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Abstract

In this thesis we study different aspects of four dimensional field theories. In the

first chapter we give introduction and overview of the thesis. In the second chapter

we review the connection between perturbative Yang-Mills and twistor string the-

ory. Inspired by this, we propose a new way of constructing Yang-Mills scattering

amplitudes from Feynman graphs in which the vertices are off-shell continuations

of the tree level MHV amplitudes. The MHV diagrams lead to simple formulas

for tree-level amplitudes. We then give a heuristic derivation of the diagrams from

twistor string theory.

In the third chapter, we explore the twistor structure of scattering amplitudes

in theories for which a twistor string theory analogous to the one for N = 4 gauge

theory has not yet been proposed. We study the differential equations of one-loop

amplitudes of gluons in gauge theories with reduced supersymmetry and of tree

level and one-loop amplitudes of gravitons in general relativity and supergravity.

We find that the scattering amplitudes localize in twistor space on algebraic curves

that are surprisingly similar to the N = 4 Yang-Mills case.

In the next chapter we propose tree-level recursion relations for scattering am-

plitudes of gravitons. We use the relations to derive simple formulas for all am-

plitudes up to six gravitons. We prove the relations for MHV and next-to-MHV

amplitudes and the eight graviton amplitudes.

In the last two chapters, we concentrate on the nonperturbative aspects of

N = 1 gauge theories. Firstly, we find the complete set of relations of the chiral op-

erators of supersymmetric U(N) gauge theory with adjoint scalar. We demonstrate

exact correspondence between the solutions of the chiral ring and the supersymmet-

ric vacua of the gauge theory. We discuss the gaugino condensation in the vacua.

Finally, we go on to study the nonperturbative corrections to the Konishi anomaly

relations. We show that the Wess-Zumino consistency conditions of the chiral ro-

tations of the matter field imply the absence of the corrections for a wide class of

superpotentials.
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1. Introduction

Current physics theories are based on quantum mechanics and general rel-

ativity. At energies far below the Planck scale, gravity is negligible. The re-

maining three forces are described in terms of quantum gauge theory with group

SU(3) × SU(2) × U(1). The fourth force, gravity, is described by a massless spin

two field, the graviton. Early attempts at quantizing gravity led to divergences and

ill-defined results. It is believed that general relativity cannot be well defined as a

field theory.

These theories have been reconciled in string theory. String theory is the lead-

ing candidate for a unified description of the physical world. It naturally incorpo-

rates gravity, as the spectrum of strings has a massless spin two excitation. The

critical superstring theories are defined on a ten-dimensional manifold. To obtain

the four dimensional world, one compactifies string theory on a six dimensional

Calabi-Yau manifold.

Although our understanding of string phenomenology is very incomplete, we

have a lot of confidence in string theory coming from another direction. String

theory teaches us new lessons about established physical theories, like gauge theories

and general relativity. Thanks to it, we have learned about black holes, confinement,

chiral symmetry breaking and other problems.

Much of this comes from understanding of D-branes. The low energy effective

theory of D-branes is gauge theory. This observation lies at the heart of current

studies of gauge theories using string theory. The open string excitations living

on the D-brane worldvolume describe the D-brane dynamics. At low energies, one

keeps only the massless modes. To study gauge theories one usually goes to a corner

of parameter space in which the massless closed string modes, that is gravitons,

decouple and we are left with open string modes only. Maldacena has implemented

this in his AdS/CFT duality. Here, the strongly coupled gauge theory is dual to

1



1 Introduction 2

weakly coupled string theory, which can be approximated by supergravity. This

has led to an improved understanding of confinement, chiral symmetry breaking

and other aspects of gauge theory.

In twistor string theory we have a novel implementation of gauge string duality.

The theory of open strings is a gauge theory of a different kind. Also it lives in

six dimensions. This is so called holomorphic Chern-Simons gauge theory, whose

gauge fields correspond to fluctuations of holomorphic gauge bundles on the target

space. Ward’s transform encodes the anti-selfdual gauge configurations in terms of

holomorphic bundles on twistor space. To get away from selfduality, one introduces

D-instantons that wrap holomorphic curves. As we will see, this leads to novel

ways of computing the perturbative S matrix of gauge theory. These scattering

amplitudes are useful for eliminating QCD background at LHC, in order to find

new physics beyond standard model.

The study of twistor structure of scattering amplitudes has inspired new de-

velopments in perturbative Yang-Mills theory itself. At tree level, this has lead

to recursion relations for on-shell amplitudes [7]. These recursion relations rest on

basic properties of perturbation theory like the factorization of amplitudes. Hence,

it is not surprising to find out that they apply to various field theories, including

scalar field theories and even perturbative gravity.

Another way to embed four dimensional gauge theories in string theory is as

low energy effective field theories of D-branes wrapped on cycles in Calabi-Yau

threefolds. This has led to an understanding of dynamics of various N = 1 gauge

theories. Dijkgraaf and Vafa conjectured that holomorphic data of the gauge theo-

ries can be calculated from an auxiliary matrix model. Cachazo, Douglas, Seiberg

and Witten gave a field theory derivation of the results that rests on the analysis of

the anomalies and the ring of chiral operators of the field theory. Surprisingly, the

chiral ring gives a full description of the low energy nonperturbative vacua.

In the rest of the Introduction, we will discuss each of the remaining chapters

in more detail, stressing the general lessons, rather than the particulars for which

the reader is referred to the chapters.
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1.0.1 Perturbative Gauge Theory and Twistor String Theory

The twistor space is roughly the space of lightrays in Minkowski space. It was

proposed by Penrose [8] in an attempt to address the foundational issues of quantum

mechanics. He observed that massless fields have natural description in twistor

space in terms of certain cohomology classes. For gauge theory, this has been later

generalized by Ward [9] who showed that anti-selfdual gauge field configurations

correspond to holomorphic vector bundles on twistor space. For gravity, there is a

similar construction due to Penrose [10], that encodes anti-selfdual spacetimes in

terms of deformations of the complex structure of the twistor space.

Perhaps the main open question in the twistor programme was the description

of interactions. In Minkowski space, the standard way to account for interactions is

to start with free fields and introduce the S matrix, which is essentially the transition

operator from free field configurations in the far past to a free field configurations in

the far future. The interactions happen in the middle in a localized region of space

time. One accounts for them by doing a perturbative expansion of the S matrix.

This is usually packaged in terms of Feynman diagrams, in which the propagators

represent free field propagation between the vertices that represent local interactions

of the fields. By twistor correspondence a point in Minkowski space is related to a

sphere in twistor space, the celestial sphere of all directions in which a lightray can

travel from the point. Hence, the interactions between fields in twistor space are

related to two dimensional surfaces rather than zero dimensional points.

This hint was taken up by Witten [11] who proposed that these two dimensional

surfaces correspond to worldsheets of strings. His proposal is specific to a particular

field theory, the maximally supersymmetric Yang-Mills theory. The string theory

dual is the open string topological B-model enriched with D-instantons. The free

fields of the gauge theory are related to the open strings. The interactions come

from the D-strings on which the open strings end. The D-strings wrap holomorphic

curves, simplest of which is the celestial sphere that gets related by twistor transform

to points in Minkowski space.

In string theory, interactions are organized differently from a local field theory.

Hence, evaluating the D-instanton contribution from string theory led to new ways

of computing the perturbative S matrix. This has been successfully carried out

at tree level. One obtains a new Feynman diagrammatic expansion of the scatter-

ing amplitudes [1], which in twistor space corresponds to a collection of D-strings
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wrapping the celestial spheres with open string connecting them into a tree graph.

The more complicated holomorphic curves do not have a natural description in

Minkowski space, hence evaluating them does not have a simple interpretation in

the gauge theory and is the strongest evidence so far that the twistor string theory

is correct [12].

Despite the successes of the twistor string theory at tree level, there are many

open questions. The most pressing one is that the B-model has besides the open

strings also closed strings. While the open strings give the fields of N = 4 gauge

theory, the closed strings give the fields of N = 4 conformal gravity. This is some-

what unwelcome, since conformal gravity theories are generally considered to be

unphysical. One would hope to find a string theory that is dual to Yang-Mills, since

Yang-Mills theory is known to be consistent without conformal supergravity.

1.0.2 Twistor Structure of Scattering Amplitudes

One of the most general predictions of twistor string theory is that the inter-

actions come from strings that wrap curves in twistor space. We can study this

prediction even if we do not have a proper formulation of the twistor string theory.

The curves in questions are algebraic curves of a degree and genus that depends

on the amplitudes. The conditions for a scattering amplitude to be supported on the

curve are polynomial equations in the twistor coordinates of the external particles.

After Fourier transform into Minkowski space, these become differential equations

acting on the scattering amplitudes.

For one-loop MHV amplitudes in N = 4 Yang-Mills theory, the differential

equations studied in [2] agree with the twistor string picture after one takes into

account the holomorphic anomaly of the differential operators [3].

For Yang-Mills theories with reduced supersymmetry we do not have a twistor

string proposal. One can get hints of a possible twistor string by studying the differ-

ential equations that the amplitudes satisfy. Our results are surprisingly similar to

the N = 4 case. We find that the amplitudes are supported on curves whose degree

and genus is related to the helicities of the external particles in essentially the same

way as in N = 4 Yang-Mills theory. Perhaps the most important difference in the

N = 0 case is that the one-loop amplitude with all gluons of positive helicity must

be included as a new building block alongside with the MHV amplitude.
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We also study the twistor structure of gravity amplitudes. It has been known

that graviton amplitudes, just like gluon amplitudes, exhibit remarkable simplicity

that cannot be expected from textbook recipes for computing them. The tree level

n graviton amplitudes vanish if more than n − 2 gravitons have the same helicity.

The maximally helicity violating (MHV) amplitudes are thus, as in Yang-Mills case,

those with n − 2 gravitons of one helicity and two of the opposite helicity. Some

of this simplicity can be explained by relating the graviton amplitudes to gluon

amplitudes via the Kawai, Lewellen and Tye (KLT) relations [13]. These express the

graviton amplitudes as simple sums of products of gluon amplitudes and momentum

invariants [14].

We find that the twistor structure of the graviton amplitudes is remarkably

similar to the twistor structure of gluon amplitudes. One difference is that the

amplitudes are generically supported in a higher order neighborhood of the curves.

Similar behavior was observed for closed strings in the B-model which give the

conformal supergravity amplitudes [15].

1.0.3 Tree Level Recursion Relations For Gravity Amplitudes

The discovery of twistor string theory has stimulated renewed progress in com-

puting scattering amplitudes. Among other things, a new set of recursion relations

for tree-level amplitudes of gluons have been recently introduced in [7]. A straight-

forward application of these recursion relations gives new and simple forms for many

amplitudes.

A proof of the recursion relations was given in [16]. The proof rests only on

generic properties of perturbation theory like the fact that the only poles of tree level

amplitudes come from the Feynman propagators and that the tree level amplitudes

are rational functions of the kinematic data of the external particles. So one would

expect that it extends to other field theories.

In chapter four, we generalize the recursion relations of [7] to tree level am-

plitudes of gravitons. To write down the recursion relations, we single out two

gravitons. Then the recursion relations can be schematically written as follows

An =
∑

I,h

Ah
I

1
P 2
I

A−h
J , (1.0.1)
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where the sum is over all channels that divide the external particles into two sets

I and J , such that the marked gravitons are in different groups. The momenta

of the marked gravitons and of the intermediate graviton are shifted, so that the

subamplitudes are on-shell.

The recursion relations lead to new simple formulas for graviton amplitudes,

which explains some of the simplicity of graviton amplitudes that was mentioned in

previous subsection. We use them to compute all amplitudes up to six gravitons.

The recursion relations are a precise version of the statement that tree-level

amplitudes are uniquely determined by their singularity structure. The tree level

amplitudes have factorization, collinear and soft singularities. The recursion rela-

tions construct the scattering amplitude from the factorization singularities in the

channels that separate the marked gravitons.

There could be ambiguities in the amplitudes that are not fixed by the fac-

torization properties. The ambiguity would have to be a function that is free of

singularities, that is a polynomial in the momentum invariants. Yang-Mills ampli-

tudes of n gluons have dimention 4 − n. Hence for n ≥ 5 gluons, the amplitudes

have negative dimension so they cannot have a polynomial ambiguity, because a

polynomial has positive dimension.

For gravitons, all tree-level amplitudes have dimension two, so there could be

a polynomial ambiguity in the recursion relations. We were able to prove it absence

for some classes of scattering amplitudes which suggests that the recursion relations

are valid in general.

1.0.4 Chiral Rings, Vacua of SUSY Gauge Theories

In chapter five we shift our focus from perturbative to nonperturbative aspects

of gauge theories. We consider N = 1 U(N) gauge theories with adjoint matter.

These gauge theories can be embedded into string theory by wrapping N D5-branes

around a two cycle in a local Calabi-Yau manifold. The holomorphic data, that is

the F-terms, of the gauge theory can be related to topological observables in the

string theory. These in turn are computed from the topological B-model. In the

special geometry that we consider, the B-model reduced to a holomorphic matrix

model [17] of a single hermitian N ×N matrix. The bosonic potential of the matrix

model gets related to the superpotential of the adjoint matter field of the gauge

theory.
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Cachazo, Douglas, Seiberg and Witten gave a field theory derivation of this

result. They studied the chiral operators, which in a sense constitute the topological

part of the gauge theory. Indeed, in a supersymmetric vacuum, the chiral operators

are independent of their positions and correlation functions of single trace operators

factorize. Since the product of chiral operators is chiral, one can consider the ring of

chiral operators. The structure of the ring is constrained by various relations. Some

of these come from the Konishi anomalies of the chiral rotations of the matter field

Φ → eiαΦ. Further come from the N = 2 parent theory in which the superpotential

of the matter field is turned off.

It has been observed in two dimensions that the ring of chiral operators deter-

mines the supersymmetric vacuum structure of the theory. This has been shown

in [18] for the N = 2 superconformal field theories and in [19] for the CPN−1

supersymmetric sigma model.

In four dimensions, the first example of this correspondence came up in [20]

in the case of pure N = 1 U(N) gauge theory. This theory has N low energy

confining vacua that break the Z2N chiral symmetry down to Z2. Here, the only

operator in the chiral ring is the gaugino bilinear S = Tr WαWα. Classically, it

satisfies SN = 0. This relation receives one-instanton corrections which deform it

to

SN = Λ3N . (1.0.2)

Each of the solutions of this equation correspond to a vacuum of the gauge theory.

In chapter five, we extend these considerations to the N = 1 gauge theories

with adjoint scalar. We study the relations of the chiral ring and find a complete set

of the relations. We show that they completely determine the structure of the chiral

ring. As in the pureN = 1 case, each vacuum corresponds to an idempotent element

of the chiral ring. The rank of the low-energy group is fixed by the dimension of

the fermionic part of the operator. We also study generalizations of the equation

(1.0.2). Here, the classical equation gets deformed to SN = P (Φ)Λ2N , where P (Φ)

is a degree n polynomial in Φ that depends on the superpotential.
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1.0.5 Nonperturbative Exactness of Konishi Anomaly

As we have just seen, the chiral ring of four dimensional N = 1 gauge theories

with adjoint matter determines the nonperturbative structure of the supersymmet-

ric vacua. To put this argument on a firmer footing, it is necessary to show that

the chiral ring relations hold nonperturbatively. A simple argument shows that

the Konishi anomalies cannot receive perturbative corrections. The question of

nonperturbative corrections can be addressed with the help of the Wess-Zumino

consistency conditions that constrain the anomalies.

In the case Konishi anomalies, the rigidity of the Lie algebra of chiral rota-

tions implies that the consistency conditions do not receive nonperturbative correc-

tion. In chapter six, we study the consistency conditions and show that they imply

nonrenormalization of the Konishi anomalies for a wide class of examples, namely

for all gauge theories with a superpotential of degree less than or equal 2l where

2l = 3c(Adj)− c(M) is the one-loop beta function coefficient.

For superpotential of degree higher than 2l, nonperturbative corrections are

expected due to ambiguities in the definition of the highly nonrenormalizable oper-

ators like Tr Φn [21], [22] and [23]. The Wess-Zumino consistency conditions can be

applied anyway, and we show that the strongly constrain the form of the nonper-

turbative corrections, so that the corrections can be absorbed into the redefinition

of the superpotential. Hence, after the redefinition, these theories have undeformed

chiral ring relations as well.

This proof can be applied to other gauge theories as long as the algebra of chiral

rotations of the matter fields forms an extension of the partial Virasoro algebra. As

an illustration, we study the case of SO(N) and Sp(N) gauge theory with matter

in the symmetric or antisymmetric representation. The case of Sp(N) gauge theory

with antisymmetric matter is especially interesting in the light of a puzzle raised in

the study of the related matrix model in [24], [25] and [26]. Our result confirms that

the Dijgraaf-Vafa correspondence works for these theories, as has been demonstrated

in [27] and [21].



2. Twistor String Theory and Perturbative Yang-Mills

2.1 Introduction

The idea that a gauge theory should be dual to a string theory goes back to ’t

Hooft [28]. ’t Hooft considered U(N) gauge theory in the large N limit while keeping

λ = g2
Y MN fixed. He observed that the perturbative expansion of Yang-Mills can

be reorganized in terms of Riemann surfaces, which he interpreted as an evidence

for a hypothetical dual string theory with string coupling gs ∼ 1/N.

In 1997, Maldacena proposed a concrete example of this duality [29]. He con-

sidered the maximally supersymmetric Yang-Mills theory and conjectured that it is

dual to type IIB string theory on AdS5×S5. This duality led to many new insights

from string theory about gauge theories and vice versa. At the moment, we have

control over the duality only for strongly coupled gauge theory. This corresponds to

the limit of large radius of AdS5×S5 in which the string theory is well described by

supergravity. However, QCD is asymptotically free, so we would also like to have a

string theory description of a weakly coupled gauge theory.

In weakly coupled field theories, the natural object to study is the perturbative

S matrix. The perturbative expansion of S matrix is conventionally computed using

Feynman rules. Starting from early studies of de Witt [30], it was observed that

the scattering amplitudes show simplicity that is not apparent from the Feynman

rules. For example the maximally helicity violating amplitudes can be expressed as

simple holomorphic functions.

Recently, Witten proposed a string theory that is dual to a weakly coupled

N = 4 gauge theory [11]. The perturbative expansion of the gauge theory is related

to D-instanton expansion of the string theory. The string theory in question is the

topological open string B-model on a Calabi-Yau supermanifold CP3|4, which is a

supersymmetric generalization of Penrose’s twistor space.

9
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At tree level, evaluating the instanton contribution has led to new insights

about scattering amplitudes. ‘Disconnected’ instantons give MHV diagram con-

struction of the amplitudes in terms of Feynman diagrams with vertices that are

suitable off-shell continuations of the MHV amplitudes [1]. The ‘connected’ instan-

ton contributions express the amplitudes as integrals over the moduli space of holo-

morphic curves in twistor space [12]. Surprisingly, the MHV diagram construction

and the connected instanton integral can be related via localization on the moduli

space [31].

Despite the successes of the twistor string theory at tree level, there are still

many open questions. The most pressing issue is perhaps the closed strings that

give N = 4 conformal supergravity [15]. At tree level, it is possible to recover the

Yang-Mills scattering amplitudes by extracting the single-trace amplitudes. At loop

level, the single trace gluon scattering amplitudes receive contributions from internal

supergravity states, so it would be difficult to extract the Yang-Mills contribution

to the gluon scattering amplitudes. Since, N = 4 Yang-Mills theory is consistent

without conformal supergravity, it is likely that there exists a version of the twistor

string theory that is dual to pure Yang-Mills theory. Indeed, the MHV diagram

construction that at tree level has been derived from twistor string theory seems to

compute loop amplitudes as well [32].

The study of twistor structure of scattering amplitudes has inspired new de-

velopments in perturbative Yang-Mills theory itself. At tree level, this has lead

to recursion relations for on-shell amplitudes [7]. At one loop, unitarity techniques

[33,34] have been used to find new ways of computing the N = 4 [35] and N = 1

[36] Yang-Mills amplitudes.

In these lectures we will discuss aspects of the twistor string theory. Along

the way we will learn lessons about Yang-Mills scattering amplitudes. The string

theory sheds light on Yang-Mills perturbation theory and leads to new methods

for computing scattering amplitudes. In the last section, we will describe further

developments in perturbative Yang-Mills.
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2.2 Helicity Amplitudes

2.2.1 Spinors

Recall1 that the complexified Lorentz group is locally isomorphic to

SO(3, 1,C) ∼= Sl(2,C)× Sl(2,C), (2.2.1)

hence the finite dimensional representations are classified as (p, q) where p and q are

integer or half-integer. The negative and positive chirality spinors transform in the

representations (1/2, 0) and (0, 1/2) respectively. We write generically λa, a = 1, 2

for a spinor transforming as (1/2, 0) and λ̃ȧ, ȧ = 1, 2 for a spinor transforming as

(0, 1/2).

The spinor indices of type (1/2, 0) are raised and lowered using the antisym-

metric tensors εab and εab obeying ε12 = 1 and εacεcb = δa
b

λa = εabλb λa = εabλ
b. (2.2.2)

Given two spinors λ and λ′, both of negative chirality, we can form the Lorentz

invariant product

〈λ, λ′〉 = εabλ
aλ′b. (2.2.3)

It follows that 〈λ, λ′〉 = −〈λ′, λ〉, so the product is antisymmetric in its two variables.

In particular, 〈λ, λ′〉 = 0 implies that λ equals λ′ up to a scaling λa = cλ′a.

Similarly, we lower and raise the indices of positive chirality spinors with the

antisymmetric tensor εȧḃ and its inverse εȧḃ. For two spinors λ̃ and λ̃′, both of

positive chirality we define the antisymmetric product

[λ̃, λ̃′] = −[λ̃′, λ̃] = εȧḃλ̃
ȧλ̃ḃ. (2.2.4)

A vector representation of SO(3, 1,C) is the (1/2, 1/2) representation. Thus a

momentum vector pµ, µ = 0, . . . , 3 can be represented as a “bi-spinor” paȧ with one

spinor index a and ȧ of each chirality. The explicit mapping from pµ to paȧ can be

1 The sections 2.2−2.4 are based on lectures given by E. Witten at PITP, IAS Summer

2004
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made using the chiral part of the Dirac matrices. In signature + − −−, one can

take the Dirac matrices to be

γµ =
(

0 σµ

σµ 0

)
, (2.2.5)

where σµ = (1, ~σ), σµ = (1,−~σ) with ~σ being the 2 × 2 Pauli matrices. For any

vector, the relation between pµ, and paȧ is

paȧ = pµσµ
aȧ = p0 + ~σ · ~p. (2.2.6)

It follows that,

pµpµ = det(paȧ). (2.2.7)

Hence, pµ is lightlike if the corresponding determinant is zero. This is equivalent

to the rank of the 2 × 2 matrix paȧ being less or equal to one. So pµ is lightlike

precisely, when it can be written as a product

paȧ = λaλ̃ȧ (2.2.8)

for some spinors λa and λ̃ȧ. For a given null vector p, the spinors λ and λ̃ are unique

up to a scaling

(λ, λ̃) → (tλ, t−1λ̃) t ∈ C∗. (2.2.9)

There is no continuous way to pick λ as a function p. The λ’s form a Hopf line

bundle over the sphere S2 of directions of the lightlike vector p.

For complex momenta, the spinors λa and λ̃ȧ are independent complex vari-

ables, each of which parameterizes a copy of CP1. Hence, the complex lightcone

pµpµ = 0 is the connected manifold CP1 × CP1.

For real null momenta in Minkowski signature +−−−, we can fix the scaling

up to a Z2 by requiring λa and λ̃ȧ to be complex conjugates

λ
ȧ

= ±λ̃ȧ. (2.2.10)

Hence, the negative chirality spinors λ are conventionally called ‘holomorphic’ and

the positive chirality ‘anti-holomorphic.’ In (2.2.10) the + is for a future pointing

null vector pµ, and − is for a past pointing pµ.

One can also consider other signature. For example in the signature + +−−,

the spinors λ and λ̃ are real and independent. Indeed, with signature + + −−,
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the Lorentz group is SO(2, 2,R), which is locally isomorphic to Sl(2,R)× Sl(2,R).

Hence, the spinor representations are real.

Let us remark, that if p and p′ are two lightlike vectors given by paȧ = λaλ̃ȧ

and p′aȧ = λ′aλ̃′ȧ then their scalar product can be expressed as

2p · p′ = 〈λ, λ′〉[λ̃, λ̃′]. (2.2.11)

Given p, the additional physical information in λ is equivalent to a choice of

wavefunction of a helicity −1/2 massless particle with momentum p. To see this,

we write the chiral Dirac equation for a negative chirality spinor ψa

0 = iσµ
aȧ∂µψa. (2.2.12)

A plane wave ψa = ρa exp(ip · x) satisfies this equation only if paȧρa = 0. Writing

paȧ = λaλ̃ȧ, we get λaρa = 0, that is ρa = c ·λa for a constant c, hence the negative

chirality fermion has wavefunction

ψa = cλa exp(ixaȧλaλ̃ȧ). (2.2.13)

Similarly, λ̃ defines a wavefunction for a helicity +1/2 fermion ψȧ = cλ̃ȧ exp(ixaȧλaλ̃ȧ).

There is an analogous description of wavefunctions of massless particles of

spin ±1. Usually, we describe massless gluons with their momentum vector pµ and

polarization vector εµ. The polarization vector obeys the constraint

pµεµ = 0 (2.2.14)

that represents the decoupling of longitudinal modes and is subject to the gauge

invariance

εµ → εµ + wpµ, (2.2.15)

for any constant w. Suppose that instead of being given only a lightlike vector paȧ,

one is also given a decomposition paȧ = λaλ̃ȧ. Then we have enough information

to determine the polarization vector up to a gauge transformation. For a positive

helicity gluon, we take

ε+aȧ =
µaλ̃ȧ

〈µ, λ〉 , (2.2.16)
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where µ is any negative helicity spinor that is not a multiple of λ. To get a negative

helicity polarization vector, we take

ε−aȧ =
λaµ̃ȧ

[λ̃, µ̃]
, (2.2.17)

where µ̃ is any positive helicty spinor that is not a multiple of λ̃. We will explain

the expression for the positive helicity vector. The negative helicity case is similar.

Clearly, the constraint

pµε+µ = paȧε+aȧ = 0 (2.2.18)

holds because λ̃ȧλ̃ȧ = 0. Moreover, ε+ is also independent of µ up to a gauge

transformation. To see this, notice that µ lives in a two dimensional space that is

spanned with λ and µ. Hence, any change in µ̃ is of the form

δµ = αµ + βλ (2.2.19)

for some parameters α and β. The polarization vector (2.2.16) is invariant under

the α term, because this simply rescales µ and ε+aȧ is invariant under the rescaling

of µ. The β term amounts to a gauge transformation of the polarization vector

δε+aȧ = β
λaλ̃ȧ

〈µ, λ〉 . (2.2.20)

Under the scaling (λ, λ̃) → (tλ, t−1λ̃), t ∈ C∗ the polarization vectors scale like

ε− → t+2ε− ε+ → t−2ε+. (2.2.21)

This could have been anticipated, since λ̃ gives the wavefunction of a helicity +1/2

particle so a helicity +1 polarization vector should scale like λ̃2. Similarly, the

helicity −1 polarization vector scales like λ2.

To show more directly that ε+ describes a massless particle of helicity +1, we

must show that the corresponding linearized field strength Fµν = ∂µAν − ∂νAµ

is anti-selfdual. Indeed, the field strength written in a bispinor notation has the

decomposition

Faȧbḃ = εabf̃ȧḃ + εȧḃfab, (2.2.22)

where fab and f̃ȧḃ are the selfdual and anti-selfdual part of F. Substituting Aaȧ =

ε+aȧ exp(ixaȧλaλ̃ȧ) we find that Faȧbḃ = εabλ̃ȧλ̃ḃ exp(ixaȧλaλ̃ȧ).
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So far, we have seen that the wavefunction of a massless particle with helicity

h scales under (λ, λ̃) → (tλ, t−1λ̃) as t−2h if |h| ≤ 1. This is true for any h, as can

be seen from the following argument. Consider a massless particle moving in the ~n

direction. Then a rotation by angle θ around the ~n axis acts on the spinors as

(λ, λ̃) → (e−iθ/2λ, e+iθ/2λ̃). (2.2.23)

Hence, λ, λ̃ carry − 1
2 or + 1

2 units of angular momentum around the ~n axis. Clearly,

a massless particle of helicity h carries h units of angular momentum around the ~n

axis. Hence the wavefunction of the particle gets transformed as ψ → eihθψ under

the rotation around ~n axis. Hence, the wavefunction obeys the auxiliary condition

(
λa ∂

∂λa
− λ̃ȧ ∂

∂λ̃ȧ

)
ψ(λ, λ̃) = −2hψ(λ, λ̃). (2.2.24)

Clearly, this constraint holds for wavefunctions of massless particles of any spin.

The spinors λ, λ̃ give us a convenient way of writing the wavefunction of massless

particle of any spin, as we have seen in detail above for particles with |h| ≤ 1.

2.2.2 Scattering Amplitudes

Let us consider scattering of massless particles in four dimensions. Consider

the situation with n particles of momenta p1, p2, . . . , pn. For scattering of scalar

particles, the initial and final states of the particles are completely determined by

the momenta. The scattering amplitude is simply a function of the momenta pi,

Ascalar(p1, p2, . . . , pn). (2.2.25)

In fact, by Lorentz invariance, it is a function of the Lorentz invariants products

pi · pj only.

For particles with spin, the scattering amplitude is a function of both the

momenta pi and the wavefunctions ψi

A(p1, ψ1; . . . ; pn, ψn). (2.2.26)

Here, A is linear in each of the wavefunctions ψi. The description of ψi depends on

the spin of the particle. As we have seen explicitly above in the case of massless
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particles of spin 1
2 or 1, the spinors λ, λ̃ give a unified description of the wavefunc-

tions of particles with spin. Hence, to describe the wavefunctions, we specify for

each particle the helicity hi and the spinors λi and λ̃i. The spinors determine the

momenta pi = λiλ̃i and the wavefunctions ψi(λi, λ̃i, hi). So for massless particles

with spin, the scattering amplitude is a function of the spinors and helicities of the

external particles

A(λ1, λ̃1, h1; . . . ; λn, λ̃n, hn). (2.2.27)

In labelling the helicities we take all particles to be outgoing. To obtain an amplitude

with incoming particles as well as outgoing particles, we use crossing symmetry, that

relates an incoming particle of one helicity to an outgoing particle of the opposite

helicity.

It follows from (2.2.24) that the amplitude obeys the conditions

(
λa

i

∂

∂λa
i

− λ̃ȧ
i

∂

∂λ̃ȧ
i

)
A(λi, λ̃, hi) = −2hiA(λi, λ̃i, hi) (2.2.28)

for each particle i, with helicity hi. In summary, a general scattering amplitude of

massless particles can be written as

A = (2π)4δ4

(∑

i

λa
i λ̃ȧ

i

)
A(λi, λ̃i, hi), (2.2.29)

where we have written explicitly the delta function of momentum conservation.

+

_
+

_+

T
T

T

T
T

2

1
n

4

3

Fig. 1: A scattering amplitude of n gluons in Yang-Mills theory. Each

gluon comes with the color factor Ti, spinors λi, λ̃i and helicity label hi =

±1.
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2.2.3 Maximally Helicity Violating Amplitudes

To make the discussion more concrete, we consider the tree level scattering of n

gluons in Yang-Mills theory. These amplitudes are of phenomenological importance.

The multi-jet production at LHC will be dominated by tree level QCD scattering.

Consider the Yang-Mills theory with gauge group U(N). Recall that the tree

level scattering amplitudes are planar and lead to single trace interactions. In an

index loop, the gluons are attached in a definite cyclic order, say 1, 2, . . . , n. Then

the amplitude comes with a group theory factor Tr T1T2 . . . Tn. It is sufficient to

give the amplitude with one cyclic order. The full amplitude is obtained from this

by summing over the cyclic orders, to restore Bose symmetry

A = gn−2(2π)4δ4

(
n∑

i

pi

)
A(1, 2, . . . , n)Tr (T1T2 . . . Tn) + permutations.

(2.2.30)

In the rest of the thesis, we will always consider gluons in the cyclic order 1, 2, . . . , n

and we will omit the group theory factor and the delta function of momentum

conservation in writing the formulas. Hence, we will consider the ‘reduced color

ordered amplitudes’ A(1, 2, . . . , n).

The scattering amplitude with n outgoing gluons of the same helicity vanishes.

So does the amplitude, for n ≥ 3 with n − 1 outgoing gluons of one helicity and

one of the opposite helicity. The first nonzero amplitude, the maximally helicity

violating (MHV) amplitude has n − 2 gluons of one helicity and two gluons of the

other helicity. Suppose that gauge bosons r, s have negative helicity and the rest

of gluons have positive helicity. Then the tree level amplitude, stripped of the

momentum delta function and the group theory factor, is

A =
〈λr, λs〉4∏n

k=1〈λk, λk+1〉 . (2.2.31)

Note, that the amplitude has the correct homogeneity in each variable. It is homo-

geneous of degree −2 in λi for positive helicity gluons; and of degree −2 for negative

helicity gluons i = r, s as required by the auxiliary condition (2.2.28). The ampli-

tude A is sometimes called ‘holomorphic’ because it depends on the ‘holomorphic’

spinors λi only.
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2.3 Twistor Space

2.3.1 Conformal Invariance of Scattering Amplitudes

Before discussing twistor space, let us show the conformal invariance of the

MHV tree level amplitude. Firstly, we need to construct representation of the con-

formal group generators in terms of the spinors λ, λ̃. We will consider the conformal

generators for a single particle. The generators of the n-particle system are given

by the sum of the generators over the n particles.

Some of the generators are clear. The Lorentz generators are the first order

differential operators

Jab =
i

2

(
λa

∂

∂λb
+ λb

∂

∂λa

)

J̃ȧḃ =
i

2

(
λ̃ȧ

∂

∂λ̃ḃ
+ λ̃ḃ

∂

∂λ̃ȧ

) (2.3.1)

The momentum operator is the multiplication operator

Paȧ = λaλ̃ȧ. (2.3.2)

The remaining generators are the dilatation operator D and the generator of spe-

cial conformal transformation Kaȧ. The commutation relations of the dilatation

operator are

[D,P ] = iP [D,K] = −iK, (2.3.3)

so P has dimension +1 and K has dimension −1. We see from (2.3.2) that it is

natural to take λ and λ̃ to have dimension 1/2. Hence, a natural guess for the

special conformal generator respecting all the symmetries is

Kaȧ =
∂2

∂λa∂λ̃ȧ
. (2.3.4)

We find the dilatation operator D from the closure of the conformal algebra. The

commutation relation

[Kaȧ, P bḃ] = −i
(
δa

bJ̃ȧ
ḃ + δȧ

ḃJa
b + δa

bδȧ
ḃD

)
(2.3.5)

determines the dilatation operator to be

D =
i

2

(
λa ∂

∂λa
+ λ̃ȧ ∂

∂λ̃ȧ
+ 2

)
. (2.3.6)
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Now, let us verify that the MHV amplitude

A = (2π)4δ4

(∑

i

λa
i λ̃ȧ

i

)
〈λr, λs〉4∏n

k=1〈λi, λi+1〉 (2.3.7)

is invariant under the conformal group. The Lorentz generators are clearly symme-

tries of the amplitude. The momentum operator annihilates the amplitude thanks

to the delta function of momentum conservation.

It remains to verify that the amplitude is annihilated by D and K. For sim-

plicity, we will only consider the dilatation operator D. The numerator contains the

delta function of momentum conservation which has dimension D = −4 and the

factor 〈λr, λs〉4 of dimension 4. Hence, D commutes with the numerator. So we are

left with the denominator
1∏n

k=1〈λk, λk+1〉 . (2.3.8)

This is annihilated by Dk for each particle k, since the −2 coming from the degree

of λk gets cancelled against the +2 from the definition of the dilatation operator.

2.3.2 Transform to Twistor Space

We have demonstrated conformal invariance of the MHV amplitude, however

the representation of the conformal group that we have encountered above is quite

exotic. The Lorentz generators are first order differential operators, but the mo-

mentum is a multiplication operator and the special conformal generator is a second

order differential operator.

We can put the action of the conformal group into a more standard form if we

make the following transformation

λ̃ȧ → i
∂

∂µȧ

∂

∂λ̃ȧ
→ iµȧ.

(2.3.9)

Making this substitution we have arbitrarily chosen to Fourier transform λ̃ rather

than l. This choice breaks the symmetry between positive and negative helicities.

The amplitude with n1 positive helicity and n2 negative helicity gluons has com-

pletely different description in twistor space from an amplitude with n2 positive

helicity gluons and n1 negative helicity gluons.
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Upon making this substitution, all operators become first order. The Lorentz

generators take the form

Jab =
i

2

(
λa

∂

∂λb
+ λb

∂

∂λa

)

J̃ȧḃ =
i

2

(
µȧ

∂

∂µḃ
+ µḃ

∂

∂µȧ

)
.

(2.3.10)

The momentum and special conformal operators become

Paȧ = iλa
∂

∂µȧ

Kaȧ = iµȧ
∂

∂λa
.

(2.3.11)

Finally, the dilatation operator (2.3.6) becomes a homogeneous first order operator

D =
i

2

(
λa ∂

∂λa
− µȧ ∂

∂µȧ

)
. (2.3.12)

This representation of the four dimensional conformal group is easy to explain.

The conformal group of Minkowski space is SO(4, 2) which is the same as SU(2, 2).

SU(2, 2), or its complexification Sl(4,C), has an obvious four-dimensional repre-

sentation acting on

ZI = (λa, µȧ). (2.3.13)

ZI is called a twistor and the space C4, spanned by ZI is called the twistor space.

The action of Sl(4, C) on the ZI is generated by the 15 traceless matrices that

correspond to the 15 first order operators Jab, J̃ȧḃ, D, Paȧ,Kaȧ.

If we are in signature + + −−, the conformal group is SO(3, 3) ∼= Sl(4, R).

The twistor space is a copy of R4 and we can consider λ and µ to be real. In the

Euclidean signature + + ++, the conformal group is SO(5, 1) ∼= SU∗(4), where

SU∗(4) is the noncompact version of SU(4), so we must think of twistor space as a

copy of C4.

For signature + + −−, where λ̃ is real, the transformation from momentum

space scattering amplitudes to twistor space scattering amplitudes is made by a

simple Fourier transform that is familiar from quantum mechanics

Ã(λi, µi) =
∫ n∏

j=1

d2λ̃j

(2π)2
exp(i[µj , λ̃j ])A(λi, λ̃i). (2.3.14)
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The same Fourier transform turns a momentum space wavefunction ψ(λ, λ̃) to a

twistor space wavefunction

ψ̃(λ, µ) =
∫

d2λ̃

(2π)2
exp(i[µ, λ̃])ψ(λ, λ̃). (2.3.15)

Recall that the wave function of a massless particle of helicity h obeys the

auxiliary condition

(
λa

i

∂

∂λa
i

− λ̃ȧ
i

∂

∂λ̃ȧ
i

)
A(λi, λ̃i, hi) = −2hiA(λi, λ̃i, hi) (2.3.16)

for each particle i, with helicity hi. In terms of λi and µi, this becomes

(
λa

i

∂

∂λa
i

+ µȧ
i

∂

∂µȧ
i

)
A(λi, µi, hi) = −(2hi + 2)A(λi, µi, hi). (2.3.17)

There is a similar condition for the twistor wavefunctions of particles. The operator

on the left hand side coincides with ZI ∂
∂ZI and generates the scaling of the twistor

ZI → tZI , t ∈ C∗. (2.3.18)

So the wavefunctions and scattering amplitudes have known behavior under the

C∗ action ZI → tZI . Hence, we can identify the sets of ZI that differ by the scaling

ZI → tZI and throw away the point ZI = 0. We get the projective space CP3 or

RP3 if ZI are complex or real-valued. The ZI are the homogeneous coordinates on

the projective twistor space. It follows from (2.3.17) that, the scattering amplitudes

are homogeneous functions of degree −2hi−2 in the twistor coordinates ZI
i of each

particle particle. In the complex case, this means that scattering amplitudes are

sections of the complex line bundle O(−2hi − 2) over a CP3 for each particle. For

further details on twistor transform, see any standard textbook, e.g. [37].

2.3.3 Scattering Amplitudes in Twistor Space

In an n-gluon scattering process, after the Fourier transform into twistor space,

the external gluons are associated with points Pi in the projective twistor space.

The scattering amplitudes are functions of the twistors Pi, that is, they are functions

defined on the product of n copies of twistor space, one for each particle.
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Let us see what happens to the tree level MHV amplitude with n − 2 gluons

of positive helicity and 2 gluons of negative helicity, after Fourier transform into

twistor space.We work in ++−− signature, for which the twistor space is a copy of

RP3. The advantage of + +−− signature is that the transform to twistor space is

an ordinary Fourier transform and the scattering amplitudes are ordinary functions

on a product of RP3’s, one for each particle. With other signatures, the twistor

transform involves ∂-cohomology and other mathematical machinery.

We recall that the MHV amplitude with negative helicity gluons r, s is

A(λi, λ̃i) = (2π)4δ4(
∑

i

λiλ̃i)f(λi), (2.3.19)

where

f(λi) =
〈λr, λs〉4∏
k〈λk, λk+1〉 . (2.3.20)

The only property of f(λi), that we need is that it is a function of the holomorphic

spinors λi only. It does not depend on the anti-holomorphic spinors λ̃i.

We express the delta function of momentum conservation as an integral

(2π)4δ4(
∑

i

λa
i λ̃ȧ

i ) =
∫

d4xaȧ exp

(
ixbḃ

∑

i

λb
i λ̃

ḃ
i

)
. (2.3.21)

Hence, we can rewrite the amplitude as

A(λi, λ̃i) =
∫

d4x exp

(
ixbḃ

∑

i

λb
i λ̃

ḃ
i

)
f(λi). (2.3.22)

To transform the amplitude into twistor space, we simply carry out a Fourier trans-

form with respect to all λ̃’s. Hence, the twistor space amplitude is

A(λi, µi) =
∫

d2λ̃1

(2π)2
. . .

d2λ̃n

(2π)2
exp


i

n∑

j=1

µjȧλ̃ȧ
j




∫
d4x exp


ixbḃ

∑

j

λb
j λ̃

ḃ
j


 f(λi).

(2.3.23)

The only dependence on λ̃i is in the exponential factors. Hence the integrals over

λ̃j can be done trivially, with the result [38]

A(λi, µi) =
∫

d4x

n∏

j=1

δ2(µjȧ + xaȧλa
j )f(λi). (2.3.24)
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This equation has a simple physical interpretation. Pick some xaȧ and consider the

equation

µȧ + xaȧλa = 0. (2.3.25)

The solution set for x = 0 is a RP1 or CP1 depending on whether the variables are

real or complex. This is true for any x as the equation lets us solve for µȧ in terms

of λa. So (λ1, λ2) are the homogeneous coordinates on the curve.

In real twistor space, which is appropriate for signature ++−−, the curve RP1

can be described more intuitively as a straight line. Indeed, throwing away the set

Z1 = 0, we can describe the rest of RP3 as a copy of R3 with the coordinates xi =

Zi/Z1, i = 2, 3, 4. The equations (2.3.25) determine two planes whose intersection

is the straight line in question.

In complex twistor space, the genus zero curve CP1 is topologically a sphere S2.

The CP1 is an example of a holomorphic curve in CP3. The simplest holomorphic

curves are defined by vanishing of a pair of homogeneous polynomials in the ZI

f(Z1, . . . , Z4) = 0

g(Z1, . . . , Z4) = 0.
(2.3.26)

If f is homogeneous of degree d1 and g is homogeneous of degree d2, the curve has

degree d1d2. The equations

µḃ + xbḃλ
b = 0, ḃ = 1, 2 (2.3.27)

are both linear, d1 = d2 = 1. Hence the degree of the CP1 is d = d1d2 = 1.

Moreover, every degree one genus zero curve in CP3 is of the form (2.3.27) for some

xbḃ.

The area of a holomorphic curve of degree d, using the natural metric on CP3,

is 2πd. So the curves we found with d = 1 have the minimal area among nontrivial

holomorphic curves. They are associated with the minimal nonzero Yang-Mills tree

amplitudes, the MHV amplitudes.

Going back to the amplitude (2.3.24), the δ-functions mean that the amplitude

vanishes unless µjȧ + xaȧλa
j = 0, j = 1, . . . n, that is, unless some curve of degree

one determined by xaȧ contains all n points (λj , µj). The result that the MHV

amplitudes are supported on a genus zero curves of degree one is equivalent to

holomorphy of these amplitudes.



2 Twistor String Theory and Perturbative Yang-Mills 24

(a) (b)

+

+

+
−

−
− +

+

−
+

Fig. 2: (a) In complex twistor space CP 3, the amplitude localizes to a

CP1. (b) In the real case, the amplitude is associated to a real line in R3.

The general conjecture is that an l loop amplitude with p gluons of positive

helicity and q gluons of negative helicity is supported on a holomorphic curve in

twistor space. The degree of the curve is determined by

d = q − 1 + l. (2.3.28)

The genus of the curve is bounded by the number of the loops

g ≤ l. (2.3.29)

The MHV amplitude is a special case of this for q = 2, l = 0. Indeed the conjecture

in this case give that the MHV amplitude is supported in twistor space on a genus

zero curve of degree one.

The natural interpretation of this is that the curve is the worldsheet of a string.

In some way of describing the perturbative gauge theory, the amplitudes arise from

coupling of the gluons to a string. In the next two sections we discuss a proposal for

such a string theory due to Witten [11]. There is an alternative version of twistor

string theory due to Berkovits [39,40] that seems to give an equivalent description

of the scattering amplitudes. Further proposals [41,42] have not yet been used for

computing scattering amplitudes.

2.4 Twistor String Theory

In this section, we will describe a string theory that gives a natural frame-

work for understanding the twistor properties of scattering amplitudes discussed

in previous section. This is a topological string theory whose target space is a

supersymmetric version of the twistor space.
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2.4.1 Brief Review of Topological Strings

Firstly, let us consider an N = 2 topological field theory in D = 2 [43]. The

N = 2 supersymmetry algebra has two supersymmetry generators Qi, i = 1, 2 that

satisfy the anticommutation relations

{Qαi, Qβj} = δijγ
µ
αβPµ. (2.4.1)

In two dimensions, the Lorentz group SO(1, 1) is generated by Lorentz boost L. We

diagonalize L by going into the light-cone frame P± = P0 ± P1,

[L,P±] = ±P±

{L,Q±} = ±1
2
Q±.

(2.4.2)

The commutation relations of N = 2 supersymmetry algebra become

{Q+i, Q+j} = δijP+

{Q−i, Q−j} = δijP−

{Q+i, Q−j} = 0.

(2.4.3)

We let

Q = Q+1 + iQ+2 + Q−1 ± iQ−2 (2.4.4)

with either choice of sign. It follows from (2.4.3) that Q is nilpotent

Q2 = 0, (2.4.5)

so we would like to consider Q as a BRST operator.

However Q (2.4.4) is not a scalar so this construction would violate Lorentz

invariance. There is a way out if the theory has left and right R-symmetries R+ and

R−. Under R+, the combination of supercharges Q+1 ± iQ+2 has charge ±1/2 and

Q−1± iQ−2 is neutral. For R−, the same is true with ‘left’ and ‘right’ interchanged.

Hence, we can make Q scalar if we modify the Lorentz generator L to be

L′ = L− 1
2
R+ ∓ 1

2
R−. (2.4.6)

At a more fundamental level, this change in the Lorentz generator arises if we

replace the stress tensor Tµν with

T̃µν = Tµν − 1
2
(∂µJ+

ν + ∂νJ+
µ )∓ 1

2
(∂µJ−ν + ∂νJ−µ ), (2.4.7)
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where J+
ν and J−µ are the left and right R-symmetry currents. The substitution

(2.4.7) is usually referred to as ‘twisting’ the stress tensor.

We give a new interpretation to the theory by taking Q to be a BRST operator.

Hence, a state Ψ is considered to be physical if it is annihilated by Q

QΨ = 0. (2.4.8)

Two states Ψ and Ψ′ are equivalent if

Ψ−Ψ′ = QΦ, (2.4.9)

for some Φ. Similarly, we take the physical operators to commute with the BRST

charge

[Q,O] = 0. (2.4.10)

Two operators are equivalent if they differ by an anticommutator of Q,

O′ ∼ O + {Q,V}, (2.4.11)

for some operator V.

The theory with the stress tensor T̃µν and BRST operator Q is called a topo-

logical field theory. The basis for the name is that one can use the supersymmetry

algebra to show that the twisted stress tensor is BRST trivial

T̃µν = {Q, Λµν}. (2.4.12)

It follows that in some sense the worldsheet metric is irrelevant. The correlation

functions

〈O1(x1)O2(x2) . . .On(xn)〉Σ (2.4.13)

of physical operators Oi obeying [Q,Oi] = 0 on a fixed Riemann surface Σ are

independent of metric on Σ. Indeed, varying the metric gµν → gµν + δgµν , the

correlation function stays the same up to BRST trivial terms

〈O1(x1) . . .On(xn)
∫

Σ

δ(
√

ggµν)T̃µν〉 = 〈O1(x1) . . .On(xn)
∫

Σ

δ(
√

ggµν){Q, Λµν}〉 = 0.

(2.4.14)

More importantly for us, we can also construct a topological string theory in

which one obtains the correlation functions by integrating (2.4.13) over the moduli
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of the Riemann surface Σ, using Λµν where the antighost bµν usually appears in the

definition of the string measure.

For an N = 2 supersymmetric field theory in two dimensions with anomaly-free

left and right R-symmetries we get two topological string theories, depending on

the choice of sign in (2.4.4). We would like to consider the case that the N = 2

model is a sigma model with a target space being a complex manifold X. In this

case, the two R-symmetries exist classically, so classically we can construct the

two topological string theories, called the A-model and the B-model. Quantum

mechanically, however, there is an anomaly, and the B-model only exists if X is a

Calabi-Yau manifold.

2.4.2 Open String B-model on a Super-Twistor Space

To define open strings in the B-model, one needs BRST invariant boundary

conditions. The simplest such conditions are the Neumann boundary conditions

[44]. Putting in N space filling D5-branes gives Gl(n,C)(whose real form is U(N))

gauge symmetry. The physical open string field is a (0, 1) form gauge field Ai. The

BRST operator acts as the ∂ operator and the string ∗ product is just the wedge

product. Hence, A is subject to the gauge invariance

δA = Qε = ∂ε + [A, ε] (2.4.15)

and the string field theory action reduces to the action of the holomorphic Chern-

Simons theory [44]

S =
1
2

∫
Ω ∧ Tr

(
A ∧ ∂A +

2
3
A ∧A ∧A.

)
, (2.4.16)

where Ω is the Calabi-Yau volume form.

We would like to consider the open string B-model with target space CP3, but

we cannot, since CP3 is not a Calabi-Yau manifold and the B-model is well defined

only on a Calabi-Yau manifold. Otherwise, the R-symmetry that we used to twist

the stress tensor is anomalous. A way out is to introduce spacetime supersymmetry.

Instead of CP3, which has homogeneous coordinates ZI , I = 1, . . . , 4, we consider a

supermanifold CP3|N with bosonic and fermionic coordinates

ZI , ψA I = 1, . . . , 4, A = 1, . . . , N, (2.4.17)
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with identification of two sets of coordinates that differ by a scaling

(ZI , ψA) ∼= (tZI , tψA) t ∈ C∗. (2.4.18)

The CP3|N is a Calabi-Yau supermanifold if and only if the number of fermionic

dimensions is N = 4. To see this, we construct the holomorphic measure on CP3|4.

We start with the (4|N) form on C4|N

Ω0 = dZ1 . . . dZ4dψ1 . . . dψN (2.4.19)

and study its behavior under the scaling symmetry (2.4.18). For this, recall, that

dψ scales oppositely to ψ

(dZI , dψA) → (tdZI , t−1dψA). (2.4.20)

It follows, that Ω0 is C∗ invariant if and only if N = 4. In this case, we can divide

by the C∗ action and get a Calabi-Yau measure on CP3|4

Ω =
1
4!

εIJKLZIdZJdZKdZL 1
4!

εABCDψAψBψCψD. (2.4.21)

The twistor space CP3 has a natural Sl(4,C) group action. The real form

SU(2, 2) of Sl(4,C) is the conformal group of Minkowski space. Similarly, the super-

twistor space CP3|N has a natural Sl(4|N,C) symmetry. The real form SU(2, 2|N)

is the superconformal symmetry group with N supersymmetries.

For N = 4 the superconformal group SU(2, 2|4) is the symmetry group of

N = 4 super-Yang-Mills theory. In a sense, this is the simplest gauge theory in four

dimensions. The N = 4 superconformal symmetry uniquely determines the states

and interactions of the gauge theory. In particular, the beta function of N = 4

gauge theory vanishes.

Now we know a new reason for N = 4 to be special. The topological B-model on

CP3|4 exists if and only if N = 4. The B-model on CP3|4 has a SU(2, 2|4) symmetry

coming from the geometric action of the group on the twistor space. This is related

via the twistor transform to the N = 4 superconformal symmetry.

In the topological B-model with space-filling branes on CP3|4, the basic field is

the holomorphic gauge field A = AIdZ
I ,

A(Z, Z, ψ) =A + ψAξA(Z, Z) +
1
2!

ψAψBψAB(Z, Z) + . . .

+
1
4!

εABCDψAψBψCψDG(Z, Z).
(2.4.22)
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The action is the same as (2.4.16), except that the gauge field A now depends on ψ

S =
1
2

∫
Tr

(
A∂A+

2
3
A ∧A ∧A

)
∧ Ω, (2.4.23)

where the holomorphic three form is (2.4.21). The classical equations of motions

obtained from (2.4.23) are

∂A+A ∧A = 0. (2.4.24)

Linearizing the equations of motions around the trivial solutions A = 0, they tell

us that

∂Φ = 0, (2.4.25)

where Φ is any of the components of A. The gauge invariance reduces to δΦ = ∂α.

Hence for each component Φ, the field Φ defines an element of a cohomology group.

This action has the amazing property that its spectrum is the same as that of

N = 4 super Yang-Mills theory in Minkowski space. To see this, we need to use

that the twistor correspondence relates helicity h free field in Minkowski space to

fields in the (0, 1) cohomology groups of degree 2h− 2.

To figure out the degrees of various components, notice that the action must

be invariant under the C∗ action ZI → tZI . Since the holomorphic measure is also

invariant under the scaling, the only way that the action (2.4.23) is invariant, is

that the superfield A is also invariant, in other words, that A is of degree zero

A ∈ H0,1(CP3|4,O(0)). (2.4.26)

Looking back at the expansion (2.4.22) of the superfield, we identify the com-

ponents, via the twistor correspondence, with fields in Minkowski space of definite

helicity. A is is of degree zero, just like the superfield A. Hence, it is related by

twistor transform to a field of helicity +1. The field G has degree −4 to off-set the

degree 4 coming the four ψ, so it corresponds to a field of helicity −1. Continuing

in this fashion, we obtain the complete spectrum of N = 4 supersymmetric Yang-

Mills theory. The twistor fields A, ξA, φAB , ξ̃ABC , G describe, via twistor transform,

particles of helicities 1,+ 1
2 , 0,− 1

2 ,−1 respectively.

The fields also have the correct representations under the SU(4) R-symmetry

group. This symmetry is realized in twistor space by the natural geometric ac-

tion on the fermionic coordinates ψA → ΛA
BψB . Hence, ψA transforms in the 4
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of the SU(4)R. The holomorphic gauge superfield A(Z,ψ) is invariant under the

R-symmetry, hence the representations of the components of A must be conjugate

to the representations of the ψ factors that they multiply in eq. (2.4.22). Hence,

A, ξA, φAB , ξ̃ABC and G transform in the 1,4,6,4,1 representation of SU(4)R re-

spectively.

2.4.3 D-Instantons

The action (2.4.23) also describes some of the interactions of N = 4 super

Yang-Mills, but not all. It cannot describe the full interactions, because an extra

U(1) R-symmetry gets in the way. The fermionic coordinates ψA, A = 1, . . . , 4 have

an extra U(1)R besides the SU(4)R symmetry group considered above. Indeed, the

full R-symmetry group in twistor space is

U(4)R = SU(4)R × U(1)R, (2.4.27)

where we take the extra U(1)R, which we call S, to rotate the fermions by a common

phase

S : ZI → ZI , ψA → eiθψA. (2.4.28)

However the N = 4 super-Yang-Mills has only an SU(4)R symmetry. In the B-

model, the extra U(1)R is anomalous, since it does not leave fixed the holomorphic

measure Ω ∼ d3Zdψ1 . . . dψ4. Under the S transformation, the holomorphic measure

transforms as Ω → e−4iθΩ, so it has charge S = −4.

However, as we have set things up so far, the anomaly is too trivial to agree with

N = 4 super-Yang-Mills theory. With the normalization (2.4.28), the S charges of

fields are given by their degrees. The N = 4 Yang-Mills action is a sum of terms

with S = −4 and S = −8. The action of the open string B-model (2.4.23) has

S = −4 coming from the anomaly is S from the holomorphic measure. To get

the S = −8 piece of the Yang-Mills action, we need to enrich the B-model with

nonperturbative instanton contributions.

The instantons in question are Euclidean D1-branes wrapped on holomorphic

curves in CP3|4 on which open strings can end. The gauge theory amplitudes come

from coupling of the open strings to the D1-branes. The massless modes on the

worldvolume of a D-instanton are a U(1) gauge field and the modes that describe

the motion of the instanton. In the following, we will study tree level amplitudes in
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the context of string theory. These get contribution from genus zero instantons on

which the U(1) line bundles do not have moduli so we will ignore it from now on.

The modes describing the motion of the D-instanton simply make up the moduli

space M of holomorphic curves C in the twistor space. To construct scattering

amplitudes we need to integrate of M.

2.5 Tree Level Amplitudes from Twistor String Theory

2.5.1 Basic Setup

Recall that the interactions of the full gauge theory come from Euclidean D1-

brane instantons on which the open strings can end. The open string are described

by the holomorphic gauge field A. Key ingredient in coupling the open strings to

the D-instantons is the effective action of the D1-D5 and D5-D1 strings. Quantizing

the zero modes of the D1-D5 strings leads to a fermionic zero form field αi living

on the worldvolume of the D-instanton. This transforms in the fundamental rep-

resentation of the Gl(n,C) gauge group coming from the Chan-Paton factors. The

D5-D1 strings are described by a fermion βi transforming in the anti-fundamental

representation. The kinetic operator for the topological strings is the BRST oper-

ator Q, which acts as ∂ on the low energy modes. So the effective action of the

D1-D5 strings is

S =
∫

C

β(∂ +A)α, (2.5.1)

where C is the holomorphic curve wrapped by the D-instanton. We read off the

vertex operator for an open string with wavefunction Ψ = AIdZ
I

V =
∫

C

JΨ, (2.5.2)

where J = Tj
iβiα

jdz is a holomorphic current made from the free fermions αj , βi,

and Tj
i is the group theory factor of the gluon. These currents generate a current

algebra on the worldvolume of the D-instanton.

To compute a scattering amplitude, we evaluate the correlation function

A =
∫

dM〈V1V2 . . . Vn〉 =
∫

dM
〈∫

C

J1Ψ1 . . .

∫

C

JnΨn

〉
. (2.5.3)
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We can think of this as integrating out the fermions α, β living on the D-instanton.

Hence, the generating function for scattering amplitudes is simply the integral of

Dirac operator over moduli space
∫

dMdet(∂ + A). (2.5.4)

Here, dM is the holomorphic measure on the moduli space of holomorphic curves of

genus zero and degree d. In topological B-model, the action is holomorphic function

of the fields and all path integrals are contour integral. Hence, the integral is actually

over a middle-dimensional Lagrangian cycle in the moduli space. This integral is

a higher dimensional generalization of the familiar contour integral from complex

analysis. To integrate over such a contour, M must be endowed with a holomorphic

measure.

The correlator of the currents on D1-instanton2

〈J1(z1)J2(z2) . . . Jn(zn)〉 =
Tr (T1T2 . . . Tn)dz1dz2 . . . dzn

(z1 − z2)(z2 − z3) . . . (zn − z1)
+ permutations (2.5.5)

follows from the free fermion correlator on a sphere

α(z)β(z′) ∼ 1
z − z′

. (2.5.6)

Scattering Wavefunctions

We would like to compute the scattering amplitudes of plane waves φ(x) =

exp (i p · x) = exp (i πaπ̃ȧxaȧ), that are wavefunctions of external particles with

definite momentum paȧ = πaπ̃ȧ. The twistor wavefunctions corresponding to plane

waves are

ψ(λ, µ) = δ(〈λ, π〉) exp(i[π̃, µ])g(ψ), (2.5.7)

where g(ψ) encodes the dependence on fermionic coordinates. For a positive helicity

gluon g(ψ) = 1 and for a negative helicity gluon g(ψ) = ψ1ψ2ψ3ψ4. Here, we have

introduced the holomorphic delta function

δ(f) = dfδ2(f), (2.5.8)

2 Here we write the single trace contribution to the correlation amplitude that repro-

duces the gauge theory scattering amplitude. As discussed in section 2.5.5, the multitrace

contributions correspond to gluon scattering processes with exchange of an internal con-

formal supergravity state.
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which is a closed (0, 1) form. We normalize it so that for any function f(z), we have

∫
dz δ(z − a)f(z) = f(a). (2.5.9)

The idea of (2.5.7) is that the delta function δ(〈λ, π〉) sets λa equal to πa. The

Fourier transform of the exponential exp(i[π̃, µ]) back into Minkowski space gives

another delta function that sets λ̃ȧ equal to π̃ȧ. The twistor string computation

with these wavefunctions gives directly momentum space scattering amplitudes.

Actually, the wavefunctions should be modified slightly so that they are in-

variant under the scaling of the homogeneous coordinates of CP3|4. From the basic

properties of delta functions, it follows that δ(〈λ, π〉) is homogeneous of degree −1

in both λ and π. Hence, for positive helicity gluons, the wavefunction is actually

ψ+(λ, µ) = δ(〈λ, π〉)(λ/π) exp
(
i[π̃, µ](π/λ)

)
. (2.5.10)

Here, λ/π is a well defined holomorphic function, since λ is a multiple of π on

the support of the delta function. The power of (λ/π) was chosen, so that the

wavefunction is homogeneous of degree zero in overall scaling of λ, µ, ψ. Under the

scaling

(π, π̃) → (tπ, t−1π̃), (2.5.11)

the wavefunction is homogeneous of degree −2 as expected for a positive helicity

gluon (2.2.28). For negative helicity gluon, the wavefunction is

ψ−(λ, µ) = δ(〈λ, µ〉)(π/λ)3 exp
(
i[π̃, µ](π/λ)

)
ψ1ψ2ψ3ψ4. (2.5.12)

Under the scaling (2.5.11), the wavefunction is homogeneous of degree +2 as ex-

pected. For wavefunctions of particles with helicity h, there are similar formulas

with 2− 2h factors of ψ.

MHV Amplitudes

We saw that the MHV amplitude, after Fourier transform into twistor space,

localizes on a genus zero degree one curve, that is, a linearly embedded copy of

CP1. Here we will evaluate the degree one instanton contribution and confirm that

it gives the MHV amplitude.
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Consider the moduli space of such curves. Each curve can be described by the

equations

µȧ = xaȧλa ψA = θAaλa, (2.5.13)

where we parameterize λa are the homogeneous coordinates of the CP1 and xaȧ and

θAa are the moduli of C. The holomorphic measure on the moduli space is

dM = d4xd8θ. (2.5.14)

Hence, the moduli space has 4 bosonic and 8 fermionic dimensions. In terms of the

homogeneous coordinate λa the current correlator (2.5.5) becomes

〈J1(π1)J2(π2) . . . Jn(πn)〉 =
∏

i〈λi, dλi〉
〈λ1, λ2〉〈λ2, λ3〉 . . . 〈λn, λ1〉 , (2.5.15)

which we found by setting zi = λ2
i /λ1

i . We stripped away the color factors and kept

only the contribution to the term with 1, 2, . . . , n cyclic order. We multiply this

with the wavefunctions ψi(λ, µ) = δ(〈λ, πi〉) exp (i[µ, π̃i]) gi(ψi) and integrate over

the positions λi, λ̃i over the vertex operators. We perform the integral over the

positions of the vertex operators using the formula
∫

CP1
〈λ, dλ〉 δ(〈λ, π〉)f(λ) = f(π), (2.5.16)

where f(λ) is a homogeneous function of λa of degree −1. This is the homogeneous

version of definition of holomorphic delta function
∫

C
dz δ(z − b)f(z) = f(b). (2.5.17)

Hence, each wavefunction contributes a factor of
∫

C

〈λ, dλ〉ψi = exp (i[π̃i, µi]) gi(ψi), (2.5.18)

where µȧ
i = xaȧλa, ψA

i = θAaλa. The delta function sets λa
i = πa

i in the correlation

function, so the amplitude becomes

A =
1∏

k〈πk, πk+1〉
∫

d4xd8θ exp
(
i
∑

k

[π̃k, µk]
) ∏

k

gk(ψk). (2.5.19)

The fermionic part of the wavefunctions is gi = 1 for the positive helicity gluons

and gi = ψ1
i ψ2

i ψ3
i ψ4

i for the negative helicity gluons. Since we are integrating over
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eight fermionic moduli d8θ, we get nonzero contribution to amplitudes with exactly

two negative helicities r−, s−. Setting ψA
k = θAaπka, the integral over fermionic

dimensions of the moduli space gives the numerator of the MHV amplitude

∫
d8θ

4∏

A=1

ψA
r

4∏

B=1

ψB
s = 〈r, s〉4. (2.5.20)

Setting µȧ
k = xaȧπka, the integral over bosonic moduli gives the delta function of

momentum conservation

∫
d4x exp

(
ixaȧ

∑

i

πa
i π̃ȧ

i

)
= δ4(

n∑

i=1

πa
i π̃ȧ

i ). (2.5.21)

Collecting the various pieces, we get the familiar MHV amplitude

A(r−, s−) =
〈r, s〉4∏n

i=1〈i, i + 1〉δ
4(

n∑

i=1

πa
i π̃ȧ

i ). (2.5.22)

2.5.2 Higher Degree Instantons

Instanton Measure

Here we will construct the measure on the moduli space of genus zero degree d

curves. Such curves can be described as degree d maps from an abstract CP1 with

homogeneous coordinates (u, v)

ZI = P I(u, v)

ψA = χA(u, v).
(2.5.23)

Here P I , χA are homogeneous polynomials of degree d in u, v. The space of polyno-

mials of degree d is a linear space of dimension d + 1, spanned by ud, ud−1v, . . . , vd.

Picking a basis bα(u, v), α = 1, . . . , d + 1, we write

P I =
∑
α

P I
α bα

ψA =
∑
α

χA
α bα.

(2.5.24)

A natural measure is

dM0 =
d+1∏
α=1

4∏

I,A=1

dP I
α dχA

α . (2.5.25)
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This measure is invariant under a general Gl(d + 1,C) transformation of the basis

bα. Since the number of bosonic and fermionic coordinates is the same, the Jaco-

bians cancel between fermionic and bosonic parts of the measure. The description

(2.5.23) is redundant. We need to divide by the C∗ action that rescales P I and

ξA by a common factor. This reduces the space of curves from C4d+4|4d+4 down to

CP4d+3|4d+4. The curve C also stays invariant under an Sl(2,C) transformation on

(u, v) so the actual moduli space of genus zero degree d curves is

M = CP4d+3|4d+4/Sl(2,C). (2.5.26)

As dM0 is Gl(2,C) invariant, it descends to a holomorphic measure dM on M.

Hence, M is a Calabi-Yau supermanifold of dimension (4d|4d + 4).

We can now understand why amplitudes with different helicities come from

holomorphic curves of different degrees. Integrating over the moduli space, the

measure absorbs 4d+4 fermion zero modes. These come from the fermionic factors

g(ψ) in the wavefunctions of the gluons (2.5.7). A positive helicity gluon does not

contribute any zero modes while a negative helicity gluon with g−(ψ) = ψ1ψ2ψ3ψ4

gives 4 zero modes. Hence, instantons of degree d contribute to amplitudes with

d + 1 negative helicity gluons.

Alternatively, we can get this from counting the S charge anomaly. Wave-

functions of particles with different helicities violate S by different amount. The

positive helicity gluons do not violate S while the negative helicity gluons violate

S by −4 units. So, the amplitude with p positive helicity gluons and q negative

helicity gluons violates the S charge by −4q units.

In the twistor string, there is a new source of violation of S from the instanton

measure. Since the S charge of Z and ψ is 0 and 1 respectively, the charges of the

coefficients P I
α, χA

α are 0, 1. Hence, the differentials dP I
α, dχA

α have charges 0,−1 and

the S charge of the (4d|4d + 4) dimensional measure dM is −4d− 4.

So an instanton can contribute to an amplitude with q negative helicity gluons

if and only if

d = q − 1. (2.5.27)

This is the familiar formula discussed at the end of section 3. For l loop amplitudes,

this relation generalizes to d = q − 1 + l.

Evaluating the Instanton Contribution
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Here we consider the connected instanton contribution along the lines of the

MHV calculation. The amplitude is [12,45,46]

A =
∫

dMd

∏

i

∫

C

〈ui, dui〉∏
k〈uk, uk+1〉δ(〈P (ui), πi〉) exp (i[P (ui), π̃i]) gi(ψi). (2.5.28)

This is not really an integral. The integral over the 2d+2 parameters P ȧ
α , ȧ =

1, 2, α = 1, . . . , d + 1, gives 2d + 2 delta functions because P ȧ appears only in

the exponential exp
(∑

i P (ui)ȧπȧ
i

)
. Hence, we are left with an integral over 4d −

(2d + 2) + 2n = 2d + 2n − 2 bosonic variables. Here the 2n integrals come from

the integration over the positions of the vertex operators. Now there are 2n delta

functions from the wavefunctions since each holomorphic delta function is really a

product of two real delta functions δ(z) = dz δ2(z), and 2d+2 delta functions from

the integral over the exponentials, which gives a total of 2d + 2n + 2. There are

four more delta functions than integration variables. The four extra delta functions

impose momentum conservation. Hence, the delta functions localize the integral to

a sum of contributions from a finite number of points on the moduli space.

Parity Invariance

In the helicity formalism, the parity symmetry of Yang-Mills scattering ampli-

tudes is apparent. The parity changes the signs of the helicities of the gluons. The

parity conjugate amplitude can be obtained by simply exchanging λi’s with λ̃i’s.

To go to twistor space, one Fourier transforms with respect to λ̃i, which breaks

the symmetry between λ and λ̃. Indeed, the result (2.5.28) for the scattering ampli-

tude treats λ and λ̃ asymmetrically. An amplitude with p positive helicities and q

negative helicities has contribution from instantons of degree q−1, while the parity

conjugate amplitude has contribution from instantons of degree p−1. To show that

these two are related by the exchange of λi and λ̃i requires some amount of work.

We refer the interested reader to the original literature [12,45,46,40].

Localization on the Moduli Space

Recall that a tree level amplitude with q negative helicity gluons and arbitrary

number of positive helicity gluons receives contribution from instantons wrapping

holomorphic curves of degree d = q − 1. The degree d instanton can consists of

several disjoint lower degree instantons whose degrees add up to d. For connected

scattering amplitudes the instantons are connected by open strings.
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(a) (b)

Fig. 3: An amplitude with tree negative helicity gluons has contribution

from two configurations: (a) Connected d = 2 instanton. (b) Two disjoint

d = 1 instantons. The dashed line represents an open string connecting the

instantons.

A priory, one expects that the amplitude receives contributions from all possible

instanton configurations with total degree q− 1. So for example an amplitude with

three negative helicity gluons has contribution from a connected d = 2 instanton

and a contribution from two disjoint d = 1 instantons, fig. 3.

What one actually finds is that the connected and disconnected instanton con-

tributions reproduce the whole amplitude separately. For example, in the case of

amplitude with three negative helicity gluons, it seems that there are two different

ways to compute the same amplitude. One can either evaluate it from the con-

nected d = 2 instantons, fig. 3 (a), [12,45] or alternatively, from two disjoint d = 1

instantons, fig. 3 (b), [1].

xy=a x=0, y=0(a) (b)

Fig. 4: Localization of the connected instanton contribution to next to

MHV amplitude; (a) the integral over the moduli space of connected degree

two curves, localizes to an integral over the degenerate curves of (b), that

is intersecting complex lines. In the figure, we draw the real section of the

curves.
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We can explain the equality of various instanton contributions roughly as fol-

lows [31]. Consider the connected contribution. The amplitude is expressed as a

‘contour’ integral over a middle-dimensional Lagrangian cycle in the moduli space

of degree two curves . The integrand comes from the correlation function on the

worldvolume of the D-instanton and from the measure on the moduli space. It has

poles in the region of the moduli space, where the instanton degenerates to two

intersecting instantons of lower degrees d1 + d2 = d, fig. 4. Picking a contour that

encircles the pole, the integral localizes to an integral over the moduli space M′ of

the intersecting lower degree curves. Similarly, the disconnected contribution has

a pole when the two ends of the propagator coincide. This comes from the pole of

the open string propagator

∂G = δ
3
(Z ′I − ZI)δ4(ψ′A − ψA). (2.5.29)

Hence, the integral over disjoint instantons also localizes on the moduli space of

intersecting instantons. It can be shown that the localized integrals coming from

either connected or disconnected instanton configurations agree [31] which explains

why the separate calculations give the entire scattering amplitude.

Towards MHV Diagrams

Starting with a higher degree instanton contribution, successive localization

reduces the integral to the moduli space of intersecting degree one curves. As

we will review below, this integral can be evaluated leading to a combinatorial

prescription for the scattering amplitudes [1]. Indeed, degree one instantons give

MHV amplitudes, so the localization of the moduli integral leads to a diagrammatic

construction based on a suitable generalization of the MHV amplitudes.

2.5.3 MHV Diagrams

In this subsection, we start with a motivation of the MHV diagrams construc-

tion of Yang-Mills amplitudes from basic properties of twistor correspondence. We

then go on to discuss simple examples and extensions to loop amplitudes. In the

next subsection, we give a heuristic derivation of the MHV rules from twistor string

theory.
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Recall that MHV scattering amplitudes are supported on CP1’s in twistor space

µȧ + xaȧλa = 0. (2.5.30)

Each such CP1 can be associated to a point xaȧ in Minkowski space3. So, in a

sense, we can think of MHV amplitudes as local interaction vertices [1]. To take this

analogy further, we can try to build more complicated amplitudes from Feynman

diagrams with vertices that are suitable off-shell continuations of the MHV ampli-

tudes. MHV amplitudes are functions of holomorphic spinors λi only. Hence, to

use them as vertices in Feynman diagrams, we need to define λ for internal off-shell

momenta p2 6= 0.

(a) (b)

Fig. 5: Two representation of a degree three MHV diagram. (a) In

Minkowski space, we the MHV vertices are represented by (b) In twistor

space, each MHV vertex corresponds to a line. The three lines pairwise

intersect.

To motivate the off-shell continuation, notice that for on-shell momentum paȧ =

λaλ̃ȧ, we can extract the holomorphic spinors λ from the momentum by picking

arbitrary anti-holomorphic spinor ηȧ and contracting it with paȧ. This gives λa up

to a scalar factor

λa =
paȧηȧ

[λ̃, η]
. (2.5.31)

3 We are being slightly imprecise here. The space of CP1’s is actually a copy of the

complexified Minkowski space C4. The Minkowski space R3|1 corresponds to CP1’s that

lie entirely in the ’null twistor space’, defined by vanishing of the pseudo-hermitian norm

Q(λ, µ) = i(λaµa−λ
ȧ
µȧ). Indeed, for a CP1 corresponding to a point in Minkowski space,

xaȧ is a hermitian matrix, hence it follows from (2.5.30) that Q vanishes.
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For off-shell momenta, this strategy almost works except for the factor [λ̃, η] in the

denominator which depends on the undefined spinor λ̃. Fortunately, [λ̃, η] scales

out of the Feynman diagrams, so we take as our definition

λa = paȧηȧ. (2.5.32)

This is clearly well-defined for off-shell momentum. We complete the definition of

the MHV rules, by taking the simple 1/k2 for the propagator connecting the MHV

vertices.

Consider an MHV diagram with v vertices. Each vertex gives two negative

helicity gluons. To make a connected tree level graph, the vertices are connected

with v − 1 propagators. The propagators absorb v − 1 negative helicities, leaving

v +1 negative helicity external gluons. Hence, to find all MHV graphs contributing

to a given amplitude, draw all possible tree graphs of v vertices and v − 1 links,

assigning opposite helicities to the two ends of internal lines. The external gluon

are distributed among the vertices while preserving cyclic ordering. MHV graphs

are those for which each vertex has two negative helicity gluons emanating from it.

Examples

Here we discuss concrete amplitudes to illustrate the MHV diagram construc-

tion. Consider first the + − −− gluon amplitude. This amplitude vanishes in

Yang-Mills theory. It has contribution from two diagrams.

4−

P
P

−

+
+

−

4− 3− 2−3−

1+ 2− 1+

Fig. 6: MHV diagrams contributing to the + − −− amplitude, which is

expected to vanish.
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The first of the two diagrams gives

〈2, λ〉4
〈1, 2〉〈2, λ〉〈λ, 1〉

1
p2

〈3, 4〉4
〈3, 4〉〈4, λ〉〈λ, 3〉 , (2.5.33)

where we associate to the internal momentum p = p1 + p2 = −p3− p4 the holomor-

phic spinor

λa = (p1 + p2)aȧηȧ. (2.5.34)

The second diagram can be obtained from the first by exchanging particles 2 and 4

〈λ′, 4〉4
〈1, λ′〉〈λ′, 4〉〈4, 1〉

1
p′2

〈2, 3〉4
〈2, 3〉〈3, λ′〉〈λ′, 2〉 , (2.5.35)

where λ′a = (p1 + p4)aȧηȧ. Denoting φi = λȧ
i ηȧ, the first and second diagrams give

respectively

− φ3
1

φ2φ3φ4

〈34〉
[21]

− φ3
1

φ2φ3φ4

〈32〉
[41]

. (2.5.36)

The sum of these contributions vanishes, because momentum conservation implies

〈32〉[21] + 〈34〉[41] =
∑

i〈3i〉[i1] = 0.

It is easy to compute more complicated amplitudes. For example, the n gluon

− − − + + . . . + + amplitude is a sum of 2n − 3 MHV diagrams, which can be

evaluated to give

A =
n−1∑

i=3

〈1λ2,i〉3
〈λ2,ii + 1〉〈i + 1i + 2〉 . . . 〈n1〉

1
q2
2i

〈23〉3
〈λ2,i2〉〈34〉 . . . 〈iλ2,i〉

+
n∑

i=4

〈12〉3
〈2λ3,i〉〈λ3,ii + 1〉 . . . 〈n1〉

1
q2
3i

〈λ3,i3〉3
〈3, 4〉 . . . 〈i− 1i〉〈iλ3,i〉 ,

. (2.5.37)

Loop Amplitudes

Similarly, one can compute loop amplitudes using MHV diagrams. This has

been carried out for the one loop MHV amplitude in N = 4 [32] and N = 1 [47]

Yang-Mills theory, in agreement with the known answers.
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i
−

j

+
+

+
+

+ −

−
−

+ p

L
p−p

Fig. 7: Schematic representation of MHV diagram computation of one-

loop MHV amplitude. The picture shows a diagram in which the negative

helicity gluons i−, j− are on the same MHV vertex.

The expression for an MHV diagram contributing to the one-loop MHV am-

plitude is just what one would expect for a one-loop Feynman diagram with MHV

vertices, fig. 7. There are two MHV vertices, each coming with two negative helicity

gluons. The vertices are connected with two Feynman propagators that absorb two

negative helicities, leaving two negative helicity external gluons

Aloop =
∑

D,h

∫
d4p

(2π)4
AL(λk, λp, λp−pL)

1
p2(p− pL)2

AR(λk, λp, λp−pL). (2.5.38)

The off-shell spinors entering the MHV amplitudes AL,AR are determined in terms

of the momenta of the internal lines

λa
p = paȧηȧ, λa

p−pL
= (p− pL)aȧηȧ, (2.5.39)

which is the same prescription as for level MHV diagrams. The sum in (2.5.38) is

over partitions D of the gluons among the two MHV diagrams that preserve the

cyclic order and over states of the internal particles.

Fig. 8: Schematic representation of a hypothetical twistor string compu-

tation of one-loop MHV amplitude. The picture shows a diagram in which

the negative helicity gluons i−, j− are on the same MHV vertex.
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This calculation makes the twistor structure of one-loop MHV amplitudes man-

ifest. The two MHV vertices are supported on lines in twistor space, so the ampli-

tude is a sum of contributions, each of which is supported on a disjoint union two

lines. In a hypothetical twistor string theory computation of the amplitude, these

two lines are connected by open string propagators, fig. 8.

The N = 0 amplitude is a sum of cut-constructible terms and of rational

terms. The cut-constructible terms are correctly reproduced from MHV diagrams

[48]. The rational terms are single valued functions of the spinors, hence they are

free of cuts in four dimensions. Their twistor structure suggests that they receive

contribution from diagrams in which, alongside with MHV vertices, there are new

one-loop vertices coming from one-loop all-plus helicity amplitudes [2]. However, a

suitable off-shell continuation of the one-loop all-plus amplitude has not been found

yet. There has been recent progress in computing the rational part of some one-loop

QCD amplitudes using a generalization [49] of the tree level recursion relations [7].

2.5.4 Heuristic Derivation from Twistor String Theory

Here, we will make an analysis of the disconnected twistor diagrams that con-

tribute to tree level amplitudes. Interpreting the vertices in fig fig. 5 (a) as degree

one instantons and the lines as twistor propagators, we will evaluate the twistor

string amplitude corresponding to this twistor contribution and show how it leads

to the MHV diagrammatic rules of the last subsection.

The physical field of the open string B-model is a (0, 1)-form A with kinetic

operator ∂ coming from the Chern-Simons action (2.4.16). The twistor propagator

for A a (0, 2)-form on CP3 × CP3 that is a (0, 1)-form on each copy of CP3. The

propagator obeys the equation

∂G = δ
3
(ZI

2 − ZI
1 )δ4(ψA

2 − ψA
1 ). (2.5.40)

Here, δ(z) = dzδ(z)δ(z) is holomorphic delta function (0, 1)-form. In an axial gauge,

the twistor propagator becomes

G = δ(λ2
2 − λ2

1)δ(µ
1̇
2 − µ1̇

1)
1

µ2̇
2 − µ2̇

1

4∏

A=1

(ψA
2 − ψA

1 ), (2.5.41)

where we set λ1
1 = λ1

2 = 1.
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For simplicity, we evaluate the contribution from two degree one instantons C1

and C2 connected by twistor propagator, which is contributing to amplitudes with

three negative helicity. The instantons Ci, i = 1, 2 are described by the equations

µȧ
k = xaȧ

i λka, ψA
k = θAa

i λka i = 1, 2 , k = 1, . . . , n. (2.5.42)

Here, xaȧ
i and θAa

i are the bosonic and fermionic moduli of Ci.

With our choice of gauge, the twistor propagator is supported on points such

that λa
1 = λa

2 . Since µȧ
2 − µȧ

1 = yaȧλa, where yaȧ = xaȧ
2 − xaȧ

1 , the condition

µ1̇
2 − µ1̇

1 = 0 implies λa = ya1̇. Hence, the bosonic part of the propagator becomes

1/y2.

C1 C2

Fig. 9: Twistor string contribution to an amplitude with three negative

helicity external gluons. Two disconnected degree one instantons are con-

nected by an open string.

The correlators of the gluon vertex operators on C1 and C2 and the integral over

θAa
i give two MHV amplitudes AL and AR as explained in the d = 1 computation.

So we are left with the integral
∫

d4x1d
4x2AL

1
(x2 − x1)2

AR

∏

i∈L

exp(ix1 · pi)
∏

j∈R

exp(ix2 · pj), (2.5.43)

where the integral is over a suitably chosen 4× 4 real dimensional ‘contour’ in the

moduli space C4 × C4 of two degree one curves. We rewrite the exponentials as

exp(iy · P )
∏

j∈L,R

exp(ix · pj), (2.5.44)

where x ≡ x1 and P =
∑

i∈R pi is momentum of the off-shell line connecting the

two vertices. The integral
∫

d4x
∏

i∈L,R

exp(ix · pi) = (2π)4δ4(
∑

i

pi) (2.5.45)
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gives the delta function of momentum conservation. We are left with

A =
∫

d4y
1
y2

exp(iy · P )ALAR. (2.5.46)

The integrand has a pole at y2 = 0, which is the condition for the curves C1 and

C2 to intersect. The space y2 is the familiar conifold. It is a cone over CP1 × CP1

so we parameterize it as

yaȧ = tλaλ̃ȧ. (2.5.47)

Here λa ∈ O(1, 0), λ̃ ∈ O(0, 1), so t ∈ O(−1,−1) to make (2.5.47) well-defined. We

choose a contour that picks the residue at y2 = 0. The residue is the volume form

on the conifold

Res
d4y

y2
= tdt〈λ, dλ〉[λ̃, dλ̃]. (2.5.48)

Taking the residue, the integral becomes

I =
∫

tdt〈λ, dλ〉[λ̃, dλ̃] exp(itPaȧλaλ̃ȧ)ALAR, (2.5.49)

where the MHV vertices depend on the holomorphic spinor λ only. We pick the con-

tour t ∈ (−∞,∞), λ̃ = λ, which is the Minkowski space light-cone. For t ∈ (0,±∞)

we regulate the integral with the prescription P = (p0 ± iε, ~p), so

∫ ∞

−∞
tdt exp(itPaȧλaλ̃ȧ) = − 2

(Paȧλaλ̃ȧ)2
. (2.5.50)

Hence we have

I =
∫
〈λ, dλ〉[λ̃, dλ̃]

1

(Pλλ̃)2
ALAR(λ). (2.5.51)

To reduce the integral (2.5.51) to a sum over MHV diagrams, we use the identity

[λ̃, dλ̃]

(Pλλ̃)2
= − 1

Pλη
∂

(
[λ̃, η]

Pλλ̃

)
, (2.5.52)

where ηȧ is an arbitrary positive helicity spinor, to write the integral as

I =
∫
〈λ, dλ〉 ALAR

(Pλη)
∂

(
[λ̃, η]

(Pλλ̃)

)
. (2.5.53)



2 Twistor String Theory and Perturbative Yang-Mills 47

Now we can integrate by parts. The ∂ operator acting on the holomorphic function

on the left gives zero except for contributions coming from poles of the holomorphic

function, ∂ (1/z) = δ(z). These evaluate to a sum over residues

I =
∑

Res
(ALAR

Pλη

)
[λ̃, η]

Pλλ̃
. (2.5.54)

The residues of 1/(Pλη) are at

λa = P aȧηȧ. (2.5.55)

Substituting this back into (2.5.54), Pλλ̃ evaluates to P 2[λ̃, η], so we have

I =
1

P 2
ALAR(λ = Pη). (2.5.56)

But this is simply the contribution from an MHV diagram. Summing over all

cyclicly ordered partitions of the gluons among the two instantons gives the sum

over MHV diagrams contributing to the scattering amplitude.

α

α

P

P

Fig. 10: The graphs contributing to the pole at λ = λα. The reversed

order of α and the internal line in the two graphs, changes the sign of the

residue of the pole.

There are additional additional poles in (2.5.54) that come from the MHV

vertices ALAR
1∏4

α=1〈λα, λ〉 , (2.5.57)

where α runs over the four gluons adjacent to the twistor line. The poles are

located at λ = λα, which is the condition of the twistor line to meet the gluon

vertex operator. Consider the two diagrams, fig. 10 in which the function ALAR
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has a pole at λ = λα. The graphs differ by whether the gluon α is on the left vertex

just after the propagator or on the right vertex just before the propagator. The

reversed order of λ and λα in the two diagrams changes the sign of the residue.

The rest of the residue (2.5.54) stays the same after taking λ = λα. The off-shell

momenta of the two diagrams differ by δP = λαλ̃α, so the diagrams have the same

value of the denominators (Pλαλ̃α)(Pλαη). Hence, all poles at λ = λα get cancelled

among pairs of diagrams.

This derivation clearly generalizes to several disconnected degree one instantons

that contribute to a general tree level amplitude. An amplitude with d+1 negative

helicity gluons gets contributions from diagrams with d disconnected degree one

instantons. The evaluation of the twistor contributions leads to MHV diagrams

with d MHV vertices.

Let us remark that the integral (2.5.51) could be taken as the starting point in

the study of MHV diagrams. Since (2.5.50) is clearly Lorentz invariant 4, the MHV

diagram construction must be Lorentz invariant as well. Although separate MHV

diagrams depend on the auxiliary spinor η, the sum of all diagrams contributing to

a given amplitude is η independent.

Loops in Twistor Space?

We have just seen that the disconnected instanton contribution leads to tree

level MHV diagrams. However, the MHV diagram construction seems to work for

loop amplitudes, as discussed in previous subsection. Hence, one would like to

generalize the above calculation to higher genus instanton configurations, which

contribute to loop amplitudes in Yang-Mills theory. For example, the one-loop

MHV amplitude should come from a configuration of two degree one instantons

connected by two twistor propagators to make a loop, fig. 8. An attempt to evaluate

this contribution runs into difficulties. These are presumably related to the closed

string sector of the twistor string theory, that we will now review.

4 The Lorentz invariance requires some elaboration, because the choice of contour λ =

λ̃, breaks the complexified Lorentz group Sl(2,C)× Sl(2,C) to the diagonal Sl(2,C), the

real Minkowski group. It can be argued from the holomorphic properties of the integral

that it is invariant under the full Sl(2,C)× Sl(2,C)
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2.5.5 Closed Strings

The closed string of the topological B-model on supertwistor space are related

by twistor transform to N = 4 conformal supergravity [15]. Conformal supergravity

in four dimension has action

S ∼
∫

d4x
√−gW 2, (2.5.58)

where W is the Weyl tensor. This theory is generally considered unphysical. Ex-

panding the action around flat space gµν = ηµν +hµν leads to a fourth order kinetic

operator S ∼ ∫
d4xh∂4h for the fluctuations of the metric, and thus to a lack of

unitarity.

41/k

2 4

31

Fig. 11: A double trace ∼ Tr T1T2Tr T3T4 contribution to tree level four

gluon scattering amplitude coming from exchange of conformal supergravity

particle, which is represented by a dashed line.

We can see a sign of the supergravity already in the tree level MHV amplitude

calculation of section 5.1. There we found that the single trace terms agree with the

tree level MHV amplitude in gauge theory. We remarked that the current algebra

correlators give additional multi-trace contributions. These come from an exchange

of an internal conformal supergravity state, which is a singlet under the gauge group.

For example, the four gluon MHV amplitude has a contribution Tr T1T2Tr T3T4

coming from an exchange of supergravity state in the 12 → 34 channel, fig. 11. In

twistor string theory, this comes from the double trace contribution of the current

algebra on the worldvolume of the D-instanton
∫

M
dM〈V1V2〉 〈V3V4〉 . (2.5.59)

At tree level, it is possible to recover the pure gauge theory scattering ampli-

tudes by keeping the single-trace terms. However, at the loop level, the diagrams
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that include conformal supergravity particles can generate single-trace interactions.

Hence the presence of conformal supergravity coming from the closed strings puts

an obstruction to computation of Yang-Mills loop amplitudes in the present formu-

lation of twistor string theory.

In twistor string theory, the conformal supergravitons have the same coupling

as gauge bosons, so it is not possible to remove the conformal supergravity states by

going to weak coupling. Since, Yang-Mills theory is consistent without conformal

supergravity, it is likely that there is a version of the twistor string theory that does

not contain the conformal supergravity states.



3. Twistor Structure of Scattering Amplitudes

3.1 Introduction

We have seen in previous section that the twistor string theory has been success-

ful in description of tree level amplitudes. There has not been comparable progress

in understanding the string theory at one-loop. Moreover the present versions of

the twistor string seems to describe N = 4 Yang-Mills coupled to N = 4 conformal

supergravity [50].

Putting the issue of conformal supergravity aside, the expectation from twistor

string theory is that the amplitudes are localized on algebraic curves of appropri-

ate genus and degree. These are interpreted as the worldvolumes of D1-branes in

Witten’s version of the twistor string and as worldsheets of open strings in the

Berkovits’s version. Hence, one of the simplest predictions is that a twistor ampli-

tude vanishes unless all particles lie on the curve. The conditions for localization,

after Fourier transform into Minkowski space, correspond to certain differential op-

erators that annihilate the scattering amplitudes.

For one-loop MHV amplitudes in N = 4 Yang-Mills theory, the differential

equations studied in [2] agree with the twistor string picture discussed in previ-

ous section, after one takes into account the holomorphic anomaly of differential

operators [3].

For amplitudes in Yang-Mills theories with reduced supersymmetry and in

gravity theories we do not have a twistor string proposal. Even if one does not

know the twistor string theory appropriate for description of the amplitudes, one can

gain insight by studying differential equations that the amplitudes satisfy. In this

section, we study differential equations of various N = 1, 0 Yang-Mills amplitudes

and also of some gravity amplitudes. Our results are surprisingly similar to the

51
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N = 4 case. Perhaps the most important difference in the N = 0 case is that

the one-loop amplitude with all gluons of positive helicity must be included as a

new building block alongside with the MHV amplitude. We hope that these results

may serve as a clue in a search for twistor string theories that would generate these

amplitudes.

Summary of Results

In section 3.2 we review differential operators that test for twistor structure of

scattering amplitudes. In particular we derive compact formulas for operators of

genus zero curves of degree two and three. In section 3.3 we use these operator to

study twistor structure of the one-loop N = 1 MHV amplitudes. In section 3.4 we

perform a similar analysis in the nonsupersymmetric case. Unlike the supersym-

metric case, the nonsupersymmetric n-gluon amplitudes of n or n− 1 gluons of the

same helicity do not vanish. We discuss how this might be useful in a hypothetical

MHV diagrams construction of nonsupersymmetric one-loop amplitudes. Finally,

in section 3.5 we discuss the twistor structure of graviton scattering amplitudes in

general relativity and N = 8 supergravity and note the similarity to the Yang-Mills

case.

3.2 Review of Differential Equations

There are various differential equations that the scattering amplitudes can sat-

isfy [11]. All these can be expressed in terms of so called collinear and coplanar

operators that we will now describe.

The differential equations correspond via twistor transform ∂/∂λ̃ȧ → iµȧ to

geometrical conditions on sets of points in CP3. Given three points Pi, Pj , Pk ∈ CP3

with coordinates ZI
i , ZI

j , and ZI
k , the condition that they lie on a line, that is a on

a degree one genus zero curve, is that FijkL = 0, where

FijkL = εIJKLZI
i ZJ

j ZK
k . (3.2.1)

This condition translates, via twistor transform into a differential equation. For

example, the choice L = ȧ leads to

Fijkȧ = 〈λi, λj〉 ∂

∂λȧ
k

+ 〈λj , λk〉 ∂

∂λȧ
i

+ 〈λk, λi〉 ∂

∂λȧ
j

. (3.2.2)
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Given four points Pi, Pj , Pk, Pl ∈ CP3, the condition that they are all contained

in a plane, that is a hyperplane in CP3, is that the vectors ZI
i , i, I = 1, . . . , 4 are

linearly dependent. This amounts to Kijkl = 0, where

Kijkl = εIJKLZI
i ZJ

j ZK
k ZL

l . (3.2.3)

Via twistor transform, this goes into a second order differential operator in λ̃ȧ. The

coplanar operator can be related to the collinear operators

Kijkl =
∑

L

FijkLZL
l , (3.2.4)

which expresses the elementary fact that if the points ijk are collinear then for any

point l, the points ijkl are coplanar.

Given a scattering amplitude A(λ1, λ̃1; . . . ; λn, λ̃n), the condition that the

twistor space amplitude has a support where the points i, j, k are collinear is

that FijkLA = 0. Similarly, the condition that the points i, j, k, l are coplanar is

KijklA = 0, [11].

There are a few simple criteria for an amplitude to be annihilated by FijkL.

Firstly, FijkL annihilates the amplitude if it depends only on the holomorphic

spinors λa of the particles i, j, k. For L = a, Fijka is a second order differential

operator in λ̃ȧ that annihilates the amplitude. Secondly, the amplitude is annihi-

lated by FijkL if it depends on the spinors of particles i, j, k only through the sum

of their momenta P aȧ = paȧ
i + paȧ

j + paȧ
k . This follows from the application of the

Schoutens’s identity

〈λi, λj〉λa
k + 〈λj , λk〉λa

i + 〈λk, λi〉λa
j = 0. (3.2.5)

3.2.1 Higher Degree Curves

Holomorphic curves of genus zero in CP3 have a simple description. Indeed,

the curve C is a copy of a CP1 that can be described by homogeneous coordinates

u, v. Any curve of genus zero and degree d has parametric description

ZI = f I(u, v), I = 1, . . . , 4, (3.2.6)

where ZI are the homogeneous coordinates of CP3 and f I(u, v) are homogeneous

polynomials of degree d.
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Degree Two

For d = 2, f I must be linear combinations of the tree quadratic monomials

u2, uv, v2. Since, there are four f I ’s one combination of them vanishes, so the curve

C lies in a CP2 ⊂ CP3, say in the CP2 characterized by

4∑

I=1

aIZ
I = 0. (3.2.7)

A degree two curve in CP2 can be described as a zero set of a homogeneous poly-

nomial of degree two

F =
4∑

I,J=1

aIJZIZJ . (3.2.8)

Hence, the plane conic is a ’complete intersection’, which means that it is the

solution set to a collection of homogeneous polynomials.

Using an Sl(4) transformation, we identify the plane with the set Z4 = 0. This

can be achieved by ie. projection on the Z4 = 0 plane. The condition that the n

points Pi all lie in C becomes

3∑

I,J=1

aIJZI
i ZJ

i = 0 i = 1, . . . , n. (3.2.9)

We can view this as n linear conditions on the six coefficient aIJ . For n ≤ 5, there

is always a solution, so any five points lie in a (possibly singular) conic. Given six

points in CP2 are contained in a conic if the 6× 6 matrix with entries

M IJ
i = ZI

i ZJ
i , i, IJ = 1, . . . , 6 (3.2.10)

has zero determinant. In momentum space, the determinant becomes a fourth order

differential operator that we denote V [11].

In the CP2, the condition for Pi, Pj , Pk to be collinear is that the operator

Fijk = Fijk4 = εIJKZI
i ZJ

j ZK
k (3.2.11)

vanishes. We now express the condition for P1, P2, . . . , P6 to lie on a conic in

terms of these operators. Since, F123 is the only invariant of the group Sl(3)

of transformation preserving the CP2, we use Sl(3) to set P1 = (1, 0, 0), P2 =

(0, 1, 0), P3 = (0, 0, F123). Then the coordinates of the remaining points are Pi =
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(Fi23/F123, F1i3/F123, F12i). The conic operator V is the determinant of the 6 × 6

matrix M IJ
i = ZI

i ZJ
i . Substituting in the choices for coordinates we made, V

reduces to the determinant of the 3× 3 matrix

V = F−2
123 det




F234F314 F234F124 F314F124

F235F315 F235F125 F315F125

F236F316 F236F126 F316F126


 . (3.2.12)

We simplify this using the identity

FijkFilm + FijlFimk + FijmFikl = 0. (3.2.13)

For example, the upper left 2× 2 minor of the determinant is F234F235(F314F125 −
F124F315) = F234F235F123F145. Other minors are obtained from this by making a

cyclic permutation of indices 4, 5, 6. Hence we get

V = F−1
123(F316F216F234F235F145 + F314F214F235F236F156 + F315F215F236F234F164).

(3.2.14)

In the middle term, we use F214F235 + F213F254 + F215F243 = 0, to get

V =− F245F314F236F156

+ F−1
123F234(F215F314F236F156 + F316F216F235F145 + F315F215F236F164).

(3.2.15)

After substituting F216F235 + F213F256 + F215F263 = 0 into the middle term in

the parenthesis, we get three terms proportional to F215 that cancel thanks to the

identity (3.2.13). We are left with a polynomial in F ’s

V = F234F316F145F256 − F245F314F236F156. (3.2.16)

Since V is invariant, up to a minus sign, under permutations of the points Pi, there

are many equivalent formulas obtained by permuting the right hand side. Further

expressions for V follow from projecting the points on a CP 2 in generic position∑4
I=1 bIZ

I = 0. Then the F ’s in the expression for V must be taken to be

Fijk = εIJKLZI
i ZJ

j ZK
k bL. (3.2.17)

Degree Three
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A genus zero degree three curve in CP3 is called ’twisted cubic curve’. Degree

three is the first case for which the curve is not contained in any hyperplane CP2.

Also this curve is not a complete intersection, which means that any set of equations

defining the curve is redundant. Hence, the parametric description of C (3.2.6) is

the most convenient one.

Recall that a twisted cubic curve is described parametrically as

ZI = f I(u, v), (3.2.18)

where f I are homogeneous cubic polynomials of the homogeneous coordinates u, v

of an abstract CP1. The f I have 16 coefficients so, after taking into account the

action of Gl(2) on u, v, the space of twisted cubics is 12 dimensional. For a point to

lie on the twisted cubic entails two conditions, so we guess that any 6 points lie on

some twisted cubic. The condition for seven points P1, P2, . . . , P7 to lie on a twisted

cubic can be described as follows5.

Since a twisted cubic is not contained in any CP2 we can assume that

P1, P2, P3, P4 are not contained in any CP2 as well. Then, by a Gl(4) transfor-

mation, we set P1 = (0, 0, 0, 1), P2 = (0, 1, 0, 0), P3 = (0, 0, 1, 0) and P4 = (0, 0, 0, 1).

The coordinates of the remaining points can be expressed in terms of Kijkl =

εIJKLZI
i ZJ

j ZK
k ZL

l as Pi = (Kj234,K1j34, K12j4,K123j). Hence the twisted cubic

operator can be expressed in terms of the coplanar operators6 K. If the point

P1 corresponds to (u1, v1), we have f2(u1, v1) = f3(u1, v1) = f4(u1, v1) = 0, so

f2, f3 and f4 are all divisible by by the linear function g1(u, v) = uv1 − vu1.

Applying the same arguments to P2, P3, P4, we end up with four linear function

gI(u, v), I = 1, . . . , 4, such that gI divides fJ for I 6= J. So, up to rescalings that

can be absorbed into gI , the twisted cubic curve C is described by

fJ(u, v) =
∏

I 6=J

gI(u, v). (3.2.19)

Introducing the new coordinates W I = (Z1Z2Z3Z4)1/3/ZI , the equation for C

becomes

W I(u, v) = gI(u, v). (3.2.20)

5 We thank M. Atiyah and S. Popescu for explaining us this construction
6 Clearly, this argument applies to higher degree curves as well. Hence, the operators

for higher degree curves can be expressed as polynomials in K’s.
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Hence, in terms of the dual coordinates W I , the curve C is just a straight line.

Given two points P5, P6, there is always a straight line going through them, whence

any six points P1, . . . , P6 are contained in some cubic curve. This construction

actually shows that six generic points are contained in a unique twisted cubic.

For seven points P1, . . . , P7, the condition that they are on a twisted cubic is

that the points P5, P6, P7 in the dual CP3 lie on a line. This happens when the

operators

TL = F567L = εIJKLW I
5 W J

6 WK
7 L = 1, . . . , 4 (3.2.21)

vanish. The simplification of the twisted cubic operators TL is similar to the planar

conic case. Using the identity

KijklKijmn + KijkmKijnl + KijknKijlm = 0, (3.2.22)

we find

T1 = K1245K1356K1467K1237 −K1235K1456K1367K1247

T2 = K1245K2356K2467K1237 −K1235K2456K2367K1247

T3 = K1345K2356K3467K1237 −K1235K3456K2367K1347

T4 = K1345K2456K3467K1247 −K1245K3456K2467K1347.

(3.2.23)

In momentum space, TL’s become eighth order differential operators in λ̃i’s. Again,

many equivalent formulas can be obtained by permutations of indices and the use

of (3.2.22).

3.3 Twistor Structure of One-Loop N = 1 MHV Amplitude

In this section, we study twistor structure of one-loop amplitudes in gauge

theory with reduced supersymmetry. In internal particles running in the loop have

spin 0, 1/2, 1. The amplitudes are conveniently described in terms of supersymmetric

multiplets running in the loop. One considers the N = 4 amplitude, the amplitude

AN=1
chiral in which the particles in the loop form an N = 1 chiral multiplet and Ascalar

with a scalar in the loop.
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3.3.1 Twistor Structure of N = 1 Amplitude

In this basis, the one-loop N = 1 amplitude can be written as a sum of the

contributions of N = 4 multiplet minus thrice the N = 1 chiral multiplet

AN=1 = AN=4 − 3AN=1
chiral. (3.3.1)

The contribution from the N = 1 chiral multiplet to MHV amplitude with

negative helicity gluons i− and j− is [51]

AN=1
chiral = Atree ×

{ j−1∑

p=i+1

i−1∑

q=j+1

bi,j
p,qB(t[q−p]

p+1 , t[q−p]
p ; t[q−p−1]

p+1 , t
[p−q−1]
q+1 )

+
j−1∑

p=i+1

i−1∑

a=j

ci,j
p,a

ln(t[a−p]
p+1 /t

[a−p+1]
p )

t
[a−p]
p+1 − t

[a−p+1]
p

+
i−1∑

p=j+1

j−1∑

a=i

ci,j
p,a

ln(t[p−a]
a+1 /t

[p−a−1]
a+1 )

t
[p−a]
a+1 − t

[p−a−1]
a+1

+
ci,j
i+1,i−1

t
[2]
i

K0(t
[2]
i ) +

ci,j
i−1,i

t
[2]
i−1

K0(t
[2]
i−1) +

ci,j
j+1,j−1

t
[2]
j

K0(t
[2]
j ) +

ci,j
j−1,j

t
[2]
j−1

K0(t
[2]
j−1)

}
,

(3.3.2)

where,
t
[k]
i = t

[n−k]
i for k < 0

j∑

k=i

=
n∑

k=i

+
j∑

k=1

for j < i
. (3.3.3)

We sum only over a satisfying

|a− p| > 1 and |a + 1− p| > 1, (3.3.4)

so that the logarithms on the second and third line have a finite nonzero argument.

The coefficients in front of the integral functions are

bi,j
p,q = 2

〈i, p〉〈p, j〉〈i, q〉〈q, j〉
〈i, j〉2〈p, q〉2

ci,j
p,a =

(tr +[k/ik/jk/pq/p,a]− tr +[k/ik/jq/p,ak/p])
(ki + kj)2

〈i, p〉〈p, j〉
〈i, j〉

〈a, a + 1〉
〈a, p〉〈p, a + 1〉

, (3.3.5)

where qi,j =
∑j

l=i kl and

tr +[k/a1k/a2k/a3k/a4 ] =
1
2
tr [(1 + γ5)k/a1k/a2k/a3k/a4] = [a1a2]〈a2a3〉[a3a4]〈a4a1〉.

(3.3.6)
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q +

p +i −

j −

P

Q

Fig. 12: The scalar box integral contributing to the amplitude. Two of

the vertices, p and q are light-like. P and Q are sums of several light-like

momenta. We pick conventions so that i ∈ P and j ∈ Q.

The function B comes from two mass scalar integral, fig. 12. Using the con-

ventions shown in the figure, p = pp, q = pq while P = pp + pp+1 + . . . + pq−1 and

Q = pq+1 + pq+2 + . . . + pp−1 so that p, q, P, Q are the four incoming momenta of

the box diagram. As discussed in Appendix A, the scalar function B is the finite

part of the N = 4 scalar box function

B(p, q, P, Q) = F finite(p, q, P,Q)

= Li2

(
1− P 2

(P + p)2

)
+ Li2

(
1− P 2

(P + q)2

)

+ Li2

(
1− Q2

(Q + q)2

)
+ Li2

(
1− Q2

(Q + p)2

)

− Li2

(
1− P 2Q2

(P + p)2(P + q)2

)
+

1
2

log2

(
(P + p)2

(P + q)2

)
.

(3.3.7)

On the second and third line of (3.3.2) is the contribution from the triangle

functions, fig. 13. Here p = pm, the momenta P,Q are the sums pp+1+pp+2+. . .+pa

and pa+1, pa+2, . . . , pp−1. We choose P to be the momentum containing i and Q to

be the momentum containing j. Using the variables p, P, Q, we rewrite the triangle

function in the convenient form

T (p, P, Q) =
ln(Q2/P 2)
Q2 − P 2

. (3.3.8)
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p +

j −
Q P

a a+1 i −

Fig. 13: Triangle diagram contributing to the amplitude. p is a lightlike

momentum, P is a sum of light-like momenta containing i and Q is a sum

of momenta containing j.

The coefficient ci,j
p,a (3.3.5) can be simplified using the definition (3.3.6)

ci,j
p,a =

〈i, p〉〈p, j〉
〈i, j〉2

〈a, a + 1〉
〈a, p〉〈a, p + 1〉

×
{ (〈j, p〉〈i|P |p] + 〈i, p〉〈j|P |p]

)
p=j+1,. . . ,i-1(〈j, p〉〈i|Q|p] + 〈i, p〉〈j|Q|q]) p=i+1, . . . ,j-1.

(3.3.9)

The main feature that we will use in remainder of the discussion is that the anti-

holomorphic dependence of the coefficients (3.3.9) is captured in p, P and Q. In

particular, these coefficients are holomorphic in i, j, a.

The amplitude (3.3.2) diverges when i− or j− becomes collinear with one of the

adjacent positive helicity gluons. The piece that diverges when pi and pp become

collinear, where p = i−1, i+1, comes from a scalar bubble diagram, with P = pi+pp

and Q = −P. It can be simplified to (3.3.2)

ci,j
p,a

si,p
K0(si,p) = −〈i, p〉〈p, j〉

〈i, j〉
〈a, a + 1〉

〈a, p〉〈p, a + 1〉
1

ε(1− 2ε)
(−P 2)−ε, (3.3.10)

where a = i, i− 1 for p = i− 1, i + 1 respectively.

i+1 +

i −

j − P

Fig. 14: The scalar bubble diagram giving the divergent part K0(P
2) of

the amplitude.
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Collecting the different pieces we can write the amplitude schematically as the

sum of box, triangle and bubble contributions

AN=1chiral = Atree×

 ∑

p,q;i∈P,j∈Q

bi,j
p,qB(p, q, P, Q) +

∑

p,a;i∈P,j∈Q

ci,j
p,aT (p, P, Q) + AIR.




(3.3.11)

3.3.2 Interpretation

Box Diagrams

Let us firstly discuss the contribution to the amplitude (3.3.11) from box func-

tions

bi,j
p,qB(p, q, P, Q). (3.3.12)

The coefficient bi,j
p,q (3.3.5), is a holomorphic function in the momentum spinors so it

does not affect the localization in twistor space. Hence, the localization properties

of the box diagrams are determined by the the box function B(p, q, P, Q). This is

the finite part of the scalar box function, whose twistor inspired decomposition was

found in [2]. The gluons in P and Q are localized on intersecting lines. Moreover,

the gluons p, q are localized either on the lines or in a first order neighborhood of

the CP 2 containing the intersecting lines. At most one gluon can be localized away

from the lines.

There are some differences between the N = 4 and the N = 1 amplitude. For

the N = 4 amplitude, there is no restriction on the position of the negative helicity

gluons. For the N = 1 chiral amplitude, the negative helicity gluons are always

localized on the lines. Moreover, one of negative helicity gluons is localized on one

line and the other gluon on the other line.

Triangle Diagrams

We can see part of the localization of the triangle diagram without any addi-

tional work. The diagram contributes

ci,j
p,aT (p, P,Q) (3.3.13)

to the amplitude (3.3.11). The coefficient ci,j
p,a is holomorphic in the spinors of glu-

ons a, i, j (3.3.9). The anti-holomorphic dependence of (3.3.13) is captured via the



3 Twistor Structure of Scattering Amplitudes 62

dependence on P, Q and p. Hence, the vertices of the triangle diagram behave ef-

fectively as local vertices in Minkowski space. In the twistor space, the particles of

each vertex are supported on a line. The gluons whose momenta add up to P are

localized on one line and the gluons whose momenta add up to Q are localized on

another line lines.

Furthermore, we found using a computer program that the square of the copla-

nar operator annihilates the triangle function. Hence, all gluons are in a first order

neighborhood of a plane, that is a CP 2. The two lines supporting gluons in P and

Q, are intersecting up to first order and the gluon p is localized in the first order

neighborhood of the CP 2.

(b) (c)(a)

Fig. 15: The twistor configurations contributing to one-loop MHV ampli-

tude as found by studying the differential equations. In (a), the gluons are

supported on two disjoint lines that are connected by two twistor propaga-

tors. In (b), the lines intersect at a point. In (c), the lines intersect at a

point and one gluon is not supported on the lines but rather in the plane

spanned by the two lines.

There are further differential equations satisfied by the triangle contribution

KPPQQFpPP FpQQ

(
ci,j
p,aT (p, P, Q)

)
= 0, (3.3.14)

which complicate the picture. Here, KPPQQ represents a coplanar operator Kijkl

with i, j ∈ P and k, l ∈ Q. Similarly FpPP is a collinear operator Fpij with i, j ∈ P.

This collection of differential equations means roughly that the triangle function

is a sum of contributions that are annihilated by either of the three differential

operators (3.3.14). Hence, either the lines P and Q are strictly coplanar or one of

the lines contains p.

Divergent Part
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The infrared divergent part of the amplitude (3.3.2) is (3.3.10)

1
ε(1− 2ε)

(−P 2)−ε (3.3.15)

times a holomorphic function of spinors. As discussed before, this localizes on a

disjoint union of two lines. The gluons whose momenta add up to P are on one line

and the remaining gluons are on the second line.

3.3.3 Holomorphic Anomaly

In a hypothetical twistor string theory dual to perturbative N = 1 gauge

theory, we would expect that all gluon are supported on an algebraic curve, which

is a worldsheet of a string that generates the interaction. This is what we find for the

first two contributions of figure fig. 15. The first contribution can be interpreted as

coming from two degree one D-instantons connected by two open strings. Similarly

the second comes when one of the propagators degenerates or equivalently, when a

degree two instanton degenerates to two intersecting degree one instantons.

However, for the finite part of the amplitude we find that the amplitude also

has a contribution, fig. 15 (c), where the gluons are localized on two intersecting

lines except for one, which is in the plane spanned by the lines. This configuration

is not expected from the twistor string theory.

In order to resolve this discrepancy, we need to recall from section 3.1 the

differential equations that tests whether external gluons are supported on a line.

For gluons i, j, k with momenta paȧ
l = λa

l λ̃ȧ
l , the differential operator that should

annihilate the amplitude is

Fijk = 〈λi, λj〉 ∂

∂λ̃k

+ 〈λj , λk〉 ∂

∂λ̃i

+ 〈λk, λi〉 ∂

∂λ̃j

. (3.3.16)

For example the MHV amplitude

A(λi, λ̃i) =
〈λr, λs〉4∏n

k=1〈λm, λm+1〉 , (3.3.17)

is manifestly annihilated by Fijk, i, j, k = 1, . . . , n in agreement with the discussion

of previous chapter.

This is actually true only for generic momenta, as there is a delta function

contribution when two of the momenta become collinear. To see this, recall that
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in Minkowski space λa and λ̃a are complex conjugates. Hence, the ∂/∂λ̃ operator

acts on λ the same way as ∂ acts on z. So we get a nonzero contribution when the

operator acts on a pole

dλ̃ȧ ∂

∂λ̃ȧ

1
〈λ, λ′〉 = −2iπδ(〈λ, λ′〉), (3.3.18)

where δ(z) = dzδ2(z) is the holomorphic delta function. Hence, FijkA is actually a

sum of delta function when gluons become collinear with the gluons i, j, k. At tree

level, we can always pick the momenta of the external particles so that no two are

collinear so the delta functions can be safely ignored.

Fig. 16: The cut diagram computing the imaginary part of the one-loop

MHV amplitude. The left and right amplitudes are the on-shell MHV

amplitudes.

Consider now the similar argument for loop amplitudes. For clarity, we focus

on the imaginary part of one-loop MHV amplitude. From unitarity, this can be

obtained from a ‘cut’ diagram of fig. 16 where the cut propagators are on-shell and

the scattering amplitudes on the left and right are the MHV amplitudes. Naively,

FijkA is zero if i, j, k are gluons coming from one MHV amplitude. However, the

MHV amplitudes develop a pole when one of the external gluons becomes collinear

with one of the internal gluons. The condition for the internal gluon to be collinear

with a given external gluon fixes the momentum of the internal gluon. Hence, Fijk

acting on A gets a delta function contribution that localizes the integral over the

momentum of the internal gluon. One would naively interpret the nonvanishing of

FijkA as a sign of one gluon being localized away from the lines supporting the

MHV vertices. For generic external momenta, the internal gluon can be collinear

with only one external gluon which explains why in the previous subsection we

found only one external gluon in the bulk of the twistor space.
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3.4 Twistor Structure of Nonsupersymmetric One-Loop Amplitudes

In this section, we discuss nonsupersymmetric scattering amplitudes of gluons.

As discussed at the beginning of previous section, it is convenient to decompose the

the contributions of internal particles into supersymmetric multiplets

AQCD = AN=4 − 4AN=1
chiral + Ascalar. (3.4.1)

The supersymmetric contribution AN=1
chiral was studied in previous section. In this

section we consider the contribution from an internal scalar running in a loop.

Unlike in the supersymmetric case, the nonsupersymmetric n-gluon amplitudes

with n or n − 1 gluons of the same helicity do not vanish. We begin with the

discussion of these amplitudes and then go on to discussing the amplitudes with

two negative helicity gluons.

3.4.1 All Plus Helicity One-Loop Amplitude

The one-loop scattering amplitude of n ≥ 4 gluons of positive helicity is [52],

[53]

A1−loop
n (+, . . . , +) = − i

48π2

∑

1≤i1<i2<i3<i4≤n

〈i1i2〉[i2i3]〈i3i4〉[i4i1]
〈12〉〈23〉 · · · 〈n1〉 . (3.4.2)

For future reference, we rewrite the amplitude in terms of the momenta and holo-

morphic spinors of the external particles

A = − i

96π2

∑

1≤i1<i2<i3<i4≤n

si1i2si3i4 − si1i3si2i4 + si1i4si2i4 − 4iεµνλρp
µ
i1

pν
i2

pρ
i3

pσ
i4

〈12〉〈23〉 . . . 〈n1〉 .

(3.4.3)

The amplitude is a single valued function of spinors, hence it is free of cuts. Indeed,

cutting the amplitude into two parts, the cut is proportional to product of two tree

level amplitudes, at least one of which has less than two negative helicities so it

vanishes.

The twistor structure of the amplitude is clear. The product of any three

collinear operators annihilates the amplitude, because the amplitude is quadratic

in λ̃1̇
i . Hence the external gluons are all supported in a second order neighborhood

of a line , that is a CP1. In analogy with MHV vertices, the all-plus amplitudes are

a twistor space analogs of local interaction vertices [54]. Hence, it is tempting to

guess, that the nonsupersymmetric amplitudes can be constructed from these two

types of vertices.
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(a)

(b)
Fig. 17: (a) A one-loop diagram with MHV vertices. Each vertex has two

negative helicity gluons. Out of the four negative helicity gluons, two are

absorbed by the propagators. (b) A diagram that also contains a one-loop

all-plus vertex. The vertex is drawn as a disk to indicate that it contains a

loop.

Before we go on to study further amplitudes, let us discuss the hypothetical

Feynman diagrams construction of nonsupersymmetric one-loop amplitudes using

MHV and all-plus vertices. Consider first a diagram with d MHV vertices. Each

vertex contains two negative helicity gluons. To make a connected diagram, the

vertices are connected with d − 1 propagators, each of which absorbs one negative

helicity gluon, leaving d + 1 negative helicity external gluons. An l-loop diagram

contains l additional propagators, hence the diagram has

q = d− l + 1 (3.4.4)

negative helicity gluons.

Each all-plus vertex contains a hidden loop inside, hence adding p such vertices

we need to remove p propagators leaving us with

q = d + 1− l − p (3.4.5)

negative helicity gluons. An l-loop amplitude can have up to l all-plus vertices,

hence it has contributions from quivers of degrees

q − 1 + l ≤ d ≤ q − 1 + 2l. (3.4.6)
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3.4.2 The −+ + + . . . + One Loop Amplitude

We will now discuss the n gluon amplitude with n−1 gluons of positive helicity

and compare it to the expectations from previous subsection. We find that the

twistor structure agrees with our expectations. However we have not been able to

find an off-shell continuation of the one-loop all plus vertex that would give the

right amplitude.

The one loop nonsupersymmetric scattering amplitude of all but one gluon of

the same helicity has been derived using recursive techniques by Mahlon [55], [56].

(b)(a)

+
+

+

+

+_

_ _
_

+
+

+
+

+

Fig. 18: Two representations of a diagram contributing to a one loop non-

supersymmetric amplitude. (a) The geometry of the diagram in twistor

space, as found from differential equations. (b) Minskowski space represen-

tation of the diagram in terms of local vertices, a four-valent all-plus vertex

and a three-valent MHV vertex.

For example, consider the five gluon −+ + + + amplitude [57]

A =
i

48π2

1
〈34〉2

[
− [25]3

[12][51]
+
〈14〉3[45]〈35〉
〈12〉〈23〉〈45〉2 −

〈13〉3[32]〈42〉
〈15〉〈54〉〈32〉2

]
. (3.4.7)

We find that the product of any three coplanar operators annihilates the amplitude

K3A = 0. (3.4.8)

We also find that the amplitude is annihilated by

F 3
123F

3
234A = 0. (3.4.9)

The differential equations have the following interpretation. (3.4.8) implies

that all gluons are coplanar. Furthermore, it follows from (3.4.9) that three of the
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gluons lie on a line. Drawing a line through the other two gluons, we find that the

two lines intersect as indicated in fig. 18 (a).

We have studied Mahlon’s amplitude up to eight gluons and found that the

differential equations satisfied by the amplitude are in agreement with the proposed

twistor configurations. The amplitude has contribution from twistor diagrams with

one MHV vertex and one all-plus vertex. The MHV vertex is localized on a line

while the all-plus vertex is localized in a second order neighborhood of a line. The

two lines have a second order intersection, hence the amplitude is supported in a

second order neighborhood of a plane defined by the two lines.

Towards the Construction of All-Plus Vertex

On the other hand, we have not been successful in finding an off-shell contin-

uation of the all-plus one-loop amplitude to use in the diagrams fig. 18(b). One

approach is to use the second form of the all-plus amplitude (3.4.3) that depends

on the holomorphic spinors λi and the momenta pi only. Hence, one can adopt the

off-shell continuation used in [54] λa = paȧηȧ, but one finds that it does not lead to

the right amplitudes.

3.4.3 Nonsupersymmetric −−+ . . . + Amplitude

Here we consider the nonsupersymmetric amplitudes with two negative helicity

gluons. The part of the amplitudes that contains cuts can be computed via unitarity.

According to [51], the cut-constructible part of the scalar loop amplitude with two

adjacent negative helicity gluons is

Ascalar cut =
1
3
AN=1

chiral −
cΓ

3
Atree

n−1∑
p=4

L2

(
t
[p−2]
2 /t

[p−1]
2

)

(
t
[2]
1 t

[p−1]
2

)3

× tr +[k/1k/2k/pq/p,1] tr +[k/1k/2q/p,1k/p]
(
tr +[k/1k/2k/pq/p,1]− tr +[k/1k/2q/p,1k/p]

)
,

(3.4.10)

where Atree is the tree level MHV amplitude and

L2(x) =
ln(x)− (x− 1/x)/2

(1− x)3
. (3.4.11)
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p +

1 −
P Q

2 −

Fig. 19: A triangle diagram contributing to the scalar loop amplitude with

adjacent negative helicity gluons.

Setting P = pp+1 + pp+2 + . . . + p1 and Q = p2 + p3 + . . . + pp−1, the scalar

loop amplitude becomes

Ascalar cut =
1
3
AN=1

chiral −
cΓ

3
Atree

〈1, 2〉3
n−1∑
p=4

L2(P 2/Q2)
(Q2)3

× 〈1, p〉〈2, p〉〈1|P |p]〈2|P |p]
(〈1,m〉〈2|P |p]− 〈2,m〉〈1|P |m]

)
.

(3.4.12)

Now we have two types of triangle functions

T (p, P, Q) =
ln(Q2/P 2)
Q2 − P 2

, T̃ (p, P, Q) =
L2(P 2/Q2)

(Q2)3
. (3.4.13)

Schematically, the amplitude is a sum of triangle diagrams

Ascalar =
∑

p

1
3
c1,2
1,pT (p, P, Q) +

∑
p

c̃1,2
p T̃ (p, P, Q). (3.4.14)

The part containing T (p, P,Q) has been studied in previous section. The part

containing the nonsupersymmetric triangle function T̃ (p, P,Q) localizes on almost

the same configurations as the N = 1 triangle function. The gluons whose momenta

add up to P are localized on a line and the gluons whose momenta add up to Q

are localized on another line. The study of the differential equations shows that the

amplitude is annihilated by the square of the coplanar operator K2, so all gluons

are coplanar, they lie in a second order neighborhood of a plane. The amplitude

satisfies further differential equations analogous to (3.3.14)

KPPQQF 2
pPP F 2

pQQ

(
c̃i,j
p,aT̃ (p, P, Q)

)
= 0. (3.4.15)
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3.4.4 Comparison of Amplitudes with Two Negative Helicity Gluons

The surprising result of the analysis in preceding sections is that the N = 1

chiral and the cut-constructible part of scalar MHV amplitudes localize on the

same type of twistor configurations. In all cases, the infrared divergent part of the

amplitude localizes on two disjoint lines. The finite part of the amplitude is localized

on two intersecting lines. One gluon can have a distinguished position. It can be

supported away from the lines, in a first order neighborhood of the plane defined

by the two lines. At first this twistor picture would seem at odds the discussion of

previous chapter, where we noted that the MHV loop computation of the one-loop

MHV amplitude [47] makes manifest that the amplitude is supported on a disjoint

union of lines, with all gluons localized on the lines. This apparent discrepancy has

been reinterpreted in terms of holomorphic anomaly in the differential equations [3]

as discussed in previous section.

j −
i −

P
Q

p +

Fig. 20: A twistor configuration contributing to the N = 1 chiral ampli-

tude. One gluon is in the plane containing the lines P, Q.

3.4.5 Cut-free Part of −−+ + . . . + Amplitude

The cut-constructible terms do not give the whole − − + . . . + amplitude. In

particular, they lack singularities in some multiparticle channels. The amplitude

also contains cut-free rational functions. For five gluons the rational part of the

‘MHV’ amplitudes have been computed via string inspired methods [57]. Studying

the differential equations, we find the possible diagrams contributing to the rational

terms, fig. 21.
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1− 2−
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+ −

3+

4+
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1−

2−
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5+

4+

2−

Fig. 21: The diagrams contributing to rational function part of the −−
+ + + loop amplitude.

+

+

+
+

+

Fig. 22: A hypothetical diagram that could contribute to the rational

function part of the −−+ + + loop amplitude.

Unfortunately, the cut-free part of the MHV amplitude has been computed

only for amplitudes with five gluons [57]. So we were unable to analyze the cut-

free part of the n ≥ 6 gluon amplitude. These amplitudes are expected to receive

contribution from quivers drawn in fig. 22 (with additional positive helicity gluons

added on the lines.) The amplitudes should satisfy differential equations reflecting

the structure of the quivers.

3.5 Twistor Structure of Gravitational Amplitudes

The study of graviton amplitudes has been initiated in [11] where the tree level

n graviton maximally helicity violating amplitude was shown to be supported on

a genus zero degree one curve in twistor space. Here, we continue the empirical
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study of graviton scattering amplitudes. In analogy with gauge theory amplitudes,

we conjecture that the maximally supersymmetric supergravity amplitudes local-

ize on the same type twistor configurations as the gauge theory amplitudes. We

propose that the l-loop scattering amplitude with q gravitons of negative helicity is

supported on a algebraic curve of degree

d = q − 1 + l (3.5.1)

in the twistor space, but now with a ’higher derivative delta function support’ in the

normal directions to the curve. The genus of the curve is bounded by the number

of loops

g ≤ l. (3.5.2)

In a hypothetical twistor string theory that is dual to perturbative N = 8

supergravity, one would expect to write the scattering amplitudes as integrals over

the moduli space of curves of appropriate degree and genus. As in gauge theory case,

the differential equations obeyed by the amplitudes suggest that the amplitudes are

supported on singular degenerations of the curves. The singular curves in question

are collections of pairwise intersecting genus zero degree one curves, that is CP1’s.

Taking the analogy with Yang-Mills theory further, we would conjecture that each of

the CP1’s is related to an MHV graviton amplitude in a hypothetical MHV diagram

construction of graviton amplitudes.

In the following subsections, we undertake an empirical study of the differen-

tial equations obeyed by the graviton scattering amplitudes to support the above

conjecture. We give additional evidence that graviton scattering amplitudes are

supported on intersecting lines in the twistor space as in gauge theory case, but

now with a multiple derivative delta function support in the normal directions.

We study both tree level and one loop graviton scattering amplitudes in general

relativity and in N = 8 supergravity. This section has some overlap with [58,59].

3.5.1 Tree Level Graviton Amplitudes

In analogy with Yang-Mills theory, we conjectured that the n graviton tree

level scattering amplitude with q gravitons of negative helicity is supported on a

configuration of q−1 pairwise intersecting degree one curves in twistor space. Since

the minimal degree of an algebraic curve is one, it follows from this proposal that
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the amplitudes with zero or one negative helicity gravitons vanish7. This is indeed

the case. The vanishing of these amplitudes is a consequence of supersymmetric

Ward identities. The Ward identities hold for tree level scattering amplitudes in

gravity theory with no supersymmetry as well, because the tree level amplitudes

are not sensitive to supersymmetry.

MHV Amplitude

The first nonvanishing tree level amplitude, the Maximally Helicity Violating

amplitude, has two gravitons of negative helicity and any number of positive he-

licity gravitons. It has been computed by Berends, Giele and Kuijf [60] using the

KLT relations [61]. As discussed in [11], after factoring out the delta function of

energy-momentum conservation, the amplitude is a rational function in λa
i times a

polynomial in λ̃ȧ
i

A(λi, λ̃i) = f(λa
i )P (λ̃ȧ

i ). (3.5.3)

After Fourier transform into twistor space, the polynomial P (λ̃ȧ
i ) becomes a differ-

ential operator

Ã(λi, µi) = f(λi)P (
∂

∂µiȧ
)

n∏

i=1

δ2(µiȧ + xaȧλa
i ). (3.5.4)

Hence, the MHV amplitude is supported on genus zero degree one curve, that is a

CP1, as in the Yang-Mills case. Since the polynomial P (λ̃i) is of degree n− 3, the

amplitude has n− 3rd derivative delta function support in the normal directions to

the curve. Hence, the product of any n− 2 collinear operators Fijk annihilates the

amplitude

Fn−2An = 0. (3.5.5)

Amplitudes with Three Negative Helicities

7 The three graviton amplitude with two gravitons of the same helicity is an excep-

tion. This amplitude is nonzero of on-shell complex momenta, but becomes zero for real

momenta in Minkowski space. This follows from analogous remarks for the gauge theory

case [11], since the three graviton amplitude is simply the square of the three gluon color

ordered amplitude.
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The next case to consider are amplitudes with three negative helicity gravitons.

From (3.5.1) we expect that these amplitudes are supported on two intersecting lines

in twistor space.

The simplest amplitude with three negative helicity gravitons is the five gravi-

ton googly MHV amplitude. The amplitude with gravitons 1 and 2 of positive

helicity and the rest of negative helicity is [60]

A(+, +,−,−,−) = i[12]8
[12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41]

N(5)
, (3.5.6)

where

N(5) =
4∏

i=1

n∏

j=i+1

[ij]. (3.5.7)

The amplitude can be derived from the gauge theory MHV amplitude using the five

particle KLT relation8

A(1, 2, 3, 4, 5) = is12s34A(1, 2, 3, 4, 5)A(2, 1, 4, 3, 5)

+ is13s24A(1, 3, 2, 4, 5)A(3, 1, 4, 2, 5).
(3.5.8)

A computer assisted study of the differential equations shows that

K2M = 0, (3.5.9)

hence the five gravitons are contained in a higher order neighborhood of a plane,

CP2. Furthermore the amplitude is annihilated by the product of the squares of all

collinear operators but F345

∏

ijk 6=345

F 2
ijkM = 0. (3.5.10)

This has a simple interpretation in a hypothetical MHV diagram construction

of the amplitude. According to (3.5.1) the amplitude is supported in an infinitesi-

mal neighborhood of a singular planar conic composed of two intersecting linearly

embedded CP1’s. The configuration with gravitons ijk on one line and the remain-

ing gravitons on the other corresponds to an MHV diagram with one three-valent

and one four-valent MHV vertex. The gravitons ijk are contained in the four-valent

8 See Appendix 3.B for a discussion of KLT relations.
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MHV vertex, which is annihilated by F 2
ijk (3.5.5), so the diagram is annihilated by

F 2
ijk as well. (3.5.10) is simply the product of these operators over all twistor di-

agrams contributing to the amplitude. The condition ijk 6= 345 comes in because

an MHV vertex has exactly two negative helicities.

Next is the six graviton amplitude with three negative helicities, + + +−−−.

Following [60], we define the amplitude from KLT relations

A(1, 2, 3, 4, 5, 6) = −is12s45A(1, 2, 3, 4, 5, 6)[s35A(2, 1, 5, 3, 4, 6) + (s34 + s35)A(2, 1, 5, 4, 3, 6)

+ permutations of (234)]

= −is12s45A(1, 2, 3, 4, 5, 6)[s13A(2, 3, 1, 5, 4, 6) + (s13 + s23)A(3, 2, 1, 5, 4, 6)

+ permutations of (234)].
(3.5.11)

According to our conjecture, the amplitude is supported on a pair of intersecting

lines in twistor space. We were able to verify with computer assistance that the

third power of coplanar operator and of the operator for plane conic annihilate the

amplitude
K3A = 0

V 3A = 0.
(3.5.12)

Hence the external gravitons are contained in a plane conic. The condition for the

plane conic degenerates to a pair of intersecting lines is a differential operator made

from products of collinear operators. A short analysis of the quivers contributing to

the amplitude shows, that one of the two CP1’s of the quiver always contains at least

two gravitons of positive helicity and one of negative helicity. This configuration is

annihilated by F 3
ijk where Pi, Pj , Pk are the gravitons in question.

Hence, the following degree 27 operator annihilates all quivers, fig. 23

O =
∏

hi=hj=−hk=+

F 3
ijk, (3.5.13)

so according to our conjecture, O annihilates the scattering amplitude. We have

not been able to verify this conjecture in a reasonable amount of computational

time.

KLT Relations vs. Twistor Structure of Amplitudes

A keen reader might ask whether the twistor structure of the graviton am-

plitudes is a consequence of the twistor structure of gluon amplitudes. After all,
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−
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− −
−+

+
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+

+
+

+
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− − −

(a) (b) (c)

Fig. 23: The three classes of quivers contributing to the + + +−−− six

graviton amplitude. + points denote any permutation of the three positive

helicity gravitons, so altogether there are 3 + 9 + 9 diagrams coming from

the classes (a),(b) and (c) respectively. Each of the diagrams is annihilated

by at least one of the 9 operators F 3
++−.

we conjecture that the graviton amplitudes are supported on quivers of the same

degree (3.5.1) as the gluon amplitudes of the same helicity configuration. The KLT

relations (3.5.8), (3.5.11) express the graviton scattering amplitudes as simple sums

of squares of gauge theory amplitudes up to some factors of sij .

The simplest way that the KLT relations could imply the localization of gravi-

ton amplitudes would be that each of the terms in the KLT relations (3.5.8) and

(3.5.11) localizes on the same configurations as the entire gravity amplitude.

We find a counterexample in the operator K3 acting on the six graviton non-

MHV amplitude. The operator does not annihilate the separate terms on the right

hand side of (3.5.11). Only the whole graviton amplitude, which is a sum of terms, is

annihilated by K3. Hence, the separate summands in the KLT relations do not have

a straightforward interpretation in the twistor space. This suggests that localization

of the graviton amplitudes is independent of the KLT relations. It is an intrinsic

property of gravity amplitudes that gives a hint of a twistor string theory whose

instanton expansion would naturally lead to the quiver picture discussed in this

section.

3.5.2 One-Loop Graviton Amplitudes

The Four Graviton One-Loop Amplitudes

The four graviton amplitudes with arbitrary particle content running in the

loop have been calculated using string based methods in [62]. The one-loop
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(±, +, +,+) supergravity amplitudes vanish due to supersymmetric Ward identi-

ties. In the nonsupersymmetric case, the amplitudes are finite rational functions of

the spinors λi, λ̃i,

A(+, +, +,+) = −Ns
iκ4

(4π)2

(
st

〈12〉〈23〉〈34〉〈41〉
)2

s2 + st + t2

1920
,

A(−, +, +,+) =
iκ4

(4π)2
Ns

5760
s2t2

u2
(u2 − st)

(
[24]2

[12]〈23〉〈34〉[41]

)2

,

(3.5.14)

where Ns is the number of bosonic states circulating in the loop minus the number

of fermionic states and s = s12, t = s14, u = s13 are the Mandelstam variables.

For General Relativity Ns = 2 because the graviton has two helicity states. These

amplitudes have a polynomial dependence on λ̃i, whence they are supported in a

higher order neighborhood of a CP1.

The the maximally helicity violating (−,−, +,+) amplitude is nonzero in grav-

ity theory with or without supersymmetry. It is convenient to consider the partial

amplitudes which receive contributions from N = 1, 2, 4, 6, 8 chiral multiplets and

a scalar running in the loop. The general relativity amplitude receives contribution

only from internal gravitons. It can be decomposed as

AGR = AN=8 − 8AN=6 + 20AN=4 − 16AN=1 +Ascalar. (3.5.15)

The N < 8 chiral multiplets give finite contributions. Moreover, they are polyno-

mial in λ̃i, so they are supported in an infinitesimal neighborhood of a CP1. The

N = 8 chiral multiplet contains graviton which gives infrared divergent contribution

to the scattering amplitude

AN=8 =
2F

ε

(
ln(−u)

st
+

ln(−t)
su

+
ln(−s)

tu

)

+ 2F

(
ln(−t) ln(−s)

st
+

ln(−u) ln(−t)
tu

+
ln(−s) ln(−u)

us

)
,

(3.5.16)

where

F = iκ2stuAtree, (3.5.17)

is a polynomial in λ̃ times the tree level amplitude. We expect that this contribution,

in analogy with gauge theory, comes from two disjoint lines in twistor space. In a

hypothetical twistor string dual to N = 8 supergravity, the lines are connected by

two twistor propagators.
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N = 8 Five Graviton MHV amplitude

The N = 8 one-loop five graviton MHV amplitude with gravitons i and j of

negative helicity and the remaining 3 gravitons of positive helicity is [63]

M1−loop
5 = −1

2
〈ij〉8[s2

12s
2
23h(1, {2}, 3)h(3, {4, 5}, 1)I123(45)

4

+ permutations],
(3.5.18)

where the sum is over 30 distinct permutations and

h(a, {c}, b) =
1

〈a1〉2〈1b〉2 ,

h(a, {cd}, b) =
[cd]

〈cd〉〈ac〉〈cb〉〈ad〉〈da〉 .
(3.5.19)

I123(45) is the one-mass scalar box integral with momenta p1, p2, p3 and p4 + p5

flowing out of the four corners of the ‘box’

I123(45)
4 =

i

s12s23

{
2
ε

[(
µ2

−s12

)ε

+
(

µ2

−s23

)ε

−
(

µ2

−s45

)ε]

− 2Li2

(
1− s45

s12

)
− 2Li2

(
1− s34

s23

)
− ln2

(
s12

s23

)}
.

(3.5.20)

The the infrared divergent part of the amplitude is a sum over two particle

terms times a polynomial in the anti-holomorphic spinors9 P (λ̃i). The term

2
ε

(
µ2

−smn

)ε

Pmn(λ̃i) (3.5.21)

is supported on a pair of skew lines with a multiple derivative delta function behavior

in the normal directions. The particles m,n lie on one line and the remaining

particles are on the other line.

We expect the finite part of the scattering amplitude to be supported on the

same configuration as the Yang-Mills amplitude, but with a higher derivative delta

function behavior in normal directions. We recall that in Yang-Mills theory, after

taking into account holomorphic anomaly, the finite part of the one-loop MHV

amplitude was supported on a pair of intersecting CP1’s. To test this conjecture in

9 The IR terms are also multiplied by rational functions of holomorphic spinors λi,

which do not affect the twistor structure.
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the gravity case, we verified that the graviton amplitude localizes to a higher order

neighborhood of a CP2, as the fifth power of the coplanar operator annihilates it

K5M1−loop
5 = 0. (3.5.22)

Each of the permutations in (3.5.18) is annihilated by K5 separately.

One Loop + + . . . + Graviton Amplitude

The only known infinite series of one loop scattering amplitudes in General

Relativity are the amplitudes of n gravitons with the same helicity. It has been

computed both from KLT relations and from the soft and collinear properties of

the amplitude [63]. Since the tree-level amplitude of the same helicity gravitons is

zero, the one-loop amplitude is a rational function of the spinor variables.

The interesting feature of this series of amplitudes is that, just like the gluon

amplitudes of the same helicity structure and the MHV graviton amplitudes, they

are a product of a rational function in λi times polynomial in λ̃. By the same reason-

ing as in the MHV case, the amplitude is supported in a higher order neighborhood

of a CP1.

3.A The Integral Functions

The box function F 2m e
n:r;i is one of a set of functions constructed from the scalar

box integrals. The latter form a complete list of the possible integrals that can

appear in a Feynman diagrammatic computation of one-loop amplitudes in N = 4

gauge theory. In one-loop amplitudes with reduced supersymmetry, the triangle

and bubble functions can appear as well.

These integrals are known as the scalar box integrals because they would arise

in a one-loop computation of a scalar field theory with four internal propagators.
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i−1

i+r

i+r−1

i+r−2

i+1 i

i−2

i−3

i+r+2i+r+1

l

(a)

q

p

l

(b)

Q

P

Fig. 24: Scalar Box Integrals used in the definition of: (a) The box function

F 2m e
n:r;i . (b) The generic box function F (p, q, P ).

The scalar box integral is defined as follows:

I4 = −i(4π)2−ε

∫
d4−2ε`

(2π)4−2ε

1
`2(`−K1)2(`−K1 −K2)2(` + K4)2

. (3.A.1)

The incoming external momenta at each of the vertices are K1,K2, K3,K4. The

labels are given in consecutive order following the loop. Momentum conservation

implies that K1 + K2 + K3 + K4 = 0 and this is why (3.A.1) only depends on three

momenta. We are interested in the case when K1 = pi−1, K2 = pi + . . . + pi+r−1

and K3 = pi+r. The scalar box function is then defined as follows,

F 2me
n:r;i =

(
t
[r+1]
i−1 t

[r+1]
i − t

[r]
i t

[n−r−2]
i+r+1

)
I2me
4:r;i (3.A.2)

We also use the finite scalar function

F (t[r+1]
i−1 , t

[r+1]
i ; t[r]i , t

[n−r−2]
i+r+1 )finite =

1
2rΓ

(t[r+1]
i−1 t

[r+1]
i − t

[r]
i t

[n−r−2]
i+r+1 )I2me

4;r;i

+
1
ε2

((−t
[r]
i )−ε + (−t

[n−r−2]
i+r+1 )−ε + (−t

[r+1]
i−1 )−ε + (−t

[r+1]
i )−ε).

(3.A.3)

This can be expressed as

B = F (i, r)finite = Li2

(
1− t

[r]
i

t
[r+1]
i−1

)
+ Li2

(
1− t

[r]
i

t
[r+1]
i

)
+ Li2

(
1− t

[n−r−2]
i+r+1

t
[r+1]
i−1

)

+ Li2

(
1− t

[n−r−2]
i+r+1

t
[r+1]
i

)
− Li2

(
1− t

[r]
i t

[n−r−2]
i+r+1

t
[r+1]
i−1 t

[r+1]
i

)
+

1
2

ln2

(
t
[r+1]
i−1

t
[r+1]
i

)
.

(3.A.4)
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The divergent part of the N = 1 amplitude (3.3.2) is expressed in terms of

scalar bubble function

K0(s) =
1

ε(1− 2ε)
(−s)−ε =

1
ε

+ 2− ln(−s) +O(ε). (3.A.5)

The finite part of the N = 1 chiral amplitude is a sum of scalar box and triangle

integrals. The triangle integral is defined as follows:

I3 = −i(4π)2−ε

∫
d4−2ε `

(2π)4−2ε

1
`2(`−K1)2(` + K3)2

. (3.A.6)

The incoming momenta at each vertex are K1,K2,K3. The labels are given in

consecutive order following the loop. The incoming momenta satisfy momentum

conservation K1 + K2 + K3 = 0. In the integral (3.A.6), we set K1 = pi−1, K2 =

pi + pi+1 + . . . + pi+r−1 and K3 = pi+r + pi+r+1 + . . . + pi−2

I2m
3:r,i =

rΓ

ε

(−t
[r]
i )−ε − (−t

[n−r−1]
i+r )−ε

(−t
[r]
i )− (−t

[n−r−1]
i+r )

. (3.A.7)

The triangle function T (3.4.13) enters the amplitudes as

L0

(
t
[r]
i /t

[r+1]
i

)

t
[r+1]
i

=
ln(t[r]i )− ln(t[r+1]

i )

t
[r]
i − t

[r+1]
i

=
1
rΓ

I2m
3:r,i[a2]. (3.A.8)

This is a Feynman parameter integral for a two mass triangle integral I2m
3:r,i where

t
[r]
i and t

[r+1]
i are squares of the momenta of the massive legs and a2 is the Feynman

parameter for the light-like leg. This representation arises when one carries out the

calculation of the N = 1 chiral multiplet amplitude in a manner analogous to the

N = 4 calculation.

3.B KLT Relations

The Kaway, Lewellen and Tye (KLT) relations of string theory [61] relate closed

string amplitudes to the open string amplitudes. They arise from representing each

closed string vertex operator C as a product of two open string vertex operators O

C(zi, zi) = O(zi)O(zi). (3.B.1)
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In the infinite tension limit of the closed strings, only the massless gravity states

survive.

In the infinite tension limit, the closed string states reduce to the states of

N = 8 supergravity and the open string states reduce to the states of the N = 4

Yang-Mills theory. The particle content of N = 8 supergravity is 1 graviton, 8

gravitinos, 28 vectors, 56 Majorana spinors and 70 scalars. As a consequence of

the factorization of the closed string vertex operator into the product of two open

string vertex operators, the N = 8 supergravity multiplet can be thought of as a

tensor product of two N = 4 gauge theory multiplets. The infinite tension limit

of the KLT relations relates the N = 8 gravity amplitudes to N = 4 gauge theory

amplitudes [60]. The tree level four particle KLT relations are

A(1, 2, 3, 4) = −is12A(1, 2, 3, 4)A(1, 2, 4, 3). (3.B.2)

Here, A is the gravity amplitude and A is the color ordered gauge theory amplitude.

Each of the gravity states on the left hand side is a product of two gauge theory

states on the right hand side. At tree level, supersymmetry does not affect scattering

amplitudes, whence the KLT relations hold for tree level scattering amplitudes in

theories with reduced or no supersymmetry. In the past, KLT relations have been

the main computational tool used to derive gravity scattering amplitudes.



4. Tree Level Recursion Relations For Gravity Amplitudes

4.1 Introduction

The twistor string has inspired a lot renewed progress in understanding the

tree-level and one-loop gluon scattering amplitudes in Yang-Mills theory. Among

other things, a new set of recursion relations for computing tree-level amplitudes of

gluons have been recently introduced in [7]. A proof of the recursion relations was

given in [16]. A straightforward application of these recursion relations gives new

and simple forms for many amplitudes. Many of these have been obtained recently

using somewhat related methods [64,65,66].

It has been known that tree level graviton amplitudes have remarkable sim-

plicity that cannot be expected from textbook recipes for computing them. The

tree level n graviton amplitudes vanish if more than n− 2 gravitons have the same

helicity. The maximally helicity violating (MHV) amplitudes are thus, as in Yang-

Mills case, those with n−2 gravitons of one helicity and two of the opposite helicity.

These have been computed by Berends, Giele, and Kuijf (BGK) [14] from the Kawai,

Lewellen and Tye (KLT) relations [13]. The four particle case was first computed

by DeWitt [30].

The simplicity of amplitudes raises the question whether there are analogous

recursion relations for amplitudes of gravitons. The possibility of such recursion

relations has been recently raised in [59].

In this chapter, we propose tree-level recursion relations for amplitudes of gravi-

tons. The recursion relations can be schematically written as follows

An =
∑

I,h

Ah
I

1
P 2
I

A−h
J . (4.1.1)

83



4 Tree Level Recursion Relations For Gravity Amplitudes 84

In writing a recursion relation for n graviton amplitude An, one marks two gravitons

and sums over products of subamplitudes with external gravitons partitioned into

sets I ∪ J = (1, 2, . . . , n) among the two subamplitudes so that i ∈ I and j ∈ J .

PI is the sum of the momenta of gravitons in the set I and h is the helicity of

the internal graviton. The momenta of the internal and the marked gravitons are

shifted so that they are on-shell.

We use the recursion relations to derive new compact formulas for all ampli-

tudes up to six gravitons. In particular, we give the first published result for the

six graviton non-MHV amplitude A(1−, 2−, 3−, 4+, 5+, 6+).

We attempt to prove the recursion relations along the lines of [16]. The first

part of the proof that rests on basic facts about tree-level diagrams, such as the

fact that their singularities come only from the poles of the internal propagators

can be easily adapted to the gravity case. To have a complete proof of the recursion

relations, it is necessary to prove that certain auxiliary function A(z) constructed

from the scattering amplitude vanishes as z →∞.

We are able to prove this fact from the KLT relations for all amplitudes up to

eight gravitons. For amplitudes with nine or more gravitons, the KLT relations sug-

gest that the function A(z) does not vanish at infinity unless there is an unexpected

cancellation between different terms in the KLT relations.

While we are not able to prove that A(z) vanishes at infinity for a general n

graviton scattering amplitude, we show that A(z) does vanish at infinity for MHV

amplitudes with arbitrary number of gravitons from the BGK formula. Hence, the

recursion relations are valid for all MHV amplitudes contrary to the expectation

from KLT relations.

Finally, we introduce an auxiliary set of recursion relations for NMHV ampli-

tudes which are easier to prove but give more complicated results for the amplitudes.

This auxiliary recursion relation is then used to prove the vanishing of A(z) for any

NMHV amplitudes.

This raises the hope, that the recursion relations hold for other scattering

amplitudes of gravitons as well.

Summary of Results

In section 4.2 we present the BCF relations to the case of gravity. In section 4.3,

we discuss explicit examples of computations of graviton scattering amplitudes using
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our recursion relations. We derive formulas for all amplitudes up to six gravitons.

In section 4.4 we derive the graviton recursion relations and in section 4.5 we study

the large z behavior of A(z) using several tools, including Feynman diagrams, KLT

relations and ‘auxiliary recursion relations.’ In the appendix, we give a refined

version of the KLT relations approach to vanishing of A(z).

4.2 Recursion Relations

Just like gauge theory scattering amplitudes, the graviton scattering amplitudes

are efficiently written in terms of spinor-helicity formalism. The polarization tensors

of the gravitons can be expressed in terms of gluon polarization vectors

ε+
aȧ,bḃ

= ε+aȧε+
bḃ

ε−
aȧ,bḃ

= ε−aȧε−
bḃ

. (4.2.1)

The polarization vectors of positive and negative helicity gluons are respectively

ε−aȧ =
λaµ̃ȧ

[λ̃, µ̃]
ε+aȧ =

µaλ̃ȧ

〈µ, λ〉 , (4.2.2)

where µ and µ̃ are fixed reference spinors.

Consider a tree level graviton scattering amplitude A(1, 2, . . . , n). The ampli-

tude is invariant under any permutations of the gravitons because there is no color

ordering.

To write down the recursion relations, we single out two gravitons. Without

loss of generality, we call these gravitons i and j. Define the shifted momenta pi(z)

and pj(z), where z is a complex parameter, to be

pi(z) = λi(λ̃i + zλ̃j) pj(z) = (λj − zλi)λ̃j . (4.2.3)

Note that pi(z) and pj(z) are on-shell for all z and that pi(z) + pj(z) = pi + pj .

Hence, the following function

A(z) = A(p1, . . . , pi(z), . . . , pj(z), . . . , n) (4.2.4)

is a physical on-shell scattering amplitude for all values of z.
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Consider the partitions of the gravitons (1, 2, . . . , i, . . . , j, . . . , n) = I ∪ J into

two groups such that i ∈ I and j ∈ J . Then the recursion relation for a tree-level

graviton amplitude is

A(z) =
∑

I,J

∑

h

AL(I,−Ph
I (zI), zI)

1
P 2
I (z)

AR(J , P−h
I (zI), zI), (4.2.5)

where
PI(z) =

∑

k∈I,k 6=i

pk + pi(z)

zI =
P 2
I

〈i|PI |j] .
(4.2.6)

The sum in (4.2.5) is over the partitions of gravitons and over the helicities of the

intermediate gravitons. The physical amplitude is obtained by taking z in equation

(4.2.5) to be zero

A(1, 2, . . . , n) = A(0). (4.2.7)

We will give evidence below that the recursion relation is valid for gravitons i

and j of helicity (+, +), (−,−) and (−,+) respectively.

jii j    =

Fig. 25: This is a schematic representation of the recursion relations

(4.2.5). The thick lines represent the reference gravitons. The sum here

is over all partitions of the gravitons into two groups with at least two

gravitons on each subamplitude and over the two choices of the helicity of

the internal graviton.

4.3 Explicit Examples

In this section, we compute all tree-level amplitudes up to six gravitons to

illustrate the use of the recursion relations (4.2.5).

Consider first the four-graviton MHV amplitude A(1−, 2−, 3+, 4+). The ampli-

tude is invariant under arbitrary permutations of external gravitons so the order
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of gravitons does not matter. Hence, this is the only independent four graviton

amplitude. In contrast, in gauge theory, there are two independent amplitudes

AY M (1−, 2−, 3+, 4+) and AY M (1−, 3+, 2−, 4+) because the Yang-Mills scattering

amplitudes are color ordered.

3+

2− −1

4 + 2− 4 +

3+ −1
(a) (b)

Fig. 26: Two configurations contributing to the four graviton amplitude

A(1−, 2−, 3+, 4+). Notice that the diagrams are related by the interchange

2 ↔ 3.

We single out gravitons 1− and 4+. Then, there are two possible configurations

contributing to the recursion relations (4.2.5), see fig. 26. We refer to the configu-

ration from fig. 2(a) as (2, 1̂|4̂, 3) and from fig. 2(b) as (3, 1̂|4̂, 3). To evaluate the

diagrams we use the known form of three graviton scattering amplitudes

A(1−, 2−, 3+) =
〈12〉6

〈23〉2〈31〉2 , A(1+, 2+, 3−) =
[12]6

[23]2[31]2
. (4.3.1)

The sum of the two contributions from fig. 2 is

A(1−, 2−, 3+, 4+) =
〈12〉5[34]2

[12]〈23〉2〈14〉2 +
〈12〉8[24]2

〈13〉3[13]〈23〉2〈14〉2 . (4.3.2)

A short calculation shows that (4.3.2) equals to the known result [14] obtained from

KLT relations

A(1−, 2−, 3+, 4+) =
〈12〉8[12]

〈12〉〈13〉〈14〉〈23〉〈24〉〈34〉2 . (4.3.3)

We picked the reference gravitons to have opposite helicity because this leads

to most compact expressions for graviton scattering amplitudes. We could have

chosen reference gravitons of the same helicity, ie. 1− and 2−. This leads to a

longer expression because there are more diagrams contributing to the scattering

amplitude. In the rest of the chapter, we will always choose reference gravitons of
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opposite helicity. The actual choice of reference gravitons does not matter, because

the amplitude is invariant under permutations that preserve the sets of positive and

negative helicity gravitons. All choices lead to the same answer up to relabelling of

the gravitons.

The next amplitude to consider is the five graviton MHV amplitude A(1−, 2−, 3+, 4+, 5+).

Just as in the four graviton example, this is the only independent five graviton am-

plitude. All other five graviton amplitudes are related to it by permutation and/or

conjugation symmetry.

The amplitude has contribution from three diagrams (1, 4, 2̂|3̂, 5), (1, 5, 2̂|3̂, 4), (4, 5, 2̂|3̂, 1).

These contributions give the following three terms

A(1−, 2−, 3+, 4+, 5+) =
〈12〉7

〈14〉〈15〉〈23〉2〈45〉
(

[14][35]
〈24〉〈35〉 −

[15][34]
〈25〉〈34〉 −

〈12〉[13][45]
〈13〉〈24〉〈25〉

)
.

(4.3.4)

This expression agrees with the BGK result [14]

A(1−, 2−, 3+, 4+, 5+) = 〈12〉7 ([12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41])
〈13〉〈14〉〈15〉〈23〉〈24〉〈25〉〈34〉〈35〉〈45〉 . (4.3.5)

At six gravitons, there are two independent scattering amplitudes, the MHV

amplitude A(1−, 2−, 3+, 4+, 5+, 6+) and the first non-MHV amplitude A(1−, 2−, 3−, 4+, 5+, 6+).

The MHV amplitude A(1−, 2−, 3+, 4+, 5+, 6+) has contribution from four con-

figurations, (4, 3̂|2̂, 1, 5, 6), (5, 3̂|2̂, 1, 4, 6), (6, 3̂|2̂, 1, 4, 5) and (1, 3̂|2̂, 4, 5, 6). Notice

that the first three diagrams are related by interchange of 4, 5, 6 gravitons, so there

are only two diagrams to compute.

The first configuration (4, 3̂|2̂, 1, 5, 6) evaluates to

D1 = 〈12〉7[34]
〈2|3 + 4|5]〈4|2 + 3|1]〈51〉 − 〈12〉p2

234〈45〉[51]
〈14〉〈15〉〈16〉〈23〉2〈25〉〈26〉〈34〉〈45〉〈46〉〈56〉 . (4.3.6)

The last configuration (1, 3̂|2̂, 4, 5, 6) gives

D2 = 〈12〉8[13]
〈14〉[45]〈52〉p2

123 − 〈45〉〈2|1 + 3|4]〈1|2 + 3|5]
〈13〉〈14〉〈15〉〈16〉〈23〉2〈24〉〈25〉〈26〉〈45〉〈46〉〈56〉 . (4.3.7)

Adding all four contributions, we get

A(1−, 2−, 3+, 4+, 5+, 6+) = D1 + D1(4 ↔ 5) + D1(4 ↔ 6) + D2. (4.3.8)

(4.3.8) agrees with the known result for the six graviton MHV amplitude.
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The non-MHV amplitude A(1−, 2−, 3−, 4+, 5+, 6+) has contribution from six

classes of diagrams D1 = (2, 3̂|4̂, 5, 6, 1) + (1 ↔ 2), D2 = (1, 6, 3̂|4̂, 2, 5) + (1 ↔
2)+(5 ↔ 6)+(1 ↔ 2, 5 ↔ 6), D3 = (2, 5, 6, 3̂|4̂, 1)+(1 ↔ 2), D4 = D

flip

3 , D5 = D
flip

1

and D6 = (5, 6, 3̂|4̂, 1, 2). The ’conjugate flip’ D
flip

exchanges the spinor products

〈〉 ↔ [] and the labels i ↔ 7− i.

The first class of diagrams D1 : (2, 3̂|4̂, 5, 6, 1) + (1 ↔ 2) evaluates to

D1 =
〈23〉〈1|2 + 3|4]7

(〈1|2 + 3|4]〈5|3 + 4|2][51] + [12][45]〈51〉p2
234

)

〈15〉〈16〉[23][34]2〈56〉p2
234〈1|3 + 4|2]〈5|3 + 4|2]〈5|2 + 3|4]〈6|3 + 4|2]〈6|2 + 3|4]

+ (1 ↔ 2).
(4.3.9)

The second group, D2 : (1, 6, 3̂|4̂, 2, 5)+ permutations, gives

D2 =− 〈13〉7〈25〉[45]7[16]
〈16〉[24][25]〈36〉p2

245〈1|2 + 5|4]〈6|2 + 5|4]〈3|1 + 6|5]〈3|1 + 6|2]

+ (1 ↔ 2) + (5 ↔ 6) + (1 ↔ 2, 5 ↔ 6).
(4.3.10)

The third class D3 : (2, 5, 6, 3̂|4̂, 1) + (1 ↔ 2) is

D3 =
〈13〉8[14][56]7

(〈23〉〈56〉[62]〈1|3 + 4|5] + 〈35〉[56]〈62〉〈1|3 + 4|2]
)

〈14〉[25][26]〈34〉2p2
134〈1|3 + 4|2]〈1|3 + 4|5]〈1|3 + 4|6]〈3|1 + 4|2]〈3|1 + 4|5]〈3|1 + 4|6]

+ (1 ↔ 2).
(4.3.11)

The fourth and fifth group are related by conjugate flip to the third and first

group respectively. The last group to evaluate consists of a single diagram

D6 : (5, 6, 3̂|4̂, 1, 2)

D6 =
〈12〉[56]〈3|1 + 2|4]8

[21][14][24]〈35〉〈36〉〈56〉p2
124〈5|1 + 2|4]〈6|1 + 2|4]〈3|5 + 6|1]〈3|5 + 6|2]

.

(4.3.12)

Adding the pieces together, the six graviton non-MHV amplitude reads

A(1−, 2−, 3−, 4+, 5+, 6+) = D1 + D
flip

1 + D2 + D3 + D
flip

3 + D6. (4.3.13)

4.4 Derivation of the Recursion Relations

The derivation of the tree-level recursion relations (4.2.5) goes, with few mod-

ifications, along the same lines as the derivation of the tree-level recursion relations

for scattering amplitudes of gluons [16], so we will be brief.
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We start with the scattering amplitude A(z) defined at shifted momenta, see

(4.2.4) and (4.2.3). A(z) is a rational function of z because the z dependence enters

the scattering amplitude only via the shifts λ̃i → λ̃i + zλ̃j and λj → λj − zλi

and because the original tree-level scattering amplitude is a rational function of the

spinors.

Actually, for generic momenta, A(z) has only single poles in z. These come

from the singularities of the propagators in Feynman diagrams. To see this, recall

that for tree level amplitudes, the momentum through a propagator is always a

sum of momenta of external particles PI = pi1 + pi2 + . . . + pil
, where I is a

group of not necessarily adjacent gravitons. At nonzero z, the momentum becomes

PI(z) = pi1(z) + pi2(z) + . . . + pil
(z). Here, pk(z) is independent of z for k 6= i, j

and pi(z)+pj(z) is independent of z. Hence, PI(z) is independent of z if both i and

j are in I or if neither of them is in I. In the remaining case, one of i and j is in

the group I and the other is not. Without loss of generality, we take i ∈ I. Then

PI(z) = PI + zλiλ̃j and P 2
I (z) = P 2

I − z〈i|PI |j]. Clearly, the propagator 1/PI(z)2

has a simple pole for

zI =
P 2
I

〈i|PI |j] . (4.4.1)

For generic momenta, PI ’s are distinct for distinct groups I, hence the zI ’s are

distinct. So all singularities of A(z) are simple poles.

To continue the argument, we need to assume that A(z) vanishes as z → ∞.

In the next section we will argue that the tree level graviton amplitudes obey this

criterium. A rational function A(z) that has only simple poles and vanishes at

infinity can be expressed as

A(z) =
∑

I

ResA(zI)
z − zI

, (4.4.2)

where ResA(zI) are the residues of A(z) at the simple poles zI . The physical scat-

tering amplitude is simply A(0)

A = −
∑

I

Res A(zI)
zI

. (4.4.3)

It follows from the above discussion that the sum is over I such that i is in I while

j is not.
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The residue ResA(zI) has contribution from Feynman diagrams which contain

the propagator 1/P 2
I . The propagator divides the tree diagram into “left” part

containing gravitons in I and “right” part containing gravitons in J = (1, 2, . . . , n)−
I. For z → zI , the propagator with momentum PI goes on-shell and the left and

right part of the diagram approach tree-level diagrams for on-shell amplitudes. The

contribution of these diagrams to the pole is

∑

h

Ah
L(zI)

1
P 2
I (z)

A−h
R (zI), (4.4.4)

where the sum is over the helicity h = ± of the intermediate graviton. This gives

the recursion relation (4.2.5).

4.5 Large z Behavior of Gravity Amplitudes

To complete the proof, it remains to show that the amplitude A(z) goes to

zero as z approaches infinity. We were able to obtain only partial results in this

direction, which we now discuss.

4.5.1 Vanishing of the MHV Amplitudes

Let us firstly consider the large z behavior of the n graviton MHV amplitude

[14]

A(1−, 2−, 3+, . . . , n) = 〈12〉8
{ [23]〈n|P2,3|4]〈n|P2,4|5] . . . 〈n|P2,n−2|n− 1]
〈12〉〈23〉 . . . 〈n− 2, n− 1〉〈n− 1, 1〉〈1n〉2〈2n〉〈3n〉 . . . 〈n− 1, n〉
+ permutations of (3, 4, . . . , n− 1)

}
,

(4.5.1)

where Pi,j =
∑j

k=i pk. The formula is valid for n ≥ 5. It follows from supersymmet-

ric Ward identities that the expression in the bracket is totally symmetric, although

this is not manifest.

The terms in the curly brackets are completely symmetric so they contribute

the same power of z independently of i and j. To find the contribution of the terms

in the brackets, we pick a convenient value (i, j) = (1, n) for the reference gravitons.

Recall that λ̃i(z) and λj(z) are linear in z while λi and λ̃j do not depend on z. It

follows that the numerator of each term in the brackets (4.5.1) goes like zn−4 and

the denominator gives a factor of zn−2. Hence, the terms in the brackets give a
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factor of 1/z2. This factor is the same for all choices of reference momenta by the

complete symmetry of the terms in the brackets. For the helicity configurations

(hi, hj) = (−, +), (+, +) and (−,−), the factor 〈12〉8 does not contribute, so the

amplitude vanishes at infinity as AMHV ∼ 1/z2.

A recent paper [67] relates the MHV amplitudes to current correlators on curves

in twistor space. This raises the possibility of a twistor string description of per-

turbative N = 8 supergravity [11]. In the gauge theory case, the twistor string

leads to an MHV diagrams construction for the tree level scattering amplitudes [1].

One computes the tree-level amplitudes from tree-level Feynman diagrams in which

the vertices are MHV amplitudes, continued off-shell in a suitable manner, and the

propagators are ordinary Feynman propagators.

The vanishing of the gluon scattering amplitude A(z) at infinity follows very

easily from the vanishing of the MHV diagrams via the MHV diagrams construction

[16]. We would like to speculate, that it might be possible to prove the vanishing

of graviton scattering amplitude A(z) along the same lines using the hypothetical

MHV diagrams construction.

4.5.2 Analysis of the Feynman Diagrams

In this section we study the large z behavior of Feynman diagrams contributing

to A(z) following [16].

Recall that any Feynman diagram contributing to A(z) is linear in the polar-

ization tensors εaȧ,bḃ of the external gravitons. The polarization tensors of all but

the ith and jth graviton are independent of z. To find the z dependence of the polar-

ization tensors of the reference gravitons, recall that λ̃i(z), λj(z) are linear in z and

λi, λ̃j do not depend on z. It follows from (4.2.1) and (4.2.2) that the polarization

tensors of the reference gravitons give a factor of z±2 depending on their helicities.

Hence, the polarization tensors can suppress A(z) by at most a factor of z4.

The remaining pieces in Feynman diagrams are constructed from vertices and

propagators that connect them. Perturbative gravity has infinite number of vertices

coming from the expansion of the Einstein-Hilbert Lagrangian

L = −√−g R (4.5.2)

around the flat vacuum gµν = ηµν + hµν . The graviton vertices have two powers of

momenta coming from the two derivatives in the Ricci scalar.
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The z dependence in a tree level diagram ”flows” along a unique path of Feyn-

man propagators from the ith to the jth graviton. In a path composed of k prop-

agators, there are k + 1 vertices. Each propagator contributes a factor of 1/z and

each vertex contributes a factor of z2. Altogether, the propagators and vertices give

a factor of zk+2.

The product of polarization tensors vanishes at best as 1/z4, so the contribution

of individual Feynman diagrams to A(z) seems to grow at infinity as zk−2, where k

is the number of propagators from the ith to the jth graviton. Clearly, in a generic

Feynman diagram, this number grows with the number of external gravitons. So

this analysis suggests that A(z) grows at infinity with a power of z that grows as

we increase the number of external gravitons.

This is in contrast to the above analysis of MHV amplitude that vanishes at in-

finity as 1/z2. The vanishing of A(z) at infinity depends on unexpected cancellation

between Feynman diagrams.

4.5.3 KLT Relations and the Vanishing of Gluon Amplitudes

A different line of attack is to express the graviton scattering amplitudes via the

KLT relations in terms of the gluon scattering amplitudes. One then infers behavior

of A(z) at infinity from the known behavior [16] of the gauge theory amplitudes. The

KLT relations have been used in past to show that N = 8 supergravity amplitudes

[68,69] have better than expected [70,71] ultraviolet behavior so we expect that

the KLT relations give us a better bound on A(z) than the analysis of Feynman

diagrams. Indeed, we will use them to prove the vanishing of A(z) at infinity up to

six gravitons and up to eight gravitons in the appendix 4.A.

As discussed in previous chapter, the tree level KLT relations up to six gravitons

are

A(1, 2, 3) = A(1, 2, 3)2

A(1, 2, 3, 4) = s12A(1, 2, 3, 4)A(1, 2, 4, 3)

A(1, 2, 3, 4, 5) = s12s34A(1, 2, 3, 4, 5)A(2, 1, 4, 3, 5) + s13s24A(1, 3, 2, 4, 5)A(3, 1, 4, 2, 5)

A(1, 2, 3, 4, 5, 6) = s12s45A(1, 2, 3, 4, 5, 6)
{
s35A(2, 1, 5, 3, 4, 6) + (s34 + s35)A(2, 1, 5, 4, 3, 6)

}

+ permutations of (234),
(4.5.3)
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where sij = (pi + pj)2. A(1, 2, . . . , n) is the n graviton scattering amplitude and

A(i1, i2, . . . , in) is the color ordered gauge theory amplitude. The KLT relations for

any number of gravitons are written down in Appendix A of [72] and schematically

in the appendix 4.A.

The KLT relations express an n graviton scattering amplitude as a sum of

products of two gluon scattering amplitudes and n − 3 sij invariants. The gluon

scattering amplitudes vanish at infinity as 1/z or faster [16]. Hence, KLT relations

imply the vanishing at infinity of the graviton amplitudes as long as the products

of sij ’s in (4.5.3) grow at most linearly with z.

For n ≤ 6 gravitons, a quick glance at (4.5.3) shows that this is the case. We

rename the gravitons so that the reference gravitons are 1 and n. The products of

sij ’s in (4.5.3) are independent of pn and linear in p1. Hence they give one power of

z because p1(z) and pn(z) are linear in z and pk for k 6= 1, n is independent of z. It

follows that A(z) vanishes as 1/z or faster as z →∞ for less than seven gravitons.

For seven or more gravitons, an analysis of the general KLT relations shows

that on the right hand side of KLT relations, there are always some products of n−3

sij ’s that have more than one power of the reference momenta. The corresponding

terms in the KLT relations are not expected to vanish at infinity. Hence, the

function A(z) does not vanish at infinity unless there is an unexpected cancellation

between different terms in the KLT relations.

In the appendix we present a more careful study of KLT relations that reveals

that A(z) vanishes for n ≤ 8.

4.5.4 Proof of Vanishing of A(z) for NMHV Amplitudes

NMHV amplitudes are those with three negative helicity gravitons and any

number of plus helicity gravitons, A(p−1 , p−2 , p−3 , p+
4 , . . . , p+

n ). Consider the following

function of z, Aa(p−1 (z), p−2 , p−3 , p+
4 (z), . . . , p+

n (z)), where

p1(z) = λ1

(
λ̃1 + z

n∑

i=4

λ̃i

)
, pk(z) = (λk − zλ1)λ̃k (4.5.4)

for k = 4, . . . , n. The subscript a in Aa(z) stands for auxiliary. The idea is to derive

an new set of recursion relations for Aa(z) which we use later on to prove that A(z)

vanishes at infinity.
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In order to get the auxiliary recursion relations we start by proving from Feyn-

man diagrams that Aa(z) vanishes as z →∞. Note that (n−2) polarization tensors

depend on z and with the choice made in (4.5.4) all of them vanish as 1/z2. The

most dangerous Feynman diagram is the one with the largest number of vertices.

Such a diagram must only have cubic vertices. For n gravitons there are n− 2 ver-

tices. Each vertex contributes a factor of z2. Altogether, the polarization tensors

contribute a factor of 1/z2(n−2) and the vertices contribute a factor of z2(n−2) which

gives a constant for large z. Now we have to consider propagators. Each propagator

that depends on z goes like 1/z. Therefore, all we need is that in every diagram

at least one propagator depends on z. From (4.5.4) it is easy to see that the only

propagator that does not depend on z is 1/(p2 + p3)2. A diagram with only this

propagator has exactly two vertices and therefore our proof is complete for n > 4.

The shift in (4.5.4) can be thought of as iterating the shift introduced in [16].10

Now we can follow the same steps as in section 4 to derive recursion relations based

on the pole structure of Aa(z).

We find

Aa(z) =
∑

I

∑

h

AI(zI , Ph
I (zI))

1
P 2
I (z)

AJ (zI ,−P−h
I (zI)). (4.5.5)

where the sum is over all possible sets of two or more gravitons I 6= {2, 3}, such

that the graviton 1 is not in I. Here, J is the complement of I.

The main advantage of choosing the same negative helicity graviton in (4.5.4)

to pair up with all plus helicity gravitons is that P 2
I (z) is a linear function of z.

Therefore, the location of the poles zI is easily computed to be of the form

zI =
P 2
I∑

j〈1|PI |j]
(4.5.6)

where the sum in j runs over all gravitons in I that depend on z.

Setting z to zero in (4.5.5) gives us a new representation of the original ampli-

tude, i.e.,

A(p−1 , p−2 , p−3 , p+
4 , . . . , p+

n ) =
∑

I

∑

h

AL(zI , Ph
I (zI))

1
P 2
I

AR(zI ,−P−h
I (zI)). (4.5.7)

10 This iteration procedure was used recently in [49] to find recursion relations for all

plus one-loop amplitudes of gluons.
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This is a new set of recursion relations for NMHV amplitudes. However, the

expressions obtained from (4.5.7) are naturally more complicated than the ones

obtained from the one introduced in section 2. Instead of computing amplitudes

with (4.5.7), the idea is to use it to prove that A(z) of section 2 vanishes for large

z.

Consider A(z) constructed from (4.5.7) by defining

p1(z) = λ1(λ̃1 + zλ̃4), p4(z) = (λ4 − zλ1)λ̃4. (4.5.8)

There are two different kind of terms in (4.5.7). One class consists of those

where p1 and p4 are on the same side. This implies that neither PI nor zI depends

on z. Therefore, the z dependence is confined into one of the amplitudes, say AL.

But this is an amplitude with less gravitons and by induction we assume that it

vanishes for large z.

The second class of terms is more subtle. Since p1(z) and p4(z) are on different

sides, both PI and zI become functions of z.

It turns out that zI is a linear function of z. More explicitly11,

zI(z) =
P 2
I + z〈1|PI |4]∑

j〈1|PI |j]
. (4.5.9)

Recall that PI denotes PI(0).

Now we are left with AI and AJ in (4.5.7), one with n1 +1 and the other with

n2 + 1 gravitons. Note that n = n1 + n2. In a Feynman diagram expansion of each

of them we can single out the most dangerous diagrams and multiply them to get

the most dangerous terms in (4.5.7). Each diagram contributes a factor of z2(ni−1)

from the vertices. Therefore we find z2(n−2). From the polarization tensors we find

z−2(n−2), this comes from the z dependence of zI . The polarization tensors for the

internal gluons give a factor of

∑

h

εh
µνε−h

λρ = dµρdνλ + dµλdνρ − dµνdρλ, (4.5.10)

where

dµν = ηµν − kµnν + kνnµ

k · n . (4.5.11)

11 Had we chosen a different negative helicity graviton in (4.5.8), we would have found

that zI becomes a rational function of z.
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Here, k = PI(z) is the momentum of the internal propagator and naȧ = µaµ̃ȧ is

an auxiliary vector used in the definition (4.2.2). naȧ is taken no collinear with k.

For large z, the tensor dµν does not depend on z so the polarization tensors of the

internal gravitons do not contribute a factor of z.

Finally, the propagator in (4.5.7) is 1/P 2
I (z), which vanishes as 1/z. Therefore,

the most dangerous term in A(z) vanishes as 1/z.

This completes the proof of the recursion relations of section 2 for next-to-MHV

amplitudes of gravitons.

While we are not able to prove that A(z) vanishes at infinity for general ampli-

tudes with more than eight gravitons, we showed above that A(z) vanishes at infinity

for MHV and NMHV amplitudes with arbitrary number of gravitons. Hence, the

recursion relations are valid for all MHV and NMHV amplitudes contrary to the

expectations from KLT relations. This raises the hope, that the recursion relations

are valid for other scattering amplitudes of gravitons as well. In particular, one

might expect that by considering more general auxiliary recursion relations one

could prove that A(z) vanishes at infinity for general gravity amplitudes.

4.A Proof of Vanishing of A(z) up to Eight Gravitons.

In this appendix we provide further evidence for validity of the recursion rela-

tions (4.2.5). We show that the recursion relations hold for any graviton amplitude

up to eight gravitons. Recall that we need to prove that the auxiliary function A(z)

(4.2.4) vanishes at infinity. We demonstrate this using the KLT relations.

The basic fact we will use is that the function A(z) for a gluon scattering

amplitude goes like 1/z2 at infinity for non-adjacent marked gluons. Hence, picking

the marked gluons so that they are non-adjacent in all terms in KLT relations, the

product of two Yang-Mills amplitudes in each term goes like 1/z4.

Hence, A(z) vanishes at infinity as long as the products of sij ’s in the KLT

relations do not contribute more than a factor of z3. An inspection of the KLT

relations will show that this holds at least up to eight gravitons which will complete

the proof.

Let us begin by showing that the gluon amplitudes go as 1/z2 as z → ∞ for

non-adjacent marked gluons with helicities (hi, hj) = (+, +), (−,−), (−,+). The
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argument uses MHV rules and is a simple generalization of the argument given in

[16], which showed that the amplitudes vanish as 1/z. We assume that hj = +. For

hj = − one makes the same argument using the opposite helicity MHV rules.

Firstly, consider the n gluon MHV amplitude

A(r−, s−) =
〈r, s〉4∏n

k=1〈k, k + 1〉 . (4.A.1)

Recall that λj(z) = λj − zλi is linear in z and λi(z) = λi is independent of z. For

hj = +, λj does not occur in the numerator. In the denominator it appears in the

two factors 〈λj−1, λj〉 and 〈λj , λj+1〉, both of which are linear in z for i not adjacent

to j. Hence for hi = + and |i−j| > 1, the MHV amplitude goes like 1/z2 at infinity.

For general amplitudes, we use MHV diagram constructions. In this construc-

tion, the amplitudes are built from Feynman vertices which are suitable off-shell

continuations of the MHV amplitudes. The vertices are connected with ordinary

scalar propagators.

The Feynman vertices are the MHV amplitudes (4.A.1), where we take λa =

P aȧηȧ for an off-shell momentum P. Here η is an arbitrary positive helicity spinor.

The physical amplitude, which is a sum of MHV diagrams, is independent of the

choice of η [1].

The internal momentum P can depend on z only through a shift by the null

vector zλiλ̃j . Taking η = λ̃j , λa = P aȧλ̃j ȧ becomes independent of z. Hence, the

internal lines do not introduce additional z dependence into the MHV vertices. The

MHV vertices give altogether a factor of 1/z2 from the two powers of λj(z) in the

denominator of one of the vertices. The propagators 1/k2 are either independent

of z or contribute a factor of 1/z. So, a general gluon amplitude goes like 1/z2 at

infinity for non-adjacent marked gluons.

The KLT relations [72] for n gravitons are

A(1, 2, . . . , n) =
(
A(1, 2, . . . , n)

∑
perm

f(1, i1, . . . , ij)f(n− 1, l1, . . . , lj′)

×A(i1, . . . , ij , 1, n− 1, l1, . . . , lj′ , n)
)

+ P(2, . . . , n− 2),

(4.A.2)

where j = bn/2c − 1, j′ = b(n − 1)/2c − 1 and the permutations are (i1, . . . , ij) ∈
P(2, . . . , bn/2c) and (l1, . . . , lj′) ∈ P(bn/2c + 1, . . . , n − 2). The exact form of the
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functions f and f does not concern us here. The only property we need is that f

and f are homogeneous polynomials of degree j and j′ in the Lorentz invariants

pm · pn with m,n ∈ (1, i1, . . . , ij) or m,n ∈ (l1, . . . , lj′ , n− 1) respectively.

Consider A(z) with marked gravitons n and k where k is any label from the

set (2, . . . , n− 2). In the KLT relations (4.A.2), the gluon amplitude A(1, 2, . . . , n)

contributes a factor of 1/z2 since k and n are non-adjacent. For k ∈ (i1, . . . , ij)

the second gluon amplitude gives a factor of 1/z2 and f gives at most a factor of

zj , j = bn/2c−1. Hence, the terms with k ∈ (i1, . . . , ij) are bounded at infinity by zα

where α = bn/2c− 5. For k ∈ (l1, . . . , lj′) the second gluon amplitude gives a factor

of 1/z because k and n might be adjacent. f contributes zj′ , j′ = b(n − 1)/2c − 1

so the graviton amplitude is bounded by zα′ , α′ = b(n− 1)/2c − 4. The exponents

α, α′ are negative for n ≤ 8, which completes the proof of the recursion relations

up to eight gravitons.



5. Chiral Rings and Vacua of SUSY Gauge Theories

5.1 Introduction

Recently there has been a progress in understanding the dynamics of a wide

class of supersymmetric field theories. Embedding of the gauge theories in string

theory as low energy effective field theories of D-branes wrapped on cycles in Calabi-

Yau threefolds led to the conjecture of Dijkgraaf and Vafa that holomorphic data

of the field theories can be calculated from an auxiliary matrix model. The bosonic

potential of the matrix model is the superpotential of the gauge theory. Identifying

the generating function for the glueball moments with the matrix model resolvent,

the effective superpotential of the gauge theory gets related to the planar matrix

model free energy. For the U(N) gauge theory, the nonperturbative part of the

superpotential comes from the measure of the matrix model and is given by a sum of

Veneziano-Yankielowicz superpotentials of the U(Ni) subgroups. The perturbative

part is given by a sum of planar diagrams of the matrix model. Cachazo, Douglas,

Seiberg and Witten gave a field theory derivation of the results. The derivation

rests on the analysis of the anomalies and of the ring of chiral operators of the field

theory.

It has been known for over a decade that the chiral ring of two dimensional

field theories determines the structure of its supersymmetric vacua. The chiral

operators obey relations that hold in every supersymmetric vacuum of the theory.

It has been shown in [18] for the N = 2 superconformal field theories and in [19]

for the CPN−1 supersymmetric sigma model that there is an exact correspondence

between the solutions to the chiral ring relations and the supersymmetric vacua of

the theory.

The authors of [20] showed that this continues to hold in four dimensions for the

N = 1 pure U(N) gauge theory. In this article we will extend this correspondence

100
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to N = 1 U(N) gauge theories with matter field Φ in the adjoint representation.

The adjoint field has superpotential

W (Φ) =
n∑

k=0

gk

k + 1
Tr Φk+1. (5.1.1)

We can view this theory as a deformation of the N = 2 gauge theory by the

superpotential (5.1.1) for the scalar Φ of the N = 2 vector superfield.

We will show that solving the chiral ring equations is equivalent to factorization

of the N = 2 curve. The factorization was originally derived by a strong coupling

analysis of the gauge theory [73] based on monopole condensation.

Summary of Results

In section 5.2, we review the general properties of chiral rings, their relation

to supersymmetric vacua and discuss the chiral ring relations both on the classical

and quantum level. In section 5.3, we solve the chiral ring relations and demon-

strate exact correspondence between the supersymmetric vacua and the roots of the

chiral ring relations. In section 5.4, we use the chiral ring relations to give a brief

discussion of the intersection of the vacua. In section 5.5, we study the chiral ring

relations obeyed by the gaugino condensate and in section 5.6 we treat examples

that illustrate the results from previous sections.

5.2 The Chiral Ring

Chiral operators are the operators that are annihilated by the anti-chiral su-

persymmetry generators Qα̇. Instead of chiral operators we will consider the set of

equivalence classes of chiral operators where two operators are in the same equiva-

lence class if they differ by a term of the form {Qα̇, . . .}. This set is a ring because

the product of two equivalence classes of chiral operators is another equivalence

class. The expectation value of a chiral operator in a supersymmetric vacuum

depends only on its equivalence class because the vacuum is annihilated by the su-

persymmetry generator Qα̇. It follows from {Qα, Qα̇} = 2σµ
αα̇Pµ that momentum,

which is the generator of translations, annihilates chiral operators. Hence, chiral

operators are independent of position. The chiral ring keeps only the information

about the zero modes. In a product of chiral operators, we can put the operators
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far apart without changing the value of the product. Then the product factorizes

into individual operators by cluster decomposition principle. Hence, we need to

consider only the single trace operators. To classify the single trace operators we

notice the identity [20]

[Q
α̇
, Dαα̇O} = [Wα,O} (5.2.1)

which holds for any adjoint valued chiral superfield. Substituting Φ for O, we see

that Φ commutes with Wα

[Φ,Wα] = 0, (5.2.2)

so it suffices to consider only operators where all Φ’s are grouped together. Taking

O = Wα in (5.2.1) we learn that Wα’s anticommute

{Wα,Wβ} = 0. (5.2.3)

It follows that the single trace operators with three or more gaugino operators are

descendants because the fermionic index α takes two values. The single trace chiral

operators are
uk = Tr Φk,

wα,k =
1
4π

Tr ΦkWα,

rk =
−1

32π2
Tr ΦkWαWα.

(5.2.4)

We assemble these operators into the resolvents

T (z) = Tr
1

z − Φ
=

∑

k≥0

ukz−1−k,

wα(z) =
1
4π

Tr Wα
1

z − Φ
=

∑

k≥0

wα,kz−1−k,

R(z) = − 1
32π2

Tr WαWα 1
z − Φ

=
∑

k≥0

rkz−1−k.

(5.2.5)

The single trace operators uk, wα,k and rk generate the chiral ring. Formally,

the chiral ring is a polynomial ring over the field of complex number with the single

trace operators as indeterminates

C = C[uk, wα,k, rk]. (5.2.6)
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Our interest is in the relations that the chiral operators satisfy. These relations are

operator statements that hold in any supersymmetric vacuum. Taking an expecta-

tion value of a chiral ring relation in a given vacuum and using the fact that the

expectation value of a product of chiral operators factorizes we get a relation for

the expectation values of the chiral operators in that particular vacuum. By solving

the chiral ring we mean finding the solutions to these chiral ring equations. The

vacuum expectation values of uk, wα,k, rk in a supersymmetric vacuum solve the

chiral ring relations by definition. In principle, the chiral ring relations could have

additional “unphysical” solutions for uk, wα,k, rk which do not correspond to any

supersymmetric vacuum. We will show that this is not the case. The roots of the

chiral ring relations are in exact correspondence with the supersymmetric vacua of

the gauge theory.

We can make the correspondence more precise. We introduce further algebraic

construct, the coordinate chiral ring, which is the quotient of the chiral ring by the

ideal generated by the chiral ring relations. Two chiral operators are considered

to be the same elements of the coordinate chiral ring if their difference is a chiral

ring relation. Hence, the coordinate chiral ring encodes the information about chiral

operators that is invariant under addition of chiral ring relations. There is a natural

correspondence between the roots of the chiral ring relations and the elements of

the coordinate chiral ring. For semisimple coordinate chiral ring, all the roots are

single and isolated, the only information that the coordinate ring encodes is the

value of the operators at the solutions of the chiral ring relations. The solutions

correspond to idempotent elements of the coordinate chiral ring. An idempotent

is an operator that squares to itself. The idempotent associated to a particular

vacuum takes expectation value one in that vacuum and vanishes in other vacua.

In the general case, the roots can be multiple or have massless fermionic directions

for the U(1) photinos. Then a root corresponds to an ideal, called local ring, of the

coordinate ring generated by the idempotent element above. The local ring is the

set of elements obtained by multiplying the idempotent by all chiral operators. The

dimension of the local ring equals the multiplicity of the corresponding vacuum. The

basis of the local ring consists of the idempotent together with nilpotent elements.

The coordinate chiral ring is a direct sum of the local rings. Any operator can be

expanded as

O =
∑

i

oiΠi + ni (5.2.7)
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where Πi are the idempotents corresponding to ith vacuum and ni is the nilpotent

part of O in the ith local ring. The nilpotent elements correspond to different in-

tersecting vacua or to vacuum with different value of the nilpotent U(1) photinos

Tr WαΦk. The expectation value of an operator does not depend on these parame-

ters hence it does not depend on the nilpotent part ni. The expectation value of O
in the ith group of vacua is oi.

Hence, each supersymmetric vacuum corresponds to a solution of the chiral

ring relations which naturally corresponds to local ring which is generated by an

idempotent element together with its nilpotents. This allows us to calculate the

expectation values of the chiral operators from the knowledge of the idempotents.

A simple example that illustrates the above discussion is the polynomial ring

in one indeterminate C[x]. This is the case of U(1) gauge theory. x is the 1 × 1

matrix Φ in the adjoint representation of U(1) which is trivial. The n vacua of the

theory are at the critical points of the superpotential W ′(Φ) =
∏n

i=1(Φ−λi), where

we assume λi 6= λj for i 6= j. Hence, the indeterminate x satisfies the polynomial

relation of nth degree W ′(x) = 0. The coordinate chiral ring

C[x]/(W ′(x) = 0) (5.2.8)

has dimension n. The n distinguished idempotents are

Πi(x) =
∏

j 6=i

(x− λj)/
∏

j 6=i

(λi − λj). (5.2.9)

Clearly Πi takes value one at λi and vanishes at λj for j 6= i. Any polynomial of

degree less than n can be expressed as a linear combination of Π(x). Polynomials

of a higher degree can be reduced to polynomials of degree less than n using the

relation W ′(x) = 0. This completes the proof that the idempotents Πi(x) form an

n dimensional basis of the coordinate chiral ring. The expansion coefficients of a

polynomial

S(x) =
∑

siΠi(x) (5.2.10)

in the idempotents are the values that the polynomial takes at the n roots of W ′(x)

S(λi) =
∑

k

skΠk(λi) = si (5.2.11)

in agreement with our general discussion.
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To illustrate the correspondence when the coordinate ring has nilpotent el-

ements, we consider the polynomial ring in one indeterminate x which satisfies

xn = 0. This is the case of n intersecting vacua of the field Φ. The coordinate chiral

ring

C[x]/(xn = 0) (5.2.12)

is an n dimensional complex vector space. The basis consists of the idempotent

1 and of the nilpotents x, x2, . . . , xn−1. Any polynomial can be expanded in this

basis modulo the relation xn = 0 which eliminates the powers of xk for k ≥ n.

The value of the polynomial at the root x = 0 equals the zeroth order coefficient,

which is coefficient the idempotent 1 in the expansion of the polynomial in terms

of the above basis. Hence, to find the expectation value of a chiral operator we

expand it in the basis of the coordinate chiral ring and read off the coefficient at

the idempotent element. Chiral operators have the same expectation value in each

of the intersecting vacua. The n intersecting vacua correspond to the multiple

root which in turn corresponds to the n dimensional coordinate chiral ring that is

spanned by the idempotent and nilpotent elements.

We can view the quantum relations as deformations of the classical relations.

The classical relations can receive both perturbative and nonperturbative correc-

tions. Quantum generalization of the classical equations of motion are the pertur-

bative Ward identities coming from the one-loop Konishi anomaly. The Tr Φk with

k > N can be expressed as a polynomial in u1, . . . , uN because an N ×N matrix is

specified by the N independent gauge invariant operators u1, . . . , uN . The classical

relations for Tr Φk are deformed nonperturbatively by instanton corrections.

5.2.1 Perturbative Corrections

In this subsection we will find the classical chiral ring relations that follow from

equations of motion and review the anomaly that corrects these relations. We start

by multiplying the classical equation of motion for Φ,

∂ΦW (Φ) = Dα̇D
α̇
Φ (5.2.13)

with A/(z − Φ) where A = 1, 1
4π Wα or − 1

32π2 WαWα and take the trace

Tr A
W ′(Φ)
z − Φ

= 0. (5.2.14)
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We used the fact that Dα̇ is conjugate to Qα̇ hence the right hand side of (5.2.14) can

be written as {Qα, . . .} and is a chiral ring descendant. To express these equations

in terms of the resolvents (5.2.5), we notice the following identity

Tr A
W ′(Φ)
z − Φ

= W ′(z)Tr
A

z − Φ
− Tr A

(W ′(z)−W ′(Φ))
z − Φ

= W ′(z)Tr
A

z − Φ
− a(z).

(5.2.15)

The function a(z) is a polynomial in z of degree n− 1 because W ′(z)−W ′(Φ) is a

polynomial in z of degree n that vanishes when z equals to one of the eigenvalues

of Φ. We define the polynomials

f(z) =
4

32π2
Tr WαWα W ′(z)−W ′(Φ)

z − Φ
,

ρα(z) =
1
4π

Tr Wα
W ′(z)−W ′(Φ)

z − Φ
,

c(z) = Tr
W ′(z)−W ′(Φ)

z − Φ

(5.2.16)

and rewrite (5.2.14) with the help of (5.2.15) in the form

0 = W ′(z)R(z) +
1
4
f(z),

0 = W ′(z)wα(z)− ρα(z),

0 = W ′(z)T (z)− c(z).

(5.2.17)

To find the quantum corrections to (5.2.17) we recall that the classical equations

of motions are derived by varying Φ. We will now review the anomaly in the

variation which corrects the above relations quantum mechanically. Varying Φ by

a general holomorphic function δΦ = f(Φ,Wα) gives anomaly of the current

Jf = Tr ΦeadV f(Φ,Wα) (5.2.18)

which generates the variation of Φ. We find

DαD
α
Jf = Tr f(Φ,Wα)

∂W (Φ)
∂Φ

+ anomaly + D(. . .). (5.2.19)

The first term on right hand side is the classical variation. The anomaly comes

from one-loop diagrams involving Φ and a single Φ from f(Φ, Wα). To find the
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generalized Konishi equations expressed in terms of the resolvents (5.2.5) we make

the variation

δΦij = f(Φ,Wα)ij =
(

A

z − Φ

)

ij

. (5.2.20)

Computing the anomaly and setting {Dα̇, . . .} terms to zero gives [20]

R2(z) = W ′(z)R(z) +
1
4
f(z),

2R(z)wα(z) = W ′(z)wα(z)− ρα(z),

2R(z)T (z) + wα(z)wα(z) = W ′(z)T (z)− c(z).

(5.2.21)

On the right hand side of the anomaly equations are the classical equations of motion

(5.2.17) and on the left hand side are the perturbative corrections coming from the

one-loop Konishi anomaly. We can solve the anomaly equations (5.2.21) for the

resolvents R(z), wα(z) and T (z) in terms of the superpotential and the auxiliary

polynomials

R(z) =
1
2

(
W ′(z)−

√
W ′2(z) + f(z)

)
,

wα(z) =
ρα(z)√

W ′2(z) + f(z)
,

T (z) =
c(z) + wα(z)wα(z)√

W ′2(z) + f(z)
.

(5.2.22)

Throughout most of the article we will neglect the quadratic term wα(z)wα(z) in

the relation for T (z).

5.2.2 Nonperturbative Corrections

The gauge invariant operators uk = Tr Φk obey relations coming from the fact

that Φ is an N × N matrix. Φ is determined up to a gauge transformation by

the independent gauge invariant operators Tr Φl with l = 1, . . . , N . The operators

Tr Φk with k > N can be expressed as polynomials in the first N traces. We will

find the classical formulas for Tr Φk and then we will show how they get modified

by nonperturbative instanton corrections.

Φ can be specified by the characteristic polynomial of N th degree

P (z) = det(z − Φ) =
N∏

i=1

(z − λi). (5.2.23)
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The roots of P (z) are the classical eigenvalues λi of Φ. We refer the reader to

appendix 5.A for more details on P (z). To derive the relations for uk we write the

generating function T (z) in terms of eigenvalues of Φ

T (z) = Tr
1

z − Φ
=

N∑

i=1

1
z − λi

(5.2.24)

and notice that this is the same as P ′(z)/P (z). Hence we have

T (z) =
P ′(z)
P (z)

. (5.2.25)

Notice that the left hand side depends on all traces Tr Φk = uk while the right

hand side depends only on u1, . . . , uN . Expanding (5.2.25) in powers of 1/z and

comparing the coefficients of the z−k−1 we get an expression for uk from left hand

side as a polynomial in u1, . . . , uN from the right hand side. We give a few examples

of the resulting formulas in the appendix 5.A.

The operators

mk = Tr MΦk =
N∑

i=1

Miiλ
k
i (5.2.26)

where M is an arbitrary N×N matrix depend on 2N parameters, the N eigenvalues

of Φ and the N diagonal elements of M. Hence, m0,m1, . . .mN−1 together with

u1, u2, . . . , uN are independent variables that determine mk for k ≥ N. To find the

relations for mk we make first order variation of (5.2.25) as Φ′ = Φ + εM

Tr
M

(z − Φ)2
= −P ′m(z)

P (z)
+

Pm(z)P ′(z)
P 2(z)

= −
(

Pm(z)
P (z)

)′
. (5.2.27)

The characteristic polynomial Pm(z) of degree N − 1 comes from the first variation

of P (z) in M

Pm(z) = −∂ε det(z − Φ− εM)|ε=0 =
N∑

i=1

Mii

∏

j 6=i

(z − λj). (5.2.28)

We integrate (5.2.27) to get

Tr
M

z − Φ
=

Pm(z)
P (z)

. (5.2.29)
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We fixed the constant of integration by requiring both sides of the equation to fall

off to zero for z going to infinity. The left hand side of (5.2.29) depends on mk

while the right hand side depends only on m0,m1, . . . , mN−1 and u1, u2, . . . , uN .

Expanding (5.2.29) in 1/z and comparing the coefficients of z−k−1 term we find

formula for mk as a polynomial in m0,m1, . . . , mN−1 and u1, u2, . . . , uN from the

right hand side.

We find the classical relations for wα,k and rk by substituting 1
4π Wα and

− 1
32π2 WαWα for M in (5.2.29)

wα(z) =
Pα(z)
P (z)

(5.2.30)

R(z) =
PR(z)
P (z)

. (5.2.31)

We have mentioned that the classical relations for Tr Φk with k > N receive

instanton corrections. We will determine the quantum modified relations by strong

coupling analysis. We consider the N = 1 theory as a deformation of the N = 2

theory by a superpotential for the adjoint scalar field [20,73]. We will closely follow

[20] but we will consider a vacuum with nonzero expectation value of the U(1)

photinos Tr WαΦk which break the N = 2 supersymmetry to N = 1 even before

we turn on the superpotential. The superpotential takes the form

W ′(z) = gP (z) = g

N∏

i=1

(z − λi) (5.2.32)

with all λi different. We consider the maximally Higgsed vacuum in which the

eigenvalues of Φ to occupy the N different critical points of the superpotential. Φ

breaks the U(N) gauge group down to U(1)N . To find the resolvents (5.2.22)

R(z) =
1
2

(
gP (z)−

√
g2P 2(z) + f(z)

)
,

wα(z) =
ρα(z)√

g2P 2(z) + f(z)
,

T (z) =
c(z)√

g2P 2(z) + f(z)

(5.2.33)

we need to determine the auxiliary polynomials f(z), c(z), ρα(z). The polynomial

c(z) depends on the operators uk for k = 1, . . . , N − 1

c(z) = Tr
W ′(z)−W ′(Φ)

z − Φ
= g

N∑

i=1

P (z)− P (λi)
z − λi

= gP ′(z). (5.2.34)
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The third equality follows from the special form of the superpotential (5.2.32). We

find f(z) by comparing the N = 2 curve [20]

y2 = P 2(z)− 4Λ2N (5.2.35)

with the matrix model curve

y2
m = W ′2(z) + f(z). (5.2.36)

In the maximally Higgsed case, each of the occupied critical points of the super-

potential gets smeared into a cut. Hence, the matrix model curve has single roots

only. We find the curve from the N = 2 curve by factoring out the double roots

P 2(z)− 4Λ2N = Q2(z)(g2P 2(z) + f(z)). (5.2.37)

In the present case, there are no double roots so Q(z) = 1/g, f(z) = −4g2Λ2N .

Substituting c(z) and f(z) into (5.2.33) we get the quantum modified versions of

the formula (5.2.25) for T (z)

T (z) =
P ′(z)√

P 2(z)− 4Λ2N
. (5.2.38)

This relation is valid for the N = 2 gauge theory because it does not depend on g

so we might as well set g to zero restoring N = 2 supersymmetry.

For general superpotential, we argue that (5.2.38) continues to hold. We again

use the factorization of the N = 2 curve. In general, some number, say h of the

critical points of the superpotential are unoccupied. The corresponding roots of

the curve y2 = W ′2(z) + f(z) do not get smeared into cuts, they remain double

roots. The matrix model curve sees only the N − h occupied critical points, hence

we factor out the double roots

H2(z)y2
m = W ′2(z) + f(z). (5.2.39)

The roots of H(z) are near the unoccupied critical points of the superpotential.

They are moved from the classical critical points by gaugino condensation, which is

encoded in the polynomial f(z). Factoring out the double roots of the N = 2 curve

we get the matrix model curve

(P 2(z)− 4Λ2N ) = Q2(z)y2
m(z). (5.2.40)
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Taking first derivative of this equation we see that P ′(z) is divisible by Q(z). Hence,

we write P ′(z) = Q(z)P̃ (z). Furthermore, c(z) must be divisible by H(z). Otherwise

T (z) =
c(z)

H(z)ym(z)
(5.2.41)

would have poles at the roots of H(z) which is a contradiction. The number of

eigenvalues of Φ at the ith critical point is

Ni =
1

2πi

∮

Ci

dz T (z) =
1

2πi

∮

Ci

dz
c(z)

H(z)ym(z)
(5.2.42)

where Ci is a curve going counterclockwise around the ith critical point. The oc-

cupation number vanishes for the unoccupied critical points. Hence, T (z) cannot

have a pole at the unoccupied critical point because the contour integral would pick

out the residue T (z) and give a nonzero answer for Ni. So, c(z) = H(z)c̃(z).

The Ni’s can be also calculated as the logarithmic residues of P (z). For small

Λ, Ni roots of P (z) ∼ ∏N
i=1(z − λi) are near the classical critical points of the

superpotential. For small Λ, the integral
∮

dz
P ′(z)
P (z)

=
∮

dz ln′(P (z)) (5.2.43)

counts the number of roots of P (z) near the ith classical critical point of the super-

potential. This is the same as the number of eigenvalues of Φ at that critical point.

When we turn on Λ, and deform the contour Ci so that none of the roots of P (z)

cross it, (5.2.43) is still valid. We can deform this formula even more by turning on

Λ2N to

Ni =
∮

Ci

dz
P ′(z)√

P 2(z)− Λ2N
=

∮

Ci

dz ln′(P (z) +
√

P 2(z)− Λ2N ) (5.2.44)

again making sure that the contour Ci does not cross the cuts of the square root in

the denominator. We get an integer answer which must be Ni by continuity. Hence,

we have two equivalent formulas for the occupation numbers

Ni =
∮

Ci

dz
c̃(z)

ym(z)
=

∮

Ci

dz
P̃ (z)
ym(z)

. (5.2.45)

The polynomials P̃ (z) and c̃(z) have the same degree N−h−1. The N−h equations

coming from (5.2.45) for the N − h coefficients of c̃(z) or P̃ (z) uniquely determine
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these two polynomials. Hence they are the same as polynomials in z but at the same

time they depend on the vacuum nontrivially through (5.2.45). Hence, (5.2.38) holds

every vacuum of the gauge theory which means that it is a chiral ring relation.

To fix the formula for wα(z) we still need to find the fermionic polynomial ρα(z).

This goes through as in (5.2.34) thanks to the special form of the superpotential

ρα(z) = Tr Wα
(W ′(z)−W ′(Φ))

z − Φ
= g

N∑

i=1

Wii
P (z)− P (λi)

z − λi
= gPα(z). (5.2.46)

ρα(z) has coefficients which are linear wα,k and polynomial in uk with k = 1, . . . , N−
1. For more details on Pα(z) we refer the reader to appendix 5.A. Substituting ρα(z)

and f(z) into (5.2.33) we get the quantum modified version of (5.2.30)

wα(z) =
Pα(z)√

P 2(z)− 4Λ2N
. (5.2.47)

The formula for T (z) has been derived in [20,74] while the relation for wα(z) is

new. One can show that (5.2.47) holds for arbitrary superpotential similarly as we

showed the validity of (5.2.38) in previous paragraph. By taking the superpotential

to zero we learn that (5.2.47) is valid for the N = 2 gauge theory. We need to keep

in mind that the chiral operators Tr WαΦk are descendants of the N = 2 chiral ring

[20] hence the formula for photinos makes sense only in the N = 1 chiral ring. A

different reason for considering the formulas as an N = 1 chiral ring relation for the

N = 2 gauge theory is that the VEV’s of photinos break the N = 2 gauge symmetry

down to N = 1. For the lack of a better name, we will call the relations coming

from (5.2.47) and (5.2.38) the N = 2 relations. A suitable linear combination of

the coeffients of Pα(z) are the N = 2 low energy photinos. Physically, the relations

for gaugino operators describe the expectation value of the wα,i’s when we turn on

a coherent state of zero modes of the photinos.

It is easy to find now the formula for R(z). We divide the third equation in

(5.2.21) by 2T (z) to get

R(z) = −wα(z)wα(z)
2T (z)

+
1
2
W ′(z)− c(z)

2T (z)
. (5.2.48)

Substituting (5.2.38) and (5.2.47) into (5.2.48) we get

R(z) = − Pα(z)Pα(z)
2P ′(z)

√
P 2(z)− 4Λ2N

+
W ′(z)

2
− c(z)

√
P 2(z)− 4Λ2N

2P ′(z)
. (5.2.49)
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The first term on the right hand side represent the quadratic response of R(z) to

nonzero vacuum expectation value of the N = 2 photinos. The next terms are

linear in the coefficients of the superpotential, as expected. They give the gaugino

condensate of the N = 1 gauge theory with nonzero superpotential. Taking Λ = 0

we get the classical relation

R(z) = −Pα(z)Pα(z)
2P ′(z)P (z)

, (5.2.50)

where we used that

W ′(z)P ′(z) = c(z)P (z) (5.2.51)

holds in the classical chiral ring. This follows from combining the two relations

(5.2.17) and (5.2.25) for T (z). We have derived from classical considerations that

R(z) = PR(z)/P (z). This agrees with (5.2.50) only if

PR(z)P ′(z) = −1
2
Pα(z)Pα(z). (5.2.52)

We have not been able to verify this relation.

We recast the N = 2 relations into a different form that is more convenient for

some applications. We integrate both sides of the equation (5.2.38) to get

∫
T (z) = ln

1
2

(
P (z) +

√
P 2(z)− 4Λ2N

)
, (5.2.53)

where the integral means that we expand T (z) in inverse powers of z and then

integrate the resulting series

∫
T (z) =

∫
dz

∞∑

l=0

ul

lzl+1
= N ln(z) +

∞∑

l=1

ul

zl
. (5.2.54)

The constant of integration in (5.2.53) was determined by matching the N ln(z)

terms on both sides of the equation. Finally, we can find P (z) from (5.2.53),

P (z) = e
∫

T (z) + Λ2Ne−
∫

T (z) (5.2.55)

which we use to find Pα(z) from (5.2.47)

Pα(z) = wα(z)
(
e
∫

T (z) − Λ2Ne−
∫

T (z)
)

. (5.2.56)
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The constraints on uk and wα,k come from imposing that the coefficients of the

negative powers of z in the Laurent series on the left hand side of (5.2.55) or

(5.2.56) vanish. Since the coefficient of zN−k of (5.2.55) is linear in uk and does not

depend on ul with l > k, setting the coefficient to zero gives a recursion relation for

uk in terms of u1, u2, . . . , uk−1. We can solve the recursion relations to find uk as a

polynomial in u1, . . . , uN . Similarly, the coefficient of zN−1−l of (5.2.56) is linear in

wα,k and is independent of wα,l with l > k. Hence, we get recursion relations for

wα,k with k ≥ N which determine wα,k in terms of wα,0, . . . , wα,N−1 and u1, . . . , uN .

We recast the formula (5.2.49) as

−Pα(z)Pα(z)
2P (z)

=
(

R(z)−W ′(z)/2 +
c(z)

2T (z)

) (
e
∫

T (z) − Λ2Ne−
∫

T (z)
)

. (5.2.57)

We will not use this formula except for next subsection where we relate it to (5.2.55)

and (5.2.56).

5.2.3 U(1)free and Shift Symmetry

We decompose the U(N) gauge symmetry as SU(N)×U(1)free on the level of

Lie algebras. We embed the U(1)free photino Wα into the U(N) gauge theory as

Wα×1N×N . All fields are in the adjoint representation of the U(N) gauge symmetry,

hence they are neutral under the diagonal U(1)free which gets decoupled from the

rest of the theory. It is described completely by the free WαWα action. In the chiral

ring, the U(1)free photino is described by an anticommuting number ψα because

the chiral operator Wα is independent of position. Hence, the U(1)free part of the

gaugino generating functions are

wα(z) =
1
4π

Tr
ψα

z − Φ
=

1
4π

ψα T (z)

R(z) = −ψα

4π
wα(z)− 1

32π2
ψαψαT (z).

(5.2.58)

It follows from the decoupling of U(1)free that the theory has an exact symme-

try Wα → Wα + 4πψα1N×N that shifts Wα by an anticommuting c-number. This

symmetry acts on the chiral operators by

δrk = −wα,kψα − 1
2
ψαψαuk,

δwα,k = ukψα,

δuk = 0.

(5.2.59)
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We define the field W̃α = Wα + 4πψα, then the shift symmetry is generated by

∂/∂ψα. Invariance under this symmetry implies that the chiral ring relations do not

depend on ψα when they are expressed in terms of W̃α. We substitute W̃α instead

of Wα into the definitions (5.2.5), (5.2.16), (5.2.23) and (5.2.28) and find the shift

symmetric resolvents and polynomials

R̃(z) = R(z)− wα(z)ψα − 1
2
ψαψαT (z),

f̃(z) = f(z)− 4ψαρα(z)− 2ψαψαc(z),

w̃α(z) = wα(z) + ψαT (z),

P̃α(z) = Pα(z) + ψαP ′(z).

(5.2.60)

Finally, we can write down the shift invariant form of the anomaly relations (5.2.21)

R̃2(z) = W ′(z)R̃(z) +
1
4
f̃(z) (5.2.61)

and the shift invariant N = 2 equations

R̃(z) = − P̃α(z)P̃α(z)
2P ′(z)

√
P 2(z)− 4Λ2N

+
W ′(z)

2
− c(z)

√
P 2(z)− 4Λ2N

2P ′(z)
. (5.2.62)

Here, the second and the third term are independent of ψα, whence they contribute

only to the lowest component of R̃(z) which is R(z) itself. To get the relations for

N = 2 gauge theory we set the superpotential to zero

R̃(z) = − P̃α(z)P̃α(z)
2P ′(z)

√
P 2(z)− 4Λ2N

. (5.2.63)

The shift invariant N = 2 relation that combines the formula for T (z) and wα(z) is

w̃α(z) =
P̃α(z)√

P 2(z)− 4Λ2N
. (5.2.64)

This relation holds for any superpotential unlike (5.2.63) which is valid only for zero

superpotential.

The equation (5.2.64) is the unique shift symmetric completion of the N = 2

formula for T (z). Each term in formula for wα(z) depends on Wα and hence gives a

nonzero contribution by shift symmetry to the formula for T (z). Barring unexpected

cancellations, the formula for wα(z) is fixed by requiring that it shifts to the correct
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relation for T (z). The formula for R(z) is not fixed by shift symmetry from the

formula for wα(z). It can have additional terms that are independent of Wα which

get shifted to zero, hence they are not constrained by the formula for wα. These

terms are absent for the N = 2 gauge theory, where the formula (5.2.63) for R(z)

gives the response to nonzero vacuum expectation value of the U(1) photinos. There

are such terms when we turn on the superpotential as is manifest from (5.2.62).

The shift invariant integral relation that combines (5.2.55), (5.2.56) and (5.2.57)

is

− P̃α(z)P̃α(z)
2P ′(z)

= R̃(z)
(
e
∫

T (z) − Λ2Ne−
∫

T (z)
)

. (5.2.65)

In this form, the formula for −Pα(z)Pα(z)/P ′(z)P (z) goes by shift symmetry into

the formula for Pα(z) which goes to the first derivative of the formula for P (z). The

N = 2 relation for P (z) and Pα(z) combines is

P̃α(z) = w̃α(z)
(
e
∫

T (z) − Λ2Ne−
∫

T (z)
)

. (5.2.66)

Similarly to (5.2.64) this formula holds for any superpotential.

5.3 Solution of the Chiral Ring

5.3.1 U(2) Gauge Theory with Cubic Superpotential

Before giving a general proof that the chiral ring determines all the vacua of

the theory we will illustrate this in detail in the case of the U(2) gauge theory with

cubic superpotential

W ′(Φ) =
1
3
Tr Φ3 − 1

2
Tr Φ2. (5.3.1)

We can always put a cubic superpotential into this simple form by rescaling and

shifting Φ and Wα. Let us count the number of chiral operators that we need to

consider after taking into account the recursion relations for the moments. A 2× 2

matrix Φ is described by two independent gauge invariant chiral operators u1 and

u2 which determine the remaining ui’s from (5.2.38). There are two independent

gaugino operators wα,0 and wα,1 which determine the remaining wα,i’s from (5.2.47).

For cubic superpotential, the ri’s are determined by r0 and r1 from the first anomaly

equation (5.2.21). Hence, we have already reduced the number of chiral operators

that generate the ring down to six.
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To get started, we solve for vacua in the classical case. We treat uk’s as numbers

and ignore the nilpotents wα,k and rk. The superpotential has two critical points,

λ = 0, 1. Hence, the theory has three vacua corresponding to different arrangements

of the eigenvalues of Φ among the critical points Φ = diag(0, 0), diag(0, 1), diag(1, 1).

The vacuum Φ = diag(1, 0) is gauge equivalent to the vacuum Φ = diag(0, 1). The

vacua are described by the gauge invariant operators

u1 = u2 = u3 = . . . = 0, 1, 2. (5.3.2)

These values of uk obey all chiral ring relations by definition. We will now show

that there are no additional solutions to the chiral ring relations. We expand the

equation for Φ (5.2.14) in 1/z to get

Tr ΦkW ′(Φ) = uk+2 − uk+1 = 0. (5.3.3)

Hence the equations of motion set all moments of T (z) equal to u1

uk = u1 (5.3.4)

giving us one dimensional family of solutions parameterized by u1. However, we

know from above that only three solutions of this family correspond to supersym-

metric vacua of the theory. Hence, the relations coming from the equations of

motions are not restrictive enough. Fortunately, u3, u4, . . . are determined by u1, u2

from (5.2.38), so we have additional constraints which we can impose on the above

one dimensional family of solutions. Substituting (5.3.4) into the relation (A.7)

u3 = − 1
2u3

1 + 3
2u1u2, we find

u1(u1 − 1)(u1 − 2) = 0. (5.3.5)

The solutions of this equation are u1 = 0, 1, 2 which are the expectation values of u1

in the three supersymmetric vacua discussed above. The idempotents corresponding

to these vacua are 1
2 (u1− 1)(u1− 2),−u1(u1− 2), 1

2u1(u1− 1). Each solution of the

chiral ring corresponds to a supersymmetric vacuum of the gauge theory.

The calculation in the quantum case is similar except that we need to keep

track of rk’s which get nonzero expectation value from gaugino condensation. We
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will take into account the infinitesimal wα(z) to find the low energy gauge group.

We take the last anomaly equation (5.2.21)

2R(z)T (z) = Tr
W ′(Φ)
z − Φ

(5.3.6)

and expand it in 1/z to find the recursion relations for uk

uk+2 = uk+1 + 2
k∑

i=1

uirk−i. (5.3.7)

We compare these with the equations (A.7) for u3 and u4 in terms of u1 and u2.

This allows us to express u2, r0 and r1 in terms of u1

u2 = u1

r0 = −1
8
u1(u1 − 1)(u1 − 2)

r1 = − 1
16

u2
1(u1 − 1)(u1 − 2) + Λ4.

(5.3.8)

We use that r2 = r1 + r2
0, which comes from the 1/z2 term of the first equation

(5.2.21)

R2(z) = − 1
32π2

Tr WαWα W ′(Φ)
z − Φ

, (5.3.9)

and plug into this (5.3.8) to find

(u1 − 1)[u2
1(u1 − 2)2 − 64Λ4] = 0, (5.3.10)

which determines the location of the roots of the chiral ring relations in the complex

u1 plane. The equation (5.3.8) has five roots for u1.

Quantum corrections do not move the vacuum at u1 = 1 from the classical

position inN = 2 moduli space because all monopoles are massive and the instanton

corrections to the moduli space move the classical vacua only for superpotential of

degree five or higher. The vacuum has zero total gaugino condensate (5.3.8)

S = S1 + S2 = 0. (5.3.11)

Instantons generate gaugino condensation in each of the U(1) factors leading to

r1 = Λ4. There are two vacua with u1 = 1+
√

1± 8Λ2 near the classical critical point

Φcl = diag(1, 1), from the strongly coupled SU(2) and two more vacua with u1 =
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1−√1± 8Λ2 near Φcl = diag(0, 0). The vacua have nonzero gaugino condensation

r0 = ±√1± 8Λ2.

To find the rank of the low energy gauge group we solve the linear equations

for wα,k and count the dimension of the space of solutions. We will justify this

prescription in the next section. The gaugino operators wα,0 and wα,1 obey relations

that come from expanding (5.2.47) in powers of 1/z. This gives a single constraint

(u1 − 1)(u1wα,0 − 2wα,1) = 0. (5.3.12)

At the vacuum with u1 = 1, the constraint becomes trivial hence wα,0 and wα,1 are

independent. The vacuum has U(1)2 low energy gauge symmetry. The vacua with

u1 6= 1 have only one independent photino because (5.3.12) has a one dimensional

family of solutions wα,1 = u1
2 wα,0. Hence these vacua have U(1) low energy gauge

group.

5.3.2 Classical Case

We will now show that the supersymmetric vacua are in one to one corre-

spondence with the solutions of the chiral ring relations. We will warm up on the

classical case.

We have found two different formulas for the resolvents in terms of the first n

or N moments. Comparing the formulas for resolvents from (5.2.17) with (5.2.25),

(5.2.30) and (5.2.31) we obtain nontrivial relations for the first max(N, n) moments

T (z) =
c(z)

W ′(z)
=

P ′(z)
P (z)

,

wα(z) =
ρα(z)
W ′(z)

=
Pα(z)
P (z)

,

R(z) = − f(z)
4W ′(z)

=
PR(z)
P (z)

.

(5.3.13)

Expanding these equations in 1/z, we would get an infinite number of equations for

the moments. Instead, we rewrite the equations as

P ′(z)W ′(z) = P (z)c(z),

Pα(z)W ′(z) = P (z)ρα,

PR(z)W ′(z) = −1
4
P (z)f(z).

(5.3.14)
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Then expanding in z we get a finite number of chiral relations to solve. Assume

that the superpotential W ′(z) =
∏n

i=1(z − λi) has n distinct critical points. The

most general solution of (5.3.14) can be expressed in terms of auxiliary polynomials

F (z),H(z), Q(z) and c̃(z)
W ′(z) = Q(z)F (z),

c(z) = Q(z)c̃(z),

P (z) =H(z)F (z),

P ′(z) = H(z)c̃(z),

(5.3.15)

where F (z) =
∏k

i=1(z− λi) is a polynomial of degree k. F (z) has only single roots.

They are the k occupied critical points of the superpotential. The resolvent T (z) is

(5.3.13)

T (z) =
c̃(z)
F (z)

=
k∑

j=1

Nj

z − λj
. (5.3.16)

The second equality holds because the polynomial c̃(z) of degree k − 1 can be

expressed as a linear combination of the k linearly independent polynomials Fi(z) =∏
j 6=i(z − λj). The Ni’s are integers being the logarithmic residues of P (z). They

give the multiplicity of the eigenvalue λi in Φ. The solution is completely specified

by Ni’s. It corresponds to the vacuum in which Φ breaks the U(N) gauge symmetry

to U(N1)× U(N2)× . . .× U(Nk). Taking different Ni gives all vacua of the gauge

theory. The expectation values of uk’s in a particular vacuum are generated by

T (z). The roots of the chiral ring relations are in one to one correspondence with

the vacua of the theory.

The equations (5.3.14) linear in Wα determine the number of unbroken U(1)’s.

Their general solution
Pα(z) = H(z)σα(z),

ρα(z) = Q(z)σα(z)
(5.3.17)

is written in terms of the arbitrary polynomial σα(z) of degree k − 1 which has k

independent anticommuting coefficients. We have

wα(z) =
σα(z)
F (z)

, (5.3.18)

whence the vacuum has k U(1) gauginos coming from the U(1) factors of U(Ni)

ŵα,i =
1
4π

Tr WαPi (5.3.19)
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where Pi is the projector on the subspace Φ = λi preserved by the U(Ni) gauge

symmetry. We use a hat to distinguish ŵαi from wα,i Similarly, R(z) is given in

terms of an arbitrary polynomial q(z) of degree k − 1

R(z) =
q(z)
F (z)

(5.3.20)

which indicates that the vacuum has k independent ri’s. Linear combinations of ri

give the gaugino bilinears

Si =
−1

32π2
Tr WαWαPi (5.3.21)

of the U(Ni) gauge group.

5.3.3 Quantum Case

The solution of the quantum case is similar to the classical case. We com-

pare the perturbative formulas (5.2.22) for the resolvents T (z) and wα(z) with the

nonperturbative formulas (5.2.38) and (5.2.47). We find the chiral ring relations

T (z) =
c(z)√

W ′2(z) + f(z)
=

P ′(z)√
P 2(z)− 4Λ2N

,

wα(z) =
ρα(z)√

W ′2(z) + f(z)
=

Pα(z)√
P 2(z)− 4Λ2N

.

(5.3.22)

Expanding both sides of (5.3.22) in 1/z and comparing the coefficients of the two

Laurent series we obtain an infinite number of relations for the first max(n, N)

moments of the resolvents.

We rewrite (5.3.22) as

P ′2(z)(W ′2(z) + f(z)) = (P 2(z)− 4Λ2N )c2(z),

Pα(z)c(z) = P ′(z)ρα(z),
(5.3.23)

to get a finite number of equations. We have eliminated the square roots in the

second equation using the first equation. Let us focus now on the first equation in

(5.3.23). Expanding the equation in z and comparing the coefficients we obtain a

finite number of chiral ring relations that can be solved to find expectation values

u1, . . . , umax(N,n), r0, . . . , rn−1 in all vacua. We obtain 2N + 2n− 1 equations while
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the number of independent variables is max(N,n) + n. Generically, the number of

independent equations is larger than the number of variables.

To solve the quantum chiral ring relations, assume that the matrix curve y2
m =

F2g(z) has genus g. Hence, the N = 2 curve has N − g double roots

P 2(z)− 4Λ2N = H2
N−g(z)F2g(z). (5.3.24)

Taking derivative of (5.3.24) we find that P ′(z) = HN−g(z)c̃g−1(z) is divisible by

HN−g(z). To match single roots on both sides of (5.3.23) we must have

W ′2(z) + f(z) = Q2
n−g(z)F2g(z), (5.3.25)

hence c(z) = Qn−g c̃g−1(z). The equation (5.3.25) is the generalized condition for

finding vacua for arbitrary degree of the superpotential [74]. We remark that even

though the relation (5.3.25) has a direct physical interpretation in terms of conden-

sation of N − g massless monopoles and factorization of the matrix model curve, it

is not a chiral ring relation because it does not hold in all vacua of the theory. The

equations (5.3.23) are chiral ring operator statements valid in every vacuum of the

gauge theory. Substituting the solution (5.3.25) into (5.3.22) we get the relation for

T (z) in terms of the matrix model curve

T (z) =
c̃(z)√
F2g(z)

. (5.3.26)

To find the position of the supersymmetric vacua in the Φ moduli space we have

set to zero the U(1) photinos. We were allowed to do this because the expectation

value of the photinos moves the vacua by an infinitesimally small amount because

of the nilpotent nature of the photino operators wα,i.

Substituting c(z) and P ′(z) into (5.3.23) gives

Pα(z)Qn−g(z) = HN−g(z)ρα(z). (5.3.27)

The general solution of this equation is

Pα(z) = HN−g(z)σα,g−1(z)

ρα(z) = Qn−g(z)σα,g−1(z)
(5.3.28)
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where σα,g−1(z) in an arbitrary polynomial of g−1’st degree. So wα(z) is determined

by the g independent fermionic coefficients of σα,g−1(z)

wα(z) =
σα,g−1(z)√

F2g(z)
. (5.3.29)

Along these directions, the photinos can take vacuum expectation values.

Hence, each massive vacuum has massless fermionic moduli directions parameterized

by the magnitude of the photino condensate. The photons that are supersymmetric

partners of the massless photinos are massless as well. These are the freely propa-

gating photons of the low energy effective gauge group. Hence, the number of U(1)

photons is equal to the number of massless photinos which is equal to the dimension

of the fermionic moduli space. To find the dimension, it is enough to consider equa-

tions linear in wα(z) and count the number of parameters describing their solution.

This justifies the calculation in the cubic superpotential example and implies that

the vacuum corresponding to genus g matrix model curve have U(1)g low energy

gauge symmetry.

5.3.4 Perturbative Chiral Ring

Finally, let us consider the chiral ring that incorporates the perturbative cor-

rections only. We turn off the nonperturbative corrections by setting the strong

coupling scale Λ to zero in chiral ring relations. The ideal of relations is generated

by (5.3.23)

P ′2(z)(W ′2(z) + f(z)) = P 2(z)c2(z) (5.3.30)

and

Pα(z)c(z) = P ′(z)ρα(z). (5.3.31)

As a simple consequence of (5.3.30), we observe that 〈f(z)〉 = 0 in every vacuum,

because W ′2(z) + f(z) is a square of a polynomial if and only if f(z) = 0 or

deg f(z) ≥ deg W ′(z), but f(z) has degree one smaller than W ′(z). So we see from

(5.2.22) that

〈R(z)〉 = 0, (5.3.32)

the gaugino condensate is vanishes to all orders in perturbation theory. The rk’s

are nilpotent operators of the perturbative chiral ring because 〈rk〉 = 0 for each

solution of the perturbative relations (5.3.30). The nilpotency follows from Hilbert’s
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Nullstellensatz, p. 412 of [75], which states that if a polynomial g vanishes at every

solution of an ideal I of polynomial relations then gk for sufficiently large k is an

element of the ideal I. We will discuss in section on gaugino condensation that the

actual nilpotency condition on rk is that the product of any N rk’s is zero in the

perturbative chiral ring.

To find the positions of the vacua in the Φ moduli space, we set f(z) to zero in

(5.3.30). The chiral ring reduces to the classical chiral ring. Hence, the perturbative

corrections do not shift the positions of the vacua in the Φ moduli space and the

equations (5.3.31) give the correct number of U(1) gauge symmetries. To account

for the correct multiplicity of the vacua we need to retain the nilpotent f(z). The

multiplicity of the solution equals the multiplicity of the supersymmetric vacua.

The multiple root splits into single roots and the supersymmetric vacua separate in

the Φ moduli space when we make Λ nonzero.

In the example the chiral ring of U(2) gauge theory with cubic superpotential,

the classical ring is u1(u1 − 1)(u1 − 2) = 0 while the perturbative ring is

u2
1(u1 − 1)(u1 − 2)2 = 0, (5.3.33)

which can be obtained from (5.3.10) by setting Λ = 0. The double roots correspond

to the pairs of vacua that come from the strongly coupled SU(2) vacua.

5.4 Intersection of Vacua

Generically, all vacua are located at different points in the Φ moduli space.

By tuning the superpotential, we can make two or more vacua intersect. We will

consider only the intersections at which mutually local monopoles are massless. The

chiral ring relations will have a multiple root. Its multiplicity equals to the number

of intersecting vacua. We notice that R(z) is determined by the location of the

vacua in the N = 2 moduli space from (5.2.49). Hence, the intersecting vacua have

the same expectation value of the moments of gaugino condensate.

Let us investigate the the low energy gauge group of the intersecting vacua.

T (z) determines the linear constrains (5.2.56) for wα(z). So the rank of the low

energy gauge group depends only on the position of the vacuum in the Φ moduli

space. The intersecting vacua have the same low energy gauge group Ug(1) with

g ≥ gi where U(1)gi is the the gauge group of ith vacuum near the intersection.
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The lower bound of the rank of the gauge group follows, because when tuning the

superpotential to make the vacua intersect, the dimension of the space solution to

(5.2.56) can suddenly jump up as some of the constraints for wα,k become satisfied

on a submanifold of the Φ moduli space.

Physically, the increase in the rank of the gauge group is connected with van-

ishing of the condensate of monopoles at the vacuum. As the vacua approach each

other, the dual Meissner effects of the confined U(1)’s turns off. At the intersection

the monopole has zero expectation value and the dual electric U(1) is free. We will

investigate monopole condensation using the low energy effective lagrangian [76,77]

that includes the monopole fields

Leff =
n∑

k=0

gk

k + 1
Tr Φk+1 +

N∑

i=1

Mi(Φ)mim̃i. (5.4.1)

The mass of the ith monopole Mi(Φ) is a function on the N = 2 moduli space.

We can find the monopole condensate by varying these equations with respect to

u1, . . . uN ,m1, . . . , mN and m̃1, . . . , m̃N . For present purposes it is enough to notice

that the monopole condensates depends continuously on the superpotential and the

ui’s. Thus, the monopole condensate associated with the deconfining U(1) turns

off continuously on the approach of the intersection. This follows from the formula

(3.16) of [78] for the value of monopole condensates.

We will now illustrate this behavior for U(2) gauge theory with the cubic

superpotential W ′(z) = z2 − z which we analyzed in previous section. When

8Λ2 = 1 (5.4.2)

the two vacua at u1 = 1±√1− 8Λ2 intersect with the u1 = 1 vacuum. Ignoring the

photinos for a moment,we see that the chiral ring is generated by u1, which obeys

the constraint (5.3.10)

(u1 − 1)3(u2
1 − 2u1 − 1) = 0. (5.4.3)

The equation (5.4.3) has a triple root at u1 = 1. The local ring at the triple root

is three dimensional. The basis elements behave as 1, (u1 − 1), (u1 − 1)2 near the

root and vanish at the two other roots of (5.4.3). To find the expectation value of

a chiral operator in the intersecting vacua, we expand it in the local ring and read

off the coefficient at the idempotent element.
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We see from (5.3.12) that the gauge group of each of them gets enlarged to

U(1)2. We can see the increase in the rank of the gauge group directly from the low

energy effective action of the theory near the intersection point (5.4.1)

W (Φ) =
u3

3
− u2

2
+ m(2u2 − u2

1 ± Λ2)qq̃. (5.4.4)

The monopole condensate in the vacua with U(1)free gauge symmetry is

qq̃ = m′(u1 − 1), (5.4.5)

where m′ is a constant. Near u1 = 1, the condensate which confines the second

U(1) goes to zero and the dual Meissner effect continuously turns off. Some of

these results were previously derived in [79].

5.5 Gaugino Condensation

We have seen that chiral ring determines all the supersymmetric vacua together

with the expectation values of all chiral operators. The chiral ring can be used to

extract general statements about the properties of the vacua as well. For example,

we showed above that chiral ring encodes the low energy gauge group of the vacua.

The dimension of the gauge group was shown to be equal to the number of the

fermionic moduli parameterizing the condensate of the U(1) photinos. We will

now analyze the chiral ring relations satisfied by the gaugino bilinears ri and their

implications for gaugino condensation. For simplicity, we will assume throughout

this section that the photino expectation values vanish.

5.5.1 Classical case

Classically, Wα is an N ×N matrix of two component grassmannian numbers.

The operators ri ∼ Tr ΦiWαWα are bosonic operators constructed from fermionic

operators. These operators are nilpotent because of the anticommutativity of Wα.

We have

ri1 . . . riN2+1
= 0, (5.5.1)

because Wα consists of N2 two component fermions. In the chiral ring, the relations

{Wα,Wβ} = 0

[Wα, Φ] = 0
(5.5.2)
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imply a more powerful result. These identities generate the ideal I which is the

subideal of the full ideal of classical relations. The remaining the classical relations

have been discussed in the section 2. We denote W1 and W2 by A and B. Then

the ideal I is generated by A2, B2 with both A and B commuting with Φ and

anticommuting with each other. For example the authors of [20] showed that

rN
0 = SN = 0 (5.5.3)

holds in the chiral ring of the pure U(N) gauge theory. This relation continues to

be valid when we add the adjoint field Φ because

r0 = − 1
32π2

Tr WαWα = − 1
16π2

Tr AB (5.5.4)

does not depend on Φ, so the proof from [20] for the pure U(N) gauge theory is still

valid. There is a similar relation for the product of arbitrary N moments of R(z)

rk1rk2 . . . rkN = 0. (5.5.5)

To derive (5.5.5), we closely follow [80]. We construct the tensor F (A) from A

F i1i2...iN (A) = εj1j2...jN Ai1
j1

Ai2
j2

. . . AiN
jN

. (5.5.6)

The epsilon tensor on the right hand side picks out the completely antisymmetric

part in the j indices of A, hence by anticommutativity of A, F is completely sym-

metric in the i indices. We will show later that F (A) is contained in the ideal I.

We also define a complementary tensor from B and Φ

Gi1i2...iN (B) =
(
− 1

16π2

)N

εl1l2...lN (Φk1B)l1
i1

(Φk2B)l2
i2

. . . (ΦkN B)lN
iN

. (5.5.7)

Since F (A) is contained in the ideal I, so is its contraction with G(B)

F (A) ·G(B) = εi1i2...iN Ai1
j1

Ai2
j2

. . . AiN
jN

εl1l2...lN (Φk1B)l1
i1

(Φk2B)l2
i2

. . . (ΦkN B)lN
iN

.

(5.5.8)

We arrange the right hand side of (5.5.8) using the identity

εj1j2...jN εl1l2...lN = δj1
l1

δj2
l2

. . . δjN

lN
± permutations. (5.5.9)
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The delta tensors contract the indices between F (A) and G(B) making F (A) ·G(B)

into a sum of terms

Tr Φp1(AB)s1Tr Φp2(AB)s2 . . . Tr ΦpN (AB)sN (5.5.10)

with various pi and si. In writing (5.5.10) we used the fact that Φ commutes with

A and B to collect Φ’s to the left of each trace. The term coming from the trivial

permutation in (5.5.9) is

rk1rk2 . . . rkN
=

(
− 1

16π2

)N

Tr Φk1AB Tr Φk2AB . . . Tr ΦkN AB. (5.5.11)

The remaining permutations give terms with some si > 1 hence they are contained

in the ideal I.

To complete the proof, we will show that F (A) is in the ideal I. Since

F (A)i1i2...iN is symmetric in its indices, we can set them to the same value. We will

show that

F (A)NN...N = εj1j2...jN AN
j1A

N
j2 . . . AN

jN
(5.5.12)

is proportional to

εNj1j2...jN (A2)N
j1A

N
j2 . . . AN

jN−1
, (5.5.13)

which is in the ideal I because it is a multiple of A2. We can write (5.5.13) as
N∑

x=1

εNj1j2...jN−1AN
x Ax

j1A
N
j2 . . . AN

jN−1
. (5.5.14)

The expression

AN
x AN

j2A
N
j3 . . . AN

N−1 (5.5.15)

is antisymmetric in its N−1 indices x, j2, j3, . . . , jN−1, hence it is a nonzero multiple

of

εxj2j3...jN−1kεkl1l2...lN−1AN
l1 AN

l2 . . . AN
lN−1

. (5.5.16)

We substitute this into (5.5.14)
N∑

x=1

εNj1j2...jN−1εxj2j3...jN−1kεkl1l2...lN−1Ax
j1A

N
l1 AN

l2 . . . AN
lN−1

(5.5.17)

and use (5.5.9) to express the product of the first two epsilon tensors as a multiple

of δN
x δj1

k − δN
k δj1

x . We find that (5.5.14) is a nonzero multiple of

(δN
x δj1

k − δN
k δj1

x )εkl1l2...lN−1Ax
j1A

N
l1 AN

l2 . . . AN
lN−1

. (5.5.18)

The term contracted with δN
k δj1

x are proportional to the U(1) photino Tr A which

we took to be zero. The term contracted with δN
x δj1

k is FNN...N (A) as promised.
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5.5.2 Quantum case

Quantum mechanically, all vacua of the theory have nonzero gaugino conden-

sation. This follows because all solutions of the equation (5.3.23)

P ′2(z)(W ′2(z) + f(z)) = (P 2(z)− 4Λ2N )c2(z) (5.5.19)

have f(z) 6= 0. We must have f(z) 6= 0 to insure that the left hand side of (5.5.19)

is not a square of a polynomial, since the right hand side is cannot be written as a

square of a polynomial when Λ 6= 0. Nonzero f(z) is equivalent to nonzero gaugino

condensation which can be seen from the equation (5.2.22)

R(z) =
1
2

(
W ′(z)−

√
W ′2(z) + f(z)

)
(5.5.20)

for the generating function R(z).

For a generic shape of the superpotential, we expect that the coefficients of the

polynomial f(z) are generic and nonzero. Hence, generically, all the moments rk are

nonzero. In a particular vacuum, the first few moments can vanish if the gaugino

condensates Si of the U(Ni) subgroups cancel among each other when added up to

make the gauge invariant operators

r0 ∼
∑

Si, r1 ∼
∑

λiSi, . . . . (5.5.21)

In this case, some of the higher traces rk must be nonzero. Actually, infinitely many

moments rk do not vanish. This follows from the fact that expanding the square

root in (5.5.20) in powers of 1/z we obtain Laurent series with infinite number of

nonzero terms.

We would like to find the quantum version of the classical formulae (5.5.5).

The product of N gaugino bilinears is generated by instantons. We expect the l

instanton contribution to be proportional to the exponential of the l instanton action

e−lSinst = Λ2lN . The zero instanton term is absent. This expresses the absence of

perturbative contribution to the gaugino condensation (5.3.32). The coefficient in

front of the exponential is a polynomial in uk because the expectation value of the

gaugino condensate depends on the position of the vacuum in the Φ moduli space.

In summary, nonperturbative effects correct (5.5.5) to

rk1rk2 . . . rkN
=

∑

l>0

Λ2lNQl,k1k2...kN
(u1, u2, . . . , uN ). (5.5.22)



5 Chiral Rings and Vacua of SUSY Gauge Theories 130

The dimension of the left hand side is 3N +
∑

i ki hence the dimension of the

polynomial Ql,k1k2...kN
is (3−2l)N +

∑
i ki. Recalling that the dimension of uk and

Λ2N is k and 2N respectively, dimensional analysis gives us a simple constraint on

Q. For example, rN
0 = SN can have only one instanton contribution, since Ql,00...0

for l > 1 would have negative dimension −(l − 1), which is a contradiction. Q,

being a polynomial in uk, has always positive dimension. The general form of

Ql,k1k2...kN
(u1, u2, . . . , uN ) is not know. It is a complicated polynomial in ui that

depends on the superpotential in a nontrivial way. Also, the Ql’s are not uniquely

defined. The chiral ring has often relations that express a polynomial in uk as

Λ2N times another polynomial of dimension 2N less than the original polynomial.

Adding Λ2lN times this relation to the right hand side of (5.5.22) we change Ql and

Ql+1 without affecting the total sum. This is related to the fact that Λ2N has the

same quantum numbers as Φ2N .

For the example of U(2) gauge theory with cubic superpotential from section

(3.1), the formulas for the product of two r0 and r1 are

r2
0 = (u1 − 1)2Λ4,

r0r1 =
Λ4

8
u1(u1 − 1)(3u1 − 2),

r2
1 =

Λ4

8
u3

1(u1 − 1) + Λ8.

(5.5.23)

We obtained these by multiplying the formulas (5.3.8) that express r0 and r1 in

terms of u1. To get the overall Λ4 factor we have used the quintic equation (5.3.10)

for u1. We see that r2
1 has also a two instanton contribution proportional to Λ8.

The product of any two moments ri and rj can be easily worked out from (5.5.23)

because the higher moments can expressed as polynomials in r0 and r1 with the

help of recursion relations obtained by expanding (5.3.9) in 1/z

rk+2 = rk+1 +
k−1∑

i=0

rirk−i−1. (5.5.24)

We find that the product can be written as a sum of terms that are polynomials

of degree two or higher in r0 and r1. We rewrite these polynomials with the Λ4l

prefactor using (5.5.23)

rirj =
∑

l>0

Λ4lQl,ij(u1). (5.5.25)
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5.6 Examples

In this section we give additional examples to illustrate in detail how the chiral

ring determines the vacua of the gauge theory.

5.6.1 Unbroken Gauge Group

In our first example we consider the U(N) gauge theory with unbroken gauge

group. For simplicity we will assume that the superpotential has one critical point

W (Φ) = 1
2mΦ2. The theory with quadratic superpotential for the adjoint field was

solved first by Douglas and Shenker [81]. It has been recently studied in [82,83,84,85].

Semiclassically, Φ is a massive scalar field with zero expectation value preserving

the U(N) gauge symmetry. The SU(N) subgroup of the U(N) gauge group gets

strongly coupled by nonperturbative effects and the low energy gauge group is

the decoupled U(1)free. There are N strongly coupled massive confining vacua

with nonzero gaugino condensation. They are symmetrically distributed around

the origin of the S plane.

We will now study the full chiral ring of the gauge theory keeping both linear

and quadratic terms in wα(z). We substitute c(z) = mN , f(z) = −4mS and

ρα(z) = mwα,0 into the expressions (5.2.22) for the resolvents

T (z) =
N + wα(z)wα(z)/m√

z2 − 4S/m
=

N√
z2 − 4S/m

+
wα,0w

α
0

m(z2 − 4S/m)
3
2
,

wα(z) =
wα,0√

z2 − 4S/m
,

R(z) =
m

2

(
z −

√
z2 − 4S/m

)
.

(5.6.1)

We can write T (z) more compactly in terms of S̃ = S + 1
2N wα,0w

α
0 , the SU(N) part

of S

T (z) =
N√

z2 − 4S̃/m
. (5.6.2)

Hence, T (z) does not depend on the U(1) photinos. It is easy to check (5.6.2)

by expanding in wα,0w
α
0 and using the fact that higher order terms are zero by

anticommutativity since wα,0 is a two-component spinor. We substitute

∫
T (z) = N ln


z +

√
z2 − 4S̃/m

2


 (5.6.3)
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into (5.2.55) to find

P (z) =


z +

√
z2 − 4S̃/m

2




N

+
Λ2N

(
z+

√
z2−4S̃/m

2

)N
. (5.6.4)

The chiral ring relations come from setting the negative powers of z in the right

hand side of (5.6.4) to zero. These relations are generated by

S̃N = mNΛ2N , (5.6.5)

or equivalently in terms of the U(N) gaugino bilinear

SN +
1
2
SN−1wα,0w

α
0 = mNΛ2N . (5.6.6)

Hence we find that P (z) is the Chebychev polynomial

P (z) =


z +

√
z2 − 4S̃/m

2




N

+


z −

√
z2 − 4S̃/m

2




N

, (5.6.7)

in agreement with [81].

The quantum relation (5.6.5) implies that in any vacuum 〈S̃N 〉 = mNΛ2N .

Since the expectation values of products of chiral operators factorize

〈S̃〉N = mNΛ2N . (5.6.8)

Solving for 〈S〉 we get 〈S〉 = ωmΛ2 where ω is an N th root of unity. We see that

each of the N solutions to the chiral ring relations corresponds to a supersymmetric

vacuum with nonzero gaugino condensate, as claimed. The equations for photinos

wα,i depend on one independent fermion wα,0, whence each of the massive vacua

can have an arbitrary coherent state of the U(1) photinos. The photon is massless

by supersymmetry and the low energy gauge group is U(1).

To find the expectation values of operators in each vacuum, we expand (5.6.1)

in powers of 1/z. The odd moments vanish by the symmetry Φ → −Φ while the

even moments are nonzero,

u2k = N

(
2k
k

)
(S̃/m)k,

wα,2k = wα,0

(
2k
k

)
(S/m)k,

r2k =
S

k + 1

(
2k
k

)
(S/m)k.

(5.6.9)
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The vacua are symmetrically distributed around zero in the complex S plane.

This pattern is reminiscent of the pure N = 1 supersymmetric U(N) gauge theory.

Indeed, we recover the chiral ring of the N = 1 U(N) gauge theory by taking the

mass m of the adjoint field to infinity while holding the gaugino condensate S and

the strong coupling scale of the pure U(N) gauge theory fixed

Λ3N
p = mNΛ2N . (5.6.10)

The higher moments of T (z), wα(z) and R(z) vanish in the m → ∞ limit (5.6.9).

The ring of the pure U(N) gauge theory is generated by S and wα = wα,0 which

satisfy the relation

SN +
1
2
SN−1wαwα = Λ3N

p . (5.6.11)

Let us now determine the classical ring. We see from the classical equations of

motion

W ′(Φ) = mΦ = 0 (5.6.12)

that Φ is a zero matrix. It follows that uk, wα,k and rk are zero in the ring for k ≥ 1

because they contain Φ. Hence S and wα,0 are the only nonzero operators. They

are not constrained by the equations of motion. S satisfies the relation

SN +
1
2
SN−1wα,0w

α
0 = 0, (5.6.13)

which is the generalization of (5.5.3) when Tr Wα is nonzero. It can be obtained by

substituting S̃ for S in (5.5.3). We notice the different origin of the formula for S

in the classical and the quantum chiral ring. Classically, (5.6.13) follows from the

fermionic character of Wα while quantum mechanically (5.6.5) is a consequence of

the anomaly equations together with the N = 2 relations.

5.6.2 U(3) Gauge Theory with Cubic Superpotential

We will now solve the chiral ring of the U(3) gauge theory with cubic superpo-

tential W ′(z) = z2− az− b and show that it determines all the vacua of the theory.

This example has been studied by [74,79] and [86] using different approach. We

will see that all vacua have nonzero gaugino condensation and that the chiral ring

predicts the correct low energy gauge group. In this subsection, we will ignore the

quadratic terms in the U(1) photinos.
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The polynomials c(z), f(z) and ρα(z) are

c(z) = 2(z − a) + u1,

f(z) = −4((z − a)r0 + r1),

ρα(z) = (z − a)w0 + w1.

(5.6.14)

For U(3), the polynomials P (z) and Pα(z) become

P (z) = z3 − z2u1 + z

(
u2

1 − u2

2

)
+

3u1u2 − u3
1 − 2u3

6
,

Pα(z) =
(

z2 − u1z +
u2

1 − u2

2

)
wα,0 + (z − u1)wα,1 + wα,2.

(5.6.15)

We get chiral ring relations by expanding (5.3.23) in z. Firstly, we express u2, r0

and r1 in terms of u1 and u3

u2 =3b + au1,

r0 =− 1
6
(3ab + (a2 + b)u1 − u3),

r1 =− 1
36

(−u4
1 + 6au3

1 + u2
1(−5a2 + 16b)

− 6u1(3ab + u3) + 6au3 − 9b2).

(5.6.16)

Then u3 can be found in terms of u1 from the following equations

(2a2 − b− 3au1 + u2
1)(27bu1 + 9au2

1 − 2u3
1 − 9u3) = 0,

((−91a2 + 77b)u4
1 + 39au5

1 − 5u6
1 + 3u3

1(25a3 − 98ab− 6u3)

+27u2
1(13a2b− 5b2 + 2au3)− 9u1(−45ab2 + 8a2u3 + 2bu3)

+9(9b3 − 72Λ6 − 12abu3 + 2u2
3)) = 0.

(5.6.17)

u1 is a solutions of the eight order polynomial equation

(2a2 − b− 3au1 + u2
1)(5832Λ6 + (9b + 3au1 − u2

1)
3) = 0. (5.6.18)

The relations for the gaugino operators wα,0,1,2 are

(au1 − u2)wα,0 − 3awα,1+3wα,2 = 0,

1
2
(u2

1 − u2)(awα,0 − wα,1) + (u1 − 3a)(
1
2
(u2

1 − u2)wα,0 − u1wα,1 + wα,2) = 0.

(5.6.19)
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After some algebraic manipulations using the equations (5.6.16) to (5.6.18), we find

that product of any three gaugino bilinears can be written with the Λ6 prefactor

r3
0 =

1
6
Λ6(6a2 − 6ab− (10a2 + b)u1 + 3au2

1 + u3),

r2
0r1 =− 1

18
Λ6(a− u1)(9a2u1 − 16au2

1 + 5u3
1 + 3u3),

r0r
2
1 =

1
36

Λ6(14u5
1 − 77au4

1 + 2(74a2 − 25b)u3
1 + (−121a3 + 146ab + 6u3)u2

1

+ 6(6a4 − 22a2b + 5b2 − 2au3)u1 + 3a(12a2b− 9b2 + 2au3)),

r3
1 =

1
24

Λ6(11u6
1 − 73au5

1 + 5(37a2 − 9b)u4
1

+ (−227a3 + 190ab + 4u3)u3
1 + (136a4 − 293a2b + 33b2 − 12au3)u2

1

+ a(−32a4 + 196a2b− 69b2 + 12au3)u1 − 3b(16a4 − 12a2b + b2)).
(5.6.20)

Hence, by (5.5.24) and (5.6.20) , the product of any three ri’s can be written as

ri1ri2ri3 = Λ6lQl
i1,i2,i3 . (5.6.21)

To keep the equations simple, we will continue the discussion for the superpo-

tential W ′(z) = z2 − z. The equation for u1 becomes

(u1 − 1)(u1 − 2)(5832Λ6 − u3
1(u1 − 3)3) = 0. (5.6.22)

We will now discuss in detail all the roots to show each of them gives a supersym-

metric vacuum of the gauge theory.

We see from (5.6.19) that the constrains for the expectation values of photinos

are
wα,2 − wα,1 = 0

u1(u1 − 1)(u1 − 2)wα,0 − 3(u1 − 1)(u1 − 2)w1 = 0.
(5.6.23)

For the vacua with u1 = 1, 2 wα,1, wα,2 can take arbitrary expectation values, they

are massless. Hence, by supersymmetry the corresponding photons are massless

as well and we have U2(1) low energy gauge group. The wα,0 must have zero

expectation value, it is massive. The remaining six vacua have only one massless

direction for the photinos. Their low energy gauge group is U(1)free.

The theory has four vacua coming from the confined SU(2). Two of them are

at u1 = 1 and the other two at u1 = 2. The two vacua with the same u1 differ by

the sign of gaugino condensate

r0 = S = ±Λ2. (5.6.24)
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Their positions in the N = 2 moduli space are distinguished by u3 = u1− 6r0. The

two vacua at u1 = 1 have r1 = Tr W 2Φ = 0 because the gaugino condensation is in

the SU(2) part of the gauge group which is preserved (0, 0) block of Φ = diag(0, 0, 1).

The vacua u1 = 2 have r1 = r0 since the gauginos condense in the (1, 1) block of

Φ = diag(0, 1, 1). There are six vacua with confined SU(3) that are symmetrically

distributed in the u1 plane around u1 = 0 and around u1 = 3,

u1 = 3/2±
√

3/2 + 18ωΛ2 (5.6.25)

where ω is a third root of unity. As discussed in previous paragraph, these vacua

have U(1)free gauge symmetry. All these vacua have nonzero gaugino condensation

r0 ∼ Λ2 (5.6.26)

with dominant one instanton contribution for small Λ. The vacua near u1 = 3 with

Φ = diag(1, 1, 1) have the first moment of gaugino condensate of the same order

r1 ∼ Λ2 as r0. The vacua near u1 = 0 with Φclass = diag(0, 0, 0) have vanishing one

instanton contribution but nonzero second instanton contribution to r1 ∼ Λ4.

5.A N = 2 Chiral Ring Relations

In this appendix, we will write down for illustration the first few of the N = 2

recursion formulas. These relations are expressed in terms of the characteristic

polynomials P (z) and Pm(z). The coefficients of

P (z) = det(z − Φ) =
N∏

i=1

(z − λi) =
N∑

i=0

piz
N−i (5.A.1)

are p0 = 1 and pk =
∑N

i=1(−1)kλk
i for k = 1 . . . N, which can be expressed in terms

of u1, . . . , uN from the recursion relations

pk = −
k∑

i=1

ui

k
pk−i. (5.A.2)
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The first few pi’s are

p0 = 1,

p1 = −u1,

p2 = −u2

2
+

u2
1

2
,

p3 = −u3

3
+

u2u1

3
− 1

6
(u2

1 − u2)u1.

(5.A.3)

The characteristic polynomial Pm(z) (5.2.28) comes from the first variation of

δΦ = εM of P (z)

Pm(z) = −∂ε det(z−Φ−εM)|ε=0 =
N∑

i=1

Mii

∏

i 6=j

(z−λi) =
N−1∑

i=0

pm,iz
N−1−i. (5.A.4)

We find the recursion relations for the coefficients pm,k =
∑N

i=1 Miiλ
k
i by making

the first order variation δpk = −pm,k−1 and δuk = kmk−1 of the recursion relation

(5.A.2)

pm,k =
k∑

i=0

i

k
mipk−i −

k∑

i=1

1
k

pm,k−iui. (5.A.5)

The recursion relations together with first coefficient pm,0 = m0 determine pm,k in

terms of m1, . . . , mk and u1, . . . , uk. We write down the first few coefficients pm,i

that are used in the examples

pm,0 = m0,

pm,1 = m1 − u1m0,

pm,2 = m2 − u1m1 +
1
2
(u2

1 − u2)m0.

(5.A.6)

We are ready to show first few N = 2 relations obtained by expanding (5.2.38)

and (5.2.49) in powers of 1/z

T (z) =
P ′(z)√

P 2(z)− 4Λ2N
,

wα =
Pα(z)√

P 2(z)− 4Λ2N
,

R(z) = − Pα(z)Pα(z)
2P ′(z)

√
P 2(z)− 4Λ2N

.

(5.A.7)
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Let us note that in the last formula we are ignoring the part of the gaugino con-

densate that depends on the superpotential. The classical formulas are obtained by

setting Λ to zero in the quantum formulas.

For U(2), all ui’s can be written as polynomials in Λ4 and u1, u2 which are the

two independent chiral operators that we can make from a 2×2 matrix Φ. We have

u3 = −1
2
(u1 − 3u1u2),

u4 = 4Λ4 − 1
2
(u4

1 − 2u2
1u2 − u2

2),

u5 = 10u1Λ4 − 1
4
(u5

1 − 5u1u
2
2).

(5.A.8)

For U(3), the first three u1, u2 and u3 are independent. The higher moments are

polynomials in these and in Λ6

u4 =
1
6
(u4

1 − 6u2
1u2 + 4u2

2 + 8u1u3),

u5 =
1
6
(u5

1 − 5u3
1u2 + 5u2

1u3 + 5u2u3),

u6 = 6Λ6 +
1
12

(u6
1 − 3u4

1u2 − 9u2
1u

2
2 + 3u3

2 + 4u3
1u3 + 12u1u2u3 + 4u2

3).

(5.A.9)

Taking M = 1
4π Wα in (5.A.4) to (5.A.6) we can read off the formulae for wα,i

from the 1/z expansion of the generating relation (5.A.7). For U(2), we find wα,i’s

as polynomials in wα,0, wα,1 and u1, u2

wα,2 = −1
2
(u2

1 − u2)wα,0 + u1wα,1,

wα,3 = −1
2
(u3

1 − u1u2)wα,0 +
1
2
(u2

1 + u2)wα,1,

wα,4 = 2Λ4wα,0 − 1
4
(u4

1 − u2
2)wα,0 + u1u2wα,1.

(5.A.10)

The first few relations for U(3) are

wα,3 =
1
6
(u3

1 − 3u1u2 + 2u3)wα,0 − 1
2
(u2

1 − u2)wα,1 + u1wα,2,

wα,4 =
1
6
(u4

1 − 3u2
1u2 + 2u1u3)wα,0 − 1

3
(u2

1 − u3)wα,1 +
1
2
(u2

1 + u2)wα,2.

(5.A.11)

The relations for R(z) give the infinitesimal gaugino condensate coming from

the vacuum expectation value of photinos. Notice that are ignoring here the finite
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gaugino condensate that is induced by the superpotential (5.2.49). For U(2), we

have
r0 = −1

4
wα,0w

α
0 ,

r1 =
1
8
u1wα,0w

α
0 −

1
2
wα,0w

α
1 ,

r2 =
1
16

(u2
1 − 3u2)wα,0w

α
0 −

1
4
u1wα,0w

α
1 −

1
4
wα,1w

α
1 .

(5.A.12)

The first few cases for U(3) are

r0 = −1
6
wα,0w

α
0 ,

r1 =
1
18

u1wα,0w
α
0 −

1
3
wα,0w

α,1,

r2 = − 1
54

(u2
1 − 3u2)wα,0w

α
0 +

1
9
u1wα,0w

α
1 −

1
6
wα,1w

α
1 −

1
3
wα,0w

α
2 .

(5.A.13)



6. Nonperturbative Exactness of Konishi Anomaly

6.1 Introduction

As was discussed in last chapter, the Dijkgraaf-Vafa conjecture can be studied

without recourse to string theory arguments. For a pedagogical introduction to the

gauge theory methods used to study the Dijkgraaf-Vafa conjecture, see [87]. The

authors of [88] gave a field theory argument showing that the Feynman diagrams

contributing to the perturbative part of the glueball superpotential reduce to matrix

model diagrams. A different approach was pursued in [20] using the chiral ring

of the gauge theory. The generalized Konishi anomalies of the chiral rotations

of the adjoint field imply constraints between chiral operators. These constraints

have the same form as the loop equations of the matrix model in the planar limit.

Hence the effective superpotential can be expressed in terms of the matrix model

free energy up to a coupling independent term which can by seen to be a sum of

Veneziano-Yankielowicz superpotentials by taking the limit of large couplings of the

superpotential.

To complete the above argument it is necessary to verify that the generalized

Konishi anomaly equations remain valid nonperturbatively and that the low energy

effective description of the gauge theory in terms of the glueball fields is correct. In

[20] it was suggested that one can prove the absence of corrections to the generalized

Konishi anomaly by showing that the algebra of chiral rotations of the matter field

does not have nonperturbative corrections and then arguing along the lines of Wess-

Zumino consistency conditions that the anomalies do not have nonperturbative

corrections. In this chapter we carry out this proposal. We show that the Konishi

anomaly does not have nonperturbative corrections for superpotentials of degree

less than 2l + 1 where 2l = 3c(Adj)− c(R) is the one-loop beta function coefficient.

140
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The consistency conditions do not completely fix the nonperturbative correc-

tions to anomaly for superpotentials of a degree higher than 2l. Such corrections are

expected due to ambiguities in the definition of highly nonrenormalizable operators

like Tr Φn [21], [22] and [23]. We show that all the ambiguities can be absorbed

into the nonperturbative redefinition of the superpotential.

There are additional UV ambiguities for gauge theories which are not asymp-

totically free coming the freedom in their UV completion. For these theories our

proof does not apply because Λ2l has zero or negative dimension, whence there are

infinitely many types of corrections of a given dimension. The consistency condi-

tions are not powerful enough to constrain these corrections uniquely. In summary,

in this chapter we prove the absence of nonperturbative corrections to the general-

ized Konishi anomaly that come from strong coupling dynamics and determine the

form of corrections for high degree superpotentials.

The proof can be applied to gauge theories whose algebra of chiral rotations

of matter fields forms an extension of a partial Virasoro algebra. For example it

is possible to consider matter in other than adjoint representation. In particular

we show nonrenormalization of the generalized Konishi anomaly for SO(N) and

Sp(N) gauge theories with matter in the symmetric or antisymmetric representa-

tion. The nonrenormalization of the generalized Konishi anomaly for Sp(N) with

the antisymmetric tensor is expected in the light of recent results [27] and [21] that

demonstrated agreement between the effective superpotential obtained using Kon-

ishi anomalies with the dynamically generated superpotential approach [89], [90].

The papers [27] and [21] resolved a puzzle raised in [24], [25] and [26] about the

application of Dijkgraaf-Vafa correspondence for Sp(N) with antisymmetric matter.

Organization and Results of the Chapter

In section 6.2 we introduce the algebra of chiral rotations of the matter field and

show that it is an N = 1 extension of a partial Virasoro algebra. We consider the

U(N) gauge theory with adjoint scalar to keep the discussion concrete. In section

6.3 we discuss the generalized Konishi anomalies of the chiral rotations and use the

Virasoro symmetry to derive Wess-Zumino consistency conditions for the anomalies.

In section 6.4 we use U(1) symmetries of the gauge theory to determine the form of

the nonperturbative corrections. In section 6.5 we use the Lie algebraic structure

of the algebra of chiral rotations to prove that the algebra cannot get deformed
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nonperturbatively. This implies that the Wess-Zumino consistency conditions de-

rived in section 6.4 are exact nonperturbatively. We use them to show for U(N)

in section 6.6 and for SO(N) and Sp(N) in section 6.7 that the generalized Kon-

ishi anomaly cannot have nonperturbative corrections except for nonperturbative

renormalization of superpotentials of degree greater than 2l = 3c(Adj)−c(Matter).

In section 6.8 we review the loop equations of the planar matrix model, considering

them as anomalies of the matrix model free energy under reparameterization of the

matrix M to highlight their similarity with gauge theory anomalies. In section 6.9

we discuss the implications of the results for the Dijkgraaf-Vafa conjecture.

6.2 The Algebra of Chiral Rotations

In [20], a series of constraints for the chiral operators of N = 1 gauge theory

were derived by considering the possible anomalies of the chiral rotations δΦ =

f(Φ,Wα) of the adjoint scalar field. These chiral rotations are generated by the

operators

Ln = Φn+1 δ

δΦ
,

Qn,α =
1
4π

WαΦn+1 δ

δΦ
,

Rn = − 1
32π2

WαWαΦn+1 δ

δΦ
.

(6.2.1)

The action of the operators (6.2.1) on the single trace chiral operators uk =

Tr Φk, wk,α = 1
4π Tr WαΦk and rk = − 1

32π2 Tr W 2
αΦk is

Lnuk = kuk+n,

Qn,αuk = kwk+n,α,

. . . .

(6.2.2)

The classical commutation relations of the generators follow from the definitions

(6.2.1)
[Lm, Ln] = (n−m)Lm+n,

[Lm, Qn,α] = (n−m)Qn+m,α,

[Lm, Rn] = (n−m)Rm+n,

{Qm,α, Qn,β} = −εαβ(n−m)Rn+m,

[Qm,α, Rn] = 0,

[Rm, Rn] = 0,

(6.2.3)
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where m,n ≥ −1. The last two commutators are trivially zero in the chiral ring

because the third and higher powers of Wα are chiral ring descendants. The Ln’s

form a partial Virasoro subalgebra which is extended by Qn,α’s and Rn’s into a

partial N = 1 super-Virasoro algebra.

As discussed in previous chapter, the scalar Φ and the gauge field are in the

adjoint representation of the U(N) gauge group so they do not couple to the diagonal

U(1) gauge field. Hence shifting Wα by an anticommuting number is a symmetry

of the full gauge theory [20]. If we define the field W̃α = Wα +4πψα where ψα is an

anticommuting c-number spinor then the generator of the shift symmetry is ∂/∂ψα.

Hence all expressions are independent of ψα when expressed in terms of W̃α and Φ.

The shift symmetry combines the single trace chiral operators into

r̃k = − 1
32π2

Tr W̃ 2
αΦk = rk − ψαwα

k −
1
2
ψαψαuk. (6.2.4)

The shift symmetric generators of the chiral rotations are Ln and

Q̃n,α =
1
4π

W̃αΦn+1 ∂

∂Φ
= Qn,α + ψαLn,

R̃n = − 1
32π2

W̃ 2
αΦn+1 ∂

∂Φ
= Rn − ψαQα

n −
1
2
ψαψαLn.

(6.2.5)

Shift invariance implies that the commutation relations can be written in terms

of Ln, Q̃n,α and R̃n. We find that the shift invariant commutation relations are

[Lm, R̃n] = (n−m)R̃m+n,

{Q̃m,α, Q̃n,β} = −εα,β(n−m)R̃m+n,

[R̃m, R̃n] = 0.

(6.2.6)

We did not write down the [L, Q̃] and [Q̃, R̃] commutators because they are con-

tained in the [L, R̃] and [R̃, R̃] commutators respectively. For future reference let

us show that the first and the third commutation relation in (6.2.6) imply the

remaining relation. The first commutator contains the [L,L], [L,Q] and [L,R] com-

mutators. If we expand the last commutator in ψα, all commutators are trivially

zero except for the commutator multiplying ψαψα which is

[Lm, Rn] + [Rm, Ln] + εαβ{Qα
m, Qβ

n} = 0. (6.2.7)

We use this equation together with the [L,R] commutator to get the {Q,Q} com-

mutator. Hence, the first and third commutator in (6.2.6) contain all commutation

relations of the partial N = 1 super-Virasoro algebra.
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6.3 Wess-Zumino Consistency Conditions for the Konishi Anomaly

Assume that the adjoint scalar has the tree level superpotential

W (Φ) =
n+1∑

i=1

gi

i
Tr Φi. (6.3.1)

The effective superpotential of the gauge theory is

exp
(
−

∫
d4xd2θWeff

)
=

〈
exp

(
−

∫
d4xd2θW (Φ)

)〉
, (6.3.2)

where the path integral is over the massive fields in the presence of a slowly varying

background gauge field. The effective superpotential has an anomaly under the

chiral rotations generated by Ln, Qn,α, Rn

LnWeff = Ln,

Qn,αWeff = Qn,α,

RnWeff = Rn.

(6.3.3)

The perturbative anomaly of the effective superpotential under the chiral rotations

R̃n were derived in [20]

R̃k =
n+1∑

i=1

gir̃k+i −
k∑

i=0

r̃ir̃k−i. (6.3.4)

The equation (6.3.4) is obtained from the 1/zk+2 term of the equation (4.14) of [20]

for the generating function for the generalized Konishi anomaly, remembering that

the gi in this chapter is gi−1 of [20]. The first part of R̃k is the classical variation of

the superpotential and the second part comes from the anomalous transformation

of the measure of Φ under the chiral rotations. The anomalous divergence of the

currents generating the chiral rotations is the Konishi anomaly

DαD
α
JLn = Ln,

. . . .
(6.3.5)

The generalized Konishi anomaly, being Dα exact, is a chiral ring descendant.

Setting (6.3.4) to zero gives nontrivial relations between the chiral operators, which

enabled the authors of [20] to study the dynamics of the gauge theory and to give a
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partial proof of the Dijkgraaf-Vafa conjecture. We will return to this in more detail

in the last section.

The Lie algebra structure of the chiral rotations implies relations between

anomalies of different chiral rotations. These conditions were first discussed by Wess

and Zumino [91]. They express the closure of the Lie algebra under commutation

relations. For two chiral rotations R1 and R2 the anomaly of the effective superpo-

tential under R1R2 −R2R1 must be the same as the anomaly under R3 = [R1, R2]

R1R2 −R2R1 = R[R1,R2]. (6.3.6)

The Wess-Zumino consistency conditions for the algebra of chiral rotations (6.2.3)

are
LmLn − LnLm = (n−m)Ln+m,

LmQn,α −Qn,αLm = (n−m)Qn,α,

. . . .

(6.3.7)

In the shift invariant notation, we have

LmR̃n − R̃nLm = (n−m)R̃m+n,

Q̃m,αQ̃n,β + Q̃n,βQ̃m,α = −εαβ(n−m)R̃m+n,

R̃mR̃n − R̃nR̃m = 0.

(6.3.8)

Let us verify that the perturbative anomaly (6.3.4) satisfies the Wess-Zumino

consistency conditions. The calculations are routine so we will check only the first

equation in (6.3.7). Expanding (6.3.4) with respect to ψα we find using (6.2.4) and

(6.2.5)

Lk =
n+1∑

i=1

giuk+i − 2
k∑

i=0

uirk−i. (6.3.9)

The action of Lk on Ll is

LkLl =
n+1∑

i=1

(k + i)giul+k − 2
l∑

i=0

(iũi+krl−i + (l − i)uirk+l−i) . (6.3.10)

Subtracting from this the analogous expression for LlLk we get

LkLl − LlLk = (l − k)Lk+l (6.3.11)

which is the Wess-Zumino consistency condition (6.3.7) for the Virasoro subalgebra.
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6.4 Nonpertubative Corrections

In this section we review the argument for the absence of the multi-loop cor-

rections to the generalized Konishi anomaly and then discuss the structure of non-

perturbative corrections. For this, it is instrumental to study the U(1) symmetries

of the gauge theory. The gauge theory has two continuous symmetries, a stan-

dard U(1)R symmetry and a symmetry U(1)Φ under which the entire superfield Φ

undergoes a rotation

Φ → eiαΦ. (6.4.1)

We also introduce a linear combination of these, U(1)θ, which is convenient in

certain arguments. These symmetries are symmetries of the theory with nonzero

superpotential if we assign nonzero U(1) charges to the couplings gk.

∆ QΦ QR Qθ

Φ 1 1 2/3 0
Wα 3/2 0 1 1
gk 1− k −k 2

3 (1− k) 2
Λ2l 2l 2l 4l/3 0
R̃k 6 + k k 4 + 2k/3 4

(6.4.2)

The one-loop beta function coefficient is 2l = 3c(Adj) − c(R) where c(R) is the

index of the representation R of the matter field

R UAdj(N) SO(N)A SO(N)S Sp(N)A Sp(N)S

c(R) N N − 2 N + 2 N − 1 N + 1
l N N − 2 N − 3 N + 2 N + 1

(6.4.3)

The shift invariant W̃α and the anticommuting shift c-number ψα have the same

U(1) charges as Wα. These symmetries are violated at one loop. In the last line of

the table (6.4.2) we have written the charges by which the anomaly R̃k violates the

U(1) symmetries. The higher loop computations are finite and the U(1) symmetries

leave them invariant.

We are now ready to analyze the corrections to the generalized Konishi anom-

aly (6.3.4). The corrections must have the same U(1) charges as R̃k. They are

polynomial in the chiral operators. Furthermore, the corrections that depend on

gk must vanish for the theory with zero superpotential and the nonperturbative

corrections that depend on Λ2l vanish when we take the strong coupling scale Λ

to zero. Hence, the corrections to the anomaly are also polynomial in gk and Λ2l.
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Referring to the table (6.4.2) we see that the only polynomials in gk, Φ and Wα with

the quantum numbers of R̃k are the ones already present in the one loop expression

(6.3.4). Hence the anomaly does not have higher loop contributions, as claimed at

the end of the previous paragraph. The nonperturbative corrections are polynomial

in Λ2l. The possible j instanton corrections to R̃k are of the form Λ2jlgi+2jlr̃k+i

and Λ2jlr̃i−2jlr̃k−i.

We can similarly derive the possible form of corrections to the extended Vira-

soro algebra (6.2.3). The corrections to the [L,L] commutator are linear the Virasoro

generators Ln and polynomial in gk and Λ2h. The Virasoro generator Ln (6.2.1) in-

creases the U(1) charges of a chiral operators by the same value as multiplication

by Φn. Hence, the commutator [Lm, Ln] fixes Qθ and increases the dimension by

m + n. Consulting the table (6.4.2) we see that gi has Qθ = 2 charge so the there

are no corrections that depend on the superpotential. The nonperturbative l in-

stanton corrections have the form Λ2jlLm+n−2jl. Similar corrections contribute to

the [L,Q], [L,R] and Q, Q. The commutators that shift Qθ by two can also have

corrections proportional to gi. Counting the U(1) charges we see that the [Lm, Rn]

commutator has corrections Λ2jlRm+n−2jl and Λ2jlgiLm+n+i−2jl. There are similar

corrections to {Q, Q}. The [Q,R] and [R,R] commutators cannot have corrections

because they map chiral operators into chiral ring descendants.

6.5 Nonrenormalization of the Algebra of Chiral Rotations

In this section we prove the nonrenormalization of the algebra (6.2.3) of chiral

rotations of the U(N) adjoint scalar. Firstly we analyze in detail the corrections to

the partial Virasoro subalgebra

[Lm, Ln] = (n−m)Lm+n +
∑

j>0

Λ2jNbj
m,nLm+n−2jN , (6.5.1)

where the coefficients bj
m,n are antisymmetric in m and n by antisymmetry of the

commutator (6.5.1). The coefficient bj
m,n is in front of Lm+n−2jN hence it vanishes

if m + n − 2jN < −1 because L−1 is the lowest nonzero generator. We will prove

that all the coefficients bj
m,n can be absorbed into nonperturbative redefinition of

the Virasoro generators

Ln = Ln +
∑

j>0

aj
nΛ2jNLn−2jN , (6.5.2)
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where aj
n is the coefficient of the j-instanton correction to Ln. The Virasoro gener-

ators are corrected which is natural considering that they act on the nonperturba-

tively corrected chiral operators r̃k. In terms of the new basis of generators Ln the

commutations relations of the partial Virasoro algebra remain valid nonperturba-

tively

[Lm, Ln] = (n−m)Lm+n. (6.5.3)

Calculating the coefficients aj
n which parameterize the nonperturbative correc-

tions to Ln’s is beyond the scope of the present chapter. We will show instead that

there is a choice of aj
n’s for which the Virasoro algebra takes the standard form

(6.5.3). This shows that the algebra itself is not corrected even though the Virasoro

operators might receive corrections. We make induction in the instanton number of

the nonperturbative corrections. The coefficients bj
m,n obey equations that follow

from the Jacobi identity

[Ll, [Lm, Ln]] + [Ln, [Ll, Lm]] + [Lm, [Ln, Ll]] = 0. (6.5.4)

On the zero instanton level the identity reduces to the Jacobi identity for the Vi-

rasoro algebra which is satisfied. On the one instanton level, we evaluate the com-

mutators in (6.5.4) using (6.5.1) to find the coefficient of the Λ2NLl+m+n−2N term

which has to be zero

(n−m)b1
l,m+n + (m + n− l − 2N)b1

m,n + cyclic permutations = 0. (6.5.5)

The one instanton corrections can be absorbed into one instanton corrections to

Ln’s (6.5.2). The new commutation relations are

[Lm, Ln] = (n−m)Lm+n + b1
m,nΛ2NLm+n−2N + . . . , (6.5.6)

where b1
m,n’s are the redefined nonperturbative corrections

b1
m,n = b1

m,n + (n−m− 2N)a1
n + (n−m + 2N)a1

m − (n−m)a1
m+n. (6.5.7)

We show that b1
m,n can be set to zero by redefinition Lm+n = Lm+n +

a1
m+nΛ2NLm+n−2N by induction on m + n. The first step of the induction holds

because b1
m,n vanishes for m+n < 2N −1. By induction hypothesis we assume that
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we have redefined Lm+n for m+n < M so that b1
m,n = 0. Setting l,m, n in equation

(6.5.5) equal to 0,m, M −m respectively, we find for 0 < m < M

(M − 2m)b1
0,M + (M − 2N)b1

m,M−m + (m−M)b1
m,M−m + mb1

M−m,m = 0. (6.5.8)

Using antisymmetry of b1
m,n in m and n we rewrite this as

2Nb1
m,M−m = (M − 2m)b1

0,M . (6.5.9)

From (6.5.7) the redefined nonperturbative corrections are

b1
0,M = b1

0,M − 2Na1
M ,

b1
m,M−m = b1

m,M−m − (M − 2m)a1
M .

(6.5.10)

We see from (6.5.9) that taking aM = b1
0,M/2N we set b1

m,n = 0 for m + n = M.

This completes the induction in m + n and shows that there are no one instanton

corrections to the Virasoro algebra. We can now proceed with the induction in

the instanton number by assuming absence of nonperturbative corrections to the

Virasoro algebra for instanton number less than k. We also assume that we have

redefined the the Virasoro operators Ln up to instanton number k−1 to set bj
m,n = 0

for j < k. The proof that the k instanton corrections to the Virasoro algebra can be

absorbed into k instanton redefinition of the operators Ln goes exactly as the above

calculation in the one instanton case because the necessary equations at the Λ2kN

order are identical to the equations (6.5.5), (6.5.7)− (6.5.10) we found at Λ2N order

after substituting N for kN in all equations. The additional terms in (6.5.5) and

(6.5.7) that would come from lower instanton corrections vanish by the induction

hypothesis.

Now it remains to show that the commutation relations of L−1 = L−1 with Ln

do not get corrected. Firstly consider one instanton corrections. Notice that b1
−1,0

vanishes on dimensional grounds as noted below (6.5.1). Taking l, m, n in (6.5.5) to

be −1, 0, n for n > 0 we find 2Nb1
1,n = 0 which completes the proof of the absence

of one instanton corrections. We prove the absence of k instantons corrections the

same way after substituting N for kN in (6.5.5).

We give two different proofs of the nonrenormalization of the remaining com-

mutators of the algebra of chiral rotations. The first one is simpler and uses the shift

symmetry of the commutations relations. The second one does not use the U(1)
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shift symmetry and hence is applicable for the SO(N) and Sp(N) gauge theories as

well. We postpone it to the appendix 6.A because it is more technical. From now on

we do not use roman font to distinguish the nonperturbatively defined generators.

Let us outline the first argument. We use shift symmetry to fix the nonper-

turbative definitions Qn,α, Rn for n ≥ 2N using the nonperturbatively defined Ln

(6.5.2). The last commutator in (6.2.6)

[R̃m, R̃n] = 0 (6.5.11)

cannot receive nonperturbative corrections. Its lowest ψα component is the [R, R] =

0 commutator which has to vanish in the chiral ring because the commutator shifts

Φ by a chiral operator containing the fourth power of Wα. But the third and higher

powers of Wα are chiral ring descendants, so the commutator has trivial action in

the chiral ring. The nonperturbative corrections to the first commutator in (6.2.6)

that are allowed by shift symmetry are

[Lm, R̃n] = (n−m)R̃m+n +
∞∑

j=1

n+1∑

i=1

Λ2jNgic
i,j
m,nLm+n+i−2jN (6.5.12)

because the ψ2
α component of (6.5.12) is the [L, L] commutator, which does not have

nonperturbative corrections. The nonperturbative corrections (6.5.12) contribute to

the [L,R] commutator only. To prove that these corrections vanish we evaluate the

L,Q, R Jacobi identity

[Ql,α, [Lm, Rn]] + [Lm, [Rn, Ql,α]] + [Rn, [Ql,α, Lm]] =

= [Ql,α,

∞∑

j=1

n+1∑

i=1

Λ2jNgic
i,j
m,nLm+n+i−2jN ] =

=
∞∑

j=1

n+1∑

i=1

Λ2jNgi(m + n− l + i− 2jN)ci,j
m,nQm+n+i+l−2jN,α = 0.

(6.5.13)

In simplifying (6.5.13) we used the [L,Q] commutator (6.5.12) which is nonrenor-

malized by shift symmetry and the [R, Q] = 0 commutator. Clearly, the only way

to satisfy the Jacobi identity (6.5.13) is that ci,j
m,n = 0. All corrections to (6.5.12)

vanish. Hence, none of the commutation relations of the extended Virasoro algebra

get nonperturbative corrections because as we noted below (6.2.6) the above two

commutators imply the remaining one.



6 Nonperturbative Exactness of Konishi Anomaly 151

6.6 Nonperturbative Corrections to the Konishi Anomaly

Let us now consider nonperturbative corrections to the anomaly. The anomaly

R̃k (6.3.4) differs from its perturbative value implicitly through the dependence of

the chiral operators r̃k on nonperturbative physics. In this section we ask the ques-

tion whether there are additional nonperturbative corrections that depend explicitly

on Λ2jN . We can easily introduce terms proportional to Λ2jN into the expression

for Rk by redefining the chiral operators

r̃k = r̃k + αΛ2N r̃k−2N + . . . . (6.6.1)

Notice that rk for k > 1 are nonrenormalizable operators so their value depends

on the renormalization scheme. It is natural to expect terms of the form (6.6.1) to

relate the definitions of rk coming from different renormalization schemes. Hence

we expect that the anomaly has generically terms proportional to Λ2jN if we take

some arbitrary prescription for r̃k.

However, there is a natural definition of the higher moments r̃k. In the pre-

vious section we showed that there is a preferred basis for the generators of the

chiral rotations R̃k in terms of which the partial super-Virasoro algebra takes the

standard form (6.2.6). We can use their action on the chiral operators to give a

nonperturbative definition of nonrenormalizable operators r̃k for k > 1 in terms of

the the first moment r̃k = Lkr̃1. It follows from the commutation relations (6.2.6)

that remaining operators R̃k act on the chiral operators as before (6.2.2).

Having defined r̃k nonperturbatively, we can now show using the Wess-Zumino

consistency conditions that the one-loop anomaly
∑

r̃ir̃k−i in the path integral mea-

sure for Φ does not have nonperturbative corrections. We will also show that the

consistency conditions allow nonperturbative renormalization of the superpotential.

The consistency conditions of the full gauge theory (6.3.8) do not have nonperturba-

tive corrections because their derivation rested only on the commutation relations of

the super-Virasoro algebra (6.2.6) which are nonrenormalized. We deduced in sec-

tion 4 using U(1) symmetries that the general form of nonperturbative corrections

to R̃n is
R̃k =

∑

i

(gi + Λ2Ngi+2Nc1
k,i + . . .)r̃k+i+

−
k∑

i=0

r̃ir̃k−i − Λ2N
k∑

i=2N

d1
k,ir̃i−2N r̃k−i + . . . .

(6.6.2)
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In writing (6.6.2) we take gk = 0 for k < 1 and k > n+1 to simplify the notation. We

can consider the corrections to the the superpotential separately from the corrections

to the one-loop anomaly. The corrections to the superpotential are proportional to

Λ2jNgi+2jN which have the same quantum numbers as r̃−i which does not exist.

Hence the two types of corrections do not mix.

Firstly we show that all the nonperturbative corrections to the one-loop part

of R̃k vanish. Notice, that the lowest dimensional correction is r̃0r̃0Λ2N which

contributes to R̃2N , hence the one-loop parts R̃k for k = −1, 0, . . . , 2N −1 does not

have nonperturbative corrections. The first consistency condition (6.3.8) with m = 0

simplifies to L0R̃k = kR̃k because Rkr̃0r̃0 = 0. In other words L0 acting on R̃k gives

k times the anomaly. But L0 acting on a j-instanton correction Λ2jN r̃i−2jN r̃k−i

gives back k−2jN multiple of the correction, whence all nonperturbative corrections

to the one-loop part of the anomaly vanish.

It remains to consider the corrections to the classical part of R̃n. We find from

(6.6.2) that the first consistency condition (6.3.8) becomes

LkR̃l − R̃lLk =(l − k)R̃l+k

+
∑

j≥1

Λ2jN

n−2jN∑

i=−2jN

[(l + 1)cj
l,i − (k + 1)cj

k,i − (l − k)cj
k+l,i]gi+2jN r̃k+l.

(6.6.3)

But the Wess-Zumino consistency conditions do not have nonperturbative correc-

tions whence we set the terms in the square brackets to zero

(l + 1)cj
l,i − (k + 1)cj

k,i = (l − k)cj
k+l,i. (6.6.4)

Taking l = 0 we have cj
k,i = cj

0,i. Clearly, this solves all the constraints coming from

(6.6.4). Notice that the terms Λ2jNcj
−1,ir̃i−1 in R̃−1 are absent for i < 1 because

r̃k ∼ Tr W̃ 2Φk is defined only for positive k. Hence cj
k,i = 0 for i < 1. In conclusion,

the general form of the anomaly is

R̃k =
n+1∑

i=1

gir̃k+i −
k∑

i=0

r̃ir̃k−i (6.6.5)

where

gi = gi + Λ2Nc1
0,igi+2N + Λ4Nc2

0,igi+4N + . . . . (6.6.6)
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are the nonperturbatively renormalized coefficients of the superpotential. Hence,

all corrections to the classical part of the anomaly allowed by the Wess-Zumino

consistency conditions can be absorbed into nonperturbative renormalization of the

superpotential

W (Φ) =
n+1∑

i=1

gi

i
Tr Φi. (6.6.7)

The superpotentials of degree less than 2N +1 cannot have nonperturbative correc-

tions. This is the only ambiguity that is not fixed by the consistency conditions. We

could have anticipated it from the observation that both gi and Λ2N are invariant

under the chiral rotations hence substituting for gi any polynomial gi(gk,Λ2N ) with

the correct quantum numbers cannot spoil the Wess-Zumino consistency conditions

whose validity depends only on the Lie algebraic structure of the chiral rotations.

As noted around (6.6.1) the nonperturbative corrections depend on the scheme

used to define the single trace operators r̃k. Using a different UV completion of the

gauge theory changes the definition of the chiral operators hence it redefines the

superpotential. For further discussion of Dijkgraaf-Vafa conjecture for high degree

superpotentials, see [21] [22] and [23].

6.7 SO(N) and Sp(N) Gauge Theories

In this section we show that the previous analysis applies with minor modifi-

cations to the SO(N) and Sp(N) gauge theories. It follows that the generalized

Konishi anomaly in these gauge theories does not have nonperturbative corrections

for superpotentials of degree less than 2l+1. Superpotentials of higher degree might

get nonperturbatively renormalized.

The gauge group do not have a decoupled diagonal U(1) subgroup hence the

arguments based on the shift symmetry do not carry over from the U(N) case.

That is the main reason why we gave a separate proof of the nonrenormalizability

of the extended Virasoro algebra which did not use shift symmetry. For simplicity,

we do not consider the fermionic generators and chiral operators. The SO(N)

adjoint can be represented by an N × N antisymmetric matrix ΦT = −Φ. The

gauge field transforms in the adjoint representation hence it is antisymmetric as well

WT
α = −Wα. The Sp(N) has adjoint which can be represented as 2N × 2N matrix

that satisfies the condition ΦT = −JΦJ−1 where J is the invariant antisymmetric
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tensor of Sp(N). A matrix in the adjoint representation of Sp(N) can be written as

a product of a symmetric matrix S and the invariant tensor Φ = SJ, which explains

why this representation is called symmetric in the literature. The single trace

chiral operators for both gauge groups are u2k and r2k because the remaining chiral

operators vanish by antisymmetry. Hence the odd coefficients of the superpotential

(6.3.1) vanish g2k+1 = 0. Similarly the nonvanishing generators of the algebra of

chiral rotations are L2k and R2k which form a closed subalgebra of the partial

N = 1 super-Virasoro algebra (6.2.3). Our method also applies to the symmetric

tensor ΦT = Φ of SO(N) and the antisymmetric tensor ΦT = JΦJ−1 of Sp(N).

The definitions of the representations do not restrict the chiral operators nor the

chiral rotations.

The generalized Konishi anomaly for the SO(N) and Sp(N) gauge theories has

been derived in [92], [26] and [25]

Lk =
n+1∑

i=1

giui+k −
k∑

i=0

uirk−i + ck(R)rk,

Rk =
n+1∑

i=1

giri+k − 1
2

k∑

i=0

rirk−i

(6.7.1)

where ck(R) depends on the representation R of the matter field

R SOA(N) SOS(N) SpA(N) SpS(N)
ck(R) 2 −k − 1 k + 1 −2.

(6.7.2)

In section 5 we proved that the algebra generated by Lk’s and Rk’s where

k ≥ −1 does not get renormalized. This is the algebra for symmetric SO(N)

and antisymmetric Sp(N) matter, hence the algebra of chiral rotations of these

gauge theories does not receive nonperturbative corrections. The proof for the

adjoint representation works exactly as before if we substitute for all subscripts of

the generators in the equations of section 5 twice their value. The proof of the

nonrenormalization of the Rk anomaly also carries over because the only difference

in the anomaly compared to the U(N) gauge theory is the ckrk term in Lk which has

the same form as u0rk so it cannot receive corrections. The proof for Lk follows the

same pattern but instead of using the Wess-Zumino consistency condition coming

from [L,R] commutator we use the condition coming from [L,L] commutator.



6 Nonperturbative Exactness of Konishi Anomaly 155

6.8 Virasoro Constraints for the One-Matrix Model

In this section we review the exact constraints for the planar level free energy

Fm of the one-matrix model [93,94]. We consider the U(N) matrix model that is

related to the U(N) gauge theory with the adjoint scalar. The SO(N) and Sp(N)

matrix models are treated similarly. We derive the loop equations by considering

the Virasoro algebra of redefinitions of the matrix M. This highlights the similarity

of the algebraic structure of the loop equations with the gauge theory anomalies.

The partition function of the matrix model is

Zm = exp

(
−N̂2

g2
m

Fm

)
=

∫
dN̂2

M exp

(
− N̂

gm
W (M)

)
, (6.8.1)

where W (M) =
∑n+1

i=1
gi

i Tr M i is the potential of the matrix model and Fm is the

matrix model free energy. The partition function is invariant under arbitrary redef-

inition of the integration variable M → f(M). These redefinitions are symmetries

of the matrix model. The generators of the redefinitions annihilate the partition

function and the free energy

Rm,k = Mk+1 δ

δM
. (6.8.2)

They form a partial Virasoro algebra

[Rm,k, Rm,l] = (l − k)Rm,k+l, (6.8.3)

where k, l ≥ −1. Acting with εRm,k on the free energy Fm we obtain the following

identity

0 = εRm,kFm ≡ εRm,k

= − g2
m

N̂2Zm

δ

∫
d(M + εMn+1) exp

(
− N̂

gm

n+1∑

i=1

gi

i
Tr (M + εMk+1)i

)
.

(6.8.4)

Expanding (6.8.4) to first order in ε we have

Rm,k =
−g2

m

N̂2Zm

∫
dM

(
− N̂

gm

n+1∑

i=1

giTr M i+k + Tr
δMk+1

δM

)
exp

(
− N̂

gm
W (M)

)
.

(6.8.5)
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To evaluate the Jacobian we write

Tr
δMn+1

δM
=

δMk+1
ij

δMij
=

k∑

i=l

(M lδMMk−l)ij

δMij

=
k∑

l=0

M l
il

δMlm

δMij
Mk−l

mj =
k∑

l=0

Tr M lTr Mk−l.

(6.8.6)

Hence the variation of the free energy is

Rm,k = Rm,kFm =
n+1∑

i=1

gi〈Tr M i+k〉 −
k∑

i=0

〈Tr M iTr Mk−i〉. (6.8.7)

In the large N̂ limit the expectation values of products U(N) invariant operators

factorize 〈Tr M iTr Mk−i〉 = 〈Tr M i〉〈Tr Mk−i〉. Defining rm,k = gm

N̂
〈Tr Mk〉 we

rewrite (6.8.7) in the large N̂ limit as

Rm,k =
n+1∑

i=1

girm,i+k −
k∑

i=0

rm,irm,k−i (6.8.8)

which takes the same form as the as the Konishi anomaly (6.3.4). The loop equations

are obtained by setting Rm,k = 0. They are recursion relations for rm,k in terms

of the first n moments rm,0, . . . , rm,n−1. Equivalently, the loop equations determine

the matrix model curve y2(z) = W ′2(z) + f(z) where y(z) = gm

N̂
〈Tr 1

z−M 〉 is the

resolvent. The consistency conditions for Rm,k are derived the same way as for the

gauge theory (6.3.6)

Rm,kRm,l −Rm,lRm,k = (l − k)Rm,k+l. (6.8.9)

It is easy to verify that (6.8.8) satisfies the consistency conditions (6.8.9). Similarly

one can show that the full matrix model loop equations (6.8.7) satisfy (6.8.9).

6.9 Implications for the Dijkgraaf-Vafa conjecture

Let us discuss the implications of the above results for the relation between the

matrix models and the supersymmetric gauge theories. We will consider the U(N)

gauge theory with adjoint matter to keep the discussion concrete. The anomalous

variation of the free energy of the gauge theory under Rk (6.3.4) has the same form
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as the variation of the matrix model free energy under Rm,k (6.8.2) if we identify

the expectation values [20]

rk = rm,k. (6.9.1)

The equations (6.3.4) R̃k = 0 can be considered as recursion relations for higher

moments r̃i in terms of the first n moments r̃0, r̃1 . . . r̃n−1. Hence it is enough to

identify the first n moments in (6.9.1). The matrix model then determines the

expectation values of all chiral operators ri.

The expectation values of the moments of the scalar depend also on the gauge

symmetry breaking pattern U(N) → ⊗r
i=1U(Ni) [95]. The U(1) photinos of the

U(Ni) subgroups can have arbitrary vacuum expectation value. These values de-

termine all moments of the gaugino field Tr ΦkWα [96]. Hence the isolated massive

vacua come with a 2r-dimensional fermionic moduli space where r is the rank of

the low energy gauge group. In conclusion, matrix model determines the expecta-

tion values of all chiral operators up to the choice of the gauge symmetry breaking

pattern and k independent expectation values of the U(1) photino condensates.

The generalized Konishi anomaly can be viewed as the equation of the curve

y2 = W ′2(z) + f(z) (6.9.2)

where y is the generating function of the glueball moments [20]. This curve is iden-

tified with the matrix model curve using (6.9.1) which is the same as identifying

the polynomials f(z) = fm(z). The results from section 6 on nonperturbative cor-

rections to the Konishi anomaly imply that the gauge theory curve does not have

nonperturbative deformations for superpotentials of degree less than 2N +1. Hence

for these superpotentials the curve of the full gauge theory agrees with matrix model

curve. For higher degree of the superpotential the curve can get deformed. We have

identified that the only possible deformation of the curve comes from the nonper-

turbative renormalization of the superpotential. This is so because the form of the

curve is uniquely fixed from the Virasoro symmetry and we know from section 5

that the extended Virasoro symmetry is exact in the full gauge theory. For given

f(z) = fm(z), the coefficients of the superpotential are the only parameters of the

curve.
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The effective superpotential and the matrix model free energy are generating

functions for chiral operators and for the moments of M respectively

∂

∂gk
Weff =

〈
Tr Φk

k

〉
,

∂Fm

∂gk
=

〈
Tr Mk

k

〉
.

(6.9.3)

To relate Weff and Fm, we use shift symmetry to generalize the first equation

in (6.9.3) to a generating function for Tr W̃ 2Φk. The effective superpotential is

invariant under shift symmetry so it can be written as

Weff =
∫

d2ψF(r̃i) (6.9.4)

for some function F . We use (6.9.4) to rewrite the first equation in (6.9.3) as

∂

∂gk
F = 〈 r̃k

k
〉. (6.9.5)

Hence we have the relation [20]

Fm(Si, gk) = F(S̃i, gk)|ψ=0 +H(S̃i)|ψ=0 (6.9.6)

whereH(S̃i) is a coupling independent function. Similar relations for the Sp(N) and

SO(N) gauge theory are given in [25] and [21]. The derivation of the relation (6.9.6)

rests on the Konishi anomaly equations and on the validity of low energy descrip-

tion of the gauge theory in terms of the glueball fields Si. The nonrenormalization

of the Konishi anomaly implies that F does not have additional nonperturbative

corrections, whence the relation (6.9.6) is valid nonperturbatively. The derivation

of the nonperturbative exactness of the Konishi anomaly is the first step in a full

proof of the Dijkgraaf-Vafa correspondence.

6.A Second Proof of the Nonrenormalization

In this appendix we give a proof of absence of nonperturbative corrections to

the extended Virasoro algebra without using the shift symmetry. This proof is appli-

cable to SO(N) and Sp(N) gauge theories which do not posses shift symmetry. We

assume from section 5 the nonrenormalization of the Virasoro subalgebra generated
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by Ln’s because we did not use shift symmetry to prove it. We use the nonper-

turbatively defined Virasoro generators Ln to fix the nonperturbative definition of

the remaining generators by recursively commuting Qn,α and Rn with the raising

operator L1. Having defined the generators, let us show that the nonperturbative

corrections to the [L,Q] commutator vanish

[Lm, Qn,α] = (n−m)Qm+n,α +
∞∑

j=1

Λ2jNcj
m,nQm+n−2jN,α. (6.A.1)

Firstly, we prove nonrenormalization of [L0, Qn,α] using mathematical induction.

The lowest dimensional correction to the commutators is Λ2NQ−1,α hence the first

step of induction is valid because the commutator of L0 with Q−1,α, . . . , Q2N−2,α

does not have nonperturbative corrections. Assuming the induction hypothesis is

valid for Q−1,α, . . . , Qn,α we calculate

[L0, Qn+1,α] =
1

n− 1
[L0, [L1, Qn,α]]

=
1

n− 1
[[L0, L1], Qn,α] +

1
n− 1

[L1, [L0, Qn,α]]

= (n + 1)
[L1, Qn,α]

n− 1
= (n + 1)Qn+1,α,

(6.A.2)

where the first equality comes from the recursive definition of Qn+1,α, the second

from Jacobi identity, the third from the induction hypothesis and the nonrenor-

malization of the Virasoro algebra and the last equality is again from the recursive

definition of Qn+1,α. We show the absence of corrections to the remaining [L,Q]

commutators by commuting them with L0 and then using Jacobi identity and the

commutators we showed above to be nonrenormalized

[L0, [Lm, Qn,α]] = [[L0, Lm], Qn,α] + [Lm, [L0, Qn,α]] = (m + n)[Lm, Qn,α]. (6.A.3)

But the [Lm, Qn,α] commutator is a linear combination of Qk,α’s which are eigen-

vectors of the adjoint action of L0 with eigenvalue k, whence the commutator is

proportional to Qm+n,α so all corrections to the commutator vanish. Let us show

the absence of corrections to the [L,R] commutator

[Lm, Rn] = (n−m)Rm+n+
∞∑

j=1

Λ2jNcj
m,nRm+n−2jN+

∞∑

j=1

n+1∑

i=1

Λ2jNgid
i,j
m,nLm+n+i−2jN .

(6.A.4)
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We commute (6.A.4) with Ql,α to get

[Ql,α, [Lm, Rn]] + [Lm, [Rn, Ql,α]] + [Rn, [Ql,α, Lm]] =

= [Ql,α,

∞∑

j=1

n+1∑

i=1

Λ2jNgid
i,j
m,nLm+n+i−2jN ] =

=
∞∑

j=1

n+1∑

i=1

Λ2jNgi(m + n− l + i− 2jN)di,j
m,nQm+n+i+l−2jN,α = 0.

(6.A.5)

In simplifying (6.A.5) we used the [L,Q] commutator which we proved above to
be nonrenormalized and the [R, Q] = 0 commutator. Clearly, the only way to
satisfy the Jacobi identity (6.A.5) is that di,j

m,n = 0. All gi dependent corrections
vanish. The remaining corrections have the same algebraic structure as the cor-
rections (6.A.5) to the [L,Q] commutator so the nonrenormalization proof for that
commutator works for the [L,R] commutator as well.

It remains to consider the {Q, Q} anticommutator. The nonperturbative cor-
rections are proportional to εαβ

{Qα,m, Qβ,n} =− εαβ(n−m)Rm+n − εα,β

∞∑

j=1

Λ2jNcj
m,nRm+n−2jN

− εα,β

∞∑

j=1

n+1∑

i=1

Λ2jNgid
i,j
m,nLm+n+i−2jN .

(6.A.6)

Consider the following Jacobi identity

0 = [Lm, {Q0,α, Qn,β}] + {Q0,α, [Qn,β , Lm]} − {Qn,β , [Lm, Q0,α]} =

−εα,β

∞∑

j=1

Λ2jNRm+n−2jN [(n−m− 2jN)cj
0,n + (m− n)cj

0,m+n −mcj
n,m]

−εα,β

∞∑

j=1

n+1∑

i=1

Λ2jNgiLm+n+i−2jN [(n−m + i− 2jN)di,j
0,n + (m− n)di,j

0,m+n −mdi,j
n,m].

(6.A.7)
Setting m = 0 we get cj

0,n = 0 and di,j
0,n = 0 unless i = 2jN. Substituting this back

into (6.A.7) we see that all cj
m,n vanish and di,j

m,n = 0 unless i = 2jN. To prove that
the remaining corrections vanish we evaluate the R,Q, Q Jacobi identity

[R0, {Qm,α, Qn,β}] + {Qm,α, [Qn,β , R0]} − {Qn,β , [R0, Qm,α]} =

[R0, {Qm,α, Qn,β}] =

−εα,β [R0,
∑

j>0

Λ2jNg2jNdj
m,nLm+n] = −εα,β

∑

j>0

Λ2jNg2jN (m + n)dj
m,nRm+n = 0.

(6.A.8)
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Hence, dj
m,n ≡ d2jN,j

m,n = 0 and the {Q,Q} anticommutator is nonrenormalized.
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