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Abstract In this paper, we present some new static and
spherically symmetric solutions of the Einstein equation in
which the matter sector is accounted for by a free Dirac–
Born–Infeld field. Our novel spacetimes can describe either
a black hole, a wormhole, or a naked singularity depending on
certain boundary conditions. By tracking the dynamical grav-
itational collapse, we enlighten the importance of the isotropy
of the pressure for having an horizon as a result, as required
by the Cosmic Censorship Conjecture. Our new spacetime
solutions, the amount of exotic matter, its “complexity”, and
the equation of state along the tangential direction are ana-
lytical and written in closed forms. We identify a taming
of the breaking of the null energy condition, customary for
wormhole spacetimes in General Relativity, along both the
radial and tangential direction. We assess the astrophysical
applicability and perform a comparative analysis between our
solutions and other literature ones, by identifying an ISO-like
density profile of the matter field, which provides a flattening
of the rotation curves, by discussing the motion of test parti-
cles, and the shadow properties. In our model, those effects
are interpreted as a manifestation of a topological defect,
and since they can observationally mimic the signatures of
other spacetimes, a study of the perturbations is performed
within the quasi-normal modes formalism. Having identified
the Reissner–Nordström-like quasi-resonance, our paper is
intended also to provide some insights on which combina-
tions of background and perturbation properties should be
observed, for claiming the nature of astrophysical compact
objects.

1 Introduction

A phantom fluid, whose energy density ρ and pressure p are
such that ρ + p < 0, may tame some cosmological observa-
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tional tensions without the need of modifying gravity beyond
General Relativity [1,2]. The null energy condition might be
broken as well in the early universe, during the so-called
inflationary epoch. It is therefore important to investigate the
possible occurrence of a local collapse in some space region
of such phantom material by clarifying whether a configu-
ration of gravitational equilibrium can be established. Com-
pact objects like wormholes and naked singularities, whose
main characteristic is to be without an event horizon, can be
supported by this type of equilibrium condition, and their
existence has not yet been conclusively ruled out by astro-
physical observations. In fact, they can mimic some obser-
vational signatures usually attributed to black hole space-
times; indeed, the Event Horizon Telescope Collaboration
has devoted attention to the testing of the Janis–Newman–
Winicour [3] and of the Joshi–Malafarina–Narayan naked
singularities [4], among other spacetimes [5], without ruling
them out. On the other hand, the features of the shadow, as
size and shape, of some wormholes have been thus far studied
theoretically, which results are expected to be astrophysically
testable by more precise future datasets [6]. As explained
in [7, Footnote.9], the shadow phenomenon, which occurs
at length scales of some kiloparsecs, constitutes an excel-
lent arena for testing the previously mentioned cosmological
degrees of freedom because that is the length scale at which
screening mechanisms, required for preserving the validity
of local physics laws, are expected to be triggered. Thus, the
mathematical search (and their testing) of new wormhole and
naked singularity solutions supported by some matter fields
with a well-posed cosmological applicability is in order.

Degeneracy at the background level between physically
different spacetime metrics can be broken by looking at the
evolution of their perturbations. For example, the propaga-
tion of gravitational waves generated by scalar and electro-
magnetic perturbations has been studied in [8] by identifying
the specific imprints on the echoes spectra generated by the
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equation of state of the exotic material in the surroundings.
Specifically, an anomalous decay of the perturbations distin-
guishes the Bronnikov-Ellis and Morris-Thorne wormholes
[9]. Furthermore, a mathematical algorithm for reconstruct-
ing the shape function of a wormhole in proximity of its
throat by knowing the frequency of its quasi-normal modes
of oscillation has been presented in [10], and a relationship
between the frequency of the quasi-normal modes and the
size of the shadow has been discovered in [11]. The influ-
ence of the symmetries of the spacetime on the frequencies
of the quasi-normal modes has been investigated in [12] with
an application to the stability properties of those objects.

In this paper, we will exhibit some novel wormhole and
naked singularity solutions supported by the free Dirac–
Born–Infeld field, and also propose a re-interpretation of the
Schwarzschild-(anti) de Sitter black hole within this model.
Therefore, we will assume a field theory whose potential is
vanishing, but based on a scalar field with a non-canonical
kinetic term, as formulated in [13], via a certain fluid corre-
spondence that we will outline in Sect. 2. In fact, the Dirac–
Born–Infeld scalar field has been invoked both as the mech-
anism responsible for the inflationary dynamics [14], and
as providing the phantom energy in the late universe [15].
The Dirac–Born–Infeld theory can be regarded also as a non-
linear theory of electromagnetism, for which black hole solu-
tions are allowed [16], and on which matter accretion phe-
nomena have been investigated as well [17]. Some wormhole
solutions (e.g. spacetime admitting a “throat”) have already
been discovered in the Dirac–Born–Infeld theory [18,19],
but they have been claimed to be unstable [20]. The spe-
cific matter content we will assume to support the space-
time will be effectively treated as obeying to the equation
of state of a generalized polytrope with an infinite adiabatic
index, and therefore our analysis complements that of [21]
in which new wormhole solutions supported by a polytropic
fluid have been discovered. More specifically, our new solu-
tion will allow us to interpret one of the parameter entering
the supporting equation of state as a generator of a topolog-
ical defect, while we will show that the second parameter
actually tames the breaking of the null energy condition both
in the radial and tangential directions, with an equation of
state provided in a closed form for the tangential pressure.
The effects of the free equation of state parameters on the
frequencies of the quasi-normal modes of oscillation in the
eikonal limit are also analyzed for establishing the stability
properties of our configuration. We will as well elucidate the
role of the isotropy of the pressure in generating a black hole
or a naked singularity as the result of a gravitational collapse.
Moreover, we will show that our new solution can pass some
relevant astrophysical tests concerning the flattening of rota-
tion curves for the newtonian rotation velocity or the size
of the shadow depending on whether we decide to match it
with a vacuum Schwarzschild spacetime in its exterior. We

deliver analytical results both for the amount of exotic matter
supporting our spacetime and find a relationship between the
Christodoulou-Rovelli volume and the “complexity” of our
spacetime, also by showing an astrophysically relevance of
the latter, at least as far as our model is concerned, in recon-
structing the size of the throat. Finally, we show that our
solution is characterized by an ISO-like (but for phantom
energy) density profile.

Our paper is organized as follow: in Sect. 2 we will outline
our assumptions on the geometry of the spacetime and on its
matter content and write down the relevant field equations,
whose novel solutions are then presented in Sect. 3. In this
latter section, we will analyze the properties of our solutions
at the background level by proposing some new interpreta-
tions of the free parameters entering the equation of state
accounting for the matter content, by discussing the shadow
properties, the density profile, and the motion of test particles.
We will also assess the possibilities of having black holes
vs. naked singularities supported by the (Modified) Berth-
elot fluid depending on the isotropy of the pressure, which is
an important aspect in reference to the Cosmic Censorship
Conjecture. Analytical results are presented for the amount
of exotic matter supporting our novel spacetimes, and the
null energy condition is inspected. Since some properties at
the background level of our solutions are shared by other
literature configurations, we break this degeneracy in Sect. 4
by computing the quasi-normal modes of oscillation in the
eikonal limit. Finally, we conclude in Sect. 5 by summariz-
ing our results with a discussion about the specific roles of
each of our assumption, and by further commenting on the
relevance of our new results with respect to recent literature.

2 Modeling a static and spherically symmetric
spacetime

To describe a static and spherically symmetric spacetime, we
start from the metric ansatz

ds2 = −e2�(r)dt2 + dr2

1 − b(r)
r

+ r2(dθ2 + sin2 θdφ2) , (1)

where �(r) and b(r) are the redshift and shape functions,
respectively. Depending on appropriate boundary conditions,
this class of geometries can describe black holes (if an hori-
zon exists), wormholes (if a throat exists), naked singularities
(if at least one curvature invariant diverges in some spatial
point and there are no horizons), stars (if there are no curva-
ture singularities, no horizons, but a spatial surface in which
the pressure of the supporting matter content vanishes) or a
gas cloud (like a star, but the energy density vanishes as well
on the spatial boundary on which the pressure vanishes). Fur-
thermore, we consider the spacetime to be supported by an
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anisotropic fluid accounted for by the stress-energy tensor
Tμ

ν = diag[−ρ(r), pr (r), pt (r), pt (r)] in which ρ(r) is
the energy density, pr (r) is the radial pressure and pt (r) is
the tangential pressure. Therefore, the solutions we will con-
struct in this paper describe “transparent” wormhole/black
hole because T 0

r = 0 and there is no matter either falling
into nor being emitted by the central configuration [22–25].

Then, the Einstein equation

Rμν − 1

2
gμνR = 8πTμν (2)

provides the field equations

�′ = 8πprr3 + b

2r(r − b)
, (3)

b′ = 8πr2ρ , (4)

where a prime denotes a derivative with respect to the radial
coordinate r . The conservation of the stress-energy tensor
∇μTμν = 0 yields the following equation governing the
radial evolution of the pressure:

p′
r = − (ρ + pr ) �′ + 2 (pt − pr )

r
. (5)

Finally, we assume the radial pressure to depend functionally
on the energy density as

pr = βρ

1 + αρ
, (6)

where α and β are constants. This equation of state is known
as the (Modified) Berthelot model [26], and following previ-
ous literature we will restrict our next considerations to the
range α ≥ 0 because this parameter is related to the tempera-
ture at which a thermodynamic phase transition occurs [27];
thus, being the denominator always larger than 1, this equa-
tion of state may be useful in taming some of the causality
and stability issues troubling dark/phantom energy models.
In fact, this equation of state with β < 0 has already been
adopted in cosmological contexts as a form of time-evolving
dark energy [27–31], and at the background level it consti-
tutes the hydrodynamical realization of the free (e.g. with
vanishing potential) Dirac–Born–Infeld theory [32]. Actu-
ally, recent studies according to which dark matter may
exhibit some non-negligible pressure effects at galactic scales
[33] allow us to consider astrophysically relevant also the
regime in which β > 0. Equation of state (6) is a particular
subcase of the generalized polytropic model

pr = βρ1+1/n

1 + αρ1+1/n
, (7)

in which the adiabatic index n = ∞.

3 Some new black hole, naked singularity and
wormhole solutions, and their background
characterization

It is straightforward to check that the spacetime

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) ,

f (r) = 1 − 2M

r
+ 
eff

3
r2 , (8)

is a solution for our model. Here M is an arbitrary con-
stant of integration that we can interpret as the black hole
mass parameter, and the “effective” cosmological constant
reads as 
eff = 8π(β+1)

α
. Thus, we can reproduce both

the Schwarzschild-(anti) de Sitter and the Schwarzschild-
de Sitter spacetimes should it be β > −1 or β < −1,
respectively. Interestingly, the Schwarzschild solution can
be obtained either for β = −1 or in the limit α → ∞. Black
hole geometries shaped by an “effective” cosmological con-
stant, combination of some “microscopic” model parame-
ters, have been discovered also when the supporting fluid
is given by the Anton–Schmidt model [34]. Solution (8)
constitutes a limiting case of our model in which pressure
and energy density are constant, and the former is isotropic:
pr = pt = −ρ = 1+β

α
.

We will now assume

�(r) = 1

2
ln

(r1

r

)
, (9)

where r1 is a renormalization constant for the time t , for the
redshift function in (1). This specific decay of the redshift
functional has been chosen as well in the modeling of worm-
holes supported by an ideal (e.g. with pressure and energy
density linearly proportional to each other) phantom fluid
[35], the Chaplygin gas [36], and the Shan–Chen fluid [37].
By computing the Newman–Penrose curvature scalars1 [38]
we obtain 4�11−�22 = 1

r2 , which shows that this spacetime
metric comes with a curvature singularity located in r = 0.

1 While it might be more popular to investigate the existence of a physi-
cal (not coordinate) curvature singularity by looking at the expression of
the Kretschmann scalar, we consider that in our scenario this conclusion
can be more easily understood by working with the Newman–Penrose
formalism. In fact, the former quantity reads as

Rαβγ δR
αβγ δ

=9r2b′(r)2−24rb(r)b′(r)+6r2b′(r)+48b2(r)−40rb(r)+17r2

4r6

(10)

leaving some doubts on whether a suitable function b(r) can be cho-
sen making this quantity regular everywhere. To obtain explicitly the
divergence of one curvature invariant quantity is enough for claiming
the existence of the singularity.
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For the Newman–Penrose spin coefficients accounting for
the focussing properties of a bundle of light rays we obtain

μNP = ρNP =
√
r − b(r)

2r3 , (11)

and thus our class of spacetimes are horizonless because
there are no sign changes in these quantities (e.g. there
is no transition from a diverging to a converging behav-
ior). On the other hand, there might exist a suitable sur-
face located at r0 such that b(r0) = r0, and correspondingly
μNP(r0) = ρNP(r0) = 0: we will show in what follow that r0

is actually the throat of a wormhole. To summarize, once the
condition (9) is assumed, we can obtain either (and only) a
naked singularity or a wormhole solution depending on how
we fix the previously mentioned boundary condition.

The curvature and physical properties we have identified
in the previous paragraph follow from purely geometrical
considerations, and therefore will keep holding also in mod-
ified gravity paradigms. Likewise, also the geodesic motion
of test particles is sensitive only to the spacetime curvature
and not to the specific physical interpretation of the solu-
tion (as long as couplings are neglected). For example, the
radius of the photon sphere can be computed once the red-
shift function is known and astrophysical measurements in
this regard do not allow to fully reconstruct the specific space-
time metric [7]. A similar reasoning applies also to the inner
stable circular orbit (ISCO). For completeness we mention
that their locations can be estimated from the effective poten-
tial [39,40]

Veff = e2�

(
L2

r2 − κ

)
, (12)

where L is the (conserved) angular momentum of the test
particle and κ = 0,−1 for massless and massive particles,
respectively. The locations of the photon sphere and ISCO are
found by solving V ′

eff = V ′′
eff = 0, which explicitly provide

3L2 − κr2

r4 = 0 ,
2(6L2 − κr2)

r5
= 0 , (13)

once (9) is implemented, which can be satisfied only at spatial
infinity. We remark that this result will apply both to the
naked singularity and wormhole interpretation of our new
solutions, and for this reason we will investigate the quasi-
normal modes of oscillations in Sect. 4 for obtaining a sharper
physical characterization of our spacetimes.

For an other than (9) redshift function, we could obtain the
black hole solution (8); thus, the same symmetries (1) and
the same matter content (6) are consistent with both naked
singularity and black hole spacetimes. Whether the fluid col-
lapse leads to one or the other of these configurations is an

intriguing question in light of the Cosmic Censorship Con-
jecture [41]. We can model the fluid collapse by adopting the
metric

ds2=−e2ν(t,r)dt2+e2ψ(t,r)dr2+R2(t, r)(dθ2+ sin2 θdφ2) ,

(14)

whose corresponding field equations are [42]:

ρ(t, r) = 2M ′
MS(t, r)

R2(t, r)R′(t, r)
, (15)

p(t, r) = − 2ṀMS(t, r)

R2(t, r)Ṙ(t, r)
, (16)

where an overdot denotes a derivative with respect to the time,
MMS is the Misner–Sharp mass [43], and where we have con-
sidered the pressure to be isotropic. Next, by implementing
the equation of state (6) we obtain:

− ṀMS(t, r)

Ṙ(t, r)
= βM ′

MS(t, r)R2(t, r)

R2(t, r)R′(t, r) + 2αM ′(t, r)
. (17)

Assuming now MMS = MMS(R(t, r)) provides:

dMMS

dR
= −β + 1

2α
R2 , (18)

and then MMS = −β+1
6α

R3, which is well-defined for
β ≤ −1 only. The apparent horizon would be located at
R(t, r) = 2MMS(t, r) (see [42] and references [11,12,23,24]
therein), e.g. at R = √−3α/(1 + β) which exists as long as
the Misner-Sharp mass is well-defined. Thus, the isotropy of
the pressure in the collapse of the (Modified) Berthelot fluid
leads to the formation of a black hole, consistently with the
characterization of our solution (8). The naked singularity
solution we will present below will be indeed supported by
an anisotropic pressure.

Under the assumption (9), the field equations (3), (4),
together with (6), reduce to:

b′ = − 8πr2

8πβr2 + α
, (19)

which can be integrated into

b(r) = r

β

(
arctan(C1r)

C1r
− 1

)
− C2 (20)

for the shape function, where we have defined C1 :=
2
√

2πβ/α and C2 := C̃/(4β
√

παβ), C̃ being the arbitrary
constant arising from the integration. Recalling that α is non-
negative, we understand that this solution is meaningful for
positive β only. However, just assuming (1) and (9) we can
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compute Gr
r = − 1

r2 , and therefore from the Einstein equa-
tions with (6) we conclude that a consistent solution (with
a positive energy density ρ) actually requires a negative β.
Therefore, we apply the “trick” arctan(i x) = i arctanh(x),
where i is the imaginary unit, and write

b(r) = r

β

(
arctanh(C1r)

C1r
− 1

)
− C2 (21)

with C1 := 2
√−2πβ/α and C2 := C̃/(4β

√−παβ). A
direct computation of the components of the Einstein equa-
tion can now be made for confirming the correctness of the
solution. The astrophysical regimes in which our solutions
can be applied should be understood by their position inside
the Baker–Psaltis–Skordis curvature vs. potential diagram
[44], which position in our case would be along a straight
line going through the origin. In fact, the square root of the
Kretschmann scalar (10) asymptotically goes as ∼ 1/r3 (like
for the Schwarzschild black hole), while the gravitational
potential (12) falls as ∼ 1/r3 (and so faster than the Newto-
nian and Schwarzschild potentials ∼ 1/r ). Our new mathe-
matical solutions are therefore important because a remark-
able progress has been achieved by the Event Horizon Tele-
scope which has opened new windows of possibilities of test-
ing solutions in the O(1) range of the latter quantity. We also
need to recall that a naked singularity solution of the Einstein
equation was discovered by Tolman [45], the so-called Tol-
man VI (see also [46,47]), which is supported by a photon
gas obeying to the equation of state p = ρ

3 : while this equa-
tion of state is contained as a particular subcase of our (6),
our choice of the redshift (9) has made our new solution to
belong to a completely different family being supported by a
negative pressure. In the asymptotic far-field region r → ∞
we obtain grr ∼ β

1+β
, whose Lorentzian signature is correct

for β < −1 further restricting the range of this parameter.
Asymptotic spatial flatness can be achieved only in the limit-
ing case β → −∞ or by matching with an exterior spatially
flat spacetime. We note that the gravitational field in this
regime if fully accounted for by the parameter β, with α,
C̃ , and r1 playing no roles. While for the latter quantity this
result is not a surprise, as it can be re-absorbed into an appro-
priate re-definition of the time, deviations from an ideal fluid
behavior p ∝ ρ and the physical interpretation of the solu-
tion (21) (that we will assess below depending on the choice
of the integration constant C̃) do not influence the asymptotic
properties of the spacetime. We can also note that

1 − b(r)

r
≈ 1 + 1

β
− 2M

r
+ Q2

r2 for r → ∞ , (22)

where we have introduced an “effective” mass parameter
M = π−2C1C2β

4βC1
and an “effective” electric charge-like

parameter Q2 = − 1
βC2

1
, where as usual the arbitrary inte-

gration constant C̃ is related to the former only. The latter
term arises as well in some black hole solutions of the Quartic
Horndeski theory [48] and of Modified Gravity MOG [49]:
our solution has nevertheless a different redshift function,
whose role in distinguishing it by studying the quasi-normal
modes will be presented in Sect. 4. More interestingly, we can
enlighten the role of the equation of state parameter −1/β

which behaves in the same way of a topological defect arising
from the breaking of a global O(3) symmetry [50].

By enforcing the Einstein equations we can compute the
energy density, radial and tangential pressure obtaining

ρ = − 1

8πβr2 + α
, pr = − 1

8πr2 ,

pt = 8π(β + 1)r2 + α

32πr2(8πβr2 + α)
, (23)

respectively, all of which vanish asymptotically for r → ∞,
while only the radial pressure diverges in correspondence
of the singularity r = 0. The radial pressure being nega-
tive signifies that the spacetime is supported by an exotic
type of matter. The requirement of a positive energy den-
sity restricts the applicability of our solutions to the region
r >

√−α/(8πβ): the parameter α, which quantifies the
deviation from an ideal fluid p ∝ ρ, tames the singularity in
the energy density (nevertheless the solutions can be adopted
in a spherical crown only, possibly matched in their inte-
rior with some other regular metric for removing the region
with negative energy density2). We should recall that also
by studying the collapse of the (Modified) Berthelot fluid
we had obtained that a naked singularity cannot occur for
β < −1 if the pressure is isotropic. We can also note that the
radial profile of the energy density is formally the same as
in the ISO model of galactic dark matter ρ(r) = ρ̃

1+( r
r̃

)2 [51]

with the free parameters3 ρ̃ = −1/α and r̃2 = α/(8πβ).
The Newtonian velocity of a massive astrophysical object in
rotational motion within this gravitational field at a distance
r from the center of the configuration is [33, Eq.(10)]

vN(r) =
√

4π
∫
r2ρ(r)dr

r
=

√
b(r)

2r

→
√

− 1

2β
+ o(

√
r) for r → ∞ . (24)

2 Thus, a possible astrophysical relevance of this solution is to describe
a cosmic void [52], should we match it with an empty flat interior
spacetime. Indeed, solutions of the Einstein equation supported by an
external rather than internal gravitational field have been found [53,54].
3 Recall that this energy density is indeed positive for our choice of
values of the free parameters, as previously assessed with respect to eq.
(23).
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Thus, should we allow for the distribution of the matter con-
tent to extend up to spatial infinity without performing any
spacetime matching, the rotation velocity approaches a con-
stant value asymptotically. It should be remarked that this
value is well defined (e.g. v < 1) because β < −1, and
recalling (22) the flatness of the galactic rotation curves is
now interpreted as a manifestation of a topological defect;
we also note that consistently pr , pt → 0, behaving as pres-
sureless fluid in the far field regime.

Moreover, we can compute the decay of the gravitational
potential V (r) generated by our solution by applying the
continuity and Euler equations describing the fluid flow [55]:

(ρAṽ)′ = 0 , ρṽṽ′ = −p′
r − ρV ′ , (25)

where ṽ is the speed of the fluid molecules, and A = 4πr2

the area of the cross section available for the flow, and where
we have assumed a spherically symmetric configuration. By
writing p′

r = dpr
dρ

·ρ′, and by using the energy density profile
(23), we arrive at:

ṽ′ = − 2αṽ

r(8πβr2 + α)
(26)

for the former, which can be integrated into

ṽ(r) = C3

(
8πβ + α

r2

)
, (27)

with C3 a constant of integration. The Euler equation now
becomes

V ′ = (8πβr2 + α)(8παC2
3 + r2)

4πr5
, (28)

which can be integrated into

V (r) = −α[1 + (8πC3)
2β]

8πr2 − 1

2

(
αC3

r2

)2

+2β ln(r)+C4 ,

(29)

where C4 is another constant of integration. Finally, in a
configuration of equilibrium we need to set C3 = 0, and we
can consistently identify an attractive potential V (r) < 0.

Furthermore, the tangential pressure switches its sign from
negative to positive at rt = √−α/[8π(β + 1)]. We can pro-
vide an analytical expression in closed form for the support-
ing equation of state in the tangential direction as

pt = − (1 + β + αρ)ρ

4(1 + αρ)
= −ρ

4
− βρ

4(1 + αρ)
, (30)

which interestingly is given by a re-scaled (Modified) Berth-
elot fluid (6) plus an ideal fluid contribution, the latter con-

stituting the anisotropic stress. The coefficient of pressure
anisotropy is consequently obtained as

� := pr − pt = −8π(5β + 1)r2 + 5α

32πr2(8πβr2 + α)
, (31)

which vanishes not only asymptotically but also on the sur-
face

r∗ =
√

− 5α

8π(5β + 1)
. (32)

Hence, a surface in which radial and tangential pressure are
equal to each other can exist if β < −1/5, which condition is
guaranteed by the previously identified range β < −1. Fur-
thermore, the complexity factor, which quantifies the devi-
ations of the geometry from homogeneity and isotropy, is
given by [56]

yt f := � − 1

2r3

∫ r

r0

s3ρ′(s)ds

= 1

16πβr2

[
2 + α

8πβr2 + α
+ 3arctanh(C1r)

C1r

]r0

r

− 8π(5β + 1)r2 + 5α

32πr2(8πβr2 + α)
, (33)

where r0 is the lower bound of the radial coordinate.
The null energy condition along the radial and tangential

direction read as

ρ + pr = − 8π(β + 1)r2 + α

8πr2(8πβr2 + α)
,

ρ + pt = 8π(β − 3)r2 + α

32πr2(8πβr2 + α)
, (34)

respectively. The former holds in the region4 r∗ < r <√−α/[8π(β + 1)], while the latter for r >
√−α/[8π(β − 3)],

e.g. for r > r∗. Recalling that β < −1, this analysis confirms
quantitatively that the (positive) parameter α tames some
of the well known issues troubling phantom fluids. For our
spacetime, the Visser-Kar-Dadhich integral quantifier [61]

IV =
∫ +∞

r0

|ρ + pr |dV

4 Actually, we should also mention that the condition ρ + pr = − f (r)
with f (r) > 0, which has been dubbed quantum weak energy condition
[57] receiving attention in the modeling of Casimir wormholes [58],
would hold otherwise. For the likewise breaking of the null energy
condition in wormhole spacetimes supported by the Chaplygin gas we
refer to [59]. We should also mention here that wormhole solutions
supported by regular matter can be found in General Relativity, should
one relax the assumption of symmetry at the throat [60].
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=
∣∣∣∣
(β + 1)r

2
− 1

2βC1
arctanh(C1r)

∣∣∣∣
∣∣∣
+∞
r0

, (35)

where the areal volume element dV = 4πr2dr has been
used, diverges linearly at infinity. This result suggests that an
infinite amount of exotic matter would be required to sup-
port the spacetime; however this divergence can be cured
by an appropriate matching with a suitable exterior space-
time. Traversable and stable wormhole spacetimes whose
existence does not require any amount of exotic matter at all
have been discovered by relaxing the assumption of General
Relativity as the relevant gravitational framework. Indeed
some extensions of Einstein gravity might be needed also
for curing its shortcomings at IR and UV energy scales.
For example, allowing contributions to the spacetime cur-
vature from geometric entities beyond the Ricci curvature,
as in the metric-affine approach in which the torsion and
non-metricity fields are considered, empty-space wormhole
solutions could be found because the stress-energy tensor
entering the field equations enjoys also an effective contribu-
tion stemming from those geometrical fields [62]. Another
possibility investigated in [63] builds upon the Non-local
Integral Kernel Theories of Gravity in which case a suitable
function of the d’Alembertian (e.g. of the derivatives) of the
Ricci scalar enters the Action of the theory; in this latter sce-
nario, it has been checked that both the energy conditions
and the hydrodynamical stability, e.g. a well-defined value
of the speed of sound within the fluid, hold by looking at
the average (between the tangential and radial contributions)
pressure. Confirmation of the stability of such configurations
has been of crucial importance for guaranteeing the throat to
exist for a long enough period of time making the wormhole
to be actually traversable.

Should we impose

C̃ = 4
√−παβr0

(
arctanh(C1r0)

C1r0
− 1 − β

)
(36)

for the arbitrary constant stemming from the integration of
the Einstein equation (21), we would obtainb(r0) = r0. Thus,
we can provide a physical interpretation to our solution as a
wormhole with a throat in r0. We can now compute

b′(r0) = (C1r0)
2

[1 − (C1r0)2]β (37)

obtaining that the flare-out condition b′(r0) < 1 is fulfilled
if the location of the throat is such that r0 < 1/C1 or
r0 > 1/(

√−(1 + β)C1), where in the latter case the region
with a negative energy density is automatically removed for
β ∈ (−1,−2]. We also recall that the singularity in r = 0
does not belong to the wormhole spacetime since the coordi-
nate system is r ∈ [r0,∞). Geometrically, we can note that

the surface (32) on which the pressure is isotropic would be
located outside the throat provided that r∗ > r0, e.g. if the
location of the throat is such that r0 <

√−5α/8/π(5β + 1);
moreover, the complexity factor (33), where now we interpret
r0 to be the throat location, is generally nonzero, consistently
with the claim that wormhole solutions with zero complex-
ity factor cannot exist [64]. Nevertheless, if we search for a
specific surface r̃∗ on which the complexity factor is zero, in
the approximation of small α ≈ 0, e.g. close to an ideal fluid
behavior p ≈ βρ for the matter field, such surface would be
located at 40β(β + 1)πr0r̃2∗ + 8(4πβr2

0 + α)r̃∗ − 7αr0 = 0,
e.g. at

r̃∗≈

≈
2(4πβr2

0 +α)+
√

(8πβr2
0 )2−2(35β+19)παβr2

0 +4α2

20β(β + 1)πr0

≈ 4r0

5(1 + β)
− (3 + 35β)α

160β(1 + β)πr0
. (38)

Thus, this surface would carry an astrophysical relevance if

r0 <

√
− (3+35β)α

32πβ(1+5β)
(e.g. if it is located outside the throat):

this enlightens an astrophysical interpretation of the com-
plexity factor as a quantity from which it is possible to recon-
struct information on the size of the throat, should we obser-
vationally detect a point at which it vanishes.

Should we assume the wormhole to have finite size, e.g. its
supporting material to fill only the region of space between
the throat up to a certain border located at Rb, we would be
required to match our solution to an exterior spacetime, the
exterior Schwarzschild being one possibility. This match-
ing is specifically needed for having an isotropic (in the
far limit) and asymptotically flat wormhole solution [65]. A
smooth radial evolution of the gravitational field at this bor-
der requires continuity of the metric coefficients, and thus
we need to impose (see for example [37, Eqs. (21)–(22)]):

(gtt )int(Rb) = (gtt )ext(Rb) ,

(grr )int(Rb) = (grr )ext(Rb) , (39)

the latter in particular providing

1 − b(Rb)

Rb
= 1 − 2M

Rb
. (40)

This condition allows us to obtain the wormhole mass as a
function of the fluid parameters α and β, of the throat size r0

and of boundary Rb of the matter distribution as:

M = b(Rb)

2
= 1

2

[
Rb

β

(
arctanh(C1Rb)

C1Rb
− 1

)
− C2

]
(41)

= 1

2

[
Rb

β

(
arctanh(2

√−2πβ/αRb)

2
√−2πβ/αRb

− 1

)
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−r0

(
arctanh(2

√−2πβ/αr0)

2
√−2πβ/αr0

− 1 − β

)]
, (42)

where we have used Eqs. (21) and (36). For having a positive
mass, the shape function should be positive at the boundary;
this can be interpreted as a (implicit) condition setting the size
of the boundary. At lowest order in α ≈ 0, the positivity of the
mass requires 8βπR2

br0−8πβ(β+1)r2
0 Rb+α(r0−Rb) < 0,

which then delivers the constraint

Rb >
8πβ(β + 1)r0 + α −

√
[8πβ(β + 1)r2

0 ]2 + βαπ(β − 1)(4r0)2 + α2

16πβr0
, (43)

where the well-posedeness of the square root is guaran-

teed if r0 <

√
(β−1−2

√−β)α

8πβ(1+β)2 . Furthermore, we remark that

our wormhole is now supported by a finite amount of mat-
ter because the upper endpoint in the integral (35) should
now actually be Rb. Then, the amount of “complexity” con-
tained in our wormhole solution can be computed via the
Christodoulou–Rovelli volume5 [66, Eq.(27)]:

VCR = 3
√

3πM2v. (44)

Considering the location of the boundary Rb as the upper
endpoint in the integration for the complexity factor (35), we
can recast

VCR = 3
√

3π

[
2IV − Rb +

(
1

β
− β

)
(Rb − r0)

]2

v,

(45)

providing a quadratic dependence between complexity factor
and Christodoulou–Rovelli volume. It is also interesting to
compare the behaviors of these two quantities for thinner
and thinner matter shells supporting the wormhole, e.g. for
Rb − r0 ≈ 0,:

IV ≈ β(β + 1) + αρ0

2β
(r0 − Rb) ,

VCR ≈ 3
√

3πr2
0 v + 48

√
3π2ρ0r

3
0 (Rb − r0) , (46)

where ρ0 is the energy density (23) evaluated on the throat r0.
While the complexity factor vanishes in this regime, consis-

5 In this context, v denotes the null ingoing Eddington–Finkelstein
coordinate.

tently with the lack of any matter field within the spacetime,
the Christodoulou-Rovelli volume does not (as indeed it is
non-zero even for vacuum spacetimes as Schwarzschild).

A shadow of size rsh = 3
√

3M is cast by our worm-
hole spacetime if the light rays generating the photon sphere
actually travel inside the exterior Schwarzschild region6 [7],
which condition can be realized if the shadow is located
outside the boundary of the black hole. This condition can
be translated into a relationship between the border and the

throat as Rb < rsh = 3
√

3M = 3
√

3b(Rb)
2 , which at the

lowest order in α becomes

8βπ(3
√

3 + 2β)r0R
2
b − [24πβ(β + 1)r2

0 + 3α]Rb

+3
√

3αr0 < 0 . (47)

This sets the upper constraint on the boundary location7

Rb <
3[8πβ(β + 1)r2

0 + α]√3 −
√

1728[πβ(β + 1)r2
0 ]2 + 48παβ[9(β − 1) − 4

√
3β]r2

0 + 27α2

16πβr0(3
√

3 + 2β)
. (48)

Likewise, we can claim that our wormhole solution bends
the light rays by an angle α̂ ≈ 4M/B where B is the impact
parameter, and that the perihelion of the orbits of massive par-
ticles advances by �φ = 6πM/r from one closed orbit to the
next. Once again, we have used that light rays are traveling in
the exterior Schwarzschild region [67, Sect.6.3], but invok-
ing our wormhole mass (41). Thus, for an observer located
in the exterior region, our wormhole solution is fully charac-
terized by only one meaningful astrophysical parameter, its
mass M , in terms of which the phenomena of shadow and
light bending are accounted for, and not two (α and β from
the equation of state of the matter field supporting the worm-
hole): this is consistent with the no-hair theorem for solu-
tions of the Einstein field equations [68, p.876]. However,

6 We recall that from our discussion about Eq. (13), a photon sphere
does not exist in the matter filled region of our wormhole.
7 While the checking of the consistency between (48) and (43) requires
not-so-trivial algebraic manipulations for arbitrary triplets (α, β, r0),
we can note that, for example, for the choice β = −1.5, α = 0.01
and r0 = 0.1 we would obtain a trivial constraint for the former and
Rb < 0.0048 for the latter. The size of the throat has been chosen as
to fulfill the previously identified condition r0 > 1/(

√−(1 + β)C1).
Thus, our analysis about the shadow is well-posed. Passing the shadow
test is not a trivial property, and for example it challenges the Morris-
Thorne wormhole [5].
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the physical mechanism behind those very same astrophys-
ical phenomena is completely different in the two scenarios
(wormhole vs. Schwarzschild black hole), calling for a study
of the perturbations of our wormhole solution in Sect. 4: this
will help us to identify specific astrophysical signatures of
our solution.

The study of the motion of test particles in our wormhole
solution should be further complemented by investigating
whether a massive body starting its motion inside the fluid
distribution can escape to the exterior region. For answering
to this question, we will consider a radial motion, for which:

dt

dτ
= γ ,

dr

dτ
≡ dr

dt
· dt

dτ
= γ v ,

dθ

dτ
=0 ,

dφ

dτ
= 0 ,

(49)

where τ is the proper time, and γ = 1/
√

1 − v2 the Lorentz
factor. Applying a timelike normalization ds2 = −1 to (1)
with (9), we can find the radial dependence of the particle
spatial velocity:

v2 = (b(r) − r)(r − r1)

b(r)r
. (50)

First of all, we note that on the throat the velocity vanishes,

while dv
dr

∣∣∣
r0

→ ∞, and that massive particles can be accel-

erated to ultrarelativistic speed by the wormhole geometry8.
We depict in Fig. 1, the radial evolution of the velocity (50)
with the shape function (21), and setting r1 = 10.0, r0 = 2.0,
and α = 0.5. We can identify a maximum in the profile of the
velocity, but most importantly the massive body is allowed to
reach only a certain maximum distance from the throat due to
the latter requirement of the physical constraint 0 ≤ v2 ≤ 1;
thus massive objects can escape into the vacuum exterior
region only if the size Rb of the wormhole is small enough
(by changing α the main characteristics of the plot remain
almost unaffected, while decreasing the value of r0 makes
the physically allowed region larger). Specifically, the more
phantom the fluid (6) is, e.g. the more negative β, the smaller
the wormhole should be for allowing the test particle to cross
the border to an exterior region.

We will now deepen our discussion about the properties of
the boundary Rb. The Darmois-Israel surface stresses [69–
73] (see also [37, Eqs. (30)–(31)] for their computations in the
scenario of a wormhole supported by a Shan–Chen phantom

8 This can be noticed by trying to set v2 = 1, which implies
(b(r) − r)r1 + r2 = 0, with the two terms on the left hand side pos-
sibly compensating each other due to their different sign. In the limit
α → 0, massive particles reach an ultrarelativistic speed at the loca-

tions r1,2 = (1+r1)β±
√

(1+β)2r2
1 −4(1+β)βr0r1

2β
, where we note explicitly

that r1,2 > 0 being numerator and denominator both negative.

Fig. 1 In this figure, we depict the radial profile of the square of the
spatial velocity v2 of a massive test particle traveling inside the region
of our wormhole spacetime filled by the matter field, as given by (50)
with (21), and setting r1 = 10.0, r0 = 2.0, and α = 0.5. We identify a
maximum, and the possibility of the particle to reach an exterior region
only for certain sizes of the wormhole due to the physical requirement
v2 > 0. Specifically, larger values of |β| would require a smaller worm-
hole for allowing an escape of the massive body

fluid) can be obtained via the Lanczos equations:

σ = − 1

4πRb

(√
1 − 2M

Rb
−

√
1 − b(Rb)

Rb

)
(51)

P = 1

8πRb

⎛
⎝ 1 − M

Rb√
1 − 2M

Rb

− [1 + Rb�
′(Rb)]

√
1 − b(Rb)

Rb

⎞
⎠ ,

(52)

where the former vanishes, as in the mentioned Shan–Chen
scenario, because of the matching condition (40). For the
latter we obtain:

P = 1

16πRb
· 1 − b(Rb)

2Rb√
1 − b(Rb)

Rb

= 1

16πRb
· 1 − M

Rb√
1 − 2M

Rb

, (53)

in which we have used (9), (41), and where (21) is understood;
thus, the surface tangential pressure is positive, due to the
Lorentzian signature of the metric, as for the Shan–Chen
wormhole [37].

The radial and azimuthal epicyclic frequencies are related
to the radial and azimuthal epicyclic angular velocities via
νr = �r/(2π) and νφ = �φ/(2π), respectively. Epicyclic
frequencies correspond to the particle oscillation frequen-
cies, should the particle be moving along a closed orbit
disturbed by some small perturbations [74]. The radial and
azimuthal epicyclic angular velocities for our wormhole solu-
tion can be computed by applying [75,76], [77, Eqs.(22)-
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(23)]:

�2
r = e2�(r0)

b(r0) − r0

r0

[
2�′2(r0) − 3�′(r0)

r0
− �′′(r0)

]
,

(54)

�φ = e�(r0)

√
�′(r0)

r0
. (55)

These results hold for static and spherically symmetric worm-
holes, and therefore can be applied to our new solution.
The former vanishes due to the requirement b(r0) = r0 on
the wormhole throat (the quantity within square brackets is
regular for our choice �(r) = 1

2 ln r1
r ). For the latter we

obtain �φ = i√
2r0

where i denotes the imaginary unit. It

is now worthwhile to recall that for a Kerr black hole [74,
Eq.(10.51)]

�φ = M1/2

r3/2 ± aM1/2 (56)

is a real quantity for every possible value of angular momen-
tum a and mass M . Thus, the astrophysical measurement
of the azimuthal epicyclic frequency allows to discriminate
between our wormhole solution and a Kerr black hole. How-
ever, this would not necessarily be the case for the radial
epicyclic frequency. For a Kerr black hole it reads as [74,
Eq.(10.52)]

�r = M1/2

r3/2 ± aM1/2

√
1 − 6M

r
± 8aM1/2

r3/2 − 3a2

r2 , (57)

where the positive/negative sign applies to co/counter rotat-
ing orbits, respectively. The radial epicyclic angular velocity
for a Kerr black hole vanishes not only for an observer located
at spatial infinity, but also for an observer located at r∗ such
that:

x4 − 6Mx2 ± 8aM1/2x − 3a2 = 0 , x = r1/2∗ . (58)

The existence of real roots should be checked by studying
the sign of the discriminant, which however is not necessary
for this equation. In fact, two (distinct) real solutions are
guaranteed if � < 0; in our case real roots (specifically four
and distinct or two and double) are guaranteed also if � > 0
or if � = 0 because9 P := 8AC = −48M < 0 [78].
While their mathematical form might be not so friendly, the
astrophysical consideration behind this analysis should be
clear: measuring only the radial epicyclic frequency is, for
some observers, not conclusive for discriminating between
our wormhole solution and a Kerr black hole. On the other

9 Here the notation for the coefficients of the algebraic equation is such
that Ax4 + Bx3 + Cx2 + Dx + E = 0.

hand, unlike the previously identified degeneracies, we can
rule out the occurrence of the 3:2 resonance of the quasi-
periodic oscillations in our model [79].

4 Perturbations, and quasi-normal modes of oscillation

In this section, we will search for specific signatures of our
novel spacetimes by investigating the time evolution of the
quasi-normal modes of oscillation due to scalar and elec-
tromagnetic perturbations. This requires us to compute the
eigenvalues ω of the Schrödinger-like equation [10]

(
d2

dr2∗
+ ω2 − V (r∗)

)
�(r∗) = 0 , (59)

where

r∗(r) :=
∫

dr ′

e�(r ′)
√

1 − b(r ′)/r ′ (60)

is the tortoise coordinate, and the potentials for electromag-
netic and massless scalar field perturbations read as [80]

Vele(r) = e2�(r) l(l + 1)

r2 , (61)

Vms(r) = Vele(r) + 1

2r

d

dr

[
e2�(r)

(
1 − b(r)

r

)]
, (62)

respectively. We can note that these potentials depend on
the metric coefficients of our solution, but not on the physi-
cal interpretation we choose to give to the supporting matter
content of our spacetime, e.g. a (Modified) Berthelot fluid or
a free Dirac–Born–Infeld scalar field [32]. Keeping in mind
the mitigating role that the parameter α has on the null energy
condition (34), we consider appropriate to tackle the compu-
tation of the frequencies of the quasi-normal modes in the
WKB approximation as formulated in [81,82]:

i
ω2 − V0√

−2V ′′
0

−
k∑
j=2


 j = k + 1

2
, (63)

where V0 and V ′′
0 denote the maxima of the potential and of

its second derivative (with respect to the tortoise radial coor-
dinate), k is the order of perturbation, and 
 j are the higher-
order corrections. For example, this method has been applied
to the previously mentioned Casimir wormholes in [83] and
to the reconstruction problem for the wormhole geometry
from information about the quasi-normal modes in [10]. At
second order the frequency of oscillation is [84]:

ω2 = V0 − i

(
n + 1

2

)√
−2V ′′

0 . (64)
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For finding the maxima with respect to the tortoise radial
coordinate we use the chain rule for derivatives and notice
that dr

dr∗ =
√
r1(r−b(r))

r > 0. The potential governing the
electromagnetic perturbations (61) is fully determined by the
redshift function, and by using (9), it specifies as

Vele(r) = l(l + 1)r1

r3 . (65)

Thus Vele0 = l(l+1)r1
r3

0
since the maximum is achieved on

the throat (the potential is monotonically decreasing with
respect to the radial coordinate r , which itself is monoton-
ically increasing with respect to the tortoise coordinate r∗).
Next, we can compute

dVele

dr∗
= −3r3/2

1 l(l + 1)
√
r − b(r)

r5
, (66)

and then

d2Vele

dr2∗
= 3l(l + 1)r2

1

r6

[
9

2
− 5b(r)

r
+ db(r)

2dr

]

= 3l(l + 1)r2
1

r6

[
9

2
− 5b(r)

r
+ 4πr2ρ(r)

]
(67)

= 3l(l + 1)r2
1

r6

[
9

2
− 5b(r)

r
− 4πr2

8πβr2 + α

]
, (68)

where (4) and (19) have been used, and (21) (or (23)) is under-
stood. The second derivative of the elctromagnetic potential
achieves its maximum on the throat as well.10 Therefore, we
obtain the frequency of the quasi-normal modes of oscilla-
tion for electromagnetic perturbations at the second order of
approximation to be:

ω2
ele =

[
l(l + 1) − i

(
n + 1

2

)
r1

×
√√√√3l(l + 1)

(
1 + 8πr2

0

8πβr2
0 + α

)⎤
⎦ r1

r3
0

. (69)

The following properties are worthy commenting: (i) the fre-
quency is purely real and inversely proportional to the size of

the throat, and so the wormhole is stable, if r0 ≤
√

− α
8π(1+β)

showing that large values of (negative) β, e.g. strong break-
ing of the null energy condition, play a stabilizing role;
(ii) thus, due to the vanishing of the imaginary part, the
quasi-resonance characterizing massive scalar fields in the
Reissner–Nordström black hole background [80] can be

10 This can be understood by noticing that the energy density and the
factor 1/r6, which both contribute positively, exhibit their maxima on
r0 being monotonically decreasing, while b(r) exhibits its minimum on
the throat (recall that b′ > 0 from the field equation (4), but it contributes
negatively).

mimicked, which is a property shared with Casimir worm-
holes [83] (this might be due to the common feature of the
maxima of the potential and its second derivative occurring
all on the throat); (iii) in the case of a complex frequency, both
the real and imaginary parts are still inversely proportional
to the size of the throat; (iv) nothing can be claimed about
the size Rb of the wormhole; (v) the frequency of the quasi-
normal modes of oscillations under electromagnetic pertur-
bations are complex both in the limit of negligible (recalling
that β < −1) and strong deviation from an ideal fluid equa-
tion of state supporting our wormhole solution:

lim
α→0

ω2
ele=

[
l(l + 1)−i

(
n+1

2

)
r1

√
3l(l+1)(β+1)

β

]
r1

r3
0

,

× lim
α→∞ ω2

ele =
[
l(l + 1) − i

(
n + 1

2

)

×r1

√
3l(l + 1)

] r1

r3
0

. (70)

By using Eqs. (4), (9), (21), after some algebraic manip-
ulations, we can recast the potential for massless scalar field
perturbations (62) for our specific wormhole solution into the
following form:

Vms(r) = r1

r

[
�

2r2 + b(r)

r3 − 4πρ(r)

]

= r1

r

[
�

2r2 + b(r)

r3 + 4π

8πβr2 + α

]
,

� = 2l(l + 1) − 1 . (71)

By using again the chain rule for computing the derivative
with respect to the tortoise coordinate, and (19) for expressing
the derivative of b(r), we obtain:

dVms

dr∗
=

=−r3/2
1

√
r−b(r)[128π2βr5ρ2−24πr3ρ+3�r+8b(r)]

2r6

(72)

= −96r3/2
1

√
r − b(r)

r6(8πβr2 + α)

×
[
(8πβr2 + α)2b(r)

24

+
(

π2β(3�β + 5)r4

3
+ πα(2�β + 1)r2

8
+ �α2

64

)
r

]
,

(73)

and
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d2Vms

dr2∗
= 6r2

1

r8

[
− 4b2(r) + 5rb(r)

4
×

(
4096π3β2r6ρ3 − 512π2βr4ρ2 + 44

15
+ 56πr2ρ

5
− �

)

+ r2
(

128π3βρ3r6(8β − 1) + 8π2ρ2r4(14β − 3) + πρr2(3� − 31)

3
+ 9�

8

) ]
(74)

= 3456r2
1

r8(8πβr2 + α)3

2∑
k=0

Ak(r)r
2−kbk(r) , (75)

A0(r) := βπ3r6
(

�β2 + (61 − 3�)β − 5

27

)
+ 3π2αr4

8

(
�β2 + (38 − 3�)β − 3

81

)
+ 3πα2r2

64

(
�β + 31 − 3�

81

)
+ �α3

512
,

(76)

A1(r) := 2β2π3r6(44β − 15�β − 37)

27
+ βπ2αr4(132β − 45�β − 50)

108
+ πα2r2(44β − 15�β − 7)

288
+ α3(15� − 44)

6912
,

(77)

A2(r) := −32

9

(
πβr2 + α

8

)3
. (78)

At this stage it becomes necessary to devise some numeri-
cal technique for computing the maxima of the potential (71)
and of its second derivative (74) for specific couples of values
of (α, β). We think that it might be more insightful to pro-
vide some closed form results, albeit approximated, rather
than numerical. We will consider α ≈ 0 and obtain:

Vms(r) =
= r1[16πβ(β + 1)rr2

0 +(8πβ(�β−1)r2−3α)r0+2αr ]
16πβ2r0r5

+O(α2), (79)

whose maximum is located at the throat.11 Next, we com-
pute

d2Vms

dr2∗
=

9∑
i=6

Ai

r i
+ O(α2), (80)

A6 = 27[�β − 1](1 + β)

4β2 , (81)

A7 = [8πβ(1 + β)r2
0 + α][59 + (44 − 15�)β]

16πβ3r0
, (82)

A8

=−768πr2
0 β3+1536πr2

0 β2+[768πr2
0 +(387−33�)α]β+420α

32πβ3 ,

(83)

A9 = 157α(1 + β)r0

16πβ3 . (84)

11 The numerator is a concave up parabola in r if β < −1, and so the
maxima are reached in r0 and in Rb, but the minimum of the denom-
inator is in r0. This reasoning holds, at least, for parabola which are
symmetric with respect to the axis going through their vertex, e.g. for

Rb ∼ 16πβ(β+1)r2
0

8πβ(1−�ebta)r0
− r0. We also recall that the maximum should be

computed with respect to the tortoise coordinate, but for our spacetime
the tortoise coordinate is an increasing function of the radial coordinate.

By noticing that A6 > 0 and that the numerators are given
by some constants independent of r , for maximizing the func-
tion we minimize the denominator and obtain once again12

r = r0. Therefore, for the frequency of the quasi-normal
modes of oscillation for massless perturbations, we obtain:

ω2
ms = r1

r4
0

[
8πr2

0 β[(� + 2)β + 1] − α

πβ2 − i

4

(
n + 1

2

)

×
√

8πr2
0 β[3�β(1 + β)+(8β + 13)β + 5]−3[(� + 5)β + 4]α

πβ3

⎤
⎦

+ O(α2) , (85)

where we can note that the argument of the square root is
positive for large �. This result provides a consistency check
with the previously identified lack of circular orbits for mass-
less particles when we inspected Eq. (13). In fact, the Lya-
punov exponent γ which governs the stability of the orbit as
δrn = eγ nδrin, where δrin and δrn are the initial perturbation
and the perturbation after n turns to the radius of such orbit,

is γ ∼
√

−2V ′′
ms0 > 0 indicating that these orbits are quickly

destroyed [85,86].

12 We can also note that the leading term in the asymptotic regime � �
1 reads

27r2
1 �

4πβ3r8r0

[
πr0β

2(1 + β)r2 − 5β[8πr2
0 β(1+β)+α]r

36 + 11αβr0r
72

]
, in

which we can apply the same reasoning of our footnote 11 once we
have noticed that the denominator has a negative sign, and the sign in
front of the quadratic term of the numerator is negative as well.
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5 Conclusion

Wormhole geometries have been studied recently both from
the purely theoretical and the astrophysical perspectives. In
the former context, an invariant procedure for locating the
throat via appropriate curvature scalars has been proposed in
[87], while a mechanism for realizing multithroat spacetimes
has been discovered in [88]. On the other hand, the possibil-
ity of distinguishing astrophysically a wormhole from other
compact objects by tracking the motion of nearby stars has
been put forward in [89]: this procedure relies on the lack of
energy conservation on one side of the throat, should matter
falls into it and end up on the other-side connected universe.
Thus, the finding of new wormhole geometries is in order
because it can help in advancing the understanding of such
compact objects.

In this paper, we have presented new solutions of the Ein-
stein equation for a transparent static spherically symmetric
spacetime supported by a (Modified) Berthelot fluid. They
are constituted by Eq. (1) with (9) and (21). We have specif-
ically explained that the former two equations, which can be
assumed independently on considerations about the specific
matter content of the spacetime, already allow to identify
some properties of the novel solutions as the possible exis-
tence of a singularity and the lack of a photon sphere. We
have also clarified that the existence of an horizon hiding
the singularity depends, for our fluid modeling, on having
a gravitational collapse governed by an isotropic pressure,
while we can have a wormhole throat for a suitable choice of
the integration constant. We could provide analytical results
for the amount of “complexity” of the spacetime and relate
it to the Christodoulou-Rovelli volume. We also proposed an
interpretation of the former, as far as our model in concerned,
as a quantity setting the size of the throat of the wormhole.
We have proposed as well some possible astrophysical appli-
cations of our solutions depending on whether we choose
to match them with an exterior spacetime (analyzing the
shadow) or not (by identifying the asymptotically flatness
of rotation curves). The taming of the breaking of the null
energy condition has been pointed out, and an equation of
state for the tangential pressure could be found in a closed
form. We emphasize that we have not “cooked up” a new
equation of state for the radial pressure, but we have actu-
ally adopted the (Modified) Berthelot model (6) because it
has already received attention in the cosmological literature
[27–31], also being shown to correspond to the hydrodynam-
ical realization of the free Dirac–Born–Infeld model [32]. We
have analyzed the stability of our wormhole solution by com-
puting analytically the frequency of the quasi-normal modes
of oscillation in the eikonal limit, which have revealed that
actually their analysis alone might be inconclusive for identi-
fying the nature of an astrophysical compact object due to the
identification, for some sets of the free parameters, of a quasi-

resonance which is typical also of the Reissner–Nordström
black hole.

In this paper, we have investigated the features of our novel
wormhole solution from the astrophysical perspective only,
without relying on field-theoretic considerations. For exam-
ple, nothing has been claimed about the entropy, temperature
and possible evaporation of our wormhole. We should nev-
ertheless mention Hod’s conjecture according to which the
temperature T might be essentially given by the real part of
the frequency of the quasi-normal modes [90]: by applying
it to our Eq. (85), we would obtain that a wormhole with
a throat size such that r0 ∼ √

α/(8π�β2) would exist at
T = 0. Furthermore, having in hand an manageable exact
solution constituted by our Eqs. (1), (9), (21) can allow for an
inspection of the ER=EPR correspondence conjecture [91].
All these topics are left for future investigations.
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