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ABSTRACT
Algorithm-Aware (AlgAw) qubit mapping aims at directly providing the solutions to qubit mapping of
algorithms with regular structures based on the algorithm’s features. Although the exact method provides
a high-quality solution, its compilation time grows exponentially with the circuit size. To improve its
scalability, we propose the AlgAw qubit mapping. The main idea is to first determine the subcircuits in
an algorithm to be mapped, then analyze the optimal solutions of small-scale subcircuits found by exact
methods to obtain solutions of large-scale subcircuits, and finally reconstruct the entire circuit and assign
parameters. Applying AlgAw to the Quantum Approximate Optimization Algorithm (QAOA) on linear and
T-shaped subtopologies produces optimal and scalable solutions for arbitrary numbers of qubits and depths,
which is critical to the algorithm’s performance on Noisy Intermediate-Scale Quantum (NISQ) computers.
Compared to Qiskit, Tket, and SWAP-Network, AlgAw produces the least number of CNOT gates and the
lowest circuit depth. Furthermore, AlgAw takes only a few seconds to obtain a circuit with a hundred qubits
that satisfies the connectivity constraints. The benchmarking results on Quantum Processing Units (QPUs)
show that AlgAw qubit mapping yields higher values of approximation ratio than others. AlgAw can also
be applied to other algorithms such as the Variational Quantum Eigensolver (VQE).

INDEX TERMS Algorithm-Aware, Benchmarking, NISQ, QAOA, Quantum Optimization, Qubit Map-
ping, Superconducting Qubits, SWAP-Network, VQE

I. INTRODUCTION

VARIATIONAL Quantum Algorithms (VQAs) [1],
[2] combining classical and quantum computers are

promising to solve complex problems, such as combinato-
rial optimization and quantum simulation of material, more
efficiently than classical algorithms. However, the present
Quantum Processing Units (QPUs) support only a limited
number of qubits, and many of them, including supercon-
ducting architectures, provide only restricted connectivity of
qubits. The algorithms need to be transpiled, e.g., by inserting
SWAP gates, to satisfy the connectivity constraints.

The qubits supported by QPUs are noisy, and the error rate
of a two-qubit gate, e.g., CNOT or CX gate supported on IBM
QPUs, is on average one order of magnitude higher than that
of a single-qubit gate. The SWAP gate introduces more noise,
as it needs to be implemented through 3 CX gates. Therefore,
one of the important tasks to improve the algorithm’s per-
formance on the Noisy Intermediate-Scale Quantum (NISQ)
computers is to map the algorithm efficiently to the physical
qubits supported on the QPUs, such that a minimum number

of SWAP or CX gates are introduced. This process is known
as qubit mapping [3] or routing [4].

The qubit mapping can be formulated as a mathematical
optimization/constraint-satisfaction problem and then solved
using a specific solver. Such a procedure is referred to as
an exact method and various approaches [5]–[9] have been
proposed. Different objectives exist in the qubit mapping
problem, such as minimizing the number of inserted SWAP
gates or the circuit depth or maximizing the circuit fidelity.
The qubit mapping problem has been shown to be NP-hard
[10]. While a high-quality and stable solution calculated
by exact methods improves the performance of algorithms
on NISQ computers (e.g., [11]), the compilation time for
finding the optimal solution grows exponentially with the
circuit size. Many heuristic methods [7], [8], [12]–[15] have
been developed to speed up this process. However, their
solutions are of lower quality than those found with exact
methods. In addition, SWAP-Network [16]–[18] or SWAP
strategy [19], a scalable method, was proposed to solve qubit
mapping problems by inserting SWAP layers. However, these
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FIGURE 1. Flowchart of Algorithm-Aware (AlgAw) qubit mapping.
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FIGURE 2. (a) SWAP gate. (b) A CX gate followed by a SWAP gate. The box
represents the CX gate cancellation.

strategies do not guarantee optimality.
To achieve optimality and scalability of solutions, we

present the Algorithm-Aware (AlgAw) qubit mapping for
algorithms with a regular structure such as the Quantum
Approximate Optimization Algorithm (QAOA) [20]–[22]
with different depths. The AlgAw qubit mapping starts by
investigating the features of the algorithms, which improves
the scalability, e.g., in QAOA, only two-qubit gates need to
be mapped instead of all gates. Then, we analyze the optimal
solutions for small-scale circuits as they can be efficiently
computed by exact methods and extend these solutions to
large-scale circuits. Finally, we reconstruct the circuit based
on the derived solutions and assign parameters to each gate
at the algorithm level.

We apply AlgAw to the QAOA on dense portfolio opti-
mization problems [23] where the qubits are required to have
the maximum connectivity. An exact approach [9] is used to
search solutions for qubit mapping of a subcircuit containing
all two-qubit gates in a small-scale QAOA circuit on linear
and T-shaped subtopologies. The solutions for larger-scale
circuits are obtained by analyzing the solutions for small-
scale circuits.

The remainder of this paper is organized as follows. Sec-
tion II describes the methodology of AlgAw qubit mapping.
Section III provides details on individual steps of applying
AlgAw to QAOA. Section IV reports the benchmarking re-
sults of AlgAw in comparison with other approaches on sev-
eral QPUs. Section V presents other applications of AlgAw,
and section VI concludes.

II. ALGORITHM-AWARE (ALGAW) QUBIT MAPPING
The procedure for Algorithm-Aware qubit mapping is out-
lined in Fig. 1. In order to map an algorithm more efficiently,
it is important to study its features first. Investigating the
structure of the algorithm contributes to improving the scal-
ability. For algorithms with the same structure, the solutions
to the qubit mapping are potentially transferable. In addition,
commuting gates, one of the key features, should be consid-
ered not only during the mapping process but also afterward.
Moreover, the location of the SWAP gate can be used to
improve the resilience of the algorithm. As shown in Fig. 2,
in the case of a CX gate followed by a SWAP gate, two CX
gates with the same direction can be canceled, thus reducing
the number of CX gates. This phenomenon is known as the
CX gate cancellation.

Through the analysis of the algorithm, specific subcircuits
to be mapped in the algorithm can be identified. Compared
to mapping the entire circuit, mapping only these subcircuits
reduces the computational overhead. Exact methods are then
employed to compute the optimal solutions of those circuits.
For algorithms with a deterministic structure on symmetric
subtopologies, these solutions can potentially be extended to
large-scale circuits. Finally, the circuit satisfying the connec-
tivity constraints is reconstructed and the parameters of the
gates are assigned at the algorithm level.

No computation is required if the analyzed and deduced
solutions are used. We call this approach an algorithm-
aware qubit mapping because it depends individually on
the features of the algorithm. Moreover, circuits satisfying
the connectivity constraints are directly reconstructed at the
algorithm level after the solutions are extended.

III. APPLYING ALGAW TO QAOA
We consider the QAOA on dense portfolio optimization
problems, where each qubit needs to interact once with all
other qubits. Fig. 3 shows the circuit of a 5-qubit QAOA
(5Q-QAOA) with depth p = 1. For n qubits, there are n
Hadamard, n(n − 1)/2 ZZ, n RZ, and n RX gates. The
corresponding rotation angles of ZZ, RZ, and RX gates acting
on the qubit pair (i, j), the qubit k, and the qubit l are γ[i, j],
α[k], and β[l], respectively, where i, j, k, l ∈ {0, ..., n − 1}
and i < j. We observe that in the QAOA circuit, only
two-qubit gates need to be mapped since the single-qubit
gates can be assigned at the algorithm level. Compared to
mapping the entire circuit, mapping only ZZ gates reduces
the computation effort and thus speeds up the compilation
time.

In the topology of the QPU, e.g., Fig. 4 shows the topology
of IBM QUPs with 27 qubits, there are several possibili-
ties regarding the connectivity between qubits. Compared
to finding solutions in the whole topology, especially for a
topology containing hundreds of qubits, finding solutions on
a specific type of subtopology can significantly reduce the
computational complexity and thus improve the scalability.
In the following, we discuss two types of subtopologies,
namely linear and T-shaped.
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FIGURE 3. 5Q-QAOA circuit with depth p = 1. A Hadamard gate acts on each qubit to generate the initial state. ZZ(γ[i, j]) denotes that a ZZ gate with the
corresponding rotation angle acts on the qubit pair (i, j). RZ and RX act on the qubit i with corresponding parameters α[i] and β[i], respectively, followed by the
measurement of qubits.

FIGURE 4. Topology of IBM QPUs with 27 qubits.

TABLE 1. Number of SWAP Gates introduced by Qubit Mapping of Only
Two-Qubit Gates in QAOA using Exact Approach [9] on a Linear Subtopology

p 1 2 3 4 5
3Q 1 2 4 5 7
4Q 3 8 12 15 19
5Q 6 16 25 36 40

A. LINEAR SUBTOPOLOGY
Fig. 5 (a) shows a linear subtopology, while Fig. 5 (b) and
(c) show the solutions of qubit mapping for two-qubit gates
in 5Q- and 6Q-QAOA, respectively. Following the AlgAw
flow illustrated in Fig. 1, we derive the solutions for QAOA
with arbitrary numbers of qubits and depths on a linear
subtopology.

1) Optimal Solutions for Small-Scale Circuits

We use an exact approach [9] aiming to minimize the circuit
depth to solve the qubit mapping problem of two-qubit gates
in small-scale QAOA circuits. The inserted number of SWAP
gates is shown in Table 1. Although the QAOA with depth p
contains p subcircuits with the same structure, the number of
SWAP gates C does not grow linearly with p, but satisfies
C ≥ C0 × p, where C0 is the number of SWAP gates when
p = 1.

(a)

(b)

(c)

FIGURE 5. (a) Linear subtopology. Analyzed qubit mapping solutions of only
two-qubit gates in (b) 5Q- and (c) 6Q-QAOA. Independent of the initial qubit
order, all the required ZZ gates can be executed on a linear subtopology. The
parameters in ZZ gates are then assigned at the algorithm level.

2) Analyzing and Extending

The core step in AlgAw is the analyzing and extending.
The solution to qubit mapping of two-qubit gates in QAOA
should be independent of the initial qubit order, and all
required two-qubit gates can be implemented by parameter
assignment. The commutation rule that all ZZ gates with
arbitrary rotation angles commute with each other can be
used to combine ZZ and SWAP gates on the same qubit pair
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to take the advantage of CX gate cancellation, as illustrated
in Fig. 2 (b).

Consider an arbitrary initial qubit order [a, b, c, d, e] in the
solution of 5Q-QAOA qubit mapping shown in Fig. 5 (b).
After each SWAP gate, the qubit order is exchanged between
both gates, so that the orders after each SWAP layer are
[a, c, b, e, d], [c, a, e, b, d], and [c, e, a, d, b]. Each qubit needs
to interact with all other qubits, so for qubit a, the ZZ gate
acts on qubit pairs (a, b), (a, c), (a, d), and (a, e); for qubit
b, it acts on (b, c), (b, d), and (b, e); for qubit c, it acts on
(c, d) and (c, e); and for qubit d, it acts on (d, e). Note
that ZZ, SWAP, and ZZ-SWAP gates are all undirected, i.e.,
they do not distinguish between control and target qubits.
We observe that all the required 10 ZZ gates in 5Q-QAOA
can be executed on a linear subtopology, independent of the
initial order of qubits. This finding is convenient for the qubit
mapping of the algorithm, since this scheme can then be
automatically extended to a higher QAOA-depth. Similarly,
as shown in Fig. 5 (c), all the required 15 ZZ gates for 6Q-
QAOA can also be executed by 4 SWAP layers.

The qubit mapping solution of two-qubit gates in n-qubit
QAOA contains n layers of ZZ gates. A SWAP gate is
performed after each ZZ gate, except for the ZZ gates on
the first and last layer. Due to the CX gate cancellation, each
SWAP gate behind the ZZ gate introduces only one additional
CX gate. From Fig. 5 we observe that the optimal solutions of
QAOA on the linear subtopology have the same structure as
the SWAP-Network in [16] without the first and last SWAP
layer, which provides the method to extend the solution to
arbitrary numbers of qubits.

To compare scalability, we explore the compilation time of
finding the optimal solutions by the exact approach aiming to
minimize the circuit depth [9]. We consider the entire QAOA
circuit consisting of all required single- and two-qubit gates
with different numbers of qubits and depths on a 27-qubit
IBM QPU with the topology shown in Fig. 4.

As shown in Table 2, the compilation time of 3Q-QAOA
grows with the QAOA-depth, from a few seconds to several
days. For 4Q-QAOA, the compilation time is 13 seconds for
p = 1, whereas it takes more than 15 hours for p = 2 and
more than a week for p = 3. In comparison, using AlgAw the
solution for p = 1 can be automatically extended to higher
p without any computation, and for QAOA with hundreds of
qubits, it takes only a few seconds.

The data show that the compilation time using the exact
method increases from 3 seconds for 3Q- to 41 hours for
9Q-QAOA, meaning that it is difficult to scale the solution
to a larger number of qubits. As we have observed that the
solution of two-qubit gates in QAOA on a linear subtopology
has the same structure as the SWAP-Network in [16] without
SWAP gates on the first and last layer, using AlgAw we can
extend the solution to an arbitrary number of qubits without
any computation.

3) Reconstruct Circuit and Assign Parameters
The circuit that satisfies the connectivity constraints is finally
reconstructed at the algorithm level. The structure of the
mapped two-qubit gates has been determined and only the
corresponding parameters need to be assigned. Algorithm
1 shows the pseudocode of applying AlgAw to QAOA on
the linear subtopology. The reconstructing starts with an
initialized qubit order O = {0, 1, ...i, ..., j, n − 1} for n
qubits. The order of qubits i and j is exchanged only when
a SWAP gate exists on the qubit pair (i, j), otherwise it
remains the same. The parameters are assigned according to
the current qubit order.

The mapped circuit of 5Q-QAOA with p = 1 is shown in
Fig. 6. There are n = 5 ZZ layers. If the ZZ gate is not on the
first or last layer, a SWAP gate is located directly behind it.
All single rotation gates RZ and RX are assigned according
to the current qubit order, followed by the measurement
of qubits. For higher p, the gates that implement the cost
function and the mixer are repeated p times as a unit. The
parameters are changed accordingly.

B. T-SHAPED SUBTOPOLOGY
The previous results are based on a linear subtopology. In
the following, we discuss another symmetric subtopology,
the T-shaped, as shown in Fig. 7 (a). Note that the minimum
number of qubits on a T-shaped subtopology is 4.

The qubit mapping solutions of two-qubit gates in 5Q- and
6Q-QAOA on a T-shaped subtopology are shown in Fig. 7 (b)
and (c), respectively. The solutions can also be automatically
extended to higher QAOA-depths, similar to the solutions
on linear subtopology in Fig. 5. Consider again an arbitrary
initial order of qubits [a, b, c, d, e] for the solution of 5Q-
QAOA in Fig. 7 (b). After each SWAP gate, the order of
the corresponding qubits is exchanged, e.g., the first SWAP
gate on the qubit pair (b, d) leads to a new qubit order
of [a, d, c, b, e]. The results show that all the required 10
ZZ gates in 5Q-QAOA can be executed on the T-shaped
subtopology by assigning the corresponding parameters, thus
returning the solutions to arbitrary QAOA-depths. We ob-
serve the same result for 6Q-QAOA in Fig. 7 (c), i.e., for an
arbitrary initial order of qubits [a, b, c, d, e, f ], these SWAP
gates enable all the required 15 ZZ gates to be executed.

Compared to the solution of 5Q-QAOA on the linear
subtopology that has the optimal circuit depth of 5 in the gate
set {ZZ, ZZ-SWAP} and contains 6 SWAP gates, the solution
on the T-shaped subtopology saves 2 SWAP gates, whereas
increases the circuit depth by 3. For 6Q-QAOA, T-shaped
subtopology saves 2 SWAP gates and increases the circuit
depth by 4. The results show that a T-shaped subtopology
provides more connectivity for qubits and requires fewer
SWAP gates, whereas a linear subtopology yields a shorter
circuit depth.

Based on these solutions, we can extend it to an arbitrary
number of qubits. As shown in Fig. 7 (c), the solution of 6Q-
QAOA on T-shaped subtopology has a similar structure to
that of 5Q-QAOA on linear subtopology. We observe that the
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TABLE 2. Compilation Time (hh:mm:ss) of the Exact Approach [9] for QAOA with different numbers of qubits and depths on an IBM QPU with 27 Qubits

3qp1 3qp2 3qp3 3qp4 3qp5 3qp6 3qp7 4qp1 4qp2 5qp1 6qp1 7qp1 9qp1
time 0:00:03 0:01:13 0:22:47 1:48:17 12:48:27 31:07:12 129:59:04 0:00:13 15:26:30 0:01:19 4:42:10 1:12:40 41:47:33
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FIGURE 6. The Mapped 5Q-QAOA circuit with p = 1 on a linear subtopology. Each SWAP layer introduces a new qubit order that enables the gates satisfying the
connectivity constraints in the remaining ZZ gates to be executed. Single-qubit gates RZ and RX, as well as the measurement operators, are assigned according to
the current qubit order.
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FIGURE 7. (a) T-shaped subtopology. Analyzed qubit mapping solutions of only two-qubit gates in (b) 5Q- and (c) 6Q-QAOA on a T-shaped subtopology.
Independent of the initial order of qubits, all the required ZZ gates can be executed.
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Algorithm 1 AlgAw Qubit Mapping for QAOA on Linear
Subtopology
Input: Number of qubits n, QAOA-depth p, Parameters

γ[i, j], α[k], and β[k] of gates ZiZj , RZk, and RXk,
respectively, where i, j, k ∈ {0, ..., n− 1} and i < j

Output: Circuit satisfying connectivity constraints
1: function APPLYZZGATE(O, c, t)
2: Apply ZZ(γ[O[c], O[t]]) on (c, t)
3: end function
4: function APPLYZZSWAPGATE(O, c, t)
5: Apply ZZ(γ[O[c], O[t]]) on (c, t)
6: Apply SWAP on (c, t)
7: O[c]↔ O[t] ▷ Exchange
8: end function
9: Initialize the qubit order O {0, 1, ..., n− 1}

10: Prepare the initial state |0⟩⊗n

11: Apply H⊗n

12: while p > 0 do
13: s← 0
14: while s < n do
15: for q := 0 to n− 1 step 2 do
16: if s == 0 or s == n− 1 then
17: APPLYZZGATE(O, q, q + 1)
18: else
19: APPLYZZSWAPGATE(O, q, q + 1)
20: end if
21: end for
22: s← s+ 1
23: if s < n then
24: for q := 1 to n− 1 step 2 do
25: if s == 0 or s == n− 1 then
26: APPLYZZGATE(O, q, q + 1)
27: else
28: APPLYZZSWAPGATE(O, q, q + 1)
29: end if
30: end for
31: end if
32: s← s+ 1
33: end while
34: for k := 0 to n do
35: Apply RZ(α[O[k]]) on k
36: Apply RX(β[O[k]]) on k
37: end for
38: p← p− 1
39: end while
40: Measure the qubits ([0, ..., n− 1]→ [O[0], ..., O[n− 1]])

SWAP gates on each odd layer are fixed, whereas the first
SWAP gate on each even layer changes, i.e., SWAP gates on
(d, a) and (c, f) in Fig. 7 (c) alternate. The SWAP layer cycle
on a T-shaped subtopology consists of four layers, while that
on a linear subtopology consists of two layers. Algorithm 2
describes the procedure to generate n SWAP layers for n-
qubit QAOA on a T-shaped subtopology, where qubit 1 is

Algorithm 2 SWAP Layers on T-shaped Subtopology
Input: Number of qubits n
Output: List of SWAP layers S

1: neven ← (n− 1)− (n− 1)%2
2: nodd ← (n− 1)− 1 + (n− 1)%2
3: S ← empty List
4: j ← 0
5: while j < n do
6: S[j]← S[j] ∪ [(1, 3), (4, 5), ..., (nodd − 1, nodd)]
7: if ++j ≥ n then break
8: end if
9: S[j]← S[j] ∪ [(1, 0), (3, 4), ..., (neven − 1, neven)]

10: if ++j ≥ n then break
11: end if
12: S[j]← S[j] ∪ [(1, 3), (4, 5), ..., (nodd − 1, nodd)]
13: if ++j ≥ n then break
14: end if
15: S[j]← S[j] ∪ [(1, 2), (3, 4), ..., (neven − 1, neven)]
16: if ++j ≥ n then break
17: end if
18: end while

connected to qubits 0, 2, and 3, as shown in Fig. 7 (a).

Algorithm 3 shows the pseudocode of AlgAw for QAOA
on a T-shaped subtopology. Considering all the required ZZ
gates in QAOA, some of them are executed once the connec-
tivity constraints are satisfied. Each SWAP layer introduces
a new qubit order and the gates satisfying the connectivity
constraints in the remaining ZZ gates are then executed
until all ZZ gates have been implemented. Compared to
the solution on a linear subtopology that has a determined
number of SWAP layers, i.e., (n− 2)× p for n-qubit QAOA
with depth p, the solution on T-shaped subtopology requires
at least (n−2)×p and at most n×p SWAP layers. For p = 1,
if there are still some remaining ZZ gates after n − 2 SWAP
layers, then the SWAP gates in the penultimate and/or the last
layer are required. Note that if the SWAP gate is at the end of
all two-qubit gates on each qubit pair, it can be removed since
there are no remaining two-qubit gates that need to satisfy the
connectivity constraints by introducing a new qubit order.

We have shown that for the QAOA on dense portfolio
optimization problems, there are n(n−1)/2 two-qubit gates,
and the SWAP gate inserted to satisfy the connectivity con-
straints can be optimized with CX gate cancellation if it is
immediately adjacent to a ZZ gate. For other applications
of QAOA, it may not be necessary that every qubit has to
interact with all other qubits, which leads to the absence
of some ZZ gates in Fig. 5 and Fig. 7. However, these
SWAP layers still allow the circuit to satisfy the connectivity
constraints but just without the full benefits of combining
with ZZ gates.
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Algorithm 3 AlgAw Qubit Mapping for QAOA on T-shaped
Subtopology
Input: Number of qubits n, QAOA-depth p, Parameters

γ[i, j], α[k], and β[k] of gates ZiZj , RZk, and RXk,
respectively, where i, j, k ∈ {0, ..., n− 1} and i < j

Output: Circuit satisfying connectivity constraints
1: function APPLYZZGATE(O, i, j)
2: Apply ZZ(γ[i, j]) on (O.index(i), O.index(j))
3: end function
4: function APPLYSWAPGATE(O, i, j)
5: Apply SWAP on (i, j)
6: O[i]↔ O[j] ▷ Exchange
7: end function
8: E ← List of connected edges on T-shaped subtopology
9: L← List of all ZZ gates

10: S ← List of SWAP layers ▷ Algorithm 2
11: Initialize the qubit order O {0, 1, ..., n− 1}
12: Prepare the initial state |0⟩⊗n

13: Apply H⊗n

14: while p > 0 do
15: for k := 0 to n− 2 do
16: if L is empty then continue
17: end if
18: EO ← [(O[s], O[t]) for (s, t) ∈ E]
19: SO ← [(O[s], O[t]) for (s, t) ∈ S[k]]
20: for gate ZiZj ∈ L do
21: if (i, j) ∈ EO and (i, j) /∈ SO then
22: APPLYZZGATE(O, i, j)
23: L.remove(ZiZj)
24: end if
25: end for
26: for (i, j) ∈ S[k] do ▷ SWAP on (i, j)
27: if ZO[i]ZO[j] ∈ L then
28: Apply ZZ(γ[O[i], O[j]]) on (i, j)
29: L.remove(ZO[i]ZO[j])
30: if L is empty then continue
31: end if
32: APPLYSWAPGATE(O, i, j)
33: end if
34: end for
35: end for

C. COMPARISON
Compared to the SWAP-Network in [16], AlgAw on the
linear subtopology saves (n − 1) × p SWAP gates for n-
qubit QAOA with depth p. The total number of SWAP gates
C using AlgAw is C0 × p, which is a linear function of p,
where C0 is the number of SWAP gates when p = 1 and
satisfies C0 = (n− 1)(n− 2)/2. Compared to the solutions
found by the exact approach in Table 1, AlgAw requires the
same number of SWAP gates for p = 1 and a smaller number
of SWAP gates for higher p, which yields better results than
the exact method.

Fig. 8 (a) shows the number of SWAP gates for Al-
gAw on a linear subtopology (AlgAw-L, blue), AlgAw on

Algorithm 3 (Continued) AlgAw Qubit Mapping for QAOA
on T-shaped Subtopology
36: for gate ZiZj ∈ L do
37: EO ← [(O[s], O[t]) for (s, t) ∈ E]
38: if (i, j) ∈ EO then
39: APPLYZZGATE(O, i, j)
40: L.remove(ZiZj)
41: end if
42: end for
43: for k := n− 2 to n do
44: if L is empty then continue
45: end if
46: for ZiZj ∈ L do
47: EO ← [(O[s], O[t]) for (s, t) ∈ E]
48: SO ← [(O[s], O[t]) for (s, t) ∈ S[k]]
49: if (i, j) ∈ EO and (i, j) /∈ SO then
50: APPLYZZGATE(O, i, j)
51: L.remove(ZiZj)
52: end if
53: end for
54: for (i, j) ∈ S[k] do
55: if ZO[i]ZO[j] ∈ L then
56: Apply ZZ(γ[O[i], O[j]]) on (i, j)
57: L.remove(ZO[i]ZO[j])
58: end if
59: if L is empty then continue
60: end if
61: APPLYSWAPGATE(O, i, j)
62: end for
63: end for
64: if SWAP is located on the end then
65: Remove SWAP
66: end if
67: for k := 0 to n do
68: Apply RZ(α[O[k]]) on k
69: Apply RX(β[O[k]]) on k
70: end for
71: p← p− 1
72: end while
73: Measure the qubits ([0, ..., n− 1]→ [O[0], ..., O[n− 1]])

a T-shaped subtopology (AlgAw-T, orange), and SWAP-
Network (SWAP-Nk, green). Compared to the SWAP-
Network, AlgAw-L leads to a reduction of SWAP gates by
66.7% for 3Q- and 20% for 10Q-QAOA mapping, as shown
in Fig. 8 (b), whereas AlgAw-T reduces SWAP gates by
66.7% for 4Q- and 28.9% for 10Q-QAOA mapping.

Although a T-shaped subtopology provides more connec-
tivity for qubits and requires a lower number of SWAP gates
than a linear subtopology, the topology of a QPU contains
more linear subtopologies than T-shaped, implying that a
larger set of qubits can be used to implement the circuit based
on a linear subtopology. In benchmarking below, we compare
AlgAw-L with other methods.
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IV. BENCHMARKING EXPERIMENTS
In this section, we report the benchmarking results of the
QAOA on portfolio optimization problems with different
numbers of qubits and depths using AlgAw-L, Qiskit [24],
Tket [25], and SWAP-Network [16] on ibmq_ehningen,
ibm_auckland, and ibm_hanoi. The three IBM QPUs contain
27 qubits and have the same topology, as shown in Fig. 4.
For the experiments, we set the number of shots in Qiskit
to 50000 for 3Q-, 4Q-, and 5Q-QAOA, and 60000 for 6Q-
QAOA. For AlgAw-L, Tket, and SWAP-Network, we use
Mapomatic [26] to find the qubits on which the circuit has
the maximum fidelity, whereas for Qiskit transpile we use
the default settings.

A. METRICS
To evaluate the quality of qubit mapping, we consider cir-
cuits mapped by various methods and use Qiskit transpile
to decompose their gates into the basis gate set of the QPU
on which the circuit is executed. We use as metrics circuit
properties including CX gate count, circuit depth, and the
total number of gates of these mapped and decomposed
circuits to estimate the quality of different approaches.

The Approximation Ratio (AR) and Success Probability
(SP) are used to evaluate the performance of QAOA on
QPUs. Portfolio optimization aims at maximizing the overall
return while minimizing the overall risk. Generally, a defined
number of assets needs to be selected from n assets (n
qubits), which is called the budget constraint. Considering
the cost function F of the portfolio optimization problems, if
the solution is infeasible, i.e., the solution does not satisfy the
budget constraint, the value of AR is defined as 0, otherwise
it has the following definition:

AR =
F − Fmax

Fopt − Fmax
, (1)

where F and Fopt are the average value found by QAOA
and the optimal/minimum value, respectively, whereas Fmax

is the worst-case/maximum value. The SP is defined as the
probability of obtaining an optimal solution. A higher value
of AR or SP implies a better performance of QAOA, whereas
a lower value of circuit depth or CX gate count indicates a
higher quality of the qubit mapping solution.

B. CIRCUIT PROPERTIES
The number of CX gates, circuit depth, and total number
of gates for QAOA with different numbers of qubits and
depths on ibmq_ehningen, ibm_auckland, and ibm_hanoi are
summarized in Table 3.

For 3Q-QAOA, AlgAw-L has the least number of CX
gates and the lowest circuit depth on three IBM QPUs. In
contrast, Qiskit introduces the largest number of CX gates,
whereas Tket produces the highest circuit depth for higher p.
As we have discussed, the AlgAw-L saves (n−1)×p SWAP
gates than SWAP-Network for n-qubit QAOA with depth p,
corresponding to (n − 1) × p CX gates because of the CX
gate cancellation between ZZ and SWAP gates. In addition,

AlgAw-L, Tket, and SWAP-Network yield a constant number
of CX gates, circuit depth, and total gates on three IBM
QPUs, whereas Qiskit produces different results for each
mapping of the same circuit, implying that AlgAw-L, Tket,
and SWAP-Network provide more stable results than Qiskit.

4Q-QAOA using AlgAw-L has also the least number of
CX and total gates, and the lowest circuit depth for each p
on both IBM QPUs, whereas Qiskit introduces the largest
number of CX and total gates and produces the highest circuit
depth. SWAP-Network yields better results than Tket.

As with the 3Q- and 4Q-QAOA results, for 5Q-QAOA,
AlgAw-L yields the least CX and total gate count and the
lowest circuit depth compared to others. In comparison,
Qiskit has more than twice the number of CX gates and
circuit depth than AlgAw-L.

For 6Q-QAOA, AlgAw-L provides also the best results
on both IBM QPUs. Compared to AlgAw-L and SWAP-
Network, Qiskit and Tket introduce more CX gates leading
to higher circuit depths. On ibmq_ehningen, Qiskit delivers
comparable results to Tket. However, it produces poor results
on ibm_auckland.

The data from circuit properties of QAOA on three IBM
QPUs show that the AlgAw-L produces the least number of
CX gates and the lowest circuit depth than other methods.
SWAP-Network yields better results than Qiskit and Tket.

C. APPROXIMATION RATIO (AR) AND SUCCESS
PROBABILITY (SP)
We investigate the performance of various approaches for
qubit mapping on IBM QPUs. The average percental CX
gate error rates provided by IBM for the experiments of
QAOA using AlgAw-L, Qiskit, Tket, and SWAP-Network are
summarized in Table 4. The error rates range between 0.41%
and 1%.

The AR and SP of 3Q-QAOA on ibmq_ehningen,
ibm_auckland, and ibm_hanoi are shown in Fig. 9 (a), (b),
and (c), respectively. AlgAw-L yields the largest average
values of AR and SP for p from 1 to 7 on all three IBM
QPUs, which corresponds to the highest quality of solutions
produced by the AlgAw qubit mapping. SWAP-Network
provides the same robust results as AlgAw-L, but with lower
AR and SP values. In comparison, Qiskit and Tket produce
inconsistent results. On ibmq_ehningen, Qiskit gives better
results than Tket, whereas on ibm_auckland, Tket performs
better, and on ibm_hanoi, they produce comparable results.

The AR and SP of 4Q-QAOA with different values of p
on ibmq_ehningen and ibm_auckland are shown in Fig. 9
(d) and (e), respectively. On both IBM QPUs, AlgAw-L
produces higher average values of AR and SP than others.
On ibmq_ehningen, SWAP-Network performs better than
Tket, whereas Qiskit generates the lowest AR values. On
ibm_auckland, Tket with more CX gates and higher circuit
depth still outperforms SWAP-Network. A possible explana-
tion is that the crosstalk effect occurring on the ZZ-SWAP
gates in SWAP-Network is more pronounced than that of the
two-qubit gates in Tket.
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TABLE 3. Circuit Properties of n-qubit QAOA with p from 1 to 7

# CX Gates Depth # Gates
n QPU Method 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

3

ibmq_ehningen

AlgAw-L 7 14 21 28 35 42 49 19 34 49 64 79 94 109 37 62 87 112 137 162 187
Qiskit 10 27 35 51 54 68 85 22 47 63 87 98 120 145 40 75 101 135 156 188 223
Tket 9 18 30 39 51 60 72 26 43 68 85 110 127 152 39 66 96 123 153 180 210

SWAP-Nk 9 18 27 36 45 54 63 21 38 55 72 89 106 123 39 66 93 120 147 174 201

ibm_auckland

AlgAw-L 7 14 21 28 35 42 49 19 34 49 64 79 94 109 37 62 87 112 137 162 187
Qiskit 12 22 34 44 51 66 80 24 42 62 80 95 118 140 42 70 100 128 153 186 218
Tket 9 18 30 39 51 60 72 26 43 68 85 110 127 152 39 66 96 123 153 180 210

SWAP-Nk 9 18 27 36 45 54 63 21 38 55 72 89 106 123 39 66 93 120 147 174 201

ibm_hanoi

AlgAw-L 7 14 21 28 35 42 49 19 34 49 64 79 94 109 37 62 87 112 137 162 187
Qiskit 10 22 31 47 61 75 76 22 42 59 83 105 127 136 40 70 97 131 163 195 214
Tket 9 18 30 39 51 60 72 26 43 68 85 110 127 152 39 66 96 123 153 180 210

SWAP-Nk 9 18 27 36 45 54 63 21 38 55 72 89 106 123 39 66 93 120 147 174 201

4

ibmq_ehningen

AlgAw-L 15 30 45 60 75 90 105 23 42 61 80 99 118 137 57 98 139 180 221 262 303
Qiskit 25 53 81 109 137 165 193 31 61 91 121 151 181 211 67 121 175 229 283 337 391
Tket 19 41 63 85 107 129 151 25 49 73 97 121 145 169 61 109 157 205 253 301 349

SWAP-Nk 18 36 54 72 90 108 126 25 46 67 88 109 130 151 60 104 148 192 236 280 324

ibm_auckland

AlgAw-L 15 30 45 60 75 90 105 23 42 61 80 99 118 137 57 98 139 180 221 262 303
Qiskit 25 53 81 109 137 165 193 31 61 91 121 151 181 211 67 121 175 229 283 337 391
Tket 19 41 63 85 107 129 151 25 49 73 97 121 145 169 61 109 157 205 253 301 349

SWAP-Nk 18 36 54 72 90 108 126 25 46 67 88 109 130 151 60 104 148 192 236 280 324

5

ibmq_ehningen

AlgAw-L 26 52 78 104 130 156 182 27 50 73 96 119 142 165 81 142 203 264 325 386 447
Qiskit 50 104 168 218 277 353 385 55 110 171 221 280 349 386 105 195 293 379 472 584 650
Tket 28 64 100 136 172 208 244 34 68 102 136 170 204 238 83 154 225 296 367 438 509

SWAP-Nk 30 60 90 120 150 180 210 29 54 79 104 129 154 179 85 150 215 280 345 410 475

ibm_auckland

AlgAw-L 26 52 78 104 130 156 182 27 50 73 96 119 142 165 81 142 203 264 325 386 447
Qiskit 63 119 162 250 295 330 392 67 125 168 249 297 330 394 119 210 287 411 491 560 658
Tket 28 64 100 136 172 208 244 34 68 102 136 170 204 238 83 154 225 296 367 438 509

SWAP-Nk 30 60 90 120 150 180 210 29 54 79 104 129 154 179 85 150 215 280 345 410 475

6 ibmq_ehningen

AlgAw-L 40 80 120 160 200 240 280 31 58 85 112 139 166 193 109 194 279 364 449 534 619
Qiskit 66 140 218 282 360 432 509 55 105 171 223 260 323 382 135 254 377 486 609 726 848
Tket 68 134 203 277 343 412 486 60 101 151 214 255 305 368 137 248 362 481 592 706 825

SWAP-Nk 45 90 135 180 225 270 315 33 62 91 120 149 178 207 114 204 294 384 474 564 654

TABLE 4. Average Percental Error Rates of CX Gates in n-qubit QAOA
Reported by the Calibration Data from IBM

n QPU AlgAw-L Qiskit Tket SWAP-Nk

3
ibmq_ehningen 0.49 0.49 0.49 0.49
ibm_auckland 0.46 0.46 0.53 0.49

ibm_hanoi 0.41 0.49 0.46 0.49

4 ibmq_ehningen 0.49 0.49 0.49 0.49
ibm_auckland 0.55 0.55 0.55 0.55

5 ibmq_ehningen 0.65 0.64 0.55 0.63
ibm_auckland 1.00 0.87 0.78 0.51

6 ibmq_ehningen 0.77 0.66 0.57 0.62

Fig. 9 (f) and (g) show the benchmarking results of 5Q-
QAOA on ibmq_ehningen and ibm_auckland, respectively.
The AR values of 5Q-QAOA using AlgAw-L are the highest
compared to other methods. Although SWAP-Network pro-
duces fewer CX gates and lower circuit depth, Tket performs
better.

The results of 6Q-QAOA on ibmq_ehningen is shown in
Fig. 9 (h). AlgAw-L produces significantly higher values of
AR and SP than the others. Tket has a better performance
than Qiskit and SWAP-Network.

The data show that the AlgAw-L produces the least num-
ber of CX gates and the lowest circuit depth resulting in
the highest average values of AR and SP. Compared to
SWAP-Network, AlgAw-L performs significantly better and
more consistently on all three IBM QPUs. On the one

hand, AlgAw-L has (n − 1) × p fewer SWAP gates than
SWAP-Network. On the other hand, the circuit elements in
the AlgAw-L are changed compared to the SWAP-Network
which contains only ZZ-SWAP gates, whereas AlgAw-L has
both ZZ and ZZ-SWAP gates. Compared to the ZZ-SWAP
gate, the ZZ gate introduces less noise in terms of the CX
gate’s error rate and the crosstalk error.

V. OTHER APPLICATIONS OF ALGAW
We have discussed the application of AlgAw in QAOA. In
this section, we demonstrate another application and provide
the possibility of applying AlgAw to other algorithms.

A. VARIATIONAL-QUANTUM-EIGENSOLVER (VQE)
The Variational-Quantum-Eigensolver (VQE) [27]–[29] be-
longs to one of the VQAs and has many applications in
quantum chemistry [30], condensed matter physics [31], and
combinatorial optimization [32], etc. The VQE is a hybrid
algorithm designed to find the ground state energy or eigen-
value of a Hamiltonian. Let H be the Hamiltonian of a given
quantum system, and let |ψ⟩ be a trial wavefunction. The
Rayleigh-Ritz quotient is bounded below by the ground state
energy E0:

E0 ≤
⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

. (2)
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FIGURE 9. Approximation ratio and success probability of QAOA for 3 qubits on (a) ibmq_ehningen, (b) ibm_auckland, and (c) ibm_hanoi ; for 4 qubits on (d)
ibmq_ehningen and (e) ibm_auckland ; for 5 qubits on (f) ibmq_ehningen and (g) ibm_auckland ; and for 6 qubits on (h) ibmq_ehningen.
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FIGURE 10. 5Q-VQE-HEA circuit with depth p = 1. The first layer is generated by parameterized RY gates. Then CZ gates are performed on all qubit pairs,
followed by another set of parameterized RY gates and the measurement. For higher depth p, the CZ gates and the second set of RY gates are repeated p times.
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The objective of VQE is to find a quantum state by search-
ing through a parametrized ansatz state |ψ(θ)⟩ = U(θ) |0⟩
such that the expectation value of the Hamiltonian is mini-
mized, where U(θ), typically referred to as variational form
or ansatz, is a parameterized unitary that can be implemented
by, e.g., a quantum circuit, θ is a vector of parameters, and
|0⟩ is the initial state. The Hamiltonian is problem-specific
and can be rewritten into quantum operators, usually Pauli
operators, that are directly measurable on the QPU.

The choice of ansatz circuits for the state preparation in
VQE is crucial to its performance. Three common categories
of ansatz circuits are chemically inspired [33], Hardware-
Efficient Ansatz (HEA) [34], and Hamiltonian variational
[35]. In this paper, we investigate the VQE using HEA (VQE-
HEA) with full entanglement (e.g., [36]). The ansatz circuit
on five qubits is illustrated in Fig. 10. The first layer consists
of parameterized RY gates. We use controlled-Z (CZ) gates
as entangling gates. Unlike the CX gate, which distinguishes
between control and target qubits, the CZ gate belongs to
undirected gates. After that, another set of parameterized RY
gates is performed, followed by the measurement. For higher
p, the subcircuit between the first layer and the measurement
is repeated p times. The circuit with n qubits and depth p
contains (p + 1) × n parameters that need to be optimized
by a classical optimizer. For the full entanglement in the
considered circuit, there are n(n − 1)/2 CZ gates, each
consisting of one CX gate and two Hadamard gates.

By analyzing the ansatz circuit, we observe that it has the
same structure as the QAOA on dense portfolio optimization
problems. The solution to qubit mapping of all two-qubit
gates in QAOA can be similarly extended here. Unlike the ZZ
gate in QAOA, which is bordered by the CX gates, the CZ
gate in the VQE-HEA circuit is bordered by the Hadamard
gates. Inserting a SWAP gate directly behind the CZ gate
loses the advantage of the CX gate cancellation between the
CX and SWAP gates. Therefore, we introduce the SWAP gate
behind the CX gate and adjust the position of the second
Hadamard gate accordingly.

The Algorithm 4 describes the procedure of AlgAw for the
VQE-HEA with full entanglement on a linear subtopology.
First, we implement the CZ gate using CX and Hadamard
gates. c and t denote control and target qubits, respectively.
The Hadamard gates act on the physical qubit representing
the target qubit of the CX gate. We then realize the CZ-
SWAP gate by inserting a SWAP gate after the CX gate and
performing the second Hadamard gate on the physical qubit
representing the control qubit of the CX gate, rather than
on the target qubit like the first Hadamard gate, because the
introduced SWAP gate changes the qubit order. Analogously,
we construct n − 2 SWAP layers for n qubits on the linear
subtopology, meaning that CZ gates are performed on the
first and last layer, while the constructed CZ-SWAP gates are
implemented on the remaining layers. Finally, the RY gates
are assigned correspondingly, followed by the measurement.
The solution to qubit mapping of the VQE-HEA circuit on a
T-shaped subtopology can be obtained in a similar manner.

Algorithm 4 AlgAw Qubit Mapping for VQE-HEA on Lin-
ear Subtopology
Input: Number of qubits n, VQE-depth p, Vector of param-

eters θ with dimension (p+ 1)× n
Output: Circuit satisfying connectivity constraints

1: function APPLYCZGATE(c, t)
2: Apply H on t
3: Apply CX on (c, t)
4: Apply H on t
5: end function
6: function APPLYCZSWAPGATE(O, c, t)
7: Apply H on t
8: Apply CX on (c, t)
9: Apply SWAP on (c, t)

10: O[c]↔ O[t] ▷ Exchange
11: Apply H on c
12: end function
13: Initialize the qubit order O {0, 1, ..., n− 1}
14: Prepare the initial state |0⟩⊗n

15: for i := 0 to n do
16: Apply RY(θ[i]) on i
17: end for
18: pmax ← p
19: while p > 0 do
20: s← 0
21: while s < n do
22: for q := 0 to n− 1 step 2 do
23: if s == 0 or s == n− 1 then
24: APPLYCZGATE(q, q + 1)
25: else
26: APPLYCZSWAPGATE(O, q, q + 1)
27: end if
28: end for
29: s← s+ 1
30: if s < n then
31: for q := 1 to n− 1 step 2 do
32: if s == 0 or s == n− 1 then
33: APPLYCZGATE(q, q + 1)
34: else
35: APPLYCZSWAPGATE(O, q, q + 1)
36: end if
37: end for
38: end if
39: s← s+ 1
40: end while
41: for i := 0 to n do
42: Apply RY(θ[i+ n ∗ (pmax − p+ 1)]) on O[i]
43: end for
44: p← p− 1
45: end while
46: Measure the qubits ([0, ..., n−1])→ [O[0], ..., O[n−1]]

The mapped circuit with depth p = 1 on five qubits is
represented in Fig. 11. Each SWAP gate introduces a new
qubit order and adds an additional CX gate, resulting in a
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FIGURE 11. Mapped 5Q-VQE-HEA circuit with p = 1 on a linear subtopology. The SWAP gate is inserted behind the CX gate to take advantage of the CX gate
cancellation. Hadamard gates, the second set of RY gates, and measurement operators are assigned according to the current qubit order.

total of p× (n− 1)2 CX gates. The introduced SWAP gates
ensure that all the required CZ gates can be executed. The RY
and measurement gates are assigned according to the current
qubit order.

The application of AlgAw in VQE shows that the solution
of qubit mapping can be obtained by analyzing the features of
the ansatz circuit. Moreover, exploring the insertion location
of the SWAP gate can reduce additional CX gates. Designing
the solution at the algorithm level allows for optimal and
scalable results.

B. OTHERS
The previous results demonstrate that the SWAP layers can
be constructed not only directly behind each element in
the subcircuit, but also flexibly inside this element, such as
constructing SWAP layers behind the CX gate in the CZ gate
to take advantage of the CX gate cancellation, thus providing
applications in other algorithms with a regular structure.

In addition to mapping the fully connected two-qubit
gates, the AlgAw qubit mapping can also be used to study
other types of connectivity of two-qubit gates on specific
subtopologies. Furthermore, the study of AlgAw qubit map-
ping helps to design the algorithm with its scalability in
mind. On the one hand, designing a specific algorithm to
adapt the architecture can improve the performance of the
algorithm since the present NISQ computers only support
deterministic connectivity. On the other hand, studying the
specific structure of the algorithm can provide experience for
developing the architecture of the QPUs.

VI. CONCLUSIONS AND FUTURE WORK
VQAs with regular circuit structures have the opportunity to
obtain the solutions to qubit mapping by analyzing the solu-
tions for small-scale circuits computed with exact methods.
The mapping can be performed efficiently by analyzing the
features of the algorithm.

AlgAw qubit mapping provides optimal and scalable solu-
tions for the QAOA on dense portfolio optimization problems
with arbitrary numbers of qubits and depths on linear and T-
shaped subtopologies. The optimality comes from using the
exact method for small-scale circuits, while the scalability

results from analyzing these solutions. The benchmarking
results of QAOA on three IBM QPUs show that AlgAw
provides the least number of CX gates and the lowest circuit
depth resulting in better performance than Qiskit, Tket, and
SWAP-Network.

In the further, we are interested in developing the appli-
cation of AlgAw further to other algorithms with regular
structures. In addition, different types of subtopologies can
also be explored and evaluated.
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