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ABSTRACT

An explicit formula is given for the
Fourier transform of an entire function

g(z), satisfying the inequality

| 8(2)\ cce £(121)

where h(r) is a monotonic, twice
differentiable function and h(r) > 0,
n'(r) > o0, h"(r)>0, namely

g@-—-—-feizga/a(s)

where 65'(?;) is a complex measure for

which there exists the integral

IQH(M)/O(G(E)/< o

where

H(s)= max (s - k(7))
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We shall consider classes of functions g(z) which depend on
one complex variable z=x+1iy and are entire analytic functions. in the

argument z. Let g(z) be an entire function, then

M,G)= e | §)

/2=

Let h(r) be a monotonic, twice differentiable function, and
/4
lz)>0 ///2/>0 A0

I1f

. /‘7/2): ;

2> o0 4/2} ?

then we shall say that the entire function g(z) has an order of
growth of h(r). If h(r) =ar§ we can then say that the entire
function g(z) has order §> and finite type a.

We shall say that the function g(z) belongs to the space 5h
if for this function g(z) there exist such constants 5\> 0 and

B> 0, that o
|9@|< BE R (1)

We will prove

Theorem

f g(z) 63}1’ then this function can be represented in

the form \
2723

g[2)=f€ A 6(3) (2)

where © (Y) is a complex completely additive measure on
the complex plane I and for this measure there exists the

following integral



i H(N)/ d6(3)| < == ()

where H(s) is the Young dual function of h(r), i.e.,

His)= ’2”;”‘:((5?—//?)). (4)

Our proof is the generalization of the method given by Gel'fand
and Shilov 1) for entire functions with growth of first order, i.e.,
h(r) = ar.

Let Z be the linear space of entire functions, for which all

e expressions ——' l
51, = suplspe P

are finite. The functions _/./((/ .*.._/.)S)

satisfy the inequalities
O< Mi(§)< My ()< 1)<

and the so-called condition (P)

- For a given &>0 and any p, a p'> p, and an N can be
found such that for all s, for which Is]> N 1is satisfied, the

following inequality is wvalid
/o (S) < g /\Zo/ (J)

Under these conditions the norms (5) agree, so that the space ZH is

complete, and finally that it is perfect !



- 3 -

If f(§)€ Ly, then for any & >0 there is a number CS > 0

such that H((Hz)lifl)
[5G < G € | v

Let us find the general form of a linear continuous functional
in the space ZH' It is sufficient to find a general linear functional

(F,f) in the normed space ZI({p>, the completion of the gspace ZH in

the norm ” f”p . The space ZHp consists of some continuous functions
£f(T ). These functions are defined for any 3' and the norm ” f”p is
finite for them. This space 1is closed relative to uniform convergence.
Continuing the functional F into the space of all continuous functions
according to the Hahn-Banach theorem, and applying the Riesz-Radon

(F,§)= [ §(5)dpcs) o

where (r) is a complex, completely additive measure in the complex

I — plane, for which the integral

H((1+3)I3]
Je (’ F)r))o(fw(i)/<o<> o

is finite.

By virtue of the theorem 1> on the structure of a space conjugate
to a countably normed space, Eg. (7) yields the general form of a linear

continuous functional in the space ZH for all possible p.

@®
Furthermore, the Taylor series f(r) = E fn§n converges in

the topology of the space 2Z In fact, we can"oBtain by applying the

e
Cauchy formula and Eq. (6) : H((H"S)S) .
—B()
S 6B Gmin € = ()€
m K”#l $>0 Sn (9)



where

Bn)= max(ngmf’— /-/[S)) (10)
>0
The norm ”gflnp is equal according to the definition (5) to

+ Bn)
(3%, = max S £ e )S) €

$>0 (/4/_’_{/” (11)

Then we have the estimation

> |l < G 2 ) -

Since the number é‘ can be chosen arbitrarily small, the series (12)

converges for each given p.

(’L_:)[):NZ-:][" ,C; (13)

where Fn==(F,§:n) is a fixed sequence of constants. Conversely,

Hence

every sequence of constants Fn, such that the series (13) converges
for any entire function f(z‘)e; ZH and defines a continuous linear

functional in the ZH space by means of (13), may be represented as

/;:: f}ndﬁ(j) (12)
which is obtained from the general formula (7) for £(T) = 3‘“

Let g(z)—-;; :g Z be an entire function from the space :B.h’
i.e., one satlsfylné'én inequality of the form (1). TLet us show that the

—('77”2,,/7./ (15)

define a linear functional in the space ZH when the function H(s) is

numbers
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the Young dual function of h(r) according to (4). Indeed, we have the

L(1-3)r)

following estimations :

o= ’Lé)dizﬁng—)\< B min €

Il

2T
 >?0 \Z"'

n — An)

where

(17)

A(n)= rrax (/7 b — //2/)

and, according to the well-known Stirling formula :

nban-n _
Vl.’ = € - 27 n Z',, (18)
where En—»1. Hence
= —7
2R <

(19)

<r GB2 i E, (/+f/"//-5/'@/)/-%/-,%/”&”-”]

Let us show that

Bw)+ Al)= nbnn-n. (20)

Indeed, we have according to (17)
A(n)= n bnetn)— Hle) (o1

where the function r::r(n) is the solution of the following equation

n =2 Z//efh)/ (22)
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On the other hand, we have, according to (4)

Hs)= s uc)- /{w(s}) = w)# f?/(s)) — A furg) (25)

because of

/
S = //Z/(S))' (24)

Then

B(n)= max (nbns-HE) =

S>o

= max (n&f(w(s/) 2(/5}//2//5/%#%/4/“))“

S»>o

= max (nb Bla)-ul)1h)).

U>0

The condition of the ?ax1mum is
/

or

/l :::'Z/(7C) 447(‘Zf(h{)

(26)

One can see that equations (26) and (22) are the same. Now we can write
Bn) = n@n,z() n + Z(Z(")). (27)

Adding the functions A(n) and B(n) according to (21) and (27), we
obtain the equality (20).

Finally, we have for the series (19) :



(=)

> |45 F <l G B2 E(+e)(1-8)" .,

h=09 n=o

Since 6\ is a given fixed number and & can be chosen arbitrarily
small, the series (28) converges for any functions f(g‘) & ZH. At the
same time we obtain boundedness of the functional (13) in the norm

I '”p with p> 14? , which also means boundedness of the functional

(13) in the whole ZH space.

According to what has been proved, there exists a measure G (3')
such that

= (’?‘)"jn n! = /3"0(5(3), (29)

hence

(30)

= / ():/K)nc/é‘/}')

Multiplying by z"  and adding, we obtain convergent series on the left

and right, and therefore

g(z)—_—z(y zZ —Z/(Zr)dg/x) ’/872’;0/6/;) (31)

n=so

Q.E.D.
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