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Abstract
Iterative Learning Control (ILC) is a technique for adap-

tive feed forward control of electro-mechanical plant that
either performs programmed periodic behavior or rejects
quasi-periodic disturbances. For example, ILC can suppress
particle-beam RF-loading transients in RF cavities for accel-
eration. This paper, for the first time, explains the structural
causes of “bad learning transients” for causal and noncausal
learning in terms of their eigen-system properties. This
paper underscores the fundamental importance of the lin-
ear weighted-sums of the column elements of the iteration
matrix in determining convergence, and the relation to the
convergence of sum of squares. This paper explains how
to apply the z-transform convergence criteria to causal and
noncausal learning. These criteria have an enormous ad-
vantage over the matrix formulation because the algorithm
scales as 𝑁2 (or smaller) versus 𝑁3, where 𝑁 is the length
of the column vector containing the time series. Finally, the
paper reminds readers that there are also wave-like (soliton)
solutions of the ILC equations that may occur even when all
convergence criteria are satisfied.

INTRODUCTION
Iterative Learning Control (ILC) is a method to train

robots to perform repetitive tasks, or train a system to re-
ject quasi-periodic disturbances. ILC is concerned with
iterations of a trial. A trial consists of a plant operator P gen-
erating a time-series of values in response to an input vector
d. The series is processed by a learning function L. The vec-
tor e = (I − PL)d ≡ Fd becomes the input for the next trial,
and so on. So ILC is concerned with a sequence of series,
and the convergence of that sequence. If L delays (lowers)
or advances (lifts) the data record, learning is called causal
or noncausal, respectively. "Advances" serve to pre-empt
the disturbance. In the limit of infinite vectors and matrices,
there is an equivalent z-operator equation 𝑒(𝑧) = 𝐹 (𝑧)𝑑 (𝑧)
if L is causal, and a recursion if 𝐿 (𝑧) is noncausal.

The ILC concept dates back to the 1980’s and achieved
some degree of maturity circa 2006 as outlined in the inspira-
tional review [1], which recounts conditions for asymptotic
convergence (AC) based on the eigenvalues of F, and mono-
tonic convergence (MC) of the error-vector norm based on
the eigenvalues of S = FTF. And for causal learning only,
the review gives z-operator conditions for iteration-stability
and monotonic convergence of the error-norm (that are iden-
tical). Thus it may be surprising to see “Foundations...” in
the title of this work. However, the asymptotic (and similar
geometric) convergence conditions are ineffective. For plant
operating-points in the domain between the AC and MC con-
ditions, extremely large transients may occur before ultimate
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convergence; so large that the plant will certainly be dam-
aged. The review [1] acknowledges these transients, but does
not explain them. Ref. [2] offers an explanation of the tran-
sients, but it is unconvincing. In subsequent decades, ever
more elaborate and sophisticated (and successful) schemes
have been used to avoid the learning transients. But “work
arounds” are not fundamental; various authors [3-5] lament
the incompleteness of ILC convergence theory.

This work presents structural explanations of causal and
non-causal learning transients, and demonstrates why ge-
ometric convergence of their eigen-systems of F does not
imply monotonic convergence of the error-vector norm. This
work presents z-domain MC conditions for noncausal learn-
ing, and explains how these tests may be performed using
experimental data from the plant. Further, we stress the stun-
ning computational advantage of z-domain over eigenvalues.
Illustrative examples are provided in Refs. [6-8].

Toeplitz Matrices
Elements of Toeplitz matrices obey the rule 𝐹𝑖, 𝑗 =

𝐹𝑖+1, 𝑗+1 = 𝑓𝑖− 𝑗 . Sums of these matrices are also Toeplitz.
Special cases are the triangular forms: “lower” 𝐹𝑖, 𝑗 = 0
when 𝑗 > 𝑖, and “upper” 𝐹𝑖, 𝑗 = 0 when 𝑖 > 𝑗 . Pure causal/
noncausal learning matrices L are lower/upper, respectively.
The product of upper and lower Toeplitz matrices is not
Toeplitz. The response of physical, linear systems can be de-
scribed by a convolution integral with the impulse response
as kernel. The exact analogue of convolution for physical
plant in discrete time is a lower Toeplitz matrix P, where the
first column is the sampled impulse response. The iteration
matrix F is (is not) Toeplitz for causal (nocausal) learning.

MATRIX EIGEN-SYSTEMS
We abbreviate eigenvector/eigenvalue to e-vector/e-value.

Let 𝜆 and 𝜎 be the e-values of F and S, respectively. Un-
derlying the “mystery” of learning transients is that authors
have focused on e-values, but not paid attention to e-vectors.
The sum of squares iterates according to: xT

𝑛+1x𝑛+1 = xT
𝑛Sx𝑛.

Modulus of all e-values < 1 is a sufficient condition for
monotonic convergence of the vector norm, only if the e-
values and e-vectors are real and distinct.1 𝜆 are complex.
𝜎 are real and distinct. This is the root cause of transients
for noncausal learning: from a complex vector basis and
a spectrum of e-vals, it is possible to synthesize functions
that initially grow and then decay. This is the analogue of
the Laplace inversion integral wherein an almost arbitrary
(single-sided) time function is synthesized from a spectrum
of decaying exponentials. Nevertheless, the condition largest
value |𝜆̂ | ≤ 1 has some utility: it cuts down the domain of
operating points and it’s computational cost is O(< 𝑁2).

1 This follows from specifics of similarity transform between vector bases.
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Now is the time for a revelation: a triangular Toeplitz
matrix does not have an eigen-system! The putative eigen-
value equation (F − 𝜆I)e = 0 has an infinite set of trivial
solutions e = 0 satisfied by any value of 𝜆. All but one of
the e-vectors of a triangular matrix are trivial zero vectors;
therefore, the usual results for complete eigen-systems (that
have a full set of non-zero e-vectors) do not apply. For exam-
ple, the matrix power F𝑛 resulting from 𝑛 iterations cannot
be found in terms of e-vectors and e-values. As important
as the condition |𝜆 | ≤ 1, is the region 𝜆 → 0 which gives
super-convergence for causal learning.

Causal Learning
F is lower Toeplitz. If the z-operator 𝐹 (𝑧) is known, the

elements of F𝑛 can be found from the inverse z-transform:

𝐹𝑛
𝑖, 𝑗 =

1
2𝜋

√
−1

∮
𝐹 (𝑧)𝑛 𝑧

𝑖

𝑧 𝑗
𝑑𝑧

𝑧
.

Alternatively, working directly with the iteration equation
x𝑛+1 = Fx𝑛, the system is solved row-by row by the method
of forward-substitution and solving a recurrence equation
for each row. The number of terms required to represent the
last matrix element 𝐹𝑛

𝑁,1 grows exponentially with matrix
dimension 𝑁 . Explicitly for 𝑁 = 4, the first column is:

𝐹𝑛
1

𝑛𝐹𝑛−1
1 𝐹2

1
2𝑛𝐹

𝑛−2
1

(
(𝑛 − 1)𝐹2

2 + 2𝐹1𝐹3
)

1
6𝑛𝐹

𝑛−3
1

( (
2 − 3𝑛 + 𝑛2) 𝐹3

2 + 6(𝑛 − 1)𝐹1𝐹2𝐹3 + 6𝐹2
1 𝐹4

)
.

Assuming the integer power 𝑛 is large, the largest single term
within 𝐹𝑛

𝑖,1 is 𝑛𝑖𝐹𝑛−𝑖
1 𝐹𝑖

2/(𝑖!). The competition between high
powers of 𝑛 and the eigenvalue 𝐹1 may induce apparently
divergent behavior. However, the factorial in the denomi-
nator, which eventually grows faster than any single power,
guarantees ultimate convergence of the series 𝐹𝑛

𝑖,1 provided
that |𝐹1 | < 1. Thus the asymptotic behaviour depends only
on 𝐹𝑖,𝑖 = 𝐹1, whereas the short time-term is influenced [1]
strongly by the other elements 𝐹𝑗 with 𝑗 > 1.

Z-OPERATORS
The (unilateral) z-transform is the discrete-time version of

the Laplace transform, with 𝑧 ≡ exp(𝑠𝜏) and 𝑠, 𝑧 complex,
and 𝜏 is the sampling period. It converts an infinite time-
series into a weighted sum. z-operators manipulate infinite
sums, and they provide insights to the properties of very
large matrices. The operators have interesting properties,
some of which we write for 𝐹 (𝑧) causal. (Modifications are
required for the noncausal case).

Linear sums property This property is less well known.
Let 𝐹 and 𝑑 be operator and data, respectively. Let 𝑎 be some
particular value of 𝑧 larger than the circle of convergence.

𝑑1 (𝑧) = 𝐹1 (𝑧)𝑑0 (𝑧)
∞∑︁
𝑖=0

𝑑1 [𝑖]/𝑎𝑖 = 𝐹 (𝑎)𝑑0 (𝑎) = 𝐹 (𝑎)
∞∑︁
𝑖=0

𝑑0 [𝑖]/𝑎𝑖

𝑑𝑛 (𝑧) = 𝐹𝑛 (𝑧)𝑑0 (𝑧)

∞∑︁
𝑖=0

𝑑𝑛 [𝑖]/𝑎𝑖 = 𝐹𝑛 (𝑎)𝑑0 (𝑎) = 𝐹𝑛 (𝑎)
∞∑︁
𝑖=0

𝑑0 [𝑖]/𝑎𝑖

∞∑︁
𝑖=0

𝑑𝑛 [𝑖] (±1)𝑖 = 𝐹𝑛 (±1)𝑑0 (±1) = 𝐹𝑛 (±1)
∞∑︁
𝑖=0

𝑑0 [𝑖] (±1)𝑖 .

Here 𝐹 (. . . ) is continuous function; and 𝐹 [. . . ] is discrete
function. Evidently, the ratio of consecutive sums is 𝐹 (𝑎);
and if |𝐹 (𝑎) | < 1 all of these sequences decay as 𝑛 increases.
We may wonder what is the consequence of |𝐹 (𝑧) | < 1 for
all 𝑧 = exp(𝑖𝜃) on the unit circle, and it is answered by
Parseval’s theorem:
∞∑︁
𝑖=0

𝑑𝑛 [𝑖]2=
1
𝜋

∫ 𝜋

0
{𝐹𝑛 (𝑒 𝑗 𝜃 )𝐹𝑛 (𝑒− 𝑗 𝜃 )}{𝑑0 (𝑒 𝑗 𝜃 )𝑑0 (𝑒− 𝑗 𝜃 )}𝑑𝜃.

So the geometric convergence of all possible weighted sums
|𝐹 (𝑒𝑖 𝜃 ) | ≤ 1 implies monotonic convergence of the sum
of squares (MCSS). Notably, 𝐹 (𝑧) is the transform of the
first column of the causal iteration matrix. Further, if 𝜃𝑚 =

𝑚×2𝜋/𝑁 , where integer 𝑚 = 0, 1, 2, . . . 𝑁 , then 𝐹 (𝑧) is the
Fourier series decomposition of the first column of F; so all
quantities needed for the MC test are physically accessible
given the measured impulse response. Further, it should be
note that the two bracketing conditions 𝑠± = −1 ≤ 𝐹 (±1) ≤
1 are trivial to compute, and serve as preconditions: if either
of them fail, there is no feed for deeper analysis.

Noncausal Learning
Noncausal operators are those which attempt to generate

a time series that begins before the time origin (𝑡 = 0). The
physical plant P is incapable of such an operation, and neither
is the real-time control system that runs within an iteration.
However between the iterations, the stored digital data record
may be manipulated at will - which is solely the domain of
the learning function L. So a noncausal operation is made
by manipulating data. This being so, the order of actions is
important: manipulate the record, then let the plant operate
on the data. The matrices operate in the order P.L, and
do not commute. Noncausal learning is made by including
time-advances (lifts) in the learning function. These lifts are
instituted by an upper-Toeplitz matrix. Hence, the product
P.L is lower-Hessenberg, not Toeplitz.

The z-operators discussed thus far were commuting, but
what is needed are operators where the multiplication order
is important. The place to begin is with the rule for lifts
on the data. The general 𝑘-lift operation e =↑𝑘 d has the
unilateral transform:

𝑒(𝑧) = Z{𝑒[𝑖]} = Z{[𝑑 [𝑖 + 𝑘]}

= Z{↑𝑘 𝑑 [𝑖]} = 𝑧𝑘
𝑑 (𝑧) −

𝑘−1∑︁
𝑗=0

𝑑 [ 𝑗]
𝑧 𝑗

 .

M-Term Learning With a Lift Power Series
Suppose the learning operator is L =

∑𝑀
𝑝=0 𝛼𝑝 ↑↑

𝑝, and

iterants are related by x𝑛+1 =

[
I − P

∑𝑀
𝑝=0 𝛼𝑝 ↑↑

𝑝
]

x𝑛.
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The corresponding z-domain iteration is:

𝑑𝑛+1 (𝑧) = 𝐹𝑀 (𝑧)𝑑𝑛 (𝑧) + 𝑃(𝑧)
𝑀∑︁
𝑝=0

𝛼𝑝𝑧
𝑝

𝑝−1∑︁
𝑘=0

𝑑𝑛 [𝑘]
𝑧𝑘

(1)

with 𝐹𝑀 (𝑧) =
[
1 − 𝑃(𝑧)∑𝑀

𝑝=0 𝛼𝑝𝑧
𝑝
]
. Starting with 𝑛 = 0,

let us write the effect of two iterations:

𝑑2 (𝑧) = 𝐹𝑀 (𝑧)2𝑑0 (𝑧) + 𝑃(𝑧)
𝑀∑︁
𝑞=0

𝛼𝑞𝑧
𝑞

𝑞−1∑︁
𝑘=0

𝑧−𝑘𝑑1 [𝑘]

+ 𝐹 (𝑧)𝑀𝑃(𝑧)
𝑀∑︁
𝑝=0

𝛼𝑝𝑧
𝑝

𝑝−1∑︁
𝑘=0

𝑧−𝑘𝑑0 [𝑘] .

The first term, in 𝐹2, is the same as for causal learning.
The second and third terms in 𝑃 and 𝐹𝑃, respectively, are
the cumulant effect of data loss. Fortunately, we do not
need to consider further iterations. All the information re-
quired to construct a convergence test is contained in the
single iteration Eq. (1). As a general principle, the itera-
tions do not convergence unless the sequence initiated by
any single data impulse alone converges. The data impulse
𝛿(𝑡− 𝑗𝜏) corresponds to the sum 𝑑 (𝑧) = 𝑑𝑛 [ 𝑗]/𝑧 𝑗 and collat-
eral 𝑑𝑛 [𝑘] → 𝑑𝑛 [𝑘]𝛿𝑘, 𝑗 . Performing the summation leads
to

𝑑𝑛+1 (𝑧, 𝑗) = 𝐹𝑀 (𝑧) 𝑑𝑛 [ 𝑗]
𝑧 𝑗

+𝑃(𝑧)
𝑀∑︁
𝑝=0

𝛼𝑝𝑧
𝑝

{
𝑧− 𝑗𝑑𝑛 [ 𝑗] if 𝑗 ≥ 0 & 𝑝 − 𝑗 ≥ 1

0 otherwise

}
.

From this equation we may either (i) find the elements 𝐹𝑖, 𝑗 of
column 𝑗 of matrix F by performing the inverse z-transform;
or (ii) investigate the recursion as a function of 𝑗 and 𝑝;
we do the latter. For example, when 𝑀 = 0 (i.e. no lift)
then 𝑑𝑛+1 = 𝐹0 (𝑧)𝑑𝑛 [ 𝑗]/𝑧 𝑗 for all 𝑗 ; in which case every
sequence converges if |𝐹0 (𝑧) | ≤ 1.
For example, when 𝑀 = 1 then 𝑑𝑛+1 = 𝐹0 (𝑧)𝑑𝑛 [0] if 𝑗 = 0,
and 𝑑𝑛+1 = 𝐹1 (𝑧)𝑑𝑛 [ 𝑗]/𝑧 𝑗 if 𝑗 > 0. Hence there are two
simultaneous conditions for MC: |𝐹0 (𝑧) | ≤ 1 and |𝐹1 (𝑧) | ≤
1 for all 𝑧 = 𝑒𝑖 𝜃 . And the equipment operating point must
satisfy them both!
Similarly, for 𝑀 = 2 there are three MC conditions for all
𝑧 = 𝑒𝑖 𝜃 : |𝐹0 (𝑧) | ≤ 1 for 𝑗 = 0 and |𝐹1 (𝑧) | ≤ 1 for 𝑗 = 1 and
𝐹2 (𝑧) | ≤ 1 for 𝑗 ≥ 2. The contraction to causal learning
for 𝑗 < 𝑀 is typical, and has the following interpretation
and implication when 𝑀 = 2. On the first iteration, ma-
trix columns #1,2 behave like a causal operation; and the
remainder behave according to the double lift ↑2. On the
second iteration, columns #1,2,3,4 behave causally; and the
remainder behave like ↑2. The effect slowly sweeps across
the matrix; until after 𝑁/𝑀 iterations the entire matrix oper-
ator behaves as F = I − P. Thus the character of the matrix
changes as the iterations progress. For general case, ILC
system must satisfy 𝑀 simultaneous z-domain monotonic
convergence conditions: |𝐹𝑝 (𝑧) | ≤ 1 for 𝑝 = 0, 1, 2 . . . 𝑀 .

Two Convergence Test Paradigms
The starting point is the measured impulse response of

the physical plant for a particular operating point of the
equipment. The Zero-Order-Hold effect of the sampling
has to be compensated by a lift. From this data, we may
construct the matrix operator P or samples of the z-operator
𝑃(𝑧 = exp[𝑖𝜃𝑛]) in order to perform the MC test. Let 0 <

𝜇 < 1 be an adjustable scalar gain.
Matrix Operators
Construct P and F = I − 𝜇PL. Construct S = FTF. Find
the largest eigenvalue 𝜎 of S. If 𝜎 > 1, ILC is unstable.
Consider to repeat with lower learning gain 𝜇. Making P
takes Order(𝑁) operations, and finding the eigenvalue takes
Order(𝑁3) operations.
Z-operators
Let 𝑖 =

√
−1. Construct 𝑃(𝑧 = exp[𝑖𝜃𝑛]) = 𝑝 + 𝑖𝑞 from

the data. 𝑝 = Re[𝑃] and 𝑞 = Im[𝑃]. Construct 𝐿 (𝑧 =

exp[𝑖𝜃𝑛]) = 𝑎 + 𝑖𝑏 from the analytic expression for the
learning scheme. 𝑎 = Re[𝐿] and 𝑏 = Im[𝐿]. Construct
𝐹 (𝑧) = 1− 𝜇𝑃(𝑧)𝐿 (𝑧). For all values of 𝜃𝑚 evaluate 𝑆(𝜃𝑚)
= |𝐹 (𝑧)𝐹 (𝑧∗) | = 1+2𝜇(𝑏.𝑞− 𝑎.𝑝) + 𝜇2 (𝑎2 + 𝑏2) (𝑝2 + 𝑞2) .
If 𝑆(𝜃𝑚) > 1, ILC is unstable. Consider to repeat with lower
learning gain 𝜇. Making 𝑁 values of 𝑃(𝜃𝑛) takes Order(𝑁2)
operations, and performing the test takes Order(𝑁) opera-
tions. If 𝐿 (𝑧) is noncausal, then the entire procedure has
to be repeated for each lowered learning function until the
residual 𝐿 (𝑧) is causal.

The z-operator offers the advantage over matrix operators
of 𝑁2 versus 𝑁3 computational steps. In either case, it is
important to think at the outset think about an appropriate
sampling period and matrix size. There is a huge cost to the
stability analysis of choosing more samples than is necessary.

SOLITONS
At the outset, the eigen-system analysis of ILC presumes

that the iteration index 𝑛 and within-trial sample-time index
𝑘 are the arguments of separate functions; and this implicitly
excludes wave-like solutions 𝑊 (𝑛− 𝑐𝑘) where 𝑐 is the wave
speed. Given that the ILC gain parameters are tuned for
decay, ordinary waves are excluded; but not wave-packets
with high-frequency carriers. To be clear, these disturbances
do not appear to travel within a single trial; it is only when
they are plotted in the 2-dimensional space (𝑛, 𝑘) that their
motion becomes manifest. They satisfy the usual defini-
tion of a soliton wave: a self-reinforcing wave packet that
maintains its (unique) shape while it propagates at constant
speed; and they persist long after all disturbances should
have decayed practically to zero. The shape and group ve-
locity must be found [6] self-consistently. The presence
of the high-frequency carrier implies they probably can be
eliminated by pre-pending a low pass filter Q to the iteration
matrix: (I−PL) → Q(I−PL), but at the cost of displacing
the fixed point of the mapping from zero - leading to residual
error. (In graphic terms, the robot arm losses its tremor but
misses the target.)
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