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Abstract

In this thesis we study different aspects of four dimensional field theories. In the
first chapter we give introduction and overview of the thesis. In the second chapter
we review the connection between perturbative Yang-Mills and twistor string the-
ory. Inspired by this, we propose a new way of constructing Yang-Mills scattering
amplitudes from Feynman graphs in which the vertices are off-shell continuations
of the tree level MHV amplitudes. The MHV diagrams lead to simple formulas
for tree-level amplitudes. We then give a heuristic derivation of the diagrams from
twistor string theory.

In the third chapter, we explore the twistor structure of scattering amplitudes
in theories for which a twistor string theory analogous to the one for N' = 4 gauge
theory has not yet been proposed. We study the differential equations of one-loop
amplitudes of gluons in gauge theories with reduced supersymmetry and of tree
level and one-loop amplitudes of gravitons in general relativity and supergravity.
We find that the scattering amplitudes localize in twistor space on algebraic curves
that are surprisingly similar to the N' = 4 Yang-Mills case.

In the next chapter we propose tree-level recursion relations for scattering am-
plitudes of gravitons. We use the relations to derive simple formulas for all am-
plitudes up to six gravitons. We prove the relations for MHV and next-to-MHV
amplitudes and the eight graviton amplitudes.

In the last two chapters, we concentrate on the nonperturbative aspects of
N =1 gauge theories. Firstly, we find the complete set of relations of the chiral op-
erators of supersymmetric U(N) gauge theory with adjoint scalar. We demonstrate
exact correspondence between the solutions of the chiral ring and the supersymmet-
ric vacua of the gauge theory. We discuss the gaugino condensation in the vacua.
Finally, we go on to study the nonperturbative corrections to the Konishi anomaly
relations. We show that the Wess-Zumino consistency conditions of the chiral ro-
tations of the matter field imply the absence of the corrections for a wide class of

superpotentials.
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1. Introduction

Current physics theories are based on quantum mechanics and general rel-
ativity. At energies far below the Planck scale, gravity is negligible. The re-
maining three forces are described in terms of quantum gauge theory with group
SU(3) x SU(2) x U(1). The fourth force, gravity, is described by a massless spin
two field, the graviton. Early attempts at quantizing gravity led to divergences and
ill-defined results. It is believed that general relativity cannot be well defined as a
field theory.

These theories have been reconciled in string theory. String theory is the lead-
ing candidate for a unified description of the physical world. It naturally incorpo-
rates gravity, as the spectrum of strings has a massless spin two excitation. The
critical superstring theories are defined on a ten-dimensional manifold. To obtain
the four dimensional world, one compactifies string theory on a six dimensional
Calabi-Yau manifold.

Although our understanding of string phenomenology is very incomplete, we
have a lot of confidence in string theory coming from another direction. String
theory teaches us new lessons about established physical theories, like gauge theories
and general relativity. Thanks to it, we have learned about black holes, confinement,
chiral symmetry breaking and other problems.

Much of this comes from understanding of D-branes. The low energy effective
theory of D-branes is gauge theory. This observation lies at the heart of current
studies of gauge theories using string theory. The open string excitations living
on the D-brane worldvolume describe the D-brane dynamics. At low energies, one
keeps only the massless modes. To study gauge theories one usually goes to a corner
of parameter space in which the massless closed string modes, that is gravitons,
decouple and we are left with open string modes only. Maldacena has implemented

this in his AdS/CFT duality. Here, the strongly coupled gauge theory is dual to
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1 Introduction 2

weakly coupled string theory, which can be approximated by supergravity. This
has led to an improved understanding of confinement, chiral symmetry breaking
and other aspects of gauge theory.

In twistor string theory we have a novel implementation of gauge string duality.
The theory of open strings is a gauge theory of a different kind. Also it lives in
six dimensions. This is so called holomorphic Chern-Simons gauge theory, whose
gauge fields correspond to fluctuations of holomorphic gauge bundles on the target
space. Ward’s transform encodes the anti-selfdual gauge configurations in terms of
holomorphic bundles on twistor space. To get away from selfduality, one introduces
D-instantons that wrap holomorphic curves. As we will see, this leads to novel
ways of computing the perturbative S matrix of gauge theory. These scattering
amplitudes are useful for eliminating QCD background at LHC, in order to find
new physics beyond standard model.

The study of twistor structure of scattering amplitudes has inspired new de-
velopments in perturbative Yang-Mills theory itself. At tree level, this has lead
to recursion relations for on-shell amplitudes [7]. These recursion relations rest on
basic properties of perturbation theory like the factorization of amplitudes. Hence,
it is not surprising to find out that they apply to various field theories, including
scalar field theories and even perturbative gravity.

Another way to embed four dimensional gauge theories in string theory is as
low energy effective field theories of D-branes wrapped on cycles in Calabi-Yau
threefolds. This has led to an understanding of dynamics of various N' = 1 gauge
theories. Dijkgraaf and Vafa conjectured that holomorphic data of the gauge theo-
ries can be calculated from an auxiliary matrix model. Cachazo, Douglas, Seiberg
and Witten gave a field theory derivation of the results that rests on the analysis of
the anomalies and the ring of chiral operators of the field theory. Surprisingly, the
chiral ring gives a full description of the low energy nonperturbative vacua.

In the rest of the Introduction, we will discuss each of the remaining chapters
in more detail, stressing the general lessons, rather than the particulars for which

the reader is referred to the chapters.



1 Introduction 3

1.0.1 Perturbative Gauge Theory and Twistor String Theory

The twistor space is roughly the space of lightrays in Minkowski space. It was
proposed by Penrose [§] in an attempt to address the foundational issues of quantum
mechanics. He observed that massless fields have natural description in twistor
space in terms of certain cohomology classes. For gauge theory, this has been later
generalized by Ward [9] who showed that anti-selfdual gauge field configurations
correspond to holomorphic vector bundles on twistor space. For gravity, there is a
similar construction due to Penrose [10], that encodes anti-selfdual spacetimes in
terms of deformations of the complex structure of the twistor space.

Perhaps the main open question in the twistor programme was the description
of interactions. In Minkowski space, the standard way to account for interactions is
to start with free fields and introduce the S matrix, which is essentially the transition
operator from free field configurations in the far past to a free field configurations in
the far future. The interactions happen in the middle in a localized region of space
time. One accounts for them by doing a perturbative expansion of the S matrix.
This is usually packaged in terms of Feynman diagrams, in which the propagators
represent free field propagation between the vertices that represent local interactions
of the fields. By twistor correspondence a point in Minkowski space is related to a
sphere in twistor space, the celestial sphere of all directions in which a lightray can
travel from the point. Hence, the interactions between fields in twistor space are
related to two dimensional surfaces rather than zero dimensional points.

This hint was taken up by Witten [11] who proposed that these two dimensional
surfaces correspond to worldsheets of strings. His proposal is specific to a particular
field theory, the maximally supersymmetric Yang-Mills theory. The string theory
dual is the open string topological B-model enriched with D-instantons. The free
fields of the gauge theory are related to the open strings. The interactions come
from the D-strings on which the open strings end. The D-strings wrap holomorphic
curves, simplest of which is the celestial sphere that gets related by twistor transform
to points in Minkowski space.

In string theory, interactions are organized differently from a local field theory.
Hence, evaluating the D-instanton contribution from string theory led to new ways
of computing the perturbative S matrix. This has been successfully carried out
at tree level. One obtains a new Feynman diagrammatic expansion of the scatter-

ing amplitudes [1], which in twistor space corresponds to a collection of D-strings
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wrapping the celestial spheres with open string connecting them into a tree graph.
The more complicated holomorphic curves do not have a natural description in
Minkowski space, hence evaluating them does not have a simple interpretation in
the gauge theory and is the strongest evidence so far that the twistor string theory
is correct [12].

Despite the successes of the twistor string theory at tree level, there are many
open questions. The most pressing one is that the B-model has besides the open
strings also closed strings. While the open strings give the fields of N' = 4 gauge
theory, the closed strings give the fields of N’ = 4 conformal gravity. This is some-
what unwelcome, since conformal gravity theories are generally considered to be
unphysical. One would hope to find a string theory that is dual to Yang-Mills, since

Yang-Mills theory is known to be consistent without conformal supergravity.

1.0.2 Twistor Structure of Scattering Amplitudes

One of the most general predictions of twistor string theory is that the inter-
actions come from strings that wrap curves in twistor space. We can study this
prediction even if we do not have a proper formulation of the twistor string theory.

The curves in questions are algebraic curves of a degree and genus that depends
on the amplitudes. The conditions for a scattering amplitude to be supported on the
curve are polynomial equations in the twistor coordinates of the external particles.
After Fourier transform into Minkowski space, these become differential equations
acting on the scattering amplitudes.

For one-loop MHV amplitudes in N' = 4 Yang-Mills theory, the differential
equations studied in [2] agree with the twistor string picture after one takes into
account the holomorphic anomaly of the differential operators [3].

For Yang-Mills theories with reduced supersymmetry we do not have a twistor
string proposal. One can get hints of a possible twistor string by studying the differ-
ential equations that the amplitudes satisfy. Our results are surprisingly similar to
the N' = 4 case. We find that the amplitudes are supported on curves whose degree
and genus is related to the helicities of the external particles in essentially the same
way as in N = 4 Yang-Mills theory. Perhaps the most important difference in the
N =0 case is that the one-loop amplitude with all gluons of positive helicity must

be included as a new building block alongside with the MHV amplitude.
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We also study the twistor structure of gravity amplitudes. It has been known
that graviton amplitudes, just like gluon amplitudes, exhibit remarkable simplicity
that cannot be expected from textbook recipes for computing them. The tree level
n graviton amplitudes vanish if more than n — 2 gravitons have the same helicity.
The maximally helicity violating (MHV) amplitudes are thus, as in Yang-Mills case,
those with n — 2 gravitons of one helicity and two of the opposite helicity. Some
of this simplicity can be explained by relating the graviton amplitudes to gluon
amplitudes via the Kawai, Lewellen and Tye (KLT) relations [13]. These express the
graviton amplitudes as simple sums of products of gluon amplitudes and momentum
invariants [14].

We find that the twistor structure of the graviton amplitudes is remarkably
similar to the twistor structure of gluon amplitudes. One difference is that the
amplitudes are generically supported in a higher order neighborhood of the curves.
Similar behavior was observed for closed strings in the B-model which give the

conformal supergravity amplitudes [15].

1.0.3 Tree Level Recursion Relations For Gravity Amplitudes

The discovery of twistor string theory has stimulated renewed progress in com-
puting scattering amplitudes. Among other things, a new set of recursion relations
for tree-level amplitudes of gluons have been recently introduced in [7]. A straight-
forward application of these recursion relations gives new and simple forms for many
amplitudes.

A proof of the recursion relations was given in [16]. The proof rests only on
generic properties of perturbation theory like the fact that the only poles of tree level
amplitudes come from the Feynman propagators and that the tree level amplitudes
are rational functions of the kinematic data of the external particles. So one would
expect that it extends to other field theories.

In chapter four, we generalize the recursion relations of [7] to tree level am-
plitudes of gravitons. To write down the recursion relations, we single out two

gravitons. Then the recursion relations can be schematically written as follows

1
h —h
A, = E A7—=5A7", (1.0.1)
T.h T
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where the sum is over all channels that divide the external particles into two sets
7 and J, such that the marked gravitons are in different groups. The momenta
of the marked gravitons and of the intermediate graviton are shifted, so that the
subamplitudes are on-shell.

The recursion relations lead to new simple formulas for graviton amplitudes,
which explains some of the simplicity of graviton amplitudes that was mentioned in
previous subsection. We use them to compute all amplitudes up to six gravitons.

The recursion relations are a precise version of the statement that tree-level
amplitudes are uniquely determined by their singularity structure. The tree level
amplitudes have factorization, collinear and soft singularities. The recursion rela-
tions construct the scattering amplitude from the factorization singularities in the
channels that separate the marked gravitons.

There could be ambiguities in the amplitudes that are not fixed by the fac-
torization properties. The ambiguity would have to be a function that is free of
singularities, that is a polynomial in the momentum invariants. Yang-Mills ampli-
tudes of n gluons have dimention 4 — n. Hence for n > 5 gluons, the amplitudes
have negative dimension so they cannot have a polynomial ambiguity, because a
polynomial has positive dimension.

For gravitons, all tree-level amplitudes have dimension two, so there could be
a polynomial ambiguity in the recursion relations. We were able to prove it absence
for some classes of scattering amplitudes which suggests that the recursion relations

are valid in general.

1.0.4 Chiral Rings, Vacua of SUSY Gauge Theories

In chapter five we shift our focus from perturbative to nonperturbative aspects
of gauge theories. We consider N/ = 1 U(N) gauge theories with adjoint matter.
These gauge theories can be embedded into string theory by wrapping N D5-branes
around a two cycle in a local Calabi-Yau manifold. The holomorphic data, that is
the F-terms, of the gauge theory can be related to topological observables in the
string theory. These in turn are computed from the topological B-model. In the
special geometry that we consider, the B-model reduced to a holomorphic matrix
model [17] of a single hermitian N x N matrix. The bosonic potential of the matrix
model gets related to the superpotential of the adjoint matter field of the gauge
theory.
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Cachazo, Douglas, Seiberg and Witten gave a field theory derivation of this
result. They studied the chiral operators, which in a sense constitute the topological
part of the gauge theory. Indeed, in a supersymmetric vacuum, the chiral operators
are independent of their positions and correlation functions of single trace operators
factorize. Since the product of chiral operators is chiral, one can consider the ring of
chiral operators. The structure of the ring is constrained by various relations. Some
of these come from the Konishi anomalies of the chiral rotations of the matter field
® — ¢'*®. Further come from the N/ = 2 parent theory in which the superpotential
of the matter field is turned off.

It has been observed in two dimensions that the ring of chiral operators deter-
mines the supersymmetric vacuum structure of the theory. This has been shown
n [18] for the N' = 2 superconformal field theories and in [19] for the CPN~1!
supersymmetric sigma model.

In four dimensions, the first example of this correspondence came up in [20]
in the case of pure N' = 1 U(N) gauge theory. This theory has N low energy
confining vacua that break the Zsy chiral symmetry down to Z5. Here, the only
operator in the chiral ring is the gaugino bilinear S = Tr W, W<, Classically, it
satisfies SN = 0. This relation receives one-instanton corrections which deform it

to

SN = A3V, (1.0.2)

Each of the solutions of this equation correspond to a vacuum of the gauge theory.

In chapter five, we extend these considerations to the N' = 1 gauge theories
with adjoint scalar. We study the relations of the chiral ring and find a complete set
of the relations. We show that they completely determine the structure of the chiral
ring. Asin the pure N/ = 1 case, each vacuum corresponds to an idempotent element
of the chiral ring. The rank of the low-energy group is fixed by the dimension of
the fermionic part of the operator. We also study generalizations of the equation
(1.0.2). Here, the classical equation gets deformed to SN = P(®)A?Y | where P(®)

is a degree n polynomial in ® that depends on the superpotential.
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1.0.5 Nonperturbative Fxactness of Konishi Anomaly

As we have just seen, the chiral ring of four dimensional /' = 1 gauge theories
with adjoint matter determines the nonperturbative structure of the supersymmet-
ric vacua. To put this argument on a firmer footing, it is necessary to show that
the chiral ring relations hold nonperturbatively. A simple argument shows that
the Konishi anomalies cannot receive perturbative corrections. The question of
nonperturbative corrections can be addressed with the help of the Wess-Zumino
consistency conditions that constrain the anomalies.

In the case Konishi anomalies, the rigidity of the Lie algebra of chiral rota-
tions implies that the consistency conditions do not receive nonperturbative correc-
tion. In chapter six, we study the consistency conditions and show that they imply
nonrenormalization of the Konishi anomalies for a wide class of examples, namely
for all gauge theories with a superpotential of degree less than or equal 2] where
2] = 3c(Adj) — ¢(M) is the one-loop beta function coefficient.

For superpotential of degree higher than 2I, nonperturbative corrections are
expected due to ambiguities in the definition of the highly nonrenormalizable oper-
ators like Tr ®™ [21], [22] and [23]. The Wess-Zumino consistency conditions can be
applied anyway, and we show that the strongly constrain the form of the nonper-
turbative corrections, so that the corrections can be absorbed into the redefinition
of the superpotential. Hence, after the redefinition, these theories have undeformed
chiral ring relations as well.

This proof can be applied to other gauge theories as long as the algebra of chiral
rotations of the matter fields forms an extension of the partial Virasoro algebra. As
an illustration, we study the case of SO(N) and Sp(N) gauge theory with matter
in the symmetric or antisymmetric representation. The case of Sp(IN) gauge theory
with antisymmetric matter is especially interesting in the light of a puzzle raised in
the study of the related matrix model in [24], [25] and [26]. Our result confirms that
the Dijgraaf-Vafa correspondence works for these theories, as has been demonstrated
in [27] and [21].



2. Twistor String Theory and Perturbative Yang-Mills

2.1 Introduction

The idea that a gauge theory should be dual to a string theory goes back to 't
Hooft [28]. 't Hooft considered U (V) gauge theory in the large N limit while keeping
A = g% ,,;N fixed. He observed that the perturbative expansion of Yang-Mills can
be reorganized in terms of Riemann surfaces, which he interpreted as an evidence
for a hypothetical dual string theory with string coupling gs; ~ 1/N.

In 1997, Maldacena proposed a concrete example of this duality [29]. He con-
sidered the maximally supersymmetric Yang-Mills theory and conjectured that it is
dual to type IIB string theory on AdSs x S°. This duality led to many new insights
from string theory about gauge theories and vice versa. At the moment, we have
control over the duality only for strongly coupled gauge theory. This corresponds to
the limit of large radius of AdSs x S° in which the string theory is well described by
supergravity. However, QCD is asymptotically free, so we would also like to have a
string theory description of a weakly coupled gauge theory.

In weakly coupled field theories, the natural object to study is the perturbative
S matrix. The perturbative expansion of S matrix is conventionally computed using
Feynman rules. Starting from early studies of de Witt [30], it was observed that
the scattering amplitudes show simplicity that is not apparent from the Feynman
rules. For example the maximally helicity violating amplitudes can be expressed as
simple holomorphic functions.

Recently, Witten proposed a string theory that is dual to a weakly coupled
N = 4 gauge theory [11]. The perturbative expansion of the gauge theory is related
to D-instanton expansion of the string theory. The string theory in question is the
topological open string B-model on a Calabi-Yau supermanifold CIP’?M, which is a

supersymmetric generalization of Penrose’s twistor space.

9



2 Twistor String Theory and Perturbative Yang-Mills 10

At tree level, evaluating the instanton contribution has led to new insights
about scattering amplitudes. ‘Disconnected’ instantons give MHV diagram con-
struction of the amplitudes in terms of Feynman diagrams with vertices that are
suitable off-shell continuations of the MHV amplitudes [1]. The ‘connected’ instan-
ton contributions express the amplitudes as integrals over the moduli space of holo-
morphic curves in twistor space [12]. Surprisingly, the MHV diagram construction
and the connected instanton integral can be related via localization on the moduli
space [31].

Despite the successes of the twistor string theory at tree level, there are still
many open questions. The most pressing issue is perhaps the closed strings that
give N' = 4 conformal supergravity [15]. At tree level, it is possible to recover the
Yang-Mills scattering amplitudes by extracting the single-trace amplitudes. At loop
level, the single trace gluon scattering amplitudes receive contributions from internal
supergravity states, so it would be difficult to extract the Yang-Mills contribution
to the gluon scattering amplitudes. Since, N' = 4 Yang-Mills theory is consistent
without conformal supergravity, it is likely that there exists a version of the twistor
string theory that is dual to pure Yang-Mills theory. Indeed, the MHV diagram
construction that at tree level has been derived from twistor string theory seems to
compute loop amplitudes as well [32].

The study of twistor structure of scattering amplitudes has inspired new de-
velopments in perturbative Yang-Mills theory itself. At tree level, this has lead
to recursion relations for on-shell amplitudes [7]. At one loop, unitarity techniques
[33)34] have been used to find new ways of computing the N’ =4 [35] and N' =1
[36] Yang-Mills amplitudes.

In these lectures we will discuss aspects of the twistor string theory. Along
the way we will learn lessons about Yang-Mills scattering amplitudes. The string
theory sheds light on Yang-Mills perturbation theory and leads to new methods
for computing scattering amplitudes. In the last section, we will describe further

developments in perturbative Yang-Mills.
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2.2 Helicity Amplitudes
2.2.1 Spinors

Recall’ that the complexified Lorentz group is locally isomorphic to
SO(3,1,C) = S1(2,C) x S1(2,C), (2.2.1)

hence the finite dimensional representations are classified as (p, ¢) where p and ¢ are
integer or half-integer. The negative and positive chirality spinors transform in the
representations (1/2,0) and (0,1/2) respectively. We write generically \,,a = 1,2
for a spinor transforming as (1/2,0) and Xd, a = 1,2 for a spinor transforming as
(0,1/2).

The spinor indices of type (1/2,0) are raised and lowered using the antisym-

metric tensors eq, and €?® obeying €12 = 1 and €%®ey, = 6%,
A =€), Ay = el (2.2.2)

Given two spinors A and )\, both of negative chirality, we can form the Lorentz

invariant product

AN = € A2NP, (2.2.3)

It follows that (A, \) = — (X', \), so the product is antisymmetric in its two variables.

In particular, (A, \') = 0 implies that A equals A" up to a scaling A* = c\'®.
Similarly, we lower and raise the indices of positive chirality spinors with the

antisymmetric tensor €,; and its inverse €4, For two spinors X and , both of

positive chirality we define the antisymmetric product

N N] = =[N, A] = e, AN (2.2.4)
A vector representation of SO(3,1,C) is the (1/2,1/2) representation. Thus a

momentum vector p,,pu = 0,...,3 can be represented as a “bi-spinor” p,; with one

spinor index a and a of each chirality. The explicit mapping from p, to p,; can be

1 The sections 2.2 —2.4 are based on lectures given by E. Witten at PITP, IAS Summer
2004
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made using the chiral part of the Dirac matrices. In signature + — ——, one can

take the Dirac matrices to be
0 ot
B
P = <5M 0 ) , (2.2.5)

where o = (1,5),5" = (1,—07) with & being the 2 x 2 Pauli matrices. For any

vector, the relation between p,,, and p,q is
Paa = pua'gd =po+ g - ﬁ (226)

It follows that,
pup" = det(paa). (2.2.7)

Hence, p,, is lightlike if the corresponding determinant is zero. This is equivalent
to the rank of the 2 x 2 matrix p,, being less or equal to one. So p* is lightlike

precisely, when it can be written as a product

Paa = )‘a)\d (228)

for some spinors A, and Xd. For a given null vector p, the spinors A and X are unique
up to a scaling
(AA) — (EAE1N) teCr. (2.2.9)

There is no continuous way to pick A as a function p. The \’s form a Hopf line
bundle over the sphere S? of directions of the lightlike vector p.

For complex momenta, the spinors A* and o are independent complex vari-
ables, each of which parameterizes a copy of CP'. Hence, the complex lightcone
pup” = 0 is the connected manifold CP! x CP'.

For real null momenta in Minkowski signature + — ——, we can fix the scaling

up to a Zs by requiring A* and 2 to be complex conjugates
= ) (2.2.10)

Hence, the negative chirality spinors A are conventionally called ‘holomorphic’ and
the positive chirality ‘anti-holomorphic.” In (2.2.10) the + is for a future pointing
null vector p*, and — is for a past pointing p*.

One can also consider other signature. For example in the signature + + ——,

the spinors A and X are real and independent. Indeed, with signature + + ——,
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the Lorentz group is SO(2,2,R), which is locally isomorphic to SI(2,R) x SI(2,R).
Hence, the spinor representations are real.
Let us remark, that if p and p’ are two lightlike vectors given by pus = )\axa

and p/,, = X, X\, then their scalar product can be expressed as
2p-p' = (A X)), (2.2.11)

Given p, the additional physical information in A is equivalent to a choice of
wavefunction of a helicity —1/2 massless particle with momentum p. To see this,

we write the chiral Dirac equation for a negative chirality spinor ¢
0 =io’,0,0". (2.2.12)

A plane wave ¥* = p®exp(ip - x) satisfies this equation only if p,qp® = 0. Writing
Paa = )\axa, we get A\gp® = 0, that is p® = ¢- A? for a constant ¢, hence the negative

chirality fermion has wavefunction
Y% = A exp(iTaa A AY). (2.2.13)

Similarly, X defines a wavefunction for a helicity 4+1/2 fermion 1% = cA% exp(izaa \*A%).
There is an analogous description of wavefunctions of massless particles of
spin 1. Usually, we describe massless gluons with their momentum vector p* and

polarization vector e*. The polarization vector obeys the constraint
pue’ =0 (2.2.14)

that represents the decoupling of longitudinal modes and is subject to the gauge
invariance

e — €' + wp”, (2.2.15)

for any constant w. Suppose that instead of being given only a lightlike vector pgq,
one is also given a decomposition p,; = )\axd. Then we have enough information
to determine the polarization vector up to a gauge transformation. For a positive

helicity gluon, we take

eh = Hatd (2.2.16)
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where p is any negative helicity spinor that is not a multiple of A. To get a negative

helicity polarization vector, we take

€, = =24 (2.2.17)

where j1 is any positive helicty spinor that is not a multiple of . We will explain
the expression for the positive helicity vector. The negative helicity case is similar.

Clearly, the constraint
phef =p*el, =0 (2.2.18)

holds because dea = 0. Moreover, €' is also independent of y up to a gauge
transformation. To see this, notice that p lives in a two dimensional space that is

spanned with A and p. Hence, any change in g is of the form
op = apn + BA (2.2.19)

for some parameters a and 3. The polarization vector (2.2.16)) is invariant under
the a term, because this simply rescales p and e:a is invariant under the rescaling

of . The § term amounts to a gauge transformation of the polarization vector

Aaa
(p, A)

Under the scaling (A, \) — (tA,t71X), t € C* the polarization vectors scale like

Sel. =1 (2.2.20)

€ —tT%e et — 72T, (2.2.21)

This could have been anticipated, since A gives the wavefunction of a helicity +1/2
particle so a helicity +1 polarization vector should scale like 22, Similarly, the
helicity —1 polarization vector scales like \2.

To show more directly that ™ describes a massless particle of helicity +1, we
must show that the corresponding linearized field strength F,, = 0,4, — 0, A,
is anti-selfdual. Indeed, the field strength written in a bispinor notation has the

decomposition
Fadbi) = 6CLbf‘(fLI.) + edi)fab’ (2222)

where f,; and fab are the selfdual and anti-selfdual part of F. Substituting A,; =
e exp(ixaaA“Xd) we find that F ,,; = eabXde exp(ixaa)\axd).
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So far, we have seen that the wavefunction of a massless particle with helicity
h scales under (A, A) — (tA,t71A) as t2" if || < 1. This is true for any h, as can
be seen from the following argument. Consider a massless particle moving in the 7

direction. Then a rotation by angle 6 around the 77 axis acts on the spinors as
(A, A) = (e71072), eTi0/2)), (2.2.23)

Hence, A, A carry —% or -I—% units of angular momentum around the 77 axis. Clearly,
a massless particle of helicity h carries h units of angular momentum around the 77
axis. Hence the wavefunction of the particle gets transformed as 1) — e**%1) under

the rotation around 77 axis. Hence, the wavefunction obeys the auxiliary condition

L0~ 0 < -
(A T 8Xa>z/}(>\,)\)— 2hap(A, N). (2.2.24)

Clearly, this constraint holds for wavefunctions of massless particles of any spin.
The spinors A, A give us a convenient way of writing the wavefunction of massless

particle of any spin, as we have seen in detail above for particles with |h| < 1.

2.2.2 Scattering Amplitudes

Let us consider scattering of massless particles in four dimensions. Consider
the situation with n particles of momenta pq,ps,...,p,. For scattering of scalar
particles, the initial and final states of the particles are completely determined by

the momenta. The scattering amplitude is simply a function of the momenta p;,

Ascalar(p17p27 oo Jpn)' (2225)

In fact, by Lorentz invariance, it is a function of the Lorentz invariants products
pi - p; only.
For particles with spin, the scattering amplitude is a function of both the

momenta p; and the wavefunctions ;

AP, Y15 5Py Un)- (2.2.26)

Here, A is linear in each of the wavefunctions ;. The description of 1; depends on

the spin of the particle. As we have seen explicitly above in the case of massless
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particles of spin % or 1, the spinors A, Py give a unified description of the wavefunc-
tions of particles with spin. Hence, to describe the wavefunctions, we specify for
each particle the helicity h; and the spinors A\; and Xz The spinors determine the
momenta p; = )\,-XZ- and the wavefunctions 1/}¢(Ai,xi, h;). So for massless particles
with spin, the scattering amplitude is a function of the spinors and helicities of the
external particles

A AL B A A ). (2.2.27)
In labelling the helicities we take all particles to be outgoing. To obtain an amplitude
with incoming particles as well as outgoing particles, we use crossing symmetry, that
relates an incoming particle of one helicity to an outgoing particle of the opposite
helicity.

It follows from (2.2.24) that the amplitude obeys the conditions

o ~ 0 - -
3 — A —= A iy Ny Il = —2 7,A 1y Ny T0g 2.2.2
(Aza)\? )\Za)\g> O o B) = —2h; A, N hi) (2.2.28)

for each particle i, with helicity h;. In summary, a general scattering amplitude of

massless particles can be written as
A= (27)4s* (Z A?X?) AN, Aiy hy), (2.2.29)

where we have written explicitly the delta function of momentum conservation.

Fig. 1: A scattering amplitude of n gluons in Yang-Mills theory. Each
gluon comes with the color factor T;, spinors A;, A; and helicity label h; =
+1.
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2.2.3 Maximally Helicity Violating Amplitudes

To make the discussion more concrete, we consider the tree level scattering of n
gluons in Yang-Mills theory. These amplitudes are of phenomenological importance.
The multi-jet production at LHC will be dominated by tree level QCD scattering.

Consider the Yang-Mills theory with gauge group U(N). Recall that the tree
level scattering amplitudes are planar and lead to single trace interactions. In an
index loop, the gluons are attached in a definite cyclic order, say 1,2,...,n. Then
the amplitude comes with a group theory factor Tr 1175 ...T,. It is sufficient to
give the amplitude with one cyclic order. The full amplitude is obtained from this

by summing over the cyclic orders, to restore Bose symmetry

A= g"2(2m)%* (Zpl> A(1,2,...,n)Tr (1T, ...T,) + permutations.

(2.2.30)
In the rest of the thesis, we will always consider gluons in the cyclic order 1,2,...,n
and we will omit the group theory factor and the delta function of momentum
conservation in writing the formulas. Hence, we will consider the ‘reduced color
ordered amplitudes’ A(1,2,...,n).
The scattering amplitude with n outgoing gluons of the same helicity vanishes.
So does the amplitude, for n > 3 with n — 1 outgoing gluons of one helicity and
one of the opposite helicity. The first nonzero amplitude, the maximally helicity
violating (MHV) amplitude has n — 2 gluons of one helicity and two gluons of the
other helicity. Suppose that gauge bosons r, s have negative helicity and the rest
of gluons have positive helicity. Then the tree level amplitude, stripped of the

momentum delta function and the group theory factor, is

B (Ary Ag)?
[Tos Ny Akgr)

A (2.2.31)

Note, that the amplitude has the correct homogeneity in each variable. It is homo-
geneous of degree —2 in \; for positive helicity gluons; and of degree —2 for negative
helicity gluons ¢ = r, s as required by the auxiliary condition (2.2.28). The ampli-
tude A is sometimes called ‘holomorphic’ because it depends on the ‘holomorphic’

spinors A; only.
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2.3 Twistor Space
2.83.1 Conformal Invariance of Scattering Amplitudes

Before discussing twistor space, let us show the conformal invariance of the
MHYV tree level amplitude. Firstly, we need to construct representation of the con-
formal group generators in terms of the spinors A, . We will consider the conformal
generators for a single particle. The generators of the n-particle system are given
by the sum of the generators over the n particles.

Some of the generators are clear. The Lorentz generators are the first order

differential operators

2\ 9N T P oNe
. (2.3.1)
Tt (e L)
w2 \Mank T TP one
The momentum operator is the multiplication operator
Poi = Aata. (2.3.2)

The remaining generators are the dilatation operator D and the generator of spe-
cial conformal transformation K,;. The commutation relations of the dilatation

operator are
[D, P]| =iP [D, K] = —iK, (2.3.3)

so P has dimension +1 and K has dimension —1. We see from (2.3.2)) that it is
natural to take A and A to have dimension 1 /2. Hence, a natural guess for the

special conformal generator respecting all the symmetries is

82
9NN

(2.3.4)

aa

We find the dilatation operator D from the closure of the conformal algebra. The

commutation relation
[Koa, PP) = —i (&J’fab + 6.0+ (5ab5abD> (2.3.5)

determines the dilatation operator to be

i o ~, 0
D= — @ R 2. 2.3.
2()\ o TN ot ) (2.3.6)
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Now, let us verify that the MHV amplitude

454 aYa (Ars As)?

A= (2m)% <Z ¥ )\i> T o o) (2.3.7)
is invariant under the conformal group. The Lorentz generators are clearly symme-
tries of the amplitude. The momentum operator annihilates the amplitude thanks
to the delta function of momentum conservation.

It remains to verify that the amplitude is annihilated by D and K. For sim-
plicity, we will only consider the dilatation operator D. The numerator contains the
delta function of momentum conservation which has dimension D = —4 and the
factor (A, As)* of dimension 4. Hence, D commutes with the numerator. So we are

left with the denominator
1

[Tie ey A1)
This is annihilated by Dy for each particle k, since the —2 coming from the degree

(2.3.8)

of A\x gets cancelled against the +2 from the definition of the dilatation operator.

2.83.2 Transform to Twistor Space

We have demonstrated conformal invariance of the MHV amplitude, however
the representation of the conformal group that we have encountered above is quite
exotic. The Lorentz generators are first order differential operators, but the mo-
mentum is a multiplication operator and the special conformal generator is a second
order differential operator.

We can put the action of the conformal group into a more standard form if we

make the following transformation

(2.3.9)

Making this substitution we have arbitrarily chosen to Fourier transform X rather
than [. This choice breaks the symmetry between positive and negative helicities.
The amplitude with n; positive helicity and no negative helicity gluons has com-
pletely different description in twistor space from an amplitude with ny positive

helicity gluons and n; negative helicity gluons.
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Upon making this substitution, all operators become first order. The Lorentz

generators take the form

1 0 0
Jav =5 (Aam “bm)

2.3.10
;i 0 0 (2310
ab = 5 Maé?ui’ Mb@ua :
The momentum and special conformal operators become
0

Py = i)‘am
H (2.3.11)

Ko = ina 2

aa ILLCL aAa .

Finally, the dilatation operator (2.3.6) becomes a homogeneous first order operator

i(0d .0
D=—() —pt=—. 2.3.12
2 (A oxe M aua> (2.3.12)

This representation of the four dimensional conformal group is easy to explain.

The conformal group of Minkowski space is SO(4, 2) which is the same as SU(2, 2).

SU(2,2), or its complexification SI(4,C), has an obvious four-dimensional repre-
sentation acting on

zZh = (2, u®). (2.3.13)

Z! is called a twistor and the space C*, spanned by Z7 is called the twistor space.
The action of Si(4,C) on the Z! is generated by the 15 traceless matrices that
correspond to the 15 first order operators Jgp, JNab, D, P, Ky

If we are in signature + + ——, the conformal group is SO(3,3) = SI(4, R).
The twistor space is a copy of R* and we can consider A\ and u to be real. In the
Euclidean signature + + ++, the conformal group is SO(5,1) = SU*(4), where
SU*(4) is the noncompact version of SU(4), so we must think of twistor space as a
copy of C*.

For signature + + ——, where N is real, the transformation from momentum

space scattering amplitudes to twistor space scattering amplitudes is made by a

simple Fourier transform that is familiar from quantum mechanics

o) = [ T s exoliling DA R (23.14)
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The same Fourier transform turns a momentum space wavefunction ¥ (X, A) to a

twistor space wavefunction

wxuri/éﬂgmmmwmw@ﬂy (2:3.15)

Recall that the wave function of a massless particle of helicity h obeys the

auxiliary condition

0 ~. 0 N N
: - N = ir iy hi) = —2hi A(As, As, hy 2.3.1
<>\Za)\? AzaAg)A(A Ny hi) = —2hi AN, Ay hi) (2.3.16)

for each particle ¢, with helicity h;. In terms of A; and p;, this becomes

e 940
’La)\g Mzalug

)Auhmma:—@m+mAuhmm» (2.3.17)

There is a similar condition for the twistor wavefunctions of particles. The operator

on the left hand side coincides with Z!

ag r and generates the scaling of the twistor

7zl -zt tecC*. (2.3.18)

So the wavefunctions and scattering amplitudes have known behavior under the
C* action Z! — tZ!. Hence, we can identify the sets of Z! that differ by the scaling
Z' — tZ' and throw away the point Z! = 0. We get the projective space CP? or
RP? if Z! are complex or real-valued. The Z! are the homogeneous coordinates on
the projective twistor space. It follows from (2.3.17) that, the scattering amplitudes
are homogeneous functions of degree —2h; — 2 in the twistor coordinates Z! of each
particle particle. In the complex case, this means that scattering amplitudes are
sections of the complex line bundle O(—2h; — 2) over a CP? for each particle. For

further details on twistor transform, see any standard textbook, e.g. [37].

2.3.83 Scattering Amplitudes in Twistor Space

In an n-gluon scattering process, after the Fourier transform into twistor space,
the external gluons are associated with points P; in the projective twistor space.
The scattering amplitudes are functions of the twistors P;, that is, they are functions

defined on the product of n copies of twistor space, one for each particle.
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Let us see what happens to the tree level MHV amplitude with n — 2 gluons
of positive helicity and 2 gluons of negative helicity, after Fourier transform into
twistor space.We work in + + —— signature, for which the twistor space is a copy of
RP3. The advantage of + + —— signature is that the transform to twistor space is
an ordinary Fourier transform and the scattering amplitudes are ordinary functions
on a product of RP*’s, one for each particle. With other signatures, the twistor
transform involves d-cohomology and other mathematical machinery.

We recall that the MHV amplitude with negative helicity gluons 7, s is
AN N) = @2m)' O M) F(N), (2.3.19)

where

A
T Akgn)

The only property of f();), that we need is that it is a function of the holomorphic

f(A) (2.3.20)

spinors A; only. It does not depend on the anti-holomorphic spinors XZ

We express the delta function of momentum conservation as an integral
(27r)454(z )\fo) = /d4x“d exp (iwbb Z)\SXS) . (2.3.21)
Hence, we can rewrite the amplitude as
A, N) = /d4x exp <ixbe)\fX£’> f(N). (2.3.22)

To transform the amplitude into twistor space, we simply carry out a Fourier trans-

form with respect to all Ns. Hence, the twistor space amplitude is

2N, d2) LI -
AN, ;) = n '§j AN d* ' ~§jAW’. ;).
(A p2) /(27r)2 (27r)2€Xp ijl% I / BN e - A7 | )
(2.3.23)

The only dependence on XZ is in the exponential factors. Hence the integrals over

Xj can be done trivially, with the result [3§]

A()\u NZ) = /d4£l? ﬁ 52(#3’& + $aa)\?)f()\i). (2324)

Jj=1
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This equation has a simple physical interpretation. Pick some 2% and consider the
equation

He + Taa A\ = 0. (2.3.25)

The solution set for = 0 is a RP! or CP' depending on whether the variables are
real or complex. This is true for any x as the equation lets us solve for u; in terms
of A% So (A, \?) are the homogeneous coordinates on the curve.

In real twistor space, which is appropriate for signature ++ ——, the curve RP!
can be described more intuitively as a straight line. Indeed, throwing away the set
Z! =0, we can describe the rest of RP? as a copy of R? with the coordinates z; =
Zi|Z1,i = 2,3,4. The equations (2.3.25) determine two planes whose intersection
is the straight line in question.

In complex twistor space, the genus zero curve CP' is topologically a sphere S2.
The CP' is an example of a holomorphic curve in CP®. The simplest holomorphic

curves are defined by vanishing of a pair of homogeneous polynomials in the Z!

f(z,..., 2% =

4
(2.3.26)
g(Z*,..., 2%

0
0.
If f is homogeneous of degree d; and g is homogeneous of degree ds, the curve has

degree dyds. The equations
py + A =0, b=1,2 (2.3.27)

are both linear, d; = dy = 1. Hence the degree of the CP! is d = didy = 1.
Moreover, every degree one genus zero curve in CP? is of the form (2.3.27) for some
zb?.

The area of a holomorphic curve of degree d, using the natural metric on CP?,
is 2md. So the curves we found with d = 1 have the minimal area among nontrivial
holomorphic curves. They are associated with the minimal nonzero Yang-Mills tree
amplitudes, the MHV amplitudes.

Going back to the amplitude (2.3.24), the o-functions mean that the amplitude
vanishes unless i, + 2qaaA] = 0,7 = 1,...n, that is, unless some curve of degree
one determined by z,, contains all n points (A;, ;). The result that the MHV

amplitudes are supported on a genus zero curves of degree one is equivalent to

holomorphy of these amplitudes.
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(@) (b)

Fig. 2: (a) In complex twistor space CP? the amplitude localizes to a
CP'. (b) In the real case, the amplitude is associated to a real line in R3.

The general conjecture is that an [ loop amplitude with p gluons of positive
helicity and ¢ gluons of negative helicity is supported on a holomorphic curve in

twistor space. The degree of the curve is determined by
d=q—-1+1. (2.3.28)
The genus of the curve is bounded by the number of the loops
g<l (2.3.29)

The MHV amplitude is a special case of this for ¢ = 2,1 = 0. Indeed the conjecture
in this case give that the MHV amplitude is supported in twistor space on a genus
zero curve of degree one.

The natural interpretation of this is that the curve is the worldsheet of a string.
In some way of describing the perturbative gauge theory, the amplitudes arise from
coupling of the gluons to a string. In the next two sections we discuss a proposal for
such a string theory due to Witten [11]. There is an alternative version of twistor
string theory due to Berkovits [39/40] that seems to give an equivalent description
of the scattering amplitudes. Further proposals [41}42] have not yet been used for

computing scattering amplitudes.

2.4 Twistor String Theory

In this section, we will describe a string theory that gives a natural frame-
work for understanding the twistor properties of scattering amplitudes discussed
in previous section. This is a topological string theory whose target space is a

supersymmetric version of the twistor space.
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2.4.1 Brief Review of Topological Strings

Firstly, let us consider an N' = 2 topological field theory in D = 2 [43]. The
N = 2 supersymmetry algebra has two supersymmetry generators @Q;,7 = 1,2 that

satisfy the anticommutation relations

{Qai, Qpj} = 0ijvh P (2.4.1)

In two dimensions, the Lorentz group SO(1, 1) is generated by Lorentz boost L. We
diagonalize L by going into the light-cone frame Py = Py + P,

[L,Py] =+Py

2.4.2
(L,Qu} = +5Qu. )

The commutation relations of N' = 2 supersymmetry algebra become

{Q4i, Q41 = 0i Py
{Q-i,Q—j} =i P- (2.4.3)
{Q+i,Q—;} =0.
We let
Q=Q4 +iQi2+ Q-1 £iQ_ (2.4.4)

with either choice of sign. It follows from (2.4.3) that @ is nilpotent
Q* =0, (2.4.5)

so we would like to consider () as a BRST operator.

However @ (2.4.4) is not a scalar so this construction would violate Lorentz
invariance. There is a way out if the theory has left and right R-symmetries R, and
R_. Under Ry, the combination of supercharges ()41 +iQ ;2 has charge £1/2 and
Q-1 t1Q_5 is neutral. For R_, the same is true with ‘left’ and ‘right’ interchanged.

Hence, we can make @) scalar if we modify the Lorentz generator L to be

1 1
L'=L--R,F-R_. (2.4.6)
2 2
At a more fundamental level, this change in the Lorentz generator arises if we

replace the stress tensor T}, with

1 1
Ty =Ty — 5(aqu +0,J5) T 5(@LJ; +0,J,), (2.4.7)
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where JF and J,, are the left and right R-symmetry currents. The substitution
(2.4.7) is usually referred to as ‘twisting’ the stress tensor.

We give a new interpretation to the theory by taking ) to be a BRST operator.
Hence, a state W is considered to be physical if it is annihilated by @

QU =0. (2.4.8)
Two states ¥ and ¥’ are equivalent if
U -0 =QP, (2.4.9)

for some ®. Similarly, we take the physical operators to commute with the BRST
charge
[Q, 0] =0. (2.4.10)

Two operators are equivalent if they differ by an anticommutator of @,
O ~0+1{Q,V}, (2.4.11)

for some operator V.
The theory with the stress tensor T wv and BRST operator @ is called a topo-
logical field theory. The basis for the name is that one can use the supersymmetry

algebra to show that the twisted stress tensor is BRST trivial

T/_u/ = {Q?AMV}‘ (2412)

It follows that in some sense the worldsheet metric is irrelevant. The correlation
functions

<01 ($1)02($2) . On(xn»g (2.4.13)

of physical operators O; obeying (@, O;] = 0 on a fixed Riemann surface ¥ are
independent of metric on X. Indeed, varying the metric ¢g,, — guv + 0gu., the

correlation function stays the same up to BRST trivial terms

(O1(21) ... Op(an) /E 5(v/99" ) Tw) = (O1(x1) ... Op () /)S 6(v99"" N Q. A }) =
(2.4.14)
More importantly for us, we can also construct a topological string theory in

which one obtains the correlation functions by integrating (2.4.13) over the moduli



2 Twistor String Theory and Perturbative Yang-Mills 27

of the Riemann surface ¥, using A, where the antighost b,,, usually appears in the
definition of the string measure.

For an N = 2 supersymmetric field theory in two dimensions with anomaly-free
left and right R-symmetries we get two topological string theories, depending on
the choice of sign in (2.4.4). We would like to consider the case that the N' = 2
model is a sigma model with a target space being a complex manifold X. In this
case, the two R-symmetries exist classically, so classically we can construct the
two topological string theories, called the A-model and the B-model. Quantum
mechanically, however, there is an anomaly, and the B-model only exists if X is a
Calabi-Yau manifold.

2.4.2 Open String B-model on a Super-Twistor Space

To define open strings in the B-model, one needs BRST invariant boundary
conditions. The simplest such conditions are the Neumann boundary conditions
[44]. Putting in N space filling D5-branes gives Gl(n, C)(whose real form is U(N))
gauge symmetry. The physical open string field is a (0, 1) form gauge field A;. The
BRST operator acts as the d operator and the string * product is just the wedge

product. Hence, A is subject to the gauge invariance
§A = Qe = e+ [A, €] (2.4.15)

and the string field theory action reduces to the action of the holomorphic Chern-

Simons theory [44]

S:%/Q/\Tr (AA5A+§A/\A/\A.>, (2.4.16)

where € is the Calabi-Yau volume form.

We would like to consider the open string B-model with target space CP?, but
we cannot, since CP? is not a Calabi-Yau manifold and the B-model is well defined
only on a Calabi-Yau manifold. Otherwise, the R-symmetry that we used to twist
the stress tensor is anomalous. A way out is to introduce spacetime supersymmetry.
Instead of CP?, which has homogeneous coordinates Z7,I =1, ...,4, we consider a

supermanifold CP?V with bosonic and fermionic coordinates

z w4 I1=1,...,4, A=1,...,N, (2.4.17)
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with identification of two sets of coordinates that differ by a scaling
(z1, M) =tz tp?) teCr. (2.4.18)

The CP?"V is a Calabi-Yau supermanifold if and only if the number of fermionic
dimensions is N = 4. To see this, we construct the holomorphic measure on cp3l.
We start with the (4|N) form on C*V

Qo =dzt ... dzZ%yt .. dyN (2.4.19)

and study its behavior under the scaling symmetry (2.4.18). For this, recall, that
dv scales oppositely to

(dZ", dyp?) — (tdz!, t~Ldyp™). (2.4.20)

It follows, that €y is C* invariant if and only if N = 4. In this case, we can divide
by the C* action and get a Calabi-Yau measure on cpl4

1 1
0= EeUKLZIdZJdZKdZLEeABCDwAwaCwD. (2.4.21)

The twistor space CP* has a natural Si(4,C) group action. The real form
SU(2,2) of Si(4,C) is the conformal group of Minkowski space. Similarly, the super-
twistor space CP?™ has a natural SI(4|N, C) symmetry. The real form SU(2,2|N)
is the superconformal symmetry group with N supersymmetries.

For N = 4 the superconformal group SU(2,2|4) is the symmetry group of
N = 4 super-Yang-Mills theory. In a sense, this is the simplest gauge theory in four
dimensions. The N = 4 superconformal symmetry uniquely determines the states
and interactions of the gauge theory. In particular, the beta function of N = 4
gauge theory vanishes.

Now we know a new reason for N = 4 to be special. The topological B-model on
CP3* exists if and only if N = 4. The B-model on CP*/* has a SU(2,2|4) symmetry
coming from the geometric action of the group on the twistor space. This is related
via the twistor transform to the N/ = 4 superconformal symmetry.

In the topological B-model with space-filling branes on C]P3|4, the basic field is
the holomorphic gauge field A = ATdZT,

AZ, Z,) =A+ 02642, Z) + %wAwaAB(Z, Z)+...
: (2.4.22)

+ eancpt YL G2, 7).
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The action is the same as (2.4.16), except that the gauge field .4 now depends on 1)
1 = 2
S = 3 /Tr (A@A—i— §‘A ANAN A) A€, (2.4.23)

where the holomorphic three form is (2.4.21). The classical equations of motions
obtained from (2.4.23)) are
OA+ANA=0. (2.4.24)

Linearizing the equations of motions around the trivial solutions A = 0, they tell
us that
0% =0, (2.4.25)

where ® is any of the components of A. The gauge invariance reduces to 6® = da.
Hence for each component ®, the field ® defines an element of a cohomology group.

This action has the amazing property that its spectrum is the same as that of
N = 4 super Yang-Mills theory in Minkowski space. To see this, we need to use
that the twistor correspondence relates helicity h free field in Minkowski space to
fields in the (0,1) cohomology groups of degree 2h — 2.

To figure out the degrees of various components, notice that the action must
be invariant under the C* action Z! — tZ!. Since the holomorphic measure is also
invariant under the scaling, the only way that the action (2.4.23)) is invariant, is

that the superfield A is also invariant, in other words, that A is of degree zero
A e H"Y(CP**, 0(0)). (2.4.26)

Looking back at the expansion (2.4.22)) of the superfield, we identify the com-
ponents, via the twistor correspondence, with fields in Minkowski space of definite
helicity. A is is of degree zero, just like the superfield .A. Hence, it is related by
twistor transform to a field of helicity +1. The field G has degree —4 to off-set the
degree 4 coming the four 1, so it corresponds to a field of helicity —1. Continuing
in this fashion, we obtain the complete spectrum of N/ = 4 supersymmetric Yang-
Mills theory. The twistor fields A,&4, ¢ aB, §~ ABc, G describe, via twistor transform,
particles of helicities 1, —I—%, 0, —%, —1 respectively.

The fields also have the correct representations under the SU(4) R-symmetry
group. This symmetry is realized in twistor space by the natural geometric ac-

tion on the fermionic coordinates ¥4 — A4 pYE. Hence, ¢4 transforms in the 4
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of the SU(4)g. The holomorphic gauge superfield A(Z, ) is invariant under the
R-symmetry, hence the representations of the components of A must be conjugate
to the representations of the i factors that they multiply in eq. (2.4.22). Hence,
A &4, ¢AB,EABC and G transform in the 1,4, 6,4, 1 representation of SU(4)g re-

spectively.

2.4.3 D-Instantons

The action (2.4.23) also describes some of the interactions of N' = 4 super
Yang-Mills, but not all. It cannot describe the full interactions, because an extra
U(1) R-symmetry gets in the way. The fermionic coordinates ¢4, A = 1,...,4 have
an extra U(1)g besides the SU(4) g symmetry group considered above. Indeed, the

full R-symmetry group in twistor space is

where we take the extra U(1)g, which we call S, to rotate the fermions by a common
phase
Szl - 78 A — efyA, (2.4.28)

However the N/ = 4 super-Yang-Mills has only an SU(4)g symmetry. In the B-
model, the extra U(1) g is anomalous, since it does not leave fixed the holomorphic
measure ) ~ d>Zdi?! ... di*. Under the S transformation, the holomorphic measure
transforms as 2 — e~ %%Q, so it has charge S = —4.

However, as we have set things up so far, the anomaly is too trivial to agree with
N = 4 super-Yang-Mills theory. With the normalization (2.4.28)), the S charges of
fields are given by their degrees. The N = 4 Yang-Mills action is a sum of terms
with § = —4 and S = —8. The action of the open string B-model (2.4.23) has
S = —4 coming from the anomaly is S from the holomorphic measure. To get
the S = —8 piece of the Yang-Mills action, we need to enrich the B-model with
nonperturbative instanton contributions.

The instantons in question are Euclidean D1-branes wrapped on holomorphic
curves in CP?* on which open strings can end. The gauge theory amplitudes come
from coupling of the open strings to the D1-branes. The massless modes on the
worldvolume of a D-instanton are a U(1) gauge field and the modes that describe

the motion of the instanton. In the following, we will study tree level amplitudes in
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the context of string theory. These get contribution from genus zero instantons on
which the U(1) line bundles do not have moduli so we will ignore it from now on.
The modes describing the motion of the D-instanton simply make up the moduli
space M of holomorphic curves C' in the twistor space. To construct scattering

amplitudes we need to integrate of M.

2.5 Tree Level Amplitudes from Twistor String Theory
2.5.1 Basic Setup

Recall that the interactions of the full gauge theory come from Euclidean D1-
brane instantons on which the open strings can end. The open string are described
by the holomorphic gauge field A. Key ingredient in coupling the open strings to
the D-instantons is the effective action of the D1-D5 and D5-D1 strings. Quantizing
the zero modes of the D1-D5 strings leads to a fermionic zero form field o living
on the worldvolume of the D-instanton. This transforms in the fundamental rep-
resentation of the Gl(n,C) gauge group coming from the Chan-Paton factors. The
D5-D1 strings are described by a fermion (3; transforming in the anti-fundamental
representation. The kinetic operator for the topological strings is the BRST oper-
ator @, which acts as 0 on the low energy modes. So the effective action of the
D1-D5 strings is

S=lﬁ@+Am, (2.5.1)

where C' is the holomorphic curve wrapped by the D-instanton. We read off the

vertex operator for an open string with wavefunction ¥ = .ATdZ7

V:Aj% (2.5.2)

where J = T;'3;a7dz is a holomorphic current made from the free fermions o, f3;,
and ;" is the group theory factor of the gluon. These currents generate a current
algebra on the worldvolume of the D-instanton.

To compute a scattering amplitude, we evaluate the correlation function

Az/dM(Vlvg...Vn):/dM </CJ1\1:1.../Canfn>. (2.5.3)
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We can think of this as integrating out the fermions «, 3 living on the D-instanton.
Hence, the generating function for scattering amplitudes is simply the integral of

Dirac operator over moduli space
/d/\/l det (0 + A). (2.5.4)

Here, d M is the holomorphic measure on the moduli space of holomorphic curves of
genus zero and degree d. In topological B-model, the action is holomorphic function
of the fields and all path integrals are contour integral. Hence, the integral is actually
over a middle-dimensional Lagrangian cycle in the moduli space. This integral is
a higher dimensional generalization of the familiar contour integral from complex
analysis. To integrate over such a contour, M must be endowed with a holomorphic
measure.
The correlator of the currents on D1-instanton?

Tr (ThT,...T,)dz1dzy . . . dzy,

(21 — 22)(22 — 23) ... (2n — 21)

(J1(z1)J2(22) . .. In(2n)) = + permutations (2.5.5)

follows from the free fermion correlator on a sphere

1

zZ—Zz

a(z)B(z") ~ (2.5.6)

/e

Scattering Wavefunctions
We would like to compute the scattering amplitudes of plane waves ¢(x) =
exp(ip - z) = exp (im*7T%r,;), that are wavefunctions of external particles with

definite momentum p?® = 7%7%. The twistor wavefunctions corresponding to plane

(A, i) = 0((A, m)) exp(i[, u])g(¥), (2.5.7)

where g(1) encodes the dependence on fermionic coordinates. For a positive helicity
gluon g(¢)) = 1 and for a negative helicity gluon g(v) = 1y?93%. Here, we have

introduced the holomorphic delta function

o(f) = dfe*(f), (2.5.8)

2 Here we write the single trace contribution to the correlation amplitude that repro-
duces the gauge theory scattering amplitude. As discussed in section 2.5.5, the multitrace
contributions correspond to gluon scattering processes with exchange of an internal con-

formal supergravity state.
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which is a closed (0, 1) form. We normalize it so that for any function f(z), we have

/sz(z —a)f(2) = f(a). (2.5.9)

The idea of (2.5.7) is that the delta function §((A, 7)) sets A® equal to 7. The
Fourier transform of the exponential exp(i[7, u]) back into Minkowski space gives
another delta function that sets A% equal to 7. The twistor string computation
with these wavefunctions gives directly momentum space scattering amplitudes.

Actually, the wavefunctions should be modified slightly so that they are in-
variant under the scaling of the homogeneous coordinates of CP?!. From the basic
properties of delta functions, it follows that J(()\, 7)) is homogeneous of degree —1

in both A and 7. Hence, for positive helicity gluons, the wavefunction is actually

YA 1) = 6((A\, ™)) (/) exp (i[7, u](7/N)). (2.5.10)

Here, A/m is a well defined holomorphic function, since A\ is a multiple of 7 on
the support of the delta function. The power of (A/7) was chosen, so that the
wavefunction is homogeneous of degree zero in overall scaling of A, 1, 9. Under the
scaling

(m,7) — (tm, t717), (2.5.11)

the wavefunction is homogeneous of degree —2 as expected for a positive helicity

gluon (2.2.28)). For negative helicity gluon, the wavefunction is

YA ) = 5((A, ) (/) exp (i, ] (/X)) ? g . (2.5.12)

Under the scaling (2.5.11), the wavefunction is homogeneous of degree +2 as ex-
pected. For wavefunctions of particles with helicity h, there are similar formulas
with 2 — 2h factors of 1.

MHYV Amplitudes

We saw that the MHV amplitude, after Fourier transform into twistor space,
localizes on a genus zero degree one curve, that is, a linearly embedded copy of
CP!. Here we will evaluate the degree one instanton contribution and confirm that

it gives the MHV amplitude.
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Consider the moduli space of such curves. Each curve can be described by the
equations
pd =%y, Pt =49, (2.5.13)

where we parameterize A% are the homogeneous coordinates of the CP! and z% and

642 are the moduli of C. The holomorphic measure on the moduli space is
dM = d*zd®6. (2.5.14)

Hence, the moduli space has 4 bosonic and 8 fermionic dimensions. In terms of the

homogeneous coordinate A* the current correlator (2.5.5) becomes

[, (i, dA;)

(Ji(m1)Ja(m2) .. Jn(mn)) = (A1, A2) (A2, Az) .o Ay M)

(2.5.15)

which we found by setting z; = A?/A\}. We stripped away the color factors and kept
only the contribution to the term with 1,2,...,n cyclic order. We multiply this
with the wavefunctions 1;(\, ) = 6({\, 7)) exp (i[u, 7)) ¢s(¢;) and integrate over
the positions )\i,xi over the vertex operators. We perform the integral over the

positions of the vertex operators using the formula
LN T T = £, (25.16)

where f()) is a homogeneous function of \* of degree —1. This is the homogeneous

version of definition of holomorphic delta function

/Cdz 32— b)f(2) = £(b). (2.5.17)

Hence, each wavefunction contributes a factor of
O = ex (o) i), (25.18)

where pd = 2%\, P2 = 049)\,. The delta function sets \¢ = 7% in the correlation

function, so the amplitude becomes

A= % /d4a:d80 exp (iZ[%k,uk]) Hgk(ipk) (2.5.19)
k

Hk<7fk,7Tk+1 A

The fermionic part of the wavefunctions is g; = 1 for the positive helicity gluons

and g; = wip?p3y¢ for the negative helicity gluons. Since we are integrating over
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eight fermionic moduli d®6, we get nonzero contribution to amplitudes with exactly
two negative helicities 7=, s~. Setting i} = 64%m,, the integral over fermionic

dimensions of the moduli space gives the numerator of the MHV amplitude

/d80 H ke H B = (2.5.20)
A=1

Setting u$ = 2%y, the integral over bosonic moduli gives the delta function of

momentum conservation

/d x exp (ZxaaZﬂ“~“> = 0%( ZW“~“ (2.5.21)

Collecting the various pieces, we get the familiar MHV amplitude

— =\ _ < a~a
A(r s )_Hflz—wrl Zn (2.5.22)

2.5.2 Higher Degree Instantons

Instanton Measure
Here we will construct the measure on the moduli space of genus zero degree d
curves. Such curves can be described as degree d maps from an abstract CP* with

homogeneous coordinates (u, v)
7z = P(u,v)
(2.5.23)
A = x"(u,0).

Here P!, x* are homogeneous polynomials of degree d in u, v. The space of polyno-

mials of degree d is a linear space of dimension d + 1, spanned by u¢, u® v, ..., v
Picking a basis b*(u,v),a =1,...,d + 1, we write
SRt
“ (2.5.24)
=Yl
A natural measure is
d+1 4
dMo =[] I 4PL dxs. (2.5.25)

a=11A=1
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This measure is invariant under a general Gi(d + 1,C) transformation of the basis
b.. Since the number of bosonic and fermionic coordinates is the same, the Jaco-
bians cancel between fermionic and bosonic parts of the measure. The description
(2.5.23) is redundant. We need to divide by the C* action that rescales P! and
¢4 by a common factor. This reduces the space of curves from C*¢+444+4 down to
CP*H3144+4 The curve C also stays invariant under an SI(2, C) transformation on

(u,v) so the actual moduli space of genus zero degree d curves is
M = CPA+31d+ 519 C). (2.5.26)

As dM, is GI(2,C) invariant, it descends to a holomorphic measure dM on M.
Hence, M is a Calabi-Yau supermanifold of dimension (4d|4d + 4).

We can now understand why amplitudes with different helicities come from
holomorphic curves of different degrees. Integrating over the moduli space, the
measure absorbs 4d + 4 fermion zero modes. These come from the fermionic factors
g(1) in the wavefunctions of the gluons (2.5.7). A positive helicity gluon does not
contribute any zero modes while a negative helicity gluon with g~ (1) = 1234
gives 4 zero modes. Hence, instantons of degree d contribute to amplitudes with
d + 1 negative helicity gluons.

Alternatively, we can get this from counting the S charge anomaly. Wave-
functions of particles with different helicities violate S by different amount. The
positive helicity gluons do not violate S while the negative helicity gluons violate
S by —4 units. So, the amplitude with p positive helicity gluons and ¢ negative
helicity gluons violates the S charge by —4q units.

In the twistor string, there is a new source of violation of S from the instanton
measure. Since the S charge of Z and v is 0 and 1 respectively, the charges of the
coefficients PL, Xﬁ are 0, 1. Hence, the differentials dP!, dxﬁ have charges 0, —1 and
the S charge of the (4d|4d + 4) dimensional measure dM is —4d — 4.

So an instanton can contribute to an amplitude with ¢ negative helicity gluons
if and only if

d=q—1. (2.5.27)

This is the familiar formula discussed at the end of section 3. For [ loop amplitudes,

this relation generalizes to d =q —1 4.

Evaluating the Instanton Contribution
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Here we consider the connected instanton contribution along the lines of the
MHYV calculation. The amplitude is [12/4546]

A= [ am 1/, T B (P, m) exp P ) 7 (). (25.25)

This is not really an integral. The integral over the 2d + 2 parameters P2, ¢ =
1,2, = 1,...,d + 1, gives 2d + 2 delta functions because P% appears only in
the exponential exp (3, P(u;)am). Hence, we are left with an integral over 4d —
(2d + 2) + 2n = 2d + 2n — 2 bosonic variables. Here the 2n integrals come from
the integration over the positions of the vertex operators. Now there are 2n delta
functions from the wavefunctions since each holomorphic delta function is really a
product of two real delta functions d(z) = dz 6%(z), and 2d + 2 delta functions from
the integral over the exponentials, which gives a total of 2d 4+ 2n + 2. There are
four more delta functions than integration variables. The four extra delta functions
impose momentum conservation. Hence, the delta functions localize the integral to

a sum of contributions from a finite number of points on the moduli space.

Panrity Invariance

In the helicity formalism, the parity symmetry of Yang-Mills scattering ampli-
tudes is apparent. The parity changes the signs of the helicities of the gluons. The
parity conjugate amplitude can be obtained by simply exchanging \;’s with Xi’s.

To go to twistor space, one Fourier transforms with respect to Xi, which breaks
the symmetry between A and A Indeed, the result (2.5.28) for the scattering ampli-
tude treats A and A asymmetrically. An amplitude with p positive helicities and ¢
negative helicities has contribution from instantons of degree ¢ — 1, while the parity
conjugate amplitude has contribution from instantons of degree p — 1. To show that
these two are related by the exchange of \; and Xz requires some amount of work.

We refer the interested reader to the original literature [12/45/46/40].

Localization on the Moduli Space

Recall that a tree level amplitude with ¢ negative helicity gluons and arbitrary
number of positive helicity gluons receives contribution from instantons wrapping
holomorphic curves of degree d = ¢ — 1. The degree d instanton can consists of
several disjoint lower degree instantons whose degrees add up to d. For connected

scattering amplitudes the instantons are connected by open strings.
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(@ (b)

Fig. 3: An amplitude with tree negative helicity gluons has contribution
from two configurations: (a) Connected d = 2 instanton. (b) Two disjoint
d =1 instantons. The dashed line represents an open string connecting the
instantons.

A priory, one expects that the amplitude receives contributions from all possible
instanton configurations with total degree ¢ — 1. So for example an amplitude with
three negative helicity gluons has contribution from a connected d = 2 instanton
and a contribution from two disjoint d = 1 instantons, fig. 3.

What one actually finds is that the connected and disconnected instanton con-
tributions reproduce the whole amplitude separately. For example, in the case of
amplitude with three negative helicity gluons, it seems that there are two different
ways to compute the same amplitude. One can either evaluate it from the con-
nected d = 2 instantons, fig. 3 (a), [12/45] or alternatively, from two disjoint d = 1
instantons, fig. 3 (b), [1].

(@ Xy=a (b) x=0, y=0

N

Fig. 4: Localization of the connected instanton contribution to next to
MHYV amplitude; (a) the integral over the moduli space of connected degree
two curves, localizes to an integral over the degenerate curves of (b), that
is intersecting complex lines. In the figure, we draw the real section of the

curves.
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We can explain the equality of various instanton contributions roughly as fol-
lows [31]. Consider the connected contribution. The amplitude is expressed as a
‘contour’ integral over a middle-dimensional Lagrangian cycle in the moduli space
of degree two curves . The integrand comes from the correlation function on the
worldvolume of the D-instanton and from the measure on the moduli space. It has
poles in the region of the moduli space, where the instanton degenerates to two
intersecting instantons of lower degrees dy 4+ do = d, fig. 4. Picking a contour that
encircles the pole, the integral localizes to an integral over the moduli space M’ of
the intersecting lower degree curves. Similarly, the disconnected contribution has
a pole when the two ends of the propagator coincide. This comes from the pole of

the open string propagator
0G =0 (2" — Z1H)5* (' — y?). (2.5.29)

Hence, the integral over disjoint instantons also localizes on the moduli space of
intersecting instantons. It can be shown that the localized integrals coming from
either connected or disconnected instanton configurations agree [31] which explains

why the separate calculations give the entire scattering amplitude.

Towards MHV Diagrams

Starting with a higher degree instanton contribution, successive localization
reduces the integral to the moduli space of intersecting degree one curves. As
we will review below, this integral can be evaluated leading to a combinatorial
prescription for the scattering amplitudes [1]. Indeed, degree one instantons give
MHYV amplitudes, so the localization of the moduli integral leads to a diagrammatic

construction based on a suitable generalization of the MHV amplitudes.

2.5.83 MHV Diagrams

In this subsection, we start with a motivation of the MHV diagrams construc-
tion of Yang-Mills amplitudes from basic properties of twistor correspondence. We
then go on to discuss simple examples and extensions to loop amplitudes. In the
next subsection, we give a heuristic derivation of the MHV rules from twistor string

theory.
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Recall that MHV scattering amplitudes are supported on CP'’s in twistor space

e + (L‘ad)\a = 0. (2530)

Each such CP! can be associated to a point z%¢ in Minkowski space®. So, in a
sense, we can think of MHV amplitudes as local interaction vertices [1]. To take this
analogy further, we can try to build more complicated amplitudes from Feynman
diagrams with vertices that are suitable off-shell continuations of the MHV ampli-
tudes. MHV amplitudes are functions of holomorphic spinors A; only. Hence, to
use them as vertices in Feynman diagrams, we need to define A for internal off-shell

momenta p? # 0.

(@) (b)

Fig. 5: Two representation of a degree three MHV diagram. (a) In
Minkowski space, we the MHV vertices are represented by (b) In twistor
space, each MHV vertex corresponds to a line. The three lines pairwise
intersect.

To motivate the off-shell continuation, notice that for on-shell momentum p®* =
)\“Xd, we can extract the holomorphic spinors A from the momentum by picking
arbitrary anti-holomorphic spinor n® and contracting it with p®®. This gives A% up
to a scalar factor

A= 12 (2.5.31)

3 We are being slightly imprecise here. The space of CP'’s is actually a copy of the
complexified Minkowski space C*. The Minkowski space R31 corresponds to CP"’s that
lie entirely in the 'null twistor space’, defined by vanishing of the pseudo-hermitian norm
QA pn) =1(\q, —Xdua). Indeed, for a CP' corresponding to a point in Minkowski space,

2% is a hermitian matrix, hence it follows from (2.5.30) that @ vanishes.
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For off-shell momenta, this strategy almost works except for the factor [X, n] in the
denominator which depends on the undefined spinor A. Fortunately, [X, n] scales

out of the Feynman diagrams, so we take as our definition
A = pn,. (2.5.32)

This is clearly well-defined for off-shell momentum. We complete the definition of
the MHV rules, by taking the simple 1/k? for the propagator connecting the MHV
vertices.

Consider an MHV diagram with v vertices. Each vertex gives two negative
helicity gluons. To make a connected tree level graph, the vertices are connected
with v — 1 propagators. The propagators absorb v — 1 negative helicities, leaving
v+ 1 negative helicity external gluons. Hence, to find all MHV graphs contributing
to a given amplitude, draw all possible tree graphs of v vertices and v — 1 links,
assigning opposite helicities to the two ends of internal lines. The external gluon
are distributed among the vertices while preserving cyclic ordering. MHV graphs

are those for which each vertex has two negative helicity gluons emanating from it.

Examples
Here we discuss concrete amplitudes to illustrate the MHV diagram construc-
tion. Consider first the + — —— gluon amplitude. This amplitude vanishes in
Yang-Mills theory. It has contribution from two diagrams.
\l+\; \4_\/17

P P
+
+
Fig. 6: MHV diagrams contributing to the + — —— amplitude, which is

expected to vanish.
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The first of the two diagrams gives

(2, \)4 1 (3,4)%

, (2.5.33)
(1,2)(2, ) (X, 1) p? (3,4)(4, A) (A, 3)
where we associate to the internal momentum p = p; + p2 = —p3 — p4 the holomor-
phic spinor
A = (p1 + pa2) s (2.5.34)

The second diagram can be obtained from the first by exchanging particles 2 and 4

Nt 1 (23
(LX) (X, 4)(4,1) 2 (2,3)(3, V) (N, 2)

(2.5.35)

where \'% = (p; + p4)?%n,. Denoting ¢; = A%, the first and second diagrams give

respectively
¢ (34 ¢ (32)
$20304 [21]  dagp3ga [41]

The sum of these contributions vanishes, because momentum conservation implies

(32)[21] + (34)[41] = 3. (34)[i1] = 0.

(2.5.36)

It is easy to compute more complicated amplitudes. For example, the n gluon
— — — + +...+ + amplitude is a sum of 2n — 3 MHV diagrams, which can be

evaluated to give

_"Z‘:l (1ra.3) 1 (23)
N — Mo i+ 1)+ 1i +2) ... (nl) g2, (A2.:2)(34) ... (iXa;)
- ) (2.5.37)
(12)° 1 (A3,i3)°
~ (2X3)(Asii + 1) ... (nl) a2, (3,4) ... (i — 1i)(idz;)’

+

Loop Amplitudes

Similarly, one can compute loop amplitudes using MHV diagrams. This has
been carried out for the one loop MHV amplitude in ' = 4 [32] and N' = 1 [47]

Yang-Mills theory, in agreement with the known answers.
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+ P +

Fig. 7: Schematic representation of MHV diagram computation of one-

loop MHV amplitude. The picture shows a diagram in which the negative
helicity gluons ¢, j~ are on the same MHV vertex.

The expression for an MHV diagram contributing to the one-loop MHV am-
plitude is just what one would expect for a one-loop Feynman diagram with MHV
vertices, fig. 7. There are two MHV vertices, each coming with two negative helicity
gluons. The vertices are connected with two Feynman propagators that absorb two
negative helicities, leaving two negative helicity external gluons

=) (2m)* TR 2 (p — pr)?

ArOv Aps Appy, ). (2.5.38)

The off-shell spinors entering the MHV amplitudes Ay, Ar are determined in terms

of the momenta of the internal lines
)\Z = padnda )\g—pL = (p - pL)adném (2539)

which is the same prescription as for level MHV diagrams. The sum in (2.5.38) is
over partitions D of the gluons among the two MHV diagrams that preserve the

cyclic order and over states of the internal particles.

Fig. 8: Schematic representation of a hypothetical twistor string compu-
tation of one-loop MHV amplitude. The picture shows a diagram in which
the negative helicity gluons ¢~,j~ are on the same MHV vertex.



2 Twistor String Theory and Perturbative Yang-Mills 44

This calculation makes the twistor structure of one-loop MHV amplitudes man-
ifest. The two MHV vertices are supported on lines in twistor space, so the ampli-
tude is a sum of contributions, each of which is supported on a disjoint union two
lines. In a hypothetical twistor string theory computation of the amplitude, these
two lines are connected by open string propagators, fig. 8.

The N = 0 amplitude is a sum of cut-constructible terms and of rational
terms. The cut-constructible terms are correctly reproduced from MHV diagrams
[48]. The rational terms are single valued functions of the spinors, hence they are
free of cuts in four dimensions. Their twistor structure suggests that they receive
contribution from diagrams in which, alongside with MHYV vertices, there are new
one-loop vertices coming from one-loop all-plus helicity amplitudes [2]. However, a
suitable off-shell continuation of the one-loop all-plus amplitude has not been found
yet. There has been recent progress in computing the rational part of some one-loop

QCD amplitudes using a generalization [49] of the tree level recursion relations [7].

2.5.4 Heuristic Derivation from Twistor String Theory

Here, we will make an analysis of the disconnected twistor diagrams that con-
tribute to tree level amplitudes. Interpreting the vertices in fig fig. 5 (a) as degree
one instantons and the lines as twistor propagators, we will evaluate the twistor
string amplitude corresponding to this twistor contribution and show how it leads
to the MHV diagrammatic rules of the last subsection.

The physical field of the open string B-model is a (0, 1)-form A with kinetic
operator d coming from the Chern-Simons action (2.4.16). The twistor propagator
for A a (0,2)-form on CP? x CP? that is a (0,1)-form on each copy of CP?. The

propagator obeys the equation
= =3
0G =6 (zE — zH)s* (w3t — ). (2.5.40)

Here, 6(z) = dz6(2)5(Z) is holomorphic delta function (0, 1)-form. In an axial gauge,
the twistor propagator becomes
. . 1 4
G =03 = A)o(uy — ) 5— | [ (w3 — v, (2.5.41)
My — T A=

where we set \} = \} = 1.
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For simplicity, we evaluate the contribution from two degree one instantons Cy
and C5 connected by twistor propagator, which is contributing to amplitudes with

three negative helicity. The instantons C;,7 = 1,2 are described by the equations
a __ _.aa A _ pAa s _
py = 8 Nea, Vi = 07Nk i=1,2,k=1,...,n. (2.5.42)

Here, £¢¢ and 0{‘“ are the bosonic and fermionic moduli of C;.

With our choice of gauge, the twistor propagator is supported on points such
that \¢ = A4. Since pl — pé = y%\,, where y** = x$* — 294 the condition
u% — u% = 0 implies \* = y“i. Hence, the bosonic part of the propagator becomes
1/y2.

C, G

Fig. 9: Twistor string contribution to an amplitude with three negative
helicity external gluons. Two disconnected degree one instantons are con-
nected by an open string.

The correlators of the gluon vertex operators on C and C5 and the integral over
0 give two MHV amplitudes Az and Ag as explained in the d = 1 computation.

So we are left with the integral

1
/ d4£l?1d4.1172./4[,

(z2 — 1)

SAR H exp(izy - p;) H exp(izs - pj), (2.5.43)

icL JER
where the integral is over a suitably chosen 4 x 4 real dimensional ‘contour’ in the

moduli space C* x C* of two degree one curves. We rewrite the exponentials as
exp(iy - P) H exp(ix - p;), (2.5.44)
jEL,R

where x = 1 and P = Zie g Pi is momentum of the off-shell line connecting the

two vertices. The integral

/d4:c H exp(ix - p;) = (27T)454(Zpi) (2.5.45)

i€eL,R
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gives the delta function of momentum conservation. We are left with
g, 1 :
A= | d'y— exp(iy - P)ALAR. (2.5.46)
Y

The integrand has a pole at y?> = 0, which is the condition for the curves C; and
Cs to intersect. The space y? is the familiar conifold. It is a cone over CP' x CP!
so we parameterize it as

Y = EAINE, (2.5.47)

Here \* € O(1,0), A € 0(0,1), so t € O(—1, —1) to make (2.5.47) well-defined. We
choose a contour that picks the residue at y?> = 0. The residue is the volume form

on the conifold
4

d*y ~ -~
Res e = tdt(\, dN\) [\, dN]. (2.5.48)

Taking the residue, the integral becomes
= / FAEO, AN [, dX] exp (it PaaA“23%) AL A, (2.5.49)

where the MHV vertices depend on the holomorphic spinor A only. We pick the con-
tour t € (—o0, 00), X = X\, which is the Minkowski space light-cone. For ¢ € (0, £00)
we regulate the integral with the prescription P = (p° + ie, ), so

/ tdt exp(it Py \oNY) = ——— = (2.5.50)
—0 (PaaA\eXd)?
Hence we have
- o~ 1
I = [ (A dN[\ dX — A Ar(\). 2.5.51
Jovani | o AR (2.5.51)

To reduce the integral (2.5.51) to a sum over MHV diagrams, we use the identity

[X’@ - 5<[X’—m>, (2.5.52)

(PAV2 Py \ pax

where 7% is an arbitrary positive helicity spinor, to write the integral as

B ArAr= (1)
I_/()\,d)\) (PAn)8<<PAX)>' (2.5.53)
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Now we can integrate by parts. The d operator acting on the holomorphic function
on the left gives zero except for contributions coming from poles of the holomorphic

function, 9 (1/2) = &(z). These evaluate to a sum over residues

_ ALAr\ [\ 0]
I=) Res ( P > Ve (2.5.54)

The residues of 1/(PAn) are at
A\ = Py, . (2.5.55)
Substituting this back into (2.5.54), PAX evaluates to P2[X, 7], so we have
1= 23 ALAr(r = Po) (2.5.56)

But this is simply the contribution from an MHV diagram. Summing over all
cyclicly ordered partitions of the gluons among the two instantons gives the sum

over MHV diagrams contributing to the scattering amplitude.

a
/ P / \
\ 1
7

\3

\ P
V

Fig. 10: The graphs contributing to the pole at A = A,. The reversed

\\_’7

order of o and the internal line in the two graphs, changes the sign of the
residue of the pole.

There are additional additional poles in (2.5.54) that come from the MHV

vertices A Agr
1

[TaciPas A)’

where a runs over the four gluons adjacent to the twistor line. The poles are

(2.5.57)

located at A = A,, which is the condition of the twistor line to meet the gluon

vertex operator. Consider the two diagrams, fig. 10 in which the function ApAgr
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has a pole at A = A\,. The graphs differ by whether the gluon « is on the left vertex
just after the propagator or on the right vertex just before the propagator. The
reversed order of A and A\, in the two diagrams changes the sign of the residue.
The rest of the residue (2.5.54) stays the same after taking A = A,. The off-shell
momenta of the two diagrams differ by 6P = )\axa, so the diagrams have the same
value of the denominators (PAqAq )(PAan). Hence, all poles at A = A, get cancelled
among pairs of diagrams.

This derivation clearly generalizes to several disconnected degree one instantons
that contribute to a general tree level amplitude. An amplitude with d + 1 negative
helicity gluons gets contributions from diagrams with d disconnected degree one
instantons. The evaluation of the twistor contributions leads to MHV diagrams
with d MHV vertices.

Let us remark that the integral (2.5.51) could be taken as the starting point in
the study of MHV diagrams. Since (2.5.50) is clearly Lorentz invariant 4, the MHV
diagram construction must be Lorentz invariant as well. Although separate MHV
diagrams depend on the auxiliary spinor 7, the sum of all diagrams contributing to

a given amplitude is 7 independent.

Loops in Twistor Space?

We have just seen that the disconnected instanton contribution leads to tree
level MHV diagrams. However, the MHV diagram construction seems to work for
loop amplitudes, as discussed in previous subsection. Hence, one would like to
generalize the above calculation to higher genus instanton configurations, which
contribute to loop amplitudes in Yang-Mills theory. For example, the one-loop
MHYV amplitude should come from a configuration of two degree one instantons
connected by two twistor propagators to make a loop, fig. 8. An attempt to evaluate
this contribution runs into difficulties. These are presumably related to the closed

string sector of the twistor string theory, that we will now review.

4 The Lorentz invariance requires some elaboration, because the choice of contour A =
), breaks the complexified Lorentz group S1(2,C) x Si(2,C) to the diagonal Si(2,C), the
real Minkowski group. It can be argued from the holomorphic properties of the integral
that it is invariant under the full Si(2,C) x Si(2,C)
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2.5.5 Closed Strings

The closed string of the topological B-model on supertwistor space are related
by twistor transform to N' = 4 conformal supergravity [15]. Conformal supergravity

in four dimension has action

S ~ /d4:r:\/—gW2, (2.5.58)

where W is the Weyl tensor. This theory is generally considered unphysical. Ex-
panding the action around flat space g, = 1, + . leads to a fourth order kinetic
operator S ~ [ d*z ho*h for the fluctuations of the metric, and thus to a lack of

unitarity.

2 4

Fig. 11: A double trace ~ Tr Ti7T>Tr 13Ty contribution to tree level four
gluon scattering amplitude coming from exchange of conformal supergravity
particle, which is represented by a dashed line.

We can see a sign of the supergravity already in the tree level MHV amplitude
calculation of section 5.1. There we found that the single trace terms agree with the
tree level MHV amplitude in gauge theory. We remarked that the current algebra
correlators give additional multi-trace contributions. These come from an exchange
of an internal conformal supergravity state, which is a singlet under the gauge group.
For example, the four gluon MHV amplitude has a contribution Tr T775Tr 13T,
coming from an exchange of supergravity state in the 12 — 34 channel, fig. 11. In
twistor string theory, this comes from the double trace contribution of the current

algebra on the worldvolume of the D-instanton
/ AM (ViVa) (VaV) . (2.5.59)
M

At tree level, it is possible to recover the pure gauge theory scattering ampli-

tudes by keeping the single-trace terms. However, at the loop level, the diagrams
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that include conformal supergravity particles can generate single-trace interactions.
Hence the presence of conformal supergravity coming from the closed strings puts
an obstruction to computation of Yang-Mills loop amplitudes in the present formu-
lation of twistor string theory.

In twistor string theory, the conformal supergravitons have the same coupling
as gauge bosons, so it is not possible to remove the conformal supergravity states by
going to weak coupling. Since, Yang-Mills theory is consistent without conformal
supergravity, it is likely that there is a version of the twistor string theory that does

not contain the conformal supergravity states.



3. Twistor Structure of Scattering Amplitudes

3.1 Introduction

We have seen in previous section that the twistor string theory has been success-
ful in description of tree level amplitudes. There has not been comparable progress
in understanding the string theory at one-loop. Moreover the present versions of
the twistor string seems to describe N' = 4 Yang-Mills coupled to N' = 4 conformal
supergravity [50].

Putting the issue of conformal supergravity aside, the expectation from twistor
string theory is that the amplitudes are localized on algebraic curves of appropri-
ate genus and degree. These are interpreted as the worldvolumes of D1-branes in
Witten’s version of the twistor string and as worldsheets of open strings in the
Berkovits’s version. Hence, one of the simplest predictions is that a twistor ampli-
tude vanishes unless all particles lie on the curve. The conditions for localization,
after Fourier transform into Minkowski space, correspond to certain differential op-
erators that annihilate the scattering amplitudes.

For one-loop MHV amplitudes in N' = 4 Yang-Mills theory, the differential
equations studied in [2] agree with the twistor string picture discussed in previ-
ous section, after one takes into account the holomorphic anomaly of differential
operators [3].

For amplitudes in Yang-Mills theories with reduced supersymmetry and in
gravity theories we do not have a twistor string proposal. Even if one does not
know the twistor string theory appropriate for description of the amplitudes, one can
gain insight by studying differential equations that the amplitudes satisfy. In this
section, we study differential equations of various N' = 1,0 Yang-Mills amplitudes

and also of some gravity amplitudes. Our results are surprisingly similar to the

o1
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N = 4 case. Perhaps the most important difference in the N = 0 case is that
the one-loop amplitude with all gluons of positive helicity must be included as a
new building block alongside with the MHV amplitude. We hope that these results
may serve as a clue in a search for twistor string theories that would generate these

amplitudes.

Summary of Results

In section 3.2 we review differential operators that test for twistor structure of
scattering amplitudes. In particular we derive compact formulas for operators of
genus zero curves of degree two and three. In section 3.3 we use these operator to
study twistor structure of the one-loop N'=1 MHV amplitudes. In section 3.4 we
perform a similar analysis in the nonsupersymmetric case. Unlike the supersym-
metric case, the nonsupersymmetric n-gluon amplitudes of n or n — 1 gluons of the
same helicity do not vanish. We discuss how this might be useful in a hypothetical
MHV diagrams construction of nonsupersymmetric one-loop amplitudes. Finally,
in section 3.5 we discuss the twistor structure of graviton scattering amplitudes in
general relativity and N = 8 supergravity and note the similarity to the Yang-Mills

case.

3.2 Review of Differential Equations

There are various differential equations that the scattering amplitudes can sat-
isfy [11]. All these can be expressed in terms of so called collinear and coplanar
operators that we will now describe.

The differential equations correspond via twistor transform 8/8;{"‘ — g to
geometrical conditions on sets of points in CP?. Given three points P;, P;, P, € CcP?
with coordinates Z, ZJI, and Z,g, the condition that they lie on a line, that is a on

a degree one genus zero curve, is that Fj;.r = 0, where
Fijrr = EIJKLZ{’ZJ‘]Z;‘g{- (3.2.1)

This condition translates, via twistor transform into a differential equation. For

example, the choice L = a leads to

0 0 0
Fijkd - </\Z, AJ>W + <)\], )\k)W + <>\k, >\1>W (322)
k i J
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Given four points P;, Pj, Py, P, € CP?, the condition that they are all contained
in a plane, that is a hyperplane in CP3, is that the vectors ZI i, I =1,...,4 are

linearly dependent. This amounts to Kj;;z; = 0, where
Kiju = ergx1Z{ Z] Zi Z}F. (3.2.3)

Via twistor transform, this goes into a second order differential operator in \a. The

coplanar operator can be related to the collinear operators
Kijw =Y FirrZf, (3.2.4)
L

which expresses the elementary fact that if the points 5k are collinear then for any
point [, the points ijkl are coplanar.

Given a scattering amplitude A(Al,xl;...;)\n,xn), the condition that the
twistor space amplitude has a support where the points i, j,k are collinear is
that Fjjpr A = 0. Similarly, the condition that the points 4, j,k,l are coplanar is
KA =0, [11].

There are a few simple criteria for an amplitude to be annihilated by Fj;ir.
Firstly, Fjjir, annihilates the amplitude if it depends only on the holomorphic
spinors A\® of the particles 4,7, k. For L = a, Fjjrq is a second order differential
operator in A% that annihilates the amplitude. Secondly, the amplitude is annihi-
lated by Fjjxr, if it depends on the spinors of particles 7, j, k only through the sum
of their momenta P = p%¢ + p?é‘ + p¢@. This follows from the application of the

Schoutens’s identity
<)‘i7 /\]> % + <)‘j7 )‘k:>)‘g + <)‘k7 )\Z>)\? =0. (325)

3.2.1 Higher Degree Curves

Holomorphic curves of genus zero in CP? have a simple description. Indeed,
the curve C' is a copy of a CP' that can be described by homogeneous coordinates

u,v. Any curve of genus zero and degree d has parametric description
zt = fl(u,v), I=1,...,4, (3.2.6)

where Z! are the homogeneous coordinates of CP? and f! (u,v) are homogeneous

polynomials of degree d.
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Degree Two
For d = 2, f! must be linear combinations of the tree quadratic monomials

u?, uv,v?. Since, there are four f!’s one combination of them vanishes, so the curve

C lies in a CP? C CP?, say in the CP? characterized by
4
> arZ' =0 (3.2.7)
I=1

A degree two curve in CP? can be described as a zero set of a homogeneous poly-
nomial of degree two ,
F=> a;,;2'7’. (3.2.8)
I,J=1
Hence, the plane conic is a ’complete intersection’, which means that it is the
solution set to a collection of homogeneous polynomials.
Using an SI(4) transformation, we identify the plane with the set Z* = 0. This
can be achieved by ie. projection on the Z* = 0 plane. The condition that the n

points P; all lie in C' becomes

3
Y azlzi=0  i=1,...n (3.2.9)
I,J=1
We can view this as n linear conditions on the six coefficient a;;. For n <5, there
is always a solution, so any five points lie in a (possibly singular) conic. Given six

points in CP? are contained in a conic if the 6 x 6 matrix with entries
MY, =2z1z), i 1J=1,...,6 (3.2.10)

has zero determinant. In momentum space, the determinant becomes a fourth order
differential operator that we denote V' [11].
In the CP?, the condition for P;, P;, Py, to be collinear is that the operator

Fijr = Fijra = €IJKZ¢IZJ‘-]Z;§ (3.2.11)

vanishes. We now express the condition for P;, Ps,..., Ps to lie on a conic in
terms of these operators. Since, Fjo3 is the only invariant of the group SI(3)
of transformation preserving the CP? we use SI(3) to set P, = (1,0,0), P, =
(0,1,0), P3; = (0,0, F123). Then the coordinates of the remaining points are P; =
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(Fi23/F123, Flig/Flgg, Flgi). The conic operator V is the determinant of the 6 x 6
matrix M1/, = ZIZJ. Substituting in the choices for coordinates we made, V
reduces to the determinant of the 3 x 3 matrix

Fo34F314  Fo3aFioy  F314F124

V = Fidet | FassFais FassFias FsisFios | - (3.2.12)
FoseF316  FaseFi2e  F316F126

We simplify this using the identity
FijkFim + FijiFimk + Fijm ik = 0. (3.2.13)

For example, the upper left 2 x 2 minor of the determinant is Fy34 Fo35(F314F125 —
F124F315) = F234F235F123F145. Other minors are obtained from this by making a

cyclic permutation of indices 4, 5,6. Hence we get

V = F5(F316Fo16Fa34 Fass Flas + Fa14Fo14Fa3s Faze Fise + F315Fo15Fos6FazaFiea)-
(3.2.14)
In the middle term, we use F214F235 -+ F213F254 -+ F215F243 = 07 to get

V' = — Fous5F314F236 F156
+ Fron Foza(Fai5 F314Fo36 Fise + F316Fa16Fass Flas + F315Fo15Fos6 Fiea)-
(3.2.15)
After substituting Fs16F%35 + Fo13F556 + Fo15F563 = 0 into the middle term in
the parenthesis, we get three terms proportional to Fby5 that cancel thanks to the

identity (3.2.13). We are left with a polynomial in F’s
V' = Fy34F316F145F 256 — FoasF314F536F156. (3.2.16)

Since V' is invariant, up to a minus sign, under permutations of the points P;, there
are many equivalent formulas obtained by permuting the right hand side. Further
expressions for V follow from projecting the points on a C'P? in generic position
Z}lzl brZ1 = 0. Then the F’s in the expression for V must be taken to be

Fiji = EIJKLZiIZJ‘]Zbe. (3.2.17)

Degree Three
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A genus zero degree three curve in CP? is called 'twisted cubic curve’. Degree
three is the first case for which the curve is not contained in any hyperplane CP?.
Also this curve is not a complete intersection, which means that any set of equations
defining the curve is redundant. Hence, the parametric description of C' (3.2.6) is
the most convenient one.

Recall that a twisted cubic curve is described parametrically as
zZ = f(u,v), (3.2.18)

where f! are homogeneous cubic polynomials of the homogeneous coordinates u, v
of an abstract CP'. The f! have 16 coefficients so, after taking into account the
action of GI(2) on u, v, the space of twisted cubics is 12 dimensional. For a point to
lie on the twisted cubic entails two conditions, so we guess that any 6 points lie on
some twisted cubic. The condition for seven points P;, P, ..., P; to lie on a twisted
cubic can be described as follows®.

Since a twisted cubic is not contained in any CP? we can assume that
Py, Py, P3, Py are not contained in any CP? as well. Then, by a GI(4) transfor-
mation, we set P; = (0,0,0,1), P, = (0,1,0,0), P3 = (0,0,1,0) and Py = (0,0,0,1).
The coordinates of the remaining points can be expressed in terms of Kjji =
GUKLZ{ZJJZ]fZlL as P, = (Kjosa, Kijsa, K125, K123;). Hence the twisted cubic
operator can be expressed in terms of the coplanar operators® K. If the point
P, corresponds to (uy,v1), we have f2(uy,v1) = f3(u1,v1) = f*(u1,v1) = 0, so
2,13 and f* are all divisible by by the linear function g;(u,v) = wv; — vu.
Applying the same arguments to Ps, P3, Py, we end up with four linear function
gr(u,v),I = 1,...,4, such that g; divides f/ for I # J. So, up to rescalings that

can be absorbed into g, the twisted cubic curve C' is described by

£ (w,v) = T 91(u,v). (3.2.19)

I#J

Introducing the new coordinates W! = (2'22232*)'/3/Z!  the equation for C
becomes
W (u,v) = gr(u,v). (3.2.20)

® We thank M. Atiyah and S. Popescu for explaining us this construction
6 Clearly, this argument applies to higher degree curves as well. Hence, the operators

for higher degree curves can be expressed as polynomials in K'’s.
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Hence, in terms of the dual coordinates W, the curve C is just a straight line.
Given two points Ps, Pg, there is always a straight line going through them, whence
any six points Pp,..., Ps are contained in some cubic curve. This construction
actually shows that six generic points are contained in a unique twisted cubic.

For seven points P, ..., P7, the condition that they are on a twisted cubic is
that the points Ps, Pg, P in the dual CP? lie on a line. This happens when the
operators

TL :F567L :GIJKLWE;,W(;JW;{ L= 1,...,4 (3221)

vanish. The simplification of the twisted cubic operators Ty, is similar to the planar

conic case. Using the identity
Kt Kijmn + Kijem Kijni + KijinKijim = 0, (3.2.22)

we find

Th = K245 K356 K1467K 1237 — K1235 K1456 K1367K 1247

Ty = Ki245K2356 K2467K 1237 — K1235 K2456 K2367 K 1247 (3.2.23)

T3 = K1345K2356 K3467K 1237 — K1235 K 3456 K2367K 1347

Ty = K345 Koa56 K3467 K 1247 — K1245 K3456 Ko467K1347.

In momentum space, T7,’s become eighth order differential operators in Xi’s. Again,
many equivalent formulas can be obtained by permutations of indices and the use

of (3.2.22).

3.3 Twistor Structure of One-Loop N =1 MHV Amplitude

In this section, we study twistor structure of one-loop amplitudes in gauge
theory with reduced supersymmetry. In internal particles running in the loop have
spin 0,1/2, 1. The amplitudes are conveniently described in terms of supersymmetric
multiplets running in the loop. One considers the N/ = 4 amplitude, the amplitude
Ajc\}/;,{ll in which the particles in the loop form an A = 1 chiral multiplet and Ascqiar

with a scalar in the loop.
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3.3.1 Twistor Structure of N =1 Amplitude

In this basis, the one-loop NV = 1 amplitude can be written as a sum of the

contributions of N' = 4 multiplet minus thrice the A' = 1 chiral multiplet

AN=L = AN=4 g AN=t (3.3.1)

The contribution from the N = 1 chiral multiplet to MHV amplitude with
negative helicity gluons i~ and j~ is [51]

—1 1
Achzral At?"ee X { Z Z ijB p+1 ’ [pq l; t1[7q—|—1 ! tt[zp—l—lq ])
p=it+1g= J+1

j—1 i—1 +1 /t[a p-l—l)
P
F Y St
p=i+1a=y p+1
i—1 j—1 [p—a] ,,[p—a—1]
n(t,, /t )
a+1 a+1
+ 2 2% Jp—al _ p—a—1]

p=j3+1 a=1 a+1 a+1

Cit1ie Gl oy
+ ;?2] 1K0(t£2])—|——1’Ko(t£2_]1)+MKo(t[Q])—%— J l’JKo(t[-Qil)},

2 2 j 2 j
| A, e i,
(3.3.2)
where,
tgk] = tl-n_k] for k<0
J n J . (3.3.3)
Z = + Z for j <1
k=i k=i k=1
We sum only over a satisfying
la—p|>1 and |a+1-—p| >1, (3.3.4)

so that the logarithms on the second and third line have a finite nonzero argument.

The coefficients in front of the integral functions are

bid o 80 P) (P, 1) (i, 4) {4, 5)

P (i,7)%(p, 0) (3.3.5)
i — Wil K od el = 0 Wil idpabfp) (GP)P,J)  (asatl) T
pia (ks + k)2 (i,7)  {a,p){p,a+1)
where ¢; ; = j_~ k; and

4 [Har KW ash as] = S0 [(1+95)H 0y M as W a3k aa] = [a1az2](azas)[azasl{asar).
(3.3.6)
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. Q
q+ =

N p

Fig. 12: The scalar box integral contributing to the amplitude. Two of
the vertices, p and g are light-like. P and () are sums of several light-like
momenta. We pick conventions so that ¢ € P and j € Q.

The function B comes from two mass scalar integral, fig. 12. Using the con-
ventions shown in the figure, p = p,,q = py while P = p, +ppt1 + ... +py—1 and
Q = pg+1 + Pg+2 + ...+ pp—1 so that p,q, P,Q are the four incoming momenta of
the box diagram. As discussed in Appendix A, the scalar function B is the finite
part of the N/ = 4 scalar box function

B(p,q,P,Q) = F/""(p,q, P,Q)
+ Li, <1_(C2Ci—q>z)2+LiQ< Q+p ) o
P P+
i (1 rrrar) 2 (o)

On the second and third line of (3.3.2) is the contribution from the triangle

"U

functions, fig. 13. Here p = p,,,, the momenta P, () are the sums p,1+ppy2+...+pq
and P41, Pa+t2s---,Pp—1. We choose P to be the momentum containing ¢ and @ to
be the momentum containing j. Using the variables p, P, ), we rewrite the triangle

function in the convenient form

n(Q*/P?)

T(p, P,Q) = Q7 p?

(3.3.8)
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Q/// B //'\\\ F
/ j_ ‘a a+:1‘ =
I I
\

!

\ /

p+
Fig. 13: Triangle diagram contributing to the amplitude. p is a lightlike

momentum, P is a sum of light-like momenta containing ¢ and @) is a sum
of momenta containing j.

The coefficient 7, (3.3.5) can be simplified using the definition (3.3.6)

i — (i,p)(p,J) (a,a+1)
e (i,7)  (a,p){a,p+1)
9 { (7, p) (il Plp) + (i, p) (5| P|p]) p=j+1,... i1
(¢, 2) (il Qlp] + (i, p)(j1Qlq]) p=i+1, ... j-1.

(3.3.9)

The main feature that we will use in remainder of the discussion is that the anti-
holomorphic dependence of the coefficients (3.3.9) is captured in p, P and Q. In
particular, these coefficients are holomorphic in i, j, a.

The amplitude (3.3.2)) diverges when ¢~ or j~ becomes collinear with one of the
adjacent positive helicity gluons. The piece that diverges when p; and p, become
collinear, where p = ¢—1, 741, comes from a scalar bubble diagram, with P = p; +p,,
and Q = —P. It can be simplified to (3.3.2)

g0 () pd)  (asa+1) 1L o
SiaPKO(SZ’p)_ (i,5) {a,p){p,a+1) 6(1—25)( P, (3.3.10)

where a = 4,7 — 1 for p =14 — 1,7 + 1 respectively.

j- ' P

i+1+

Fig. 14: The scalar bubble diagram giving the divergent part Ko(P?) of
the amplitude.
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Collecting the different pieces we can write the amplitude schematically as the

sum of box, triangle and bubble contributions

AN'=lchiral _ gtree., > B, PQ)+ Y. dlT(p.P.Q)+ Arg.
D,q;i€EP,jEQ p,a;t€P,jeQ
(3.3.11)

3.3.2 Interpretation

Box Diagrams
Let us firstly discuss the contribution to the amplitude (3.3.11) from box func-

tions

bl B(p,q, P, Q). (3.3.12)

The coefficient bﬁ;’{l (3.3.5), is a holomorphic function in the momentum spinors so it
does not affect the localization in twistor space. Hence, the localization properties
of the box diagrams are determined by the the box function B(p,q, P,Q). This is
the finite part of the scalar box function, whose twistor inspired decomposition was
found in [2]. The gluons in P and @ are localized on intersecting lines. Moreover,
the gluons p, q are localized either on the lines or in a first order neighborhood of
the C'P? containing the intersecting lines. At most one gluon can be localized away
from the lines.

There are some differences between the N’ = 4 and the A/ = 1 amplitude. For
the N/ = 4 amplitude, there is no restriction on the position of the negative helicity
gluons. For the N' = 1 chiral amplitude, the negative helicity gluons are always
localized on the lines. Moreover, one of negative helicity gluons is localized on one

line and the other gluon on the other line.

Triangle Diagrams
We can see part of the localization of the triangle diagram without any addi-

tional work. The diagram contributes
3. T(p, P, Q) (3.:3.13)

to the amplitude (3.3.11). The coefficient ¢/, is holomorphic in the spinors of glu-
ons a,,j (3.3.9). The anti-holomorphic dependence of (3.3.13)) is captured via the
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dependence on P, () and p. Hence, the vertices of the triangle diagram behave ef-
fectively as local vertices in Minkowski space. In the twistor space, the particles of
each vertex are supported on a line. The gluons whose momenta add up to P are
localized on one line and the gluons whose momenta add up to ) are localized on
another line lines.

Furthermore, we found using a computer program that the square of the copla-
nar operator annihilates the triangle function. Hence, all gluons are in a first order
neighborhood of a plane, that is a CP2. The two lines supporting gluons in P and
@, are intersecting up to first order and the gluon p is localized in the first order
neighborhood of the C' P2

@ (b) (©)
Fig. 15: The twistor configurations contributing to one-loop MHV ampli-
tude as found by studying the differential equations. In (a), the gluons are
supported on two disjoint lines that are connected by two twistor propaga-
tors. In (b), the lines intersect at a point. In (c), the lines intersect at a
point and one gluon is not supported on the lines but rather in the plane
spanned by the two lines.

There are further differential equations satisfied by the triangle contribution
KppoaFyrrFooa(cphT(p, P,Q)) = 0, (3.3.14)

which complicate the picture. Here, Kppgqg represents a coplanar operator Kjjx,
with ¢, € P and k,[ € Q. Similarly F},pp is a collinear operator F),;; with 7,j € P.
This collection of differential equations means roughly that the triangle function
is a sum of contributions that are annihilated by either of the three differential
operators (3.3.14). Hence, either the lines P and @ are strictly coplanar or one of

the lines contains p.

Divergent Part
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The infrared divergent part of the amplitude (3.3.2)) is (3.3.10)

1

=39 (—P%H)~¢ (3.3.15)

times a holomorphic function of spinors. As discussed before, this localizes on a
disjoint union of two lines. The gluons whose momenta add up to P are on one line

and the remaining gluons are on the second line.

3.3.3 Holomorphic Anomaly

In a hypothetical twistor string theory dual to perturbative N' = 1 gauge
theory, we would expect that all gluon are supported on an algebraic curve, which
is a worldsheet of a string that generates the interaction. This is what we find for the
first two contributions of figure fig. 15. The first contribution can be interpreted as
coming from two degree one D-instantons connected by two open strings. Similarly
the second comes when one of the propagators degenerates or equivalently, when a
degree two instanton degenerates to two intersecting degree one instantons.

However, for the finite part of the amplitude we find that the amplitude also
has a contribution, fig. 15 (c), where the gluons are localized on two intersecting
lines except for one, which is in the plane spanned by the lines. This configuration
is not expected from the twistor string theory.

In order to resolve this discrepancy, we need to recall from section 3.1 the
differential equations that tests whether external gluons are supported on a line.
For gluons 14, j, k with momenta pf® = )\?Xf‘, the differential operator that should

annihilate the amplitude is

0 0 0
i = Qi Ag) o+ Ay Ak s >aAj (3.3.16)

For example the MHV amplitude

Y <)\7°7)\s>4
A 1y N\g) — n 5
()\ A ) Hk:l <)‘m7 )‘m+1>

is manifestly annihilated by Fj;i, 4,7,k = 1,...,n in agreement with the discussion

(3.3.17)

of previous chapter.
This is actually true only for generic momenta, as there is a delta function

contribution when two of the momenta become collinear. To see this, recall that
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in Minkowski space A* and A% are complex conjugates. Hence, the 0/ ON operator
acts on \ the same way as 0 acts on z. So we get a nonzero contribution when the

operator acts on a pole

Na 9 1 _ . /
DTy = (), (3.3.18)

where 0(z) = dzd%(z) is the holomorphic delta function. Hence, Fj;xA is actually a
sum of delta function when gluons become collinear with the gluons i, j, k. At tree
level, we can always pick the momenta of the external particles so that no two are

collinear so the delta functions can be safely ignored.

/

Fig. 16: The cut diagram computing the imaginary part of the one-loop
MHYV amplitude. The left and right amplitudes are the on-shell MHV
amplitudes.

Consider now the similar argument for loop amplitudes. For clarity, we focus
on the imaginary part of one-loop MHV amplitude. From unitarity, this can be
obtained from a ‘cut’ diagram of fig. 16 where the cut propagators are on-shell and
the scattering amplitudes on the left and right are the MHV amplitudes. Naively,
Fi;i A is zero if 4, j, k are gluons coming from one MHV amplitude. However, the
MHYV amplitudes develop a pole when one of the external gluons becomes collinear
with one of the internal gluons. The condition for the internal gluon to be collinear
with a given external gluon fixes the momentum of the internal gluon. Hence, Fjjj
acting on A gets a delta function contribution that localizes the integral over the
momentum of the internal gluon. One would naively interpret the nonvanishing of
Fiji A as a sign of one gluon being localized away from the lines supporting the
MHYV vertices. For generic external momenta, the internal gluon can be collinear
with only one external gluon which explains why in the previous subsection we

found only one external gluon in the bulk of the twistor space.
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3.4 Twistor Structure of Nonsupersymmetric One-Loop Amplitudes

In this section, we discuss nonsupersymmetric scattering amplitudes of gluons.
As discussed at the beginning of previous section, it is convenient to decompose the

the contributions of internal particles into supersymmetric multiplets

AQCD — AN=4 _ g qN=1 4 pseolar, (3.4.1)

The supersymmetric contribution A/C\,fm-:rlal

was studied in previous section. In this
section we consider the contribution from an internal scalar running in a loop.
Unlike in the supersymmetric case, the nonsupersymmetric n-gluon amplitudes
with n or n — 1 gluons of the same helicity do not vanish. We begin with the
discussion of these amplitudes and then go on to discussing the amplitudes with

two negative helicity gluons.

3.4.1 All Plus Helicity One-Loop Amplitude

The one-loop scattering amplitude of n > 4 gluons of positive helicity is [52],
[53]

NI S (T

1<i1<i2<13<t4<n
For future reference, we rewrite the amplitude in terms of the momenta and holo-

morphic spinors of the external particles

A—_ i Z SivinSigia — SiyizSizis T SiyigSinig — 4i€uv>\ppﬁpzy2p7{')3pgl‘
9672 i i Tt cis<n (12)(23) ...(n1)
(3.4.3)
The amplitude is a single valued function of spinors, hence it is free of cuts. Indeed,
cutting the amplitude into two parts, the cut is proportional to product of two tree
level amplitudes, at least one of which has less than two negative helicities so it
vanishes.

The twistor structure of the amplitude is clear. The product of any three
collinear operators annihilates the amplitude, because the amplitude is quadratic
in Xll Hence the external gluons are all supported in a second order neighborhood
of a line , that is a CP'. In analogy with MHYV vertices, the all-plus amplitudes are
a twistor space analogs of local interaction vertices [54]. Hence, it is tempting to
guess, that the nonsupersymmetric amplitudes can be constructed from these two

types of vertices.
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(b)

Fig. 17: (a) A one-loop diagram with MHV vertices. Each vertex has two
negative helicity gluons. Out of the four negative helicity gluons, two are
absorbed by the propagators. (b) A diagram that also contains a one-loop
all-plus vertex. The vertex is drawn as a disk to indicate that it contains a
loop.

Before we go on to study further amplitudes, let us discuss the hypothetical
Feynman diagrams construction of nonsupersymmetric one-loop amplitudes using
MHV and all-plus vertices. Consider first a diagram with d MHV vertices. Each
vertex contains two negative helicity gluons. To make a connected diagram, the
vertices are connected with d — 1 propagators, each of which absorbs one negative
helicity gluon, leaving d + 1 negative helicity external gluons. An [-loop diagram

contains [ additional propagators, hence the diagram has
g=d—-1+1 (3.4.4)

negative helicity gluons.
Each all-plus vertex contains a hidden loop inside, hence adding p such vertices

we need to remove p propagators leaving us with
g=d+1—-1—-p (3.4.5)

negative helicity gluons. An [-loop amplitude can have up to [ all-plus vertices,

hence it has contributions from quivers of degrees

g—1+1<d<q—1+2L (3.4.6)
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3.4.2 The — 4+ 4+ 4+ ...+ One Loop Amplitude

We will now discuss the n gluon amplitude with n—1 gluons of positive helicity
and compare it to the expectations from previous subsection. We find that the
twistor structure agrees with our expectations. However we have not been able to
find an off-shell continuation of the one-loop all plus vertex that would give the
right amplitude.

The one loop nonsupersymmetric scattering amplitude of all but one gluon of

the same helicity has been derived using recursive techniques by Mahlon [55], [56].

(b)

Fig. 18: Two representations of a diagram contributing to a one loop non-
supersymmetric amplitude. (a) The geometry of the diagram in twistor
space, as found from differential equations. (b) Minskowski space represen-
tation of the diagram in terms of local vertices, a four-valent all-plus vertex
and a three-valent MHV vertex.

For example, consider the five gluon — + + + + amplitude [57]

_ v 1 252 (14)345)(35)  (13)3[32](42)
T 18a2 (3402 | 1251 | (12)23)(45)2  (15)(54)(32)2] (3.4.7)

We find that the product of any three coplanar operators annihilates the amplitude
K3A =0. (3.4.8)

We also find that the amplitude is annihilated by
FlaF,A=0. (3.4.9)

The differential equations have the following interpretation. (3.4.8) implies

that all gluons are coplanar. Furthermore, it follows from (3.4.9) that three of the
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gluons lie on a line. Drawing a line through the other two gluons, we find that the
two lines intersect as indicated in fig. 18 (a).

We have studied Mahlon’s amplitude up to eight gluons and found that the
differential equations satisfied by the amplitude are in agreement with the proposed
twistor configurations. The amplitude has contribution from twistor diagrams with
one MHV vertex and one all-plus vertex. The MHV vertex is localized on a line
while the all-plus vertex is localized in a second order neighborhood of a line. The
two lines have a second order intersection, hence the amplitude is supported in a

second order neighborhood of a plane defined by the two lines.

Towards the Construction of All-Plus Vertex

On the other hand, we have not been successful in finding an off-shell contin-
uation of the all-plus one-loop amplitude to use in the diagrams fig. 18(b). One
approach is to use the second form of the all-plus amplitude (3.4.3) that depends
on the holomorphic spinors A; and the momenta p; only. Hence, one can adopt the
off-shell continuation used in [54] Ay = paan?, but one finds that it does not lead to
the right amplitudes.

3.4.3 Nonsupersymmetric — — + ...+ Amplitude

Here we consider the nonsupersymmetric amplitudes with two negative helicity
gluons. The part of the amplitudes that contains cuts can be computed via unitarity.
According to [51], the cut-constructible part of the scalar loop amplitude with two

adjacent negative helicity gluons is

o e L (1Y)
Ascalar cut — Achzral A“”ee Z

SO ()
Xt 4 (W1 oW pd pa] b7 4 (K1 K od p 1 ) (tr + KKK pgpa] — tr +Wll?/2(fp,1gp])v
(3.4.10)
where A€ is the tree level MHV amplitude and
L) = @) = (@ = L/2)/2. (3.4.11)

1 —ap
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p+
Fig. 19: A triangle diagram contributing to the scalar loop amplitude with
adjacent negative helicity gluons.

Setting P = ppy1 + pp42 + ... +p1 and Q = pa +p3 + ... + pp—1, the scalar

loop amplitude becomes

F Atree n—1 LQ(PQ/Q2)
3 (1,2)° = (@*)° (3.4.12)

x (1, p)(2,p) (1| P|p](2|P|p] ((1,m)(2|P|p] — (2, m)(1|P|m]).

Ascalar cut — 'Achzral

Now we have two types of triangle functions

In(Q*/P?) = Ly(P?/Q%)
T(p. P =7 7 T(p, P = = 4.1
(p7 7Q> Q2 _p27 (p7 vQ) (Q2>3 (3 3)
Schematically, the amplitude is a sum of triangle diagrams
scalar 1
A l:E:fm(nPQ+§j2TnPQ) (3.4.14)

p

The part containing 7T'(p, P, @) has been studied in previous section. The part
containing the nonsupersymmetric triangle function T(p, P, Q) localizes on almost
the same configurations as the AV = 1 triangle function. The gluons whose momenta
add up to P are localized on a line and the gluons whose momenta add up to @
are localized on another line. The study of the differential equations shows that the
amplitude is annihilated by the square of the coplanar operator K2, so all gluons
are coplanar, they lie in a second order neighborhood of a plane. The amplitude

satisfies further differential equations analogous to (3.3.14)

KprooFyepFigo (@ T(p, P,Q)) = 0. (3.4.15)
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3.4.4 Comparison of Amplitudes with Two Negative Helicity Gluons

The surprising result of the analysis in preceding sections is that the N' = 1
chiral and the cut-constructible part of scalar M HV amplitudes localize on the
same type of twistor configurations. In all cases, the infrared divergent part of the
amplitude localizes on two disjoint lines. The finite part of the amplitude is localized
on two intersecting lines. One gluon can have a distinguished position. It can be
supported away from the lines, in a first order neighborhood of the plane defined
by the two lines. At first this twistor picture would seem at odds the discussion of
previous chapter, where we noted that the MHV loop computation of the one-loop
MHYV amplitude [47] makes manifest that the amplitude is supported on a disjoint
union of lines, with all gluons localized on the lines. This apparent discrepancy has
been reinterpreted in terms of holomorphic anomaly in the differential equations [3]

as discussed in previous section.

Fig. 20: A twistor configuration contributing to the A’ = 1 chiral ampli-
tude. One gluon is in the plane containing the lines P, Q.

3.4.5 Cut-free Part of — — + + ...+ Amplitude

The cut-constructible terms do not give the whole — — + ...+ amplitude. In
particular, they lack singularities in some multiparticle channels. The amplitude
also contains cut-free rational functions. For five gluons the rational part of the
‘MHV’ amplitudes have been computed via string inspired methods [57]. Studying
the differential equations, we find the possible diagrams contributing to the rational

terms, fig. 21.
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Fig. 21: The diagrams contributing to rational function part of the — —

+ + + loop amplitude.

Fig. 22: A hypothetical diagram that could contribute to the rational
function part of the — — + + + loop amplitude.

Unfortunately, the cut-free part of the MHV amplitude has been computed
only for amplitudes with five gluons [57]. So we were unable to analyze the cut-
free part of the n > 6 gluon amplitude. These amplitudes are expected to receive
contribution from quivers drawn in fig. 22 (with additional positive helicity gluons
added on the lines.) The amplitudes should satisfy differential equations reflecting

the structure of the quivers.

3.5 Twistor Structure of Gravitational Amplitudes

The study of graviton amplitudes has been initiated in [11] where the tree level
n graviton maximally helicity violating amplitude was shown to be supported on

a genus zero degree one curve in twistor space. Here, we continue the empirical
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study of graviton scattering amplitudes. In analogy with gauge theory amplitudes,
we conjecture that the maximally supersymmetric supergravity amplitudes local-
ize on the same type twistor configurations as the gauge theory amplitudes. We
propose that the I-loop scattering amplitude with g gravitons of negative helicity is

supported on a algebraic curve of degree
d=q—1+1 (3.5.1)

in the twistor space, but now with a ’higher derivative delta function support’ in the
normal directions to the curve. The genus of the curve is bounded by the number
of loops

g <l. (3.5.2)

In a hypothetical twistor string theory that is dual to perturbative N' = 8
supergravity, one would expect to write the scattering amplitudes as integrals over
the moduli space of curves of appropriate degree and genus. As in gauge theory case,
the differential equations obeyed by the amplitudes suggest that the amplitudes are
supported on singular degenerations of the curves. The singular curves in question
are collections of pairwise intersecting genus zero degree one curves, that is CP’s.
Taking the analogy with Yang-Mills theory further, we would conjecture that each of
the CP'’s is related to an MHV graviton amplitude in a hypothetical MHV diagram
construction of graviton amplitudes.

In the following subsections, we undertake an empirical study of the differen-
tial equations obeyed by the graviton scattering amplitudes to support the above
conjecture. We give additional evidence that graviton scattering amplitudes are
supported on intersecting lines in the twistor space as in gauge theory case, but
now with a multiple derivative delta function support in the normal directions.
We study both tree level and one loop graviton scattering amplitudes in general

relativity and in A/ = 8 supergravity. This section has some overlap with [58,59].

3.5.1 Tree Level Graviton Amplitudes

In analogy with Yang-Mills theory, we conjectured that the n graviton tree
level scattering amplitude with ¢ gravitons of negative helicity is supported on a
configuration of ¢ — 1 pairwise intersecting degree one curves in twistor space. Since

the minimal degree of an algebraic curve is one, it follows from this proposal that
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the amplitudes with zero or one negative helicity gravitons vanish”. This is indeed
the case. The vanishing of these amplitudes is a consequence of supersymmetric
Ward identities. The Ward identities hold for tree level scattering amplitudes in
gravity theory with no supersymmetry as well, because the tree level amplitudes

are not sensitive to supersymmetry.

MHYV Amplitude
The first nonvanishing tree level amplitude, the Maximally Helicity Violating
amplitude, has two gravitons of negative helicity and any number of positive he-
licity gravitons. It has been computed by Berends, Giele and Kuijf [60] using the
KLT relations [61]. As discussed in [11], after factoring out the delta function of
energy-momentum conservation, the amplitude is a rational function in A times a

polynomial in Xf
AR, X)) = L PXD). (3.5.3)
After Fourier transform into twistor space, the polynomial P(Xf) becomes a differ-

ential operator
A, i) = F(A)P( 0 )ﬁ 8% (Wia + TaaXy). (3.5.4)
Opia

1=1

Hence, the MHV amplitude is supported on genus zero degree one curve, that is a
CP', as in the Yang-Mills case. Since the polynomial P(Xl) is of degree n — 3, the
amplitude has n — 3"¢ derivative delta function support in the normal directions to
the curve. Hence, the product of any n — 2 collinear operators Fj;;, annihilates the
amplitude

F"2A, =0. (3.5.5)

Amplitudes with Three Negative Helicities

7 The three graviton amplitude with two gravitons of the same helicity is an excep-
tion. This amplitude is nonzero of on-shell complex momenta, but becomes zero for real
momenta in Minkowski space. This follows from analogous remarks for the gauge theory
case [11], since the three graviton amplitude is simply the square of the three gluon color

ordered amplitude.
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The next case to consider are amplitudes with three negative helicity gravitons.
From (3.5.1)) we expect that these amplitudes are supported on two intersecting lines
in twistor space.

The simplest amplitude with three negative helicity gravitons is the five gravi-
ton googly MHV amplitude. The amplitude with gravitons 1 and 2 of positive
helicity and the rest of negative helicity is [60]

[12](23)[34](41) — (12)[23](34)[41]
N(5) ’

Al+,+,——,—) =i[12]° (3.5.6)

where

4 n
NGy =T 1 [ (3.5.7)

i=1j=i+1
The amplitude can be derived from the gauge theory MHV amplitude using the five
particle KLT relation®

A(1,2,3,4,5) = is12534A(1,2,3,4,5)A(2,1,4,3,5)

(3.5.8)
+ i813824A(1, 3, 2, 4, 5)14(3, 1, 4, 2, 5)
A computer assisted study of the differential equations shows that
K?M =0, (3.5.9)

hence the five gravitons are contained in a higher order neighborhood of a plane,
CP?. Furthermore the amplitude is annihilated by the product of the squares of all

collinear operators but Fsus

Il Fwm=o (3.5.10)

ijk#345
This has a simple interpretation in a hypothetical MHV diagram construction
of the amplitude. According to (3.5.1) the amplitude is supported in an infinitesi-
mal neighborhood of a singular planar conic composed of two intersecting linearly
embedded CP'’s. The configuration with gravitons ijk on one line and the remain-
ing gravitons on the other corresponds to an MHV diagram with one three-valent

and one four-valent MHV vertex. The gravitons ¢jk are contained in the four-valent

8 See Appendix 3.B for a discussion of KLT relations.
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MHYV vertex, which is annihilated by sz x (3.5.5), so the diagram is annihilated by

i
FZQJ . as well. (3.5.10) is simply the product of these operators over all twistor di-
agrams contributing to the amplitude. The condition ijk # 345 comes in because
an MHV vertex has exactly two negative helicities.

Next is the six graviton amplitude with three negative helicities, + + + — ——.

Following [60], we define the amplitude from KLT relations

A(1,2,3,4,5,6) = —is12545A4(1,2,3,4,5,6)[s354(2,1,5,3,4,6) + (s34 + s35)A(2,1,5,4,3,6)
+ permutations of (234)]
= —i812545A(1,2,3,4,5,6)[s13A4(2,3,1,5,4,6) + (s13 + s23)A(3,2,1,5,4,6)
+ permutations of (234)].
(3.5.11)
According to our conjecture, the amplitude is supported on a pair of intersecting
lines in twistor space. We were able to verify with computer assistance that the
third power of coplanar operator and of the operator for plane conic annihilate the
amplitude
K*A=0
(3.5.12)
ViA=0.
Hence the external gravitons are contained in a plane conic. The condition for the
plane conic degenerates to a pair of intersecting lines is a differential operator made
from products of collinear operators. A short analysis of the quivers contributing to
the amplitude shows, that one of the two CP'’s of the quiver always contains at least
two gravitons of positive helicity and one of negative helicity. This configuration is
annihilated by F% . Where P;, P;, P, are the gravitons in question.

Hence, the following degree 27 operator annihilates all quivers, fig. 23

3
O = I FE (3.5.13)
hi:hj:—hk:—i-
so according to our conjecture, O annihilates the scattering amplitude. We have
not been able to verify this conjecture in a reasonable amount of computational

time.

KLT Relations vs. Twistor Structure of Amplitudes
A keen reader might ask whether the twistor structure of the graviton am-

plitudes is a consequence of the twistor structure of gluon amplitudes. After all,
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(b)

Fig. 23: The three classes of quivers contributing to the + + + — —— six
graviton amplitude. + points denote any permutation of the three positive
helicity gravitons, so altogether there are 3 + 9 4+ 9 diagrams coming from
the classes (a),(b) and (c) respectively. Each of the diagrams is annihilated
by at least one of the 9 operators F}, _.

we conjecture that the graviton amplitudes are supported on quivers of the same
degree (3.5.1) as the gluon amplitudes of the same helicity configuration. The KLT
relations (3.5.8)), (3.5.11)) express the graviton scattering amplitudes as simple sums
of squares of gauge theory amplitudes up to some factors of s;;.

The simplest way that the KLT relations could imply the localization of gravi-
ton amplitudes would be that each of the terms in the KLT relations (3.5.8) and
(3.5.11)) localizes on the same configurations as the entire gravity amplitude.

We find a counterexample in the operator K2 acting on the six graviton non-
MHYV amplitude. The operator does not annihilate the separate terms on the right
hand side of (3.5.11)). Only the whole graviton amplitude, which is a sum of terms, is
annihilated by K3. Hence, the separate summands in the KLT relations do not have
a straightforward interpretation in the twistor space. This suggests that localization
of the graviton amplitudes is independent of the KLT relations. It is an intrinsic
property of gravity amplitudes that gives a hint of a twistor string theory whose
instanton expansion would naturally lead to the quiver picture discussed in this

section.
3.5.2 One-Loop Graviton Amplitudes

The Four Graviton One-Loop Amplitudes
The four graviton amplitudes with arbitrary particle content running in the

loop have been calculated using string based methods in [62]. The one-loop
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(4, +,+,+) supergravity amplitudes vanish due to supersymmetric Ward identi-
ties. In the nonsupersymmetric case, the amplitudes are finite rational functions of

the spinors \;, XZ-,

ikA st % 52 4 st 4 12
A(+,+,+,+) = —N; (47)? ((12><23>(34><41>) 1920 (3.5.14)
B ikt Ny s%t? [24]? ’ -
Al ) = (4m)2 5760 u? (= st) ([12]<23><34>[41]) ’

where Ny is the number of bosonic states circulating in the loop minus the number
of fermionic states and s = s12,t = S14,u = s13 are the Mandelstam variables.
For General Relativity Ny = 2 because the graviton has two helicity states. These
amplitudes have a polynomial dependence on Xi, whence they are supported in a
higher order neighborhood of a CP*.

The the maximally helicity violating (—, —, 4+, +) amplitude is nonzero in grav-
ity theory with or without supersymmetry. It is convenient to consider the partial
amplitudes which receive contributions from N = 1,2,4, 6,8 chiral multiplets and
a scalar running in the loop. The general relativity amplitude receives contribution

only from internal gravitons. It can be decomposed as
AGE — AN=8 _ g AN=6 4 90 AN=% — 16 AV~ + Ascatar- (3.5.15)

The N < 8 chiral multiplets give finite contributions. Moreover, they are polyno-
mial in Xi, so they are supported in an infinitesimal neighborhood of a CP'. The
N = 8 chiral multiplet contains graviton which gives infrared divergent contribution

to the scattering amplitude

v=s _2F (ln(—u) RGO ln(—s)>

€ st su tu (3.5.16)
LoF (ln(—t) In(—s) N In(—u) In(—t) N In(—s) ln(—u)) 7 o
st tu Uus
where
F = ix?stuAle, (3.5.17)

is a polynomial in X times the tree level amplitude. We expect that this contribution,
in analogy with gauge theory, comes from two disjoint lines in twistor space. In a
hypothetical twistor string dual to N’ = 8 supergravity, the lines are connected by

two twistor propagators.
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N =8 Five Graviton MHV amplitude
The N = 8 one-loop five graviton MHV amplitude with gravitons ¢ and j of

negative helicity and the remaining 3 gravitons of positive helicity is [63]

—loo 1 . .
My ™1 = =2 (i) [shhs33h(1, {2}, 3)A(3, {4,5), )T,

(3.5.18)
+ permutations],
where the sum is over 30 distinct permutations and
ha.{e}.b) = 73
VIR,

ed (3.5.19)

h d},b) = .

(a: {ed} V) = et by (ad) (da)

7'23(45) ig the one-mass scalar box integral with momenta pi, ps, ps and ps + ps

flowing out of the four corners of the ‘box’

e ) () ()]
512523 € —812 —S823 — 845
— 9Li, (1 _ Sﬂ) — 9Li, (1 _ Sﬁ) ~n? (Sﬁ) }
S12 523 523

(3.5.20)

The the infrared divergent part of the amplitude is a sum over two particle

terms times a polynomial in the anti-holomorphic spinors” P()\;). The term

2( s )epm o) (3.5.21)

€ —Smn

is supported on a pair of skew lines with a multiple derivative delta function behavior
in the normal directions. The particles m,n lie on one line and the remaining
particles are on the other line.

We expect the finite part of the scattering amplitude to be supported on the
same configuration as the Yang-Mills amplitude, but with a higher derivative delta
function behavior in normal directions. We recall that in Yang-Mills theory, after
taking into account holomorphic anomaly, the finite part of the one-loop MHV

amplitude was supported on a pair of intersecting CP'’s. To test this conjecture in

9 The IR terms are also multiplied by rational functions of holomorphic spinors A;,

which do not affect the twistor structure.
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the gravity case, we verified that the graviton amplitude localizes to a higher order

neighborhood of a CP?, as the fifth power of the coplanar operator annihilates it
K5MEoP = 0. (3.5.22)

Each of the permutations in (3.5.18) is annihilated by K° separately.

One Loop + + ...+ Graviton Amplitude

The only known infinite series of one loop scattering amplitudes in General
Relativity are the amplitudes of n gravitons with the same helicity. It has been
computed both from KLT relations and from the soft and collinear properties of
the amplitude [63]. Since the tree-level amplitude of the same helicity gravitons is
zero, the one-loop amplitude is a rational function of the spinor variables.

The interesting feature of this series of amplitudes is that, just like the gluon
amplitudes of the same helicity structure and the MHV graviton amplitudes, they
are a product of a rational function in \; times polynomial in A By the same reason-
ing as in the MHYV case, the amplitude is supported in a higher order neighborhood
of a CP*.

3.A The Integral Functions

The box function F717. is one of a set of functions constructed from the scalar
box integrals. The latter form a complete list of the possible integrals that can
appear in a Feynman diagrammatic computation of one-loop amplitudes in N = 4
gauge theory. In one-loop amplitudes with reduced supersymmetry, the triangle

and bubble functions can appear as well.

These integrals are known as the scalar box integrals because they would arise

in a one-loop computation of a scalar field theory with four internal propagators.
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+r+1 42
I+I’ ] q 7-\\\Q
-3 |
i-2
1P )
i+r-1
i+r—2
i+1 -1 P\\\ p

) (b)
Fig. 24: Scalar Box Integrals used in the definition of: (a) The box function
E22.£. (b) The generic box function F(p,q, P).

The scalar box integral is defined as follows:

I (4 )26/ di=2¢¢ 1
= —1 T .
4 (2m)3-2¢ 2(0 — K1)2(0 — K1 — K2)2(0 + K4)?

(3.A.1)

The incoming external momenta at each of the vertices are Ky, Ko, K3, K4. The
labels are given in consecutive order following the loop. Momentum conservation
implies that K; + K3 + K3 + K4 = 0 and this is why (3.A.1) only depends on three
momenta. We are interested in the case when K; = p;—1, Ko = p; + ... + pivr—1

and K3 = p;4+,. The scalar box function is then defined as follows,

F2me — <t[7f§”t[7“+” - tmt[“""‘m) nme (3.A.2)

n:r;i 7 % v Vitr4+1 4:r;1

We also use the finite scalar function

' T T n—r— 1 T T T n—r— me
P el ) e = %(tgjl]tg ] ]t£+r+12])lir;i
1 rl\—e n—r—2/\ —e r+1]\—¢ r+1]\—¢
5 () () T T T ()T,

(3.A.3)

This can be expressed as

. " " tn
B = F<Zur)finite =Lip [ 1— m + Lip | 1 — t[r——H] +Lix | 1— t[H_l]

i—1 i i—1

[n—r—2] [r] [n—r—2] [r+1]
t: t:'t; 1 t:
. i+r+1 . v Ci4r+1 2 i—1
Lo (1‘ ] >—L12 (1_W)+§m <t[—+1])
i—1 7

' i (3.A.4)

(3
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The divergent part of the N' = 1 amplitude (3.3.2) is expressed in terms of
scalar bubble function

L o=t o s+ 0. (3.A.5)

Kols) = €(1 — 2¢) €

The finite part of the N' = 1 chiral amplitude is a sum of scalar box and triangle
integrals. The triangle integral is defined as follows:

Is = —i(4 )2_6/ di=2c¢ 1
3= AT (2m) i 2¢ (2(0 — K1 )2(0 + K3)2

(3.A.6)

The incoming momenta at each vertex are K;, Ko, K3. The labels are given in
consecutive order following the loop. The incoming momenta satisfy momentum
conservation K; + Ko + K3 = 0. In the integral (3.A.6), we set Ky = p;—1, Ko =
Di +Dit1 + ..+ Pigr—1 and Kz = piyr + Digrp1 + ...+ Pio
[r]\—e [n—r—1]y—e
T 0 i i T I (3.A.7)

3:r,1 r n—r—
€ (=t — (=

The triangle function T (3.4.13) enters the amplitudes as

(] /ylr+1]
Lo (ti /ti ) (@ w1

7 _— 72m
AT I I == B 137 [az]. (3.A.8)
This is a Feynman parameter integral for a two mass triangle integral I:’?T,z where

tEr] and tyﬂ] are squares of the momenta of the massive legs and as is the Feynman
parameter for the light-like leg. This representation arises when one carries out the
calculation of the A/ = 1 chiral multiplet amplitude in a manner analogous to the

N = 4 calculation.

3.B KLT Relations

The Kaway, Lewellen and Tye (KLT) relations of string theory [61] relate closed
string amplitudes to the open string amplitudes. They arise from representing each

closed string vertex operator C' as a product of two open string vertex operators O
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In the infinite tension limit of the closed strings, only the massless gravity states
survive.

In the infinite tension limit, the closed string states reduce to the states of
N = 8 supergravity and the open string states reduce to the states of the N' = 4
Yang-Mills theory. The particle content of A/ = 8 supergravity is 1 graviton, 8
gravitinos, 28 vectors, 56 Majorana spinors and 70 scalars. As a consequence of
the factorization of the closed string vertex operator into the product of two open
string vertex operators, the N' = 8 supergravity multiplet can be thought of as a
tensor product of two N = 4 gauge theory multiplets. The infinite tension limit
of the KLT relations relates the N/ = 8 gravity amplitudes to N/ = 4 gauge theory
amplitudes [60]. The tree level four particle KLT relations are

A(1,2,3,4) = —is19A(1,2,3,4)A(1,2,4,3). (3.B.2)

Here, A is the gravity amplitude and A is the color ordered gauge theory amplitude.
Each of the gravity states on the left hand side is a product of two gauge theory
states on the right hand side. At tree level, supersymmetry does not affect scattering
amplitudes, whence the KLT relations hold for tree level scattering amplitudes in
theories with reduced or no supersymmetry. In the past, KLT relations have been

the main computational tool used to derive gravity scattering amplitudes.



4. Tree Level Recursion Relations For Gravity Amplitudes

4.1 Introduction

The twistor string has inspired a lot renewed progress in understanding the
tree-level and one-loop gluon scattering amplitudes in Yang-Mills theory. Among
other things, a new set of recursion relations for computing tree-level amplitudes of
gluons have been recently introduced in [7]. A proof of the recursion relations was
given in [16]. A straightforward application of these recursion relations gives new
and simple forms for many amplitudes. Many of these have been obtained recently
using somewhat related methods [64,65/66].

It has been known that tree level graviton amplitudes have remarkable sim-
plicity that cannot be expected from textbook recipes for computing them. The
tree level n graviton amplitudes vanish if more than n — 2 gravitons have the same
helicity. The maximally helicity violating (MHV) amplitudes are thus, as in Yang-
Mills case, those with n—2 gravitons of one helicity and two of the opposite helicity.
These have been computed by Berends, Giele, and Kuijf (BGK) [14] from the Kawali,
Lewellen and Tye (KLT) relations [13]. The four particle case was first computed
by DeWitt [30].

The simplicity of amplitudes raises the question whether there are analogous
recursion relations for amplitudes of gravitons. The possibility of such recursion
relations has been recently raised in [59].

In this chapter, we propose tree-level recursion relations for amplitudes of gravi-

tons. The recursion relations can be schematically written as follows

1
h —h
A, = E AI—P2 7 (4.1.1)
T.h T

83
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In writing a recursion relation for n graviton amplitude A,,, one marks two gravitons
and sums over products of subamplitudes with external gravitons partitioned into
sets ZU J = (1,2,...,n) among the two subamplitudes so that i € Z and j € J.
Pz is the sum of the momenta of gravitons in the set Z and A is the helicity of
the internal graviton. The momenta of the internal and the marked gravitons are
shifted so that they are on-shell.

We use the recursion relations to derive new compact formulas for all ampli-
tudes up to six gravitons. In particular, we give the first published result for the
six graviton non-MHV amplitude A(17,27,37,47 57 6T).

We attempt to prove the recursion relations along the lines of [16]. The first
part of the proof that rests on basic facts about tree-level diagrams, such as the
fact that their singularities come only from the poles of the internal propagators
can be easily adapted to the gravity case. To have a complete proof of the recursion
relations, it is necessary to prove that certain auxiliary function A(z) constructed
from the scattering amplitude vanishes as z — oo.

We are able to prove this fact from the KLT relations for all amplitudes up to
eight gravitons. For amplitudes with nine or more gravitons, the KLT relations sug-
gest that the function A(z) does not vanish at infinity unless there is an unexpected
cancellation between different terms in the KLT relations.

While we are not able to prove that A(z) vanishes at infinity for a general n
graviton scattering amplitude, we show that A(z) does vanish at infinity for MHV
amplitudes with arbitrary number of gravitons from the BGK formula. Hence, the
recursion relations are valid for all MHV amplitudes contrary to the expectation
from KLT relations.

Finally, we introduce an auxiliary set of recursion relations for NMHV ampli-
tudes which are easier to prove but give more complicated results for the amplitudes.
This auxiliary recursion relation is then used to prove the vanishing of A(z) for any
NMHYV amplitudes.

This raises the hope, that the recursion relations hold for other scattering

amplitudes of gravitons as well.

Summary of Results
In section 4.2 we present the BCF relations to the case of gravity. In section 4.3,

we discuss explicit examples of computations of graviton scattering amplitudes using
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our recursion relations. We derive formulas for all amplitudes up to six gravitons.
In section 4.4 we derive the graviton recursion relations and in section 4.5 we study
the large z behavior of A(z) using several tools, including Feynman diagrams, KLT
relations and ‘auxiliary recursion relations.” In the appendix, we give a refined

version of the KLT relations approach to vanishing of A(z).

4.2 Recursion Relations

Just like gauge theory scattering amplitudes, the graviton scattering amplitudes
are efficiently written in terms of spinor-helicity formalism. The polarization tensors
of the gravitons can be expressed in terms of gluon polarization vectors

+ ot et - e
€aabb — Cadpp €aabb — Cadpp’ (4.2.1)

The polarization vectors of positive and negative helicity gluons are respectively

€ . = &Lua et = Ma)\d, (4.2.2)

aa [)\7/7] aa <H7)‘>

where p and g are fixed reference spinors.

Consider a tree level graviton scattering amplitude A(1,2,...,n). The ampli-
tude is invariant under any permutations of the gravitons because there is no color
ordering.

To write down the recursion relations, we single out two gravitons. Without
loss of generality, we call these gravitons ¢ and j. Define the shifted momenta p;(2)

and p;(z), where z is a complex parameter, to be

pi(2) = M4 28,)  pi(2) = (A — 2h) N (4.2.3)

Note that p;(z) and p;(z) are on-shell for all z and that p;(z) + p;(2) = p; + p;.

Hence, the following function

A(z) = A(p1, ..., pi(2),...,pj(2),...,n) (4.2.4)

is a physical on-shell scattering amplitude for all values of z.
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Consider the partitions of the gravitons (1,2,...,4,...,j,...,n) =Z U J into
two groups such that ¢ € 7 and j € J. Then the recursion relation for a tree-level

graviton amplitude is

A = 3N AT -PEC). ) g ART P ) ). (a2
7,J h z

where
Pr(z) = Z pr + pi(2)
ke k#i
Pz

2T = e

(i Pz|j]°

The sum in (4.2.5)) is over the partitions of gravitons and over the helicities of the

(4.2.6)

intermediate gravitons. The physical amplitude is obtained by taking z in equation
(4.2.5) to be zero
A(1,2,...,n) = A(0). (4.2.7)

We will give evidence below that the recursion relation is valid for gravitons

and j of helicity (+,+),(—, —) and (—, +) respectively.

Fig. 25: This is a schematic representation of the recursion relations
(4.2.5). The thick lines represent the reference gravitons. The sum here
is over all partitions of the gravitons into two groups with at least two
gravitons on each subamplitude and over the two choices of the helicity of
the internal graviton.

4.3 Explicit Examples

In this section, we compute all tree-level amplitudes up to six gravitons to
illustrate the use of the recursion relations (4.2.5).
Consider first the four-graviton MHV amplitude A(17,27,3%,47). The ampli-

tude is invariant under arbitrary permutations of external gravitons so the order
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of gravitons does not matter. Hence, this is the only independent four graviton
amplitude. In contrast, in gauge theory, there are two independent amplitudes
Ayp(17,27,37,47) and Ay (17,37,27,4T) because the Yang-Mills scattering

amplitudes are color ordered.

@ - RO .-

3t 4+ 2 4+
Fig. 26: Two configurations contributing to the four graviton amplitude

A(17,27,3%,4%). Notice that the diagrams are related by the interchange
2 «— 3.

We single out gravitons 1~ and 4+. Then, there are two possible configurations
contributing to the recursion relations (4.2.5), see fig. 26. We refer to the configu-
ration from fig. 2(a) as (2,1]4,3) and from fig. 2(b) as (3,1[4,3). To evaluate the

diagrams we use the known form of three graviton scattering amplitudes

o 12)6 _ [12]6
A, 3 = U A1t 2F = 4.3.1
The sum of the two contributions from fig. 2 is
572412 819412
A(17,27,37,47) = (12)°[34] - (12)"[24] (4.3.2)

[12](23)2(14)2 ~ (13)3[13](23)2(14)2"

A short calculation shows that (4.3.2) equals to the known result [14] obtained from
KLT relations

(12)°[12]
(12)(13)(14)(23)(24)(34)*"

A(17,27,37,47) = (4.3.3)

We picked the reference gravitons to have opposite helicity because this leads
to most compact expressions for graviton scattering amplitudes. We could have
chosen reference gravitons of the same helicity, ie. 1~ and 2. This leads to a
longer expression because there are more diagrams contributing to the scattering

amplitude. In the rest of the chapter, we will always choose reference gravitons of
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opposite helicity. The actual choice of reference gravitons does not matter, because
the amplitude is invariant under permutations that preserve the sets of positive and
negative helicity gravitons. All choices lead to the same answer up to relabelling of
the gravitons.
The next amplitude to consider is the five graviton MHV amplitude A(17,27,3%, 4% 57).
Just as in the four graviton example, this is the only independent five graviton am-
plitude. All other five graviton amplitudes are related to it by permutation and/or
conjugation symmetry.
The amplitude has contribution from three diagrams (1, 4, §]§, 5), (1,5, §\§, 4), (4,5, §\§, 1)

These contributions give the following three terms

) (12)7 1435 [15][34] 12 13] 5]
a0 235 = et (5068 el (e )
(4.34)

This expression agrees with the BGK result [14]

7 ([12](23)[34](41) — (12)[23](34)[41])

A(17,27,37,47,57) = (12)7 (13)(14) (15)(23) (24) (25) (34) (35) (45) "

(4.3.5)

At six gravitons, there are two independent scattering amplitudes, the MHV
amplitude A(17,27,3", 47 5% 6™) and the first non-MHV amplitude A(17,27,37,47,57 67
The MHV amplitude A(17,27,3%,4% 5% 6%) has contribution from four con-
figurations, (4,3[2,1,5,6),(5,3[2,1,4,6),(6,3[2,1,4,5) and (1,3|2,4,5,6). Notice
that the first three diagrams are related by interchange of 4,5, 6 gravitons, so there
are only two diagrams to compute.

The first configuration (4,§|§, 1,5,6) evaluates to

(2[3 + 4[5](4]2 + 3[1](51) — (12)p3s,(45)[51]

Dr = (02) B 551 (16) (287 (25) (26) (34) (45) (46) (56) (4.3.6)
The last configuration (1,§|§, 4,5,6) gives
o8 (14)[45](52)p3as — (45) (2|1 + 3|4](1]2 + 3|5]
De = (2 3] e 1y (15) (16) (23)2(24) (25) (26) (45) (46) (56) (4.3.7)
Adding all four contributions, we get
A(17,27,3%,4%,5%,6%) = Dy + Dy(4 < 5) + D1(4 < 6) + Ds. (4.3.8)

(4.3.8) agrees with the known result for the six graviton MHV amplitude.
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The non-MHV amplitude A(17,27,37,47,5% 6™) has contribution from six
classes of diagrams Dy = (2,3[4,5,6,1) + (1 < 2),Dy = (1,6,3[4,2,5) + (1 <
2)+(5 < 6)+(1 < 2,5 < 6), D3 = (2,5,6,3[4,1)+(1 <> 2), Dy = D} ", Dy = D'
and Dg = (5, 6,§]Z, 1,2). The ’conjugate flip’ D' exchanges the spinor products
() < [] and the labels i < 7 — i.

The first class of diagrams D; : (2,3[4,5,6,1) + (1 < 2) evaluates to
(23)(1|2 + 3[4]7 ((1]2 + 3|4](5]3 + 4]2][51] + [12][45](51)p3s,)
(15)(16)[23][34]>(56)p35, (1|3 + 4[2](5[3 + 4|2)(5|2 + 3[4] (6|3 + 4|2](6|2 + 3|4]

+ (1 < 2).

Dy =

(4.3.9)
The second group, Dy : (1, 6,§\Z, 2,5) + permutations, gives
(13)7(25)[45]7[16]
(16)(24][25)(36)p345 (1|2 + 5[4](6/2 + 5[4] (3|1 + 6|5](3]1 + 6/2]  (4.3.10)
+(1e=2)+(B5<6)+(1<2506).

Dy =-—

The third class Ds : (2,5,6,3[4,1) + (1 < 2) is

D — (13)8[14](56]" ((23)(56) [62](1]3 + 4|5] + (35)[56](62) (13 + 4]2])

(14)[25][26](34)2p25,(1]3 + 4|2](1]3 + 4]5](1]3 + 4|6](3]1 + 4]2](3|1 + 4]5](3|1 + 4/6]
+ (1 < 2).

(4.3.11)
The fourth and fifth group are related by conjugate flip to the third and first
group respectively. The last group to evaluate consists of a single diagram
D : (5,6,3[4,1,2)

b (12)[56) (31 + 24)°
o= [21][14][24]<35><36><56>p§24<5|1+2|4]<6|1+2y4]<3|5+6|1]<3|5+6(\2]' |
4.3.12

Adding the pieces together, the six graviton non-MHV amplitude reads
A1~ 92— 3~ + et pby —flip —flip
(17,27,37,47,57,6")=D1+ D] "+ Do+ D3+ D5~ + Dg. (4.3.13)

4.4 Derivation of the Recursion Relations

The derivation of the tree-level recursion relations (4.2.5) goes, with few mod-
ifications, along the same lines as the derivation of the tree-level recursion relations

for scattering amplitudes of gluons [16], so we will be brief.
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We start with the scattering amplitude A(z) defined at shifted momenta, see
(4.2.4) and (4.2.3). A(2) is a rational function of z because the z dependence enters
the scattering amplitude only via the shifts Xz — Xz + ZXj and \; — Aj — 2\
and because the original tree-level scattering amplitude is a rational function of the
spinors.

Actually, for generic momenta, A(z) has only single poles in z. These come
from the singularities of the propagators in Feynman diagrams. To see this, recall
that for tree level amplitudes, the momentum through a propagator is always a
sum of momenta of external particles Pr = p;, + pi, + ... + p;,, where 7 is a
group of not necessarily adjacent gravitons. At nonzero z, the momentum becomes
Pr(z) = pi,(2) + pi,(2) + ... + pi,(2). Here, pr(2) is independent of z for k # i,
and p;(2) +p;(2) is independent of z. Hence, Pz(z) is independent of z if both ¢ and
J are in Z or if neither of them is in Z. In the remaining case, one of ¢ and j is in
the group Z and the other is not. Without loss of generality, we take i € Z. Then
Pr(z) = Pz + zM\i)\; and P2(z) = P2 — z(i| Pr|j]. Clearly, the propagator 1/Pz(z)?
has a simple pole for

P?
(il Prlj]

For generic momenta, P7’s are distinct for distinct groups Z, hence the z7’s are

(4.4.1)

distinct. So all singularities of A(z) are simple poles.

To continue the argument, we need to assume that A(z) vanishes as z — oo.
In the next section we will argue that the tree level graviton amplitudes obey this
criterium. A rational function A(z) that has only simple poles and vanishes at

infinity can be expressed as

Az) =Y ResA(zr) (4.4.2)

7 zZ — ZT
where ResA(zz) are the residues of A(z) at the simple poles zz. The physical scat-

tering amplitude is simply A(0)

T

A== Res A(zz). (4.4.3)
A

It follows from the above discussion that the sum is over Z such that 7 is in Z while

J is not.
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The residue Res A(zz) has contribution from Feynman diagrams which contain
the propagator 1/PZ. The propagator divides the tree diagram into “left” part
containing gravitons in Z and “right” part containing gravitonsin J = (1,2,...,n)—
7. For z — z7z, the propagator with momentum Pz goes on-shell and the left and
right part of the diagram approach tree-level diagrams for on-shell amplitudes. The

contribution of these diagrams to the pole is

; Ag(zf)%flﬁh(zz)» (4.4.4)

where the sum is over the helicity h = + of the intermediate graviton. This gives

the recursion relation (4.2.5).

4.5 Large z Behavior of Gravity Amplitudes

To complete the proof, it remains to show that the amplitude A(z) goes to
zero as z approaches infinity. We were able to obtain only partial results in this

direction, which we now discuss.

4.5.1 Vanishing of the MHV Amplitudes

Let us firstly consider the large z behavior of the n graviton MHV amplitude
[14]

[23](n|Pa 3|4](n|Pa2,4|5] ... (n|Psp_a|n — 1]

— — o+ n) = 8
A7, 27,3%,...,n) =(12) {<12)<23>...(n—2,n—1><n—1,1)(1n>2<2n><3n)...<n—1,n>

+ permutations of (3,4,...,n — 1)},

(4.5.1)
where P; ; = f;:i pi. The formula is valid for n > 5. It follows from supersymmet-
ric Ward identities that the expression in the bracket is totally symmetric, although
this is not manifest.

The terms in the curly brackets are completely symmetric so they contribute
the same power of z independently of ¢ and j. To find the contribution of the terms
in the brackets, we pick a convenient value (i, j) = (1,n) for the reference gravitons.
Recall that \;(z) and Aj(%) are linear in z while \; and Xj do not depend on z. It

n—4

follows that the numerator of each term in the brackets (4.5.1) goes like z and

the denominator gives a factor of 2"~2. Hence, the terms in the brackets give a
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factor of 1/22. This factor is the same for all choices of reference momenta by the
complete symmetry of the terms in the brackets. For the helicity configurations
(hiyhj) = (=, 4), (+,+) and (—, —), the factor (12)® does not contribute, so the
amplitude vanishes at infinity as Ayrpgy ~ 1/22.

A recent paper [67] relates the MHV amplitudes to current correlators on curves
in twistor space. This raises the possibility of a twistor string description of per-
turbative AN/ = 8 supergravity [11]. In the gauge theory case, the twistor string
leads to an MHV diagrams construction for the tree level scattering amplitudes [1].
One computes the tree-level amplitudes from tree-level Feynman diagrams in which
the vertices are MHV amplitudes, continued off-shell in a suitable manner, and the
propagators are ordinary Feynman propagators.

The vanishing of the gluon scattering amplitude A(z) at infinity follows very
easily from the vanishing of the MHV diagrams via the MHV diagrams construction
[16]. We would like to speculate, that it might be possible to prove the vanishing
of graviton scattering amplitude A(z) along the same lines using the hypothetical

MHYV diagrams construction.

4.5.2 Analysis of the Feynman Diagrams

In this section we study the large z behavior of Feynman diagrams contributing
to A(z) following [16].

Recall that any Feynman diagram contributing to A(z) is linear in the polar-
ization tensors €, ,; of the external gravitons. The polarization tensors of all but
the i*" and j** graviton are independent of z. To find the z dependence of the polar-
ization tensors of the reference gravitons, recall that \;(z), Aj (%) are linear in 2z and
/\i,j\j do not depend on z. It follows from (4.2.1) and (4.2.2) that the polarization
tensors of the reference gravitons give a factor of 22 depending on their helicities.
Hence, the polarization tensors can suppress A(z) by at most a factor of 24,

The remaining pieces in Feynman diagrams are constructed from vertices and
propagators that connect them. Perturbative gravity has infinite number of vertices

coming from the expansion of the Einstein-Hilbert Lagrangian

L=—-V=gR (4.5.2)

around the flat vacuum g,,, = 1, + h,,. The graviton vertices have two powers of

momenta coming from the two derivatives in the Ricci scalar.
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The z dependence in a tree level diagram ”flows” along a unique path of Feyn-
man propagators from the i*" to the j* graviton. In a path composed of k prop-
agators, there are k + 1 vertices. Each propagator contributes a factor of 1/z and
each vertex contributes a factor of z2. Altogether, the propagators and vertices give
a factor of zF+2.

The product of polarization tensors vanishes at best as 1/z%, so the contribution

k=2 where k

of individual Feynman diagrams to A(z) seems to grow at infinity as z
is the number of propagators from the i*" to the j** graviton. Clearly, in a generic
Feynman diagram, this number grows with the number of external gravitons. So
this analysis suggests that A(z) grows at infinity with a power of z that grows as
we increase the number of external gravitons.

This is in contrast to the above analysis of MHV amplitude that vanishes at in-
finity as 1/22. The vanishing of A(z) at infinity depends on unexpected cancellation

between Feynman diagrams.

4.5.8 KLT Relations and the Vanishing of Gluon Amplitudes

A different line of attack is to express the graviton scattering amplitudes via the
KLT relations in terms of the gluon scattering amplitudes. One then infers behavior
of A(z) at infinity from the known behavior [16] of the gauge theory amplitudes. The
KLT relations have been used in past to show that N’ = 8 supergravity amplitudes
[68/69] have better than expected [70,71] ultraviolet behavior so we expect that
the KLT relations give us a better bound on A(z) than the analysis of Feynman
diagrams. Indeed, we will use them to prove the vanishing of A(z) at infinity up to
six gravitons and up to eight gravitons in the appendix 4.A.

As discussed in previous chapter, the tree level KLT relations up to six gravitons

are

A(1,2,3) = A(1,2,3)?

A(1,2,3,4) = 512.A(1,2,3,4).A(1,2,4, 3)

A(1,2,3,4,5) = s12534A(1,2,3,4,5)A(2,1,4,3,5) + s13504.4(1,3,2,4,5).A(3,1,4,2,5)
A(1,2,3,4,5,6) = s12545.A4(1,2,3,4,5,6){s35.4(2,1,5,3,4,6) + (s34 + s35)4(2,1,5,4,3,6) }

+ permutations of (234),
(4.5.3)
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where s;; = (pi +pj)?. A(1,2,...,n) is the n graviton scattering amplitude and
A(i1,i9,...,1y,) is the color ordered gauge theory amplitude. The KLT relations for
any number of gravitons are written down in Appendix A of [72] and schematically
in the appendix 4.A.

The KLT relations express an n graviton scattering amplitude as a sum of
products of two gluon scattering amplitudes and n — 3 s;; invariants. The gluon
scattering amplitudes vanish at infinity as 1/z or faster [16]. Hence, KLT relations
imply the vanishing at infinity of the graviton amplitudes as long as the products
of s;;’s in (4.5.3) grow at most linearly with z.

For n < 6 gravitons, a quick glance at (4.5.3) shows that this is the case. We
rename the gravitons so that the reference gravitons are 1 and n. The products of
si;’s in (4.5.3) are independent of p,, and linear in p;. Hence they give one power of
z because p1(z) and p,(z) are linear in z and py for k # 1,n is independent of z. It
follows that A(z) vanishes as 1/z or faster as z — oo for less than seven gravitons.

For seven or more gravitons, an analysis of the general KLT relations shows
that on the right hand side of KL T relations, there are always some products of n—3
s;5’s that have more than one power of the reference momenta. The corresponding
terms in the KLT relations are not expected to vanish at infinity. Hence, the
function A(z) does not vanish at infinity unless there is an unexpected cancellation
between different terms in the KLT relations.

In the appendix we present a more careful study of KLT relations that reveals
that A(z) vanishes for n < 8.

4.5.4 Proof of Vanishing of A(z) for NMHV Amplitudes

NMHV amplitudes are those with three negative helicity gravitons and any
number of plus helicity gravitons, A(py ,ps ,P3 Py, ...,pt). Consider the following
function of z, A,(py (2),py, 3,04 (2),...,p}(2)), where

p(z) =\ <X1 +2) Xi> o pe(2) = Ok — 2A) M (4.5.4)
1=4

for k = 4,...,n. The subscript a in A,(z) stands for auxiliary. The idea is to derive
an new set of recursion relations for A,(z) which we use later on to prove that A(z)

vanishes at infinity.
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In order to get the auxiliary recursion relations we start by proving from Feyn-
man diagrams that A,(z) vanishes as z — oo. Note that (n—2) polarization tensors
depend on z and with the choice made in (4.5.4) all of them vanish as 1/z2. The
most dangerous Feynman diagram is the one with the largest number of vertices.
Such a diagram must only have cubic vertices. For n gravitons there are n — 2 ver-
tices. Each vertex contributes a factor of z2. Altogether, the polarization tensors
contribute a factor of 1/2%("=2) and the vertices contribute a factor of 22("~2) which
gives a constant for large z. Now we have to consider propagators. Each propagator
that depends on z goes like 1/z. Therefore, all we need is that in every diagram
at least one propagator depends on z. From (4.5.4)) it is easy to see that the only
propagator that does not depend on z is 1/(p2 + p3)?. A diagram with only this
propagator has exactly two vertices and therefore our proof is complete for n > 4.

The shift in (4.5.4) can be thought of as iterating the shift introduced in [16].*
Now we can follow the same steps as in section 4 to derive recursion relations based
on the pole structure of A,(z).

We find

Au(2) = % Az(er, P};(zz))%@AJ(@, _ P (), (4.5.5)
I h 7

where the sum is over all possible sets of two or more gravitons Z # {2, 3}, such
that the graviton 1 is not in Z. Here, J is the complement of 7.

The main advantage of choosing the same negative helicity graviton in (4.5.4)
to pair up with all plus helicity gravitons is that P2(z) is a linear function of z.
Therefore, the location of the poles z7 is easily computed to be of the form

p?
27 = . (4.5.6)
>_; (1 Prlj]

where the sum in j runs over all gravitons in Z that depend on z.

Setting z to zero in (4.5.5) gives us a new representation of the original ampli-

tude, i.e.,

- 1 _
A(py P2 3 D1 - D) = ZZAL(ZLP}L(ZI))ﬁAR(ZI» —P;"(21)). (4.5.7)
T h 1

10 This iteration procedure was used recently in [49] to find recursion relations for all

plus one-loop amplitudes of gluons.
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This is a new set of recursion relations for NMHV amplitudes. However, the
expressions obtained from (4.5.7) are naturally more complicated than the ones
obtained from the one introduced in section 2. Instead of computing amplitudes
with (4.5.7), the idea is to use it to prove that A(z) of section 2 vanishes for large
z.

Consider A(z) constructed from (4.5.7) by defining

p1(z) = )\1(}1 + Z}v\4), pa(z) = (Ag — 2A1)\g. (4.5.8)

There are two different kind of terms in (4.5.7). One class consists of those
where p; and p4 are on the same side. This implies that neither Pr nor zz depends
on z. Therefore, the z dependence is confined into one of the amplitudes, say Ar.
But this is an amplitude with less gravitons and by induction we assume that it
vanishes for large z.

The second class of terms is more subtle. Since pi(z) and p4(z) are on different
sides, both Py and zz7 become functions of z.

It turns out that z7 is a linear function of z. More explicitly**,

5 (Z) _ P1'2 +Z<1|PI|4]
D SR T]

(4.5.9)

Recall that Pr denotes Pr(0).

Now we are left with A7 and A7 in (4.5.7), one with n; + 1 and the other with
ng + 1 gravitons. Note that n = n; + ny. In a Feynman diagram expansion of each
of them we can single out the most dangerous diagrams and multiply them to get
the most dangerous terms in (4.5.7). Each diagram contributes a factor of z2("i—1)

n—2)'

from the vertices. Therefore we find z2( From the polarization tensors we find

z72(n=2) this comes from the z dependence of zz. The polarization tensors for the
internal gluons give a factor of

621/6)_\; = dupduk + d,u)\dup - d;u/dp)\, (4510)

h

where " "
dy = Ny — W (4.5.11)

1 Had we chosen a different negative helicity graviton in (4.5.8), we would have found

that zz becomes a rational function of z.
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Here, k = Pz(z) is the momentum of the internal propagator and n.q = pafls is
an auxiliary vector used in the definition (4.2.2). ng, is taken no collinear with k.
For large z, the tensor d,, does not depend on z so the polarization tensors of the
internal gravitons do not contribute a factor of z.

Finally, the propagator in (4.5.7) is 1/P%(z), which vanishes as 1/z. Therefore,
the most dangerous term in A(z) vanishes as 1/z.

This completes the proof of the recursion relations of section 2 for next-to-MHV
amplitudes of gravitons.

While we are not able to prove that A(z) vanishes at infinity for general ampli-
tudes with more than eight gravitons, we showed above that A(z) vanishes at infinity
for MHV and NMHV amplitudes with arbitrary number of gravitons. Hence, the
recursion relations are valid for all MHV and NMHV amplitudes contrary to the
expectations from KLT relations. This raises the hope, that the recursion relations
are valid for other scattering amplitudes of gravitons as well. In particular, one
might expect that by considering more general auxiliary recursion relations one

could prove that A(z) vanishes at infinity for general gravity amplitudes.

4.A Proof of Vanishing of A(z) up to Eight Gravitons.

In this appendix we provide further evidence for validity of the recursion rela-
tions (4.2.5). We show that the recursion relations hold for any graviton amplitude
up to eight gravitons. Recall that we need to prove that the auxiliary function A(z)
(4.2.4) vanishes at infinity. We demonstrate this using the KLT relations.

The basic fact we will use is that the function A(z) for a gluon scattering
amplitude goes like 1/22 at infinity for non-adjacent marked gluons. Hence, picking
the marked gluons so that they are non-adjacent in all terms in KLT relations, the
product of two Yang-Mills amplitudes in each term goes like 1/24.

Hence, A(z) vanishes at infinity as long as the products of s;;’s in the KLT
relations do not contribute more than a factor of z3. An inspection of the KLT
relations will show that this holds at least up to eight gravitons which will complete
the proof.

Let us begin by showing that the gluon amplitudes go as 1/2% as z — oo for

non-adjacent marked gluons with helicities (h;, h;) = (+,+),(—, —), (—,+). The
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argument uses MHV rules and is a simple generalization of the argument given in
[16], which showed that the amplitudes vanish as 1/z. We assume that h; = +. For
h; = — one makes the same argument using the opposite helicity MHV rules.

Firstly, consider the n gluon MHV amplitude

B (r,s)*
Ik k+ 1)

Recall that A;(z) = A\j — zA; is linear in z and A;(z) = A; is independent of z. For

A(r=,s7) (4.A.1)

h; =+, A\j does not occur in the numerator. In the denominator it appears in the
two factors (A;_1, ;) and (A\j, Aj41), both of which are linear in z for ¢ not adjacent
to j. Hence for h; = + and |i —j| > 1, the MHV amplitude goes like 1/22 at infinity.

For general amplitudes, we use MHV diagram constructions. In this construc-
tion, the amplitudes are built from Feynman vertices which are suitable off-shell
continuations of the MHV amplitudes. The vertices are connected with ordinary
scalar propagators.

The Feynman vertices are the MHV amplitudes (4.A.1), where we take \* =
Py, for an off-shell momentum P. Here 7 is an arbitrary positive helicity spinor.
The physical amplitude, which is a sum of MHV diagrams, is independent of the
choice of n [1].

The internal momentum P can depend on z only through a shift by the null
vector z/\ixj. Taking n = Xj, A = Padea becomes independent of z. Hence, the
internal lines do not introduce additional z dependence into the MHV vertices. The
MHYV vertices give altogether a factor of 1/2? from the two powers of \;(z) in the
denominator of one of the vertices. The propagators 1/k? are either independent
of z or contribute a factor of 1/z. So, a general gluon amplitude goes like 1/2?% at
infinity for non-adjacent marked gluons.

The KLT relations [72] for n gravitons are

A(1,2,...,n) :<A(1,2,...,n) S FLinyee i) =Ll 0)

perm
><A(il,...,ij,l,n—1,l1,...,lj/,n)>
+P(2,...,n—2),

(4.A.2)

where j = |n/2| — 1,5/ = |(n — 1)/2] — 1 and the permutations are (i1,...,%;) €
P(2,...,|n/2|) and (I1,...,lj) € P(|n/2| +1,...,n — 2). The exact form of the
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functions f and f does not concern us here. The only property we need is that f
and f are homogeneous polynomials of degree j and j’ in the Lorentz invariants
Pm - Pn With m,n € (1,41,...,4;) or m,n € (l1,...,l;,n — 1) respectively.
Consider A(z) with marked gravitons n and k where k is any label from the
set (2,...,n —2). In the KLT relations (4.A.2), the gluon amplitude A(1,2,...,n)
contributes a factor of 1/2% since k and n are non-adjacent. For k € (iy,...,4;)
the second gluon amplitude gives a factor of 1/2% and f gives at most a factor of
27, j = |n/2]—1. Hence, the terms with k € (i1,...,i;) are bounded at infinity by 2“
where a = |[n/2] —5. For k € (I1,...,l;s) the second gluon amplitude gives a factor
of 1/z because k and n might be adjacent. f contributes z7',j’ = |(n —1)/2] — 1
so the graviton amplitude is bounded by 2%,/ = |(n — 1)/2] — 4. The exponents
a, o’ are negative for n < 8, which completes the proof of the recursion relations

up to eight gravitons.



5. Chiral Rings and Vacua of SUSY Gauge Theories

5.1 Introduction

Recently there has been a progress in understanding the dynamics of a wide
class of supersymmetric field theories. Embedding of the gauge theories in string
theory as low energy effective field theories of D-branes wrapped on cycles in Calabi-
Yau threefolds led to the conjecture of Dijkgraaf and Vafa that holomorphic data
of the field theories can be calculated from an auxiliary matrix model. The bosonic
potential of the matrix model is the superpotential of the gauge theory. Identifying
the generating function for the glueball moments with the matrix model resolvent,
the effective superpotential of the gauge theory gets related to the planar matrix
model free energy. For the U(N) gauge theory, the nonperturbative part of the
superpotential comes from the measure of the matrix model and is given by a sum of
Veneziano-Yankielowicz superpotentials of the U(V;) subgroups. The perturbative
part is given by a sum of planar diagrams of the matrix model. Cachazo, Douglas,
Seiberg and Witten gave a field theory derivation of the results. The derivation
rests on the analysis of the anomalies and of the ring of chiral operators of the field
theory.

It has been known for over a decade that the chiral ring of two dimensional
field theories determines the structure of its supersymmetric vacua. The chiral
operators obey relations that hold in every supersymmetric vacuum of the theory.
It has been shown in [18] for the N/ = 2 superconformal field theories and in [19]
for the C PN ~! supersymmetric sigma model that there is an exact correspondence
between the solutions to the chiral ring relations and the supersymmetric vacua of
the theory.

The authors of [20] showed that this continues to hold in four dimensions for the

N =1 pure U(N) gauge theory. In this article we will extend this correspondence

100
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to N =1 U(N) gauge theories with matter field ® in the adjoint representation.
The adjoint field has superpotential

n

W (@) = kg—Lﬁ or+1, (5.1.1)
k=0

We can view this theory as a deformation of the N/ = 2 gauge theory by the
superpotential (5.1.1) for the scalar ® of the N/ = 2 vector superfield.

We will show that solving the chiral ring equations is equivalent to factorization
of the N/ = 2 curve. The factorization was originally derived by a strong coupling

analysis of the gauge theory [73] based on monopole condensation.

Summary of Results

In section 5.2, we review the general properties of chiral rings, their relation
to supersymmetric vacua and discuss the chiral ring relations both on the classical
and quantum level. In section 5.3, we solve the chiral ring relations and demon-
strate exact correspondence between the supersymmetric vacua and the roots of the
chiral ring relations. In section 5.4, we use the chiral ring relations to give a brief
discussion of the intersection of the vacua. In section 5.5, we study the chiral ring
relations obeyed by the gaugino condensate and in section 5.6 we treat examples

that illustrate the results from previous sections.

5.2 The Chiral Ring

Chiral operators are the operators that are annihilated by the anti-chiral su-
persymmetry generators Q. Instead of chiral operators we will consider the set of
equivalence classes of chiral operators where two operators are in the same equiva-
lence class if they differ by a term of the form {Q,,...}. This set is a ring because
the product of two equivalence classes of chiral operators is another equivalence
class. The expectation value of a chiral operator in a supersymmetric vacuum
depends only on its equivalence class because the vacuum is annihilated by the su-
persymmetry generator Q. It follows from {Q., Qs} = 20" . P, that momentum,
which is the generator of translations, annihilates chiral operators. Hence, chiral
operators are independent of position. The chiral ring keeps only the information

about the zero modes. In a product of chiral operators, we can put the operators
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far apart without changing the value of the product. Then the product factorizes
into individual operators by cluster decomposition principle. Hence, we need to
consider only the single trace operators. To classify the single trace operators we
notice the identity [20]

(@, Dus O} = [Wa, O} (5.2.1)

which holds for any adjoint valued chiral superfield. Substituting ® for O, we see
that & commutes with W,
[, Wa] =0, (5.2.2)

so it suffices to consider only operators where all ®’s are grouped together. Taking
O =W, in (5.2.1) we learn that W,’s anticommute

(W, W5} = 0. (5.2.3)

It follows that the single trace operators with three or more gaugino operators are
descendants because the fermionic index « takes two values. The single trace chiral

operators are

(e Tr (I)k,
1
Wap = - Tr O W, (5.2.4)
~1
= Tr ®FW, W,
"k 3272 8

We assemble these operators into the resolvents

1 1k
T(z)zTrZ_(I):Zukz )

k>0
1 r —1—k
wa(z) = ETI‘ Waz_—q) = ];)wa,kz ’ (525)
R(z)=— ! Tr W, W L _ Zmz_l_k.
3272 e

The single trace operators uy,wq,; and r; generate the chiral ring. Formally,
the chiral ring is a polynomial ring over the field of complex number with the single

trace operators as indeterminates

C = C[uk,wa,k,rk]. (526)
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Our interest is in the relations that the chiral operators satisfy. These relations are
operator statements that hold in any supersymmetric vacuum. Taking an expecta-
tion value of a chiral ring relation in a given vacuum and using the fact that the
expectation value of a product of chiral operators factorizes we get a relation for
the expectation values of the chiral operators in that particular vacuum. By solving
the chiral ring we mean finding the solutions to these chiral ring equations. The
vacuum expectation values of uy,wq k,7r in a supersymmetric vacuum solve the
chiral ring relations by definition. In principle, the chiral ring relations could have
additional “unphysical” solutions for uy,wq, i, which do not correspond to any
supersymmetric vacuum. We will show that this is not the case. The roots of the
chiral ring relations are in exact correspondence with the supersymmetric vacua of
the gauge theory.

We can make the correspondence more precise. We introduce further algebraic
construct, the coordinate chiral ring, which is the quotient of the chiral ring by the
ideal generated by the chiral ring relations. Two chiral operators are considered
to be the same elements of the coordinate chiral ring if their difference is a chiral
ring relation. Hence, the coordinate chiral ring encodes the information about chiral
operators that is invariant under addition of chiral ring relations. There is a natural
correspondence between the roots of the chiral ring relations and the elements of
the coordinate chiral ring. For semisimple coordinate chiral ring, all the roots are
single and isolated, the only information that the coordinate ring encodes is the
value of the operators at the solutions of the chiral ring relations. The solutions
correspond to idempotent elements of the coordinate chiral ring. An idempotent
is an operator that squares to itself. The idempotent associated to a particular
vacuum takes expectation value one in that vacuum and vanishes in other vacua.
In the general case, the roots can be multiple or have massless fermionic directions
for the U(1) photinos. Then a root corresponds to an ideal, called local ring, of the
coordinate ring generated by the idempotent element above. The local ring is the
set of elements obtained by multiplying the idempotent by all chiral operators. The
dimension of the local ring equals the multiplicity of the corresponding vacuum. The
basis of the local ring consists of the idempotent together with nilpotent elements.
The coordinate chiral ring is a direct sum of the local rings. Any operator can be

expanded as
O = Z o;11; + n; (527)
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where II; are the idempotents corresponding to i** vacuum and n; is the nilpotent
part of O in the i*" local ring. The nilpotent elements correspond to different in-
tersecting vacua or to vacuum with different value of the nilpotent U(1) photinos
Tr W, ®*. The expectation value of an operator does not depend on these parame-
ters hence it does not depend on the nilpotent part n;. The expectation value of O
in the i*" group of vacua is o;.

Hence, each supersymmetric vacuum corresponds to a solution of the chiral
ring relations which naturally corresponds to local ring which is generated by an
idempotent element together with its nilpotents. This allows us to calculate the
expectation values of the chiral operators from the knowledge of the idempotents.

A simple example that illustrates the above discussion is the polynomial ring
in one indeterminate C[x]. This is the case of U(1) gauge theory. z is the 1 x 1
matrix ® in the adjoint representation of U(1) which is trivial. The n vacua of the
theory are at the critical points of the superpotential W’ (®) = [[;_,(® —\;), where
we assume \; # A; for i # j. Hence, the indeterminate = satisfies the polynomial

relation of n'® degree W'(x) = 0. The coordinate chiral ring

Clz]/(W'(z) = 0) (5.2.8)
has dimension n. The n distinguished idempotents are

y(z) = [ [(= = )/ TTv = M) (5.2.9)

J#i J#i
Clearly II; takes value one at \; and vanishes at A; for j # ¢. Any polynomial of
degree less than n can be expressed as a linear combination of II(x). Polynomials
of a higher degree can be reduced to polynomials of degree less than n using the
relation W' (x) = 0. This completes the proof that the idempotents IT;(z) form an
n dimensional basis of the coordinate chiral ring. The expansion coefficients of a
polynomial

S(z) = silli(x) (5.2.10)

in the idempotents are the values that the polynomial takes at the n roots of W' (x)
S) =) siTlk(Ni) = s (5.2.11)
k

in agreement with our general discussion.
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To illustrate the correspondence when the coordinate ring has nilpotent el-
ements, we consider the polynomial ring in one indeterminate x which satisfies
2™ = 0. This is the case of n intersecting vacua of the field ®. The coordinate chiral
ring

Cla]/(z" = 0) (5.2.12)

is an n dimensional complex vector space. The basis consists of the idempotent
1 and of the nilpotents z,z2,...,2"!. Any polynomial can be expanded in this
basis modulo the relation 2” = 0 which eliminates the powers of z* for k > n.
The value of the polynomial at the root x = 0 equals the zeroth order coefficient,
which is coefficient the idempotent 1 in the expansion of the polynomial in terms
of the above basis. Hence, to find the expectation value of a chiral operator we
expand it in the basis of the coordinate chiral ring and read off the coefficient at
the idempotent element. Chiral operators have the same expectation value in each
of the intersecting vacua. The n intersecting vacua correspond to the multiple
root which in turn corresponds to the n dimensional coordinate chiral ring that is
spanned by the idempotent and nilpotent elements.

We can view the quantum relations as deformations of the classical relations.
The classical relations can receive both perturbative and nonperturbative correc-
tions. Quantum generalization of the classical equations of motion are the pertur-
bative Ward identities coming from the one-loop Konishi anomaly. The Tr ®* with
k > N can be expressed as a polynomial in uq,...,uy because an N x N matrix is
specified by the IV independent gauge invariant operators uq,...,uy. The classical

relations for Tr ®F are deformed nonperturbatively by instanton corrections.

5.2.1 Perturbative Corrections

In this subsection we will find the classical chiral ring relations that follow from
equations of motion and review the anomaly that corrects these relations. We start

by multiplying the classical equation of motion for @,

—G—

0sW(®) = Dy D @ (5.2.13)
with A/(z — ®) where A =1, ﬁWa or —ﬁWaW‘l and take the trace
/
LA (5.2.14)

z—®
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We used the fact that Dy is conjugate to @, hence the right hand side of (5.2.14) can
be written as {Q,,, ...} and is a chiral ring descendant. To express these equations
in terms of the resolvents (5.2.5), we notice the following identity
wW'(® A W' (z) — W' (P
Tr A—((I)) = W'(2)Tr P —Tr A( (2) 3 (®))
c S “T (5.2.15)

, A
= W'(2)Tr po a(z).

The function a(z) is a polynomial in z of degree n — 1 because W'(z) — W/(®) is a
polynomial in z of degree n that vanishes when z equals to one of the eigenvalues

of ®. We define the polynomials

W (2) — W (®)

f(2) Tr W, W

3272 —d
1 W'(z) - W’'(®)
= W 5.2.16
Pa(2) 47rTr o P , ( )
o Wz) - W(®)
c(z) ="Tr P

and rewrite (5.2.14) with the help of (5.2.15) in the form

1
0=W'(2)R(2) + 1 /(2),
0= W' (2)wa(2) = pal2), (5.2.17)
0=W(2)T(z)— c(z).
To find the quantum corrections to (5.2.17) we recall that the classical equations
of motions are derived by varying ®. We will now review the anomaly in the

variation which corrects the above relations quantum mechanically. Varying ® by

a general holomorphic function ¢ = f(®, W,,) gives anomaly of the current
Jp=Tr eV f(®,W,) (5.2.18)

which generates the variation of ®. We find

_ oW (@)

DaDan =Tr f(P,W,) 5% + anomaly + D(...). (5.2.19)

The first term on right hand side is the classical variation. The anomaly comes

from one-loop diagrams involving ® and a single ® from f(®,W,). To find the
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generalized Konishi equations expressed in terms of the resolvents (5.2.5) we make

the variation

005 = f(O,Wa)ij = <Z 1—4<I>> (5.2.20)

Computing the anomaly and setting {Dyg, ...} terms to zero gives [20]

R¥(z) = W/(2)R(:) + /()
2R(2)wa(z) = W' (2)wa(z) — pal(z), (5.2.21)
2R(2)T(2) + wa (2)w®(2) = W'(2)T(2) — ¢(2).

On the right hand side of the anomaly equations are the classical equations of motion
(5.2.17) and on the left hand side are the perturbative corrections coming from the
one-loop Konishi anomaly. We can solve the anomaly equations (5.2.21) for the
resolvents R(z),wq(z) and T'(z) in terms of the superpotential and the auxiliary

polynomials

1
2
R(z) = 5 (W'(2) - VW) + (7))
Pa(?)
Wo (2
S e e

tCRHONE)
VIW2(2) + f(2)
Throughout most of the article we will neglect the quadratic term wg (2)w®(z) in

the relation for T'(z).

) (5.2.22)

T(z)=

5.2.2 Nonperturbative Corrections

The gauge invariant operators u; = Tr ®* obey relations coming from the fact
that ® is an N x N matrix. ® is determined up to a gauge transformation by
the independent gauge invariant operators Tr ®' with [ = 1,..., N. The operators
Tr ®* with k& > N can be expressed as polynomials in the first N traces. We will
find the classical formulas for Tr ®* and then we will show how they get modified
by nonperturbative instanton corrections.

® can be specified by the characteristic polynomial of N** degree

P(z) =det(z — ®) = [ [(z = X). (5.2.23)
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The roots of P(z) are the classical eigenvalues \; of ®. We refer the reader to
appendix 5.A for more details on P(z). To derive the relations for u, we write the

generating function 7'(z) in terms of eigenvalues of ®

1 AN
T(z)=T = 5.2.24
(2) g z—® ; z— N\ ( )

and notice that this is the same as P’(z)/P(z). Hence we have

_P(2)

T(2) Pla)”

(5.2.25)

Notice that the left hand side depends on all traces Tr ®* = w;, while the right
hand side depends only on ug,...,uy. Expanding (5.2.25) in powers of 1/z and

—k=1 we get an expression for u; from left hand

comparing the coefficients of the z
side as a polynomial in uq,...,uy from the right hand side. We give a few examples
of the resulting formulas in the appendix 5.A.

The operators

N
mp =Tr MO* =) " M;;\F (5.2.26)
=1

where M is an arbitrary /N x N matrix depend on 2N parameters, the IV eigenvalues
of ® and the N diagonal elements of M. Hence, mg,mq,...my_1 together with
U1, Us, ..., uy are independent variables that determine m; for £ > N. To find the

relations for my we make first order variation of (5.2.25) as &' = & + eM

M Py PaP() _ (Pu(d)
T e et e () (5:2:27)

The characteristic polynomial P,,(z) of degree N — 1 comes from the first variation
of P(z) in M
N
Pp(z) = —0Ocdet(z — © — eM)|e—o = »_ M [[(z = ). (5.2.28)
i=1 j#i

We integrate (5.2.27) to get

Tr = . (5.2.29)
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We fixed the constant of integration by requiring both sides of the equation to fall
off to zero for z going to infinity. The left hand side of (5.2.29) depends on my
while the right hand side depends only on mg,my,...,my_1 and uq,us,...,un.
Expanding (5.2.29) in 1/z and comparing the coefficients of 2=*~! term we find
formula for my as a polynomial in mg, m1,...,my_1 and uy,us,...,un from the
right hand side.

We find the classical relations for w,  and 7, by substituting ﬁWa and
— 35z Wa W for M in (5.2.29)

wa(2) = %((ZZ)) (5.2.30)
R(z) = };%((ZZ)) (5.2.31)

We have mentioned that the classical relations for Tr ®* with & > N receive
instanton corrections. We will determine the quantum modified relations by strong
coupling analysis. We consider the N/ = 1 theory as a deformation of the N = 2
theory by a superpotential for the adjoint scalar field [20/73]. We will closely follow
[20] but we will consider a vacuum with nonzero expectation value of the U(1)
photinos Tr W,®* which break the N’ = 2 supersymmetry to N' = 1 even before

we turn on the superpotential. The superpotential takes the form

W'(z) =gP(z) =g H(z —\) (5.2.32)

with all \; different. We consider the maximally Higgsed vacuum in which the
eigenvalues of ® to occupy the N different critical points of the superpotential. ®
breaks the U(N) gauge group down to U(1)". To find the resolvents (5.2.22)

R2) = 5 (9P() ~ VPP + 7))
- pa(2)
W (2) = JPP ) 1 1) (5.2.33)
N )
= Ui T 1o

we need to determine the auxiliary polynomials f(z),c(2), pa(2). The polynomial

¢(z) depends on the operators ug for k=1,...,N — 1

/ 2) — !/ N 2) — i
c(z) =Tr W ;_ 2/ () = gZ %i()\) = gP'(2). (5.2.34)
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The third equality follows from the special form of the superpotential (5.2.32). We
find f(z) by comparing the N' = 2 curve [20]

y? = P?(z) — 4NN (5.2.35)
with the matrix model curve
y2 = W"?2(2) + f(2). (5.2.36)

In the maximally Higgsed case, each of the occupied critical points of the super-
potential gets smeared into a cut. Hence, the matrix model curve has single roots

only. We find the curve from the N' = 2 curve by factoring out the double roots
P2(2) — 40 = Q*(2)(¢*P*(2) + f(2)). (5.2.37)

In the present case, there are no double roots so Q(z) = 1/g, f(z) = —4g?A2Y.

Substituting ¢(z) and f(z) into (5.2.33) we get the quantum modified versions of

the formula (5.2.25) for T'(2)

_ P'(z)
VP2(z) — 4A2N

T(2) (5.2.38)

This relation is valid for the A/ = 2 gauge theory because it does not depend on g
so we might as well set g to zero restoring N' = 2 supersymmetry.

For general superpotential, we argue that (5.2.38) continues to hold. We again
use the factorization of the A/ = 2 curve. In general, some number, say h of the
critical points of the superpotential are unoccupied. The corresponding roots of
the curve y> = W'?(z) + f(z) do not get smeared into cuts, they remain double
roots. The matrix model curve sees only the N — h occupied critical points, hence

we factor out the double roots
H2(2)y2, = W"2(2) + f(2). (5.2.39)

The roots of H(z) are near the unoccupied critical points of the superpotential.
They are moved from the classical critical points by gaugino condensation, which is
encoded in the polynomial f(z). Factoring out the double roots of the N' = 2 curve

we get the matrix model curve

(P2(2) — 4A2V) = QX(2)y2, (2): (5.2.40)
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Taking first derivative of this equation we see that P’(z) is divisible by Q(z). Hence,
we write P’(z) = Q(z)P(z). Furthermore, ¢(z) must be divisible by H (z). Otherwise

T(z) = — &) (5.2.41)

would have poles at the roots of H(z) which is a contradiction. The number of
eigenvalues of ® at the ‘" critical point is

R R O O
N; fi dzT(z) = jid i (5.2.42)

27 271 2)Ym(2)

where C; is a curve going counterclockwise around the i*" critical point. The oc-
cupation number vanishes for the unoccupied critical points. Hence, T'(z) cannot
have a pole at the unoccupied critical point because the contour integral would pick
out the residue T'(z) and give a nonzero answer for N;. So, ¢(z) = H(z)c(z).

The N;’s can be also calculated as the logarithmic residues of P(z). For small
A, N; roots of P(z) ~ Hf\;l(z — A;) are near the classical critical points of the

superpotential. For small A, the integral

P/(Z) = A Il, z
jfdz = fd ' (P(=)) (5.2.43)

counts the number of roots of P(z) near the i*" classical critical point of the super-
potential. This is the same as the number of eigenvalues of ® at that critical point.
When we turn on A, and deform the contour C; so that none of the roots of P(z)

cross it, (5.2.43) is still valid. We can deform this formula even more by turning on
AN to

N; = f \/W f dz In'(P(2) + 1/ P2(z) — A2N) (5.2.44)

again making sure that the contour C; does not cross the cuts of the square root in

the denominator. We get an integer answer which must be N; by continuity. Hence,

we have two equivalent formulas for the occupation numbers

N; = }{; iz ) :f{ a. L) (5.2.45)

ym(z) C; ym(z)

The polynomials P(z) and &(z) have the same degree N —h—1. The N —h equations
coming from (5.2.45) for the N — h coefficients of ¢(z) or P(z) uniquely determine



5 Chiral Rings and Vacua of SUSY Gauge Theories 112

these two polynomials. Hence they are the same as polynomials in z but at the same
time they depend on the vacuum nontrivially through (5.2.45). Hence, (5.2.38)) holds
every vacuum of the gauge theory which means that it is a chiral ring relation.

To fix the formula for w,, (z) we still need to find the fermionic polynomial p, (2).

This goes through as in (5.2.34) thanks to the special form of the superpotential

N
(W'(z) - W'(®)) P(z) — P(\)
a(z) =Tr W, = Wij————= = gP,(2). 5.2.46
pa(2) 3 g; p— 9Pa(z).  (5.2.46)
pa(2) has coefficients which are linear w,,  and polynomial in ug withk =1,..., N—
1. For more details on P, (z) we refer the reader to appendix 5.A. Substituting p,(z)
and f(z) into (5.2.33) we get the quantum modified version of (5.2.30)

P,(2)

)= e

(5.2.47)

The formula for T(z) has been derived in [20/74] while the relation for w,(z) is
new. One can show that (5.2.47) holds for arbitrary superpotential similarly as we
showed the validity of (5.2.38) in previous paragraph. By taking the superpotential
to zero we learn that (5.2.47) is valid for the N' = 2 gauge theory. We need to keep
in mind that the chiral operators Tr W, ®* are descendants of the N = 2 chiral ring
[20] hence the formula for photinos makes sense only in the N' = 1 chiral ring. A
different reason for considering the formulas as an A/ = 1 chiral ring relation for the
N = 2 gauge theory is that the VEV’s of photinos break the N' = 2 gauge symmetry
down to N/ = 1. For the lack of a better name, we will call the relations coming
from (5.2.47) and (5.2.38) the A/ = 2 relations. A suitable linear combination of
the coeffients of P,(z) are the N' = 2 low energy photinos. Physically, the relations
for gaugino operators describe the expectation value of the w, ;’s when we turn on
a coherent state of zero modes of the photinos.

It is easy to find now the formula for R(z). We divide the third equation in
(5.2.21) by 2T(z) to get

_ wa(2)w"(z) . lw’(z) _dr) (5.2.48)

R =00 2

Substituting (5.2.38) and (5.2.47) into (5.2.48) we get

P,(2)P%(2) W'(z) () VP2(2) — 4A2N

Rle) =~ 2P (2)\/P2(z) — 4NN | 2 2P'(z)

(5.2.49)
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The first term on the right hand side represent the quadratic response of R(z) to
nonzero vacuum expectation value of the N' = 2 photinos. The next terms are
linear in the coefficients of the superpotential, as expected. They give the gaugino
condensate of the A/ = 1 gauge theory with nonzero superpotential. Taking A = 0

we get the classical relation

R(z) = — 123 ;‘3(,253 ;((ZZ)) (5.2.50)
where we used that
W'(2)P'(z) = ¢(2)P(2) (5.2.51)

holds in the classical chiral ring. This follows from combining the two relations
(5.2.17) and (5.2.25) for T'(z). We have derived from classical considerations that
R(z) = Pgr(z)/P(z). This agrees with (5.2.50) only if

Pr(2)P'(z) = —%Pa(z)Po‘(z). (5.2.52)

We have not been able to verify this relation.
We recast the N = 2 relations into a different form that is more convenient for

some applications. We integrate both sides of the equation (5.2.38) to get

/T(,z) - m% (P(z) +/P2(2) - 4A2N> , (5.2.53)

where the integral means that we expand T'(z) in inverse powers of z and then

integrate the resulting series

=0 =1

The constant of integration in (5.2.53) was determined by matching the N In(z)
terms on both sides of the equation. Finally, we can find P(z) from (5.2.53),

P(z) = el TGy p2V = [ TG (5.2.55)
which we use to find P,(z) from (5.2.47)

P,(2) = wa(2) (efT(Z) — AQNe_fT(Z)> : (5.2.56)
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The constraints on uj; and wq , come from imposing that the coefficients of the
negative powers of z in the Laurent series on the left hand side of (5.2.55) or
(5.2.56) vanish. Since the coefficient of 2% =% of (5.2.55) is linear in u; and does not
depend on u; with [ > k, setting the coefficient to zero gives a recursion relation for
ug in terms of uq,us, ..., ur_1. We can solve the recursion relations to find u; as a
polynomial in w1, ..., uy. Similarly, the coefficient of V=1~ of (5.2.56) is linear in
Wq,k and is independent of w,; with [ > k. Hence, we get recursion relations for
Wq,k With & > N which determine w,, j in terms of wq 0, ..., wa, v—1 and uy, ..., un.

We recast the formula (5.2.49) as

Po(z)P*(2)

— / C(Z) z — z
- 2P(») (R(z) ~Wie)/2+ 2T(z)) (e/ 71 —p2Nem ST (52,5

We will not use this formula except for next subsection where we relate it to (5.2.55)
and (5.2.56)).

5.2.3U(1) free and Shift Symmetry

We decompose the U(N) gauge symmetry as SU(IN) x U(1) ¢ree 0on the level of
Lie algebras. We embed the U(1) f;ce photino W, into the U(N) gauge theory as
Wa X 1nx - All fields are in the adjoint representation of the U (V) gauge symmetry,
hence they are neutral under the diagonal U(1) .. which gets decoupled from the
rest of the theory. It is described completely by the free W,V action. In the chiral
ring, the U(1)frc. photino is described by an anticommuting number 1, because
the chiral operator W, is independent of position. Hence, the U(1) ... part of the

gaugino generating functions are

wa('z) = —T _77Z}o¢ T(Z)
47; - @ 1” (5.2.58)
R(:) = ~2ue () - Lper(e)

It follows from the decoupling of U(1) fyc. that the theory has an exact symme-
try Wy — W, + 4Anpo 1 v« v that shifts W, by an anticommuting c-number. This

symmetry acts on the chiral operators by

1
Or) = —Wa 1 P* — §¢a¢auk,
5wa7k = ukl/}a, (5259)
(5uk =0.
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We define the field Wa = W, + 4mi),, then the shift symmetry is generated by
0/0¢. Invariance under this symmetry implies that the chiral ring relations do not
depend on v, when they are expressed in terms of /I/T\}a. We substitute Wa instead
of W, into the definitions (5.2.5), (5.2.16)), (5.2.23) and (5.2.28) and find the shift

symmetric resolvents and polynomials

R(2) = R(2) ~ wal)° — S0at°T(2),
F(2) = ()~ 4bap™(2) — 26ate(z),
Ta(2) = wa(z) + $aT(2),
Pal2) = Pal2) + 6P (2).

(5.2.60)

Finally, we can write down the shift invariant form of the anomaly relations (5.2.21)
~ ~ 1~
R*(z) = W'(2)R(z) + Zf(z) (5.2.61)

and the shift invariant /' = 2 equations

S Pa(»)P(2) W(z) ¢p2 T IAZN
R(z) = 2P’(z)\/P2(z)—4A2N+ 5 2P’( )

(5.2.62)

Here, the second and the third term are independent of 1, whence they contribute
only to the lowest component of R(z) which is R(z) itself. To get the relations for

N = 2 gauge theory we set the superpotential to zero

Son Po(2)P?(2)
R = = ) /PP) — ahe

(5.2.63)

The shift invariant N' = 2 relation that combines the formula for T'(z) and w,(z) is

(5.2.64)

~ /P(z) _ 4AN

This relation holds for any superpotential unlike (5.2.63) which is valid only for zero
superpotential.

The equation (5.2.64) is the unique shift symmetric completion of the N/ = 2
formula for T'(z). Each term in formula for w,(z) depends on W, and hence gives a
nonzero contribution by shift symmetry to the formula for 7'(z). Barring unexpected

cancellations, the formula for w, (z) is fixed by requiring that it shifts to the correct
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relation for T'(z). The formula for R(z) is not fixed by shift symmetry from the
formula for w(2). It can have additional terms that are independent of W, which
get shifted to zero, hence they are not constrained by the formula for w,. These
terms are absent for the N' = 2 gauge theory, where the formula (5.2.63) for R(z)
gives the response to nonzero vacuum expectation value of the U(1) photinos. There
are such terms when we turn on the superpotential as is manifest from (5.2.62).
The shift invariant integral relation that combines (5.2.55), (5.2.56) and (5.2.57)
is - _
_—Paé,;)/};:)(z) = E(z) (efT(Z) — A2Ne™ fT(Z)) ) (5.2.65)
In this form, the formula for — P, (z)P*(z)/P’(2)P(z) goes by shift symmetry into
the formula for P, (z) which goes to the first derivative of the formula for P(z). The

N = 2 relation for P(z) and P,(z) combines is
Po(2) = @a(2) (ef T(:) _ g2V~ f ). (5.2.66)

Similarly to (5.2.64) this formula holds for any superpotential.

5.3 Solution of the Chiral Ring
5.3.1 U(2) Gauge Theory with Cubic Superpotential

Before giving a general proof that the chiral ring determines all the vacua of
the theory we will illustrate this in detail in the case of the U(2) gauge theory with
cubic superpotential

W'(®) = %Tr 3 — %Tr P2 (5.3.1)
We can always put a cubic superpotential into this simple form by rescaling and
shifting & and W,. Let us count the number of chiral operators that we need to
consider after taking into account the recursion relations for the moments. A 2 x 2
matrix ® is described by two independent gauge invariant chiral operators u; and
us which determine the remaining u;’s from (5.2.38)). There are two independent
gaugino operators wy,o and we,1 which determine the remaining w,, ;’s from (5.2.47).
For cubic superpotential, the r;’s are determined by rg and r; from the first anomaly
equation (5.2.21). Hence, we have already reduced the number of chiral operators

that generate the ring down to six.
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To get started, we solve for vacua in the classical case. We treat uy’s as numbers
and ignore the nilpotents w, , and r;. The superpotential has two critical points,
A =0, 1. Hence, the theory has three vacua corresponding to different arrangements
of the eigenvalues of ® among the critical points ® = diag(0,0), diag(0, 1), diag(1, 1).
The vacuum ® = diag(1,0) is gauge equivalent to the vacuum ® = diag(0,1). The

vacua are described by the gauge invariant operators
U1:U2:U3:...:0,1,2. (532)

These values of ug obey all chiral ring relations by definition. We will now show
that there are no additional solutions to the chiral ring relations. We expand the

equation for ® (5.2.14) in 1/z to get
Tr W/ (®) = upyo — ups1 = 0. (5.3.3)
Hence the equations of motion set all moments of T'(z) equal to uy
Uy = U1 (5.3.4)

giving us one dimensional family of solutions parameterized by u;. However, we
know from above that only three solutions of this family correspond to supersym-
metric vacua of the theory. Hence, the relations coming from the equations of
motions are not restrictive enough. Fortunately, us, uq, ... are determined by uq, us
from (5.2.38)), so we have additional constraints which we can impose on the above
one dimensional family of solutions. Substituting (5.3.4) into the relation (A.7)

us = —%U? + %U1UQ, we find
ul(ul — 1)(U1 — 2) =0. (535)

The solutions of this equation are u; = 0, 1, 2 which are the expectation values of u
in the three supersymmetric vacua discussed above. The idempotents corresponding
to these vacua are §(uy — 1)(u1 — 2), —u1 (ug — 2), 3u1(uy — 1). Each solution of the
chiral ring corresponds to a supersymmetric vacuum of the gauge theory.

The calculation in the quantum case is similar except that we need to keep

track of r;’s which get nonzero expectation value from gaugino condensation. We
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will take into account the infinitesimal w,(z) to find the low energy gauge group.
We take the last anomaly equation (5.2.21))
wW'(®)

2R()T(z) = Tr ——2 (5.3.6)

and expand it in 1/z to find the recursion relations for uy

k

Uky2 = Uk+1 + 2 Z UiTh—s- (537)
=1

We compare these with the equations (A.7) for ug and uy in terms of u; and wus.

This allows us to express us, g and 1 in terms of u

Ug = U1

= — (s — 1)(un — 2)

ro = —gtalu u1 (5.3.8)
1

ry= —1—6u%(u1 —1)(uy —2) + AL

We use that ro = r; + 7“8, which comes from the 1/ 22 term of the first equation
(5.2.21)

1 W'(®)
2 le%
- Ty W, W : 3.
R*(2) 35,2 1T P (5.3.9)
and plug into this (5.3.8) to find
(up — 1)[u? (ug —2)* — 64A%] = 0, (5.3.10)

which determines the location of the roots of the chiral ring relations in the complex
uy plane. The equation (5.3.8) has five roots for u;.

Quantum corrections do not move the vacuum at u; = 1 from the classical
position in A" = 2 moduli space because all monopoles are massive and the instanton
corrections to the moduli space move the classical vacua only for superpotential of

degree five or higher. The vacuum has zero total gaugino condensate (5.3.8))
S=5+5=0. (5.3.11)

Instantons generate gaugino condensation in each of the U(1) factors leading to
r1 = A*. There are two vacua with u; = 1++/1 £ 8A2 near the classical critical point
o, = diag(1,1), from the strongly coupled SU(2) and two more vacua with u; =



5 Chiral Rings and Vacua of SUSY Gauge Theories 119

1 — /14 8A2 near ®. = diag(0,0). The vacua have nonzero gaugino condensation
ro = £v/1 £ 8A2.

To find the rank of the low energy gauge group we solve the linear equations
for wq, r and count the dimension of the space of solutions. We will justify this
prescription in the next section. The gaugino operators wq o and wq,1 obey relations

that come from expanding (5.2.47) in powers of 1/z. This gives a single constraint
(u1 — 1)(u1wa,0 — 271),171) =0. (5312)

At the vacuum with u; = 1, the constraint becomes trivial hence wq ¢ and wq,; are
independent. The vacuum has U(1)? low energy gauge symmetry. The vacua with
u1 # 1 have only one independent photino because (5.3.12) has a one dimensional

family of solutions we,1 = - we,0. Hence these vacua have U(1) low energy gauge

group.

5.3.2 Classical Case

We will now show that the supersymmetric vacua are in one to one corre-
spondence with the solutions of the chiral ring relations. We will warm up on the
classical case.

We have found two different formulas for the resolvents in terms of the first n
or N moments. Comparing the formulas for resolvents from (5.2.17) with (5.2.25)),

(5.2.30) and (5.2.31)) we obtain nontrivial relations for the first max(V,n) moments

_c(z) Pz
T =iy = Py
i pa(2) _ Py (2)

flz) _ Pr(2)

RE) ==~ Py

Expanding these equations in 1/z, we would get an infinite number of equations for

the moments. Instead, we rewrite the equations as

Po(2)W'(2) = P(2)pa, (5.3.14)
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Then expanding in z we get a finite number of chiral relations to solve. Assume
that the superpotential W’(z) = []_,(z — A;) has n distinct critical points. The
most general solution of (5.3.14) can be expressed in terms of auxiliary polynomials
F(2),H(z),Q(z) and ¢(z)

W'(z) = Q(2)F(z),
c(2) = Q(2)e(2),
(5.3.15)
P(z) =H(2)F(z),

where F(z) = Hle(z — \;) is a polynomial of degree k. F'(z) has only single roots.
They are the k occupied critical points of the superpotential. The resolvent T'(z) is
(5.3.13)

clz) N;
FG) = T (5.3.16)

j=1

T(z) =

The second equality holds because the polynomial ¢(z) of degree k — 1 can be
expressed as a linear combination of the & linearly independent polynomials F;(z) =
[1,:(2 = Aj). The N;’s are integers being the logarithmic residues of P(z). They
give the multiplicity of the eigenvalue \; in ®. The solution is completely specified
by N;’s. It corresponds to the vacuum in which ® breaks the U(N) gauge symmetry
to U(N7) X U(N3) x ... x U(Ng). Taking different N; gives all vacua of the gauge
theory. The expectation values of ui’s in a particular vacuum are generated by
T(z). The roots of the chiral ring relations are in one to one correspondence with
the vacua of the theory.
The equations (5.3.14) linear in W, determine the number of unbroken U (1)’s.

Their general solution

Po(z) = H(z)oa(2),

pa(z) = Q(2)0a(2)

is written in terms of the arbitrary polynomial o,(z) of degree k — 1 which has k

(5.3.17)

independent anticommuting coefficients. We have

Wwa(z) = ?((5)), (5.3.18)

whence the vacuum has k U(1) gauginos coming from the U(1) factors of U(N;)

1
Aozi = —T aPi 3.1
Wi = - Tr W, (5.3.19)
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where P; is the projector on the subspace ® = \; preserved by the U(N;) gauge
symmetry. We use a hat to distinguish @,; from w, ; Similarly, R(z) is given in

terms of an arbitrary polynomial ¢(z) of degree k — 1

R(z) = 42) (5.3.20)

which indicates that the vacuum has k independent r;’s. Linear combinations of r;

give the gaugino bilinears

= 3272

Si Tr W, WP, (5.3.21)

of the U(NN;) gauge group.

5.3.3 Quantum Case

The solution of the quantum case is similar to the classical case. We com-
pare the perturbative formulas (5.2.22) for the resolvents T'(z) and w,(z) with the
nonperturbative formulas (5.2.38) and (5.2.47). We find the chiral ring relations

T(z) = -2 - s
VW2() + f(z)  /P2(z) — 4A2N (5.3.22)
o) pa(2) P,(z) 3.

T W) + fl2)  JP2(z) —dAN

Expanding both sides of (5.3.22)) in 1/z and comparing the coefficients of the two

~—

Laurent series we obtain an infinite number of relations for the first max(n, N)
moments of the resolvents.

We rewrite (5.3.22) as

P2(2)(W"(2) + f(2)) = (P*(2) — 4A*V)*(2),

(5.3.23)
Po(2)e(z) = P'(2)pal2),

to get a finite number of equations. We have eliminated the square roots in the
second equation using the first equation. Let us focus now on the first equation in
(5.3.23). Expanding the equation in z and comparing the coefficients we obtain a
finite number of chiral ring relations that can be solved to find expectation values

ULy« -+ Umaz(N,n)s T0, - - - » Tn—1 in all vacua. We obtain 2N + 2n — 1 equations while
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the number of independent variables is max(N,n) 4+ n. Generically, the number of
independent equations is larger than the number of variables.
To solve the quantum chiral ring relations, assume that the matrix curve 32, =

Fy4(z) has genus g. Hence, the N’ = 2 curve has N — g double roots
P?(2) — 4NN = HY_ (2) Fay(2). (5.3.24)

Taking derivative of (5.3.24) we find that P’(z) = Hy_4(2)¢y—1(2) is divisible by

Hpn_4(2). To match single roots on both sides of (5.3.23) we must have
W?(z) + f(z) = Qp_ ,(2)Fag(2), (5.3.25)

hence ¢(z) = Qn—4Cq—1(2). The equation (5.3.25) is the generalized condition for
finding vacua for arbitrary degree of the superpotential [74]. We remark that even
though the relation (5.3.25) has a direct physical interpretation in terms of conden-
sation of N — g massless monopoles and factorization of the matrix model curve, it
is not a chiral ring relation because it does not hold in all vacua of the theory. The
equations (5.3.23) are chiral ring operator statements valid in every vacuum of the
gauge theory. Substituting the solution (5.3.25) into (5.3.22) we get the relation for

T'(z) in terms of the matrix model curve

T(z) = _dz) (5.3.26)

vF2g(Z).

To find the position of the supersymmetric vacua in the ® moduli space we have
set to zero the U(1) photinos. We were allowed to do this because the expectation
value of the photinos moves the vacua by an infinitesimally small amount because
of the nilpotent nature of the photino operators wy ;.

Substituting ¢(z) and P’(z) into (5.3.23) gives

Po(2)@n—g(2) = Hn—g(2)pa(2). (5.3.27)
The general solution of this equation is

P.(z) = HN—g(Z)Ua,g—l(Z)

95.3.28
pa(z) = Qn—g(z)aa,g—l(z) ( )
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where 0, 4—1(2) in an arbitrary polynomial of g—1’st degree. So wq (z) is determined

by the g independent fermionic coefficients of o, 4_1(2)

_ O-a7g_1 (Z)

We(2) = ()

Along these directions, the photinos can take vacuum expectation values.

(5.3.29)

Hence, each massive vacuum has massless fermionic moduli directions parameterized
by the magnitude of the photino condensate. The photons that are supersymmetric
partners of the massless photinos are massless as well. These are the freely propa-
gating photons of the low energy effective gauge group. Hence, the number of U(1)
photons is equal to the number of massless photinos which is equal to the dimension
of the fermionic moduli space. To find the dimension, it is enough to consider equa-
tions linear in w, (z) and count the number of parameters describing their solution.
This justifies the calculation in the cubic superpotential example and implies that
the vacuum corresponding to genus g matrix model curve have U(1)Y low energy

gauge symmetry.

5.3.4 Perturbative Chiral Ring

Finally, let us consider the chiral ring that incorporates the perturbative cor-
rections only. We turn off the nonperturbative corrections by setting the strong
coupling scale A to zero in chiral ring relations. The ideal of relations is generated
by (5.3.23)

P2(2)(W"?(2) + f(2)) = P?(2)c3(2) (5.3.30)

and
P.(2)c(z) = P'(2)pa(2). (5.3.31)

As a simple consequence of (5.3.30), we observe that (f(z)) = 0 in every vacuum,
because W'2(2) + f(z) is a square of a polynomial if and only if f(z) = 0 or
deg f(z) > degW’(z), but f(z) has degree one smaller than W’ (z). So we see from
(5.2.22) that

(R(z)) =0, (5.3.32)

the gaugino condensate is vanishes to all orders in perturbation theory. The rg’s
are nilpotent operators of the perturbative chiral ring because (ry) = 0 for each

solution of the perturbative relations (5.3.30)). The nilpotency follows from Hilbert’s
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Nullstellensatz, p. 412 of [75], which states that if a polynomial g vanishes at every
solution of an ideal Z of polynomial relations then ¢* for sufficiently large k is an
element of the ideal Z. We will discuss in section on gaugino condensation that the
actual nilpotency condition on 7 is that the product of any N r’s is zero in the
perturbative chiral ring.

To find the positions of the vacua in the ® moduli space, we set f(z) to zero in
(5.3.30). The chiral ring reduces to the classical chiral ring. Hence, the perturbative
corrections do not shift the positions of the vacua in the & moduli space and the
equations (5.3.31)) give the correct number of U(1) gauge symmetries. To account
for the correct multiplicity of the vacua we need to retain the nilpotent f(z). The
multiplicity of the solution equals the multiplicity of the supersymmetric vacua.
The multiple root splits into single roots and the supersymmetric vacua separate in
the ® moduli space when we make A nonzero.

In the example the chiral ring of U(2) gauge theory with cubic superpotential,

the classical ring is ui(u1 — 1)(u; — 2) = 0 while the perturbative ring is
u?(up — 1) (u; —2)* =0, (5.3.33)

which can be obtained from (5.3.10) by setting A = 0. The double roots correspond

to the pairs of vacua that come from the strongly coupled SU(2) vacua.

5.4 Intersection of Vacua

Generically, all vacua are located at different points in the ® moduli space.
By tuning the superpotential, we can make two or more vacua intersect. We will
consider only the intersections at which mutually local monopoles are massless. The
chiral ring relations will have a multiple root. Its multiplicity equals to the number
of intersecting vacua. We notice that R(z) is determined by the location of the
vacua in the N = 2 moduli space from (5.2.49). Hence, the intersecting vacua have
the same expectation value of the moments of gaugino condensate.

Let us investigate the the low energy gauge group of the intersecting vacua.
T(z) determines the linear constrains (5.2.56) for w,(2). So the rank of the low
energy gauge group depends only on the position of the vacuum in the ® moduli
space. The intersecting vacua have the same low energy gauge group UY(1) with

g > g; where U(1)% is the the gauge group of i*" vacuum near the intersection.
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The lower bound of the rank of the gauge group follows, because when tuning the
superpotential to make the vacua intersect, the dimension of the space solution to
(5.2.56) can suddenly jump up as some of the constraints for w,, ; become satisfied
on a submanifold of the ® moduli space.

Physically, the increase in the rank of the gauge group is connected with van-
ishing of the condensate of monopoles at the vacuum. As the vacua approach each
other, the dual Meissner effects of the confined U(1)’s turns off. At the intersection
the monopole has zero expectation value and the dual electric U(1) is free. We will
investigate monopole condensation using the low energy effective lagrangian [76/77]
that includes the monopole fields

n

N
gk k+1 ~
Lerr = Tr & M;(®)m;m;. 5.4.1
if k:0k+1 +i221 (®)m;m ( )

The mass of the i*" monopole M;(®) is a function on the N/ = 2 moduli space.
We can find the monopole condensate by varying these equations with respect to
Uy, ... uN,My,...,my and mq,...,my. For present purposes it is enough to notice
that the monopole condensates depends continuously on the superpotential and the
u;’s. Thus, the monopole condensate associated with the deconfining U(1) turns
off continuously on the approach of the intersection. This follows from the formula
(3.16) of [78] for the value of monopole condensates.

We will now illustrate this behavior for U(2) gauge theory with the cubic

2

superpotential W’(z) = 2® — z which we analyzed in previous section. When

8AZ =1 (5.4.2)

the two vacua at u; = 1++/1 — 8A2 intersect with the u; = 1 vacuum. Ignoring the
photinos for a moment,we see that the chiral ring is generated by wuq, which obeys
the constraint (5.3.10)

(up — 1)*(u§ —2u; — 1) = 0. (5.4.3)

The equation (5.4.3) has a triple root at u; = 1. The local ring at the triple root
is three dimensional. The basis elements behave as 1, (u; — 1), (u; — 1)? near the
root and vanish at the two other roots of (5.4.3). To find the expectation value of
a chiral operator in the intersecting vacua, we expand it in the local ring and read

off the coefficient at the idempotent element.
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We see from (5.3.12) that the gauge group of each of them gets enlarged to
U(1)2. We can see the increase in the rank of the gauge group directly from the low

energy effective action of the theory near the intersection point (5.4.1))

W (D) = % — 2+ m(2us —uf £ A)qd (5.4.4)

The monopole condensate in the vacua with U(1) fre. gauge symmetry is
qq = m'(u; — 1), (5.4.5)

where m’ is a constant. Near u; = 1, the condensate which confines the second
U(1) goes to zero and the dual Meissner effect continuously turns off. Some of

these results were previously derived in [79].

5.5 Gaugino Condensation

We have seen that chiral ring determines all the supersymmetric vacua together
with the expectation values of all chiral operators. The chiral ring can be used to
extract general statements about the properties of the vacua as well. For example,
we showed above that chiral ring encodes the low energy gauge group of the vacua.
The dimension of the gauge group was shown to be equal to the number of the
fermionic moduli parameterizing the condensate of the U(1) photinos. We will
now analyze the chiral ring relations satisfied by the gaugino bilinears r; and their
implications for gaugino condensation. For simplicity, we will assume throughout

this section that the photino expectation values vanish.

5.5.1 Classical case

Classically, W, is an N x N matrix of two component grassmannian numbers.
The operators r; ~ Tr ®'W, W are bosonic operators constructed from fermionic
operators. These operators are nilpotent because of the anticommutativity of W,,.
We have
=0, (5.5.1)

Tig - TiN2+1

because W, consists of N2 two component fermions. In the chiral ring, the relations

{Wa,Ws} =0

Wt —0 (5.5.2)
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imply a more powerful result. These identities generate the ideal Z which is the
subideal of the full ideal of classical relations. The remaining the classical relations
have been discussed in the section 2. We denote W7 and W5 by A and B. Then
the ideal Z is generated by A?, B?> with both A and B commuting with ® and

anticommuting with each other. For example the authors of [20] showed that
rdf =8N =0 (5.5.3)
holds in the chiral ring of the pure U(N) gauge theory. This relation continues to

be valid when we add the adjoint field ® because

1 . 1
To = —32?’1‘1' WQW = _]_67T2Tr AB (554)

does not depend on @, so the proof from [20] for the pure U(N) gauge theory is still

valid. There is a similar relation for the product of arbitrary N moments of R(z)
ThyThy - - Thy = 0. (5.5.5)
To derive (5.5.5), we closely follow [80]. We construct the tensor F'(A) from A
Firtzin(A) = hJzdn AL AR AW (5.5.6)

The epsilon tensor on the right hand side picks out the completely antisymmetric
part in the j indices of A, hence by anticommutativity of A, F' is completely sym-
metric in the ¢ indices. We will show later that F'(A) is contained in the ideal Z.

We also define a complementary tensor from B and ®

1
1672

N
Gm..MB):( )elllz...m@le)éi(@’“23)22---@‘“NB)?;- (5.5.7)

Since F'(A) is contained in the ideal Z, so is its contraction with G(B)

F(A)-G(B) = e iNAR A2 AN ey, (DM B) (@M B)2 . (M B)N.
(5.5.8)
We arrange the right hand side of (5.5.8) using the identity

izdNg o= (5?11 5{22 . 55}3’ + permutations. (5.5.9)
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The delta tensors contract the indices between F'(A) and G(B) making F'(A)-G(B)

into a sum of terms
Tr ®P1(AB)*'Tr ®P2(AB)*2...Tr PN (AB)*N (5.5.10)

with various p; and s;. In writing (5.5.10) we used the fact that & commutes with
A and B to collect ®’s to the left of each trace. The term coming from the trivial
permutation in (5.5.9) is

1
1672
The remaining permutations give terms with some s; > 1 hence they are contained
in the ideal 7.

To complete the proof, we will show that F(A) is in the ideal Z. Since

N
ThyTho - Thy = ( ) Tr @ ABTr ®"AB... Tr ®*VAB.  (5.5.11)

F(A)#%2-~ is symmetric in its indices, we can set them to the same value. We will
show that

NN..N _ _jija.jn AN AN N
is proportional to

Njijo.in( A2\N AN N
€ (A )lej2 T Ajzvfﬂ

(5.5.13)

which is in the ideal Z because it is a multiple of A%. We can write (5.5.13) as

N
Nj1ja.jn—1 AN N N
> NIIzIN AN AT AN AN (5.5.14)
r=1
The expression
N AN 4N N
AP AL A AN (5.5.15)
is antisymmetric in its N —1 indices z, j2, j3, ..., JN—1, hence it is a nonzero multiple
of
klila...In—1 AN gAN N
€$j2j3---jN71k€ 1%2 N 1Al1 Al2 e Alel' (5516)

We substitute this into (5.5.14)
N

lejg...jN,1 L. . kl1l2...l1\],1 x N N N
E € 655]2]3---]N71k6 AlellAlz "'AlN,1

(5.5.17)

r=1
and use (5.5.9) to express the product of the first two epsilon tensors as a multiple
of 55’6\76%1 — 6N 1. We find that (5.5.14) is a nonzero multiple of

(ON 6]t — oy olr)ekhtetn—r g2 AN AN AN (5.5.18)

IN—1°

The term contracted with §i¥ 67! are proportional to the U(1) photino Tr A which

we took to be zero. The term contracted with 637" is FNN-+N(A) as promised.
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5.5.2 Quantum case

Quantum mechanically, all vacua of the theory have nonzero gaugino conden-

sation. This follows because all solutions of the equation (5.3.23)
P2(2)(W2(2) + £(2)) = (P*() — 4A2Y)e2(2) (5.5.19)

have f(z) # 0. We must have f(z) # 0 to insure that the left hand side of (5.5.19)
is not a square of a polynomial, since the right hand side is cannot be written as a
square of a polynomial when A # 0. Nonzero f(z) is equivalent to nonzero gaugino

condensation which can be seen from the equation (5.2.22)

1

R(2) =5 <W’(z) /W22 + f<z)) (5.5.20)

for the generating function R(z).

For a generic shape of the superpotential, we expect that the coefficients of the
polynomial f(z) are generic and nonzero. Hence, generically, all the moments ry, are
nonzero. In a particular vacuum, the first few moments can vanish if the gaugino
condensates S; of the U(N;) subgroups cancel among each other when added up to

make the gauge invariant operators

TONZSZ', TlNZ)\iSia---- (5521)

In this case, some of the higher traces r; must be nonzero. Actually, infinitely many
moments 7 do not vanish. This follows from the fact that expanding the square
root in (5.5.20) in powers of 1/z we obtain Laurent series with infinite number of
nonzero terms.

We would like to find the quantum version of the classical formulae (5.5.5).
The product of N gaugino bilinears is generated by instantons. We expect the [
instanton contribution to be proportional to the exponential of the [ instanton action
e Sinst = A2N The zero instanton term is absent. This expresses the absence of
perturbative contribution to the gaugino condensation (5.3.32)). The coefficient in
front of the exponential is a polynomial in u; because the expectation value of the
gaugino condensate depends on the position of the vacuum in the ® moduli space.

In summary, nonperturbative effects correct (5.5.5) to

ThiTho - - Thy = ZAZZNQl,kle...kN (ui,u2,...,un). (5.5.22)
1>0
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The dimension of the left hand side is 3N + ). k; hence the dimension of the
polynomial Q i, k,.. ky 18 (3 —21)N 4. k;. Recalling that the dimension of u; and
A%Y is k and 2N respectively, dimensional analysis gives us a simple constraint on
Q. For example, r)’ = SV can have only one instanton contribution, since Q1,00...0
for I > 1 would have negative dimension —(I — 1), which is a contradiction. @,
being a polynomial in uj, has always positive dimension. The general form of
Qlk1ks.. kn (U1, u2,...,un) is not know. It is a complicated polynomial in u; that
depends on the superpotential in a nontrivial way. Also, the ();’s are not uniquely
defined. The chiral ring has often relations that express a polynomial in uj as
A%N times another polynomial of dimension 2NV less than the original polynomial.
Adding A2V times this relation to the right hand side of (5.5.22) we change @Q; and
Q41 without affecting the total sum. This is related to the fact that A?Y has the
same quantum numbers as ®2V.

For the example of U(2) gauge theory with cubic superpotential from section

(3.1), the formulas for the product of two ¢ and r; are

T(2) = (ul - 1)2A47

A4
Tor1 = gul(ul —1)(Bur — 2), (5.5.23)
A4
7"% = gu:{’(ul - ].) + Ag.

We obtained these by multiplying the formulas (5.3.8) that express rg and r; in
terms of u1. To get the overall A? factor we have used the quintic equation (5.3.10)
for u;. We see that 72 has also a two instanton contribution proportional to AS.
The product of any two moments r; and r; can be easily worked out from (5.5.23)
because the higher moments can expressed as polynomials in 79 and r; with the
help of recursion relations obtained by expanding (5.3.9) in 1/z

k—1
Tk4+2 = Tk41 + Z TiTk—i—1- (5.5.24)

i=0
We find that the product can be written as a sum of terms that are polynomials
of degree two or higher in ry and ;. We rewrite these polynomials with the A%

prefactor using (5.5.23)
Ty = ZAMQZ,U(W)- (5.5.25)

>0
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5.6 Examples

In this section we give additional examples to illustrate in detail how the chiral

ring determines the vacua of the gauge theory.

5.6.1 Unbroken Gauge Group

In our first example we consider the U (V) gauge theory with unbroken gauge
group. For simplicity we will assume that the superpotential has one critical point
W(®) = %m@z. The theory with quadratic superpotential for the adjoint field was
solved first by Douglas and Shenker [81]. It has been recently studied in [82)83,84/85].
Semiclassically, ® is a massive scalar field with zero expectation value preserving
the U (V) gauge symmetry. The SU(N) subgroup of the U(N) gauge group gets
strongly coupled by nonperturbative effects and the low energy gauge group is
the decoupled U(1)fpce. There are N strongly coupled massive confining vacua
with nonzero gaugino condensation. They are symmetrically distributed around
the origin of the S plane.

We will now study the full chiral ring of the gauge theory keeping both linear
and quadratic terms in w,(z). We substitute c¢(z) = mN, f(z) = —4mS and

pa(2) = mw, o into the expressions (5.2.22) for the resolvents

Ty Nbwalue@)/m N wepu
VZ—aSim P —a5im  m(z> —4S/m)}
wa(z) _ L (5.6.1)

R(z) = % (z — /22— 4S/m> :

We can write T'(z) more compactly in terms of § = S+ 7% Wa 0w, the SU(N) part

of S
N

\/z2—4§/m.

Hence, T'(z) does not depend on the U(1) photinos. It is easy to check (5.6.2)

T(z) = (5.6.2)

by expanding in wq owf and using the fact that higher order terms are zero by

anticommutativity since wq o is a two-component spinor. We substitute

/T(z) v [ VE S 45/m (5.6.3)

2
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into (5.2.55) to find

N
P(2) z414/22 —45/m A2N
z) = + .
2 — N
z4+1/ 22—-4S5/m

(5.6.4)

The chiral ring relations come from setting the negative powers of z in the right

hand side of (5.6.4) to zero. These relations are generated by

SN = mV AN, (5.6.5)
or equivalently in terms of the U(N) gaugino bilinear
1
SN 4 §SN_1wa,0w8‘ = mV A%, (5.6.6)

Hence we find that P(z) is the Chebychev polynomial

P(e) — z4+1/22 —45/m N z—1/22 —45/m (5.6.7)

2 2 ’

in agreement with [81].
The quantum relation (5.6.5) implies that in any vacuum (SV) = mN A2V,

Since the expectation values of products of chiral operators factorize
(SYNV = mN AN, (5.6.8)

Solving for (S) we get (S) = wmA? where w is an N*" root of unity. We see that
each of the N solutions to the chiral ring relations corresponds to a supersymmetric
vacuum with nonzero gaugino condensate, as claimed. The equations for photinos
Wq,; depend on one independent fermion w, o, whence each of the massive vacua
can have an arbitrary coherent state of the U(1) photinos. The photon is massless
by supersymmetry and the low energy gauge group is U(1).

To find the expectation values of operators in each vacuum, we expand (5.6.1))
in powers of 1/z. The odd moments vanish by the symmetry ® — —& while the

even moments are nonzero,
2k\ =

Wa,2k = Wa,0 (2:) (S/m)*, (5.6.9)

= g () simit
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The vacua are symmetrically distributed around zero in the complex S plane.
This pattern is reminiscent of the pure AN/ = 1 supersymmetric U(N) gauge theory.
Indeed, we recover the chiral ring of the N' =1 U(N) gauge theory by taking the
mass m of the adjoint field to infinity while holding the gaugino condensate S and

the strong coupling scale of the pure U(N) gauge theory fixed
3N _ N 2N
ABN — N AN, (5.6.10)

The higher moments of T'(z), w,(z) and R(z) vanish in the m — oo limit (5.6.9).
The ring of the pure U(N) gauge theory is generated by S and w, = wq,0 which
satisfy the relation
1 — [
SN+ 5SN Lwaw® = AN, (5.6.11)

Let us now determine the classical ring. We see from the classical equations of

motion

W' (®) =m® =0 (5.6.12)

that ® is a zero matrix. It follows that uy, wq, r and 7y are zero in the ring for k > 1
because they contain ®. Hence S and w, ¢ are the only nonzero operators. They
are not constrained by the equations of motion. S satisfies the relation

1

SN
+2

SN "L qw = 0, (5.6.13)
which is the generalization of (5.5.3) when Tr W,, is nonzero. It can be obtained by
substituting S for S in (5.5.3). We notice the different origin of the formula for S
in the classical and the quantum chiral ring. Classically, (5.6.13) follows from the
fermionic character of W, while quantum mechanically (5.6.5) is a consequence of

the anomaly equations together with the N’ = 2 relations.

5.6.2 U(3) Gauge Theory with Cubic Superpotential

We will now solve the chiral ring of the U(3) gauge theory with cubic superpo-
tential W’ (2) = 22 — az — b and show that it determines all the vacua of the theory.
This example has been studied by [74]79] and [86] using different approach. We
will see that all vacua have nonzero gaugino condensation and that the chiral ring
predicts the correct low energy gauge group. In this subsection, we will ignore the

quadratic terms in the U(1) photinos.
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The polynomials ¢(z), f(z) and p,(z) are

c(z) =2(z —a) + us,
f(z) =—4((z —a)ro + r1),

pa(2) = (2 — a)wy + wy.

For U(3), the polynomials P(z) and P,(z) become

P(2) = 2% = 2%u; + 2

u% — Usg n 3uiug — u:f — 2us
2 6 ’
2 _
1

U2

u
Pa(z) = (2’2 — U1z + ) wa’o + (Z — ul)wa,l + ’wa’g.
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(5.6.14)

(5.6.15)

We get chiral ring relations by expanding (5.3.23) in z. Firstly, we express us, 79

and r1 in terms of u; and ug
uy =3b + auq,
e L 4,
r=— 3_16(_%1 + 6au’ + u?(—5a” + 16b)
— 6uy (3ab 4 u3) + 6aus — 9b?).

Then us can be found in terms of u; from the following equations

(20 — b — 3auy + u?)(27buy + 9aui — 2u3 — Yuz) = 0,

((=91a® 4 77b)ut + 39au; — 5us + 3u3 (25a® — 98ab — 6us)
+27u2(13a%b — 5b% + 2aus) — Yuy (—45ab? + 8ausz + 2bus)
+9(9b® — 72A°% — 12abusz + 2u3)) = 0.

u1 is a solutions of the eight order polynomial equation
(2a® — b — 3auy + u3)(5832A° + (9b + 3au; —ui)?) = 0.
The relations for the gaugino operators wq o,1,2 are

(au1 — u2)Weq,0 — 3aWq,1+3Wa 2 = 0,
1

(5.6.16)

(5.6.17)

(5.6.18)

§(u% — uz)(aWa,0 — Wa,1) + (U1 — 3a)(§(u% — U2)We,0 — UIWa 1 + Wa,2) = 0.

(5.6.19)
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After some algebraic manipulations using the equations (5.6.16) to (5.6.18)), we find

that product of any three gaugino bilinears can be written with the A% prefactor

1
r3 :6A6(6a2 — 6ab — (10a® + b)uy + 3au? + u3),
) 1

rerL = — EAG(CL — uy)(9a%u; — 16au? + 5u’ + 3us),

1
ror? :%AG(MU? — TTau] + 2(74a® — 25b)u’ + (—121a® + 146ab + 6uz)u?
+ 6(6a* — 22a%b + 5b* — 2auz)u; + 3a(12a%b — 9b* + 2auz)),
1
7 :ﬂAG(llu? — 73au? + 5(37a® — 9b)u}
+ (=227a® + 190ab + 4us)u® + (136a* — 293a?b + 33b* — 12aus)u?
+ a(—32a* 4+ 196ab — 69b* + 12aus)u; — 3b(16a* — 12a2b + b?)).

(5.6.20)
Hence, by (5.5.24) and (5.6.20) , the product of any three r;’s can be written as

TiyTigTiy = A%Q) (5.6.21)

11,92,13 "
To keep the equations simple, we will continue the discussion for the superpo-

tential W'(z) = 22 — 2. The equation for u; becomes
(up — 1)(uy —2)(5832A°% — ud(uy; — 3)%) = 0. (5.6.22)

We will now discuss in detail all the roots to show each of them gives a supersym-
metric vacuum of the gauge theory.
We see from (5.6.19) that the constrains for the expectation values of photinos

are

Wey,2 — Wa,1 = 0
(5.6.23)
ul(ul - 1)(U1 - 2)wa,0 - 3<U1 - 1)(U1 - 2)’11)1 = 0.

For the vacua with u; = 1,2 wq, 1, w2 can take arbitrary expectation values, they
are massless. Hence, by supersymmetry the corresponding photons are massless
as well and we have U?(1) low energy gauge group. The w,,o must have zero
expectation value, it is massive. The remaining six vacua have only one massless
direction for the photinos. Their low energy gauge group is U(1) free.

The theory has four vacua coming from the confined SU(2). Two of them are
at u; = 1 and the other two at u; = 2. The two vacua with the same wu; differ by

the sign of gaugino condensate

ro =S = +A% (5.6.24)
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Their positions in the A/ = 2 moduli space are distinguished by uz = u; — 6rg. The
two vacua at u; = 1 have r; = Tr W?2® = 0 because the gaugino condensation is in
the SU(2) part of the gauge group which is preserved (0, 0) block of ® = diag(0,0, 1).
The vacua u; = 2 have r; = rg since the gauginos condense in the (1,1) block of
® = diag(0,1,1). There are six vacua with confined SU(3) that are symmetrically

distributed in the u; plane around u; = 0 and around u; = 3,

up = 3/2 + 1/3/2 + 18wA? (5.6.25)

where w is a third root of unity. As discussed in previous paragraph, these vacua

have U(1) free gauge symmetry. All these vacua have nonzero gaugino condensation
ro ~ A? (5.6.26)

with dominant one instanton contribution for small A. The vacua near u; = 3 with
® = diag(1,1,1) have the first moment of gaugino condensate of the same order
ry ~ A? as rg. The vacua near u; = 0 with ® .5 = diag(0,0,0) have vanishing one

instanton contribution but nonzero second instanton contribution to r; ~ A*.

5.A N =2 Chiral Ring Relations

In this appendix, we will write down for illustration the first few of the N' = 2
recursion formulas. These relations are expressed in terms of the characteristic

polynomials P(z) and P,,(z). The coefficients of

P(z) =det(z — @) = H(z - \) = ZpizN_i (5.A.1)
i=1 i=0

are po = 1 and p, = Zf\;l(—l)k}\f for Kk =1... N, which can be expressed in terms

of uy,...,uy from the recursion relations

k
Z % ~ (5.A.2)
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The first few p;’s are

Po = 17
p1 = —u,
2 A3)
_w o, uf (5
D2 9 + 2 )
us U2Uq 1
P == 3 _E(u%_U/Q)Ul.

The characteristic polynomial P,,(z) (5.2.28) comes from the first variation of
0P = eM of P(z)

Pp(2) = —0c det(z— D —eM)|— O_ZM“H mez 1= (5.A.4)

i=1 i#]

We find the recursion relations for the coefficients py, 1, = Zf\il M“)\ic by making

the first order variation dpy = —pm k-1 and duy = kmy_1 of the recursion relation
(5.A.2)
ks g
Pk =Y 7 MiPk—i ~ > 7 Pm kit (5.A.5)
i=0 i=1

The recursion relations together with first coefficient p,, o = mg determine p,,  in
terms of my,...,my and uq,...,ur. We write down the first few coefficients p,, ;

that are used in the examples

Pm,0 = Mo,

Pm,1 = M1 — U1y, (5.A.6)

L oy
Pm,2 = M2 —uimy + §(u1 - Uz)mo-

We are ready to show first few N = 2 relations obtained by expanding (5.2.38)
and (5.2.49) in powers of 1/z

_ P'(z)
T&) = ma —anen
wo = ——2(?) (5.A.7)
¢ /P2(z) — 4NN o
Ry — TGP )

2P'(2)\/P2(z) — 4A2N
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Let us note that in the last formula we are ignoring the part of the gaugino con-
densate that depends on the superpotential. The classical formulas are obtained by
setting A to zero in the quantum formulas.

For U(2), all u;’s can be written as polynomials in A* and w1, us which are the

two independent chiral operators that we can make from a 2 x 2 matrix ®. We have

1
ug = —§(u1 — 3uqus),
1
ug = 4A* — i(u‘f — 2uiug — u3), (5.A.8)

1
us = 10u; A* — Z(u‘r{ — Buqul).

For U(3), the first three uj,us and us are independent. The higher moments are

polynomials in these and in AS

1

ug = —(uf — 6usuy + 4ul + Sujus),
1
us = E(U? — bubug 4 Sudus + Hugus), (5.A.9)
1
ug = 6A° + E(u? — 3ufug — 9utul + 3ud + 4udus + 12u usus + 4u§)

Taking M = =W, in (5.A.4) to (5.A.6) we can read off the formulae for wq;
from the 1/z expansion of the generating relation (5.A.7). For U(2), we find w, ;’s

as polynomials in wq g, wq,1 and uy, ug

1
We 2 = —§(u§ — Up)Wa 0 + U W 1,
1
We 3 = —§(ui” — UUL)Wa 0 + §(Uf + U)W 1, (5.A.10)
_ 4 4 2
W4 = 2M wq 0 — — (U] — UZ)Wa,0 + UTULW, 1 -

4

The first few relations for U(3) are

1
We,3 = é(ui’ — 3uqug + 2u3)Wa,0 — §(u% — U)Wq,1 + U1 Wq,2,
1 1 1
We g = E(u‘f — 3u%u2 + 2uguz)we,0 — g(u% — U3)Wq,1 + 5(1@ + U2)Wq 2.

(5.A.11)
The relations for R(z) give the infinitesimal gaugino condensate coming from

the vacuum expectation value of photinos. Notice that are ignoring here the finite
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gaugino condensate that is induced by the superpotential (5.2.49). For U(2), we

have
1 (e}
o = —Z’wa,owo,
1
TL= QU Wa 0 = S Wa o] (5.A.12)
1
To = 1—6(1@ — 3ug)wa, 0wy — Zulwa’owl‘)‘ — Zwa’lw?'
The first few cases for U(3) are
1
ro = —éwa,ow(?,
7«11 f— iulwa Owg — lwa Owa71, (5.A.13)
18 ’ 3
_ 1 2 « - a 1 a 1 «
ro = (uf — 3u2)wa owWs + —U1Wa oW We,1 W Wea,0 WS .

54 9 6 3



6. Nonperturbative Exactness of Konishi Anomaly

6.1 Introduction

As was discussed in last chapter, the Dijkgraaf-Vafa conjecture can be studied
without recourse to string theory arguments. For a pedagogical introduction to the
gauge theory methods used to study the Dijkgraaf-Vafa conjecture, see [87]. The
authors of [88] gave a field theory argument showing that the Feynman diagrams
contributing to the perturbative part of the glueball superpotential reduce to matrix
model diagrams. A different approach was pursued in [20] using the chiral ring
of the gauge theory. The generalized Konishi anomalies of the chiral rotations
of the adjoint field imply constraints between chiral operators. These constraints
have the same form as the loop equations of the matrix model in the planar limit.
Hence the effective superpotential can be expressed in terms of the matrix model
free energy up to a coupling independent term which can by seen to be a sum of
Veneziano-Yankielowicz superpotentials by taking the limit of large couplings of the
superpotential.

To complete the above argument it is necessary to verify that the generalized
Konishi anomaly equations remain valid nonperturbatively and that the low energy
effective description of the gauge theory in terms of the glueball fields is correct. In
[20] it was suggested that one can prove the absence of corrections to the generalized
Konishi anomaly by showing that the algebra of chiral rotations of the matter field
does not have nonperturbative corrections and then arguing along the lines of Wess-
Zumino consistency conditions that the anomalies do not have nonperturbative
corrections. In this chapter we carry out this proposal. We show that the Konishi
anomaly does not have nonperturbative corrections for superpotentials of degree

less than 2] + 1 where 2] = 3¢(Adj) — ¢(R) is the one-loop beta function coefficient.

140
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The consistency conditions do not completely fix the nonperturbative correc-
tions to anomaly for superpotentials of a degree higher than 2[. Such corrections are
expected due to ambiguities in the definition of highly nonrenormalizable operators
like Tr @™ [21], [22] and [23]. We show that all the ambiguities can be absorbed
into the nonperturbative redefinition of the superpotential.

There are additional UV ambiguities for gauge theories which are not asymp-
totically free coming the freedom in their UV completion. For these theories our
proof does not apply because A% has zero or negative dimension, whence there are
infinitely many types of corrections of a given dimension. The consistency condi-
tions are not powerful enough to constrain these corrections uniquely. In summary,
in this chapter we prove the absence of nonperturbative corrections to the general-
ized Konishi anomaly that come from strong coupling dynamics and determine the
form of corrections for high degree superpotentials.

The proof can be applied to gauge theories whose algebra of chiral rotations
of matter fields forms an extension of a partial Virasoro algebra. For example it
is possible to consider matter in other than adjoint representation. In particular
we show nonrenormalization of the generalized Konishi anomaly for SO(N) and
Sp(N) gauge theories with matter in the symmetric or antisymmetric representa-
tion. The nonrenormalization of the generalized Konishi anomaly for Sp(N) with
the antisymmetric tensor is expected in the light of recent results [27] and [21] that
demonstrated agreement between the effective superpotential obtained using Kon-
ishi anomalies with the dynamically generated superpotential approach [89], [90].
The papers [27] and [21] resolved a puzzle raised in [24], [25] and [26] about the

application of Dijkgraaf-Vafa correspondence for Sp(IN) with antisymmetric matter.

Organization and Results of the Chapter

In section 6.2 we introduce the algebra of chiral rotations of the matter field and
show that it is an N/ = 1 extension of a partial Virasoro algebra. We consider the
U(N) gauge theory with adjoint scalar to keep the discussion concrete. In section
6.3 we discuss the generalized Konishi anomalies of the chiral rotations and use the
Virasoro symmetry to derive Wess-Zumino consistency conditions for the anomalies.
In section 6.4 we use U(1) symmetries of the gauge theory to determine the form of
the nonperturbative corrections. In section 6.5 we use the Lie algebraic structure

of the algebra of chiral rotations to prove that the algebra cannot get deformed
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nonperturbatively. This implies that the Wess-Zumino consistency conditions de-
rived in section 6.4 are exact nonperturbatively. We use them to show for U(N)
in section 6.6 and for SO(N) and Sp(N) in section 6.7 that the generalized Kon-
ishi anomaly cannot have nonperturbative corrections except for nonperturbative
renormalization of superpotentials of degree greater than 2l = 3¢(Adj) — c¢(Matter).
In section 6.8 we review the loop equations of the planar matrix model, considering
them as anomalies of the matrix model free energy under reparameterization of the
matrix M to highlight their similarity with gauge theory anomalies. In section 6.9

we discuss the implications of the results for the Dijkgraaf-Vafa conjecture.

6.2 The Algebra of Chiral Rotations

In [20], a series of constraints for the chiral operators of N' = 1 gauge theory
were derived by considering the possible anomalies of the chiral rotations §d® =
f(®,W,) of the adjoint scalar field. These chiral rotations are generated by the

operators

0
Ln — (I)n—l—l_
0’
1 o
na = —Wa®"—, 6.2.1
@n, 4T 0P ( )
1 )
R, = ——— W, Wepntl —_.
3272 0P
The action of the operators (6.2.1) on the single trace chiral operators wuy =
Tr F wy o= =Tr Wo® and ry = —555Tr W2OF is
Lnuk = k:uk+n,
Qn,auk = kwk—i—n,on (6.2.2)

The classical commutation relations of the generators follow from the definitions
(6.2.1)
[Limy Ln] = (n —m) Ly g,

[Lma Qn,a] = (n - m)Qn—l—m,aa
[Lin, Rn] = (0 — m) Ry,
{Qm,om Qn,ﬁ} - _Eaﬁ(n - m)Rn+m7
[Qm,ou Rn] — 07

[er Rn] = 07

(6.2.3)
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where m,n > —1. The last two commutators are trivially zero in the chiral ring
because the third and higher powers of W, are chiral ring descendants. The L,’s
form a partial Virasoro subalgebra which is extended by @), »’s and R,’s into a
partial ' = 1 super-Virasoro algebra.

As discussed in previous chapter, the scalar ® and the gauge field are in the
adjoint representation of the U(N) gauge group so they do not couple to the diagonal
U(1) gauge field. Hence shifting W, by an anticommuting number is a symmetry
of the full gauge theory [20]. If we define the field Wa = W + 4mib where 1, is an
anticommuting c-number spinor then the generator of the shift symmetry is 0/9v,.
Hence all expressions are independent of v, when expressed in terms of Wa and .

The shift symmetry combines the single trace chiral operators into

~ 1 77257k « 1 leY
k= T35 Tr WS0% =r, — wy — §waw Uk (6.2.4)
The shift symmetric generators of the chiral rotations are L,, and
~ e~ 0
Qn,a = 4_Waq)n+18_q) - Qn,a + szLn7
g . 5 . (6.2.5)
Ry = oo W2 = R, — 9,Q% — ~1at0® Ly,

Shift invariance implies that the commutation relations can be written in terms

of L,, @n,a and En We find that the shift invariant commutation relations are

[Lm7 Eﬂ] = (n - m)Rm+nv
{@m,om @n,ﬁ} = _Ea,ﬁ(n - m)ém—l—n, (6.2.6)
(R, Ry] = 0.

We did not write down the [L, Q] and [Q, R] commutators because they are con-
tained in the [L, R] and [R, R] commutators respectively. For future reference let
us show that the first and the third commutation relation in (6.2.6) imply the
remaining relation. The first commutator contains the [L, L], [L, Q] and [L, R] com-
mutators. If we expand the last commutator in 1, all commutators are trivially

zero except for the commutator multiplying ¥,¥® which is

(Lo, Rn] + [Rin, Ln] + €ap{Q5,, Q0 } = 0. (6.2.7)

We use this equation together with the [L, R] commutator to get the {Q,Q} com-
mutator. Hence, the first and third commutator in (6.2.6) contain all commutation

relations of the partial N’ = 1 super-Virasoro algebra.
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6.3 Wess-Zumino Consistency Conditions for the Konishi Anomaly

Assume that the adjoint scalar has the tree level superpotential
n+1

W (®) = Z %Tr . (6.3.1)

The effective superpotential of the gauge theory is

exp (— / d4xd29Weff) = <exp (- / d4xd29W(<I>))>, (6.3.2)

where the path integral is over the massive fields in the presence of a slowly varying
background gauge field. The effective superpotential has an anomaly under the

chiral rotations generated by L,,, @y o, Rn

LnWeff = En;
Qn,aWeff - Qn,aa (633)
RaWess = Ry

The perturbative anomaly of the effective superpotential under the chiral rotations

R,, were derived in [20)]

n+1 k
Ri= > giTkti— »_ Filh i (6.3.4)
i=1 i=0
The equation (6.3.4) is obtained from the 1/2¥*2 term of the equation (4.14) of [20]
for the generating function for the generalized Konishi anomaly, remembering that
the g; in this chapter is g;_1 of [20]. The first part of Ry is the classical variation of
the superpotential and the second part comes from the anomalous transformation
of the measure of ® under the chiral rotations. The anomalous divergence of the

currents generating the chiral rotations is the Konishi anomaly

D, DI, =L,,

n

(6.3.5)

The generalized Konishi anomaly, being D, exact, is a chiral ring descendant.
Setting (6.3.4) to zero gives nontrivial relations between the chiral operators, which

enabled the authors of [20] to study the dynamics of the gauge theory and to give a
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partial proof of the Dijkgraaf-Vafa conjecture. We will return to this in more detail
in the last section.

The Lie algebra structure of the chiral rotations implies relations between
anomalies of different chiral rotations. These conditions were first discussed by Wess
and Zumino [91]. They express the closure of the Lie algebra under commutation
relations. For two chiral rotations R; and Ry the anomaly of the effective superpo-

tential under Ry Ry — Ro Ry must be the same as the anomaly under R3 = [Ry, Ra]
RiRs — RyRy = Ry, ). (6.3.6)

The Wess-Zumino consistency conditions for the algebra of chiral rotations (6.2.3)

are
LnLy — LpLyy = (n—m)Lysm,

Lm Qn,a - Qn,a‘cm = (TL - m) Qn,a, (637)

In the shift invariant notation, we have

LinRy — RpLom = (n —m)Rpin,
@m,a én,ﬂ + én,ﬁ @m,a = _eaﬂ(n - m)lf\)iern» (638)
Ry Ry — RyR = 0.

Let us verify that the perturbative anomaly (6.3.4) satisfies the Wess-Zumino
consistency conditions. The calculations are routine so we will check only the first
equation in (6.3.7). Expanding (6.3.4) with respect to ¢, we find using (6.2.4) and

(6.2.5)
n+1 k

['k = Z Gilg+s — 2 Z WUiTk—7- (639)
i=1 =0

The action of Ly on £; is

n+1 l
LiL; = Z(l{? + i)giqu —2 Z (iaH_le_i + (l — i)uirkﬂ_i) . (6310)
=1 =0

Subtracting from this the analogous expression for L;L; we get
LipCy— L Ly, = (l — k)ﬁk_H (6.3.11)

which is the Wess-Zumino consistency condition (6.3.7) for the Virasoro subalgebra.
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6.4 Nonpertubative Corrections

In this section we review the argument for the absence of the multi-loop cor-
rections to the generalized Konishi anomaly and then discuss the structure of non-
perturbative corrections. For this, it is instrumental to study the U(1) symmetries
of the gauge theory. The gauge theory has two continuous symmetries, a stan-
dard U(1)g symmetry and a symmetry U(1)g under which the entire superfield ®
undergoes a rotation

d — . (6.4.1)

We also introduce a linear combination of these, U(1)p, which is convenient in
certain arguments. These symmetries are symmetries of the theory with nonzero

superpotential if we assign nonzero U (1) charges to the couplings gy.

A Qs Qr Qo
o 1 1 2/3

W, 3/2 0 1

0

1
g 1-k -k 3(1—-k) 2 (6.4.2)

0

4

A% 20 2 41/3
R 6+k k 4+42k/3
The one-loop beta function coefficient is 2l = 3¢(Adj) — ¢(R) where ¢(R) is the
index of the representation R of the matter field
R UAd'(N) SO(N)A SO(N)S Sp(N)A Sp(N)S

oR) N N-2 N+2 N-1 N+1 (6.4.3)
l N N-2 N-3 N+2 N+1

The shift invariant Wa and the anticommuting shift c-number 1), have the same
U(1) charges as W,. These symmetries are violated at one loop. In the last line of
the table (6.4.2) we have written the charges by which the anomaly R}, violates the
U(1) symmetries. The higher loop computations are finite and the U (1) symmetries
leave them invariant.

We are now ready to analyze the corrections to the generalized Konishi anom-
aly (6.3.4). The corrections must have the same U(1) charges as Ry. They are
polynomial in the chiral operators. Furthermore, the corrections that depend on
gr must vanish for the theory with zero superpotential and the nonperturbative
corrections that depend on A% vanish when we take the strong coupling scale A

to zero. Hence, the corrections to the anomaly are also polynomial in g, and A2
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Referring to the table (6.4.2)) we see that the only polynomials in g, ® and W, with
the quantum numbers of ﬁk are the ones already present in the one loop expression
(6.3.4). Hence the anomaly does not have higher loop contributions, as claimed at
the end of the previous paragraph. The nonperturbative corrections are polynomial
in A2l. The possible j instanton corrections to Ry are of the form A2 Git 21Tkt i
and AT o7

We can similarly derive the possible form of corrections to the extended Vira-
soro algebra (6.2.3)). The corrections to the [L, L] commutator are linear the Virasoro
generators L,, and polynomial in g; and A", The Virasoro generator L,, (6.2.1) in-
creases the U(1) charges of a chiral operators by the same value as multiplication
by ®". Hence, the commutator [L,,, L,] fixes Qp and increases the dimension by
m + n. Consulting the table (6.4.2) we see that g; has Qp = 2 charge so the there
are no corrections that depend on the superpotential. The nonperturbative [ in-
stanton corrections have the form Agleern_zjl. Similar corrections contribute to
the [L,Q], [L, R] and @, Q. The commutators that shift Q9 by two can also have
corrections proportional to g;. Counting the U(1) charges we see that the [L.,, R,]
commutator has corrections A%/' Ry, 2, and A%'g; L., 4i—24. There are similar
corrections to {@, @}. The [@Q, R] and [R, R] commutators cannot have corrections

because they map chiral operators into chiral ring descendants.

6.5 Nonrenormalization of the Algebra of Chiral Rotations

In this section we prove the nonrenormalization of the algebra (6.2.3)) of chiral
rotations of the U(N) adjoint scalar. Firstly we analyze in detail the corrections to

the partial Virasoro subalgebra

[Lins Ln] = (0= m)Lyngn + Y AN Ly jn, (6.5.1)
7>0

where the coefficients b/~ are antisymmetric in m and n by antisymmetry of the

m,n
commutator (6.5.1). The coefficient b{mn is in front of L, 4,2~ hence it vanishes
if m+mn—2jN < —1 because L_; is the lowest nonzero generator. We will prove
that all the coefficients b7

J.n can be absorbed into nonperturbative redefinition of

the Virasoro generators

Ln=Ln+ Y al AN L, on, (6.5.2)

3>0
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where a/ is the coefficient of the j-instanton correction to L,. The Virasoro gener-
ators are corrected which is natural considering that they act on the nonperturba-
tively corrected chiral operators 7. In terms of the new basis of generators L,, the
commutations relations of the partial Virasoro algebra remain valid nonperturba-
tively

Lo, L] = (n — m)Lppin. (6.5.3)

Calculating the coefficients a/ which parameterize the nonperturbative correc-
tions to L,,’s is beyond the scope of the present chapter. We will show instead that
there is a choice of a/’s for which the Virasoro algebra takes the standard form
(6.5.3)). This shows that the algebra itself is not corrected even though the Virasoro
operators might receive corrections. We make induction in the instanton number of
the nonperturbative corrections. The coefficients b{n’n obey equations that follow

from the Jacobi identity
[Li, [Lmy L] + [Ln,y [Liy Lin]] + [Lins [Ln, Li]] = 0. (6.5.4)

On the zero instanton level the identity reduces to the Jacobi identity for the Vi-
rasoro algebra which is satisfied. On the one instanton level, we evaluate the com-
mutators in (6.5.4) using (6.5.1) to find the coefficient of the A2V L, 4n_on term

which has to be zero
(n— m)bllﬂm_n + (m+n—1—2N)b,, ,, + cyclic permutations = 0. (6.5.5)

The one instanton corrections can be absorbed into one instanton corrections to

L,’s (6.5.2). The new commutation relations are
(L, L] = (n = m)Lippgn + by n AN L —an + .., (6.5.6)

where bl ’s are the redefined nonperturbative corrections

byn =bh o+ (n—m—=2N)a, + (n —m+2N)a), — (n—m)ay,,,. (6.5.7)
We show that b}n’n can be set to zero by redefinition L,,+, = Lugyin +

al . A?>NL,. ., on by induction on m + n. The first step of the induction holds

m—+n

because b}nm vanishes for m+n < 2N — 1. By induction hypothesis we assume that



6 Nonperturbative Exactness of Konishi Anomaly 149

we have redefined L, 4, for m+n < M so that b}nm = 0. Setting [, m, n in equation

(6.5.5)) equal to 0, m, M — m respectively, we find for 0 < m < M

(M = 2m)bg pr + (M = 2N)by, pp_p + (m — M), + M = 0. (6.5.8)

m,M—m

1

. 11 M and n we rewrite this as

Using antisymmetry of b

2Nb! = (M = 2m)b y;- (6.5.9)

m,M—m
From (6.5.7) the redefined nonperturbative corrections are

11 1
bo = boamr — 2Nayy,

bl = b} — (M —2m)ay,.

m,M—m m,M—m

(6.5.10)

We see from (6.5.9) that taking ayr = bj /2N we set by, . = 0 for m +n = M.
This completes the induction in m + n and shows that there are no one instanton
corrections to the Virasoro algebra. We can now proceed with the induction in
the instanton number by assuming absence of nonperturbative corrections to the
Virasoro algebra for instanton number less than k. We also assume that we have
redefined the the Virasoro operators L,, up to instanton number £—1 to set b{nm =0
for j < k. The proof that the k instanton corrections to the Virasoro algebra can be
absorbed into k£ instanton redefinition of the operators L,, goes exactly as the above
calculation in the one instanton case because the necessary equations at the A2*V
order are identical to the equations (6.5.5), (6.5.7) — (6.5.10) we found at A?Y order
after substituting N for kN in all equations. The additional terms in (6.5.5) and
(6.5.7) that would come from lower instanton corrections vanish by the induction
hypothesis.

Now it remains to show that the commutation relations of L_; = L_; with L,
do not get corrected. Firstly consider one instanton corrections. Notice that b1_170
vanishes on dimensional grounds as noted below (6.5.1). Taking I, m,n in (6.5.5) to
be —1,0,n for n > 0 we find 2Nb%’n = 0 which completes the proof of the absence
of one instanton corrections. We prove the absence of k instantons corrections the
same way after substituting N for kN in (6.5.5).

We give two different proofs of the nonrenormalization of the remaining com-
mutators of the algebra of chiral rotations. The first one is simpler and uses the shift

symmetry of the commutations relations. The second one does not use the U(1)
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shift symmetry and hence is applicable for the SO(N) and Sp(N) gauge theories as
well. We postpone it to the appendix 6.A because it is more technical. From now on
we do not use roman font to distinguish the nonperturbatively defined generators.

Let us outline the first argument. We use shift symmetry to fix the nonper-
turbative definitions Q,, «, R, for n > 2N using the nonperturbatively defined L,
(6.5.2). The last commutator in (6.2.6)

[Ron, Rn] = 0 (6.5.11)

cannot receive nonperturbative corrections. Its lowest 1, component is the [R, R] =
0 commutator which has to vanish in the chiral ring because the commutator shifts
® by a chiral operator containing the fourth power of W,. But the third and higher
powers of W, are chiral ring descendants, so the commutator has trivial action in
the chiral ring. The nonperturbative corrections to the first commutator in (6.2.6)
that are allowed by shift symmetry are

oo n+l
(Lo, Br] = (n = m) Ry + Y > A Ngichd Loninriojn (6.5.12)

j=1i=1
because the 12 component of (6.5.12) is the [L, L] commutator, which does not have
nonperturbative corrections. The nonperturbative corrections (6.5.12) contribute to

the [L, R] commutator only. To prove that these corrections vanish we evaluate the

L,Q, R Jacobi identity

[Ql,ay [Lm7 Rn“ + [Lm7 [Rna Ql,a]] + [Rna [Ql,om Lm” -

oo n+1
= [Qra; Z Z AQ]NQz‘Cf#,anJrnH—QjN] =
i (6.5.13)
oo n+1
= Z Z AN gi(m+n—1+i—2jN)cyl, Qmantiti—2iN.a = 0.
j=1i=1

In simplifying (6.5.13) we used the [L, Q] commutator (6.5.12) which is nonrenor-
malized by shift symmetry and the [R, Q] = 0 commutator. Clearly, the only way
to satisfy the Jacobi identity (6.5.13) is that cj;/, = 0. All corrections to (6.5.12)
vanish. Hence, none of the commutation relations of the extended Virasoro algebra
get nonperturbative corrections because as we noted below (6.2.6) the above two

commutators imply the remaining one.
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6.6 Nonperturbative Corrections to the Konishi Anomaly

Let us now consider nonperturbative corrections to the anomaly. The anomaly
R (6.3.4) differs from its perturbative value implicitly through the dependence of
the chiral operators 7, on nonperturbative physics. In this section we ask the ques-
tion whether there are additional nonperturbative corrections that depend explicitly
on A%V We can easily introduce terms proportional to A% into the expression

for R by redefining the chiral operators
T =Tk + OzA2N?k_2N + ... (6.6.1)

Notice that r for £ > 1 are nonrenormalizable operators so their value depends
on the renormalization scheme. It is natural to expect terms of the form (6.6.1) to
relate the definitions of r; coming from different renormalization schemes. Hence
we expect that the anomaly has generically terms proportional to A2V if we take
some arbitrary prescription for 7.

However, there is a natural definition of the higher moments 7. In the pre-
vious section we showed that there is a preferred basis for the generators of the
chiral rotations ﬁk in terms of which the partial super-Virasoro algebra takes the
standard form (6.2.6). We can use their action on the chiral operators to give a
nonperturbative definition of nonrenormalizable operators 75 for k£ > 1 in terms of
the the first moment 7, = Li7;. It follows from the commutation relations (6.2.6)
that remaining operators R}, act on the chiral operators as before (6.2.2).

Having defined 7, nonperturbatively, we can now show using the Wess-Zumino
consistency conditions that the one-loop anomaly > 7;7;_; in the path integral mea-
sure for ® does not have nonperturbative corrections. We will also show that the
consistency conditions allow nonperturbative renormalization of the superpotential.
The consistency conditions of the full gauge theory (6.3.8) do not have nonperturba-
tive corrections because their derivation rested only on the commutation relations of
the super-Virasoro algebra (6.2.6) which are nonrenormalized. We deduced in sec-
tion 4 using U(1) symmetries that the general form of nonperturbative corrections
to ﬁn is

Ri=» (gi+ ANgijanch, + .. Jnsit

7

K (6.6.2)

k
~~ 2N 1~ ~
- TiTh—i — A Z d iTi—aNTk—i + .. ..
i=0 i=2N
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In writing (6.6.2)) we take g, = 0 for kK < 1 and k& > n+1 to simplify the notation. We
can consider the corrections to the the superpotential separately from the corrections
to the one-loop anomaly. The corrections to the superpotential are proportional to
AN gi+2j~ which have the same quantum numbers as 7_; which does not exist.
Hence the two types of corrections do not mix.

Firstly we show that all the nonperturbative corrections to the one-loop part
of ﬁk vanish. Notice, that the lowest dimensional correction is 7o7oA?Y which
contributes to ﬁgN, hence the one-loop parts ﬁk for k = —1,0,...,2N —1 does not
have nonperturbative corrections. The first consistency condition (6.3.8) with m = 0
simplifies to Loﬁk = kﬁk because Ri7r9r9 = 0. In other words Lg acting on ﬁk gives
k times the anomaly. But Lg acting on a j-instanton correction A2V Ti—2iNTk—i
gives back k—2j N multiple of the correction, whence all nonperturbative corrections
to the one-loop part of the anomaly vanish.

It remains to consider the corrections to the classical part of R,,. We find from

(6.6.2)) that the first consistency condition (6.3.8) becomes

LiRi — RiLy =(1 — K)Rypr

n—2jN
+ Y AN [+ D) = (k+ 1), — (L= k)ch 319042 NTh-
i>1 i=—2jN

(6.6.3)
But the Wess-Zumino consistency conditions do not have nonperturbative correc-

tions whence we set the terms in the square brackets to zero

0+ 1)°le —(k+ 1)C?m = (I - k) (6.6.4)

+1,i°

Taking [ = 0 we have c{ﬂ i = cf” Clearly, this solves all the constraints coming from
(6.6.4). Notice that the terms A25'Nc7'_17i?i_1 in R_; are absent for i < 1 because
re ~ Tr W2&F is defined only for positive k. Hence c,7c , = 0for i < 1. In conclusion,

the general form of the anomaly is

n+1 k

ﬁk = Z gi?k—i—i — fTTZ’TTk_Z (665)
=1 =0

where

g = g; + AQNC(l)’igi+2N + A4NC(2)’Z-QZ‘+4N +.... (666)
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are the nonperturbatively renormalized coefficients of the superpotential. Hence,
all corrections to the classical part of the anomaly allowed by the Wess-Zumino
consistency conditions can be absorbed into nonperturbative renormalization of the

superpotential
n+1

W@ =3 %Tr o, (6.6.7)
i=1

The superpotentials of degree less than 2/N 41 cannot have nonperturbative correc-
tions. This is the only ambiguity that is not fixed by the consistency conditions. We
could have anticipated it from the observation that both ¢g; and A%V are invariant
under the chiral rotations hence substituting for g; any polynomial g;(gx, A?Y) with
the correct quantum numbers cannot spoil the Wess-Zumino consistency conditions
whose validity depends only on the Lie algebraic structure of the chiral rotations.
As noted around (6.6.1) the nonperturbative corrections depend on the scheme
used to define the single trace operators 7. Using a different UV completion of the
gauge theory changes the definition of the chiral operators hence it redefines the
superpotential. For further discussion of Dijkgraaf-Vafa conjecture for high degree

superpotentials, see [21] [22] and [23].

6.7 SO(N) and Sp(N) Gauge Theories

In this section we show that the previous analysis applies with minor modifi-
cations to the SO(N) and Sp(NN) gauge theories. It follows that the generalized
Konishi anomaly in these gauge theories does not have nonperturbative corrections
for superpotentials of degree less than 214 1. Superpotentials of higher degree might
get nonperturbatively renormalized.

The gauge group do not have a decoupled diagonal U(1) subgroup hence the
arguments based on the shift symmetry do not carry over from the U(N) case.
That is the main reason why we gave a separate proof of the nonrenormalizability
of the extended Virasoro algebra which did not use shift symmetry. For simplicity,
we do not consider the fermionic generators and chiral operators. The SO(N)
adjoint can be represented by an N x N antisymmetric matrix ®* = —®. The
gauge field transforms in the adjoint representation hence it is antisymmetric as well
WYL = —W,. The Sp(N) has adjoint which can be represented as 2N x 2N matrix

that satisfies the condition ®* = —J®J~! where J is the invariant antisymmetric
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tensor of Sp(N). A matrix in the adjoint representation of Sp(N) can be written as
a product of a symmetric matrix S and the invariant tensor ® = SJ, which explains
why this representation is called symmetric in the literature. The single trace
chiral operators for both gauge groups are us; and ro because the remaining chiral
operators vanish by antisymmetry. Hence the odd coefficients of the superpotential
(6.3.1) vanish gor41 = 0. Similarly the nonvanishing generators of the algebra of
chiral rotations are Lo; and Rs; which form a closed subalgebra of the partial
N = 1 super-Virasoro algebra (6.2.3). Our method also applies to the symmetric
tensor ®T = ® of SO(N) and the antisymmetric tensor ®T = J®J~! of Sp(N).
The definitions of the representations do not restrict the chiral operators nor the
chiral rotations.

The generalized Konishi anomaly for the SO(N) and Sp(N) gauge theories has
been derived in [92], [26] and [25]

n+1 k
L= gtk — Y uirk—i + cx(R)r,

(6.7.1)
n+1 1 k
Ry = Z GiTi+k = 5 ZT’ﬂ’k—i
i=1 =0
where ¢ (R) depends on the representation R of the matter field

cr(R) 2 —k—1 k+1 —2.

In section 5 we proved that the algebra generated by Li’s and Rj’s where
kE > —1 does not get renormalized. This is the algebra for symmetric SO(N)
and antisymmetric Sp(N) matter, hence the algebra of chiral rotations of these
gauge theories does not receive nonperturbative corrections. The proof for the
adjoint representation works exactly as before if we substitute for all subscripts of
the generators in the equations of section 5 twice their value. The proof of the
nonrenormalization of the R anomaly also carries over because the only difference
in the anomaly compared to the U(N) gauge theory is the ciry term in £ which has
the same form as ugrg so it cannot receive corrections. The proof for £ follows the
same pattern but instead of using the Wess-Zumino consistency condition coming

from [L, R] commutator we use the condition coming from [L, L] commutator.
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6.8 Virasoro Constraints for the One-Matrix Model

In this section we review the exact constraints for the planar level free energy
F,, of the one-matrix model [93/94]. We consider the U(N) matrix model that is
related to the U(N) gauge theory with the adjoint scalar. The SO(N) and Sp(N)
matrix models are treated similarly. We derive the loop equations by considering
the Virasoro algebra of redefinitions of the matrix M. This highlights the similarity
of the algebraic structure of the loop equations with the gauge theory anomalies.

The partition function of the matrix model is

N? 5 N
Zm = €xp (—g—QFm> = /dN2M exp (——W(M)) : (6.8.1)

m m

where W (M) = Z?:Jrll 9 Tr M is the potential of the matrix model and F,, is the
matrix model free energy. The partition function is invariant under arbitrary redef-
inition of the integration variable M — f(M). These redefinitions are symmetries
of the matrix model. The generators of the redefinitions annihilate the partition

function and the free energy

4]
m,k = MM _— 8.2
Rk S (6.8.2)
They form a partial Virasoro algebra
[Rm,k:, Rm,l] = (l - k)Rm,kJrla (683)

where k,l > —1. Acting with €R,, ; on the free energy F,, we obtain the following
identity

0= ERmkum = E'Rm’k

2 Aol (6.8.4)
Im n+1 N gi k+1\i
= ——= 5/c1lM+eMJr exp ——E 22Ty (M + eMFT .
N2Z,, ( ) Gm = ( )

Expanding (6.8.4) to first order in ¢ we have

2 ol k+1 N
_ " Ym N itk oM N
Rk = szm /dM (—— E giTr M*"™" 4+ Tr i exp| —W (M) | .

gm =
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To evaluate the Jacobian we write

sMn+L oM E (st

T =
t oM oMy A M,
- (6.8.6)
. 1 OM; k 1 - l k—1
=> M| wsag, Mo => "Tr M'Tx M*.
=0 =0
Hence the variation of the free energy is
n+1 k
Rt = R e F = Y gi(Te M) =% (Tr M'Tr M), (6.8.7)
=1 =0

In the large N limit the expectation values of products U(N) invariant operators
factorize (Tr M'Tr M*=%) = (Tr M*)(Tr M*~%). Defining r,, , = %2 <Tr MF) we
rewrite (6.8.7) in the large N limit as

n+1

m k= Z 9iTm,i+k — Z T"m,iTm,k—i (688)

which takes the same form as the as the Konishi anomaly (6.3.4). The loop equations
are obtained by setting R,, r = 0. They are recursion relations for r,, ; in terms
of the first n moments ry, o, ..., 7m n—1. Equivalently, the loop equations determine
the matrix model curve y*(z) = W'2(2) + f(z) where y(z) = ‘%(Tr —L) is the
resolvent. The consistency conditions for R, ; are derived the same way as for the

gauge theory (6.3.6)
Rm,kRm,l — Rm,lRm,k = (l — k)Rm,k+l- (6.8.9)

It is easy to verify that (6.8.8)) satisfies the consistency conditions (6.8.9). Similarly
one can show that the full matrix model loop equations (6.8.7) satisfy (6.8.9).

6.9 Implications for the Dijkgraaf-Vafa conjecture

Let us discuss the implications of the above results for the relation between the
matrix models and the supersymmetric gauge theories. We will consider the U(N)
gauge theory with adjoint matter to keep the discussion concrete. The anomalous

variation of the free energy of the gauge theory under Ry (6.3.4) has the same form
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as the variation of the matrix model free energy under R,,  (6.8.2) if we identify

the expectation values [20)]

Tk =Tmk- (6.9.1)

The equations (6.3.4) Ry, = 0 can be considered as recursion relations for higher
moments 7; in terms of the first n moments 7,71 ...7,_1. Hence it is enough to
identify the first » moments in (6.9.1). The matrix model then determines the
expectation values of all chiral operators r;.

The expectation values of the moments of the scalar depend also on the gauge
symmetry breaking pattern U(N) — ®I_,U(N;) [95]. The U(1) photinos of the
U(N;) subgroups can have arbitrary vacuum expectation value. These values de-
termine all moments of the gaugino field Tr ®*W,, [96]. Hence the isolated massive
vacua come with a 2r-dimensional fermionic moduli space where r is the rank of
the low energy gauge group. In conclusion, matrix model determines the expecta-
tion values of all chiral operators up to the choice of the gauge symmetry breaking
pattern and k independent expectation values of the U(1) photino condensates.

The generalized Konishi anomaly can be viewed as the equation of the curve
y? = W"?(2) + f(2) (6.9.2)

where y is the generating function of the glueball moments [20]. This curve is iden-
tified with the matrix model curve using (6.9.1) which is the same as identifying
the polynomials f(z) = f,,(2). The results from section 6 on nonperturbative cor-
rections to the Konishi anomaly imply that the gauge theory curve does not have
nonperturbative deformations for superpotentials of degree less than 2N + 1. Hence
for these superpotentials the curve of the full gauge theory agrees with matrix model
curve. For higher degree of the superpotential the curve can get deformed. We have
identified that the only possible deformation of the curve comes from the nonper-
turbative renormalization of the superpotential. This is so because the form of the
curve is uniquely fixed from the Virasoro symmetry and we know from section 5
that the extended Virasoro symmetry is exact in the full gauge theory. For given
f(2) = fi(z), the coefficients of the superpotential are the only parameters of the

curve.
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The effective superpotential and the matrix model free energy are generating

functions for chiral operators and for the moments of M respectively

0 Tr &F
a—ngfo—< 2 >

OF,, <Tr Mk>

(6.9.3)

8gk B k
To relate Wess and F,,, we use shift symmetry to generalize the first equation
in (6.9.3) to a generating function for Tr W2®*. The effective superpotential is

invariant under shift symmetry so it can be written as

Werr = /d2¢ F(r3) (6.9.4)
for some function F. We use (6.9.4) to rewrite the first equation in (6.9.3) as
0 Tk
—F =(—). 6.9.5
5T = () (6.95)
Hence we have the relation [20]
Fn(Si,9k) = F (S, gi)lw=0 + H(5:)|w=o (6.9.6)

where H(S;) is a coupling independent function. Similar relations for the Sp(N) and
SO(N) gauge theory are given in [25] and [21]. The derivation of the relation (6.9.6)
rests on the Konishi anomaly equations and on the validity of low energy descrip-
tion of the gauge theory in terms of the glueball fields S;. The nonrenormalization
of the Konishi anomaly implies that F does not have additional nonperturbative
corrections, whence the relation (6.9.6) is valid nonperturbatively. The derivation
of the nonperturbative exactness of the Konishi anomaly is the first step in a full

proof of the Dijkgraaf-Vafa correspondence.

6.A Second Proof of the Nonrenormalization

In this appendix we give a proof of absence of nonperturbative corrections to
the extended Virasoro algebra without using the shift symmetry. This proof is appli-
cable to SO(N) and Sp(N) gauge theories which do not posses shift symmetry. We

assume from section 5 the nonrenormalization of the Virasoro subalgebra generated
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by L,’s because we did not use shift symmetry to prove it. We use the nonper-
turbatively defined Virasoro generators L,, to fix the nonperturbative definition of
the remaining generators by recursively commuting @), and R, with the raising
operator L;. Having defined the generators, let us show that the nonperturbative

corrections to the [L, Q] commutator vanish

[e e}
[Lm> Qn,a] = (TL - m)Qm+n,a + Z A2]chm,an+n*2jN,Oé' (6A1)

Jj=1
Firstly, we prove nonrenormalization of [Lg, Q. ] using mathematical induction.
The lowest dimensional correction to the commutators is A2V Q1o hence the first
step of induction is valid because the commutator of Lo with Q_1,4,...,Q2n-2.a

does not have nonperturbative corrections. Assuming the induction hypothesis is

valid for Q_1.q,...,@n,qo We calculate
Lo, Queral = — Lo, [L1, Qo]
0y %Yn+l,a] — m 05 141, &n,a
1 1
= —n 1 [[L07 Ll]y Qn,a] + m[Ll, [LO7 Qnﬂ]] (6A2)
L n,x
= (TL+1)[ ?1176_21, ] = (n+1)Qn+1,aa

where the first equality comes from the recursive definition of };,41,«, the second
from Jacobi identity, the third from the induction hypothesis and the nonrenor-
malization of the Virasoro algebra and the last equality is again from the recursive
definition of @Q41,o. We show the absence of corrections to the remaining [L, Q]
commutators by commuting them with Ly and then using Jacobi identity and the

commutators we showed above to be nonrenormalized

[L07 [Lma Qn,oz” = HL0> Lm]7 Qn,a] + [Lma [L07 Qn,a]] = (m + n) [Lma Qn,a]~ (6'A'3)

But the [L,,, Qn,o] commutator is a linear combination of Q) o’s which are eigen-
vectors of the adjoint action of Ly with eigenvalue k, whence the commutator is
proportional to Qp,4n,o S0 all corrections to the commutator vanish. Let us show

the absence of corrections to the [L, R] commutator

[ee) oo n+1
[Lma Rn] = (n_m)Rm+n+Z AQ]NC%q,’an—&—n—QjN“’_Z Z AQJNgid:%ian—kn—H—QjN-
J=1 7j=11i=1

(6.A.4)
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We commute (6.A.4) with Q)  to get
[Ql,aa [Lm7 Rn]] + [Lma [Rna Ql,a“ + [R’n7 [Ql,a; Lm]] —

oo n+1

= [Quas Y > AN gdd  Linynsiooin] =
it (6.A.5)
oo n+1
= Z Z A23Ngi(m +n — l + Z — QjN)d?fian—l—n—l—i—i—l—2jN,a = 0
j=1 i=1

In simplifying (6.A.5) we used the [L, Q] commutator which we proved above to
be nonrenormalized and the [R,Q] = 0 commutator. Clearly, the only way to
satisfy the Jacobi identity (6.A.5) is that dﬁnjn = 0. All g; dependent corrections
vanish. The remaining corrections have the same algebraic structure as the cor-
rections (6.A.5) to the [L, Q] commutator so the nonrenormalization proof for that
commutator works for the [L, R] commutator as well.

It remains to consider the {@, @} anticommutator. The nonperturbative cor-

rections are proportional to €,z

{Qa,m; Q,@,n} = - eaﬂ(n - m)Rm+n — €a,p ZAszan’an—l—n—ZjN
= (6.A.6)

oo n+1l

2jN _ 7ij
— €a,p Z Z A gz’dinj,anJrnﬂ'—ng.

j=1 i=1

Consider the following Jacobi identity
0= [L'rm {Qo,m Qn,ﬁ}] + {QO,on [Qn,ﬁ7 Lm]} - {Qn,ﬁy [Lm; QO,a]} -

)
—€a,p Z AQjNRm—I—TL—QjN[(n —-—m-— 2]]V)c(j),n + (m - n)cé,m+n - mczz,m]
7j=1

oo n+1

—€ap > Y NN gL yicoin[(n —m+i— 2iN)dgI, + (m —n)dg), ., —mdy?,].
J=1i=1

(6.A.7)
Setting m = 0 we get c%’n = 0 and déjn = 0 unless ¢ = 25 N. Substituting this back
into (6.A.7) we see that all ¢/, ,, vanish and d};/,, = 0 unless i = 2jN. To prove that

the remaining corrections vanish we evaluate the R, (), ) Jacobi identity

[R()a {Qm,aa Qn,ﬁ}] + {Qm,ay [Qn,ﬂa RO]} - {Qn,ﬁ, [R07 Qm,a]} -
[ROv {Qm,av Qn,ﬁ}] -

—¢€a,5[Ro, Z AN goindD, o Lingn] = —€ap Z AN goin(m+n)d,  Rypgn = 0.
>0 i>0

(6.A.8)
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Hence, dJ, , = dz7V7 = 0 and the {Q, Q} anticommutator is nonrenormalized.
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