

CM-P00058202

Archives

Ref. TH.1084-CERN

ON A REPRESENTATION OF ENTIRE FUNCTIONS

G.V. Efimov *)

CERN - Geneva

ABSTRACT

An explicit formula is given for the Fourier transform of an entire function $g(z)$, satisfying the inequality

$$|g(z)| < C e^{h(|z|)}$$

where $h(r)$ is a monotonic, twice differentiable function and $h(r) > 0$, $h'(r) > 0$, $h''(r) > 0$, namely

$$g(z) = \int e^{izs} d\sigma(s)$$

where $\sigma(s)$ is a complex measure for which there exists the integral

$$\int e^{H(|s|)} |d\sigma(s)| < \infty$$

where

$$H(s) = \max_{z>0} (sz - h(z))$$

*) On leave from the Joint Institute for Nuclear Research, Dubna, U.S.S.R.

We shall consider classes of functions $g(z)$ which depend on one complex variable $z = x+iy$ and are entire analytic functions in the argument z . Let $g(z)$ be an entire function, then

$$M_g(z) = \max_{|z|=r} |g(z)|$$

Let $h(r)$ be a monotonic, twice differentiable function, and

$$h(r) > 0, \quad h'(r) > 0, \quad h''(r) > 0.$$

If

$$\lim_{z \rightarrow \infty} \frac{\ln M_g(z)}{h(z)} = 1,$$

then we shall say that the entire function $g(z)$ has an order of growth of $h(r)$. If $h(r) = ar^{\rho}$ we can then say that the entire function $g(z)$ has order ρ and finite type a .

We shall say that the function $g(z)$ belongs to the space \mathcal{B}_h if for this function $g(z)$ there exist such constants $\delta > 0$ and $B > 0$, that

$$|g(z)| \leq B e^{h((1-\delta)|z|)}. \quad (1)$$

We will prove

Theorem

If $g(z) \in \mathcal{B}_h$, then this function can be represented in the form

$$g(z) = \int e^{iz\zeta} d\sigma(\zeta) \quad (2)$$

where $\sigma(\zeta)$ is a complex completely additive measure on the complex plane ζ and for this measure there exists the following integral

$$\int e^{H(|s|)} |d\sigma(s)| < \infty \quad (3)$$

where $H(s)$ is the Young dual function of $h(r)$, i.e.,

$$H(s) = \max_{z>0} (sz - h(z)). \quad (4)$$

Our proof is the generalization of the method given by Gel'fand and Shilov¹⁾ for entire functions with growth of first order, i.e., $h(r) = ar$.

Let Z_H be the linear space of entire functions, for which all the expressions

$$\|f\|_p = \sup_{|s|} |f(s)| e^{-H\left(\left(1+\frac{1}{p}\right)|s|\right)} \quad (5)$$

are finite. The functions

$$M_p(s) = e^{-H\left(\left(1+\frac{1}{p}\right)s\right)}$$

satisfy the inequalities

$$0 < M_1(s) \leq M_2(s) \leq M_3(s) \leq \dots$$

and the so-called condition (P) :

- For a given $\varepsilon > 0$ and any p , a $p' > p$, and an N can be found such that for all s , for which $|s| > N$ is satisfied, the following inequality is valid

$$M_p(s) < \varepsilon M_{p'}(s)$$

Under these conditions the norms (5) agree, so that the space Z_H is complete, and finally that it is perfect¹⁾.

If $f(\zeta) \in Z_H$, then for any $\varepsilon > 0$ there is a number $C_\varepsilon > 0$ such that

$$|f(\zeta)| < C_\varepsilon e^{H((1+\varepsilon)|\zeta|)} \quad (6)$$

Let us find the general form of a linear continuous functional in the space Z_H . It is sufficient to find a general linear functional (F, f) in the normed space $Z_H^{(p)}$, the completion of the space Z_H in the norm $\|f\|_p$. The space $Z_H^{(p)}$ consists of some continuous functions $f(\zeta)$. These functions are defined for any ζ and the norm $\|f\|_p$ is finite for them. This space is closed relative to uniform convergence. Continuing the functional F into the space of all continuous functions according to the Hahn-Banach theorem, and applying the Riesz-Radon theorem, we obtain

$$(F, f) = \int f(\zeta) d\mu(\zeta) \quad (7)$$

where $\mu(\zeta)$ is a complex, completely additive measure in the complex ζ -plane, for which the integral

$$\int e^{H((1+\frac{1}{p})|\zeta|)} |d\mu(\zeta)| < \infty \quad (8)$$

is finite.

By virtue of the theorem ¹⁾ on the structure of a space conjugate to a countably normed space, Eq. (7) yields the general form of a linear continuous functional in the space Z_H for all possible p .

Furthermore, the Taylor series $f(\zeta) = \sum_{n=0}^{\infty} f_n \zeta^n$ converges in the topology of the space Z_H . In fact, we can obtain by applying the Cauchy formula and Eq. (6) :

$$|f_n| = \left| \frac{1}{2\pi i} \oint \frac{d\zeta f(\zeta)}{\zeta^{n+1}} \right| \leq C_\varepsilon \min_{s>0} \frac{\ell^{H((1+\varepsilon)s)}}{s^n} = C_\varepsilon (1+\varepsilon)^n \ell^{-B(n)} \quad (9)$$

where

$$B(n) = \max_{s>0} (n \ln s - H(s)). \quad (10)$$

The norm $\|\zeta^n\|_p$ is equal according to the definition (5) to

$$\|\zeta^n\|_p = \max_{s>0} s^n e^{-H((1+\frac{1}{p})s)} = \frac{e^{B(n)}}{\left(1+\frac{1}{p}\right)^n} \quad (11)$$

Then we have the estimation

$$\sum_{n=0}^{\infty} |f_n| \|\zeta^n\|_p \leq C_{\varepsilon} \sum_{n=0}^{\infty} \left[\frac{(1+\varepsilon)}{\left(1+\frac{1}{p}\right)} \right]^n \quad (12)$$

Since the number ε can be chosen arbitrarily small, the series (12) converges for each given p .

Hence

$$(F, f) = \sum_{n=0}^{\infty} f_n F_n \quad (13)$$

where $F_n = (F, \zeta^n)$ is a fixed sequence of constants. Conversely, every sequence of constants F_n , such that the series (13) converges for any entire function $f(\zeta) \in Z_H$ and defines a continuous linear functional in the Z_H space by means of (13), may be represented as

$$F_n = \int \zeta^n d\sigma(\zeta) \quad (14)$$

which is obtained from the general formula (7) for $f(\zeta) = \zeta^n$.

Let $g(z) = \sum_{n=0}^{\infty} g_n z^n$ be an entire function from the space Z_h , i.e., one satisfying an inequality of the form (1). Let us show that the numbers

$$F_n = (-i)^n g_n n! \quad (15)$$

define a linear functional in the space Z_H when the function $H(s)$ is

the Young dual function of $h(r)$ according to (4). Indeed, we have the following estimations :

$$\begin{aligned} |g_n| &= \left| \frac{1}{2\pi i} \oint \frac{dz g(z)}{z^n} \right| \leq B \min_{z>0} \frac{e^{h((1-\delta)z)}}{z^n} = \\ &= B \cdot (1-\delta)^n e^{-A(n)} \end{aligned} \quad (16)$$

where

$$A(n) = \max_{z>0} (n \ln z - h(z)) \quad (17)$$

and, according to the well-known Stirling formula :

$$n! = e^{n \ln n - n} \cdot \sqrt{2\pi n} E_n \quad (18)$$

where $E_n \rightarrow 1$. Hence

$$\begin{aligned} \sum_{n=0}^{\infty} |f_n F_n| &\leq \\ &\leq \sqrt{2\pi} C \sum_{n=0}^{\infty} \sqrt{n} E_n (1+\varepsilon)^n (1-\delta)^n \exp \left\{ -B(n) - A(n) + n \ln n - n \right\} \end{aligned} \quad (19)$$

Let us show that

$$B(n) + A(n) \equiv n \ln n - n. \quad (20)$$

Indeed, we have according to (17)

$$A(n) = n \ln z(n) - h(z(n)) \quad (21)$$

where the function $r = r(n)$ is the solution of the following equation

$$n = z(n) h'(z(n)) \quad (22)$$

On the other hand, we have, according to (4)

$$H(s) = s u(s) - h(u(s)) = u(s) h'(u(s)) - h(u(s)) \quad (23)$$

because of

$$s = h'(u(s)). \quad (24)$$

Then

$$\begin{aligned} B(n) &= \max_{s>0} (n \ln s - H(s)) = \\ &= \max_{s>0} (n \ln h'(u(s)) - u(s) h'(u(s)) + h(u(s))) = \\ &= \max_{u>0} (n \ln h'(u) - u h'(u) + h(u)). \end{aligned} \quad (25)$$

The condition of the maximum is

$$n \frac{h''(u)}{h'(u)} - u h''(u) = 0$$

or

$$n = u(n) h'(u(n)) \quad (26)$$

One can see that equations (26) and (22) are the same. Now we can write

$$B(n) = n \ln \frac{n}{z(n)} - n + h(z(n)). \quad (27)$$

Adding the functions $A(n)$ and $B(n)$ according to (21) and (27), we obtain the equality (20).

Finally, we have for the series (19) :

$$\sum_{n=0}^{\infty} |f_n F_n| \leq \sqrt{2\pi} C_{\varepsilon} B \sum_{n=0}^{\infty} \sqrt{n} E_n (1+\varepsilon)^n (1-\delta)^n. \quad (28)$$

Since δ is a given fixed number and ε can be chosen arbitrarily small, the series (28) converges for any functions $f(\zeta) \in Z_H$. At the same time we obtain boundedness of the functional (13) in the norm $\|\cdot\|_p$ with $p > 1/\delta$, which also means boundedness of the functional (13) in the whole Z_H space.

According to what has been proved, there exists a measure $\sigma(\zeta)$ such that

$$F_n = (-i)^n g_n n! = \int \zeta^n d\sigma(\zeta), \quad (29)$$

hence

$$g_n = \int \frac{(\zeta)^n}{n!} d\sigma(\zeta) \quad (30)$$

Multiplying by z^n and adding, we obtain convergent series on the left and right, and therefore

$$g(z) = \sum_{n=0}^{\infty} g_n z^n = \sum_{n=0}^{\infty} \int \frac{(iz\zeta)^n}{n!} d\sigma(\zeta) = \int e^{iz\zeta} d\sigma(\zeta) \quad (31)$$

Q.E.D.

ACKNOWLEDGEMENTS

The author wishes to thank Professor J. Prentki for the kind hospitality extended to him at the Theory Division of CERN. He also wants to acknowledge interesting discussions with Dr. H. Epstein.

R E F E R E N C E

- 1) M. Gel'fand and G.E. Shilov, "Generalized Functions", Volume 2, Academic Press, New York-London (1968).