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Abstract: The large scale behavior of systems having a large number of interacting degrees of
freedom is suitably described using the renormalization group from non-Gaussian distributions.
Renormalization group techniques used in physics are then expected to provide a complementary
point of view on standard methods used in data science, especially for open issues. Signal detection
and recognition for covariance matrices having nearly continuous spectra is currently an open issue
in data science and machine learning. Using the field theoretical embedding introduced in Entropy,
23(9), 1132 to reproduce experimental correlations, we show in this paper that the presence of a signal
may be characterized by a phase transition with Z2-symmetry breaking. For our investigations, we
use the nonperturbative renormalization group formalism, using a local potential approximation to
construct an approximate solution of the flow. Moreover, we focus on the nearly continuous signal
build as a perturbation of the Marchenko-Pastur law with many discrete spikes.
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1. Introduction

The renormalization group (RG) is one of the most important discoveries of the
twentieth century in physics. It is a more general idea rather than a specific law of nature,
aiming to extract relevant features of statistical or quantum states in a modern conception
due to [1,2]. Introduced in the area of statistical physics, it is, in particular, the most
powerful concept at explaining the universality of large distance physics for systems
involving a very large number of interacting degrees of freedom without requiring a
complete description of these fundamental degrees of freedom. The RG explains the
universality and efficiency of effective descriptions of physical laws through a progressive
dilution of information with coarse-graining, which is absorbed into the running parameters
defining effective theory [3,4]. The most universal formalization of the RG [5–13] is based
on the existence of an intrinsic hierarchy of degrees of freedom in such a way that we
can progressively ignore some of them, and “integrated” in a less fundamental effective
description for the remaining ones. For this reason, the RG is particularly relevant in
many-body physics, for all problems involving a very large number of interacting degrees
of freedom. In physics, this hierarchy is intrinsically related to the notion of scale; and
RG aims to construct large scale effective theories integrating out microscopic degrees of
freedom in such a way to preserve long-distance physics (see [5–13]). More generally, the
Kadanoff and Wilson idea is the statement that the best way to study a sub-number of
degrees of freedom in a large system is to integrate out the remaining degrees of freedom.
Standard incarnations of the RG take the form of a flow in the formal space of Hamiltonian’s
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(log-likelihood in probability theory), describing a sequence of distributions having the
same long-distance physics.

Data analysis and machine learning both aim to extract relevant features from among
data sets of very large dimensions. This is in particular the case within the big data
paradigm. Principal component analysis (PCA) (see [14–28]) looks for a linear projection
into a lower-dimensional space, keeping only the relevant features, which is exactly what
the RG aims to do. For this reason, the RG is expected to be a relevant and competitive
approach to standard PCA, and perhaps a solid alternative in context where PCA fails.
Standard PCA work well for spectra involving a small number of discrete spikes. In that
way, one expect the existence of a “gap” in eigenvalues, meaning that only a small number
of eigenvalues capture a large fraction of the total covariance matrix. In this paper, we focus
especially on the nearly continuous spectra issue. For such a spectrum the gap goes to zero,
and standard PCA fails to provide a clean separation between “what is relevant” and “what
we can ignore”. In a computational point of view, the origin of the problem can be traced
from the intrinsic computational hardness of finding optimal k-means clustering (the planar
k-means problem being, for instance, NP-Hard), see [29]. For this reason, RG is expected to
be a relevant and competitive approach to standard PCA. This can be achieved through a
field theoretical embedding, as considered in [15,16], from an analogy with what happens
in standard field theory. This field theory can be viewed as describing some unconventional
“matter” filling an abstract space of dimension 1. For ordinary field theories, the number
of relevant terms in the Hamiltonian spanning the distinguishable distributions at large
scales depend on the dimension of space d. However, a moment of reflection shows that
it is indeed a property of the momentum distribution ρ(p2) = (p2)d/2−1 involved in loop
integrals. From this elementary observation, it seems reasonable to investigate the RG flow
associated with the eigenvalue distribution of the covariance matrix through a suitable
field theoretical embedding that is able to reproduce (at least partially) the data correlations
and to extract the relevant features of the distributions. Note that such a strategy follows
the current point of view of field theory, understood as effective descriptions at a large
scale of some partially understood microscopic physics [1,2,30]. In this way, a signal could
be differentiated from noise by simple comparisons of the universality classes generated
by the relevant couplings. Note, moreover, that such a strategy does not allow à priori to
inferring of effective properties of data. In this paper, we only claim to build an effective
theory, in the same class of long-range equivalence as the “true” theory (see Figure 1).

Fundamental theories

Γ

RG flow

Full theory space

S1

S2
S3

Effective physics

Figure 1. Qualitative picture of the RG flow through the theory space. The initial Hamiltonians S1,
S2 . . . in the red bubble correspond to different microscopic physics in the same basin of attraction
toward IR scales described by effective Hamiltonian.

This point of view was the one developed in [14–17]. In these papers, the authors
were able to characterize the presence of a signal, and estimate the breaking point between
signal and noise, by the fact that the first non-Gaussian perturbation, which is relevant
for a purely MP distribution, becomes irrelevant for a sufficiently strong signal. In this
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paper, we focus precisely on the asymptotic aspects (IR) attached to the signal, and we
show that a phase transition, corresponding to a breaking of reflection symmetry, can be
associated with it. We justify the existence of an intrinsic detection threshold and show how
this threshold could be considered for the construction of a functional detection algorithm.
Finally, we mention some open questions.

The paper is organized as follows: In Section 2 we provide a short state of the art,
allowing us to position our work in the existing literature, especially in regard to the
continuous spectra issue. In Section 3 we present the theoretical framework and the
functional renormalization group for this unconventional field theory. In Section 4 we
investigate the behavior of the RG flow. We particularly focus on the shape of the effective
potential, and show that the size of the so-called symmetric phase decreases as the signal
strength disturbing a given background increases. This enforces a parallel between signal
detection and symmetry breaking; an intrinsic notion of “detection threshold” emerging
from the formalism. Section 5 is devoted to the conclusion and remarks.

2. Related Works

In this work, we continue our efforts to connect the important concept of renormaliza-
tion group (RG) with machine learning and data analysis tools [27,31–40].

In this investigation, our work follows a fruitful path for the use of RG in a context
connected with PCA [14,15,17]. Namely, the challenging context studied in this series of
works tries to address, with the lens of RG, the problem of signal detection in a continuous
spectrum where the distinction between signal and noise appears to be arbitrary with the
standard PCA.

It has already been shown that this continuous spectrum problem arises quite nat-
urally in different practical applications: in the study of neural activity data [41–43], in
biology [44,45], in particular with the study of single-cell data [46,47], in genetic data [48],
and in financial data [49,50]. Moreover, as this problem is related to the PCA, one might
expect even more applications in the future.

Following the non-perturbative framework introduced in [14,15], we have shown in
this study that this new way of detecting a signal in such continuous spectra is related to a
symmetry-breaking phenomenon. Note that this phase transition finding is in the same
vein as those well studied in the spiked model associated with the PCA [51–54].

Finally, we provide some arguments to emphasise the genericity of the proposed
approach. First, recall that this framework is based on the following assumptions, which are
quite general: (i) Sufficient proximity to the continuous approximation so that the sums can
be suitably replaced by integrals on the eigenvalue spectrum distribution; (ii) The effective
Gibbs distribution with which we are working can reproduce the exact correlations at two
points (given by the correlation matrix) in the limit where the cumulants of order greater
than two cancel each other out. Second, because of the generality of these assumptions, this
result is of course not limited to the Marchenko-Pastur distribution that we explored in this
paper as an example to illustrate the symmetry-breaking phenomenon. Indeed, there is
some evidence for the universality of this result concerning general statistical noise models
associated with continuous and positive spectra. In particular, it has been recently been
shown in [16] that this result is also valid for tensor generalizations of the covariance matrix
which are involved in the important tensor PCA problem [55–58].

3. Framework
3.1. The Model

We consider a set of data described by a big N × P matrix Xia for i = 1, 2, · · · , N
and a = 1, 2, · · · P. We assume N, P � 1. The covariance matrix C is the N × N entries
Cij = ∑P

a=1 XiaXja. Moreover, when the entries of X are independent identically distributed
(i.i.d.) variables, the eigenvalues of the matrix Cij/N converge in the weak topology in
distribution toward the MP law [59]. Figure 2 below provides a typical spectrum for
P = 1500 and N = 2000. We denote by µexp(λ) the empirical eigenvalue distribution.
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Let us recall the standard MP theorem [60]. We consider a N × P random matrix X,
whose entries Xia are (i.i.d.) with zero mean and finite variance σ2 (< ∞). We moreover
define the N × N Wishart matrix Y with entries Yij := 1

P ∑P
a=1 XiaXja. Taking limits N, P→

+∞ such that N/P = α ∈ (0,+∞), the eigenvalue distribution µexp(λ) converge toward
the MP law:

µMP(λ > 0) =
1

2πσ2

√
(λ− λ−)(λ+ − λ)

λα
1[λ− ,λ+ ](λ) , (1)

where λ± = (1±
√

α)2 and 1[a,b](x) = 1 for x ∈ [a, b] and zero otherwise. Note that for
P/N < 1 a contribution (1− 1/α)δ(λ) have to be added. Restricting on the values λ > 0
avoids to consider this contribution which play no role in the following.

In [14,15] the authors introduced a field theoretical embedding aiming to reproduce
data correlations. The framework describes a nearly continuous random field ϕ(p) ∈ R,
the variables p being defined such that p2 is an eigenvalue of the inverse covariance
matrix (Assuming zero modes of C are removed.) translated from its largest eigenvalue
1/λ0 (disregarding quantum corrections). The field is provided with a probability density
p[ϕ] := e−S [ϕ]. The functional Hamiltonian S being defined as:

S [ϕ] :=
1
2 ∑

p
ϕ(p)(p2 + m2)ϕ(−p) + gU[ϕ] . (2)

For g = 0, the model is purely Gaussian, and the 2-point correlations functions 〈ϕ(p)ϕ(p′)〉 =
(p2 + m2)−1δp,−p′ , where δ is the Kronecker delta and the notation 〈X[ϕ]〉 denotes the mean value
of the quantity X with respect to the probability measure e−S [ϕ] ∏p dϕ(p). In that case, we
reproduce exactly the experimental 2-point correlations given by the eigenvalues of the covariance
matrix if, firstly m2 = 1/λ0, and secondly the momenta p are such that p2 is distributed following
the eigenvalue distribution of the covariance matrix. We denote as ρ(p2) this eigenvalue distribution
inferred from the knowledge of µexp(λ) (see [14,15]):

ρ(p2) =
µexp

(
1

p2+1/λ0

)
(p2 + 1/λ0)2 , (3)

the integration measure for the variable p reading as: ρ(p2)pdp. For MP law, we get explicitly:

ρMP(p2) =

√
λ+λ−

2πασ2
(p2)1/2

(p2 + 1/λ+)2

(
λ+ − λ−

λ+λ−
− p2

)1/2
, (4)

and for p small enough, ρMP(p2) ∼ (p2)1/2.
The existence of n-points correlations functions which cannot be decomposed as

a product of 2-point functions accordingly to the Wick theorem require to remove the
condition g = 0. The functional U[ϕ] is assumed to be a conservative and Z2-invariant
polynomial in ϕ of the form:

U[ϕ] =
M

∑
L=1

u2L δ0,∑2L
α=1 pα

2L

∏
α=1

ϕ(pα) . (5)

The model (2)–(5) is conservative in the usual sense in field theory, meaning that
momenta are conserved at each vertex. The choices of these interactions and the reflection
symmetry ϕ → −ϕ, that we assume in this paper are extensively discussed in [14–16].
Indeed, we are aiming to only construct an approximation and extract some relevant
features concerning the momenta distributions able to discriminate between data and noise.

Let us recall some of the main arguments underlying the choice of this model. In
the cases of practical interest the data sets describe a large number of degrees of freedom
that are not independent, but for which we have only partial knowledge of the probability
distribution of the different configurations. Generally, what we know empirically are the
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first and second moments, i.e., the mean and the variance. In such a situation, the maximum
entropy estimate is the best compromise (i.e., the least structured distribution) corresponding
to the empirical data [42,61,62]. One way to arrive at an action of the form of (2) is to
consider a specific case, from which we can easily proceed to an analytical derivation. One
can, for example, consider a system formed by N spins si = ±1 attached to the sites of a
lattice having an arbitrarily complicated structure. Assuming that the distribution has 0
mean and covariance C, the maximum entropy estimate for probability distribution p[σ] of
spin configurations σ = {si}match with the standard Gibbs-Boltzmann states,

p[σ] ∝ exp
(

1
2

N

∑
i,j=1

siKijsj

)
, (6)

for some matrix Kij matching with the constraint ∑σ p[σ]sisj = Cij. The derivation of the
underlying field theory follows the standard strategy allowing for the construction of the
Ginzberg-Landau model [63,64]. The corresponding distribution is now for a continuous
field φi ∈ R, and we arrive to the formal expression [16] p[φ] = exp(−H[φ]), with:

H[φ] =
1
2

N

∑
i,j=1

φi

(
C−1

ij − δij

)
φj +

1
12

N

∑
i=1

φ4
i + · · · , (7)

whose model (2)–(5) can be seen as a continuous limit. Note that such a continuum
limit is not too artificial. Indeed, nearly continuous spectra generally have a power-
law behavior at the tail, and such an effective field as introduced above is expected to
behave as do ordinary field theories. This, however, poses the problem of the dimension.
For the MP law, for instance, the momentum distribution at the tail of the spectrum
behaves like ρMP(p2) ∝ (p2)1/2, which corresponds to a field theory in dimension d = 3.
Obviously, finite size effects, or the presence of a signal, will modify the value of this
effective dimension, which in not an integer in general. To avoid this difficulty, we set the
dimension of the space to 1 in the definitions (2)–(5), while keeping a non-trivial moment
distribution ρ(p2); the last ensuring that the dominant effects of the RG are the same for
the effective theory or for a more exact and particular model. Note that it has been shown
for a 2D Ising model on a rectangular lattice [65,66], and making numerical simulations
using the Metropolis algorithm as time-evolution that the spectral density changes shape
in the vicinity of the critical temperature, behaving like a power law, whereas it agrees with
the predictions of the MP law for high temperatures.

Figure 2. A nearly continuous spectra obtained as a disturbance (by adding a large number of spikes)
to the spectrum corresponding to the covariance matrix of a random matrix with i.i.d. entries. For
such a spectrum standard PCA fails to provide a clean separation between relevant and irrelevant
degrees of freedom.
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Everything that follows in this article could be concerned only with this particular
model derived in the special context of discreet spins having complex correlations. But
a moment’s reflection shows that it must be more general. Indeed, one of our essential
results is that the presence of a signal in a spectrum in the neighborhood of the universal
MP law corresponds to a phase transition breaking the Z2 symmetry. But a spectrum
like the one in Figure 2 is completely blind to the nature of the microscopic degrees of
freedom. They could be spins, financial data, or anything else. The fact that one is in the
neighborhood of a universality class (that of MP) implies that any particular effective model
for the data must also have a universal aspect, independently of the particular nature of
the microscopic degrees of freedom. This is exactly what the results of this paper and its
predecessors [14–16] highlight. More details can be found in the references, as well as in
the forthcoming paper [67].

3.2. Functional Renormalization Group Formalism

The RG flow can be constructed from the standard Wilson-Kadanoff procedure, par-
tially integrating over modes having high momenta (ultraviolet (UV) modes). In such a
field framework, it is suitable to use the functional renormalization group (FRG) to con-
struct approximate solutions of the RG flow beyond perturbation theory (see [5–13]). The
FRG is based on the effective Hamiltonian for integrated modes below some scale k rather
than on the Hamiltonian for the remaining, not integrated modes above the scale k (infrared
(IR) modes). The effective Hamiltonian for integrated degrees of freedom is denoted as
Γk[M] and obeys to the first order differential equation [10]:

k
d
dk

Γk =
1
2 ∑

p
ṙk(p2)

(
Γ(2)

k + rk

)−1

p,−p
. (8)

In this equation:

• rk(p2), the regulator, plays the role of an effective mass, depending both on momenta
and infrared cut-off k. It vanishes for high momenta with respect to k (p2/k2 � 1),
whereas low momenta modes are frozen, and decouple from long distance physics.
Moreover, rk(p2) vanishes for k = 0, ensuring that all the modes are integrated out.

• The effective averaged Hamiltonian Γk[M] is defined from a slight modified version
of the Legendre transform for free energy Wk[j]:

Γk[M] + Wk[j] = ∑
p

j(−p)M(p) + ∆Sk[M] , (9)

where ∆Sk[ϕ] := 1
2 ∑p ϕ(p)rk(p2)ϕ(−p). The free energy Wk[j] being the generating

functional of cumulants, Wk[j] := ln
〈

exp
(

∑p j(−p)ϕ(p) + ∆Sk[ϕ]
)〉

. This definition

ensures that Γk reduces to the microscopic Hamiltonian S in the deep UV (k2 � 1),
where rk(p2) is expected to be of order k2. Moreover, for k = 0, rk(p2) vanishes, and
Γk reduces formally to the full effective Hamiltonian Γ, with all modes integrated out.

• The notation Γ(2) means second derivative with respect to M, the classical field defined as:

∂Wk[j]
∂j(−p)

= M(p) . (10)

The exact flow equation (8) works in an infinite-dimensional space of functions, and
cannot be solved exactly in general. A standard method to construct approximate solutions
is to truncate into a finite-dimensional subspace, assumed to be relevant from physical
conditions. In this paper, we focus on the local potential approximation (LPA), assuming
that the non-quadratic part of Γk may be spanned by local interactions of the form (5). For
the quadratic part, we use standard derivative expansion (DE), keeping only couplings of
order p2,
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Γk,kin[M] =
1
2 ∑

p
M(−p)(p2 + u2)M(p) +O(p2) , (11)

assuming to work in the IR region, and following the standard LPA assumptions, we project
the flow equation on a constant classical field, neglecting its momentum dependence:
M(p) = Mδp0. It is suitable to include the term of order (p2)0 in the non-quadratic part.
Denoting it as Uk, we assume the following expansion around non-vanishing vacuum κ for
constant classical field:

Uk[χ] =
u4

2!
(χ− κ)2 +

u6

3!
(χ− κ)3 + · · · , (12)

where χ = M2/2. It is well known that truncation procedure may introduce a spurious
dependence on the regulator [68]. However, as our investigations focus on the actual
potential, the potentially undesirable effects of the regulator are expected to be marginal.
Moreover, we will focus on the Litim regulator, which is optimal for the kind of truncation
we will consider [11,12] and allows us to compute analytically the loop integrals:

rk(p2) = (k2 − p2)θ(k2 − p2) , (13)

θ being the Heaviside step function.
The flow equation for the potential Uk can be deduced from the Equation (8), setting

constant classical field:

k
d
dk

Uk[χ] =

(
2
∫ k

0
ρ(p2)pdp

)
× k2

k2 + ∂χUk(χ) + 2χ∂2
χUk(χ)

.

It is suitable to introduce the flow parameter τ := ln
∫ k

0 pρ(p2)dp rather than k. More-
over, from the interpretation of the parameter u2 as the asymptotic effective mass, it is
suitable to assume the scaling u2 ∼ k2. In such a way, we can define a scaling (or canonical)
dimension for all of the couplings. In standard field theory, this scaling dimension allows
for the converting of the RG equations as an autonomous system. This is not true here,
because the shape of the momentum distribution is not invariant from dilatation. As an
analogy, it is as if the dimension of the effective space (fixing the shape of the distribution
in moments) depends on the scale k. The dimension of the operators in this context must
therefore also depend explicitly on the scale, and the equations never form an autonomous
system. The best compromise one can hope for is to deport all the explicit dependence into
the scaling dimensions. The reader may find some details in [14,15]. From this requirement,
one expects to define dimensionless quantities denoted with a “bare” as:

∂χUk(χ)k−2 = ∂χ̄Ūk(χ̄) , χ∂2
χUk(χ)k−2 = χ̄∂2

χ̄Ūk(χ̄) , (14)

leading to:

U′k[χ] =
(

dt
dτ

)2 k2ρ(k2)

1 + ∂χ̄Ūk(χ̄) + 2χ̄∂2
χ̄Ūk(χ̄)

; (15)

with the notation X′ := dX/dτ. Hence from (15) and (14), it is suitable to define:

Uk[χ] := Ūk[χ̄]k2ρ(k2)

(
dt
dτ

)2
, χ = ρ(k2)

(
dt
dτ

)2
χ̄ . (16)

The flow equation for the “dimensionless” parameter follows:

Ū′k[χ̄] =− dimτ(Uk)Ūk[χ̄] + dimτ(χ)χ̄
∂

∂χ̄
Ūk[χ̄] +

1
1 + ∂χ̄Ūk(χ̄) + 2χ̄∂2

χ̄Ūk(χ̄)
,
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where:

dimτ(Uk) = t′
d
dt

ln

(
k2ρ(k2)

(
dt
dτ

)2
)

, (17)

and:

dimτ(χ) = t′
d
dt

ln

(
ρ(k2)

(
dt
dτ

)2
)

. (18)

The flow equations for couplings κ and u2n maybe finally deduced from the condition:

∂Uk
∂χ

∣∣∣∣
χ=κ

= 0 ,
∂nUk
∂χn

∣∣∣∣
χ=κ

= u2n . (19)

We get for κ, u4 and u6:

κ̄′ = −dimτ(χ)κ̄ + 2
3 + 2κ̄ ū6

ū4

(1 + 2κ̄ū4)2 , (20)

ū′4 = −dimτ(u4)ū4 + dimτ(χ)κ̄ū6 −
10ū6

(1 + 2κ̄ū4)2 + 4
(3ū4 + 2κ̄ū6)

2

(1 + 2κ̄ū4)3 . (21)

and

ū′6 = −dim(u6)ū6 − 12
(3ū4 + 2κ̄ū6)

3

(1 + 2κ̄ū4)4 + 40ū6
3ū4 + 2κ̄ū6

(1 + 2κ̄ū4)3 . (22)

The corresponding flow equation can be deduced following the same strategy. Figure 3
shows the canonical dimensions for the first local interactions with the pure MP law. This
picture shows the existence of two regions. For the last third of the spectrum, only two
couplings are relevant, the sixtic being asymptotically marginal in accordance to power-law
counting (the MP law behaving as ρ(p2) ∼ (p2)1/2 for small p). In contrast, for the two
first thirds of the distribution, the number of relevant interactions may be very large. As
discussed in [15], standard methods in field theory do not work suitably in such a case.
One should expect that the field theoretical approach is relevant only for the last level of
the spectrum that we call the learnable region.

u4

u6

u8

u10

μ(σ=1)

1 2 3 4

1

k2

-4

-2

2

4

{μ, -dim}

Figure 3. Canonical dimensions for the first even local interactions; for ϕ4 (blue curve), ϕ6 (orange
curve), ϕ8 (green curve) and ϕ10 (red curve) associated to the purely MP law (purple curve) with
variance equals to 1.



Symmetry 2022, 14, 486 9 of 14

4. Z2-Symmetry Breaking and Signal Detection

Besides these analytic considerations, we provide in this section the first look at
a numerical investigation on a more realistic signal, as illustrated in Figure 2. In our
experiments, we focus on the distribution of the eigenvalues for two types of covariance
matrix in the regime of high dimensions (typically in our experiments we consider P = 1500
and N = 2000, which gives K(= P/N) = 0.75). First, we consider the covariance matrix
associated with i.i.d. random entries. The distribution of the eigenvalues of such a matrix
converges for large P and N but fixed ratio P/N toward the MP’s law, which we interpret
as a purely noisy data. Figure 2 corresponds to a random draw, for a matrix build as a
perturbation of the pure noisy data with a deterministic matrix of rank R = 65 (defining
the size of the signal). At this point, let us recall that we can characterize a signal by
the localization property of the eigenvectors of the R rank matrix, contrasting with the
delocalized nature of the degrees of freedom associated with noise (the bulk). In our
experiments, we fix the variance to one and K = 0.75. For such a spectrum, the learnable
region is expected between ∼2.5 and ∼3.4, where ϕ4 and ϕ6 are expected to be the only
relevant interactions (this is information that one can get from the study of the canonical
dimensions as illustrated in Figure 2).

To start, and following [14,15], we focus on the simpler version of the derivative
expansion (DE), expanding the effective potential Uk as a power of m := M/

√
N:

Uk(m, {u2n}) =
1
2

u2m2 +
u4

4!
m4 +

u6

6!
m6 . (23)

The derivation of the corresponding flow equations follows the same strategy as for (20),
(21) and (22), see [14,15]. In Figure 4, we illustrated different viewpoints of the 3D compact
regionR0 in the vicinity of the Gaussian fixed point where the RG trajectories, obtained
by the DE, ends in the symmetric phase, and thus are compatible with the symmetry
restoration scenario for initial conditions corresponding to an explicit symmetry breaking.
However, all these initial conditions are not expected to be physically relevant in the
deep IR. Indeed, for scales k2 ∼ 1/N, one expects to obtain a good approximation for the
exact covariance matrix. From construction, this imposes u2 to reach a finite value of the
order of the inverse of the larger eigenvalue of the spectrum. In turn, this imposes for the
dimensionless parameter ū2 to be of order N. The initial conditions compatibles with this
requirement are pictured in blue on the figure.

In Figure 5 we show the same regionR0 using LPA and Equations (20)–(22). We show
that this region it is still compact, but its size reduces as the signal strength increases. This
figure alone summarizes our findings. It shows that the appearance of a signal in the
spectrum reduces the size of the symmetric phase, and that some trajectories that initially
had their symmetry restored are now in the region of broken symmetry. The appearance
of the signal thus leads to an effective breaking of the Z2 symmetry, which is illustrated
in Figure 6 for a given trajectory in the purple region. On this figure we can follow the
evolution of the effective potential in the deep IR (i.e., for k2 ∼ 1/N), for an increasing
intensity of the signal which plays a role analogous to the temperature in the ordinary
physics of phase transitions. The figure also allows us to understand the existence of a
detection threshold. Indeed, if the presence of the signal reduces the size of the purple
region, it still has to affect the physical states, i.e., the blue region. As long as we are
in the intermediate region, the presence of the signal will have no appreciable effect on
the physical states. Note that the very definition of these physical states depends on the
precision of the measurements, and in particular on that of the largest eigenvalue.
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Figure 4. Different points of view of the compact region R0 (illustrated with purple dots) in the
vicinity of the Gaussian fixed point (illustrated with a black dot) for the DE formalism. In this 3D
region, corresponding to the case of pure noise, the RG trajectories ended in the symmetric phase,
and thus are compatible with a symmetry restoration scenario for initial conditions corresponding to
an explicit symmetry breaking. The blue dots correspond to RG trajectories associated to a physically
relevant states in the deep infrared, i.e., the trajectories for which the values of ū2 end with the same
magnitude of N = 2000. Axes are relevant couplings u2, u4 and u6.

Figure 5. Cont.
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Figure 5. Left: The nearly continuous spectra obtained for different intensities of the signal. From
top to bottom we apply respectively, 0, 40, 70 and 100 percent of the intensity of the original signal.
Right: A view point of the respective 3D compact region R0 (illustrated with purple dots) for the
LPA formalism. In these regions, the RG trajectories ended in the symmetric phase, and thus are
compatible with a symmetry restoration scenario for initial conditions corresponding to an explicit
symmetry breaking.

Figure 6. Illustration of the evolution of the potential with initial conditions in the purple region. The
different curves correspond to different intensities of the signal.

5. Conclusions

In this paper, we investigated the RG of an effective field theory able to reproduce
IR correlations at least partially in the learnable region, where both locals ϕ4 and ϕ6 are
relevant. Focusing on local interactions, we constructed approximate solutions of the
exact RG Equation (8) using standard DE and LPA. Some extended discussions can be
found in [14–16], especially regarding the role of the anomalous dimension, which does not
change our conclusions. Among the IR properties of the effective IR theories, we focused
on the vacuum expectation value. We showed the existence of a nearly compact regionR0
in the vicinity of the Gaussian fixed point where the Z2-symmetry is always restored in
the deep IR for purely noisy signals that is described well by the MP law. Furthermore,
we observed that the size of this region R0 is reduced when we consider a deviation by
a signal to the asymptotic MP spectrum. Thus, this implies that some trajectories ending
in the symmetric phase for pure noise end in a broken phase, with 〈ϕ〉 6= 0 when the
signal is added. Moreover, among the initial conditions allowed by the regionR0; only a
subset of them are physically relevant, i.e., such that the inverse end mass u2 is of the same
magnitude as the expected largest eigenvalue of the (continuous part of the) spectrum.
Thus, as soon as the deformation of the regionR0 reaches one of these physical subregions,
some physically relevant trajectories are affected and leave the symmetric phase in the deep
IR. This observation exhibits the existence of an intrinsic sensitivity threshold for signal
detection based on the asymptotic vacuum expectation value.
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This observation allows for the consideration of a detection algorithm based on the
existence of a phase transition in the deep IR region. This, however, remains an objective
under investigation. In this study, we focus on synthetic data for which we have a good
knowledge of the noise and signal notions, essentially to keep control on the perturbation.
However, we plan to investigate this framework on real data. Other questions concern the
phase transition, which seems to be able to be first or second order, depending on how the
power count for the ϕ6 coupling is affected. The nature of the transition could be linked to
a finer detection criterion. Finally, other questions concern the approach. Investigations of
regions of the more UV spectrum, for example, might require methods beyond standard
DE. The validity of the field theory approximation could also be questioned in the UV.
Moreover, the choice of the symmetry group can also be discussed. The Z2 symmetry
seems to be a general and universal property at the neighborhood of the universality class
of MP. However, other symmetries, more restrictive on the nature of the data and probably
referring to finer levels of understanding, could be considered in the future. All of these
questions are the subject of ongoing investigations [67].

Despite the fact our findings are based on a definition of noise based on the MP law,
we planned to explore different mathematical incarnations of noisy signals, in a different
context, to confirm the universal character of our conclusions. Thus, our investigations are
also continuing for the Wigner distribution [69], as well as on more exotic distributions for
data science based on tensors rather than on matrices, and for which standard tools are also
more subject to technical limitations (see [70,71]).

To conclude, we would like to add that if we limited ourselves to artificial spectra
to keep control of the signal strength and the different parameters in our experiments,
the spectra themselves are not different from what we could obtain for real data in the
neighborhood of a universality class like MP. Thus, our conclusions are indeed general
properties of spectra, and could be used in practice through algorithms exploiting these
properties, which is the subject of ongoing research.
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