus we write

) 2 _ I (k2+1%)/m?
Y a(za,k;my,1) mdy = fa(za)p(y)dy_5—ze (5415 /m?, (57)

We also adopt the definition
T =¢q,/m. (58)

Finally we shall use the appropriate relativistic generalization of the ¥ and f
arguments given by the replacement (1 +Y) — e*¥. With this replacement we

need no longer work in a frame where Y is small.

Given these substitutions, Eq. (55) becomes

[g%:l 1% order = a% [;—;] o /dy drI(y - Y,7)
X [pl/z(y)pl/z (v + r)( — %)ln{fB(x%e—Y)fA(z%ey)} (59)

- a%{/’l/ ()02 (y + )},

where

1 / dP dl dq e~IP*+(P-)+1+(1+q)?)/2m?

Iy-Y,7)= 274mS

T 1 (60)

(y—Y)r+V-q/m+712/2+q?/2m?p q2/m? + 72

Here we may work in the m/M — 0 limit for V and thus take V =1/m.
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The above form for I may be reduced to

Iy-Y,7) = sign(v) 7da70
0 0

I3

B —e+r/2) L oz
(1 +,3)e o aﬂg('Y af) , (61)

- 27

where y = (y—Y) +7/2.

The magnitude and sign of the first order correction, Eq. (59), to the inclusive
cross section do/dY are somewhat model dependent. However, a few general
conclusions are possible. We focus on the case where the interaction of the heavy
quarks with the spectators is attractive. We also assume that the spectator color
distribution p(y) tends to be concentrated over a limited range of y, y ~ yo. In
this case 7 will tend to be small in the integral of Eq. (59). We consider three

configurations and work in the overall center-of-mass frame where £4 = Fpg and

9 =2y = M/\/s:
1. Very fast heavy quarks with large Y such that 4 = z&eY — 1. In this
case momentum conservation requires that the spectators are concentrated

about a small value of yp. Since y—Y < 0, I < 0. For the typical behavior
f(2) ~ (1 — 2)?/z, the logarithmic derivative term in Eq. (59) takes the

form
9 In (1 —z%e¥)P(1 — z%eY)P _ [ pza _ pzB
Y z%z% l1-z4 11—zl

The first term in the brackets of Eq. (59) is thus positive and becomes
large since 4 is near 1. The y derivatives of the second term in brackets
will be negative for y < yo and positive for y > yo. Since I is smoothly
behaved near y ~ yo, these two regions tend to cancel and this term will
be small. Overall we see that the coefficient of m/M is negative and that

it can become large in the £4 — 1 limit of large Y.

2. Similar rapidities, y ~ yo ~ Y, for the heavy quark and spectator. This cor-

responds to momenta for the heavy quark and spectator system in the ratio
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M/m, i.e. the heavy quark still has substantial Feynman zr. Depending
upon the exact kinematic configuration the structure function argument = 4
may or may not be near an end point; the logarithmic derivative term in
the brackets of Eq. (59) will be positive and could be significant in size.
However, I(y — Y, 7) changes sign as we integrate y about yo ~ Y, and this
term will tend to yield a small contribution of uncertain sign. The second
term depends upon the correlation between the sign of I(y — Y, 7) and the
y derivative of the p’s. For y < yo ~ Y, I is negative and the p derivative
term is negative, while for y > yo ~ Y, I is positive and the p derivative
term is also positive. Thus the regions combine to yield a possibly sizeable

(depending upon how peaked p is) positive correction.

. A slow moving heavy quark with 0 < Y < Yy, = In(1/2%). The main
concentration of p will correspond to a moderate value of yg. Typically y —
Y > 0 and I is positive. The f derivative term in Eq. (59) will be positive
and not particularly large. As in case 1 the p derivative term changes sign
in a region where I varies smoothly, yielding a small contribution. Overall

we can obtain a small positive correction.

In all the above regions contributions from spectators contained in incoming

hadron B must also be included, and serve to symmetrize the correction with

respect to the beam and target directions when A = B.

To obtain more definitive results would require the development of a detailed

picture of the color correlations between the produced heavy quark @ and the

spectator system that is singled out in the formula, Eq. (59). A sum over all

such spectator systems is required. To the extent that these non-perturbative

corrections can eventually be measured, we shall be able to learn more about such

color correlations. However the above analysis indicates that the heavy quark

inclusive cross section will be increased by terms of order m/M for all but very

large rapidities, Y.
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4. Anomalous Features of Charm Hadroproduction

We now turn to an experimental review of those features of charm and bot-
tom hadroproduction that may have a direct connection to the non-perturbative
effects discussed in the preceding sections, or are closely related thereto. We first
ask whether or not the existing data for heavy quark production agree with the
leading order QCD predictions? Recent measurements of the total cross section
for b jets with pr > 5 GeV and |y| < 2, reported by the UA1 collaboration®®
agree well with the lowest order QCD predictions.a0 The theory should be re-
garded as having, perhaps, a factor of two uncertainty due to lack of knowledge of
the precise gluon distribution functions and higher order corrections. It remains
to be seen whether lowest order theory will also yield approximate agreement
with experiment for pr < 5 GeV where the type of corrections we consider here

are largest.

Whether the data for charm hadroproduction agree with the leading order
QCD predictions is problematic. For example, the leading fusion contributions
predict cross sections which are essentially additive in the nucleon number of
a nuclear target. The FNAL measurements of Ref. 14 however show an A—

dependence characteristic of shadowing and diffraction.

An important question for our work is whether there is evidence for a leading
particle effect; i.e., a correlation of the produced charmed hadron with the hadron
beam quantum numbers. This effect is not predicted by the leading order QCD

predictions.

The pp — A°X data®® from the ISR gave the first indications that charm pro-
duction may be much flatter in longitudinal momentum than expected from the
very central gluon fusion subrocesses. This appears to be confirmed by Serpukhov
data® for 40 GeV neutron carbon collisions: dN/dzp(nN — A.X) ~ (1 —
zr)15%05 for zp > 0.5. However, recent data from the LEBC-EHS experiment12

at the SPS for incident 400 GeV/c protons do not show a clear signal for A°
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production at large zr. The LEBC experiment has also taken data at Fermilab
with a 800 GeV/c proton beam. 13 Neither LEBC experiment reports a leading
particle effect for D production by protons, and the energy and normalization of
the pp — DX cross section appears consistent with the simplest QCD estimates.
The moderate growth in the magnitude of the D production cross section 13 with

energy also is difficult to reconcile with the ISR results.

Experiments do appear to agree on evidence for a leading particle correlation
for charmed hadrons produced by mesons. Recent data for high energy pion, and
kaon beams measured by the ACCMOR! and LEBC-EHS'? collaborations at
the SPS show sizeable contributions at large zr, although the statistics are not

large. A sample curve from Ref. 12 is given in Fig. 5.

Another intriguing anomaly in charm hadroproduction is seen in the WA-
42 experiment15 at the SPS, which reports copious production of the A (csu)
charmed strange baryon in 135 GeV £~ collisions on a beryllium target. Evidence
for production of the A* in neutron nucleus collisions has also been reported by
the E-400 experiment at FNAL.' In this latter experiment, the cross section
appears to be fairly flat over the measured range of 0 < zy < .6, with A-
dependence of order A-7°*12, In the WA—42 experiment the At is observed in
the AK~w*#T channel with a hard distribution (1 — zr)"*°7 for zr > 0.6. (A
schematic representation of this reaction, to which we shall refer later, is given in
Fig. 6.) The corresponding cross section times branching ratio (taking the above
form for all zf), for forward zp is 4.7 ub/nucleon assuming A! dependence. If the
branching ratio for thé measured channel is 3% to 5% this implies a total cross
section in the 100 to 150 ub range. Even larger cross sections might be expected
for the production of charmed-strange (csd) baryons which carry two valence
quarks of the ¥~ (sdd). Certainly the experimental results suggest the possibility
of systematically enhanced production of heavy quark states by hyperon and kaon

beams.
We now turn to a consideration of the extent to which the above anomalies can
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be attributed to the pre-binding/coalescence enhancements discussed in detail in

Sec. 3, or to other closely related non-perturbative effects.

5. Breakdown of Factorization and Final State Interaction Effects

Let us review from an intuitive point of view the impact of the calculations
presented in Secs. 2 and 3. We first focus on the process v — utu™ in the
presence of the Coulomb field of a nucleus. In Sec. 2 we found that this QED
process fitted into the usual factorization formalism provided the muons could be
considered as having relativistic velocities in the rest frame of the nucleus. Indeed
the eikonal techniques we employed allowed us to obtain a direct understanding
of the Born cross section in terms of a hard scattering process convoluted with
the photon distribution function arising from the nucleus. However, we also
know (and could demonstrate using techniques like those presented in the Sec.
3) that for small velocities of one of the muons relative to the nucleus the Born
cross section is completely unreliable. The cross section is strongly distorted for
relative velocities vt and v~ of the u or u~ with respect to the nucleusvy < Za

by multiple soft Coulomb interactions

do (vZ — €X) = doo [(CH_S(;'"_C_‘_)]. (62)

Here doyg is the Bethe—Heitler cross section computed in Born approximation, and
¢+ = 2nZafvt, ¢ = 2nZa/v™. These results are strictly valid for ¢; < 1, but
¢_ can be unrestricted. The effect of the correction factor is to distort the cross
section toward small negative-lepton velocity (relative to the target rest frame).
As v~ = 0, the enhancement is so strong that even the threshold phase-space
suppression factor in o is cancelled. Conversely, the cross section is exponentially

damped when the positive lepton has low velocity.

An analogous effect evidently would also occur in QCD for a heavy colored
target. We can estimate® this QCD prebinding effect by replacing 7Za —
(4/3)7as(Q?) in the QED distortion factor, Eq. (62). (We take Q* to be the
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relative momentum of the c—quark and the spectator system and limit |a,| < 4.)
Clearly this gives only a very rough estimate of physics controlled by QCD non-
perturbative effects. The behavior predicted by this model indicates significant
increases in the magnitude of the heavy quark production cross sections and

significant skewing of the heavy particle momentum distribution towards large
zp. (See Fig. 7.)

This is not exactly the same as the configuration of interest in establishing
a connection with the anomalies found in charm production. There the target
is a color singlet composite of constituents that are relatively light compared to
the charm mass scale. In Sec 3 we analyzed the QED analogue of production of
a single heavy colored object, @, in the presence of such a target. We saw, as
expected, that the inclusive cross section for production of @ exhibited factor-
ization in leading order in Mg. However, we found corrections to the standard
factorized formula for the inclusive cross section of relative order u/Mg; these
corrections may be large for charm production. In addition, we examined the
case in which spectator particle momenta are measured. In this case, an at-
tractive spectator—heavy-quark interaction can dramatically enhance the cross
section in the region in which the light spectator, ¢, is moving slowly relative to
Q. We also saw that this low relative velocity enhancement must be compensated
by depleting the cross section in regions where the ¢ and @ have large relative

velocity.

We can now relate these findings to the experimental situations described
in the previous section, which appear to exhibit anomalies relative to the per-
turbative predictions based on factorization. First imagine producing a heavy
quark, Q, at a given rapidity Y, and consider the cross section as a function of
the spectator quark, ¢, rapidity y. When y ~ Y the cross section will be greatly
enhanced, according to the QED analogue results of Sec. 3, if the ¢ and @ are
in an attractive channel. This situation corresponds physically to ¢ and Q be-
ing part of the same bound state. Thus we predict that charmed bound states

formed from a charm quark of given Y and a spectator fragment (with y ~ Y)
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will be substantially enhanced over estimates based on perturbative charm pro-
duction followed by cross section-conserving “recombination” 3 of the charm
quark with spectator quarks. However, to avoid inconsistency with the predicted
higher twist nature of the inclusively integrated spectrum, there must be a com-
pensating depletion of the cross section in other configurations, such as that in
which y is sufficiently different from Y that the charm quark and spectator quark
fragment independently into the observed final state hadrons. The net effect will
be a redistribution of the inclusive charm cross section in favor of those charmed
hadrons whose location in rapidity and whose quark content can both be clearly
identified as requiring spectator quark content. This is what is observed, i.e.
enhanced production of charm in the forward low pr region, especially when
contained in hadrons, such as the A., that are clearly most likely to arise as a

combination of fast spectators with a charm quark of similar rapidity.

As discussed in Sec. 3, the inclusively integrated spectrum depends upon
the detailed distribution of color charge in the spectator system. Unless the
heavy quark color is primarily balanced by that of a spectator of very similar
rapidity, the enhancement of recombination bound states is likely to be rather
closely compensated by depletion in the spectrum of hadrons containing the heavy
quark that are formed by independent fragmentation. In the case of charm the
higher twist restoring depletion would occur in the spectrum of hadrons that are
most likely the result of independent fragmentation of the produced charm quark.
Experimental determination of the inclusive heavy quark spectrum is not trivial.
It requires summing over the inclusive cross sections for all hadrons containing

the heavy quark.

As we have emphasized, unlike final-state interaction corrections to hard scat-
tering processes, the corrections discussed in this paper to semi-inclusive produc-
tion of states containing a heavy quark and spectator in an attractive channel
coherently enhance the production process and are not limited by unitarity to be
of O(1). If there are strange quarks in the incident-hadron, then the distortion

and enhancements in cross sections for spectator-containing hadrons are likely to
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be magnified, since a strange quark tends to be more nonrelativistic than u or d
quarks in a hadron and thus more effective in “capturing” the heavy quarks that
tend to be produced moving slowly in the laboratory frame. This could explain
the relatively copious production of the A (csu) in the ¥~ fragmentation region,
and suggests an important role of hyperon and strange meson beams for charm

and heavy particle production experiments.

Finally, we would like to point out that there are several tests of the basic
Sommerfeld correction underlying coalescence that can be performed in the near
future. In the attractive channel ete™ — QQ, near threshold, enhancements in
the form of resonances occur, and these resonances are more or less dual to the
enhanced perturbative cross section. A similar result is expected for the reaction
ete™ — 4QQ in the region where the final state v has large pr and the QQ system
has low mass. In contrast, the reaction ete~ — gQQ corresponds to the QQ being
in a repulsive color channel, and in the region where the g has high pr and the QQ
invariant mass is low, a diminished cross section (with respect to the perturbative
prediction) should be observed. One can compute in perturbation theory the
magnitude of the repulsive color factor in this latter situation compared to that
for the former attractive case. One obtains a 4/3 in the color singlet attractive
channel and —1/6 in the color octet repulsive channel, where the relative sign
indicates that the first is repulsive and the second attractive. This prediction may
already be testable using available data. Similarly in the reaction gg — ¢QQ,
studied perturbatively in Refs. 7 and 8, a high pr g trigger, coupled with low
invariant mass for the QQ system corresponds to a repulsive QQ channel (on
average) and overall suppression with respect to the lowest order perturbative
prediction is predicted. Relative to the above color group factors this channel
also has weight —1/6. In repulsive channels the Q and Q would presumably end
up in a QQ bound state rather infrequently, preferring to fragment independently
into hadrons containing @ or Q, respectively. Summing over all such production

modes would be required before comparing to the perturbative prediction.
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6. Intrinsic Heavy Quarks

We turn now to a brief consideration of other non-perturbative and anoma-
lous effects that could also play a role in explaining the experimental data re-
viewed in Sec. 4. The intrinsic heavy quark concept, discussed in this section,
is closely allied to the ideas of coalescence: the latter is a non-perturbative final
state re-interaction effect, while the former arises from initial state interactions.
Both are predicted to be higher-twist contributions at the fully integrated inclu-
sive cross section level, but yield enhancements in special regions of phase space.
Since the momentum of a charmed hadron tends to follow the momentum of the
produced charmed quark (the Bjorken—Suzuki effect ), the longitudinal mo-
mentum dependence of the charm hadroproduction data suggest that the charm
quarks themselves have large momentum fraction in the nucleon. Such a pos-
sibility can be checked by measurements of deep inelastic scattering of leptons
on the charm constituents of the nucleon. The available high Q? data from the
EMC colla.bora,tion,17 as extracted from uN — ppX data, seem to indicate an
anomalously large c(z,@?) distribution at large Q% and zp; ~ 0.4 compared to
that expected for the photon-gluon fusion diagrams or, equivalently, from QCD
evolution. Although the data has low statistics and thus could be misleading,
it suggests the existence of mechanisms for charm production other than the

standard photon-gluon fusion subprocess.

Dimension-six contributions to the effective Lagrangian imply the existence
of Fock states in the nucleon containing an extra QQ pair.22 (See Fig. 8.) Even-
tually nonperturbative methods such as lattice gauge theory or discretized light
cone qua.ntiza,tion36 should be able to determine the heavy particle content of
meson and baryon wavefunctions. At this time we can deduce®*®” the follow-
ing semiquantitative properties for intrinsic states such as |uudQ§>: (1) The
probability of such states in the nucleon is nonzero and scales as m(sz. (2) The

maximal wave function configurations tend to have minimum off-shell energy,
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corresponding to constituents of equal velocity or rapidity, 1.e.,

T = %)—‘ o« /(K2 +m?), . (63)
Thus intrinsic heavy quarks tend to have the largest momentum fraction in the
proton wave function, just opposite to the usual configuration expected for sea
quarks. (3) The transverse momenta of the heavy quarks are roughly equal and
opposite and of order mg, whereas the light quarks tend to have soft momenta
set by the hadron wave function. (4) The effects are strongly dependent on the
features of the valence wave function; the intrinsic heavy quark probability is thus
presumably larger in baryons than in mesons, nonadditive in nucleon number in
heavy nuclei, and sensitive to the presence of strange quarks. In deep-inelastic
scattering on an intrinsic charm quark the heavy quark spectator will be found

predominately in the target fragmentation region.

The intrinsic charm structure function will not become fully observable unless
the available energy is well above threshold: W = (¢ + p)? > W} = 4m2Q.
The correct rescaling variable for deep inelastic muon scattering is roughly =z =

+ W2 /W2, not z = zp, + mz /Q? which is appropriate to charge-current

single heavy quark excitation.

The presence of a hard-valence-like charm distribution in the nucleon can, at
least qualitatively, explain some of the anomalous features of the charm hadropro-
duction data discussed above. The fact that the ¢ and ¢ as well as D and D
distributions are harder than the corresponding strange particle distributions
can be attributed to the fact that the skewing of quark distributions to large
z only really becomes effective for quarks heavier than the average momentum
scale in the nucleon. One can account for leading particle effects and the fairly
flat A, ISR and Serpurkhov cross sections if there is coalescence of the intrinsic
charm quarks with the u and d spectator quarks of the nucleon. We note that
recombination itself cannot explain the comparable distributions observed in the

LEBC experiment for proton production of D and D, unless it is the heavy quarks
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that carry most of the momentum. Since the intrinsic contribution is associated
with higher twist operators, it is suppressed by a factor of 1/ mZQ relative to the
fusion contributions, and is thus unlikely to be very important for b or t—quark

hadroproduction.

The presence of intrinsic charm quarks in the nucleon also has implications
for other hard scattering processes involving incident charmed quarks. In general,
the charm quark in the nucleon will reflect both extrinsic and intrinsic (1/m?)
contributions. Using QCD factorization this implies significant intrinsic charm
contributions to hard scattering processes suchas ¢ +¢g — ¢ + X at p%,- > 4m?,
with the intrinsic contribution dominating the large £ domain. The characteristic
signal for such contributions is a ¢ spectator jet in the beam fragmentation region.
Similarly, heavier quarks and supersymmetric particles of mass m contribute to
intrinsic Fock states in the nucleon at order 1/m?. The intrinsic §(z) or §(x)
distribution is again predicted to be largest at large . Hard scattering processes
such as § + § — A + v can produce purely electromagnetic monojet events.
Note that the associated intrinsic supersymmetric partner appears in the beam

fragmentation region.
7. Diffractive Hard Processes

We review this type of process as another example of a situation in which the
results for heavy quark production cannot be obtained perturbatively, and, thus,
experiments involving heavy quark production could shed light on the nature of
non-perturbative QCD. The situation of interest is that where production of the
heavy quark system occurs diffractively in the hadron collision, that is, without

excitation of the target. Two pictures have been given for this process:

(1) Diffractive excitation.’”® When a beam hadron fluctuates into a Fock
state such that all of its constituents are at small relative impact parameter, it
interacts minimally because of its small color dipole moment. Since the normal

states interact strongly, the small impact valence Fock state materialize as ¢g
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or qqq jets. In the case of intrinsic heavy quark Fock states ¢gqQQ@ with small
transverse size, the incoming nucleon can be diffractively excited into a forward
produced system containing a heavy quark pair. An analysis of such processes

based on the Good and Walker two-component formalism is given in Ref. 24.

(2) The Pomeron as a gluon source.’®'® If one treats the Pomeron as a com-
posite system with gluon constituents, then the gluon-gluon fusion process leads
to diffractively-produced heavy quark systems. The analysis of such processes is

given in Ref. 38.

Both pictures of diffractive production lead to similar final states and cross
section estimates. In particular the total production rate has a predicted nominal
nuclear number dependence o ~ A%/3. However, the zy distribution of the heavy
quarks system tends to be harder and the mass of the diffractive system smaller

. e . 39
in the intrinsic charm picture.

Experimental investigations of such processes could significantly further our

understanding of non-perturbative QCD.

8. Summary

There is little doubt that the standard perturbative QCD predictions are
accurate for very massive heavy quark production. Indeed, the two calculations
in this paper confirm that corrections to the standard factorization formalism
are suppressed by powers of the heavy quark mass. Nevertheless, there are in-
teresting and important corrections at low transverse momentum in the beam
and target fragmentation regions when the quark mass is not too large. These
are the kinematic regions where intrinsic contributions may appear and coherent
effects can occur as the produced quark and spectator fragments coalesce. As re-
viewed here, the data appear to have anomalies in these regions. It is clearly very
important to verify these effects, particularly leading particle effects, enhance-
ments due to hyperon beams, the A-dependence, the importance of diffractive

production, and leading particle effects. From the theoretical perspective, the
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charm production data provide a window to the interface of perturbative and

nonperturbative dynamics.
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APPENDIX

We wish to evaluate the integral (14) for the muon pair production cross

section

do/dzcdzp = %Mzezzczp5(1 — 2o — zp)(27) 3 / d*xc / d*xp
(A.1)

x Ko(Mlxc —xpl|)*(2 — [xg /xp]"4* — [x& /xp] %) .

We begin by writing this integral in the form

do/dzcdzp = + M*e*zc2pb(1 — z¢ — zp) (27) 3 / d’r Ko(M|r|)?r?1(0) , (A.2)

where the integral I(¢) is defined by

I(e) = r“2+2‘/d2xc/ d*xplxc| ¢|xp| ¢6(xc —xp — 1)
(A.3)
x (2 - [xb /xb 2o — b /xb| ) |

(I(0) contains the infrared divergence discussed in Section 2. Here the parame-
ter €, instead of a screening length, regulates this divergence.) On dimensional
grounds, one knows that I(e) is independent of r. Thus the integral of the Bessel

function can be performed immediately to give
/ d’r Ko(M|r|)®r? = 2m/3M* . (A.4)
This leaves the integral I(€). It can be evaluated by considering the integral,
J(e) = /d2rexp(iq-r)r2_2€I(e) . (A.5)
One one hand,
J(e) = m(q’/4) 7T (2 — ) /T(-1 + ) I(e) . (4.6)

On the other hand, one can perform the integral for J(¢) as a sum of products
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of Fourier transforms of a pure power of |x|:
J(e) = /d2xc/d2xl) exp(iq - X¢c —iq- zp)|xc| ¢|xp| ¢

x (2 = [x&/xp] 7 — [xg/xD) %)

e S

I'(}€)? I(3e—iZa)T(ie+iZa)
(A.7)
Thus we can identify

T(—-1+¢€l(1—1¢)?
re2- e)I‘(% €)?

I(e) = 27r{

T(~1+¢)(je—i1Za)T(1-Le—iZa)(ie+iZa)T(1- te+iZa)
F2-er(1+3e—iZa)T(1+1e+iZa) '

(A.8)
We can now expand about € = 0, using
T(z€) = (2/)(1 - §ve+--1),
F(l—%€)=1+%’7€,
F(-1+e¢) =1/ )1+ [1+]e+---),
F'2-€¢=1—-[1—Ale+---,
I(Xtle)=T(X)1+lep(X)+--),
where v = 0.577... is Euler’s constant. This gives
I(e) = —2n(Zo)?[1/e + 2| + 27 (Z ) [$(1 — iZa) + (1 + iZa) + 27]
(A.9)

= —2n(Za)?[1/e+ 2] + 4n i(——l)”g@n +3)(Z )"t

n=0

where ¢ is the Riemann zeta function.
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We can now assemble the result:
do/dzcdzp = (e2/12rM?*)z2c2p6(1 — 20 — 2p)

x {—(Za)*[1/e+ 2]+ (Za)*[$(1 — iZa) + (1 +iZa) + 27]} .
(A.10)

This is the result reported in Section 2.

Notice that in Eq. (A.1) the dominant contributions come from |x¢ — xp| ~
1/M. However, there is an infrared divergence coming from the region |x¢| ~
|xp| > 1/M. In the calculation, this divergence has been regulated by the factor
(|xc||xp|)~¢. Thus contributions from this large impact parameter region appear
as a factor of 1/¢ in the calculation. Finally, as expected from the argument early

in Sec. 2, this 1/€ appears only in the Born term.
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FIGURE CAPTIONS

. Lowest order diagram for lepton pair production on a heavy nucleus.

. Lepton pair production in the field of a nucleus, viewed from the nuclear

rest frame.
. Four diagrams contributing to Eq. (17).

. Basic diagram illustrating the production of a single heavy quark, @, in a

hadron collision, via the subprocess g¢ — @. Various spectators are shown.

. The zF distribution for 77p — DX at 360 GeV/c measured in the LEBC-
EHS experiment (Ref. 12): (a) D mesons containing valence quarks of the
pion; (b) nonvalence D mesons. The curves represent fits (1 — zp)™ with

n = 1.8 and n = 7.9, respectively.

. Schematic representation of AT production by hyperon beams. The multi-
gluon exchange can represent either intrinsic heavy ¢¢ contributions to the
¥~ wavefunction (an initial state effect) or prebinding distortion from final

state interactions.

. The Bethe-Heitler cross section ¥Z — £t£~ Z in Born approximation (solid
curve) as a function of the positive lepton energy. The dotted curve shows
the modified spectrum due to multiple scattering Za — (4/3)a;(Q?). We
have used a;(Q?) = 47/(Bo €n(1 + Q%/A%)), |as| < 4, where A = 200 MeV

and Q? is the 4-momentum squared of the lepton relative to the target.

. Representation of an intrinsic heavy quark Fock state in the proton.
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