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Optimal operation points for ultrafast, highly coherent Ge hole
spin-orbit qubits
Zhanning Wang 1,2✉, Elizabeth Marcellina1,2, Alex. R. Hamilton 1,2, James H. Cullen1, Sven Rogge 1,3, Joe Salfi4 and
Dimitrie Culcer 1,2✉

Strong spin-orbit interactions make hole quantum dots central to the quest for electrical spin qubit manipulation enabling fast, low-
power, scalable quantum computation. Yet it is important to establish to what extent spin-orbit coupling exposes qubits to
electrical noise, facilitating decoherence. Here, taking Ge as an example, we show that group IV gate-defined hole spin qubits
generically exhibit optimal operation points, defined by the top gate electric field, at which they are both fast and long-lived: the
dephasing rate vanishes to first order in the electric field noise along with all directions in space, the electron dipole spin resonance
strength is maximized, while relaxation is drastically reduced at small magnetic fields. The existence of optimal operation points is
traced to group IV crystal symmetry and properties of the Rashba spin-orbit interaction unique to spin-3/2 systems. Our results
overturn the conventional wisdom that fast operation implies reduced lifetimes and suggest group IV hole spin qubits as ideal
platforms for ultra-fast, highly coherent scalable quantum computing.
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INTRODUCTION
Quantum computing architectures require reliable qubit initializa-
tion, robust single-qubit operations, long coherence times, and a
clear pathway towards scaling up. Solid-state platforms are
supported by the well-developed solid-state device industry, with
mature microfabrication and miniaturization technologies. Among
solid-state platforms, semiconductor quantum dot (QD) spin qubits
have been actively pursued1, with an energetic recent focus on
hole spins in diamond and zincblende nano-structures2–26.
The primary motivation for this focus is the strong hole spin-

orbit interaction, which enables qubit control via electron dipole
spin resonance (EDSR), making quantum computing platforms
faster, more power-efficient, and easier to operate27–34. Electric
fields are much easier to apply and localize than magnetic fields
used in electron spin resonance. Only a global static magnetic
field is required to split the qubit levels. In addition, the p-
symmetry of the hole wave function causes the contact hyperfine
interaction to vanish, and complications involving valley degrees
of freedom are absent35–39. Initial studies indicate that hole spins
may possess sufficiently long coherence times for quantum
computing40–44. Meanwhile, much progress has been made in
the initialization and readout of hole spin qubits8,11,14,17,45,46.
The existential question that will determine the future of hole

QD spin qubits is: Does the strong spin-orbit interaction that
allows fast qubit operation also enhance undesired couplings to
stray fields such as phonons and charge noise leading to
intractable relaxation and dephasing? In this paper, we demon-
strate theoretically that this is emphatically not the case for hole
spin qubits in group IV materials taking Ge as the most prominent
example.
In fact, the unique properties of the hole Rashba interaction

overturn the conventional understanding of qubit coherence in
spin-orbit coupled systems, which states that, as long as the qubit

is described by an effective 2 × 2 Hamiltonian, holes behave in the
same way as electrons. That is, given that the EDSR rate is linear in
the spin-orbit strength, while the relaxation and dephasing rates
increase as the square of the spin-orbit strength, the Rabi ratio can
be enhanced by operating the qubit at points at which the spin-
orbit interaction is weaker27,28. In contrast group IV hole qubits
achieve the best coherence when the electrical driving rate is at its
maximum. In all other systems, one has to choose between
creating long-lived qubits by isolating them from the environment
and accepting slower gate times, or designing fast qubits strongly
coupled to the environment, but which decohere rapidly.
The key realization is that holes in group IV materials are

qualitatively different from group III–V materials. They have
tremendous potential for qubit coherence, with Ge and Si
possessing isotopes with no hyperfine interaction, as well as a
near-inversion symmetry that eliminates piezo-electric phonons.
This near-inversion symmetry will eliminate the Dresselhaus
interaction, the interface inversion asymmetry terms are expected
to be negligible in the system47,48. Which enables spin resonance
in group III–V materials27. On the other hand, we show that strong
cubic-symmetry terms enable a fully-tunable Rashba coupling.
Unlike the Dresselhaus interaction, and unlike electron systems,
the hole Rashba interaction evolves nonlinearly as a function of
the gate electric field, a fact traced to the hole spin-3/2. The
qualitative difference between the Rashba and Dresselhaus
interactions for holes is vital for qubit coherence. Thanks to this
nonlinearity, dephasing due to electric field fluctuations in all
spatial directions can be essentially eliminated at specific optimal
operation points defined by the gate electric field15,16,38,49–54. At
these points electrical qubit rotations are at their most efficient,
with the spin resonance Rabi gate time at a minimum. The
relaxation rate due to phonons can be made as small as desired at
small magnetic fields of the order of 0.1 T, which allows 106− 107
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operations in one relaxation time for an in-plane alternating field
EAC ~ 103 Vm−1.
Our focus in this paper is on Ge, which has witnessed enormous

recent progress6,7,9,10,55. Holes in planar Ge quantum wells have a
very large out of plane Landé g-factor, g ≈ 20, enabling operation
at very small magnetic fields, which would not impede coupling to
a superconducting resonator. The low resistivity of Ge when
contacting with metals makes couplings between other devices
such as superconductors easier9,56,57. In the past decade some
spectacular results have been reported, for example, EDSR
detection techniques18,55, structures of quantum confinement
systems7,58–60, the anisotropy of g-tensors10,58, spin-orbit cou-
plings, and transport phenomena in two-dimensional hole
systems4,6,10,61,62. We focus a on single dot throughout this work.
A prototype device, including a neighboring dot, is shown in
Fig. 1. The Hamiltonian describing a single hole quantum dot has
the general form H= HLK+ HBP+ HZ+ Hph+ Hconf, where HLK

represents the Luttinger-Kohn Hamiltonian, HZ is the Zeeman
interaction between the hole and an external magnetic field, and
Hph the hole-phonon interaction. Hconf is the confinement
potential including the vertical and lateral confinement. The
vertical confinement is achieved by applying a gate electric field Fz
in the growth direction, leading to a term eFzz in the Hamiltonian;
the lateral confinement is modeled as an in-plane parabolic
potential well. The Bir-Pikus Hamiltonian HBP represents strain18,
which appears naturally as part of the quantum well growth
process. A typical configuration of holes in Ge is achieved by
growing a thin strained Ge layer (usually about 10 nm to 20 nm)
between SiGe layers such that, if the barrier between the two
layers is high enough, a quantum well can be formed. We consider
SixGe1−x, where x= 0.154,6,7,58, with other values of x discussed in
Supplementary Table 1.
We start from the bulk band structure of holes as derived by

Luttinger and Kohn63. The spinor basis is formed by the
eigenstates of Jz, þ 3
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grown along ẑ k ð001Þ, we write the Luttinger-Kohn Hamiltonian
as:
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, and m0 is the free electron mass, γ1, γ2, γ3
are Luttinger parameters which are determined by the band
structure. The in-plane wave vector will be k2 ¼ k2x þ k2y , k±= kx ±
iky. In this manuscript, we use the symmetric gauge A= (B/2)(−y, x,
0) so that k→− i∇+ eA/�h . We have also used γ ¼ ðγ2 þ γ3Þ=2 and
δ= (γ3− γ2)/2 to simplify the algebra. In Ge δ=γ < 0:15, hence δ can
be treated perturbatively, while bulk Dresselhaus terms are absent.
Although interface inversion asymmetry terms with the same

functional form may exist47, at the strong gate fields considered
here will be overwhelmed by the Rashba interaction and are not
discussed in detail. The diagonal terms of HBP in the HH manifold
are Pε þ Qε ¼ �av εxx þ εyy þ εzz

� �
, while in the LH manifold they

are Pε � Qε ¼ �ðbv=2Þ εxx þ εyy � 2εzz
� �

, where av=−2 eV and
bv=−2.3 eV are deformation potential constants18. In our chosen
configuration εxx= εyy=−0.006, the minus sign indicates that the
germanium is compressed in xy-plane. In the ẑ -direction, the Ge
layer will be stretched, and εzz= (−2C12/C11)εxx= 0.0042, with
C12= 44 GPa, C11= 126 GPa for Ge. The diagonal terms of the
strain-relaxed barrier configuration will change the HH-LH energy
splitting by a constant, which is approximately 50meV.
The growth direction provides the spin quantization axis, with

the heavy hole states (HHs) representing the ±3/2 angular
momentum projection onto this axis, while the light hole states
(LHs) represent ±1/2. In 2D hole systems, the HHs are the ground
state7,27,51,64,65. To define a quantum dot a series of gates are
added on top of the 2D hole gas confinement, as in Fig. 1, and we
ultimately seek an effective Hamiltonian describing the two
lowest-lying HH states in a quantum dot. Since we expect the HH-
LH splitting to be much larger than the quantum dot confinement
energy, we proceed with the standard assumptions of k ⋅ p theory,
retaining at first only terms containing kz, with kx and ky initially
set to zero. This determines the approximate eigenstates ψH,L(z)
corresponding to the growth-direction. These are described by
two variational Bastard wave functions ψH and ψL

48,66,

ψH;LðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4βH;L π2 þ β2H;L
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2

� �
 �
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where the dimensionless variational parameters βH,L are sensitive
to the gate electric field due to the term eFzz, and d is the width of
the quantum well in the growth direction, which is an input
parameter. The orthogonality of the HH and LH states is ensured
by the spinors. This wave function is suitable for inversion layers,
as well as accumulation layers, although our focus will be primarily
on the latter. For inversion layers, the Bastard wave function will
also be appropriate, because in experiments the electric field can
be made large enough such that the hole gas sticks around the
top of the quantum well.
In the xy-plane, we model the confinement potential using a

harmonic oscillator

_2

2mp
�i∇jj þ eA
� �2 þ 1

2
mpω

2
0 x2 þ y2
� �
 �

ϕ ¼ εϕ (3)

where mp=m0/(γ1+ γ2) is the in-plane effective mass of the heavy
holes, the subscript ∥ refers to the xy-plane, ω0 is the oscillator
frequency, a0 the QD radius which satisfies, a20 ¼ �h=ðmpω1Þ i.e., a
magnetic field will narrow the QD radius. The solutions are the
well-known Fock-Darwin wave functions ϕn1;n2

�� �18 with eigen-
energies εn1;n2 ¼ _ðn1 þ n2 þ 1Þωl þ 1

2 _ðn2 � n1Þωc, where
ωl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ ω2

c =4
p

, ωc= eB/mp is the cyclotron frequency. The
Bastard wave functions account for the perpendicular confine-
ment, in the ẑ-direction. The Fock-Darwin wave functions ϕn1;n2

�� �
account for the quantum dot confinement in the xy-plane. The
Bastard and Fock-Darwin wave functions would be formally the
same for electrons, while in a hole gas is that separate Bastard
wave functions are required for the heavy and light holes.
Finally, the hole-phonon interaction is67–69:

Hi;j;s ¼
X

α;β¼x;y;z

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_

2NVcρωs

s
Di;j
α;β

qαês;β þ qβês;α
q


 �
q e�iq�râyq þ eiq�râq
	 


;

(4)

where q is the phonon wave vector, Vc is the unit cell volume, NVc
is the crystal volume, ês is the polarization direction vector. The

B2P1 P2
B1

B3

T1
QD1 QD2

Fig. 1 A prototype double quantum dot in a 2D hole gas. The red
shaded circles represent two quantum dots confined by a set of
gates. Our focus is on a single dot; two dots are shown to illustrate
scaling up strategies, e.g., gates B2 and T1 control inter-dot
tunneling.
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density of the material is denoted by ρ, Dα,β represents the
deformation potential matrix, and ây and â are the phonon
creation and the annihilation operators. The details are presented
in the Supplementary Information Eq. (1)36,70–74.
Our approach is semi-analytical. To incorporate the contribu-

tions from the LHs, and the Rashba spin-orbit couplings, we start
from the 4 × 4 Luttinger Hamiltonian and project it onto the
product states of the out-of-plane sub-bands HH1, LH1, each with
two spin projections, and the first four orbital levels of the in-plane
confinement, such that our Hamiltonian matrix is 40 × 40. This
refers to states 3

2 ; S
�� �� ϕn;m

�� �� �
, where S= 3/2, −3/2, 1/2, −1/2

represent the HHs or LHs, n= 0, 1, 2, 3 and m= 0, ±1, 2, ±3 denote
the in-plane Fock-Darwin states. We have checked that addition of
the HH2, LH2 sub-bands does not modify the results, this is
attributed to the significant energy gaps separating them from
HH1, LH1. Given the high computational cost of adding these sub-
bands, we have not taken them into account in the results
presented here. To obtain the matrix elements required for the
dephasing and relaxation times, as well as for the EDSR Rabi
frequency, we perform a 3rd order Schrieffer-Wolff transformation
on the 40 × 40 Hamiltonian. This transformation takes into account
all the spin-orbit terms that are not separable in the spatial
coordinates, which are precisely the terms leading to the Rashba
interaction. To ensure the accuracy of the Schrieffer-Wolff method
we compare the results for the Larmor frequency with a full
numerical diagonalization of the 40 × 40 matrix.

RESULTS AND DISCUSSION
Qubit Zeeman splitting
The qubit Larmor frequency has been plotted in Fig. 2 as a
function of the gate electric field. The Schrieffer-Wolff method
agrees well with the numerical diagonalization: the location of the
optimal operation point differs by only 2% in the two approaches.
We note the non-monotonic behavior as a function of the gate
field, leading to an optimal operation point in the range of
30–50 MV/m. Electric fields of such magnitude are used routinely
in quantum computing experiments7,46,75,76. The non-monotonic
behavior is directly related to the behavior of Rashba spin-orbit
coupling discussed below. We note that the spatial dimensionality
of the qubit is determined by the relevant energy scales, namely
the ẑ-sub-band energy spacing compared to the energy splitting

of the lateral wave functions. The heavy hole– light hole splitting,
given by the perpendicular confinement, is many times larger
than the in-plane qubit confinement energy, determined by the
in-plane confinement, so the system is in the quasi-2D limit.
Nevertheless, our findings, such as trends with the top gate field,
can be interpreted qualitatively by analogy with the Rashba
interaction in the asymptotic 2D limit d→ 077, which we also
obtain from Eq. (1). For a system with cubic symmetry this
contains two terms with different rotational properties:

HSO ¼ iα2 k3þσ̂� � k3�σ̂þ
� �þ iα3 kþk�kþσ̂þ � k�kþk�σ̂�ð Þ; (5)

where σ̂ ± � ðσ̂x ± iσ̂yÞ=2. The coefficients are evaluated as:

α2 ¼ 3
2

μ2γγ3
EH � EL

hψHjψLi ψH k̂z
���

���ψL

D E
� ψL k̂z

���
���ψH

D Eh i
(6)

α3 ¼ 3
2

μ2δγ3
EH � EL

hψHjψLi ψH k̂z
���

���ψL

D E
� ψL k̂z

���
���ψH

D Eh i
; (7)

where EH and EL are the energies of the lowest-lying HH and LH
states, respectively, and are strong functions of the gate electric
field. These formulas explain three main features.
Firstly, the optimal operation point reflects the interplay of the

quadrupole degree of freedom with the gate electric field unique
to spin-3/2 systems. The behavior of the qubit Zeeman splitting
and Rashba coefficients is understood by recalling that the Rashba
effect for the HH sub-bands is primarily driven by the off-diagonal
matrix element L in Eq.(1) connecting the HH and LH sub-bands.
This term, which is∝kzk+, increases with the top gate field. At
small gate fields, the Rashba spin-orbit constants increase
monotonically due to the increase in the kz overlap integral. This
continues until a critical top gate field is reached at which the
HH–LH splittings, determined by the matrix element Q, begin to
increase faster than the off-diagonal matrix element L. The heavy
hole-light hole splitting induced by the confinement potential and
the gate electric field is traced to the different effective masses for
heavy and light holes. This physics has been shown previously by
Winkler and collaborators78–80. Beyond this critical field, the
Rashba terms decrease, resulting in a relatively broad optimal
operation region at which the qubit is insensitive to background
electric field fluctuations in the ẑ-direction and the dephasing rate
vanishes to first order in the ẑ-electric field. As we show below,
electric field fluctuations in the ẑ-direction are by far the most
damaging to the qubit and are the key source of decoherence to

Fig. 2 The qubit Zeeman splitting. Comparison of the qubit Zeeman splitting between Schrieffer-Wolff transformation (to the third order)
and exact numerical diagonalization for four different configurations. When the gate electric field is turned off, the qubit Zeeman splitting
g0μBB ≈ 110 μeV. In all these figures, the out-of-plane magnetic field is B= 0.1 T. We can notice that the sweet spot does not change much as a
function of the quantum dot radius, but the size of the qubit Zeeman splitting will be smaller for a larger quantum dot size. In all of these
plots, we have �hωl≫ g0μBB. Numerical diagonalization is the red curve, Schrieffer-Wolff method is the blue curve. a d= 11 nm, a0= 50 nm.
b d= 11 nm, a0= 60 nm. c d= 15 nm, a0= 50 nm. d d= 15 nm, a0= 60 nm.
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be avoided. The breadth and smoothness of the extreme make
the tuning of the electric field to reach the optimal operation
point easier.
Secondly, the sweet spot shifts slightly with the dot radius64,

and this is fully captured by our Schrieffer-Wolff results. The
reason for this is that, in a 2D system, while the angular form of
the Rashba interaction is dictated by rotational symmetry, the
Rashba coupling constants α2 and α3 are functions of the
magnitude of the wave vector. This implies they are functions of
the density, and this is vital at large densities. Hence a quantum
dot can be envisaged as having Rashba parameters that are
functions of the in-plane radius a0, and their dependence is less
pronounced at larger a0, since this corresponds to smaller
densities.
Thirdly, each of the two spin-orbit coupling terms in Eq. (5) can

be envisaged as the interaction of the hole spin with an effective
spin-orbit field that depends on the momentum. In the absence of
a magnetic field, the α2-Rashba spin-orbit field winds around the
Fermi surface three times, whereas the α3-Rashba spin-orbit field
winds only once. In the strict 2D limit it is the α3-term that enables
EDSR. Although the quantum dot is not in the exact 2D limit, it still
holds that EDSR is enabled by the cubic symmetry terms∝δ.
Setting δ= 0 in our calculations causes the EDSR frequency to
vanish.

f EDSR ¼ 24g0μBBeEACa
2
0δm

2
p ´ u (8)

where u are a long expression that can be found in the
Supplementary Information Eq. (17).

Dephasing time
The main dephasing mechanisms are fluctuating electrical fields
such as charge noise. We focus on random telegraph noise (RTN)
due to charge defects, noting that a similar discussion can be
presented for 1/f noise, which is typically caused by an incoherent
superposition of RTN sources. For this reason, we expect the
trends for the two types of noise to be similar, while reliable
numbers for 1/f noise must await the experimental determination
of the noise spectral density S(ω) for hole qubits. To begin with,
we estimate the dephasing time T�

2, which is expected to be
primarily determined by fluctuations in the Larmor frequency of
the qubit induced by charge noise. The electric potential induced
at the qubit by a defect located at rD, which may give rise to RTN,

can be modeled as a quasi-2D screened Coulomb potential:

Uscr ¼ e2

2ϵ0ϵr

Z 2kF

0

e�iq� r�rDð Þ

qþ qTF

dq

2πð Þ3 ; (9)

where ϵ0 is the vacuum permeability, ϵr is the relative permeability
for Ge, qTF is the Thomas-Fermi wave vector, and kF is the Fermi
wave vector49. In a dilution refrigerator, the high energy modes of
the Coulomb potential are negligible, therefore the q > 2kF part is
ignored. Another source of dephasing is dipole defects due to the
asymmetry in bond polarities.

Udip RDð Þ ¼ p � RD

4πϵ0ϵrR3D
; (10)

where RD is the distance between the dot and the unscreened
charge dipole. p is the dipole moment of the charge p= el, the
size of the dipole is about 1Å.
As a worst-case estimate of the dephasing time, we use the

motional narrowing result49,50, the dephasing time
T��1
2 ¼ ðδωÞ2τ=2, where δω is the change in qubit Larmor

frequency due to the fluctuator, and we consider τ= 103tRabi,
where tRabi is the single-qubit operation time (the inverse of the
EDSR frequency), which can be found from Fig. 3a. Because of the
weak coupling between the spin degree of freedom and external
reservoirs, slower fluctuators can be eliminated via pulse
sequences and the spin-echo techniques81. We consider two
sample defects separately. One is a single-charge defect located
100 nm away from the quantum dot in the plane of the dot as a
worst-case scenario for a charge trap. We use rD= 100 nm since
regions inside this range will be depleted by the top gate, and
charge traps will not be active. We also consider a dipole defect
immediately under the gate and above the dot, with RD= 20 nm
in the ẑ direction. This is because within the depleted region the
most relevant defects are charge dipoles, whose orientation
fluctuates. To estimate the pure dephasing time at the optimal
operation point due to such a defect, we first note that the in-
plane electric field will not contribute to dephasing. An in-plane
electric field enters the QD Hamiltonian as E∥ ⋅ r∥. This in-plane
electric field term does not couple states with different spin
orientations. When we consider the qubit Zeeman splittings, the
corrections to the effective quantum dot levels due to the in-plane
electric field will read the same for H1,1 and H2,2 up to the second-
order, therefore, fluctuations in qubit Zeeman splitting H1,1− H2,2

will not depend on the in-plane electric field. However, higher-
order terms in the expansion of the electrostatic potential of the
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Fig. 3 Dephasing time. In all plots, the quantum well width is d= 11 nm and dot radius a0= 50 nm. a Dephasing time in the motional
narrowing regime. b The allowable number of single-qubit operations in one dephasing time in motional narrowing regime. c Dephasing time
in the quasi-static limit. d The allowable number of single-qubit operations in one dephasing time in the quasi-static limit.

Z. Wang et al.

4

npj Quantum Information (2021)    54 Published in partnership with The University of New South Wales



defects will lead to dephasing, and these are responsible for
dephasing at the optimal operation point itself. To determine their
effect, we write the ground state energy as ELK+ E0+ Ez+ v0
where E0 is the lateral confinement energy, Ez is the Zeeman
energy, and v0 is the energy correction due to the defect.
We estimate the approximate qubit window of operation

around the optimal operation point. Away from the optimal
operation point, due to the fluctuating electric potential of the
defect, the energy levels of the quantum dot will gain a correction,
i.e., ϕn1;m1

� ��Usc ϕn2;m2

�� �
. With these assumptions, the dephasing

time is plotted as a function of the gate electric field in Fig. 3. At
the optimal operation point, the dephasing time due to the out-
of-plane fluctuations is calculated to the second-order, since the
first-order fluctuation vanishes, the in-plane fluctuations will
dominate the dephasing. Away from the optimal operation point,
the motional narrowing result is much smaller than the quasi-
static limit result. This is because the first-order variation of the
qubit Zeeman splitting will weaken the correlation time, while the
quasi-static limit does not consider any correlations. However, as
the gate electric field approaches the optimal operation point, the
variation of qubit Zeeman splitting decreases; at the optimal
operation point, compared with the quasi-static limit result, a
longer correlation time will lead to a larger dephasing time. We
also determine the pure dephasing time in the quasi-static limit,
where the switching time is the longest time scale in the system.
This is essentially given by T2= 2π/(δω), and is plotted in Fig. 3b.

Relaxation time and EDSR
We briefly discuss electrically driven spin resonance. An in-plane
oscillating electric field represented in the Hamiltonian by eEAC(t)x
drives spin-conserving transitions between the QD states. For a
multiple occupied hole dot, the excited state structure may be
more complex but the argument above remains valid because the
α2 and α3 Rashba terms couple the ground state to different
excited states. The spin resonance Rabi time is the time taken to
accomplish an operation. The Rabi frequency can be tuned by
changing the gate electric field and with it the Rashba spin-orbit
coupling constant. However, note that because the two Rashba
terms directly determine the correction to the g-factor, the Rashba
interaction and the g-factor cannot be tuned independently at
present.
Given that the spin resonance frequency is a maximum at the

optimal operation point, it follows that the qubit can be tuned to
have maximum coherence and maximum electrical driving
simultaneously. The nonlinearity in the hole Rashba interaction

as a function of the gate field that enables this feature has no
counterpart in electron systems. In GaAs hole systems27 this
nonlinearity does not lead to optimal operation points. This is
because, firstly, the spin resonance Rabi frequency in GaAs hole
qubits is driven by the Dresselhaus interaction, which is not
tunable via the gate electric field, while α3 is negligible in GaAs.
Secondly, GaAs qubits are exposed to decoherence through the
hyperfine interaction, piezoelectric phonons, and the Dresselhaus
interaction, none of which can be mitigated.
Since the Rabi frequency is maximized at the optimal operation

point, the relaxation time T1 is minimized there. For the qubit to
be operated efficiently it is vital to determine the ratio of the EDSR
and relaxation rates. Hyperfine interactions and phonon-hole
interactions are two major factors affecting the relaxation time,
hence the quality of the qubit. However, the p-type symmetry of
the valence band excludes the contact hyperfine interaction.
There is no bulk inversion asymmetry in group IV elements; this
leads to no Dresselhaus spin-orbit coupling. However, there is still
the Rashba spin-orbit coupling due to the structure inversion
asymmetry, which couples the heavy-hole states to the light-hole
states. Neither the spin nor the orbital angular momentum will be
a good quantum number, as the admixture of the spin-down and
the spin-up states will modify the wave functions. We emphasize
that, whereas EDSR comes only from the α3-Rashba term, the
qubit relaxation is caused by both the α2- and the α3-
Rashba terms.
The relaxation time evaluated using Fermi’s golden rule is

shown in Fig. 4. For completeness, we also consider two-phonon
relaxation processes, which include virtual emission and absorp-
tion of a phonon between two heavy hole states, since in the first-
order relaxation calculation there is no direct matrix element
between the two heavy-hole states. However, the two-phonon
process calculation returns a negligible relaxation rate, which will
not contribute significantly to the relaxation time. The relaxation
rate will depend on the external magnetic field as (1/T1)∝ B7 for
the α3-Rashba term and (1/T1)∝ B9 for the α2-Rashba term. This is
shown in Fig. 4a.
We also plot the ratio between the relaxation time and the EDSR

time, demonstrating that the system allows for a large number of
operations. The allowable number of single-qubit operations is
calculated by evaluating the ratio of the relaxation time and the
EDSR time, i.e., the Rabi ratio. The in-plane electric field we used is
EAC= 103 V/m. In Fig. 4, we plot the relaxation time, EDSR Rabi
time, comparison of the magnitude of the relaxation time and
EDSR time and an estimation of red the allowable number of
single-qubit operations as the function of the gate electric field at
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Fig. 4 The relaxation time and the EDSR Rabi time. In all plots d= 11 nm, a0= 50 nm, the external magnetic field is B= 0.1 T. The density of
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a magnetic field B= 0.1 T which is parallel to the growth direction.
The relaxation time calculations mainly consider the hole-phonon
interactions and the details can be found in the Supplementary
Information Eq. (22). Both the relaxation time and the EDSR time
will depend on the spin-orbit coupling coefficients, therefore, their
extrema coincide. The relaxation time increases for smaller dot
sizes because that corresponds to larger confinement energy,
while both the phonon and the spin-orbit coupling terms connect
the orbital ground state to higher excited states. From Fig. 4a, we
can see that the Ge hole quantum dot has a long relaxation time
and large Rabi ratio at dilution refrigerator temperatures. It is also
useful to study the relaxation time at slightly higher temperatures,
e.g., 4 K, at which both phonon absorption and emission must be
taken into account. The phonon occupation number is given by
the Bose-Einstein distribution N ¼ ðe_ω=ðkBTÞ � 1Þ�1

, where N is the
occupation number, ω= qv, q is the phonon wave vector and v is
the phonon propagation velocity, T is the temperature, kB is the
Boltzmann constant. More details can be found in the Supple-
mentary Information Eq. (22), where a plot of the temperature
dependence of the relaxation rate is presented as well. For T= 4 K,
the relaxation time is 17 ms, suggesting that the qubit can easily
be operated at this temperature.

Applicability and implementation
Although we have used a simple parabolic model for the in-plane QD
confinement, our conclusions are very general. Firstly, the dephasing
optimal operation point will be present for potentials of arbitrary
complexity (for example hut wire geometries)7,55,56, since it is due to
the fundamental interplay between the HH and LH that gives rise to
the Rashba spin-orbit coupling in the HH manifold. Secondly, we
have examined the possibility that the insensitivity of the g-factor to
in-plane electric fields is an artifact of the model. We have tested
three deviations from parabolicity and found that none of them
exposes the qubit to dephasing by fluctuating in-plane electric fields.
This implies (i) that the dot does not have to be perfectly parabolic
allowing for some flexibility in the gate structure; (ii) that in-plane
electric field fluctuations generally have a negligible effect on the g-
factor, while out-of-plane electric field fluctuations cause fluctuations
in the Rashba spin-orbit coupling and affect the g-factor, therefore it
is most important to avoid the effect of the out-of-plane field; and (iii)
that dephasing at the optimal operation point itself comes about
primarily from higher-order terms in the electrical potential, i.e.,
electrical quadrupole and higher. Our results hold qualitatively in Si
as well, where the spin-orbit interaction is weaker than in Ge, while δ
is larger. However, the large δ and frequent failure of the Schrieffer-
Wolff approximation in Si calls for fully numerical treatment48.
Experimentally, the configuration we describe requires a

double-gated device with separate plunger gates and barrier
gates allowing the number density and the gate electric-field (and
spin-orbit coupling) to be controlled independently58. The
numerical estimates above suggest that, in general, a smooth
and broad optimal operation point will enable the Ge hole qubit
to work insensitively to the charge noise inside a large range of
gate electric fields accessible to experiment. Exchange-based two-
qubit gates should be possible for hole QDs, and their speed
depends on the values of exchange obtained, which are expected
to be tunable by gates. Moreover, it is likely to simplify the
coupling between the two qubits since the valley degree of
freedom is absent in hole systems. However, a two-qubit gate in
the setup discussed here is not optimized for long-distance
coupling, which leads to the two-qubit gate time is of the order of
microseconds for dipole-dipole interactions and hundreds of
microseconds for circuit QED, limited by the Ge Luttinger
parameters. They can be sped up by enhancing the spin-orbit
interaction, but we defer the discussion to a future publication.

A smaller g-factor will lead to a smaller Rabi frequency, a
smaller change in the qubit Zeeman splitting due to the spin-
orbit interaction, and a shorter dephasing time but a longer
relaxation time and an improved Rabi ratio. The optimal
operation point will not change its location, which is determined
only by the effective mass and the width of the quantum well. A
larger quantum dot radius would make the confinement energy
smaller, increasing the effect of the spin-orbit interaction and
resulting in a faster Rabi frequency, but also shorter T1 and T2*.
Nevertheless, the Rabi ratio decreases with increasing dot
radius. Moreover, since the confinement energy decreases as
the square of the radius, it is preferable to work at smaller radii
to ensure the thermal broadening is overcome. Increasing x
increases the heavy hole - light hole splitting, leading to a
reduced Rashba spin-orbit coupling and a smaller change in the
qubit Zeeman splitting. The change in the Zeeman splitting will
be large for smaller x e.g., 0.05− 0.10, while at x= 0.3 it is
essentially not noticeable.
We have demonstrated that electrostatically defined hole quantum

dot spin qubits naturally exhibit an optimal operation point at which
sensitivity to charge noise is minimized while the speed of electrical
operation is maximized. The location of the optimal operation point
can be determined from the width of the quantum well and the strain
tensors applied. Relaxation times are long even at 4 K, while
dephasing is determined by higher-order terms in the expansion of
the electrostatic potential due to charge defects, but are expected to
allow for a large window of operation around the optimal operation
point. Our results provide a theoretical guideline for achieving fast,
highly coherent, low-power electrically operated spin qubits experi-
mentally. Future studies must consider in-plane magnetic fields,
which interact much more weakly with HH spins and are more
complicated to treat theoretically.

METHODS
Numerical diagonalization
Most of the results are obtained by theoretical analysis, we also present a
numerical simulation by diagonalizing the full Hamiltonian. The full
Hamiltonian is projected onto all the heavy-hole states and light-hole
states and all the Fock-Darwin state.
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