

Materials for Quantum Technology

OPEN ACCESS

RECEIVED
15 February 2022

REVISED
3 May 2022

ACCEPTED FOR PUBLICATION
12 May 2022

PUBLISHED
1 July 2022

PERSPECTIVE

Scalable integration of quantum emitters into photonic integrated circuits

Marc Sartison , Oscar Camacho Ibarra , Ioannis Caltzidis ,

Dirk Reuter and Klaus D Jöns

Institute for Photonic Quantum Systems, Center for Optoelectronics and Photonics Paderborn, and Department of Physics, Paderborn University, 33098 Paderborn, Germany

* Author to whom any correspondence should be addressed.

E-mail: marc.sartison@upb.de

Keywords: scalable, integration, quantum, emitters, photonics, integrated, circuits

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Abstract

Scaling up photonic quantum devices to reach complexities allowing to solve real-world problems requires a platform enabling scalable integration of solid-state quantum emitter with a high yield. Their nanometer-size together with their excellent quantum optical properties make them the ideal candidates for on-chip photonic quantum technologies. However, robust, scalable integration remains elusive. Here, we discuss the state-of-the-art methods to integrate quantum emitters into photonic integrated circuits, emphasizing the pros and cons of the integration methods applicable for specific quantum emitters. Based on our thorough comparison we give our perspective on the most promising approaches and how to overcome the remaining challenges.

1. Introduction

Quantum photonics has emerged as a promising technology to enable applications in quantum computation [1], communication [2], sensing [3], and simulation [4]. Unlike other carriers of quantum bits, information encoded on photons is only lost by photon absorption and not due to decoherence effects caused by their environment. This makes photons an ideal quantum information carrier only hampered by the source's intrinsic optical coherence. Up to now most photonic quantum technology demonstrations relied on bulky table-top implementations of photonic components, e.g., first quantum key distribution experiments [5] or the recent boson sampling showing quantum advantage [6]. Despite their major scientific impact, these experiments are not scalable to reach real-life applications. The marketability of photonic quantum technologies requires miniaturization and integration into hand-held devices, existing infrastructure, and space applications [7]. The roadblocks observed in many cases occur due to the large size and stability drifts of non-integrated systems. Implementing all device functionality, such as photonic quantum bit generation, manipulation, storage, and detection, on a scalable photonic integrated circuit (PIC) will significantly improve these shortcomings. A recent roadmap paper from Pelucchi *et al* [7] discussed in details the requirements on these quantum PICs, their building blocks, possible use cases, and the challenges hindering their realizations. One of the major bottlenecks is the on-chip photonic quantum bit generation. It requires the integration of quantum light sources as well as their efficient coupling to photonic circuits. A scalable approach would finally enable the generation of complex photonic cluster states, a resource for quantum computing and communication. Alongside the steady progress in miniaturization and integration of non-linear quantum light sources [8], a flourishing research field around the integration of solid-state quantum light sources in PICs has emerged to tackle this goal. In this perspective we give an overview of current approaches by categorizing different photonic circuit integration methods and discussing their advantages and disadvantages with respect to the solid-state quantum emitter type.

1.1. Integrable solid-state quantum emitters

Semiconductor quantum dots (QDs) [9, 10] are one of the most versatile quantum emitters developed in the past years, showing outstanding optical properties such as ultra-pure emission of single [11] and indistinguish-

able photons [12, 13] and the emission of entangled photons at cryogenic temperatures [14]. It is also possible to tune the emission wavelength, of epitaxially grown QDs, from the visible to the telecommunication band at 1550 nm via bandgap engineering [15, 16].

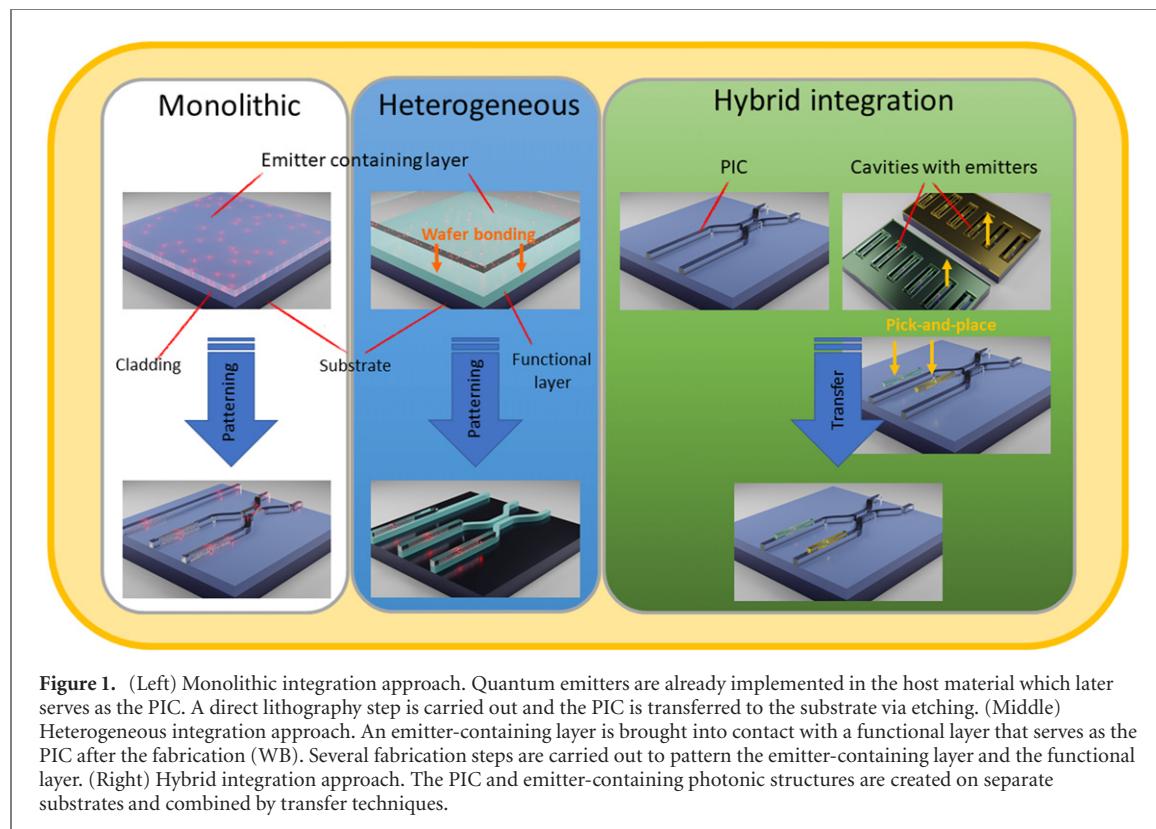
Color centers in diamonds (NV, SiV, etc) [17] are attractive structures for electron spin readout and manipulation [18, 19] due to their long electron spin coherence times in the order of up to seconds [20]. These long coherence times can only be achieved if cryogenic temperatures are employed along with dynamical decoupling techniques that modify the interaction between the system and the environment [21]. The long spin coherence time makes color centers excellent candidates as stationary quantum bits for optically addressable quantum memories [22] and suitable for quantum information processing [23–25] and multi-mode quantum networks [26]. In addition, indistinguishable photons [27, 28] and spin-photon entanglement were reported for NV [29] and SiV [30, 31] centers. Color centers in SiC crystals also offer high photon emission rates [32] as well as electron spin readout possibilities [33]. New developments suggest artificial atoms in silicon [34–36] to be another promising platform for PIC integration.

Single-photon emitters (SPEs) hosted in 2D materials [37–40] [hexagonal boron nitride (hBN), transition metal dichalcogenides like WSe₂ and MoSe, etc] are generated by applying strain to the material [41] or inducing defects [42]. The wavelength is determined by the choice of material [43] and can be also tuned by changing the strain acting on the flake [44]. The location of emitter formation is controllable by placing strain-seeds or by targeted irradiation [42, 45, 46]. Even though single-photon emission has been achieved in various experiments the confirmation of indistinguishability of those photons remains elusive due to spectral diffusion and wandering of the emitters [39, 47, 48]. A solution might be the integration in on-chip cavities using the Purcell enhancement to overcome the low optical coherence times induced by dephasing mechanisms stemming from phonon interactions [49, 50]. Further research in source engineering is needed to achieve Fourier-limited photons and performances comparable to state-of-the-art solid-state quantum emitters like QDs and defects in diamonds [51, 52].

Despite their low intrinsic emission rates due to long-lived states, rare-earth ions [53] in crystals show promising applications in quantum memories when interfaced with single photons. Placing them in cavities coupled to a waveguide would be an ideal system to enhance the spontaneous emission rate and achieve near-unity coupling efficiencies (β) into the waveguide.

Single-wall carbon nanotubes (SWCNTs) show large excitonic binding energies and light emission over a broad wavelength range [54] from the near-infrared up to the telecom O-band, even allowing for the observation of room-temperature single-photon emission [55]. Interfacing SWCNTs with plasmonic nano-antennas at cryogenic temperatures, exploiting cavity quantum electrodynamic effects, even made it possible to show the emission of indistinguishable photons in the telecom O-band [56].

Single molecules based on polycyclic aromatic hydrocarbons: terylene (Tr), perylene, dibenzanthanthrene (DBATT), and dibenzoterrylene (DBT), are another group of promising SPEs [57]. Tr molecules have shown a near-unity quantum yield [58]. While on more recent years, single-photon purity as low as 0.003 on DBATT molecules [59] and 20% coupling efficiencies between SiN waveguides and DBT molecules [60] have been demonstrated.


Finally, colloidal QDs are another group of auspicious SPEs. Colloidal QDs are formed by pieces of semiconductor crystals in the nanoscale regime, which are protected by an outer layer of ligands. This outer layer or shell allows them to disperse stably inside a solvent. Single-photon purity values as low as 0.004 have been shown for CdSe/ZnS colloidal QDs [61]. A compressive review of their properties and fabrication methods can be found in reference [62].

2. Overview on state-of-the-art integration methods

After a quick introduction to possible integrable quantum emitters, we give a thorough elaboration on the three main integration methods and compatible emitter platforms, as well as their limitations.

2.1. Monolithic integration

A straightforward approach to integrate SPEs into PIC is to fabricate the circuits out of the material hosting the emitters [63], also called monolithic integration (see figure 1 (left)). The emitters are either randomly induced across the sample [64–67] or generated at predetermined locations (site-controlled generation) [68–70]. Subsequently, photonic structures are fabricated around those SPEs to, e.g., tune their spin properties [22], increase their brightness [68, 71], or analyze their single-photon properties, i.e., purity or indistinguishability [72] on chip.

Figure 1. (Left) Monolithic integration approach. Quantum emitters are already implemented in the host material which later serves as the PIC. A direct lithography step is carried out and the PIC is transferred to the substrate via etching. (Middle) Heterogeneous integration approach. An emitter-containing layer is brought into contact with a functional layer that serves as the PIC after the fabrication (WB). Several fabrication steps are carried out to pattern the emitter-containing layer and the functional layer. (Right) Hybrid integration approach. The PIC and emitter-containing photonic structures are created on separate substrates and combined by transfer techniques.

2.1.1. Compatible platforms

Prominent examples of monolithic integrations are color centers in diamond and silicon carbide [22, 69, 71, 73, 74]. New developments of SPEs in silicon nitride [75] and G-centers in silicon [34–36], expand the material list where monolithic integration might be or is possible, respectively. Monolithic integration also has been demonstrated fabricating free-standing hBN circuits combined with subsequent emitter generation by an annealing process [64]. QDs fabricated on the InAs/GaAs platform have been extensively used as quantum emitters for PIC fabrication, enabling components like 50:50 beam splitters [76], cavities [77] and on-chip Hong–Ou–Mandel experiments [72].

2.1.2. Limitations

The most significant drawback in this approach is the limitation to one material platform and its optical properties. While some platforms exhibit large thermo-optical or electro-optical manipulation properties, others exhibit strong nonlinearities [63], which could be desirable to have on the same chip. During monolithic processing, random implementation of other emitters into the circuitry cannot be avoided in most emitter platforms resulting in photon scattering, re-absorption, and losses reducing the device performance. In addition, a few materials like diamond or SiC are rather difficult to process due to their chemical robustness, leading to rough sidewalls that can induce photon loss inside the PIC. That means working with only one material platform may prevent the development of high-performance devices.

2.2. Heterogeneous integration

In the heterogeneous integration approach, two or more material platforms that cannot be produced in one step before the circuit fabrication are brought into direct contact (see figure 1 (center)). The most prominent example of heterogeneous integration is wafer bonding (WB). One of the oldest integration methods designed and optimized to interface two materials, typically different semiconductors with silicon (Si) for electrical integrated circuits [78].

2.2.1. Compatible platforms

WB interfacing the Si platform with III–V semiconductors [79] has been successfully used to integrate single-photon sources (SPS) in PICs. An In(Ga)As QD-hosting layer was bonded onto a Si_3N_4 substrate. Afterwards, Si_3N_4 waveguides were produced and QD-containing nanobeams were fabricated aligned with the waveguide position, achieving optical coupling of single photons to the Si_3N_4 circuit up to 90% [80, 81]. To mitigate coupling losses between the two different material platforms another approach uses one material as the PIC

cladding material and the wafer bonded SPS host material also as the waveguide core. This has been used to integrate 4H-SiC PICs on SiO₂ [74].

2.2.2. Limitations

WB relies on van-der-Waals forces as a prebonding step for the wafers. This step requires flat and cleaned surfaces before bringing them into contact. The formed bond is later strengthened either by an annealing step at high temperatures $> 700^\circ\text{C}$ or if the structure cannot withstand high temperatures by more modern low or room temperature methods: plasma-activated bonding and ultraviolet-activated bonding. For a comprehensive review of these and other methods please check reference [82].

2.3. Hybrid integration

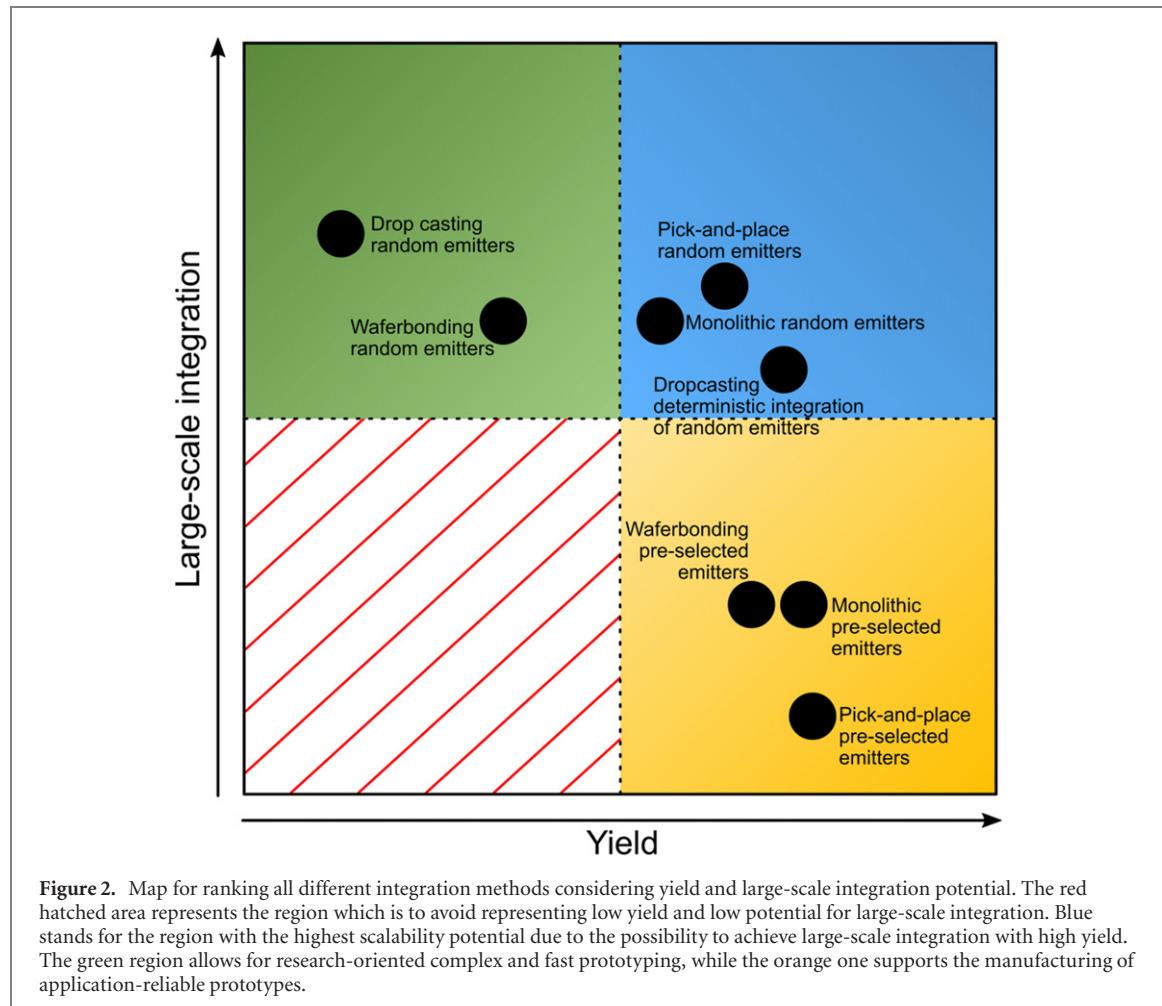
We define hybrid integration as a method where two or more devices are independently fabricated on different platforms and later integrated on the same chip (see figure 1 (right)). In general, this method allows for the realization of a large set of functionalities on hybrid integrated circuits, since each individual component can be independently optimised [83].

For hybrid quantum emitter integration one method is drop-casting SPEs in a solution on a PIC. Drop casting is a straightforward hybrid integration method. In this process, the SPEs are initially contained within a liquid solution and later deposited on top of the substrate or PIC by spreading a droplet of the solution. This method has the main drawback of random deposition of the SPEs on top of the PIC surface resulting in an inhomogeneous concentration of SPEs and probabilistic placement of the emitters. This last issue can be circumvented by engineering the PIC in such a way the solution containing the SPEs gets trapped before evaporating the solvent, therefore giving reproducibility to the placement of the SPEs on the PIC. In the case of carbon nanotubes, the drop-casting method has been used to deposit the SWCNT's on a specific position of the PIC. This is achieved by applying an electrical field on the PIC to guide the nanotubes to the desired position by exploiting the polarizability of the SWCNT's [84, 85]. Different SPEs have already been integrated by this method, for example, DBT molecules on Si₃N₄ waveguides [60], DBT molecules on ring resonators coupled to TiO₂ waveguides [86], nanodiamonds in ring resonator [87], hBN flake on Si₃N₄ waveguides [88], carbon nanotubes into waveguides [89] and ring resonators [90] and colloidal QDs into tantalum pentoxide waveguides [91]. Nonetheless, for higher yield and better positioning accuracy the pick-and-place method for hybrid SPE integration has been successfully developed (see figure 1 on the right).

2.3.1. Pick-and-place

Pick-and-place is one prominent example of a hybrid integration method where the SPE and the PIC are fabricated on different platforms and brought together with the help of nano- or micromanipulators. Typically, tungsten [92] and glass needles [93], atomic force and scanning tunneling microscope (AFM/STM) tips [94, 95], or electrostatic [96] tips are used for the transfer process. Another approach is based on viscoelastic stamps typically made from polydimethylsiloxane (PDMS) or other low glass temperature polymers [97]. Performing the pick-and-place method with a PDMS stamp is also referred to as transfer printing in the literature.

2.3.1.1. Compatible platforms Tungsten needles have been utilized to transfer individual SPEs embedded in nanowire structures for waveguide integration [98] or to transfer multiple microbeam-cavities containing heterogeneous SPEs onto PICs [99]. A near-unity theoretical emitter-to-PIC coupling efficiency, considering the dipole orientation with respect to the PIC and resulting losses, is predicted for PDMS stamp transfer of QDs embedded in photonic crystal cavities [100]. Glass needles have been used to pick up semiconductor photonic trumpets [93]. While AFM and STM tips have been employed with [95] and without electric potential [94] to arrange nanodiamonds on PICs. The transfer printing method is extensively exploited for 2D materials [46, 101], where multiple SPEs are generated with one transfer. Even large-scale deterministic creation of emitters in 2D materials has been shown by, for example, transfer printing tungsten diselenide WSe₂ onto an array of micropillars [45, 46]. Furthermore, a transfer method based on a thermal release tape approach has been developed providing large-scale transfer of thin membranes [102]. The wide range of successful applications of pick-and-place techniques demonstrated a high degree of positioning control [98, 103, 104] and large-scale integration [99], making the pick-and-place methods indispensable tools in the state-of-the-art fabrication of hybrid quantum photonic circuitry.


2.3.1.2. Limitation The transfer process is labor-intensive. Microscopic structures must be found and aligned with the transfer device. The surface quality of the sample is here as crucial as in the case of WB since contamination will interfere with the van-der-Waals or electrostatic forces between the different platforms.

2.4. Overview of quantum emitter integration approaches

In this section, we compare a large variety of integration methods and suitable quantum emitters. We categorize them into random and deterministic integration approaches. Typically, random integration allows for

Table 1. Categorization of integration methods for emitters with respect to scalability.

Integration method	Emitter type	Yield	Large-scale	Scalability	Challenges
Drop casting (random)	SWCNT [89, 108]	Low	Yes	No	All: intrinsically not scalable due to the poor reproducibility of the emitters placement.
	Molecules [60]	Low	Yes	No	
Pick-and-place (random)	2D materials [101, 109]	High	Yes	Yes	All: due to the randomness of the process the emitter properties are not guaranteed.
	hBN [110]	High	Yes	Yes	
	Rare-earth ions [113]	Low	Yes	No	
	QDs [97, 100, 104]	Low	Yes	No	
	NV-centers in diamond [99]	Low	Yes	No	
Monolithic (random)	NV-center in diamond [73]	High	Yes	Yes	All: since the integration is monolithic the usability of the devices is limited. Randomly placed emitters in the wave guides introduce high photon losses.
	QDs [72]	High	Yes	Yes	
	SiC-color centers [114]	High	Yes	Yes	
	hBN [115]	High	Yes	Yes	
	G-centers in silicon [34–36]	High	Yes	Yes	
Monolithic (deterministic)	SiV centers in SiC [69, 70]	Low	Yes	No	SiC: yield of emitter creation via ion implantation has to be improved. QDs: well-performing site-controlled QDs have to be produced. Pre-characterization is time-consuming.
	QDs [76]	High	No	No	
WB (random)	QDs [80]	High	Yes	Yes	QDs: poor SP properties. It was proposed in [80] to lower the density of QDs and employ a site-controlled QD technique. This would also result in a higher yield. SiC-color centers have poor yield. To achieve a higher yield it was proposed in [114] the use of a focused ion beam to irradiate the sample.
	SiC-color centers [74]	Low	Yes	No	
Dropcasting (deterministic)	hBN [88]	Low	No	No	All: needs further control over the number of deposited emitters. Colloidal QDs: 80% placement yield and 48% of that show single-photon emission [91].
	Colloidal QDs in nanobeam cavities [116] and waveguides [91]	High	Yes	Yes	
	SWCNTs [84, 85, 117, 118]	High	Yes	Yes	
	Nanodiamonds [112]	Medium	Yes	No	
WB (deterministic)	QDs [81]	High	No	No	Pre-characterization-based deterministic integration techniques are relatively slow. It is fast for prototyping but slow for large scale manufacturing.
Pick-and-place (deterministic)	QD nanowires [92, 103]	High	No	No	All: high-speed and high-precision microscopic placement has to be developed.
	NV-centers in nanodiamonds [95]	High	No	No	
	Carbon nanotubes [119]	High	No	No	

scalability by sacrificing high yield, whereas deterministic approaches drastically increase the yield but are more time-consuming. In the past, many approaches have been developed to deterministically incorporate quantum emitters into various platforms compatible with PICs, such as precise ion implantation for emitter generation or deterministic lithography approaches based on emitter localization [105–107]. Currently, there is no ideal integration method for all emitter platforms, but some are more suitable than others when it comes to scalability. In table 1 we would like to address two requirements that are essential for scalable integration, namely high yield and large scale processing, which are challenging to achieve simultaneously. Scalability can only be achieved if large-scale processing is combined with a high production yield of properly working final devices.

So far, no integration platform has made it into a market-ready SPE-coupled PIC device. Currently, different solid-state quantum emitters require distinct approaches for integration. In the case of heterogeneous and hybrid integration, these often stem from (i) the poor optical properties of the quantum emitter host material as a circuit platform, preventing monolithic integration. (ii) Immature nanofabrication of the quantum emitter host material, making the monolithic large-scale circuit fabrication unfeasible. For the latter, new fabrication technologies might cause a paradigm shift enabling scalable integration of quantum emitters with high yield. Until then the community needs to continue to explore different routes for integration and further push the boundaries of nanofabrication.

In table 1 we stated challenges that different integration methods currently face to achieve large-scale integration of SPE in functional PIC devices. To overcome most of these challenges we need to (i) gain precise knowledge and control over the emitter position and spectral properties like photon indistinguishability, entanglement fidelity, spectral jitter, decay times, and many more depending on the application; (ii) ideally fabricate an ordered array of emitters with known properties enabling scalable interfaces with PICs or other optical devices since their geometry and properties can be tailored precisely with respect to the emitter characteristics.

Taking the information of table 1 into account, we present our current assessments of methods to realize scalable integration of quantum emitters into PICs in figure 2. We divide the methods roughly in four categories. The red hatched region represents emitter integration with low yield and no potential for large scale

integration. This region should be avoided since it does not have any potential for scalability. However methods providing low yield, but large-scale emitter integration can be used for fast research-oriented complex prototyping in proof-of-principle experiments (green area). The orange region represents high integration yield, but lacks the potential for large-scale integration, but being useful for application reliable prototyping. Methods with high production yield and showing large-scale integration at the same time are represented by the blue region fulfilling the criteria for scalable emitter integration.

The ranking is a snapshot of the current state-of-the-art of integration methods with respect to potentials in scalability.

2.5. Conclusion

Based on our comparison we conclude that pick-and-place techniques are more suitable in the short run to deliver scalable quantum emitter integration. It enables devices that are not realizable via monolithic or wafer-bonding schemes. Currently, the way to go is to mix and match, rather than try to optimize a single platform, making sacrifices on performance. Thus, combining optimized photonic structures, such as nanobeam resonators containing embedded quantum emitters, with specifically tailored photonic circuits will be the integration method of choice for the coming years. This method is limited by a large time consumption but offers the highest performance with maximum reconfigurability. This is important when realizing different functionalities on a single chip, i.e. adding active circuit elements such as modulators or nonlinear optics, or single-photon detectors. Pick-and-place methods combine the best of quantum emitter research with the best photonic circuitry platform. Furthermore, it is not only limited to two different material systems. It gives the possibility to interface quantum emitters and memories from entirely different platforms, such as color centers in diamond or SiC, 2D materials, and QDs. This becomes especially interesting considering the telecom wavelength range where state-of-the-art telecom QDs could be interfaced with SiV centers in diamond or rare-earth ions as memories.

In summary, collective efforts from the quantum emitter communities and classical PIC platforms are still required to gain full control over the scalable and deterministic integration. Right now proof-of-concept demonstrators of complex integrated circuits are realized by coping with the huge overheads of transfer printing. To bring costs down and yield up in the currently prioritized hybrid integration methods, it is imperative to achieve higher transfer speeds and fabrication accuracies. In this regard, it will prove advantageous to pursue developments in site-controlled emitter fabrication and high-speed transfer methods. If these prerequisites prove to be elusive, we envision a shift away from hybrid integration methods favoring monolithic or heterogeneous integration to reach industrial fabrication standards.

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement Nos. 820423 (S2QUIP) and 899814 (Qurope). We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via SFB TRR142 and the German Federal Ministry of Education and Research via QR.X (16KISQ012).

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID iDs

Marc Sartison <https://orcid.org/0000-0003-0472-7023>

Oscar Camacho Ibarra <https://orcid.org/0000-0001-6401-0476>

Ioannis Caltzidis <https://orcid.org/0000-0001-9586-0238>

Klaus D Jöns <https://orcid.org/0000-0002-5814-7510>

References

- [1] Steane A 1998 Quantum computing *Rep. Prog. Phys.* **61** 117–73
- [2] Gisin N and Thew R 2007 Quantum communication *Nat. Photon.* **1** 165–71
- [3] Degen C L, Reinhard F and Cappellaro P 2017 Quantum sensing *Rev. Mod. Phys.* **89** 035002
- [4] Georgescu I M, Ashhab S and Nori F 2014 Quantum simulation *Rev. Mod. Phys.* **86** 153–85
- [5] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 Experimental quantum cryptography *J. Cryptol.* **5** 3–28

[6] Zhong H-S *et al* 2020 Quantum computational advantage using photons *Science* **370** 1460–3

[7] Pelucchi E *et al* 2021 The potential and global outlook of integrated photonics for quantum technologies *Nat. Rev. Phys.* **4** 194

[8] Wang Y, Jöns K D and Sun. Z 2021 Integrated photon-pair sources with nonlinear optics *Appl. Phys. Rev.* **8** 011314

[9] Senellart P, Solomon G and White A 2017 High-performance semiconductor quantum-dot single-photon sources *Nat. Nanotechnol.* **12** 1026–39

[10] Arakawa Y and Holmes M J 2020 Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview *Appl. Phys. Rev.* **7** 021309

[11] Schweickert L *et al* 2018 On-demand generation of background-free single photons from a solid-state source *Appl. Phys. Lett.* **112** 093106

[12] Somaschi N *et al* 2016 Near-optimal single-photon sources in the solid state *Nat. Photon.* **10** 340–5

[13] Ding X *et al* 2016 On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar *Phys. Rev. Lett.* **116** 020401

[14] Huber D, Reindl M, Aberl J, Rastelli A and Trotta R 2018 Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review *J. Opt.* **20** 073002

[15] Paul M, Olbrich F, Höschele J, Schreier S, Kettler J, Portalupi S L, Jetter M and Michler P 2017 Single-photon emission at 1.55 μ m from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers *Appl. Phys. Lett.* **111** 033102

[16] Portalupi S L, Jetter M and Michler P 2019 InAs quantum dots grown on metamorphic buffers as non-classical light sources at telecom c-band: a review *Semicond. Sci. Technol.* **34** 053001

[17] Aharonovich I, Englund D and Toth M 2016 Solid-state single-photon emitters *Nat. Photon.* **10** 631–41

[18] Steiner M, Neumann P, Beck J, Jelezko F and Wrachtrup J 2010 Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond *Phys. Rev. B* **81** 035205

[19] Rogers L J *et al* 2014 All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond *Phys. Rev. Lett.* **113** 263602

[20] Bar-Gill N, Pham L M, Jarmola A, Budker D and Walsworth R L 2013 Solid-state electronic spin coherence time approaching one second *Nat. Commun.* **4** 1743

[21] Shim J H, Niemeyer I, Zhang J and Suter D 2012 Robust dynamical decoupling for arbitrary quantum states of a single NV center in diamond *Europhys. Lett.* **99** 40004

[22] Li L *et al* 2015 Coherent spin control of a nanocavity-enhanced qubit in diamond *Nat. Commun.* **6** 6173

[23] Hanson R and Awschalom D D 2008 Coherent manipulation of single spins in semiconductors *Nature* **453** 1043–9

[24] Gao W B, Imamoglu A, Bernien H and Hanson R 2015 Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields *Nat. Photon.* **9** 363–73

[25] Awschalom D D, Bassett L C, Dzurak A S, Hu E L and Petta J R 2013 Quantum spintronics: engineering and manipulating atom-like spins in semiconductors *Science* **339** 1174–9

[26] Pompili M *et al* 2021 Realization of a multimode quantum network of remote solid-state qubits *Science* **372** 259–64

[27] Morioka N *et al* 2021 Author correction: spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide *Nat. Commun.* **12** 2516

[28] Sipahigil A, Goldman M L, Togan E, Chu Y, Markham M, Twitchen D J, Zibrov A S, Kubanek A and Lukin M D 2012 Quantum interference of single photons from remote nitrogen-vacancy centers in diamond *Phys. Rev. Lett.* **108** 143601

[29] Vasconcelos R, Reisenbauer S, Salter C, Wachter G, Wirtitsch D, Schmidtmayer J, Walther P and Trupke M 2020 Scalable spin–photon entanglement by time-to-polarization conversion *npj Quantum Information* **6** 9

[30] Nguyen C T *et al* 2019 An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond *Phys. Rev. B* **100** 165428

[31] Nguyen C T *et al* 2019 Quantum network nodes based on diamond qubits with an efficient nanophotonic interface *Phys. Rev. Lett.* **123** 183602

[32] Castelletto S and Boretti A 2020 Silicon carbide color centers for quantum applications *J. Phys. Photon.* **2** 022001

[33] Niethammer M *et al* 2019 Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions *Nat. Commun.* **10** 5569

[34] Hollenbach M, Berencén Y, Kentsch U, Helm M and Astakhov G V 2020 Engineering telecom single-photon emitters in silicon for scalable quantum photonics *Opt. Express* **28** 26111

[35] Redjem W *et al* 2020 Single artificial atoms in silicon emitting at telecom wavelengths *Nat. Electron.* **3** 738–43

[36] Prabhu M, Errando-Herranz C, De Santis L, Christen I, Chen C and Englund D R 2022 Individually addressable artificial atoms in silicon photonics (arXiv:2202.02342 [quant-ph])

[37] Srivastava A, Sidler M, Allain A V, Lembeke D S, Kis A and Imamoğlu A 2015 Optically active quantum dots in monolayer WSe₂ *Nat. Nanotechnol.* **10** 491–6

[38] He Y-M *et al* 2015 Single quantum emitters in monolayer semiconductors *Nat. Nanotechnol.* **10** 497–502

[39] Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillet J-Y, Marcus J, Kossacki P and Potemski M 2015 Single photon emitters in exfoliated WSe₂ structures *Nat. Nanotechnol.* **10** 503–6

[40] Tonndorf P *et al* 2015 Single-photon emission from localized excitons in an atomically thin semiconductor *Optica* **2** 347

[41] Kumar S, Kaczmarsky A and Gerardot B D 2015 Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe₂ *Nano Lett.* **15** 7567–73

[42] Klein J *et al* 2021 Engineering the luminescence and generation of individual defect emitters in atomically thin MoS₂ *ACS Photon.* **8** 669–77

[43] Zhao H, Pettes M T, Zheng Y and Htoon H 2021 Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe₂ *Nat. Commun.* **12** 6753

[44] Iff O *et al* 2019 Strain-tunable single photon sources in WSe₂ monolayers *Nano Lett.* **19** 6931–6

[45] Branny A, Kumar S, Proux R and Gerardot B D 2017 Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor *Nat. Commun.* **8** 15053

[46] Palacios-Berraquero C *et al* 2017 Large-scale quantum-emitter arrays in atomically thin semiconductors *Nat. Commun.* **8** 15093

[47] Dietrich A, Doherty M W, Aharonovich I and Kubanek A 2020 Solid-state single photon source with Fourier transform limited lines at room temperature *Phys. Rev. B* **101** 081401

[48] Turunen M, Brotons-Gisbert M, Dai Y, Wang Y, Scerri E, Bonato C, Jöns K D, Sun Z and Gerardot B D 2022 Quantum photonics with layered 2d materials *Nat. Rev. Phys.* **4** 219

[49] Sortino L *et al* 2021 Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas *Nat. Commun.* **12** 6063

[50] Spokony B, Utzat H, Moon H, Grosso G, Englund D and Bawendi M G 2020 Effect of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride *J. Phys. Chem. Lett.* **11** 1330–5

[51] Anderson M, Müller T, Huwer J, Skiba-Szymanska J, Krysa A B, Stevenson R M, Heffernan J, Ritchie D A and Shields A J 2020 Quantum teleportation using highly coherent emission from telecom C-band quantum dots *npj Quantum Inf.* **6** 14

[52] Riedel D, Söllner I, Shields B, Starosielec S, Appel P, Neu E, Maletinsky P and Warburton R J 2017 Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond *Phys. Rev. X* **7** 031040

[53] Zhong T and Goldner P 2019 Emerging rare-earth doped material platforms for quantum nanophotonics *Nanophotonics* **8** 2003–15

[54] He X, Htoon H, Doorn S K, Pernice W H P, Pyatkov F, Krupke R, Jeantet A, Chassagneux Y and Voisin C 2018 Carbon nanotubes as emerging quantum-light sources *Nat. Mater.* **17** 663–70

[55] He X *et al* 2017 Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes *Nat. Photon.* **11** 577–82

[56] Luo Y, He X, Kim Y, Blackburn J L, Doorn S K, Htoon H and Strauf S 2019 Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands *Nano Lett.* **19** 9037–44

[57] Toninelli C *et al* 2021 Single organic molecules for photonic quantum technologies *Nat. Mater.* **20** 1615–28

[58] Buchler B C, Kalkbrenner T, Hettich C and Sandoghdar V 2005 Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror *Phys. Rev. Lett.* **95** 063003

[59] Rezai M, Wrachtrup J and Gerhardt I 2018 Coherence properties of molecular single photons for quantum networks *Phys. Rev. X* **8** 031026

[60] Lombardi P *et al* 2017 Photostable molecules on chip: integrated sources of nonclassical light *ACS Photon.* **5** 126–32

[61] Brokmann X, Giacobino E, Dahan M and Hermier J P 2004 Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals *Appl. Phys. Lett.* **85** 712–4

[62] Kagan C R, Bassett L C, Murray C B and Thompson S M 2020 Colloidal quantum dots as platforms for quantum information science *Chem. Rev.* **121** 3186–233

[63] Kaur P, Boes A, Ren G, Nguyen T G, Roelkens G and Mitchell A 2021 Hybrid and heterogeneous photonic integration *APL Photon.* **6** 061102

[64] Kim S *et al* 2018 Photonic crystal cavities from hexagonal boron nitride *Nat. Commun.* **9** 2623

[65] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2015 Quantum emission from hexagonal boron nitride monolayers *Nat. Nanotechnol.* **11** 37–41

[66] Yuan Z, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Electrically driven single-photon source *Science* **295** 102–5

[67] Ohta R, Ota Y, Nomura M, Kumagai N, Ishida S, Iwamoto S and Arakawa Y 2011 Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot *Appl. Phys. Lett.* **98** 173104

[68] Scarabelli D, Trusheim M, Gaathon O, Englund D and Wind S J 2016 Nanoscale engineering of closely-spaced electronic spins in diamond *Nano Lett.* **16** 4982–90

[69] Babin C *et al* 2022 Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence *Nat. Mater.* **21** 67–73

[70] Chen Y-C *et al* 2019 Laser writing of scalable single color centers in silicon carbide *Nano Lett.* **19** 2377–83

[71] Faraon A, Barclay P E, Santori C, Fu K-M C and Beausoleil R G 2011 Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity *Nat. Photon.* **5** 301–5

[72] Schwartz M *et al* 2018 Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform *Nano Lett.* **18** 6892–7

[73] Hausmann B J M *et al* 2012 Integrated diamond networks for quantum nanophotonics *Nano Lett.* **12** 1578–82

[74] Lukin D M *et al* 2020 4h-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics *Nat. Photon.* **14** 330–4

[75] Senichev A, Martin Z O, Peana S, Sychev D, Xu X, Lagutchev A S, Boltasseva A and Shalaev V M 2021 Room-temperature single-photon emitters in silicon nitride *Sci. Adv.* **7** eabj0627

[76] Schnauber P *et al* 2018 Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using *in situ* electron beam lithography *Nano Lett.* **18** 2336–42

[77] Hepp S, Bauer S, Hornung F, Schwartz M, Portalupi S L, Jetter M and Michler P 2018 Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission *Opt. Express* **26** 30614

[78] Plößl A and Kräuter G 1999 Wafer direct bonding: tailoring adhesion between brittle materials *Mater. Sci. Eng. R* **25** 1–88

[79] Bao S *et al* 2021 A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers *J. Semicond.* **42** 023106

[80] Davanco M *et al* 2017 Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices *Nat. Commun.* **8** 889

[81] Schnauber P, Singh A, Schall J, Park S I, Song J D, Rodt S, Srinivasan K, Reitzenstein S and Davanco M 2019 Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si₃N₄ quantum photonic circuits *Nano Lett.* **19** 7164–72

[82] Ke S, Li D and Chen S 2020 A review: wafer bonding of si-based semiconductors *J. Phys. D: Appl. Phys.* **53** 323001

[83] Kim J-H, Aghaeimeibodi S, Carolan J, Englund D and Waks E 2020 Hybrid integration methods for on-chip quantum photonics *Optica* **7** 291–308

[84] Khasminskaya S, Pyatkov F, Flavel B S, Pernice W H and Krupke R 2014 Waveguide-integrated light-emitting carbon nanotubes *Adv. Mater.* **26** 3465–72

[85] Pyatkov F, Fütterling V, Khasminskaya S, Flavel B S, Hennrich F, Kappes M M, Krupke R and Pernice W H P 2016 Cavity-enhanced light emission from electrically driven carbon nanotubes *Nat. Photon.* **10** 420–7

[86] Rattenbacher D, Shkarin A, Renger J, Utikal T, Götzinger S and Sandoghdar V 2019 Coherent coupling of single molecules to on-chip ring resonators *New J. Phys.* **21** 062002

[87] Leong V, Kalashnikov D A, Dai J, Alagappan G, Hu T, Davydov V A, Agafonov V N and Krivitskiy L A 2019 Coupling quantum emitters in nanodiamonds to microring resonators for integrated quantum photonics 2019 *Conf. on Lasers and Electro-Optics Europe & European Quantum Electronics Conf. (CLEO/Europe-EQEC)* (IEEE)

[88] Elshaari A W, Skalli A, Gyger S, Nurizzo M, Schweickert L, Esmaeil Zadeh I, Svedendahl M, Steinhauer S and Zwiller V 2021 Deterministic integration of hBN emitter in silicon nitride photonic waveguide *Adv. Quantum Tech.* **4** 2100032

[89] Gaufrès E, Izard N, Noury A, Le Roux X, Rasigade G, Beck A and Vivien L 2012 Light emission in silicon from carbon nanotubes *ACS Nano* **6** 3813–9

[90] Noury A, Roux X L, Vivien L and Izard N 2014 Controlling carbon nanotube photoluminescence using silicon microring resonators *Nanotechnology* **25** 215201

[91] Eich A *et al* 2022 Single-photon emission from individual nanophotonic-integrated colloidal quantum dots *ACS Photon.* **9** 551–8

[92] Elshaari A W *et al* 2018 Strain-tunable quantum integrated photonics *Nano Lett.* **18** 7969–76

[93] Cadeddu D *et al* 2016 A fiber-coupled quantum-dot on a photonic tip *Appl. Phys. Lett.* **108** 011112

[94] Schietinger S, Barth M, Aichele T and Benson O 2009 Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature *Nano Lett.* **9** 1694–8

[95] Schell A W, Kewes G, Schröder T, Wolters J, Aichele T and Benson O 2011 A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices *Rev. Sci. Instrum.* **82** 073709

[96] Lyu Y-K, Ji Z-T, He T, Lu Z and Zhang W 2021 Automated pick-and-place of single nanoparticle using electrically controlled low-surface energy nanotweezer *AIP Adv.* **11** 035219

[97] Katsumi R, Ota Y, Osada A, Yamaguchi T, Tajiri T, Kakuda M, Iwamoto S, Akiyama H and Arakawa Y 2019 Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing *APL Photon.* **4** 036105

[98] Elshaari A W, Zadeh I E, Fognini A, Reimer M E, Dalacu D, Poole P J, Zwiller V and Jöns K D 2017 On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits *Nat. Commun.* **8** 379

[99] Wan N H *et al* 2020 Large-scale integration of artificial atoms in hybrid photonic circuits *Nature* **583** 226–31

[100] Katsumi R, Ota Y, Tajiri T, Kakuda M, Iwamoto S, Akiyama H and Arakawa Y 2021 Unidirectional output from a quantum-dot single-photon source hybrid integrated on silicon *Opt. Express* **29** 37117

[101] Errando-Herranz C *et al* 2021 Resonance fluorescence from waveguide-coupled, strain-localized, two-dimensional quantum emitters *ACS Photon.* **8** 1069–76

[102] Haws C, Guha B, Perez E, Davanco M, Song J D, Srinivasan K and Sapienza L 2022 Thermal release tape-assisted semiconductor membrane transfer process for hybrid photonic devices embedding quantum emitters (arXiv:2202.06724 [physics.app-ph])

[103] Zadeh I E, Elshaari A W, Jöns K D, Fognini A, Dalacu D, Poole P J, Reimer M E and Zwiller V 2016 Deterministic integration of single photon sources in silicon based photonic circuits *Nano Lett.* **16** 2289–94

[104] Katsumi R, Ota Y, Kakuda M, Iwamoto S and Arakawa Y 2018 Transfer-printed single-photon sources coupled to wire waveguides *Optica* **5** 691

[105] Sapienza L, Davanço M, Badolato A and Srinivasan K 2015 Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission *Nat. Commun.* **6** 7833

[106] Gschrey M, Gericke F, Schüßler A, Schmidt R, Schulze J-H, Heindel T, Rodt S, Strittmatter A and Reitzenstein S 2013 *In situ* electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy *Appl. Phys. Lett.* **102** 251113

[107] Dousse A *et al* 2008 Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography *Phys. Rev. Lett.* **101** 267404

[108] Ishii A, He X, Hartmann N F, Machiya H, Htoon H, Doorn S K and Kato Y K 2018 Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities *Nano Lett.* **18** 3873–8

[109] Peyskens F, Chakraborty C, Muneeb M, Van Thourhout D and Englund D 2019 Integration of single photon emitters in 2d layered materials with a silicon nitride photonic chip *Nat. Commun.* **10** 4435

[110] Fröch J E, Kim S, Mendelson N, Kianinia M, Toth M and Aharonovich I 2020 Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities *ACS Nano* **14** 7085–91

[111] Radulaski M *et al* 2017 Scalable quantum photonics with single color centers in silicon carbide *Nano Lett.* **17** 1782–6

[112] Komrakova S, Javadzade J, Vorobyov V, Bolshedovskii S, Soshenko V, Akimov A, Kovalyuk V, Korneev A and Goltsman G 2019 CMOS compatible nanoantenna-nanodiamond integration *J. Phys.: Conf. Ser.* **1410** 012180

[113] Dibos A M, Raha M, Phenicie C M and Thompson J D 2018 Atomic source of single photons in the telecom band *Phys. Rev. Lett.* **120** 243601

[114] Crook A L *et al* 2020 Purcell enhancement of a single silicon carbide color center with coherent spin control *Nano Lett.* **20** 3427–34

[115] Li C, Fröch J E, Nonahal M, Tran T N, Toth M, Kim S and Aharonovich I 2021 Integration of hBN quantum emitters in monolithically fabricated waveguides *ACS Photon.* **8** 2966–72

[116] Chen Y, Ryou A, Friedfeld M R, Fryett T, Whitehead J, Cossairt B M and Majumdar A 2018 Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities *Nano Lett.* **18** 6404–10

[117] Khasminskaya S *et al* 2016 Fully integrated quantum photonic circuit with an electrically driven light source *Nat. Photon.* **10** 727–32

[118] Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H and Krupke R 2007 Ultra-large-scale directed assembly of single-walled carbon nanotube devices *Nano Lett.* **7** 1556–60

[119] Eichhorn V *et al* 2009 A nanorobotic system for automated pick-and-place handling and characterization of CNTs 2009 *IEEE Int. Conf. on Robotics and Automation* (IEEE)