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Chapter 1

Introduction

A cohomological field theory (CohFT) is a Lagrangian field theory that possesses a scalar
supersymmetry Q with Q% = 0 and a Q-exact energy-momentum tensor [Wit88; Wit91].
The physical operators of interest in such a theory are solutions to the following equations

QOWP) = gor=1) (1.0.1)

with QO© = 0 for 1 < p < n, where d is the de Rham differential of our n-dimensional
spacetime manifold M. The expectation value of f% O®) | where Vp is a p-cycle in M, does
not depend the metric on M. That is to say, it can be seen as a smooth invariant of M.
Many famous invariants in mathematics, e.g., the Donaldson invariants, Gromov-Witten
invariants and Seiberg-Witten invariants, can be obtained in this way.

There exist various mathematical approaches to cohomological field theories. The most
known ones are Baulieu and Singer’s approach |[BS88] using the BRST cohomology, and
Atiyah and Jeffrey’s approach |[AJ90] based on Mathai and Quillen’s construction of the
Thom class [MQ86]. In fact, these two different approaches can be related by an automor-
phism of the Weil model of the relevant equivariant cohomology, observed by Kalkman in
[Kal93a; Kal93b|. Parallelly, there is also the AKSZ formalism [Ale+97], where everything
is reformulated in the language of the so-called Q-manifolds and @ P-manifolds. However,
most of these approaches focus only on the construction of the Lagrangians, lacking a sys-
tematic treatment of the algebraic structures of the operators in a CohFT. It is the goal of
this thesis to build a new mathematical framework for CohFTs unifying the previous ones,
within which a complete classification of the solutions to is available.

The first step toward such a framework is to generalize the theory of supermanifolds
to a theory with richer grading structures. A supermanifold is an extension of a usual
manifold by attaching Grassmann algebras locally to it [Kos77; Lei80; Man97]. The anti-
commutativity property of a fermionic field in physics can be then interpreted in terms of
the anticommutativity of the Grassmann algebras. When multiplying two fermionic fields,
one gets a bosonic field. This process can be tracked by assigning 0 € Zs to bosonic fields
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and 1 € Zy to fermionic fields. In fact, Zy can be replaced by a commutative semiring Z
to yield the notion of an Z-graded manifold [Jia23], which includes supermanifolds, graded
manifolds [KS21] and colored supermanifolds [CGP16] as special cases.

The scalar supersymmetry @) and the de Rham differential d appearing in can
be interpreted as vector fields of degrees (0,1) and (1,0) over a Z x Z-graded (or bigraded)
manifold [Jia22]. To be more precise, let E be a fiber bundle over M. The variational
bicomplex of F is the double complex of local differential forms on the Fréchet manifold
M x T'(E). We call a differential form over M x I'(E) local if it is the pullback of a
differential form on the infinite jet bundle J°°(E) under the infinite jet evaluation map
ev>® : M x T'(E) — J°°(FE) which sends (z,%) to j°°(¢)(x), the infinite jet prolongation
of ¢ at . M x I'(E) together with the local differential forms over it can be seen as a
bigraded manifold called the variational bigraded manifold of E. The vector fields ) and
d can be obtained from the vertical and horizontal differentials on J*°(FE) by applying a
change of coordinates. Moreover, the supersymmetry algebra can be extended to include
a vector supersymmetry K, a vector field of degree (1,—1) over such a bigraded manifold.
K together with @) and d satisfies the following relations

Q*=0, QK+KQ=d, Kd+dK=0.

It can be used to produce particular solutions to called K-sequences by setting
oW = 5:0 ﬁKp*qW(q), where WO = 0©) and W@ is any (non-exact) @-closed
function of degree (¢,n — q) for 1 < ¢ < n.

Let g be a Lie algebra. There is a natural graded Lie superalgebra L associated to g.
L is spanned by a “differential” @, of degree 1, a set of “contractions” ¢, of degree —1
and a set of “Lie derivatives” Lie;, of degree 0, a,b =1,--- ,dim(g), satisfying the following

relations
2 . . .
Qg =0, totp+ tpta =0, QgLa + Lan = Lie,, Liegtp — tplie, = fgbbca

where f¢, are the structure constants of g (in terms of a given basis). An L-manifold
is a graded manifold equipped with an L-action. A function over an L-manifold is said
to be horizontal if it is annihilated by all ¢,. A horizontal function is said to be basic
if it is annihilated by all Lie,. Note that for a basic function f, Q,f is also basic. The
cohomology associated to such functions and (), can be seen as a generalization of the
equivariant cohomology.

When a cohomological field theory has gauge symmetries, i.e., when F is an associated
bundle to some principal bundle and the Lagrangian is invariant under the corresponding
gauge group, the variational bigraded manifold of E is canonically an L-manifold. In fact,
the L-structure and Q K-structure are compatible in the sense that

1. Qg, tx and Liey are of degrees (0,1), (0,—1), (0, 0), respectively, where X is an element
in the Lie algebra of the gauge group;
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2. Qg coincides with @, ¢\ anti-commutes with K;
3. Liey K — KLiey = 0 for all horizontal functions over the variational bigraded manifold.

An operator is called gauge invariant if it is basic with respect to the L-structure. Likewise,
the vector symmetry K can be used to produce gauge invariant solutions to ([1.0.1)) when
the QK-structure and the L-structure are compatible.

1.1 Main results

The main results of this thesis can be summarized as follows:

e We generalize the theory of supermanifolds to a theory of Z-graded manifolds. We
present a detailed proof of Batchelor’s theorem in this Z-graded setting.

e We build a new framework for CohFTs unifying the ones in [BS88; [BS89; OSV89;
AJ90; Bir+91; [Kal93b; Bla93]. In this new framework, we revisit Witten’s idea
of topological twisting [Wit88] and show that the twisted N = 2 super Yang-Mills
theory carries a family of QK -structures.

¢ Using the language of QQ K ,-manifolds, we generalize the notion of a Chern-Weil homo-
morphism and the construction of a universal Thom class to the infinite dimensional
setting.

e We prove that every (gauge invariant) solution to is cohomologically a K-
sequence. That is, every solutlon to is the sum of a K- sequence and an exact
sequence (A Sequence {ow }” is called exact if O®) = Qp® + dp®=1 for p > 1

and 0©) = Qp®).)

1.2 Organization

This thesis is organized as follows:

In Chapter 2, we briefly describe three different approaches to equivariant cohomology,
namely, the Weil model, the Cartan model and the Kalkman model. We use the last one
to reformulate the Mathai-Quillen construction of a universal Thom class.

In Chapter 3, we review the standard mathematical construction of a BRST complex
using a Chevalley-Eilenberg complex and a Koszul complex. We discuss its connection to
the Kalkman model of equivariant cohomology.

In Chapter 4, we give a definition of an Z-graded manifold, where Z is a countable
cancellative commutative semiring. In this generalized setting, we prove the existence and
uniqueness of an underlying manifold of an Z-graded manifold. We also prove Batchelor’s
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theorem, namely that every Z-graded manifold can be obtained from an Z-graded vector
bundle.

Chapter 5 builds a new geometric framework for CohFTs upon the previous chapters. In
this framework, we prove the main result of this thesis, namely that every (gauge invariant)
solution to ([1.0.1)) is a K-sequence up to an exact sequence.

Chapter 6 provides a detailed treatment of supersymmetric field theories in physics.
We investigate Witten’s idea of topological twistings [Wit88] and its application to super
Yang-Mills theories. We show that the twisting of a super Poincaré algebra gives naturally
rise to a family of Q) K-algebras.

Chapter 7 generalizes the Mathai-Quillen formalism described in Chapter 2 to incorpo-
rate QK -structures and L-structures. In this new formalism, we discuss various examples
such as topological Yang-Mills theory, topological quantum mechanics, and topological
sigma model.
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Chapter 2

Equivariant cohomology

2.1 Three different models for equivariant cohomology

Naturally, one should expect that the equivariant cohomology of a G-space X tells us
both the topological information of X and the information about the G-action on X. A
naive choice is the cohomology of the quotient space X/G. This is not right, since X/G
remembers nothing about the stabilizer of the group action at each point x € X unless the
group action is free. The key idea here is to consider the Cartesian product of a “universal
G-space” EG and X where

1. EG is contractible, hence does not provide any new topological information;
2. EG has a free G-action. (It follows that G acts also freely on EG x X.)

Definition 2.1.1. A contractible space FG with a free G-action is called a universal G-
space. Let X be a G-space. The quotient space Xg = (EG x X)/G is called a homotopy
orbit space of X. In particular, the homotopy orbit space of a one-point space is called a
classifying space for GG, denoted by BG.

EG is universal in the sense of the following theorem [Hat02].

Theorem 2.1.1. Let X be a topological space. Let EG be a universal G-space. There
exists a bijective correspondence between the set of homotopy classes of maps f : X — BG
and the set of isomorphism classes of principal G-bundles P over X, given by f — f~'EG,
where f~YEG is the pullback bundle of EG through f.

The existence of EG for a topological Lie group G is a standard result due to Milnor
[Mil56a; Mil56b]. His construction proceeds as follows. Recall that the join X %Y of two
topological spaces X and Y is defined as X xY x [0, 1]/ ~, where the equivalence relation ~
is defined by (z1,y1,t1) ~ (22,y2,t2) if and only if t; =t3 =0 and 1 = 3, or, t; =t2 =1
and y; = yo. Let’s consider the n-fold join G % ---x G of G. It is a (n — 1)-connected space

5
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with a free G-action given by multiplying g € G simultaneously from the right to all of its
factors. Together with the canonical inclusion

G*---*G&(G*“-*G)XGX[O,l]—)(G*u-*G)*G

where ¢ identifies G * --- x G with G * --- x G x {Id} x {0}, the n-fold joins of G form a
direct system. By construction, the direct limit of this system is a weakly contractible C'W-
complex and has a free G-action. It is, therefore, a universal G-space. As an example, one
can consider G = U(1). The n-fold join of G is the sphere $?"*!. EG = lim $?"! = §°°.
This construction of EG is by no means unique (consider G = Z with EFG = R). However,
it is unique up to homotopy as a result of Theorem [2.1.1]

Corollary 2.1.1. Let EGy and EG2 be two universal G-spaces. There exists G-equivariant
maps ¢ : EG1 — EGy and ¢ : EGy — EG1 such that ¢ o1 is homotopic to idgg,, and
Y o ¢ is homotopic to idgg, -

Proof. By Theorem the principal G-bundle EG; — BG;p corresponds to a map
f : BGi — BGy with f~'EGy = EG;. In other words, there exists a bundle morphism
¢ : EG1 — EG9 covering f which fiber-wisely is a homeomorphism. Similarly, we obtain
a morphism of the other direction v : EGy — EG;. Since the underlying maps of both
idgg, and ¢ o1 is homotopic to each other by Theorem we conclude that ¢ o itself
is homotopic to idgq,. Similarly, ¥ o ¢ is homotopic to idgg, 0

Definition 2.1.2. The equivariant cohomology of a G-space X, denoted by Hg(X), is
defined as the singular cohomology of the homotopy orbit space Xg.

Remark 2.1.1. Note that if the G-action on X is free, then Hg(X) = H(X/G).

Let’s switch to the smooth category and assume G to be compact. By the quotient
manifold theorem, the homotopy orbit space Xq is also smooth and we can replace the
singular cohomology of it in Definition 2.1.2] by its de Rham cohomology.

Remark 2.1.2. The universal G-space EG is usually obtained as a direct limit of some
direct system of finite dimensional manifold, as is in the construction of Milnor. The de
Rham complex of EG is then defined as the inverse limit of the induced inverse system of
de Rham complexes over such finite dimensional manifolds.

Let G be a Lie group with Lie algebra g. To each & € g we can associate a vector field
v¢ on a G-manifold, which again induces a contraction t¢ and a Lie derivative Lie¢ on the
de Rham complex of the G-manifold. Let d denote the de Rham differential. Fix a basis
{&.} of g. Let ¢, and Lie, denote the contraction and Lie derivative assoicated to &,. d,
La, Lie, satisfy the following relations

[Lieg, Liey] = foyLiec, [Lieg,ts] = fipte, [Lieq,d] =0, (2.1.1)

{d,d} =0, {ta,s} =0, {d,1,} = Lie,. (2.1.2)
Recall that a super Lie algebra L = Leyen @ Logq is specified by [Lei80)
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1. a Lie algebra Leyen;

2. an Leyenp-module L,gq and a bilinear pairing [-, -] such that [z,-] is the action of
& € Leyen o0 Logq and [+, z] := —[z,];

3. a symmetric bilinear paring {-, -} : Lodd X Lodd — Leven that is a homomorphism of
Leyen-modules and satisfies the Jacobi identity

{l’, {ya z}} + {ya {Z, .%'}} + {Z, {x, y}} =0
for z,y, 2z € Loygq.

In this case, Leyen is spanned by Lie,. Logq is spanned by d and t,. We have Leyen, = @
and L,gqg = R @ g. Elements of Leyen act on R trivially and act on g via the adjoint
representation. The symmetric pairing is given by . Moreover, L is a graded Lie
algebra by assigning degrees 0, 1 and —1 to Lie,, d and ¢4, respectively. We write L =
L_1 & Ly & Ly to emphasize this fact.

Remark 2.1.3. In fact, the Lie algebra actions of Leye, on L integrates to a global Lie
group action o : G — Aut(L) with o|r,,., = Ad, the adjoint action of G on g. (G, L) is
called a super Harish-Chandra pair and is equivalent to a super Lie group |[CCF11], which
we denote by G*.

Definition 2.1.3. A G*-module is a graded vector space A together with two representa-
tions p : G — GL(A) and 7 : L — gl(A) which are consistent in the sense that

% t:op(exp(t(’))) = T|Leyen (),

p(9)T(V)p(g™") = 7(a(g9)(7)),

for all ¢ € G and v € L, where exp : g — G is the exponential map, gl(A) is the set of
linear maps A — A, and GL(A) is the set of invertible linear maps A — A of degree 0. A
morphism between G*-modules is a G-equivariant linear map of degree 0 which commutes
with 7.

We often write ya directly to denote the action of v € L on a € A.

Definition 2.1.4. Let A be a G*-module. An element o« € A is horizontal if ;a0 = 0. A
horizontal element « is basic if in addition Lie;a = 0.

Let Apor and Apgs denote the sub-module of horizontal and basic elements in A, respec-
tively. It is easy to see that for a € Ap,s, da is also in Ap,s because toda = Liega—diga =0
and Lie,da = dLie,a = 0. We use H(A) to denote the cohomology of (A, d) and Hp.s(A)
to denote the cohomology of (Apgs, d).
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Definition 2.1.5. Let A and B be two G*-modules. A semi-homotopy is a linear map
K : A — B of degree —1 which satisfies

Lo K + Kiq =0, (2.1.3)
and
Bjor C ker(Lie, K — KLieg,).

A semi-homotopy K is said to be a homotopy if (Lie, K — KLie,) = 0. Two morphisms 7
and 71 : A — B are (semi-)chain homotopic if they are equal up to a (semi-)homotopy, i.e.,
if

T — 1T =dK + Kd.

Proposition 2.1.1. Let 79 and 71 : A — B be two morphisms between G*-modules. They
induces the same morphism H(A) — H(B) if they are chain homotopic. They induces the
same morphism Hpqgs(A) — Hpas(B) if they are chain semi-homotopic.

Proof. Let L = dK+Kd and P = Lie, K — KLie,. It is not hard to show that ¢, L— Li, = P
and Lie, L — LLie, = dP — Pd. If K is a homotopy, then P = 0 and L becomes a morphism
of G*-modules, hence also a morphism H(A) — H(B). If K is a semi-homotopy, then L
still commutes with ¢, and Lie, when restricted to the basic parts of A and B, hence L
becomes a morphism Hp,s(A) — Hpas(B). The rest of the proof follows directly from the
standard arguments of homological algebras. O

Recall that a graded algebra A is a graded vector space together with a multiplication
satisfying A;A; C A;4; and an identity 1 € Ag. A is said to be commutative if ab =
(=1)H9)dO)pg, where d(a) is the degree of a € A. D € gl(A) is called a derivation if
D(ab) = D(a)b + (—1)¥P)@)qD(b). We use Der(A) to denote the set of derivations of A.

Definition 2.1.6. A G*-algebra is a G*-module A where A is a commutative graded
algebra, p takes values in the automorphism group Aut(A) of A, and 7 takes values in
the derivation algebra Der(A) of A. A morphism between G*-algebras is a G*-module
morphism which preserves the algebraic structure on A.

Definition 2.1.7. Let A and B be G*-algebras with a morphism ¢ : A — B. A semi-
homotopy K : A — B is said to be a semi-homotopy relative to ¢ if

K(zy) = K(2)8(y) + (-1)"@ ¢ (2) K (y)
for all z,y € A.

Lemma 2.1.1. If A is finitely generated, then a semi-homotopy K relative to ¢ is deter-
mined uniquely by its action on the generators of A.
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Proof. This follows directly from the fact that ¢, and Lie, are derivations of the relevant
G*-algebras, and the fact that ¢ commutes with both ¢, and Lie,. O

The de Rham complex of a G-manifold is canonically a G*-algebra. In particular,
Q(EG) is a G*-algebra. The freeness of the G-action on EG is translated into the following
definition [BGS13].

Definition 2.1.8. A G*-algebra E is said to be of type (C) if there exists a G-invariant
free submodule C of the Ag-module A; such that the contractions

Lg - A1 — A()
form a basis of C*, the dual module of C over Ayp.

Remark 2.1.4. C be can be seen as an algebraic analogue of the dual of the vertical
bundle V P of a principal G-bundle P.

Example 2.1.1. The de Rham complex of a principal G-bundle is of type (C).

A G*-algebra E is of type (C) if and only if there are elements 6% € E; such that

1a0° = 0%, (2.1.4)
Lie,0° = — f2.6°. (2.1.5)

It follows from ([2.1.4) and (2.1.5) that there exists elements ¢ € Es satisfying

1
do* = 6" — 5 fLe%6c. (2.1.6)

The actions of d, ¢, and Lie, on ¢ are uniquely determined by (2.1.4) to (2.1.6).

Definition 2.1.9. The connection of a G*-algebra F is of type (C) is defined as
h=0"®¢cBE @g.

The curvature (of #) of E is defined as
p=0"0&EE Dy

Remark 2.1.5. It follows that ¢ = df + 5[0, 6] and satisfies the second Bianchi identity
dé + 16, 6] = 0.

It is easy to show that the tensor product A® B of two G*-algebra is again a G* algebra,
and that A ® B is of type (C) if B is of type (C).

Definition 2.1.10. The equivariant cohomology of a G*-algebra A, denoted by Hg(A), is
defined as Hpqs(A ® E), where E is an acyclic G*-algebra of type (C).
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It is shown by Guillemin and Sternberg that Definition [2.1.10] does not depend on the
choice of E (see Section 4.4 in [BGS13]), and that the two notions of equivariant cohomology
coincide, i.e.,

Theorem 2.1.2 (Theorem 2.5.1 in [BGS13]). Let X be a G-manifold. Hz(X) = Ha(2(X)).
There is a universal object in the category of (acyclic) G*-algebras of type (C).

Definition 2.1.11. The Weil Algebra of g is a G*-algebra of type (C) with underlying
commutative graded algebra

W(g) = Alg") ®S(g"),

where A and S are the exterior power and the symmetric power, respectively. W (g) is
graded by assigning degree 1 to elements of g* C A(g*) and degree 2 to elements of
g C S(g*). The action p of G on W(g) is induced by its coadjoint action on g. The
action 7 of L on W (g) is specified by (2.1.4) to (2.1.6) and

La®® = 0, (2.1.7)
d¢® = f3.0"0°, (2.1.8)
Lie,¢® = — f2.¢°, (2.1.9)

where 0% =2 ® 1, ¢® = 1® &%, {€%} is the dual basis of g*. The connection (curvature) of
W (g) is also referred to as the universal connection (curvature).

Proposition 2.1.2 (Theorem 3.2.1 in [BGS13|). (W (g),d) is acyclic.

Note that W (g)ps = S(g%)C, i.e., the space of G-invariant polynomials on g, and that
d restricted to W (g)pqas i zero.

Proposition 2.1.3. Hy,,(W(g)) = S(g*)®.
Let E be a G*-algebra of type (C). The connection and curvature on E determine maps
g = E, g > B
which induce a homomorphism of G*-algebras
ow : W(g) — E,

which sends the universal connection and curvature of W (g) to the connection and curva-
ture on E.

Theorem 2.1.3 (Theorem 3.3.1 in [BGS13|). ¢w induces a morphism ¢pow : Apas — Epas,
which again induces a morphism Hpqas(A) — Hpas(E) which does not depend on the choice
of connections and curvatures on E.
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Let P be a principal G-bundle over M equipped with a connection 1-form A and
curvature 2-form F. The homomorphism ¢y induced by A and F' is nothing but the
Weil homomorphism which sends the universal connection 6 and curvature ¢ to A and F,
respectively. The homomorphism ¢cw : W(g)pas = S(g¥)¢ — QM) = Qpes(P) is the
well-known Chern-Weil homomorphism.

2.1.1 Weil model

Let’s consider the tensor product W(g) ® Q(X). It has canonically a G*-algebra structure
where the contractions, the Lie derivatives, and the differential are

e ®1+1®1¢,, Lie,®1+4+1QLie,, d®1+1Qd.

Definition 2.1.12. Let Q¢ (X) denote the basic part of W(g) ® Q(X). Let dy denote
the differential on Q¢ (X) induced from the differential on W(g) ® Q(X). (Qa(X),dw) is
called the Weil Model for the equivariant cohomology of a G-manifold X. dy is called the
Weil differential.

Note that Q(P) ® Q(X) = Q(P x X). The Weil homomorphism induces a homomor-
phism between Q;(X) and Q(P xg X), where P x¢ X is the associated bundle to P with
fiber X, through the commutative diagram

W(g) ® QX) 29 (P x X)

J J

Qa(X) —2% 5 Q(P x¢ X)

With a slight abuse of notation, we denote this homomorphism again by ¢cow. ¢cw again
induces a homomorphism of cohomologies

Hg(X) —)H(P Xa X)

which does not depend on the choice of the connection on P.

2.1.2 Kalkman model

Definition 2.1.13. The automorphism map j = exp (—0* ® ¢,) of W(g) ® Q(X) is called
the Mathai-Quillen map. The differential dg = j o dy o 5! is called the Kalkman differ-
ential. (W(g) ® Q(X),dk) is called the Kalkman model of the equivariant cohomology of
a G-manifold X.

Proposition 2.1.4. dx = dw + 0° ® Lie, — ¢° ® 14.
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Proof. We need to show that j o dg = dy o j. Note that

dW(H“ X LQ) =dw0* R, — 0* R dwig
= (dw0*) @ tqg — 0%dw @ 1q — 0° @ Lo + 0% @ todw

1
= —ifgcebec Qg+ @ tg — 0° R Lo + (0° @ 1a)dw -

We get [dw, (0% ® tq)] = =5 fL0°0° @ tq + ¢° ® tq — 0 ® L. The next step is to compute
[[dw, (0% ® 14)], (0° @ 13)]. We have

1
dw, (0% @ 1)) (0% @ 1g) = = f20°0°0 @ 1y1g — ¢ 0L @ gLy — 00T @ Loty
2 bC
and
(6% @ 1a)[duw, (6% @ 1a)] = —96% FEO°0° © gty + 0900 © tgia + 090° © 1qLa.
Hence,
[[dw, (0% @ 1a)], (0% @ 1q)] = —0%0% @ [Lyq, 1q] = —0°6% @ £ te.
It follows that
[[[dw, (0% @ ta)], (09 ® 1q)], (07 @ 1p)] = [-0°07 @ feyte, (07 @ 1f)] = 0.

Using j = exp(—0* ® 1) = [[,(1 — 0% ® tq), we finally get

1
dwjzZ(l—91®L1)~--(§f&9b90®ba—¢a®ba+9a®La>---(1—9d®bd)+jdw

a

- 1 a c a a a c
= J(Y G D 10— ¢" B+ 0" @ L) = D f6"0° @ a+dw)

a a,b<c

=7 (—¢" ® ta + 0° @ L) + dw)

a

= jdg.

We use fJ, = —f;, in the second last step. O

2.1.3 Cartan model

Similarly, one can show that

®1=jo(la®@1+1R14) 0 1
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and
(Lieq ® 1 + 1 ® Lie,) = j o (Lie, ® 1 + 1 ® Lieg) 0 j 1.

Consequently, the basic part of W(g) ® Q(X) in the Kalkman model of X is (S(g*) ®
Q(X))%, and the restriction of dx to (S(g*) ® (X)), denoted by dc, takes the form
dC:d®1—¢)a®La.

Definition 2.1.14. ((S(g*) ® Q(X))%,d¢) is called the Cartan Model of a G-manifold X.
dc is called the Cartan differential.

2.2 Mathai-Quillen formalism

Let G = SO(n), n = 2m. Let g be the Lie algebra of G. Let p be the standard represen-
tation of G on V = R™. We also use V to denote the n-dimensional translation group and
its Lie algebra. Let 8 and ¢ be the universal connection and curvature of the Weil algebra
W(g). Let w' and b; denote the coordinate functions of V and V* respectively. Let x;
denote the odd coordinate functions of ITV*. In [MQ86|, Mathai and Quillen defined the
following element]]]

U= 2m)™" / dxdbexp <—bt(b/2 +iw) + %xtcsz + i(dw + Gw)tx) (2.2.1)

of degree n in Qg(V), where ¢gx = ¢ @ p(&a)x, w = 0% ® p(&)w, [ dxdb is the Berezin
integral over the even variables b; and the odd variables ;.

Proposition 2.2.1. U is closed in Qg(V).

To prove this proposition, let
1
L =0b"(b/2 + iw) — §Xt¢x —ix"(dw + w). (2.2.2)

L can be seen as an element in W (g) @ (V") o1y, @QUV'), where Q(V*) o1y = S(VF) @ A(V).
Let Gx V be the semi-direct product of G and V induced by p. Let Gx V act on V through
p only, i.e., we require that the translation part of the group acts trivially. Let g x V' denote
its Lie algebra. It is easy to see that W (g V') is isomorphic to W (g) @ Q(V*)pa1y as graded
commutative algebras. Moreover,

Lemma 2.2.1. The Weil model (W (g x V)@ Q(V),dw) is isomorphic to the differential
graded algebra (W(g) @ Q(V*)pory ® Q(V), s). The differential s takes the form
s=dx®1+1®d,

where dg = d®1+1®0x+0°®@Lieqg—¢* @1, is the Kalkman differential of W (g)@Q(V*)pory,
with 6 denoting the Koszul differential on Q(V*)pery .

!The imaginary unit 4 is introduced so that we will get an integrable Gaussian function of w after
integrating out the ”auxiliary” field b.
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Proof. We need to show that the differential d on W (g x V') is equivalent to the Kalkman
differential dj on W(g) ® Q(V*)pory. Let &, and t* be bases of g and V, respectively. We
can write p(&,)t' = pfljtj. The Lie bracket of g x V is given by

[(€ar ), (€6, )] = ([€as €61, P(E) — P(EVE) = (FSyer pLt® — pyt®).
It then follows from ([2.1.8)) that
1
A0 = 6" — JRf"0°,  dg = — [0,
dx' =0 = pl0x7,  db' = p X — pl .
On the other hand, one easily can check that
Lieabi = —pzjbj, LieaXi = _p:ngja
tab’ = —plix?, tax' =0.
The rest of the proof is straightforward. O

In fact, W(gx V)@Q(V), or equivalently W(g) @ Q(V*) oty @ Q(V), is also a G*-algebra
with the standard G-action on V' and its dual action on V*, and

Lie, = (Lie, ® 1 + 1 ® Lie, ) @ 1+ 1@ 1®@Lieg, t4=(t4®1)R@1+1R01& 4.

For simplicity, we omit the indices of the coordinate functions. The action of s on coordinate
functions can then be written as

s =¢—00, sp=]p,0], (2.2.3)
sw=dw, sb=—0b+ ¢y, (2.2.4)
sdw =0, sy =>b—0x. (2.2.5)

Remark 2.2.1. It is always fun to check s?> = 0 by direct computations. The non-trivial
ones are s2b = —(s0)b + 0(sb) + (s6)x + d(sx) = —(6 — 00)b + O(~b + 6x) + ([, 6])x +
(b —0x) =0, and s?y = sb — s(0)x + 0(sx) = (—0b+ ¢x) — (¢ — 00)x +0(b— 0x) = 0.

Lemma 2.2.2. L is eract in (W(gx V) ® Q(V))?

bas*

Proof. The exactness of L follows from direct computations.
s (X'(iw +b/2)) = (b — 0x)" (iw + b/2) — X" (idw + (—0b + ¢X))

— b (w4 b/2) — (—x'0") (iw + b/2) — X' (idw — 0b/2) — %thbx

— b (iw + b/2) — %X%X —\H(iw + 0b)2) + (idw — 0b/2))

1
=b'(iw + b/2) — §thbx —x'i(dw + w) = L.
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We use the skew-symmetric property of @ in the third step. L is basic because x*(iw +b/2)
is g-invariant and does not contain € and dw. O

Let S(V*) denote the space of Schwartz functions over V*. Let Q(V*)g denote S(V*)®
A(V*). Note that Q(V*)g is a G*-algebra as the subalgebra of Q(V*).

Definition 2.2.1. For every o € Q(V*)g, the super Fourier transform F of « is defined
by

Fla) = /* aexp(—i(blw — x'dw)) € Q(V).

Lemma 2.2.3. Fodxg =do F. Likewise, we also have F o 14 = 140 F.

Proof. 1t suffices to consider f ®  where f € C*°(V*) and 5 € AP(V*) for some p. We
have

AF( @ 0) = d( [ fesp(=ift'u)) @ fexplildu))
— /* fexp(—z'(btfw))(—ibj) ® dw’ B exp(—i(xtdw))

_ —(—l)p/* fexp(—i(b'w)) ® Bok (exp(—i(x'dw)))
= F(0x(f®@p)).
And

LaF (f ® B) = tal . fexp(—i(b'w)) @ Bexp(i(x'dw)))

= (=1)" Ve f exp(—i(b'w)) (iLieg (w’)) @ Bx; exp(i(x'dw))

= (=17 | fep(=ibw)(in’) ® fliea(x;) exp(i(x'dw))

== | fralexp(=i(t"w)) @ fexp(—ilx'dw))

= Fta(f ® B))-

Corollary 2.2.1. F is morphism of G*-algebras.

Proof. By Lemma [2.2.3] F commutes with the L-action. Note that exp(—i(bfw — x'dw))
is invariant under the G-action. O
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Now, apply the Mathai-Quillen map j = exp(—60* ® t4) to W(g) ® Q(V*)pory. This is
equivalent to a change of coordinates which sends b to b — 0. In the new coordinates,
we have s =d®1®1+100k®1+1®1®d, and L = sa + i(b'w — x'dw), where
a = x'(b—0x)/2. It is easy to show that « is a basic element in W(g) ® Q(V*)poy-
Moreover, the element exp(—sa) is a closed basic element in W(g) ® Q(V*)g due to the
Gaussian factor exp(—b'b/2). Proposition is then proved by observing that

/dxdbexp(—L) = F(exp(—sa)).

Note that integrating out b and x will give us a factor (27)™. The component of U
with top de Rham degree is (2) ™™ exp(—w?)dw' ...dw". It follows that [, U = 1. Let
P be a principal G-bundle over a manifold Y. Let A be a connection 1-form on P. Let F
be an associated vector bundle to P of rank 2m equipped with a metric (-,-) and a metric
connection V induced by A.

Theorem 2.2.1 (Theorem 4.10 in [MQ86|). U is a universal Thom form in the sense that
for any such E, the Chern-Weil homomorphism ¢ow sends U to a form representing the
Thom class of E.

Remark 2.2.2. We can also consider the Kalkman model of W(g x V) ® Q(V). The
differential s is locally given by
sw=dw — 6w, sb=—0b+ ¢x, (2.2.6)
sdw = —0dw + pw, sy =b—0Ox. (2.2.7)
This is not the right choice for constructing a universal Thom class, as s restricted to Q(V')

is not the de Rham differential. However, we will need this kind of differentials later to
construct cohomological field theories with gauge symmetries.

Let v be a section of E, we can also obtain a representative for the Euler class ey (E)
of E by setting

ev(E) =v"¢cw (U) = (271')"/dxdbexp (—-L),

where L = (b,b/2 +iv) — &(x, Rx) —ix(Vv). Let 2# denote the coordinate functions of 3.
Identifying da* with n*, we have

1

1 06 B, m)x). (2.2.8)

Let us take E = T, (+,-) to be a Riemannian metric g and V to be the Levi-Civita
connection determined by g. We have

L = (b,b/2 +iv) —ix(Vyv) —

v 1 17
sttt =, sby =Ty by — S Ry on’nx (2.2.9)

snt =0, sxu=bu+Tp,, 1" xv, (2.2.10)
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where I'} | is the Christoffel symbol and R}, is the Riemann curvature tensor. (2.2.8) to-
gether with the supersymmetry transformations (2.2.9)) and (2.2.10)) give us a 0-dimensional

supersymmetric theory.

Remark 2.2.3. The Mathai-Quillen map j of W(g) ® Q(V*) induces a change of coordi-
nates, namely,

by — b, + qunpx,,.
The differential s in the new coordinates takes the form

szt =n", sb, =0,

syt =0, SXpu = b/u

which is exactly the BRST differential s appearing in [BS89|]. The price one pays for this
simplification is that L will no longer be covariant unless b is integrated out.
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Chapter 3

BRST cohomology

3.1 Chevalley-Eilenberg complex

Since every compact simply connected Lie group G is uniquely determined by its Lie algebra
g, it should be possible to obtain topological information of G from g. In fact, one can define
a cohomology for g (with coefficients in R) that is isomorphic to the de Rham cohomology
of G. Let X be a left invariant vector field over G. A differential form w on G is said to be
left invariant if Liexw = 0. Let Q(G) denote the set of left invariant differential forms on
G. Qp(G) is stable under the de Rham differential d, hence a subcomplex of the de Rham
complex Qqr(G).

Theorem 3.1.1. Let G be a compact connected Lie group. The inclusion v : Qp(G) —
Qqr(G) induces an isomorphism v : Hp,(G) — Hyr(G).

The proof of this theorem can be found in [CE48]. The key idea is to consider the
following “averaging” operator

I:07(G) — Q2(G)

wr—>/ dpLyw,
G

where L, : G — G is the left multiplication map induced by g € G and dp is the normalized
Haar measure of G. One can show that I is well-defined and commutes with d. The
injectivity of ¢* follows from that « o I = id. The surjectivity of ¢* follows from that
[7(w —I(w)) = 0 for any p-cycle Z in G.

Since every left invariant vector field over G is uniquely determined by its value at the
identity element of G, A(g*) = Q(G). Recall that for a differential k-form w and vector

19
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fields Xy, -, X, we have

k
(dw)(Xo, -+, Xp) = > (=1 Xiw(Xo, -+, Xi, -+, Xp)+ (3.1.1)
=0
Z (_1)i+jw([Xi7X]']’X07"' 7Xi7"' 7Xj"" 7Xk?)' (312)
0<i<j<k

We arrive at the following definition.

Definition 3.1.1. The Chevalley-Eilenberg complex of a Lie algebra g is the differential
graded algebra A(g*) ® HII, where F is a left g-module, equipped with the differential dog
defined by

k
(dopw) (o, &) = Y (=1)'€w(Co, -+ &, &)+
=0
Z (_1)i+jw([‘£ia§j]7§07 to 7éi7 T 7éja to agk)
0<i<j<k

The Lie algebra cohomology of g with coefficients in E is of course defined as H(g; E) =
kerd,

m dep”

Remark 3.1.1. It is easy to see that H(g; E) = {f € E : £&f = 0,V¢ € g}, i.e., the
subspace of g-invariant elements in F.

Remark 3.1.2. Fix a basis {,} for g. Fix a dual basis {#°} of {&,} for g*. Let fZ denote
the structure constants of g. Fix a basis {f;} for E. The left g-module structure of £ is
given by &, fi = (pa)] fj- One can then express dog in a component fashion

; 1
dopfi = (pa)}0°f;, dopb” = -3 fLe%6c. (3.1.3)

Corollary 3.1.1. Let G be a compact connected Lie group with Lie algebra g. Hyr(G) =
H(g;R).

Example 3.1.1. Let g = su(2). Let E = R. One can choose a basis o, of g such that

[Uaaab]: Z €abcOc (314)
c=1,2,3

where € is the totally anti-symmetric tensor with €103 = 1.

1. H%(g, F) = R by Remark

For our purpose, E is assumed to be a real vector space and the tensor product is taken over R.
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2. For degree 1, ker(dog) = {w € g : w([&1,&2]) = 0}. However, since [su(2), su(2)] =
su(2), ker(dgg) = 0. H'(g; E) = 0.

3. For degree 2, ker(dC’E) = {w € A2(g*) : w([€17£2]7£3)+w([£2>£3]7£1)+w([£3a£1]>£2) =
0}. By , it is easy to see that ker(dcp) = A2%(g*). On the other hand,
im(dop) = {w € A*(g") : 3/ € g",w(6,&) = ' ([61,&])}. Let 6* be the dual
basis of 04, one can write w = w120 A 02 + w130 A 03 + w230 A 63, One can then set
W' = w120 — w1302 4 wesh!. Hence im(dep) = A%(g*). H?(g; FE) = 0.

4. For degree 3, we have im(dcg) = 0 by the last step. H3(g; E) = R.
These are precisely the de Rham cohomology groups of SU(2) (or SO(3)).

Example 3.1.2. Let M be a manifold. Let g be X(M), the space of vector fields over
M. Tt is the Lie algebra of the diffeomorphism group of M. Let E = C°°(M), the ring
of smooth functions over M. X € X(M) acts on f € C°°(M) in the canonical way. By
, the Lie algebra cohomology of g is just the de Rham cohomology of M.

3.2 Koszul complex

For a commutative ring R, a regular sequence is a sequence r1,--- ,r4 in R such that r; is
not a zero-divisor of R/(ry,--- ,ri—1) fori =1,...,d and R/(ry,--- ,rq) is not zero. We
are interested in the case where R = C*°(M) for some n-dimensional manifold M.

Lemma 3.2.1. A function f € C®(M) is a zero-divisor if and only if there exists a
nonempty open subset U of M such that U C f~1(0).

Proof. If f is a zero-divisor, then there exists a nonzero g such that gf = 0. This implies
that (¢71(0))¢ € f=1(0). We then take U = (¢~1(0))¢. Note that U is not the empty set
since ¢ is not zero everywhere.

Suppose there exists a nonempty open subset U of M contained in f~1(0). Then one
can find a bump function g such that g is everywhere zero outside of U. Hence fg =0. O

Lemma 3.2.2. If 0 is a regular value of f, then f is not a zero-divisor.

Proof. By the preimage theorem, f~1(0) is an (n—1)-dimensional submanifold of M, hence
cannot contain any nonempty open subset of M. ]

Lemma 3.2.3. If 0 is a reqular value of f, then the ideal (f) generated by f is equal to
the ideal I = {g € C*(M) : g|s-1(0) = 0}, i.e., the ideal of functions vanishing at the zero
set of f.
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Proof. Obviously, (f) C I. We only need to prove the other inclusion.

By the implicit function theorem, one can find local coordinates (y',--- ,y") around
x € M such that y" = f and f(z) =0 < y"(x) = 0. Let g be a smooth function vanishing
on f~1(0). For x € f~1(0), locally we have

gy, Yy =gyt y") — gyt -, 0)
1

da(yl. - ty™
_ [ gyt
; dt
1
9y
i [ it
( ; 8y”)
=: fh
For z ¢ f~'(0), locally we can define a function h’ = g/f. Since both h and h’ are unique,
we can glue them together to get a global function A” such that fh” = g. O

Corollary 3.2.1. Let f be a function with 0 as a regular value. Let ¥ = f~1(0). Then
C=(X) = C=(M)/(f).

Proof. This follows directly from the extension lemma of functions on closed subsets (See
Lemma 2.26 in [Leel2|.) and Lemma O

Proposition 3.2.1. Let F = (f1,--- , f4) be a smooth map from M to R%. If0 is a regular
value of F', then f1,---, fq is a reqular sequence of C*°(M). Moreover,

C=(M)/(f1,--+, fa) = C=(2),
where Z = F~1(0).

Proof. We prove this proposition by induction. Let Zj be the zero set of f1,--- , fr. Assume
that fi,---, fx is a regular sequence and C*(Zy) = C>*(M)/(f1, -, fx). Since 0 is a
regular value of F', the pullback of dfi4+1 to Zjy is everywhere nonzero over Zy,; C Z.
By Lemma fr+1lz, is not a zero-divisor of C*°(Zy), hence fi,---, fr+1 is again a
regular sequence of C>°(M). Note that (f1, -+, fe+1) = (f1,- -+, fx) +(fx+1), we can apply
Corollary [3.2.1] to obtain C*°(Zy41) = C°(Zy)/(fr41lz,) = C°(M)/(f1,- -+ s forr). O

Let’s turn to the construction of the Koszul complex of the sequence f1,--- , f4.

Definition 3.2.1. Let I' = R?. Let F be an R-linear map from I' to R. Note that
F' is equivalent to a sequence fi,---, fg in R. The Koszul complex of such sequence is
the differential graded algebra A(T") (the exterior algebra of is over R) equipped with the
differential dx defined by

k

5[((7‘0/\"'/\7%) :Z(—l)iF(Ti)’l”o/\--'Ti,1/\Ti+1/\"'/\7’k.
=0
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The cohomology of (A(T"),dx) is called the Koszul cohomology associated of the sequence
flv Ty fd'

Remark 3.2.1. We assign degree —k to elements in A¥(I") to ensure that the differential
0x is of degree +1, which justifies the name “Koszul cohomology”. It is also easy to see
that the 0-th cohomology group is just the quotient R/(f1,- -, fa)-

Remark 3.2.2. F' is called the gauge fixing function. It is said to be regular if f1,---, fg
is a regular sequence.

Proposition 3.2.2. The Koszul complex is acyclic for a reqular F'.

Proof. See [Kosb0)|. O

In other words, for a regular sequence fi,--- , fg, we have the following free resolution
0= AYD) 2 AN =T L RS R/(f1, -, fa) = 0
known as the Koszul resolution of R/(f1,---, f4).

Remark 3.2.3. The converse of Proposition [3.2.2] is not true in general. For example,
take R = C*°(M) and fi,---, fq to be any everywhere nonzero functions. It is not hard
to see that the Koszul cohomology groups are all trivial. But fi,---, fg is clearly not a
regular sequence.

Example 3.2.1. Let R = C®(RY). Let f; = z;, where z!,--- 2% are the Cartesian
coordinates of R¢. By Proposition the corresponding Koszul complex is acyclic. By
Proposition the 0-th cohomology group is just R.

A gauge fixing function F' in the case of R = C°°(M) is equivalent to a section of the
trivial bundle M x R%. As in the Mathai-Quillen construction of an Euler class, we also
want F' to be a section of a nontrivial vector bundle. For this purpose, we give the following
generalization of Definition [3.2.1

Definition 3.2.2. Let I' be an R-module. Let F' be an R-linear map from I" to R. The
Koszul complex of F' is the differential graded algebra A(I") equipped with the differential
dx defined by

k

S A Ae) =Y (1) F(3i)vo Aot Avigr A A
i=0

The cohomology of (A(T), k) is called the Koszul cohomology of F'.

In both the Hamiltonian formalism and the Lagrangian formalism of a physical theory,
there exist natural choices for the gauge fixing function F' in Definition
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Example 3.2.2. Let M be a symplectic manifold. Let G be a Lie group. Suppose there
exists a Hamiltonian G-action on M. The distribution over M associated to such action
is involutive, hence corresponds to a sub-bundle of T'M, denoted by H. Fix a basis &, for
the Lie algebra g of G, we have I'(H) = spance{ X, }, where X, is the fundamental vector
field generated by &,. One can then define a C°°(M)-linear map from I'(H) to C*°(M)
by sending X, to f,, the Hamiltonian function of X,. Note that F' commutes with the
g-actions on I'(H) and C*°(M), that is, F({(Xa)) = F([Xe, Xa]) = {fe, fo} = E(F(Xa)),
where {-,-} is the Poisson bracket on M. If the action is free, then H is the trivial bundle
M x g. F is equivalent to a moment map of the action. If 0 is, moreover, a regular value
of the moment map, then by Proposition [3.2.2] the Koszul complex of F' is acyclic.

Example 3.2.3. Let M be a manifold. Let S be a function on M. The 1-form dS induces
a C°°(M)-linear map

F:X(M)— C™(M)
X — dS(X).

Let G be the subgroup of the diffeomorphism group of M which keeps S invariant. Let g
be the Lie algebra of G. Note that F' commutes with the g-actions on X(M) and C*°(M),
since F((X)) = F([Xe, X)) = [Xe, X]S = Xe(XS) = £(F(X)).

Definition can be again generalized to the following one.

Definition 3.2.3. Let " be an R-module. Let A be a commutative R-algebra. Let F' be
an R-linear map from I' to A. F' is referred to as a gauge fixing function. The Koszul
complex of F'is the differential graded algebra A(I') ® A equipped with the differential dx
defined by

k

Sk(o N Ae®a) =Y (=1)' 90 A%t Avigt A+ Aye ® F()a.
=0

The cohomology of (A(T") ® A, k) is called the (generalized) Koszul cohomology of F.

Remark 3.2.4. Let’s consider the A-module A ® I" and its exterior algebra As(A ® I')
over A. It is not hard to show that Ay(A®T) = A(T') ® A. Moreover, the R-linear map
F:T'— A induces an A-linear map

F:AT - A
a® X — aF(X).

The Koszul complex of F coincides with the Koszul complex of F' in the sense of Definition
0.2.2)
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Example 3.2.4. Let A = S(I'), the symmetric algebra of I' over R. Let F' be the canonical
embedding of T" into S(I'). We call the resultant Koszul complex the universal Koszul
complex. It is acyclic when T is a flat R-module [Bou07].

Example 3.2.5. Let L be an R-module. Let F': L — I" be an R-linear map. F' induces
a dual map from I'* to L*, which again induces an R-linear map from I'* to S(L*). The
Koszul differential takes the form

k
(5K(’J)(Tla o ark‘)(a07 e ,(Il) = Zw(rlv oy Ti—1, T, ark)(r’ia ag, - - aal)'
i=0
For a specific application of Example let’s consider the following geometric con-
struction. Let H be a Lie group with Lie algebra §. Let H act transitively on a manifold
M. We have the following short exact sequence of vector bundles

0—Ky—Vy—TM — 0,

where Vj = M x b, Vi = T'M is obtained by combing the infinitesimal action b — I'(T'M)
with the evaluation map M x I'(T'M) — T'M, and Kj is the kernel of Vj — T'M. We now
take I' to be I'(V}), L to be I'(K},) and F' to be the canonical inclusion. This is exactly the
Koszul complex considered by Kalkman in [Kal93a]. The corresponding differential graded
algebra is (A(h*) ®r ['(S(K})), 0k ), where df is defined in Example The degree
assigned to elements in F(SI(K,;‘ )) is 2 instead of 0, and the degree assigned to elements
in A'(h*) is 1 instead of —1. It was shown by Kalkman that the corresponding Koszul
cohomology is isomorphic to the de Rham cohomology of M via the cochain map

®: QF(M) = T(AFT*M) — AF¥(b*) @r T(S(K7)) € A(h*) @r T(S(K}))
w i P(w),
where ®(w)(&1, -+, &) == w(Xe,, -+, Xg,) (see Theorem 2.3.2 in [Kal93a]).

Remark 3.2.5. Asis seen in the above examples, sometimes, the gauge fixing function F' is
not good enough and we do not get an acyclic Koszul complex. In the case where I' is a free
R-module, however, one can always obtain a new complex with trivial m-th cohomology
group by attaching generators of degree m + 1 to the old one, m > 1. Iterating and taking
the direct limit, one will obtain an acyclic complex called the Koszul-Tate complex [Tat57;
PP17]. I do not know if a similar generalization exists in the case of a general R-module
I". For this reason, I will restrict the discussion to Koszul-complexes when it comes to the
construction of a BRST complex.

3.3 BRST complex

Roughly speaking, a BRST complex is the combination of a Chevalley-Eilenberg complex
and an acyclic Koszul complex (or Koszul-Tate complex). The acyclic property is needed
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so that the computation of the BRST cohomology can be greatly simplified. That being
said, we will also discuss an example where a non-acyclic Koszul complex is involved at
the end of this section.

3.3.1 The first way of defining a BRST complex

There exist many different approaches to the definition of a BRST complex. Most of
them can be described in two different ways depending on the type of the Koszul complex
involved. The first way uses the following data.

1. A Lie group G with Lie algebra g.

2. A G-manifold M with the unital commutative ring R = C°°(M) of smooth functions
over M. Note that there is a canonical g-action on R.

3. A vector bundle F over M, or equivalently, the finitely generated projective R-module
I' = T'(F). Choosing a partition of unity over M, it is not hard to construct an
isomorphism Ag(I") = I'(AE), where I'(AE) is the space of sections of the exterior
algebra of the vector bundle E.

4. A g-action on I'(F) satisfying Leibniz’s rule
§(fX) =&(N)X + fE(X),

where £ € g, f € C°(M) and X € I'(E). This equips the exterior algebra A(T") of T
over R with a canonical g-module structure. In fact, let T(I") be the tensor product
of I" over R. It has a canonical g-action by setting

EX1® X)) =¢(X1)® - Xn+ -+ X1®--@&(Xn).
This action is well-defined because

EfXQY)=E(fX)RY + fXQY

(NXRY +fEX)RY +fX®Y
(

(

X))@ fY + X @&(fY)

§
§
§X @ fY).

The g-module structure on A(T") is then induced from the one on T(T").

5. A R-linear map F : ' — R called the gauge fixing function which commutes with
the g-actions on I' and R.
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Consider the bicomplex A(g*)®A(T") equipped with the Chevalley-Eilenberg differential
with values in the g-module A(T")

dop : AP(g") ® A() — AP*(g*) @ AU(D),
and the Koszul differential associated to the gauge fixing function £ : I' - R
Or + AP(g") © AU(T) — AP(g") @ AT H(D).

A(g*) @ A(T") is bigraded by assigning degree 1 to elements in g* and degree —1 to elements
inT. Let w® f € Al(g") ® Rand 1 ®r € A%(g*) ® I'. We have

Ik(der(w® f)) =0=dece(dk(w® f)),

and
5K(dC’E(1 & 7“)) = 5K(9a X far) =0'® F(faT) =0'® §aF(r) = dCE(éK(l ® 7’))

Therefore depdx — dxdop = 0 for all elements in the A(g*) ® A(T") by Leibniz’s rule. The
bicomplex structure is indeed well-defined. One can then define the BRST complex to
be the total complex of this bicomplex with the BRST differential defined to be the total
differential s = dop+ (—1)*dx. When the Koszul complex is acyclic, it is not hard to show
that HY = Hj (HgK) using standard methods of spectral sequences.

For example, we can take M to be a symplectic manifold with a Hamiltonian G-action,
E to be the vector bundle H defined in Example and F' to be the gauge fixing function
induced by the moment map of the G-action. Note that for £ € g, X € I'(H) Cc I'(T'M)

and f € C°°(M), we have

§(fX) = [Xe, [X] = Xe(f) X + f[Xe, X] = £(f) X + fE(X).

We recover the BRST complex defined in [KS87].

As another example, we can take E to be the tangent bundle over a G-manifold M, and
F to be the gauge fixing function induced by a G-invariant function S on M as in Example
Likewise, for ¢ € g, X € I'(TM) and f € C°(M), we have {(fX) = &(f) X + f§(X).
The corresponding BRST complex is indeed well-defined.

3.3.2 The second way of defining a BRST complex

The second way of constructing a BRST complex uses almost the same data as the first
one, except that it involves the universal Koszul complex of I' instead. The bicomplex is
then A(g*) @ A(T') ® S(T") E|equipped with the Chevalley-Eilenberg differential with values
in the trivial g-module A(T") ® S(T")

dop : A"(g%) @ AP(I) @ SU(I") — A" (g*) ® AP(I") ® SU(T),

2The first ® is over R, while the second is over R. Elements in A”(g*) ® AP(T") ® S%(T) are of degree
(Ta _p)
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and the Koszul differential of the universal Koszul complex
or : A"(g") @ AP(T) ® SY(T) — A" (g*) @ AP~H(T) @ STHT).

Since I is projective, the universal Koszul complex is acyclic. Hence H? = Hj (HSK).

For example, let’s consider the Faddeev-Popov method of Yang-Mills theory [FP67]. Let
P be a (trivial) principal H-bundle over a 4-dimensional Minkowski space (N, g). Recall
that the Yang-Mills functional is defined as S = % f  dvolgtr(F* Fy,,, ), where F),, = 0, A, —
0y A, + Ay, Ay is the stress-energy tensor of the vector potential A,, F* = g'?¢g"PF,,. S
is invariant under the action of the gauge symmetry group H = C°°(M, H). h € H acts on
A, as h(A,) = hd,h™t + hA, ™. The Lie algebra of H can be identified with C°°(M, ).
Let D,, denote the covariant derivative associated to A,. £ € C*°(M,h) acts on A, as
£(A,) = —D,&. The BRST complex is defined by setting g to be C*°(M, ), M to be A,
the infinite dimensional space of all vector potentials, and I" to be the trivial vector bundle
over A with fiber g. An element £ € g* induces a generator ¢ := £ ® 1 ® 1 of degree 1, a
generator ¢ := 1®E® 1 of degree —1 and a generator b := 1®1® ¢ of degree 0. The BRST
differential takes the following form

1
sA, = —Dyc, sc= —i[c, q]
sc=0b, sb=0.
Recall that sc = —1[c, ] should be understood as sc® = —3 f.cbc?, where ¢* = 2 ®1® 1.

3.3.3 BRST model for equivariant cohomology

Let’s consider the Koszul complex defined at the end of Section [3.2] The corresponding
differential graded algebra is (A(VY') @ce(ar) S(I(Ky)) = A(b*) ®r I'(S(K})), k). By
construction, I'(Ky), and hence also I'(S(K{)) are h-modules. One can then equip A(h*) ®r
I'(S(Ky)) with the Chevalley-Eilenberg differential dop with values in I'(S(Ky)). Fix a
basis {£%} for h*. £* induces a generator 0% := {*®1 of degree 1 and a generator ¢ := 1®E*
of degree 2 (through the inclusion Ky < V3). 6% and ¢ generate A(h*) ®@r I'(S(Ky)) over
C*°(M). We have

1
dopl® = 2 [0, dopd® = — [0
5K9“ — gba’ 5K¢a =0.

It is not hard to verify that dopdx = —dxdcr. The BRST differential is then defined to
be s = dog + dx. One may immediately realize that s is just the differential of the Weil
algebra A(h*) ®@r I'(S(Ky)) = W (h) when the H-manifold M is a point.

Let g be an ideal of . Let G be a normal subgroup of H with Lie algebra g. The tran-
sitive H-action induces another transitive G x H-action, which again induces the following
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exact sequences of vector bundles
0=V Ky = VgdVy = TM — 0,

where the second map is defined by sending (&, v) to (§ + v, =§) for £ € Vg(x), v € Ky(x),

z € M. The BRST complex in this case is isomorphic to W(g) ® A(h*) ® ['(S(K})) with

the BRST differential s = ' + 87, where s’ = dcg + &% The cohomology Hg, (W(g) ®
K

A(h*) ® I'(S(K}))) equipped with the differential s’ coincides with the Kalkman model
of the equivariant cohomology of the G-manifold M. We refer the reader to the thesis
[Kal93a] by Kalkman for more detail about this construction.
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Chapter 4

Monoidally graded geometry

4.1 Commutative monoids and parity functions

Let (Z,0,+) be a commutative monoid. Let Z, denote the cyclic group of order g.
Definition 4.1.1. A parity function is a (non-trivial) monoid homomorphism p : Z — Z.

Not every Z has a non-trivial parity function. For example, there is no non-trivial
homomorphism from Z, to Zo when q is odd. Let Z, denote p~1(a) for a € Zy. We have
Zo+Iy € Zyqp. Recall that an element z in 7 is called cancellative if x +y = x + z implies
y = z for all y and z in Z. Suppose that there is a cancellative element in Z;. It is easy
to see that such an element induces an injective map from Z, to Z,41. It follows from the
Cantor-Bernstein theorem that there exists a bijection between Zg and Z;. A monoid is
called cancellative if every element in it is cancellative. We have shown that

Proposition 4.1.1. Let T be a commutative cancellative monoid. If T has a non-trivial
parity function p, then the submonoid Ly and its complement I7 have the same cardinality.

Remark 4.1.1. In the finite case, Proposition is no longer true if we drop the
cancellative condition. For example, we can consider the commutative monoid defined by
the following table. A non-trivial p is defined by setting p(0) = p(b) = 0 and p(a) = 1.

o
SR | OO
SR T

Q|

b

Table 4.1.1: A commutative non-cancellative monoid of order 3.

The question now is, given an appropriate commutative cancellative monoid Z, how can
one construct a parity function for it? If 7 is finite, it is not hard to show that 7 is actually

31
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an abelian group. The fundamental theorem of finite abelian groups then tells us that Z
is isomorphic to a direct product of cyclic groups of prime-power order. By Proposition
4.1.1, one of these cyclic groups must be Zyr, k > 1. We can write Z = Zgx x --- and
define p by sending (x,---) € Z to a — 1 (mod 2), where a is the order of z € Zor. If T is
infinite, the construction of p is hard, perhaps not possible in general. However, one can
easily work out the case when Z is free. (Z is then cancellative, but not a group.) Let Zy
be the submonoid of elements generated by an even number of generators. Let Z; be the
subset of elements generated by an odd number of generators. Note that Z, +Z, C Z, 4.
We obtain a parity function which sends elements in 7, to a. As an example, let Z be N,
the monoid of natural numbers under addition. p is then defined by sending even numbers
to 0 and odd numbers to 1.

Let K(Z) denote the Grothendieck group of Z. Recall that it can be constructed as
follows. Let ~ be the equivalence relation on Z x Z defined by (a1, az) ~ (b1, b2) if there
exists a ¢ € Z such that a; + by + ¢ = ag + b1 + ¢. The quotient K(Z) =Z x Z/ ~ has a
group structure by [(a1,a2)] + [(b1,b2)] = [(a1 + b1, a2 + b2)].

Proposition 4.1.2. Let p be a parity function for Z. The map
P K(Z)— Zs
[(a1,a2)] = p(a1) + p(az)

is well-defined and gives a parity function for K(Z).

Remark 4.1.2. When 7 is cancellative, it can be seen as a submonoid of K(Z) by the
embedding

LT — K(T)
a— [(a,0)].
For this reason, we sometimes simply write a —b to denote [(a,b)] € K(Z). The cancellative

property is not necessary for the proof of Proposition But it guarantees the non-
triviality of p/, since p’ restricted to Z must coincide with p.

Proof. Let (a1,a2) and (b1, b2) represent the same element of K (Z), i.e., there exist some
¢ such that a1 + by + ¢ = a9 + b1 + ¢. One then concludes that a; + by and as + by must
have the same parity. Note that, for a,b € Zs, a = b if and only if a + b = 0. We have

p'([(a1, a2)]) + p'(([b1,02)]) = p(a1 + b2) + p(az + b1) = 0.
Hence p/([a1, az]) = p/([b1, ba]). O

As an example, consider K (N) = Z, the monoid of integers under addition. The parity
function p’ induced from the parity function p for N again sends even numbers to 0 and
odd numbers to 1.
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4.2 Monoidally graded ringed spaces

Let R be a commutative ring. Let Z be a countable commutative cancellative monoid
equipped with a parity function p.

Definition 4.2.1. An Z-graded R-module is an R-module V with a family of sub-modules
{Vi}iez indexed by T such that V = @,z V;. v € V is said to be homogeneous if v € V;
for some i € Z. We use d(v) to denote the degree of v, d(v) = i.

Given two Z-graded R-modules V and W, we make the direct sum V & W and the
tensor product V ® W into Z-graded R-modules by setting

Vew=@Pview), Vew=@P| P view;
i€T keZ \it+j=Fk

We can also make the space Hom(V, W) of R-linear maps from V' to W into a K (Z)-graded
R-module Hom(V, W) = @ ¢k (7) Hom(V, W)q by setting

Hom(V,W)q = {f € Hom(V,W)|f (Vi) € Wj, [(4,9)] = a}.
A morphism from V to W is just an element of Hom(V, W)y.

Remark 4.2.1. Hom(V, W) is in general not Z-graded. This is because we should assign
degree “j —1” to a map f which maps elements in V; to elements in w € W;. But the
minus operation does make sense for a general monoid Z. So we have to work with K (Z),
the group completion of Z. Note that V* = Hom(V, R), the dual of V, is in particular
K(Z)-graded. (The degree of elements in V;* is —i.) Hence V*® W, which is isomorphic to
Hom(V, W), is K(I)-graded by assigning degree j —i to elements in V;* ® W;. Everything
is consistent.

Now, suppose that Z also has a commutative multiplicative structure which is compat-
ible with the additive structure. That is, it is a commutative cancellative semiring. We
write ab as the multiplication of @ and b in 7.

Definition 4.2.2. An Z-graded R-module A is called an Z-graded R-algebra if A is a unital
associative R-algebra and if the multiplication y: A ® A — A is a morphism of Z-graded
R-modules. We write xy = pu(z ® y) as the shorthand notation for multiplications of A. A
is said to be commutative if

2y — (—1)P@PW gy = (4.2.1)

for all homogeneous z,y € A, where (—1)(') is the sign function of Zy which sends 0 € Zo
toland 1€ Zsy to —1.
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Remark 4.2.2. Here we have to be careful about the sign factor appearing on the right
hand side of . Although both of Z and Zo are semiringsﬂ p is not necessarily a
semi-ring homomorphism and we do not have p(d(x)d(y)) = p(d(x))p(d(y)) in general. (As
a counterexample, consider the case of Z = Z x Z.) For simplicity, we write p(z)p(y) to
bypass this ambiguity. We will specify the convention we use when it comes to explicit
computations. Note that the notion of commutativity in the Z-graded setting is well-defined
because

(=1)P@PW) = (—1)PW)P(z)
and
(—=1)P@PW2) = (—1)P@)P@)+p()p(2)

for both conventions. In other words, the monoidal category of Z-graded R-modules to-
gether with the braiding

8V7W2V®W—>W®V
TRy (_1)p(w)p(y)y QT
is a symmetric monoidal category.

Morphisms of Z-graded algebras are simply linear maps of degree 0 which preserves the
algebraic structures. We use Comm-Alg; to denote the category of commutative Z-graded
algebras.

Definition 4.2.3. The tensor algebra T(V) is the Z-graded R-module T(V) = @,y V®",
together with the tensor product ® as the canonical multiplication. The symmetric algebra
S(V) is the quotient algebra of T(V') by the Z-graded two-sided ideal generated by

vRw— (—1)POPW Yy gy,
where v,w € V C T(V) are homogeneous.

Remark 4.2.3. S(V) has a canonical N-grading inherited from T(V') which should not be
confused with its Z-grading. We write S(V') = @@,y S"(V) to indicate that fact. Note that
SY%(V) = R, but S(V)o, the sub-space of homogeneous elements of degree 0, is in general
larger than R.

S(V) is universal in the sense that, given a commutative Z-graded R-algebra A and a
morphism f: V — A. There exists a unique algebraic homomorphism f : S(V) — A such
that the following diagram commutes

V —— S(V)
\ s
A

'The multiplicative structure on Zs is inherited from the one on Z.
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where ¢ : V' — S(V') is the canonical embedding. Note that f preserves the Z-grading, i.e., it
is a morphism in Comm-Alg;. Choosing A to be R (viewed as an Z-graded R-algebra whose
components of non-zero degree are 0.) and f to be the zero map, we obtain an R-algebra
homomorphism from S(V') to R. We denote this map by €. Note that kere = @, ,5"(V).

Let k£ be a field and R be a commutative k-algebra. Let A be a commutative Z-graded
k-algebra.

Definition 4.2.4. A k-algebra epimorphism ¢ : A — R is called a body map of A if
kere D I, where [ is the ideal in A generated by homogeneous elements of non-zero degree.

By definition, e preserves the Z-grading of A.

Definition 4.2.5. Let € be a body map of A. A is said to be projected if the short exact
sequence

00— kere — A R-—0
splits.

The splitting gives A an R-module structure depending on ¢, with respect to which e
becomes an R-algebra homomorphism. Conversely, A is projected if A has an R-module
structure and e preserves that structure.

Lemma 4.2.1. Let V be an Z-graded R-module with Vo = 0. Let € be an R-linear body
map of S(V)). Then € is unique.

Proof. In this case, S(V) = R&I where I = @, . ,S™(V'). Since I C ker e and € is R-linear,
the only possible choice of € is the canonical one. ]

Remark 4.2.4. Let V be as in Lemma Suppose A = S(V') as Z-graded k-algebras.
In particular, this implies that A admits a decomposition A = A’ @ I where A’ = R and
I is the ideal generated by homogeneous elements of non-zero degree. Let € be a body
map of A. Since I C kere, € is determined by €| 4. In other words, € is determined by a
k-algebra endomorphism of R.

More can be said if V is free.

Lemma 4.2.2. Let V be a free T-graded R-module with Vi = 0. Let € be an R-linear body
map of S(V). (By Lemma € is the canonical one.) Let I denote the kernel of €.

Then there exists an R-algebra isomorphism
S(V) =S(1/1?),

where I? is the square of the ideal I.
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Proof. Let v : V < S(V) be the canonical embedding. Since I = @,,.,5"(V), we have
(V) C I, which yields another embedding V < I/I? < S(I/I?), which induces the desired
isomorphic map between S(V) and S(I/I?). O

Definition 4.2.6. The Z-graded algebra of formal power series on V is the R-module

svy=1Is"v

neN

equipped with the canonical algebraic multiplication.

Remark 4.2.5. As is in the case of Z = Z [Fail7|, it is actually crucial to work with S(V')
instead of S(V') when the even part of V' is non-trivial. The former allows us to have a
coordinate description of morphisms between “Z-graded domains”, a notion of partition of
unity for “Z-graded manifolds”, and more.

Let I be the kernel of the canonical body map of S(V'). One can equip S(V') with the
so-called I-adic topologyE] Moreover, one can consider the I-adic completion of S(V') which
is defined as the inverse limit

S(V); 1= LimS(V)/I"

of the inverse system ((S(V)/I™)neN, (Tm.n)n<men), where mp, , = S(V)/I™ — S(V)/I™ is
the canonical projection. Note that there is also a canonical projection S(V') — S(V)/I"
for each n € N. By the universal property of the inverse limit, one obtains a morphism

—

tr:S(V) = S(V),
with kernel being (1,5 " = {0}. On the other hand, it is easy to see that S(V)/I"

—

@?;01 Si(V) for n > 1. Tt follows that there is a canonical isomorphism S(V); = S(

under which ¢ coincides with the canonical inclusion S(V') < S(V).
In fact, S(V') can be made into a metric space such that S(V') is the completion of
S(V) with respect to the metric structure [Sinll]. The metric-induced topology on S(V),

with a slight abuse of notation, coincides with the I-adic topology on S(V'), where I =
150 S™(V).

Lemma 4.2.3. Let A be a commutative Z-graded R-algebra. Let J be an ideal of A
such that A is J-adic complete. S(V') is universal in the sense that, given a morphism

IV — A such that f(V) C J, there exists a unique (continuous) algebraic homomorphism
f:S(V) — A such that the following diagram commutes

12

<

)

V —— S(

v)

2To each point x of S(V') one assigns a collection of subsets B(x) = {x+I"}zca,n>0. The I-adic topology
is then the unique topology on S(V') such that B(z) forms a neighborhood base of x for all x.
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Proof. We already know that f induces a unique morphism f’ : S(V) — A such that

f' o1 = f. By assumption, f’ extends naturally to a morphism f : S(V) — Ay A

Claim: f is continuous.

Proof: It suffices to show that f_l(Jm) is a neighborhood of 0 for any m € N. By assump-

tion, I C f~1(J). It follows that I™ c f=Y(J)™ c f=1(J™). |
Since S(V) is dense in S(V') and f’S(V) = f', f is also unique. O

Remark 4.2.6. Likewise, we have a canonical body map of S(V') induced from the zero
map V — R. Similar results like Lemma and Lemma also hold. For example,

we have

S(V) = S(1/1?),
where V and I are as in Lemma [£.2.9]

Lemma 4.2.4. Let € be the canonical body map of S(V'). Then for f € S(V), f is invertible
if and only if e(f) is invertible.

Proof. “=": Trivial.

“<”: Suppose €(f) = ¢ where ¢ € R is invertible. We can write f = ¢+ f’ where
I € 11,51 S™(V). Note that (f)* € ], S"(V) for all kK > 0. We can then set the inverse
of f to be the formal sum f~! := ¢ 13", ((=1)F(c71f)*. (f~1 is well-defined because
the formal sum restricted to each S™(V) is a finite sum.) O

Corollary 4.2.1. S(V) is local if R is local.

Proof. Choose a non-unit f € S(V'). Let ¢ = ¢(f). By Lemma ¢ is a non-unit. Since
R is local, 1 — ¢ is invertible. 1 — f is then a unit by Lemma [4.2.4 O

Recall that a ringed space (X, Q) is a topological space X with a sheaf of rings O on
X.

Definition 4.2.7. An Z-graded ringed space is a ringed space (X, Q) such that
1. O(U) is an Z-graded algebra for any open subset U of X;
2. the restriction morphism py i : O(U) — O(V) is a morphism of Z-graded algebras.

A morphism between two Z-graded ringed spaces (X1, 01) and (X2, Oy) is just a morphism
¢ = (@, ¢*) between ringed spaces such that ¢f; : O2(U) — O1(p~1(U)) preserves the Z-
grading for any open subset U of X5.

Let (X,C) be a ringed space where C'(U) are commutative rings. One can define Z-
graded C-modules and commutative Z-graded C-algebras in a similar way. In particular,
the structure sheaf O of an Z-graded ringed space can be viewed as an Z-graded C-algebra
if C'is a sub-sheaf of O such that C'(U) are homogeneous sub-algebras of degree 0 of O(U).
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Definition 4.2.8. Let F be an Z-graded C-module. The formal symmetric power S(F)
of F is the sheafification of the presheaf

U = S(F(U)),

where S(F(U)) is the Z-graded algebra of formal power series on the C'(U)-module F(U).

By definition, S(F) is a commutative Z-graded C-algebra.

Lemma 4.2.5. Let A be a commutative IT-graded C-algebra. Let B be a sub-sheaf of A
such that A(U) is B(U)-adic complete for all open subsets U. S(F) is universal in the sense
that, given a morphism of Z-graded C-modules F : F — A such that F(F(U)) C B(U) for
all open subsets U, there exists a unique morphism of Z-graded C-algebras F: ﬁ - A
such that the following diagram commutes

F—S(F)

K ~
F
A

where v : F — S(F) is the canonical monomorphism.

Proof. This follows directly from the universal property of sheaﬁﬁcatiorﬁ and the universal
property of S(F(U)) stated in Lemma O

To end this section, we state the following lemma taken from [Man97|.

Lemma 4.2.6. Let
0—G¢ —H —F—N0. (4.2.2)

be a short exact sequence of C-modules where F and G are locally free C'-modules. Then
the obstruction of the existence of a splitting of can be represented as an element
in the first sheaf cohomology group H'(X,Hom(F,G)) of Hom(F,G).

4.2.1 Monoidally graded domains

Throughout this subsection, V is a real Z-graded vector space with V5 = 0. The dimension
of the homogeneous sub-space V; of V' is m;. (We also assume that only finitely many of
m; are NON-zero.)

3That is, given a presheaf F, a sheaf G, and a presheaf morphism F': 7 — G, there exists a unique
sheaf morphism F' : F% — G such that Fo, = F', where F% is the sheafification of F and ¢ : F — F! is the
canonical morphism.
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Definition 4.2.9. Let U be a domain of R”. An Z-graded domain U/ of dimension n|(m;)icz
is an Z-graded ringed space (U, O), where O is the sheaf of S(V')-valued smooth functions.

Remark 4.2.7. U is a locally ringed space by Corollary

For example, a domain U with the sheaf C'"*° of smooth functions on U is an Z-graded
domain of dimension n|(0, - - - ), which is denoted again by U for simplicity.

Lemma 4.2.7. Let F': C° — C™ be an endomorphism of sheaves of commutative rings
on U. Then F must be the identity.

Proof. First, we show that F' is actually an endomorphism of sheaves of unital R-algebras
on U. It suffices to show that F' restricted to any open subset of U sends a constant
function to itself. We know this is true for Q-valued constant functions. Now, if F’ sends a
constant function f to a non-constant function g, then one can find two rational numbers
b1 and b such that g — b; and g — by are non-invertible. But then the pre-images f — by
and f — by are non-invertible, which implies that f is non-constant: a contradiction. To
show that g actually equals f, use the fact that the only field endomorphism of R is the
identity.

Let p € U. F induces a unital ring endomorphism Fj, on the stalk Cp°. On the other
hand, for any open neighborhood U, C U of p, the evaluation map

ev:C>®(U,) =R
f=fp)

induces a map ev, : Cp;° — R. For f, € C}°, it is easy to see that f, is invertible if and
only if ev,(fp) # 0. Let ¢ = evy(Fp(fp)). fp — ¢ is non-invertible. Hence ev,(f,) = c¢. In
other words, for any open subset U’ of U, we have Fy/(f)(p) = f(p) for all f € C>°(U")

and all p € U’. This implies F = id. O

A morphism between Z-graded domains is just a morphism of Z-graded locally ringed
spaces. Recall that we have the canonical body map € : C*°(U) ® S(V) — C*(U).

Proposition 4.2.1. There exists a unique monomorphism ¢ : U — U with ¢ = id.

Proof. Existence is guaranteed by e. Uniqueness follows from Remark and Lemma
427 O

We also have a canonical morphism for the other direction &4/ — U induced by the
canonical embedding ¢ : C*(U) — C*(U) ® S(V) Note that € ot = id on C*°(U).

4There will be no longer such a canonical morphism if we go the category of Z-graded manifolds.
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Proposition 4.2.2. Let ¢ = (¢, ") be a morphism from Uy = (Ur, O1) to Uy = (Usz, O3).
The following diagram commutes.

Ul L)Z/{Q

o]

U1 L) UQ
Proof. Let U be an open subset of Us. Let f € O2(U). We need to show that

(p*(f)) = e(f) o p.

Suppose this does not hold. One can find a p € 1 (U) such that e(¢*(f))(p) = ¢ #
e(f)(@(p)). Then there exists an open neighborhood U’ C U of ¢(p) such that e(f) — ¢ is
invertible. By Lemma f — ¢ is also invertible on U’, which implies that ¢*(f — ¢)

is invertible on =1 (U’) C ¢~ 1(U), which contradicts the fact that e(¢*(f — ¢)) is non-
invertible on ¢~1(U"). O

Definition 4.2.10. A coordinate system of U is a collection of functions (z*,6%%) such
that

1. z* are elements of O(U)p such that e(z*) form a coordinate system of U;

2. 6% are homogeneous elements of O(U) of degree d(60%%) =i,i #0anda=1,--- ,m;,
which generate O(U) as a C*°(U)-algebra.

Suppose that Z can be given a total order <. It follows that any function f € O(U)
can be written uniquely in the form

F=3"35" frat) T 097, (4.2.3)
J B jeT
where
o J € Pow(Z), B = (B)jeg, B = (B],...,Bh,), Bl € {0,1} if p(j) = 1, B, € N if
p(j) = 0;

o (097 = (Hj’l)ﬁg e (Gj’mj)w”j, the product Hjej(ef)ﬁj is arranged in a proper order
such that (Gj)ﬁj is on the left of (Hj/)ﬁjl whenever j < j';

e For a smooth function g € C*°(U), the notation g(z*) should be understood as

@)= 30 o 30 Ot Dl g(e(o)) o — ela ) o — e

11=0 in=0

Hence, g(z*) is an element in O(U)y instead of C*°(U).
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The sum in (4.2.3) is well-defined because, by assumption, only finitely many of m; are
Nnon-zero.

Remark 4.2.8. One may wonder how we obtain (4.2.3). In fact, by definition, every
function f can be expressed in the form

F=3"frplea) JL67)7.
J B

JET
One can then define a map from O(U) to itself by sending g(e(x*)) to g(z*). Now consider
another map which sends g(e(x*)) to g~ (*), where

o0 [e.e]
B 1 . . : :
g7 @)= D0 DT O Oingea)) (el = ) (efa) = )
i1=0 i, =0

Using the binomial theorem, it is easy to see that the second map is the inverse of the first.
In fact, the reader may notice that the map g(e(z#)) — g(z#) is exactly the “Grassmann
analytic continuation map” defined in [Rog07].

Corollary 4.2.2. Let p = (@, 9*) be as in Proposition . @ is uniquely determined by
2

Proof. Let (z#,6%%) be a coordinate system of Us. By Proposition one has ¢V =
e(p*x#), where (¢#) is ¢ expressed in the coordinate system (e(z*)) of Us. O

Let ev be the evaluation map of C*°(U) at p € U. Let s, denote ev oe. Let I, denote
the kernel of s,. We follow |Lei80| to prove the following lemmas.

Lemma 4.2.8. For any functions f € O(U) and any integer k > 0, there is a polynomial
Py in the coordinates (z*,0%%) such that f — Py € I;f“‘l.

Proof. Use the classical Hadamard lemma and the decomposition (4.2.3]). O

Lemma 4.2.9. Let f and g be functions of O(U), then f = g if and only if f —g € I]f for
all k € N and p € U. In other words, ﬂpEU Nien II’f = {0}.

Proof. Let h = f—g. Apply the decomposition (4.2.3)) to h, then by Lemma hgp=0
for all J and 8. Hence h = 0. O]

Lemma 4.2.10. Any morphism of Z-graded R-algebras s : O(U) — R must take the form
5=5p.

Proof. Since we assume V) = 0, s can be reduced to a morphism C*°(U) — R. Let z* be
a coordinate system of U. Let fV = x# — s(z*) and h = Zu(f“)Q. Then s(h) = 0, which
implies that h is non-invertible. In other words, there exists p € U such that z*(p) = s(a*)
for all u. Now suppose there exists an f € C>°(U) such that s(f) # s,(f) = f(p). Consider
the function b’ = h + (f — s(f))?. Since h > 0 for all points of U/{p}. We know A’ > 0 on
U. But this contradicts the fact that s(h’) = 0. Hence s must equal s,. O
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Theorem 4.2.1. Let ¢ = (@, ¢*) be a morphism from Uy = (U1, O1) to Us = (Uz, O2). Let
(", 05) be a coordinate system of Us. Then ¢* is uniquely determined by the equations

prat =yt gt =,
where y* € O(Uy)g, 14 € O(Uy); and (e(y*))(p) € Us for all p € Uy.

Proof. Let f € Oy(Us2). By , to construct ¢*f, we only need to define ¢*f7 3.
But this is straightforward: one just replaces # with y* and 6% with n*® in . By
construction, we have p*1 =1, o*(f +g) = ¢*f + ¢*g, and *(fg) = ¢* fe*g, hence ¢* is
well-defined.

Now suppose there exists another ¢™* which equals ¢* on coordinates. Then they also
equal on all polynomials of (z*,#%%). By Lemma and Lemma o* = p*. O

Remark 4.2.9. Theorem[4.2.T]can be seen as a generalization of the Global Chart Theorem
in the Zs-graded setting (see Theorem 4.2.5 in [CCF11]).

Corollary 4.2.3. Let p* : O3(Us) — O1(Uy) be a ring homomorphism which preserves the
T-grading. Then there exists a unique morphism ' : Uy — Us such that ©"™* = p*.

Proof. First, one can easily show that ¢* is actually an R-algebra homomorphism using
arguments similar to those in Lemma Choose a point p € Uy, by Lemma the
morphism s, o ¢* must take the form s, for some p’ € Uy. It follows that ¢*(Iy) C I,.
Let (z#,0%%) be a coordinate system of Uy, we then have ¢*z# — e(z#)(p') € I,. Hence
(e(¢*zH))(p) € Uy for all p € U;. Next, observe that a coordinate system of U, restricted to
any open subset of it gives a coordinate system of that open subset. Now apply Theorem

[4.2.7] and Corollary [£.2.2] O

4.2.2 Monoidally graded manifolds

Definition 4.2.11. Let M be a n-dimensional manifold. An Z-graded manifold M of
dimension n|(m;);cz is an Z-graded ringed space (M, Oys) which is locally isomorphic to
an Z-graded domain of dimension n|(m;);cz. That is, for each = € M, there exist an open
neighborhood U, of x, an Z-graded domain I/, and an isomorphism of locally ringed spaces

¥ = (85’ 30*) : (UQHOM’Ux) —U.
¢ is called a chart of M on U, [

M with the sheaf C*° of smooth functions on M is an Z-graded manifold of dimension
n|(0,- - - ), which is denoted again by M for simplicity. We call M together with a morphism
O — C an underlying manifold of M. Equivalently, an underlying manifold of M is a
morphism ¢ : M — M with ¢ = id.

5We often refer to U, as a chart too.
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Let € M. An open neighborhood U of x on which O(U) = C*(U) @ S(V) is called a
splitting neighborhood. Clearly, every chart is a splitting neighborhood, but not vice versa.
The set of splitting neighborhoods form a base of the topology of M. For a splitting U,
there exists sub-algebras C(U) and D(U) of O(U) such that C(U) = C*>°(U), D(U) =2 S(V)
and O(U) = C(U) ® D(U). This induces an epimorphism

e:0OU) = C>™(U)
of graded commutative R-algebras, which is a body map of O(U).
Definition 4.2.12. A local coordinate system of M is the data (U, z*,6"®) where

1. U is a splitting neighborhood of M;

2. z!,..., 2" are elements of C(U) such that e(z!),..., e(z™) are local coordinate func-
tions of M on U;

3. %% are homogeneous elements of D(U) of degree d(§%%) =i,i#0anda=1,--- ,m;,
which generate O(U) as a C(U)-algebra.

Remark 4.2.10. By Theorem every local coordinate system determines a chart
(non-canonically).

Now, let U be an arbitrary open subset of M. We can choose a collection of charts
{U4} such that U = |J, Uy. For f € O(U), one can apply the restriction morphisms to f
to get a sequence of sections f, in O(U,). Now, apply € to each of them to get a sequence
of smooth functions f, in C>(Uy). By Proposition fo must be compatible with each
other, hence can be glued together to get a smooth function f over U. In this way, we
construct a body map for every open subset of M, which are compatible with restrictions.
In other words, € can be seen as a sheaf morphism from O to C°.

Proposition 4.2.3. There exists a unique monomorphism ¢ : M — M with ¢ = id.
Proof. Existence is guaranteed by e. Uniqueness follows from Proposition O
Proposition 4.2.4. Let ¢ = (¢, ¢*) be a morphism from M = (M,Op;) to N = (N,Op).
The following diagram commutes.

e

M N
M—25 N
Proof. The proof is essentially the same as the one of Proposition 4.2.2 O

Lemma 4.2.11. Let O' be the kernel of €. O is O'-adic complete. That is, for any open
subset U, O(U) is OY(U)-adic complete.

Proof. Let O be the Ol-adic completion of Oﬁ There exists a canonical morphism ¢ : O —

SFor each open subset U, one has O(U) = Jim O(U)/O™(U), where O™(U) is the n-th power of O'(U).



44 CHAPTER 4. MONOIDALLY GRADED GEOMETRY

O. Since O is locally O'-adic complete, the induced stalk morphism tp: Op — @p is an
isomorphism for each p € M. It follows that O is O'-adic complete. O

Definition 4.2.13. An Z-graded manifold M is called projected if there exists a splitting
of the short exact sequence of sheaves of rings

0— O — 00 —0, (4.2.5)
where O! is the kernel of e.
The structure sheaf O of a projected manifold is a C'*°-module.

Definition 4.2.14. A projected Z-graded manifold M is called split if there exists a
splitting of the short exact sequence of C*°-modules

0— 0?2 — 0! 00 — o, (4.2.6)
where O? is the square of O, 7 is the canonical quotient map.

Let O be the structure sheaf of a projected Z-graded manifold. Let F denote the sheaf

Ol/0?. Fis an IT-graded C°°-module and we can define its formal symmetric power S(F).
By construction, the ringed space Mg = (M, S(F)) is also a projected Z-graded manifold.

Lemma 4.2.12. Let M = (M, O) be a projected Z-graded manifold. M is split if and only
if M= Msg.

Proof. Let ¢ : F — S(F) be the canonical monomorphism. ¢ splits the short exact sequence
. Now if M is split, one can find a monomorphism F' : F — O of C°°-modules such
that F(F(U)) C OY(U) for any open subset U. By Lemma and Lemma there
exists a unique C'*®-algebra morphism F : S(F) — O such that Fo. = F. By Remark
F induces an isomorphism for each stalk. Hence M = M. O

Lemma 4.2.13. Every projected Z-graded manifold is split.

Proof. Due to the existence of a smooth partition of unity on M, H9(M,Hom(O'/0?, 0?))
vanishes for ¢ > 1. By Lemma there is no obstruction of the existence of a splitting

of (2.0). 0

Lemma 4.2.14. Every L-graded manifold is projected.

Proof. Let Oy = O/O™1. Let ¢ : C° — O be the identity. (By Proposition
4.2.3} there is a unique identification O = C*°.) One can construct by induction on i
mappings ¢ ;1) : C°° — O(;11) such that mi11;0 Piy1) = P(;), where mit1; 1 Oip1 — O is
the canonical epimorphism. As is shown in [Man97], one can construct an element

w(qﬁ(z)) S Hl(M, <T® SZ+1<.7:))0>
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as the obstruction to the existence of ¢(; 1), where T is the tangent sheaf of M. Due to the
existence of a smooth partition of unity on M, H' (M, (T ®S™!(F))e) = 0 and w(¢;)) = 0.
It follows that there exists a unique morphism ¢ : C*° — 1@0@ such that m; 0 ¢ = ¢;),
where m; : lim O;) — O is the canonical epimorphism. By Lemma [£.2.TT} ¢ can be seen as
a morphism from C* to O. Note that mo = € and mp 0 ¢ = ¢y =id. ¢ splits (4.2.5). [

Corollary 4.2.4. Every Z-graded manifold is split.

Let V' be a (finite dimensional) Z-graded vector space. An Z-graded vector bundle
7 : E — M is a vector bundle such that the local trivialization map ¢y : 71 (U) = U x V
is a morphism of Z-graded vector spaces when restricted to 7—!(z), z € U C M. In other
words, E = @7 Ex where Ej are vector bundles whose fibers consist of elements of
degree k. Let | € Z. To any Z-graded vector bundle E we can associate an Z-graded ringed
space E[l] with the underlying topological space being M and the structure sheaf being
the sheaf of sections of S(; c7(Ek+1)*). This is an Z-graded manifold in our sense if the
fiber of E does not contain elements of degree &k’ such that k¥’ + 1 = 0. Corollary can
then be rephrased as

Theorem 4.2.2. Every Z-graded manifold can be obtained from an Z-graded vector bundle.

4.2.3 Monoidally graded manifolds with auxiliary parts

Throughout this subsection, V' is a real Z-graded vector space with dim V; = m;, mg # 0.

Definition 4.2.15. An Z-graded domain with auxiliary parts is an Z-graded ringed space
U = (U,0), where U is a domain of R™ and O is the sheaf of S(V')-valued smooth functions
over U. An Z-graded manifold with auxiliary parts is an Z-graded ringed space M =
(M, Opr) which is locally isomorphic to an Z-graded domain with auxiliary parts.

Lemma 4.2.15. There exists a unique R-linear body map € : S(V ®r R) — R, where
R=C>).

Proof. € is determined by its restriction to S(Vy ®r R), which is again determined by the
morphism Vp ®g R — R by the universal property of the algebra of formal power series.
Let £ be a non-zero element in V. Consider the element f = > f, ® {" € S(Vy ®r R),
where f,, = n? are constant functions over U. Since the radius of convergence of f is zero
at each point of U, € must send 1 ® £ to 0. In other words, the morphism Vy g R — R
has to be the zero morphism. O

Proposition 4.2.5. There exists a unique monomorphism ¢ : U — U with ¢ = id

Proof. This follows directly from Lemmas [£.2.15] and [4.2.7] O
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It follows from Proposition that there exists a unique underlying manifold of an
T-graded manifold with auxiliary parts. The proof of Batchelor’s theorem is essentially the
same as the case where Vy = 0.

Note that S(V) = S(Vo) ® S(Vi0), where Vo = @, 4o Vi- We denote the sub-algebra

S(Vo) ® S(Vg) of S(V) by S(V)

poly’

Definition 4.2.16. An Z-graded domain with polynomial auxiliary parts is an Z-graded
ringed space U = (U, O), where U is a domain of R" and O is the sheaf of S(V'),,,;, -valued
smooth functions over U. An Z-graded manifold with polynomial auxiliary parts is an
Z-graded ringed space M = (M, Ops) which is locally isomorphic to an Z-graded domain
with polynomial auxiliary parts.

It is not hard to show that Batchelor’s theorem still holds for Z-graded manifolds with
polynomial auxiliary parts. However, the uniqueness of an underlying manifold is lost in
this case, because there exist nontrivial morphisms from the ring of polynomials to the ring
of smooth functions.

Definition 4.2.17. Let M be an Z-graded manifold with polynomial auxiliary parts. Fix
a splitting for M, that is, identify M with an Z-graded vector bundle E. Let M4 be the
Z-graded manifold obtained from E.q := €, £0 E;. M,¢q is called the reduced Z-graded
manifold of M. We say that a morphism ¢ : M,.q — M integrates out the auxiliary
parts of M if it is induced by the canonical inclusion Ey — E together with a morphism
['(S(EF)) = C*(M).

4.3 Vector fields and differential forms

Throughout this section, every algebra is assumed to be real. To define vector fields and
differential forms over an Z-graded manifold, we need to generalize the notion of an Z-
graded R-algebra such that R can be taken to be a commutative Z-graded algebra instead
of just a usual commutative ring.

Definition 4.3.1. Let R be an associative commutative Z-graded algebra. An Z-graded
left R-module V is a left R-module with an Z-grading V = @, _- V; which is preserved by
the scalar multiplications, i.e.,

€L

R,‘A]‘ C Ai+j,
for all ¢,5 € 7.

Remark 4.3.1. An Z-graded left R-module V is automatically a right R-module by setting
vr = (—1)7’(’")1’(”)7”1) for r € R and v € V. Clearly, the right multiplications also preserve
the Z-grading on V. We therefore drop the prefixes “left-” and “right-" from now on.
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Let V and W be two Z-graded R-modules. It is straightforward to define VW, VoW
(viewed as the tensor product of a right R-module and a left R-module) and Hom(V, W).
Like before, the first two are naturally Z-graded, while the last one is K (Z)-graded.

Definition 4.3.2. An Z-graded algebra A over R is an Z-graded R-module A equipped
with an algebraic multiplication which preserves the Z-grading on A such that

r(ab) = (’ra)b = (_1)17(7")17(11)&(,,46)

for r € R and a,b € A. If R is unital, then 1la = a should also hold for all a € A, where
1 € R is the identity element. A is said to be commutative if ab = (—1)P(@P(®)pq for all
a,be A

Again, one can easily define the tensor algebra T(V'), the symmetric algebra of S(V'),
and the algebra of formal power series S(V') of an Z-graded R-module V. They are all
T-graded algebras over R.

Definition 4.3.3. An Z-graded Lie algebra (over R) is an Z-graded algebra L (over R)
whose multiplications (denoted by [-,-]) satisfy

[a,b] = —(=1)P PO p, q], (4.3.1)
0, [b,c]) = [[a, ], ] + (~1)P @O, [a, ], (13.2)

for all a,b,c € L.

The space of endomorphisms Hom(A, A) (or gl(A)) of an Z-graded real vector space A
is an associative K (Z)-graded algebra. It can be also viewed as a K(Z)-graded Lie algebra
by setting

[f.9]=fog—(—1)PVrlgof

for all f,g € Hom(A, A). In the case of A being an Z-graded algebra, an endomorphism D
is said to be a derivation if

D(ab) = D(a)b + (—1)PPIP@gD(p). (4.3.3)

It is easy to check that derivations of A form a IC(1)-graded Lie subalgebra of gl(A), denoted
by Der(A).

Definition 4.3.4. Let M = (M, ) be an Z-graded manifold. Let U be an open subset
of M. A (local) vector field over M is a derivation of O(U).

Vector fields over M actually form a sheaf called the “tangent sheaf” of M. To prove
this, we need the partition of unity Lemma in the Z-graded setting.

Lemma 4.3.1. Let f € O(M) such that €(f)(x) # 0 for all z € M. f is invertible.
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Proof. Choose an open cover {U,} of Z-graded charts of M. Let f, denote py, a(f).
Fach f, is invertible by Lemma Let f;! denote the inverse of f,. By uniqueness
of the inverse, f;! are compatible with each other, hence can be glued to give a section
f~t € O(M), which is the inverse of f. O

Lemma 4.3.2. Let {U,} be an open cover of M. There exists a locally finite refinement
{Vs} of {Us} and a family of functions {lg € O(M)o} such that

1. supp lg C Vg is compact and €(lg) > 0 for all §;
2. Zﬁ ZIB - 1.

Proof. First, find a partition of unity {l5} of M subordinate to {Vj3}. Choose Iy € O(Vp)
such that €(lj) = I5. Since lg are invertible, we then set I to be (>s l’ﬁ)_ll’ﬁ. O

Lemma 4.3.3. Let U be open in M. Let W be closed in M and W C U. Then for any
f € O(U), there exists a g € O(M) and an open neighborhood V' of W in U such that

pvu(f) = pvm(g) and supp g C supp f.

Lemma 4.3.4. Let U and V' be open in M such that V' C U. Let D be a derivation of O(U).
Then there exists a unique derivation D' of O(V') such that D'(pvu(f)) = pvu(D(f)) for
all f € O(U).

We skip the proofs of Lemmas [£.3.3] and [£.3.4] since they are essentially the same as
the ones in the Zs-graded case [Lei80]. Lemma actually implies that the vector fields
over M form a presheaf X on M.

Proposition 4.3.1. X is a sheaf.

Proof. Let U be an open subset of M with an open cover {U,}. Let D, € X(U,) be com-
patible with each other. We define a D € X(U) by setting D(f) to be unique function ob-
tained by gluing Do (fo), where f € O(U) and fo = py., v (f). D(f) is well defined because

PUUsUa(Da(fa)) = pUants,Ua (Do) (pUanUs,Ua (fa)) = pUnUs,U5 (D) (PUanvsUs(f5)) =
PULNUs,Us(Dp(f3))- -

Definition 4.3.5. X is called the tangent sheaf of M.
Remark 4.3.2. We also use 7 to denote the tangent sheaf of M.
Let U = (U, O|y) be a chart of M with coordinates (z*, 0%%).

Proposition 4.3.2. X is a locally free K(Z)-graded O-module.
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0

Proof. Consider the derivations W and 891 - of O(U) defined by setting -2 5.n to be the usual

partial derivatives on U, and 9 7520 = 0ij0qp. Let D € X(U). Let D' = D¥ agu D 632 -,
where D* = D(z*) and D% = D(@Z @). By construction, (D — D')f = (D —D")(f — Px) €
IkJrl for all p e U, f € O(U) and polynomials Py such that f — P, € I;f“. It follows from

Lemma “ 9 that (D — D')f =0 for all f € O(U).Hence D is unlquely determlned by its

action on x“ and 9’ @ % is a locally free O-module locally spanned by -2 7o and 62 =, where
a% and 891 - are of degrees 0 and [(0,4)] € K(Z), respectively. O

Definition 4.3.6. The sheaf 7* := Homp (T, O) is called the cotangent sheaf of M.
Proposition 4.3.3. T* is a locally free T-graded O-module.

Proof. T* is locally spanned by dz* and d§"®, where da* is the dual of W and df™* i
the dual of 8981 . Note that dz* is of degree 0 and df** is of degree i. D

We want to define a notion of differential forms on M. Let V be an Z-graded R-module.
Let V]odd] denote the N x Z-graded R-module defined by setting V[odd]; ; = 0 for all i # 1
and Vodd]1 ; = V;. The parity function on N x Z is defined by setting p(i, j) = p(i) + p(j).
The exterior algebra A(V') of V' is then defined to be the symmetric algebra S(V[odd]). We
write A(V) = @y A¥(V) where A*(V) = S*(V[odd]). An element w of A*(V) is said to
be of form degree k. We set A(V) = [],cy A¥(V) to be the “completion” of A(V).

Definition 4.3.7. The sheaf 2 of differential forms on M is defined to be the sheafification
of the presheaf

U— A(T*(U)).

A k-form w on M is a global section of 2 of form degree k. w is said to even (odd) if it is
even (odd) with respect to its Z-grading. In particular, M together with {2 can be viewed
as an N x Z-graded manifold M. The de Rham differential on (2 is a vector field d of
degree (1,0) over My, locally of the form

0 0
d=dz"—— 4 do"" ——.
Yo TV gie
Let X be a vector field of degree | € K(I) over M locally of the form X = X#-2_ o T

X“” g Lhe contraction of X on 2 is a vector field vx of degree (—1, —l) over My,
locally of the form

9 0
oder T gagia

"—1 is the inverse of 1 € K(N) = Z, —I is the inverse of | in K (Z).

Lx = X*




50 CHAPTER 4. MONOIDALLY GRADED GEOMETRY

The Lie derivative with respect to X on {2 is a vector field

Lie X = [d, L X]
of degree (0, —1), where [, | is the bracket of the K(Z)-graded Lie algebra of vector fields
over Mg,.

Remark 4.3.3. Note that there exists a nontrivial parity-preserving monoid morphism
N — Z which sends 1 € N to an odd element [ in Z. V[odd]| can be then viewed as an
Z-graded vector space V|| shifted by degree . It follows that M together with {2 can be
viewed (non-canonically) as an Z-graded manifold (with auxiliary parts).

4.4 Monoidally graded manifolds with symmetries
Let Z be a commutative ring. Let g = @, g: be an Z-graded Lie algebra. Let M = (M, O)
be an Z-graded manifold.
Definition 4.4.1. An (infinitesimal) g-action on M is a Z-graded Lie algebra homomor-
phism
T:9— X(M),

where X (M) is the Z-graded Lie algebra of vector fields over M.

Let Gg be a Lie group with Lie algebra gg.

Definition 4.4.2. An Z-graded Lie group G is a pair (Go, g) together with a group homo-
morphism

o : Gy — Aut(g),

where Aut(g) is the automorphism group of g, such that 0|y, = Ad, the adjoint action of
Gy on gp.

Definition 4.4.3. A (global) G-action on M is a pair p = (pg, 7) where
1. po is a group homomorphism
po : Go — Diff (M),
where Diff (M) is the diffeomorphism group of M, i.e., the group of invertible mor-
phisms ¢ : M = M
2. 7 is an action of g on M,
such that
dpolia = Tlgo,
po(9)*T(€)polg™)" = 7(a(9)(€)),
for g € Gy and € € g. p is called the globalization of the infinitesimal g-action 7.
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4.5 (Bi)graded manifolds with (infinitesimal) symmetries

4.5.1 L-manifolds

Let M = (M, O) be a graded manifold. Let X be the tangent sheaf of M.

Definition 4.5.1. A cohomological vector field Q on a graded manifold M is a vector field
of degree 1 satisfying Q% = 0. A @Q-manifold is then a graded manifold equipped with a
cohomological vector field ). A @-manifold is also called as a differential graded manifold.

The cohomology of a -manifold can be defined in a straightforward way. By Theorem
4.2.2] it actually corresponds to a cohomology theory of a graded vector bundle E.

Example 4.5.1. Let M be a manifold. Let M = T[1]M. Let (z*,n") be a local coordinate
system, we define

0
e a—
Q 77 8.%'“.

The cohomology of M is the de Rham cohomology of M.

Example 4.5.2. Let V be a vector space, viewed as a vector bundle over a point. Let
M =V[-1]® V[0]. Let (z*,n*) be a local coordinate system, we define
0
=
The cohomology of M is nothing but the Koszul cohomology defined in Example

Definition 4.5.2. A Lie algebroid is a vector bundle E — M with a Lie bracket [-,]
on the space of sections I'(E), and a vector bundle morphism a : E — TM, called as an
anchor, such that the following Leibniz rule holds:

(X, 1Y) = fIX, Y]+ a(X)(f)Y, (4.5.1)
where X, Y € I'(E), f € C*(M).

Remark 4.5.1. The Leibniz rule (4.5.1)) guarantees that a is also a Lie algebra homomor-
phism. In fact, we have

a([X,Y))(f)Z = [[X, Y], fZ] - fIIX, Y], Z]
=X, f2L, Y]+ X, [V, f 2] - fIIX, Y], Z]
= [f1X, 2]+ a(X)(N) 2, Y]+ [X, fIY, Z] + a(Y)(/)(2)] = [IX, Y], Z]
)l

+
= -(fV X,
+ (XY, Z]
- flIX,Y], 7]
= [a(X), a(YV)]I(f)Z.

for any f € C*(M) and Z € I'(E). Hence a([X,Y]) = [a(X), a(Y)].

( ,
2]+ a(Y)(N)IX, Z] + a(X)(NY, 2] + a(Y)(a(X)(f)) Z)
|+ a(X)(NIY, 2]+ a(Y)(F)X, Z] + a(X)(a(Y)(f))2)
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Fix a local basis 8% of E* and a local coordinate system z* on M. This yields a local
coordinate system of the graded manifold E[1]. Any vector field @ of degree 1 on E[1] can
be written as

_ 1 a bpc 0 o a 0
Q - _2fbc(m)0 9 aea +pa($)9 81'#.
Let ¢, be the dual of §¢. Let f = f%(x)e, and g = g*(z)eq be two sections of E. @ induces
a vector bundle morphism via

0

a(X) = f*@)ph(a) 5

and a bracket on I'(F) via
[X,Y] = f4(2)g" (@) fp(w)ec + a(X)(9")ea — a(Y)(f*)za
Proposition 4.5.1 (|Vai97]). E — M is a Lie algebroid if and only if Q is cohomological.

Proof. The induced bracket satisfies (4.5.1)) automatically. It remains to show that it is
a Lie bracket if and only if Q?> = 0. Note that a section of E can be naturally identified
as a vector field of degree —1 on E[1] by replacing (locally) e, with z2;. Under this
identification, it is not hard to see that

(X, Y]E = [[Q, X],Y]. (4.5.2)

Here we use [-,-|p to denote the bracket on I'(E). The brackets on the right hand side of
(4.5.2)) are brackets of vector fields on E[1]. It follows that

X Y], Z)e = [Q.[1@.X), Y]], 2]
= [[Q.[Q. X1, Y] + [, X]. [, Y]}, Z
= S 1@ Q1. X1, Y1, 7] + [1Q, X1, 20, Q. Y1) + [@ X1, [1Q, Y1, 7]
= 1@ Q1 X1, Y], 2] + [[X. Z]1, Ve + [X. 1Y, Z]ele.

Hence, [, -] is a Lie bracket if and only if $[Q, Q] = Q? = 0. O

In the case where E = TM, f&(z) =0 and pf(x) = 84, we recover Example

As another special case, we can take M to be a G-manifold, E to be the trivial bundle
M x g over M, f(x) to be the structure constants of g, and pf (x) to be induced from the
infinitesimal action of g on M. The Q-cohomology of M is nothing but the Lie algebra
cohomology of g with coefficients in the g-module C*°(M). The @Q-closed condition of a
function S of degree 0 is equivalent to the G-invariance condition of S.
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Definition 4.5.3. A P-manifold is a graded manifold M equipped with a non-degenerate
closed 2-form w of odd degree n. n is also referred to as the degree of M.

Since w is non-degenerate, it associates to any f € O(M) a Hamiltonian vector field
Xy just as in the bosonic case, X is defined by setting

Lx,w = df.
We can define the graded Poisson bracket {-,-} on O(M) by setting
{fr9y = ~(-1)"Dix iy 0.

Definition 4.5.4. A (QP-manifold is a P-manifold equipped with a Hamiltonian cohomo-
logical vector field Q.

By definition, the Hamiltonian function S associated to @) is Q-closed, hence provides
an action functional of a cohomological field theory.

@ P-manifolds were first defined in |Ale+97]. They provide a powerful mechanism to
construct the action functional S of a CohFT by setting S to be the Hamiltonian function
associated to Q.

Remark 4.5.2. The cohomological vector field ) can be seen as the generator of a (0|1)-
dimensional Lie superalgebra q. From this point of view, a -manifold is just a graded
manifold equipped with an action of gq. As is shown above, the bosonic symmetries of an
action functional .S can sometimes be fully captured by the g-invariance condition of S. If
S also has fermionic symmetries, q should be replaced by the graded Lie algebra L defined
in Section 2.1. In fact, the fermionic symmetries of S can be captured by the condition
1S = 0. It follows that Lie, S = 0 via Cartan’s magic formula Qt, + 1,Q = Lie,. (With a
slight abuse of notation, we use @ to denote the differential of L.)

Definition 4.5.5. An L-manifold is a graded manifold equipped with an L-action.

By definition, every L-manifold is a (-manifold. The commutative graded algebra
O(M) of functions over M is an L-module. In particular, the L-module W(g) ® Q(X)
associated to a G-manifold X can now be viewed as the commutative graded algebra of
functions over the L-manifold T[1]X @ g[1] @ g[2], where g is the trivial bundle X x g. For a
general L-manifold M, the cohomology of O(M )bas can be then viewed as a generalization
of the equivariant cohomology.

We want to construct a basic (Q-closed action functional S.

Definition 4.5.6. An L P-manifold is a P-manifold equipped with a Hamiltonian L-action.
Namely, the fundamental vector fields generated by Lie,, @, ¢, in L are Hamiltonian vector
fields.
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We denote the Hamiltonian functions associated to Lie, and ¢, by L, and I,, respec-
tively.

Example 4.5.3. Let M = g[1] @ g*[2], where g is viewed as a bundle over a point. Let
(6%, ¢p) be a (local) coordinate system. The canonical symplectic form on M takes the
form w = df#* A d¢,. In this case, the Hamiltonian functions I, L, and S are of degrees 2,
3 and 4, respectively. We can write

Ia = ffa¢b + f2abcebeca
La = hb ¢b90 + h3abcd9b‘960da

2ac

S = 95" Pab + 934cPab0° + gaabeat"0°6°6%,
generally. They need to satisfy
{Laylb} - f;blm {57 S} = 07 {Iav Ib} = 07 {57 Ia} = La'

When g is compact and semi—simpleﬁ one can find a set of solutions
b c 1 ab 1 a bpc
I, = Qba, Lo =— ac¢b0 ) S = ig ¢a¢b - §fbc¢a6 0 )

where g% is the Killing metric on g. Using g% to identify g* with g, these solutions recover
the L-module structure of the Weil algebra W (g).

The Hamiltonian function S associated to () can not be basic in general, because
1a(S) = —{1,,S} = —L,.

and L, cannot be 0 when the even part of the L-action is non-trivial. In other words,
L P-manifolds cannot help us to find basic Q-closed S like the way ) P-manifolds help one
to find @-closed S.

4.5.2 QK-manifolds

We are particularly interested in the class of L-manifolds where g is abelian. The L-
structure of such graded manifold is given by 2n + 1 vector fields satisfying

[Lie,, Lie,] =0, [Lie,, Q] =0, [Liey,u,] =0, (4.5.3)
[Q7 Q] = 07 [Qa L,LL] = Lie,LLa [L,ua LV] = 07

for p,v =1,...,n, where n = dimg.

8This property guarantees that fS, = f& = f%, in orthonormal coordinates.
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Example 4.5.4. Let M = T[1]R". Let (z#,60") be a (local) coordinate system. The
L-structure is given by

ngui 0

AT T T e

It is not hard to check that satisfy and . There is no interesting
basic Q-closed function S on M. This is because I,(S) = 0 and L,(S) = 0 force S to
be independent of z* and 0%, hence the only possible candidates for such S are constant
functions.

(4.5.5)

Example can be easily generalized to a non-flat case. To achieve that, we need to
work in a bigraded setting instead of the graded setting. The parity function is defined by

DL XL — Lo
(i,j) —i+j (mod 2).
Note that
p(d(z)d(y)), p(d(z))p(d(y))

are not the same in this case. As mentioned before, we use the first one as our sign
convention for the bigraded setting. We say a commutative bigraded algebra A is of the
first (or the second) kind if p(a)p(b) is set to be p(d(a)d(b)) (or p(d(x))p(d(y))), for a,b € A.
These two conventions can be connected by the following lemma.

Lemma 4.5.1. Let A be a commutative bigraded algebra of the first kind. Let A’ be a
bigraded algebra with the same underlying bigraded vector space as A and a new algebraic
product - 4 defined by

a - A/ b= (—1)jaibab

where a is of degree (iq,ja) and b is of degree (ip, jp). A’ is then a commutative bigraded
algebra of the second kind. If D is a derivation of A of degree (i,j), then D' defined by

D'(a) = (~1)""*D(a)
is a derivation of A’.
Proof. By definition, a -4 b = (—1)e%ab = (—1)Jatotiaivtiajepg = (—1)latia) i)y . 4, q.
We need to verify that D’ satisfies Leibniz’s rule.
D'(a -0 b) = (—1)latie) (_1)Jate D(ab)

— (il)j(ia‘f‘ib)‘i‘jaib(D(a)b + (=1)%atidagD(b))

= (_1)j(ia+z‘b)+jaz‘b((_1)(j+ja)ibD(a) b+ (_1)iia+jja+ja(i+ib)a -x D(b))

= D'(a) -4 b+ (—1)HDCatia)g .y, D' (b).
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Example 4.5.5. Consider the bigraded manifold M = (T'&T)[(1,1)]M where M is an n-
dimensional manifold. Let (x*,n",07) be a local coordinate system where 1" are of degree
(1,0) while #7 are of degree (0,1). Vector fields analogous to those in Example are
given by

0 0 0
=0—, K=n'—— L=n'—. 4.5.
It is easy to check that instead of (4.5.3) and (4.5.4)), they satisfy
Q*=0, L*=0, (4.5.7)
QL-LQ =0, KL+LK=0, QK+ KQ=1L. (4.5.8)

Note that K? does not vanish, and that the relations QL — LQ = 0 and L? are not
independent from the rest of (4.5.7) and (4.5.8). In fact, we have

QL - LQ = Q(QK + KQ) — (QK + KQ)Q = Q°K — KQ* =0
by using Q> =0 and L = QK + KQ, and

L* = %(L(QK + KQ)+ (QK + KQ)L) = %(QLK —KLQ - QLK+ KLQ) =0
by using KL+ LK =0and L = QK + KQ.
Remark 4.5.3. If we use the second convention for p(z)p(y), we will have
QL+LQ =0, KL-LK=0, QK-KQ=L. (4.5.9)

instead of (4.5.8]).

Definition 4.5.7. The QK Lie bigraded algebra is the Lie bigraded algebra K spanned
by @ of degree (0,1), K of degree (1,—1) and L of (1,0) with brackets

@ Q] =[K K]=[L, L] =[Q L] =[K,L] =0, [Q K]=L.

Definition 4.5.8. A QQK-manifold is a bigraded manifold M = (M, O) equipped with a
K-action. Equivalently, M is a QK-manifold if it has three vector fields @ of degree (0,1),
K of degree (1,—1) and L of degree (1,0) satisfying

Q*=0, QK+KQ=L, LK+KL=0.

Definition 4.5.9. A QK-algebra of length n is the unital associative bigraded algebra K,
generated by the generators @ of degree (0,1), K of degree (1,—1) and L of degree (1,0)
subject to the relations

Q*=0, QK+KQ=L, LK+KL=0, (4.5.10)
and
K"l =0 (4.5.11)

for some n € N.
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There is a canonical inclusion iy, : K,y <= Ky, for m > n. We refer to the direct limit
of the system ((KCp,)neN, (in,m)n<men) as the QK-algebra of length co and denote it by K.
Clearly, K is the unital associative bigraded algebra generated by the generators @, K
and L subject only to the relations (4.5.10]).

Remark 4.5.4. Note that the commutative bigraded algebra of functions over a QK-
manifold is canonically a Ko.-module (and a KC,,-module if K"T! = 0). In particular, it can
be viewed as a bicomplex with horizontal differential L and vertical differential Q.

Let A be a unital associative bigraded algebra. It can be viewed as a Lie bigraded
algebra in a natural way. Let ¢ :  — A be a morphism of Lie bigraded algebras.

Proposition 4.5.2. K is the universal enveloping algebra of K. That is, there exists a
unique morphism ¢ : Koo — A of unital associative bigraded algebras such that the following

diagram commutes,
¢ -
\ ld)
A

where 1 : K — Ko 18 the canonical inclusion.
Proof. This follows directly from the construction of Kn. 0

Lemma 4.5.2. Every element a in ICp, (or Koo ) can be uniquely written in the form
a = po(K) +p1(K)Q + p2(K)L + p3(K)QL, (4.5.12)
where p;(K) are polynomials in K.

Proof. Consider a word w where K appears to the right of @, i.e.,
w=---QK---

One can replace QK by L — QK and move L from the middle to the rightmost using the
properties LQ = QL and LK = —K L to get

Repeating this procedure until there is no K on the right of @, one has

w = ZwKwQL

where wg is expressed purely in K, wgr, is expressed purely in Q and L. The proof is
completed by using Q? = L? =0 and QL = LQ. O
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Corollary 4.5.1. K = S[K]| as bigraded vector spaces.

Remark 4.5.5. Corollary can be seen as a special case of the Poincaré-Birkhoff-Witt
theorem in the bigraded setting.

We prove the following lemmas for later use.
Lemma 4.5.3. Let p(K) be a polynomial in K, Then
[Q, p(K)] = Lp'(K),
where |-, is the canonical Lie bigraded bracket on K, (or K ), p' is the derivative of p.
Proof. Note that [@, -] is a derivation of degree (0,1), we have
QK] = [Q K|K?™* — K[Q. K|KP ™2 4 -

=LK' - KLK?P™? ...

= pLK"™,
where we use KL = —LK. O

Note that exp(K) := > 2, I%K P is a well-defined element in /C,, since K is nilpotent.

Lemma 4.5.4. Let Q be a KC,,-module. We have
exp(K)(af) = (exp(K)a)(exp(K)S)
for a, € Q with p(d(a)) = 0.
Proof. Since p(d(«)) = 0, we have K(af) = (Ka)B + a(K3). More generally, we have
P

L op af) = 1 p o) (P
) = 53 (") aayar7p
_ zp:,' L (Kia)(K"I).
Jp =)
7=0
It follows that
exp(K)(af) =3} M(Kﬂ'axf@jm
p=0 5=0
[SSIeS) 1 ' i
=20 i gy KT
J=V p=J
= (a3 K
§=0 1=0



Chapter 5

Cohomological Lagrangian field
theories

5.1 Geometry preliminaries

5.1.1 Whitney topologies

Let X, Y be smooth manifolds. Let f,¢g: X — Y be smooth maps. Let p € X.
1. f is said to have 0-th order contact with g at p if f(p) =g(p) =g €Y.

2. Let k be a positive integer. f is said to have k-th order contact with g at p if df has
(k — 1)-th order contact with dg at (p,v) for all v € T,,(X). We write f ~ g at p to
denote this equivalence relation.

Lemma 5.1.1. f ~ g at p if and only if their partial derivatives up to order k agree at p
in some chart around p.

Proof. See Lemma 2.2. in [GG12]. O

[13

Let JF(X, Y)p,q denote the set of equivalence classes under “~j at p” of mappings f :
X =Y. Let J5(X,Y) = Up.grex <y JH(X,Y), 4 An element in J¥(X,Y) is called a k-jet
(of mappings from X to Y). To be more precise, for f € C°(X,Y), there is a canonical
mapping

M) X = JHXY)
called the k-jet of f defined by sending p to j*(f)(p) = [fl~patp € J*(X,Y), 4, the
equivalence class of f. Note that J°(X,Y) is just X x Y, a smooth manifold, and that

j%(f) : X — X x Y is a smooth map whose image is the graph of f. Note also that there
is a canonical projection

T JUX,Y) = JH(X,Y)

99



60 CHAPTER 5. COHOMOLOGICAL LAGRANGIAN FIELD THEORIES

sending j'(f)(p) to j*(f)(p) for I > k.
Let Afl be the vector space of polynomials in n variables of degrees < k with zero

constant terms. Let Bf;m = @, Ak thm is isomorphic to a Euclidean space, and

is, in particular, a smooth manifold. Let U and V be two open subsets of R™ and R™,
respectively. For a smooth f: U — V, 29 € U and yo = f(x0) € V, define Tpf : U — A¥
by setting Ty f(z¢) to be the polynomial in x given by the first k& terms of the Taylor series
of f at x( after the constant term. There is a canonical bijection

Tyy : J*U, V) > UxV x BE
5 () (@o) = (o, yo, Tif (x0), -+ T f ™ (20)),
where (f!,---, f™) is the coordinate expression of f. By Lemma Ty,v is well-defined.

Proposition 5.1.1. Let X and Y be smooth manifolds with n = dim X and m = dimY'.
J¥(X,Y) is a smooth manifold of dimension n+m + dim BY .. Moreover, let {(Ua,a)}
and {(Vs, )} be atlases of X and Y, respectively. Let U}, = ¢a(Us) C R™ and Vg =
Y(Vz) CR™. For f € C°°(U,, Vp), we write fop to denote the smooth map ¢ 'o foips €
C=(Ug, V). Let @ap : C%(Uq, Vi) — C®(Uy, Vi) be the map that sends f to fap. Then
(C*®°(Uy, VB)aTU(;,VB’ o ®,5) form an atlas for J*(X,Y).

Proof. See Theorem 2.7. in [GG12|. O
Using the charts defined in Proposition it is not hard to show that
1. The k-jet j%(f) : X — J*(X,Y) of a smooth map f is smooth.

2. Let g : Y — Z be smooth. Then the map g, : J¥(X,Y) — J¥(X,Z) defined by
sending j*(f) to j*(g o f) is smooth.

3. The canonical projections 7z : J'(X,Y) — J¥(X,Y) for I > k > 0 are all smooth.

The projection 7 = o : J¥(X,Y) — X x Y makes J¥(X,Y) into a smooth fiber bundle
over X x Y with fiber isomorphic to Bﬁmﬂ It follows, J*(X,Y) is also a smooth fiber
bundle over X with fiber isomorphic to Y x Bﬁ,m-

The topologies on J*(X,Y), k > 0, induced by the smooth structures give rise to a
topology on C*°(X,Y’) known as the Whitney C*° topology.

Definition 5.1.1. Let X, Y be smooth manifolds.
1. The Whitney C* topology Wy on C*(X,Y) is the topology generated by the base
{M*(U):U c J*(X,Y) open},

where M*(U) = {f € C®(X,Y) : j*(f)(X) C U}.

'Note that J* (X,Y) is, however, only an affine bundle. It is a vector bundle if Y = R™.
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2. The Whitney C* topology on C*°(X,Y) is the topology generated by the base
W = UiZo Wh-

Remark 5.1.1. It is worth mentioning that there is another topology on C*°(X,Y"), the
compact-open topology, which is generated by the subbase

{CO(K,U) : K C X compact,U CY open},

where CO(K,U) = {f € C*(X,Y) : f(K) Cc U}. If X is compact, the compact-open
topology and the Whitney C*° topology on C*°(X,Y") coincide. If X is non-compact, how-
ever, the Whitney C'* topology is strictly finer than the compact-open topology [KM97].

The Whitney C* topology has the following nice properties.
Proposition 5.1.2. Let X, Y be smooth manifolds. The mapping
7 C®(X,Y) = C®(X, J*(X,Y))
fe ()
is continuous in the Whitney C'* topology.
Proof. See Proposition 3.4. in |[GG12]. O

Proposition 5.1.3. Let X, Y and Z be smooth manifolds. Let g : Y — Z be smooth.
Then the mapping

g« : C®(X)Y) - C™(X, 2)
f=gof
is continuous in the Whitney C'*° topology.

Proof. See Proposition 3.5. in |[GG12]. O

Proposition 5.1.4. Let X, Y and Z be smooth manifolds. Then C*°(X,Y) x C*(X, Z)
is homeomorphic (in the Whitney C* topology) with C*>°(X,Y x Z) via the standard iden-

tification (f, g) = f x g, where (f x g)(z) = (f(x), 9(x)).
Proof. See Proposition 3.6. in |[GG12]. O

Proposition 5.1.5. Let X, Y and Z be smooth manifolds with X compact. Then the
mapping C°(X,Y) x C*®(Y,Z) — C>®(X, Z) defined by (f,g) — go f is continuous in the
Whitney C*° topology.

Proof. See Proposition 3.9. in [GG12]. O



62 CHAPTER 5. COHOMOLOGICAL LAGRANGIAN FIELD THEORIES

Corollary 5.1.1. The evaluation map

ev: X xC®(X,)Y) =Y

(2, f) = f(p)
is continuous in the Whitney C'* topology.
Proof. Take X in Proposition to be the one-point space. O

It is possible to construct a Fréchet manifold structure on C*°(X,Y’). For a compact
X, the smooth structure is compatible with the Whitney C*° topology. For a non-compact
X, the topology induced by the smooth structure is strictly finer than the Whitney C*°
topology. We refer the reader to the book [KM97| by Kriegl and Michor for more detail.

5.1.2 Infinite jet bundles

Let 7 : Y — X be a smooth fiber bundle over an n-dimensional manifold X with fiber Z
being an m-dimensional manifold, where Z is the fiber of Y. Let s be a section of Y, that
is, a smooth map s : X — Y such that 7 o s = idx. We use I'(Y) to denote the set of
sections of Y.

Lemma 5.1.2. I'(Y) is a closed subset of C*(X,Y) (in the Whitney C* topology).

Proof. Consider the map 7, : C*°(X,Y) — C*°(X, X) defined by sending f to mo f, where
m:Y — X is the canonical projection. It is a continuous map by Proposition r'y)

is closed in C*°(X,Y) because it can identified as 7, 1(idx), i.e., the inverse image of the
closed subset {idx} of C*°(X, X). O

Let J*(Y),, denote the set of equivalence classes under ~j, at p of sections s with
s(p) = q. Let JE(Y) = Upex ey, JE(Y)p g JE(Y) is a subset of J¥(X,Y). Likewise, it
is easy to show that J*(Y) is closed in J¥(X,Y). It follows from Proposition that
JF(Y) is a smooth manifold of dimension n +m + dim Bﬁ,m. Moreover, it is a fiber bundle
over X with fiber isomorphic to Z x Bz‘,m.

Definition 5.1.2. J*(Y) is called the k-th jet bundle of Y. Let s € I'(Y). j¥(s) : X —
JF(Y) is a section of J*(Y) called the k-th jet prolongation of s.

Note that JO(Y) is just Y itself.
Proposition 5.1.6. The mapping
§ DY) = T(JHY))
s = 5" (s)

is continuous in the Whitney C' topology.
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Proof. This follows directly from Proposition O

Proposition 5.1.7. The mapping

v’ X xT(Y) = J*Y)
(p, f) = 3*(F)(p)

is continuous with the Whitney C* topology on the left.

Remark 5.1.2. We call ev® the k-th jet evaluation map.

Proof. This follows directly from Corollary and Proposition 5.1.6 O
Proposition 5.1.8. The k-th jet evaluation map is an open map.

Proof. Let U be open in X. Let V be open in J*(Y). Recall that M*(V) = {s ¢ T'(Y) :
4%(s)(X) € V}. The open subsets of the form U x M*(V) form a base for X x T'(Y). It
is easy to see that ev*(U x M*(V)) = 7~ Y(U) NV, where 7 : J¥(Y) — X is the canonical
projection. Since taking unions commutes with taking images, ev¥ maps every open subset
of X x I'(Y) to an open subset of J*(Y). O

Proposition 5.1.9. Let Y’ be another smooth fiber bundle over X. LetY x xY' denote the
fiber product of Y and Y’ over X. Then T'(Y)xT'(Y’) is homeomorphic (in the Whitney C'™°
topology) with T(Y x x Y') via the standard identification (s,t) — s x t, where (s x t)(z) =

(s(z), t(z)).
Proof. This follows directly from Proposition O

The inverse system ((J*(Y))k>0, (Tk,)o<k<i) does not have an inverse limit in the cate-
gory of finite dimensional smooth manifolds. However, it does has an inverse limit J>°(Y")
in the category of topological spaces. To be more precise, J>°(Y') is the set of sequences
(20,21, ) with 2x € J*(Y) satisfying 7y (2;) = 2x for I > k. The topology on J>®(Y) is
defined as the coarsest topology such that the canonical projections 7 x : J*(Y) — J*(Y)
are continuous. In fact, J°°(Y) is a closed subset of the product space [],~q J*(Y) since
each J*(Y) is a Hausdorff space (see Theorem 1 in [Mau97]). It is not hard to show that the
canonical projection 7, : J*(Y) — X is (open and) continuous. J*°(Y) is then a topologi-
cal fiber bundle over X. Note that the jet prolongations j*(s) of a section s € I'(Y") are com-
patible with this inverse system. We therefore obtain a map s — j°°(s) = (j%(s), j(s), - ).

Definition 5.1.3. J*°(Y) is called the infinite jet bundle of Y. j°°(s) is called the infinite
jet prolongation of s € I'(Y).

Note that the jet evaluation maps ev® are also compatible with the inverse system. We

obtain an infinite jet evaluation map ev® : X x I'(Y) — J>*(Y).



64 CHAPTER 5. COHOMOLOGICAL LAGRANGIAN FIELD THEORIES

Proposition 5.1.10. j*° is continuous; ev™> is continuous and open.

Proof. Since J*°(Y) is a subset of [[;~o J*(Y), j* and ev™ can be identified as the maps
(72,71, ---) s D(Y) = J®(Y) C [Tiso J¥(Y) and (ev%,evl,---) : X x T(Y) — J®(Y) C
I1 k>0 k(Y), respectively. Now apply_ Lemmas and and the fact that the product
of continuous and open maps is again continuous and open, respectively. ]

It is possible to construct a Fréchet manifold structure for J°°(Y") which is compatible
with the inverse limit topology, such that the maps j°° and ev® are smooth. More precisely,
J>®(Y) is a Fréchet manifold modelled on the Fréchet space R*°, the space of infinite
sequences of real numbers. Let U be an open subset of X such that 771(U) 2 U x Z. Let
V be a chart of Z. Y can then be covered by charts of the form U x V with coordinate
functions z#,u?. A coordinate chart of J°°(Y") is of the following form

J®(Y) Dl (Ux V) —R®
joo(s)(p> = (x“(p),uj(s(p)), e ,a[(uj(s(p))), o )

where Or is the partial derivative in z* with respect to the multi-index I = (u1,. .., tin).
A function over J*°(Y') is smooth if and only if it is locally a pullback of a smooth func-
tion over J*(Y) for some k, that is, for f € C>°(J>°(Y')), there exists an open neighborhood
of the form 7', (U) for each point in J(Y), where U is an open subset of J¥(Y), such
that f‘ﬂ;lk(U) is the pullback of a smooth function U — R. Starting from C®(J>(Y)), it is

straightforward to define the set X(J*°(Y")) of vector fields over J*°(Y") (as the set of linear
derivations of C*°(J*>°(Y))) and the set Q(J>°(Y)) of differential forms over J>°(Y') (as the
set of multilinear alternating maps from X(J*°(Y")) to C*°(J*°(Y))). Both X(J*°(Y)) and
QL(J>(Y)), the set of 1-forms, can be viewed as the spaces of sections of vector bundles
over J*(Y), the tangent bundle T'J*°(Y") and the cotangent bundle T*J*°(Y), respectively.
Note that the fiber of TJ°°(Y") is R>, while the fiber of 7*J*°(Y") is R§°, the subspace of
R consisting of those sequences with only finitely many non-zero components. In other
words, a vector field over J*°(Y") is locally an infinite sum of coordinate derivatives on all
JF(Y), while a differential form on J*(Y) is locally a pullback of a differential form on
JF(Y) for some k, just like the case of a smooth function. We refer the reader to the paper
by Takens [Tak79], the book [Sau89] by Saunders, and the thesis by Delgado [Dell8] for
more detail. From now on, we assume that such smooth structures are given for both I'(Y")
and J>(Y).

Remark 5.1.3. There is another notion for smooth functions over J*°(Y'), which requires
f € C>®(J*®(Y)) to be globally a pullback of a smooth function over J*(Y") for some k
[And92]|. We prefer the locally-pullback version because the presheaves of smooth functions
and differential forms over J*°(Y) are actually sheaves. Moreover, the sheaf of smooth
functions is nice enough to allow a partition of unity [Tak79].
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Let’s consider the short exact sequence of vector bundles
0—=VJ®Y)=>TJ®Y) > ,TX =0, (5.1.1)

where VJ>®(Y) is the vertical bundle of J>*(Y) viewed as a fiber bundle over X, i.e.,
the kernel of m,. This short exact sequence admits a canonical splitting C' : 75 TX —
TJ>®(Y) defined as follows. Let p € X and j*°(s)(p) € J®(Y). Let £ € T, X, we then set
C(7°(s)(p),&) = dj*°(s)(p)&, where dj*(s) is the tangent map of j*°(s) : X — J*(Y). C
is well-defined, i.e., it does not depend on the choice of s. It induces a horizontal bundle
HJ>(Y) and an integrable distribution C = I'(HJ>*(Y)) C I'(T'J*(Y")) over J*(Y).

Definition 5.1.4. C is called the Cartan connection. C is called the Cartan distribution.

Due to the splitting of (5.1.1)), we can write Q(J>(Y)) = @, , W4 (J>(Y)), where
QPA(J®(Y)) =T (APH*J>®(Y) ® ATV*J*(Y)). An element of QP4(J>°(Y)) is said to be
of horizontal degree p and vertical degree ¢. The de Rham differential d on Q(J*°(Y)) =
I'(AT*J*(Y)) can be constructed as follows. Let a be a differential form on J>*(Y). It is
locally represented by forms on finite dimensional jet bundles J*(Y). do is then defined
by applying the finite dimensional de Rham differentials to these forms and then gluing.
d splits correspondingly as d = dj, + d,, where dj, : QP9(J®(Y)) — QPFL9(J>®(Y)) and
dy 1 QPA(J®(Y)) — QPITL(J>(Y)).

5.2 The geometric setting of CohLFTs

Let m: Y — M be a fiber bundle over an n-dimensional compact manifold M with fiber Z
being an m-dimensional manifold. Let I'(Y) be the space of sections of Y. Let’s consider
the de Rham complex Q(M x I'(Y)) of differential forms on M x I'(Y'). It is a bicomplex
bigraded according to the product structure of M x I'(Y), i.e.,

QM xT(Y)) = P oI(M x T(Y)).

p.q

Correspondingly, the de Rham differential di,; on M x I'(Y') breaks into two parts dio; =
d+ 0, where d is the de Rham differential on M and ¢ is the de Rham differential on I'(Y").

There is a canonical sub-bicomplex Q,.(M X T'(Y)) [Zuc87]. Let J>°(Y') be the infinite
jet bundle of Y. Let ev®™ be the infinite jet evaluation map from M x I'(Y) to J>®(Y).
The pullback (ev®)*Q(J>°(Y")) is stable under both d and J, hence a sub-bicomplex, which
is called the variational bicomplex of Y and denoted by Qj,.(M x I'(Y)). Elements in
Quoe(M x T'(Y)) are called local forms. d and ¢ restricted to Q.(M x T'(Y')) are called
the horizontal differential, denoted by dj, and the vertical differential, denoted by d,,
respectively.

Remark 5.2.1. Since ev®™ is an open map, the pullbacks of differential forms on J*>°(Y)
actually form a sheaf over M x I'(Y).
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Let U be an open neighborhood of M such that 771U = U x Z. Let V be a coordinate
chart of Z. Y can then be covered by coordinate charts of the form U x V' with coordinate
functions x!, ..., 2™ ul, ..., u™. Let W(U,V) be the set of pairs (x,1) such that ¥ (z) is
in V, it is then an open neighborhood of M x I'(Y"). We can explicitly define functions z*
and u} on W(U, V) by setting

oh(z, ) = 2t (z),  w)(z,¥) = O (v’ (¥(2))),

where Oy is the partial derivative in xz# with respect to the multi-index I = (p1, ..., fin)-
By definition, a local function on W(U, V) depends only on finitely many of 2# and u}. In
particular, z* and u]I themselves are local functions. Their derivatives dx* and 5u§ can
be viewed as local forms of degree (1,0) and (0, 1) respectively. We can write any local
(k,l)-form w as a finite sum

_ ¢h, 0 H1 oA L. g JUoA L. Ji
W= fﬂl:-~~7ﬂk7j17~~~yjldx A A dztr A 5ul1 A A 5u11’

where each f () is a local function.

In fact, the above discussion can be easily generalized to the case of a “graded fiber
bundle” Y. That is, we require Y to be a graded vector bundle over Yy with fiber consisting
of elements of nonzero degree, where Y} is a fiber bundle over M with fiber consisting of

elements of degree 0. The only subtleties of this generalization are

1. we should assign degree (0,d(u?)) to the local function uf and degree (0,d(u’) + 1)
to the local form du’} where d(u’) is the degree of w/ induced from the grading of Y’;

2. alocal function should be polynomial in u][ when d(u’) # 0.

Local forms obtained in this way can be seen as a sheaf of commutative bigraded algebras
of the second kind over M x I'(Yp). We can turn this sheaf into a sheaf of commutative
bigraded algebras of the first kind by applying Lemma In other words, we obtain an
infinite dimensional bigraded manifold My from Y. We call My the variational bigraded
manifold of Y. Local forms can be viewed simply as functions over My .

Remark 5.2.2. In the physics literature, the vertical degree of a local form w viewed as a
function over My is called as the ghost number of w. One should not confuse it with the
vertical degree of w viewed as a differential form.

The differentials dj, and d, can be viewed as vector fields over My of degree (1,0) and
(0,1), respectively. (Note that by Lemma dpdy, — dydp, = 0.) They act on a#, u}, dzt
and du} as

dp(2#) = dat,  dp(u)) = ujlu{u}dx”, dp(da*) =0, dp(du}) = 5u§u{#}dz“,
do(2") =0, dy(u}) =0u}, dy(dz*) =0, dy(0u})=0.
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We write dy, = dp1 + dpo where dp; is defined by
dhl (LL‘“) = dl‘u, dhl(uj[) = 07 dhl(dfxu) = 07 dhl((suj[) = 07
and dhg = dh — dhl-

Proposition 5.2.1. There is a canonical QK -structure on a variational bigraded manifold
where Q = d,, L = dps and K is defined as follows

K(a*) =0, K(u})=0, K(da")=0, K(6u])=u], da""
Proof. K is a globally well-defined vector field of degree (1, —1). One can easily check that
QK+ KQ=Land KL+ LK =0. O

Definition 5.2.1. A QK ,-manifold is a variational bigraded manifold equipped with a
K-action such that the fundamental vector field generated by L € K coincides with dps.

A QK ,-structure on a variational bigraded manifold My is hence a generalization of
the canonical QQK-structure on My-.

Definition 5.2.2. A cohomological (Lagrangian) field theory is a pair (My, £) where My
is a QK,-manifold and L is a Q-exact function on My of degree (n,0).

Remark 5.2.3. More generally, one should consider a Lagrangian £ such that
1. £ is Q-closed up to an L-exact term;
2. The energy-momentum tensor of £ is @Q-exact.

Let I'y denote the graded manifold (I'(Y'),Q2) where € is the sheaf of differential forms
on I'(Y). (We call " the (graded) configuration space of the corresponding theory.) The
action functional of £ is a function S of degree 0 on I'y defined by

S:/ﬁ.
M

In most cases, the cohomological vector field ) does not depend on coordinates x* and dz*.
Hence it can be viewed as a cohomological vector field on I'y. We have QS = Q( /. v L) =
I} u @L = 0. In other words, I'y is a @Q-manifold equipped with a Q-closed function S.

Remark 5.2.4. From now on, every function over a variational bigraded manifold con-
sidered by us will be assumed implicitly to be independent of xz*. For this reason, we will
often not distinguish L = dj5 and the de Rham differential d.

Definition 5.2.3. A pre-observable O is a function on My such that QO is d-exact and
dO is @-exact. An observable is a ()-closed function on I'y.
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Let « be a submanifold representative of a p-cycle in M. Let Olv| be a function on
I'y defined by O[] = f7 0. O[y] is Q-closed, hence an observable on I'y. Note that the
Q@-cohomology class of O[y] is independent of the choice of representatives of . In other
words, we have a well-defined map Ho(M) — H*(I'y) defined by sending v to Ol~].

Definition 5.2.4. Let O©) be a Q-closed function of degree (0,n). The descendant se-
quence of O is a sequence of pre-observables {(’)(7’) }ZZO satisfying

QOW® = gov-1) (5.2.1)

forp=1,...,n. (5.2.1)) is called the (topological) descent equations.
Definition 5.2.5. Let O©) be a Q-closed function of degree (0,n). The standard K-

sequence of O is a sequence {O®) }p—0, Where
1

Kpo(o)
p!

oW .—

forp=1,...,n.

Proposition 5.2.2. The standard K -sequence is a descendant sequence.

Proof. We have QO®) = }%QKPO(O) = ﬁ[Q,Kp]O(O) = (p_ll),LKp—l(9<0> = dO®=Y for

p > 1, where we use QO =0 and Lemma m O

Definition 5.2.6. Let W@ be a Q-closed function of degree (ggn—q), 1 <qg<mn A

(general) K-sequence of O is a sequence {O®) }p—0» Where

1

( )'Kp—qw(Q)
p—q):

1 P
P .— = (0) E

oV .= ol KPOW +
q=1

forp=1,...,n.
Likewise, one can show that
Proposition 5.2.3. Every (general) K-sequence is a descendant sequence.

Remark 5.2.5. In physics literature [Sor+98; | BBT05|, the vector field K is known as the
vector supersymmetry. A similar result as Proposition is also proved in [PS08|.(See
Proposition 5.14 there.) What we will show later is that the converse of Proposition
is also true in a cohomological sense.

Lemma 5.2.1. Let {O(i)}’i";o be such that O = Qp® +dp=1) fori > 0 and O©) = Qp®,
where p is an arbitrary function of degree (i,n —i —1). Then, {0} is a solution to
5.2.1]).
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Proof. QOW) = Q(Qp(p) + dp(p—l)) - d(Qp(p—l)) — dO®P-1). n
Definition 5.2.7. A sequence of the form in Lemma is called an exact sequence.
Recall that the functions over a bigraded manifold form a bicomplex
0= Pp o
(P.@)€[0;...,n]xXZ

with commuting differentials @) and L. Moreover, L is homotopic to 0 since L = QK + KQ,
where K is interpreted as a homotopy operator.

L) Qpa—1 Q s OP4 Opaetl = Q
'/Qp+1,q 1 Qp+1q *> Qp+1,q+1

Let Hy, and Hg denote the horizontal and vertical cohomology of €2, respectively. Note
that both of them are naturally bigraded. We have obtained the following result.

Proposition 5.2.4. HYY(Hg) & ng for all0 <p<n and q € Z.

Let O denote the total complex of 2. Let Hi, denote the cohomology of Q.
Let’s consider the filtration €, o C Q1 C Q5 C --- C Qf, on O, where Qf ,; =

Pyp+q=r Q2. This filtration is preserved by the total differential, hence induces a filtration
p>n—i

Hpyo C Hiyy C Hiyo C -+ C Hpy on Hi,,. Let GH},, ; denote Hy,;/Hy,; ;. We have
~ n
Hiy = @z‘:o GHfot,i-

Theorem 5.2.1. For each r € Z and 0 < i < n, there exists a surjective map
f i Hiyg = HY'™ (Hq), (5.2.2)
where | = n — 1. Moreover, induces an isomorphism
GHyy; = Hy' ™' (Hg). (5.2.3)

Proof. Let O = 37, OP""F be a closed element in Qf, ;. We have QOV ! = 0 and
dOb =t = QO Lr=I=1 Note that Ob" ! is Q-exact if O is exact. We define f to be the

map induced by
Q= Qb
O O
f is a well-defined map between Cohomologies To prove the surjectivity of f, note that
for each OV~ € Ql =l the element Zp 0 i LEPOL =t e f~1(OM 1) is closed in Q.- The
isomorphism ({5 then follows directly from the observation that Ker(f) = Qotio1- U
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Corollary 5.2.1. There is an isomorphism H},, = @;_, Hg_i of graded modules.
Proof. This follows directly from Proposition and Theorem [5.2.1 O

Remark 5.2.6. There is a simpler proof for Corollary if we adopt the second sign
convention for the bigraded setting. By Remark @ anticommutes with L and com-
mutes with K. The total differential is just Q — L. Consider the “Mathai-Quillen map”
j = exp(K) of Q. Note that the expression exp(K) is well-defined because K is nilpotent
in this setting. By Lemma we have

joQoj ' =exp(K)([Q,exp(—K)] +exp(—K)Q) = Q — L.

In other words, the total cohomology of 2 is equal to the @-cohomology of 2.
The reason we adopt the first sign convention is just that we want to make the algebraic
meaning of K more transparent.

One can easily see from the proof of Theorem that Corollary is equivalent
to the following statement.

Theorem 5.2.2. Fvery descendant sequence is a K-sequence up to an eract sequence.

Let’s assume that there is a well-defined notion of integration [ on I'y. The partition
function Z of S is defined as

7z - /exp(—S).

The expectation value of an observable O is the integration

(0) = / exp(—S)O.

In [Wit88], assuming that O does not depend on the Riemannian metric g of M, Witten
observed that the expectation value (O) is also independent of the choice of g if the energy
momentum tensor 7' of S is @Q-exact, i.e., T = Q(G) for some GE| More precisely, he
computed

5,(0) = — /exp(—S)T(’) . /exp(—S)Q(G)O — —/Q(exp(—S)GO) —0,
where he used that S and O are @)-closed, and that

the integration of a (Q-exact function vanishes. (5.2.4)

2CohFTs are therefore a special class of topological quantum field theories (TQFTs), though the latter
do not have a constructive definition in mathematics.
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is a bold assumption. It can be seen as an infinite dimensional analogue of
Stokes’ theorem. In fact, one can argue that this is indeed the case for a @K, manifold
My equipped with the canonical QK-structure. For such My, @ is just the vertical
differential d,, i.e., the de Rham differential on I'y. In Section 6, we will show that, in
most CohFTs, ) are just d, expressed in different coordinates.

Fix a sequence {v;}I" of cycles of degrees 0,1,...,n in M and a descent sequence
{0011 . We can get a sequence {O®[y;]}7, of Q-closed observables. Obviously, O [v;]
is @-exact if {O(i)}?:o is an exact sequence. Using assumption , it is easy to see
that Q-exact observables have vanishing expectation values. In other words, K-sequences
are the only physically interesting solutions to the descent equations .

5.3 CohLFTs with gauge symmetries

Let P be a principal G-bundle over M, where G is a compact Lie group. The gauge
symmetries are described by the automorphism group

={f:P = Plrof=m,f(pg) = f(p)g,¥p € P,g € G}.

Let AdP = P xq G, where G acts on itself by conjugation. We have a natural identification
G =T(AdP). The Lie algebra Lie(G) of G can then be identified as I'(adP), i.e., the space
of sections of the adjoint bundle of P.

Recall that a connection 1-form on a principal G-bundle P is a G-equivariant 1-form A
with values in the Lie algebra g such that A(K¢) = ¢, £ € g, where K¢ is the fundamental
vector field generated by £ on P. The curvature 2-form of A is defined to be F' = dA +
%[A,A]. F is a basic form, and satisfies the second Bianchi identity daF = 0, where
dg = d+ [A,-] is the covariant derivative associated to A.

Proposition 5.3.1. For any principal bundle, the space of all connections A is an affine
space modeled on Q'(adP). A has a natural G-action, with its infinitesimal action given

by

A x Lie(G) - TA
AX A (A, —da))

where we use identifications Lie(G) = Q°(adP) and Ta(A) = Q' (adP).

For our purpose, we need to identify A with the space of sections of some fiber bundle
over M. Let P be a fiber bundle over M. Let J'P be the first jet bundle of P. J'P is
an affine bundle modeled on the vector bundle T*M ®j; VP, where VP is the vertical
bundle over P and the tensor product is taken over M. Let j'¢ : J'P — J!P denote the
jet prolongation of a bundle automorphism ¢ : P — P. Such operations satisfy the chain
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rules
(¢ 0 ¢2) = j(¢1) 0 7' (d2),
jl(ldp) == IdJlP.

Thus, J! P also has a principal G-action. The quotient space C' = J'P/G is then an affine
bundle modeled on the vector bundle (T*M ®); VP)/G = T*M ® adP over M.

Proposition 5.3.2 ([Sar93|). There exists a bijection between A, the affine space of con-
nection 1-forms on P, and the set I'(C), the affine space of global sections of C.

From now on, we will consider graded fiber bundles Y of the form
Y =Cx mE s

where E is an associated bundle to P. (We assign degree 0 to elements of the fiber of C'.)
Let Ly denote the graded Lie algebra associated to the Lie algebra Lie(G). L4 is spanned
by elements dy, ¢y and @, for each A € Lie(G). They are of degrees 0, —1, 1, respectively,
and satisfy

[6/\175)\2] = 6[)\1,)\2]7 [5)\17L)\2] = L[)q,)xg]a [6)\7 Qg] = 07
[Qg> Qg] = 07 [L>\1a L)\z] = 07 [an L/\] = 5)\-
Note that we use the new notation d, to denote the Lie derivatives.

Definition 5.3.1. Let My be a QK,-manifold. An Lg-structure on My is said to be
compatible with the Q) K,-structure on My if

1. Qqg, ¢\ and 0y are of degrees (0,1), (0, —1), (0,0), respectively;
2. @4 coincides with @, ¢\ anticommutes with K.

My together with the compatible QK,-structure and Lg-structure is called a QK,4-
manifold.

Definition 5.3.2. Let My be a QK,4-manifold. My is said to be simple if
[0x, K] = 0. (5.3.1)
It is said to be h-simple if only hold true for horizontal functions.
Lemma 5.3.1. [v), L] = [dy, K].
Proof. This follows from direct computations.

[ex, L] = 1, (@, K]
= [[ex, QL K] = [@Q, [t K]]
= [0, K],

where we use [t), Q] = ) and [ty, K] = 0. O
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Definition 5.3.3. A cohomological (Lagrangian) gauge field theory (CohGFT) is a CohF'T
(My, L), where My is a QK,4-manifold and £ is basic with respect to the Lg-structure
on My. The CohGFT is said to be simple (or h-simple) if My is simple (or h-simple).

L being basic can be seen as a generalization of the notion of gauge invariance in bosonic
theories. In most cases, dy, ¢ty and ) do not depend on coordinates z* and dz*. They then
gives I'y an Lg-structure. The action functional S is a gauge invariant @)-closed function
on Fy.

Definition 5.3.4. A gauge invariant pre-observable O is a basic pre-observable on My .
A gauge invariant observable is a basic observable on I'y.

By definition, the observable O[y] associated to a gauge invariant pre-observable My
and a cycle v in M is a gauge invariant observable. Let O©) be a gauge invariant pre-
observable of degree (0,n). A natural question to ask is: Can we find a descendant sequence
of O that is also gauge invariant?

Proposition 5.3.3. The basic functions over an h-simple QK,4-manifold My are pre-
served by the K-action.

Proof. Let f be a basic function over My. We have

AQf) =[x, Qlf =0 f =0, w(Kf)=/[wK|f=0.

We also have

AQSf) =[x, QLf =0, (K [)=I[0xK]f=0,

where we use the h-simple property, i.e., that [§y, K] vanishes for horizontal functions.
Since L = QK + K@, the basic functions are also preserved by L, hence the IC-action. [

Recall that a K-sequence of OO is specified by Q-closed functions W) ... W),

Corollary 5.3.1. In an h-simple CohGFT, a K -sequence of a gauge invariant pre-observable
0O is gauge invariant if WD, - W™ are gauge invariant.

Now, let’s turn back to the world of homological algebras. The QK,, manifold My
give us a bicomplex €2 just like before. But this time we have a canonical sub-bicomplex,
namely the sub-bicomplex 3,5 which consists of gauge invariant elements. For an h-
simple CohGFT, €, is stable under both ), K and L. Let H;, and Hg denote the total
cohomology and vertical cohomology of €., respectively. Likewise, we have the following
isomorphism

n
Hgot(QbaS) = @ HééT_Z(QbaS)a
=0

which particularly implies that
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Theorem 5.3.1. In an h-simple CohGFT, every gauge invariant descendant sequence is
a K-sequence up to an exact sequence.

In fact, it is necessary to consider 25,5 instead of €2. This is because there is a large class
of CohGFTs with trivial @-cohomologies. (For example, €2 equipped with the canonical
QK ,-structure is @Q-acyclic if the associated bundle E to P in the construction of Y is a
vector bundle.) Therefore, one has to restrict to (0,5 to obtain nontrivial observables. Ge-
ometrically, {045 determines a () K,-manifold My, as a submanifold of the Q K,4,-manifold
My . The Lagrangian L restricted to My, is also a @Q-closed function of degree (n,0).
Thus, (Mpgs, £) is a CohFT. It makes more sense to consider the partition function and
expectation values of observables in (Myys, £), since the path integrals in (My, £) always
carry a redundant factor due the presence of gauge symmetries.



Chapter 6

Supersymmetric Lagrangian field
theories

6.1 Algebra preliminaries

6.1.1 Spinors and vectors

Let V' be a vector space over a field K with a quadratic form @. The Clifford algebra
Cl(V, Q) is the quotient algebra T(V)/Zg(V') of the tensor algebra T(V') of V, where Zg
is the two-sided ideal generated by all elements of the form

vRv—Q(v)l.

We will always assume ) to be nondegenerate and K to be R or C. In the real case,
we write Cl(r, s) to denote the real Clifford algebra when V = R"* and Q(z) = 22 +--- +
ai—a? - — x%+SEI In the complex case, we write Cl(n) to denote the complex Clifford
algebra when V = C" and Q(z) = 22 + - -+ + 22.

The Clifford algebra C1(V, Q) is filtered in a natural way by construction. Moreover,
there is a filtration-preserving canonical vector space isomorphism A\ between it and the
exterior algebra AV

A AV = CUV, Q)

1 .
VA AUy p Z sign (o) v (1) Vo (r)
o

which the sum is taken over the symmetric group on {1,--- ,r}.

"We often write R™* to denote this quadratic space.

75
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Lemma 6.1.1 ([LM16]). With respect to the canonical isomorphism A, Clifford multipli-
cation between v € V and ¢ € A"V can be written as

Vo =vA P+ Ly,
w-v=(=1)"(vAp—1,vp),
where vV = Q(v,-) € VV.

There are two fundamental involutions on ClL(V,@Q): the principal automorphism «
which extends the antipodal map v — —wv on V, and the principal anti-automorphism
B which descends from the involution on T(V') which sends v1 ® -+ v, to v, ® -+ ® v;.
Associated to « is the decomposition CI(V, Q) = Cly(V, Q) @ Cl1(V, Q) where Cl;(V,Q) =
{p € C(V,Q) : a(p) = (=1)%p}. Since a(p1p2) = alpi)a(ps), this decomposition makes
Cl(V,Q) into a Zs-graded algebra. The decomposition of C1(V, Q) associated to 3 is less
addressed in literature. For later use, we remark that for a p-vector w € APV,

BA(w)) = (=1)

Let e1,...,er45 be a positively oriented @Q-orthonormal basis. We define the chirality
operator tobew = e; - - - ;4. In the complex case, one can consider w = iLfJel -+ - e, Where
€1,...,6n is a positively oriented @Q-orthonormal basis of C". The chirality operator lies

in the center of the real (or complex) Clifford algebra when r + s (or n) is odd. Moreover,
1(1+1)
one can check that w? = 1 in the complex case, and that w? = (—1) > in the real case,

where [ = s — 7. Let 74 = 3(1 £ w), we have the following decompositions.

p(p—1)
2

Aw). (6.1.1)

1. For n odd, Cl(n) = Cly(n) & Cl_(n), where Cli(n) = 7+Cl(n). Since w is in the
center of Cl(n), Cly(n) are two-sided ideals. Moreover, they are isomorphic to each
other thourgh a because ary = mxa.

2. Similarly, for s —r = 3 (mod 4), Cl(r,s) = Cly(r,s) & Cl_(r,s), where Cli(r,s) =
w4+ Cl(r, s) are isomorphic two-sided ideals.

Let C1*(V,Q) denote the group of units in CI(V,Q). The pin group Pin(V,Q) is a
subgroup of C1*(V, Q) generated by v € V with |Q(v)| = 1, where |a| is the absolute value
of a € K. The spin group Spin(V, Q) is defined as the subgroup Pin(V, Q) Cl; (V, Q) of
Pin(V,Q), where CI} (V. Q) is the group of units in Cly(V, Q). (The notations Spin(r, s)
and Spin®(n) should be self-evident.) Note that Spin(V, Q) has a subgroup Zs = {1, -1},
where 1 is the identity element of CL(V,Q). It is not hard to show that Spin®(n) =
Spin(r, s) Xz, U(1) when n =r + s |Jos17].

Definition 6.1.1. Let p : Spin(V,Q) — Endg(W) be a K-representation of the spin
group. We say that p is a vector representation if Zy C ker p, and a spinor representation
if —1 ¢ kerp. An element of W is called a vector (or spinor) if p is a vector (or spinor)
representation.
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The group C1*(V, Q) acts on CI(V, Q) naturally through the adjoint representation Ad,
which is defined by Ady(z) = ¢ lzp. For v € V with Q(v) # 0 and w € V, we have

(v, w)
(v,0)

where (-,-) is the bilinear form on V associated to ). In other words, the action of Ad,
preserves the quadratic form on V. It can be seen as the composition of the reflection map
across the hyperplane orthogonal to v and the antipodal map. Using the Cartan-Dieudonné
theorem, one can show that there is the short exact sequence

Ad,(w) = v we = Q(v) tvwy = Q(v) u(2(v, w) — vw) = 2

v —w,

0 — Zy — Spin(V, Q) %5 SO(V, Q) —» 1

where SO(V, Q) is the special @Q-orthogonal group of V. In other words, Spin(V, Q)/Zs =
SO(V, Q). A vector representation of Spin(V, ) then descends naturally to a representation
of SO(V, Q). On the other hand, any non-trivial representation of C1°(V, Q) restricts to
a representation of Spin(V, Q) which sends —1 to a nontrivial involution, i.e., a spinor
representation. Fix a @Q-orthonormal basis for V. Let F(V,Q) denote the finite group
generated by elements of this basis. F(V,Q) is a subgroup of Pin(V,Q). Let Fo(V,Q)
denote its intersection with Spin(V, Q). It is easy to see that a representation of Spin(V, Q)
is uniquely determined by its restriction to Fo(V, Q). Now observe that

Clo(V,Q) =KFo(V,Q)/K-{(-1) + 1},

where KFjy(V, Q) is the group algebra of Fy(V, Q). It follows that every spinor representa-
tion of Spin(V, Q) comes from a (nontrivial) representation of Cly(V, Q).

Clifford algebras and their even parts can be fully characterized as matrix algebras
[LM16].

s —r (mod 8) Cl(r, s) Cloy(r, s) Cl(n) Clp(n)
0 R(2%) R @ R(2TY) C(2) ce-Hec@2
1 C(2h R(2) C(2H) e C(2) Cc(2h
2 (2!t C(2!-h) C(2Y C-hHecC@2-h
3 H(2'-1) @ H(2!1) H(2!71) C(2H) @ C(2Y C(2Y
4 H(2!-1) H(2!~2) @ H(2!72) C(2Y C@2-Hec@2 Y
5 C(2Y H(21-1) c2hH (2 C(2h
6 R(2%) C(2'-1) C(2h C@2-Haec@2
7 R(2) @ R(2Y) R(2) C(2Y) & C(2Y) Cc(2h

Table 6.1.1: Clifford algebras and their even parts. We set [ = s —r > 0 in the real case
and n = s+, | = [ 5] in the complex case. We use K(INV) to denote N x N matrices with

values in K = R, C or H, where H is the algebra of quaternions.

Let’s explain a few physics terminology based on Table and the previous discussion.
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1. Consider the complex spinor representation of Spin(r, s) obtained by restricting an
irreducible complex representation Cl(n) — Endc(S) to Spin(r,s) C Cl(n). We call
such representation the Dirac representation and an element in S a Dirac spinor.

2. For n even, the Dirac representation is the direct sum of two inequivalent irreducible
complex spinor representations obtained from Cly(n) — Endc(S+). We have wSy =
+S54, where w is the chirality operator. We call such representations the chiral (or
Weyl) representations. An element in Sy is called a right-handed (or left-handed)
Weyl spinor.

3. For s —r =0,6,7 (mod 8), a Dirac representation carries a real structure. It is the
complexification of a real spinor representation obtained from Cl(r,s) — Endgr(95),
which is called the Majorana representation. An element in S is called a Majorana
spinor. For s —r =0 (mod 8), the Majorana representation is the direct sum of two
irreducible real representations obtained from Cly(r, s) — Endg(S+). An element in
Sy is called a right-handed (or left-handed) Majorana-Weyl spinor.

4. For s —r = 2,3,4 (mod 8), a Dirac representation carries a quaternionic structure.
It is obtained from Cl(r,s) — Endg(S) and is called the symplectic Majorana rep-
resentation. An element in S is called a symplectic Majorana spinor. For s —r =4
(mod 8), the Majorana representation is a direct sum of two irreducible quaternionic
representations obtained from Cly(r, s) — Endg(S+). An element in Sy is called a
right-handed (or left-handed) symplectic-Majorana-Weyl spinor.

We make the following remark for later use.

Remark 6.1.1. Let S be a real irreducible representation of Cl(r,s). S is then also a
spinor representation. It is clear from Table that, for s —r =0,1,2,4 (mod 8), S is
a direct sum of two irreducible spinor representations.

6.1.2 Super Poincaré algebras and Dirac operators

An n-dimensional Minkowski space is an affine space M modeled on R™, together with
a metric g making the tangent space T, M isomorphic to R"~! for every x € M. Let
O(1,n — 1) denote the orthogonal group of R'™~1. The full symmetry group of T, M is
the semi-direct product R~ x O(1,n — 1). The Lie algebra p of this group is usually
referred to as the Poincaré algebra. The Poincaré group is then defined to be the simply
connected group uniquely determined by this Lie algebra. More precisely, it is the semi-
direct product R1" 1 xSpin®(1,n—1), where Spin®(1,n—1) is the identity component of the
spin group Spin(1,n —1). By the spin-statistics theorem in physics, the Lorentz invariance
of a quantum field theory requires that vectors must be commutative and spinors must
be anti-commutative. This is a hint that there exists a class of theories whose symmetry
groups are super generalizations of the Poincaré groups. To define such super Lie groups
and their super Lie algebras, we need the following proposition.
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Proposition 6.1.1 (|[Del99]). Let v : Spin®(1,n — 1) — Endg(S) be an irreducible real
spinor representation of Spin®(1,n — 1). The commutant Z of S is R, C or H. Up to
a real factor, there exists a unique symmetric morphism I' : S @ S — RV and it is
Z1-invariant, where Z1 s the group of unit elements in Z. Moreover, the bilinear form
(v,T(-,+)) on S is either positive or negative definite for v € RM~1 with Q(v) > 0.

Remark 6.1.2. For a reducible spinor module S that is a direct sum of irreducible S
with pairings I'*, one can set I' = > ¢, 'Y, where ¢, € R/{0}. One can always choose c,
properly such that (v, T'(-,-)) is positive definite for v € R»"~! with Q(v) > 0. We say such
I" satisfies the positive condition.

Definition 6.1.2. Let S be a real spinor representation of Spin’(1,n — 1).Let SV be its
dual representation. A super Poincaré algebra is a super Lie algebra ps with the even part
being the Poincaré algebra p and the odd part being SV. The bracket [, -] on the odd part
of pg is given by a symmetric morphism SY ® SY — RL"~!. The existence of such paring
is guaranteed by Proposition ps is said to be an N = i super Poincaré algebra if S
is the direct sum of ¢ irreducible spinor representations, n — 2 # 0 (mod 4). It is said to
be an N = (i, ) super Poincaré algebra if S is the direct sum of ¢ and j copies of the two
inequivalent spinor representations, n —2 =0 (mod 4).

Remark 6.1.3. Note that there is a sub-algebra [ := R~ @ SV of p,. In fact, [ can
be viewed as the super Lie algebra of “super translations”. One can also consider bilinear
pairings of spinors which take values in A2RY"~! = 50(1,n — 1). Spinors in such pairings
(if they exist) can be then seen as a “super rotation”. However, since so(1l,n — 1) is
non-abelian, one has to check carefully if the Jacobi identity still holds for such pairings.

The following proposition gives an explicit relation between v and T'.

Proposition 6.1.2 ([Del99]). Let S be a real spinor representation of Spin®(1,n — 1), not
necessarily irreducible. Let T : S ® S — RV be a symmetric pairing of S satisfying
the positive condition. Let SV denote the dual representation of S. There exists a unique
I'V:SY®S8Y — RV satisfying the positive condition such that, if T and TV are reinter-
preted as morphisms 7 : RV~1 — Homg(S,SY) and 7" : RV~ — Homg(SY, S then
F(0)AY (v) = 3V(v)¥(v) = Q(v). Moreover, the spinor module structure induced by the
Cl(1,n — 1)-module structure (7,7") on S & S coincides with (y,v").

Let S, T and I'V be as in Proposition Let Sy = S®SY. Let vy denote the Clifford
action induced by I and 'V on Sp.

2More explicitly, 7 is given by

(3(0)(s))(t) = (L(s, 1), v),

where s,t € S and v € Rb™ 7. 3Y can be determined in a similar way.
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Remark 6.1.4. Note that, by Remark So is an irreducible representation of CI(1,n—
1) if S is an irreducible spinor representation and n —2 = 0,1,2,4 (mod 8). Moreover, S
and SV are isomorphic to the two symplectic Majorana representations S+ in the case of
n—2=0 (mod 4).

On Sp we can define a symmetric invariant form (-, -) by setting
(s+s"t+1) =57(0) +t7(s),
and a equivariant pairing [-, -] by setting
[s+sY, t+t] =T(s,t) +TV(s",t").
The symmetry of [+, ] implies that
(vo(W)(s+5Y),t+t") = (s+ s, %0@)(E+1t")). (6.1.2)

Definition 6.1.3. Let ¢ : M — SV be a spinor field on M. Let {e,}"_; be a (local)
orthonormal vector field over M. Let e® be the dual of e,. The Dirac term of ¢ is defined
as

PPY(z) = (e TV(4h, Ve, ¥))(z), o€ M, (6.1.3)

«

where V is Levi-Civita connection on the spinor bundle. In this case, V., is just the
ordinary derivative.

We can rewrite in a more common form using (-, -) and [, -] on Sp.

Yy = Z 0, Ve ) =D (€9, Ve, i) = Y ($,€*Ve,00) = (4, Py)

« «
where ) = 3" _ e*V,, is the so-called Dirac operator.

Proposition 6.1.3. The Dirac operator is anti-self-adjoint with respect to the nondegen-
erate bilinear form fM dvoly(-,-) on the space of spinor fields.

Proof. Let 11 and 19 be two spinor fields. Using (6.1.2)), it is not hard to show that
div [sz)lv ¢2] = (sz)lv lD¢2) + (w¢17¢2) )
where div denote the divergence operator. O

For later applications, we also want to study “super Poincaré algebras” and Dirac terms
in Euclidean signatures. We need the following proposition from [LM16].
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Proposition 6.1.4. Let Sy be a real representation of C1(0,n). There exists a (positive
definite) symmetric invariant form (-,-) on Sy such that

(es,et) = (s,1)
for all s,t € S and for all e € R™ with |e| = 1.
Corollary 6.1.1. Let (-,-) and Sy be as above. Then for any v € R™,
(vs,t) = — (s, vt)
for all s,t € Sg.

Proof. Assume |v| # 0. Then (vs,t) = ((v/[v|)vs, (v/|v|)t) = L5 (vZs,0t) = — (s,0t). O

[v]

Proposition and Corollary imply that Dirac operators in the Euclidean cases
are self-adjoint with respect to (-,-). A nontrivial Dirac term, therefore, requires the
spinor fields to be commutative. To remedy this, we define (-,-), = (w(:),-), where w

w
is the chirality operator of Cl(0,n). It is easy to see that (-,-)  is symmetric when n =
0,3 (mod 4).

w

Corollary 6.1.2. Let (-,-), be the invariant form as above. Then for any v € R"™ and
n=0,1 (mod 4),

(vs,t), = (vt,s),,

for all s,t € Sy.

n(n—1)

Proof. (vs,t), = (—=1)" (ws,vt) = (s,B(w)vt) = (—I)H(T (wot,s) = (=1)" = (vt, s)wD

It follows that the Dirac operator is anti-self-adjoint with respect to (-,-),, if and only
if n = 0 (mod 4). Moreover, we can define a pairing [-,-], : So ® Sp — R" associated to
(v, *)w by setting

<7), [Svt]w> = (US,t)w (6.1.4)
for all s,t € Sy and v € R™. By construction, it is a symmetric pairing when n = 0

(mod 4). Thus, we can use it to define a super extension of the Lie algebra s0(0,n) x R%".
With a slight abuse of notation, we still call this algebra the super Poincaré algebra.
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6.2 Super Yang-Mills theory

6.2.1 N=1 super Yang-Mills theory

Let (M, g) be a n-dimensional Minkowski spacetime. Let Sy be a Cl(1,n — 1) module with
a symmetric invariant form (-,-) and a symmetric equivariant pairing [-, -] as defined in the
previous section. We also need the following extra geometric data to define our Lagrangian.

1. A trivial principal G-bundle P over M and a connection 1-form A on it. Since P is
trivial, we can also think of A as a section of Q! (adP), where ad P is the adjoint bundle
associated to P. The corresponding covariant derivative d4 can then be written as
dg =d+ A.

2. An irreducible real spinor field ¢ that is in the adjoint representation of G, i.e., a
section of IISY ®adP. Since all bundles are trivial, v is simply a map M — I1SV®g C
115, ® g ff

3. A twisted Dirac operator I 4 : T'(I1Sy ® adP) — T'(ILSy ® adP). We can write I 4 =
I + A, where ID is the usual Dirac operator. A = > A;dx’ acts on i) = Y oaa ® ga
as Ay = Zi’a()\(dxi)z/za) ® [Ai, ga]. Note that D4 interchanges elements of IS and
Isv.

4. An invariant form on ILSy ® g obtained by taking the tensor product of (-,-) on Sy
and the Ad-invariant inner product Tr on g. For simplicity, we denote this invariant
form again by (-,-).

We consider the minimal extension of the bosonic Yang-Mills Lagrangian.

L= YR F) 45 (0. Pav), (6.2.1)

where F' is the curvature 2-form of A, the inner product (-, -) of g-valued differential forms
is induced by the Minkowski metric on M and the G-invariant inner product on g. The
supersymmetry transformations are

A = [e, 9], (6.2.2)
1
bt) = 5 Fe, (6.2.3)
where € : M — IISY C IS is a parallel spinor field, i.e., Ve = 0. The pairing [-, -] in (6.2.2)
is justified by the identification T)M = R~ 2 € M. Similarly, the curvature form F

acts on € via the identification ATM = CI(TFM), x € M. Note that these transformations
are equivariant with respect to the gauge transformations of A and .

3With a slight abuse of notation, we use the same notation to denote a spinor module and a spinor
bundle.



6.2. SUPER YANG-MILLS THEORY

83

To show that E is supersymmetric we need to prove that §.L is a total divergence, and

that (| and indeed closed to a supersymmetry algebra.
For the bOSOHlC term, we have

§5.(F, F) = 2(F,§.F)
(F,dA6.A)

(4
(

F,[e,¢]) + divergence
(& F)e, 1) + divergence.

2
2
2
For the fermionic term, we have

Oc (MDAw) = (5e¢awA¢) + (1/1, (5leA)¢) + (1/,,@1455@
— (840, D) + tri O + (0, P 46c1))
= —2 (D 40c0,v) + tri ¥ + divergence
= — (Da(Fe), ) + tri ¢ + divergence,

where tri ¢ = (¢, [¢, ¥]).
Lemma 6.2.1.

Da(Fe) = —(d}Fe.
Proof. Recall that the untwisted Dirac operator on a Clifford bundle takes the form
D=d-—d.
Since € is constant, we have

DA(Fe) = (PaF)e = (daF — dyF)e = —(d3F)e.

In the last step we use the Bianchi identity. O
Putting everything together, we have proved
Proposition 6.2.1.
0L = 1tlri Y + divergence. (6.2.4)

2

It remains to find out the dimensions in which tri ¢ vanishes. We have
tri 7/1 = Z <¢a7 [6, ¢b:| ¢C) <ga7 [gbngD
=3 (" v Te") (g, 90,96
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The last step follows from the definition of [, -|. Since (gq, [g5, gc]) is totally antisymmetric,
tri ¢» = 0 if and only if the totally antisymmetric part of [w“, wb] 1€ vanishes. If 1 is even,
this is automatically true because [-, -] is symmetric. In our case, we need to show that the
totally symmetric part of [w“, @Db] ¢ vanishes for even spinors ¥, ¥°, ¢°, i.e.,

(v ] e+ [whve] v + w7, 9] = 0. (6.25)

In fact, (6.2.5)) is satisfied in dimensions n = 3,4, 6, 10. For this we provide the argument
of Deligne |[Del99]. One can also consult [BH09| for an alternative proof using the division
algebra techniques.

Lemma 6.2.2. The following statements are equivalent:
1. [, Y] =0 for all even spinors 1.
2. [, 0l x + [0, x] ¥ + [x, %] ¢ = 0 for all even spinors 1, ¢, x.
3. | [1,%]|? = 0 for all even spinors .

Proof. Let V and W be two K-vector spaces. Let k € N. Recall that a totally symmetric
multilinear map f : 7%V — W vanishes if and only if its associated map fj, of degree k on
V vanishes, i.e.,

Now observe that [1, 1] 1) is the associated cubic map of [, ¢] x and | [, ] |? = (¥, [¢, 1] )
is the associated quartic map of (0, [1, @] x). O

Now let v # 0 be an isotropic vector in R1"~1. v(v) : S — S has a non-trivial kernel
Ker v. We have (v, [¢,9]) = (y(v)1, 1) = 0 for all ¢» € Ker v. Recall that two vectors in a
Minkowski spacetime are orthogonal only if

1. At least one of them is spacelike.

2. They are parallel lightlike vectors.

By Proposition [, 1] must be parallel to v. Hence | [, ] |> = 0.
Now observe that for n = 3,4, 6, 10, the spin group is SL(2,K) and acts transitively on

SV =K?, K =R,C,H, Q. Hence |[1,7] |? vanishes identically on S.

Theorem 6.2.1. The super Yang-Mills Lagrangian 1§ supersymmetric i n =
3,4,6,10.
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Let’s derive the equations of motions of £. The variation of the bosonic term is
O0(F,F) = 2(d%F,0A) + divergence.
For the fermionic part, we have
) (LZJ, ]ﬁA@ZJ) = -2 (]Z)Aw, M)) — (0A, [, v]) + divergence,

where [1, 9] = >, ;[vi, ;] ® [gi, gj]. Altogether we have

1 1
0L = —§<d2F, 0A) — 5([@&,1/}} ,0A) — (I v, 0) + divergence. (6.2.6)
Proposition 6.2.2. The equations of motion of L are

=—[¥,¢] (6.2.7)
Day =0. (6.2.8)

Now let’s investigate the algebra generated by ((6.2.2)) and (6.2.3)). One needs to check

[561’562] = 5[

e1,e2]”

where [e1, €2]” (z) is the dual of [e1, €] (), z € M.

Lemma 6.2.3. [e1, €]V is a constant vector field if €1 and ey are parallel spinor fields.

Proof. Let v,w € I'(T'M), we have

w(v, [e1, €2]) = w(vey, €2)

= (Vy(ver), €2) + (ver, Viea)

(Vwv)er, €2) + (vVyer, €2) + (v, [e1, Viwea] )

= (Vuv,[e1,€]Y) + (v, [Vwer, €2]V) + (v, [e1, Vwea] V).

On the other hand,
w(v, [e1, €2]”) = (Vu, [e1, €2] ) + (v, Vi er, e2] V).
Thus,
Vuler, €] = [Vwer, e2]” + [e1, Viea]”,
for all w € I'(T'M). O

Proposition 6.2.3. [§,,d.,] A = §
_L[517€2]\/A.

61762]VA up to a gauge transformation generated by
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Proof. For a vector field n on M, we have
0pA = LieyA = 1,dA + diyA = 1y F — 1y(AN A) + diyA = 1) F + da(LyA).

On the other hand,

([e2, Fe1] — [e1, Fea]) .

DN | =

[Oer, 0er] A = ey ([€2,¥]) — bey (€1, ¥]) =

Now take an arbitrary 1-form g on M, we have

<:U’7 [5617662] A> = 7((M627F61) - (Mel)FGQ))
= 5 ((e2, pFer) — (B(F)per, e2))
;(FM—#F)€1762>

= — ((LHVF)Gl, 62)
vL‘u\/F

P VI

= " Yeyea

= <H’L[el,eQ]VF>‘
In the fourth line we used Lemma [6.1.1] It follows that
[0c;s0ey] A =0y A — da(tyA).
O

To verify the commutation relation for the spinor field ¢, we have to impose the equation
of motion I 420 = 0. Physically, this means that the supersymmetry only holds for an on-
shell .

Proposition 6.2.4. For an on-shell 1, [0, 0¢,] 1 = 5[61762]\/1/} up to a gauge transformation
generated by —te, e,vA if and only if tri ¢ = 0.

Proof. Let v denote the vector field [e, €2]” on M. The Lie derivative of a spinor field )
in direction v is given by

1
Lieyyp = 1,V — Z(V’Uv)w
In our case, the second term above vanishes, we have

0, = Lieyp = 1, Vh.
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On the other hand,

[5617662] Y= 561(%F€2) - 662(%}?61)
= % ((da[e1,v])e2 — (da [e2,?])€r)
- %]DA ([e1,¢] €2 — [e2, ] €1)
= %]pA([Q,EQ] P).

To pass to the last line, we use

le2, ] €1 + [1), e1] €2 + [e1,€2] Y = 0,

which is equivalent to the condition tri ¢ = 0. Note that
Davy) = e*Vacvi
= Z e (Ve v)9 + Z e*vVe, ¥ + A(vy)
=0+ > (2(e*v) — ve*) Ve, b + 2tuv A, ¥] — v(AY)
=2 Z(v, e“)Ven ¥ + 2[tv A, b — vID g2
- 2L$ Vi) + 2[ev A, ),

where v = [e1, e2]. We have [0c,, 0e,] ¥ = 1, v VY + [ty v 4, Y- O

6.2.2 Dimensional reduction and N=2 super Yang-Mills theory

In this subsection, we give a derivation of 4-dimensional N = 2 Euclidean super Yang-Mills
theory from applying a spacetime reduction to the 6-dimensional N = 1 super Yang-Mills
theory.

Let A’ be a connection 1-form on the (n+2)-dimensional Minkowski spacetime M’ that
is invariant under the translations generated by % and %, where {20,... 2"t} are
the standard coordinates on M’. We can write

A=A+ (lsld:L‘O + ¢2d:ﬂn+1,

where A only involves dz?, 1 < i < n. Let M be the quotient of M’ by the above
translations. A can be viewed as a connection 1-form on M and ¢;, i = 1,2 can be viewed
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as scalar fields with values in the adjoint bundle adP on M. The curvature form of A’
takes the form

F' = F +dagy Ada® + dago A da™ ™ 4 [¢1, ¢o]da® A da™ 1,
which is a sum of orthogonal terms. It follows that

(F' F'Yppr = (F, F)pp + (dag1, dagn)ar — (dadz, dade) v — |[é1, d2]|”
= (F,F)nr — (dad1,dadn) s + (daga, daga)nr — |1, #2]]*

Remark 6.2.1 (Caveat). By our sign conventiorﬂ, the dimensional reduction of the
Minkowski metric (-,-)p;r to its Euclidean part produces a negative Euclidean metric
—(+,")am. Thus, after the reduction, any inner product of two differential forms of odd
degrees will gain an extra minus sign in front of it. With this in mind, we will omit the
lower-script of our metric.

The behaviours of the terms involving fermionic fields under the dimensional reduction
are more complicated than the pure bosonic ones. To proceed, we need the following
lemmas.

Lemma 6.2.4. Cl(r,s) ® C1(1,1) = Cl(r + 1,5+ 1) for all r,s > 0.

Proof. Let €1,...,€11,€1,...,€s+1 be a Q-orthonormal basis for R™T15+L Tet €], ... ¢

T
€l,...,€, and e, €/ be the bases for R™* and RY!| respectively. Consider the map f :

RrTLs+1 _y Cl(r,s) ® CI(1,1) by setting
Fen) = e@elel 1<i<r
’ loe] i=r+1
and

£e) e;@efe] 1<j<s
€)=
’ loel i=s+1

and then extending linearly. O

Corollary 6.2.1. Let S 41 be a real irreducible spinor representation of Spin(1l,n + 1),
n =0 (mod 4). Let Sy, and S11 be real irreducible spinor representations of Spin®(0,n)
and Spin(1, 1), respectively. Then

Sl,n+1 = (SO,n & Sl,l) S (S(\)/Jl & Si/,l) or (SOJL & le) ©® (S(\)/,n &® 5171)

as spinor representations of Spin(1,n + 1).

Hda®, da®ypp = —(da? ,da?)pp = 1,1 < j<n+ 1.
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Proof. Recall that S7,4+1 @© S}/’ ni1 forms a Clifford module such that the Clifford multi-
plication of v € RM ¥ maps Sy 41 to SY,, 1, and vice versa. and that S1,41 ® Sy,
and So, @ Sé?n are irreducible Clifford modules when n = 0,1,2,4 (mod 8). By Lemma
we have 15,11 @ S, 41 = (S10 @ 57,,41) © (S11 @ SY4), and that spin(1,n 4 1) =

spin(0,n) @ 1)@ (1 @ spin(1,1)) ®span{e; @ef, e} @€}, €; @ e, € @€ h1<i<r, 1<j<s as vector
sub-spaces of C1(1,n+ 1), where spin(r, s) is the Lie algebra of the spin group Spin(r, s). It
is not hard to check that both (S, ®51,1)®(Sy,,®5Y ;) and (So.n®5Y ;) ® (S, ®S1,1) are
invariant under the action of spin(1,n + 1). To finish the proof, note that the dimensions
of (Son ®S1,1) ® (S(\)/’n ® Sle), (Son ® S}fl) e (S&n ® S11) and Sq 41 are the same. [

Remark 6.2.2. By Remark we can choose S1n+1, Son, S11 to be the repre-
sentations with positive chirality and Sy, .y, Sy, SY; to be the representations with
negative chirality. We then have Sftnﬂ = (Safn ® Sil) ® (S, ® Spy) and Sy, =
(SJ 0 ®511) @ (Sp, ® Sff 1)- It follows that a Weyl (Weyl-Majorana) spinor in dimension
(1,m 4 1) reduces to a Dirac (Majorana) spinor in dimension (0,7).

Lemma 6.2.5. Let S be the real irreducible representation of Cl(1,1). Then there exists
a symmetric invariant form (-,-) on S such that

(vs,t) = (vt,s)

for all s,t € S and for all v € R, Moreover, one can show that (-,-),, is anti-symmetric
and (vs,t), = (vt, 8)y-

Proof. Without loss of generality, we work with the Weyl-Majonara representation and

01 0 1 -1 0
i 1
set ef = <1 0>, € = <_1 0). It follows that w1 = ( 0 1). We then define the

invariant forms (-,-) and (-,-), by setting
(5,t) = sTeft, (s,t), = —s€t,
for all s,t € S = R2. O

We are now ready to prove the following proposition, which plays an important role in
the dimensional reduction of the fermionic part.

Proposition 6.2.5. Let (-,-)o, and (-,-)1,1 be the symmetric invariant forms as defined
in Proposition and Lemma [6.2.5, respectively. Then the invariant form (-,-)1ns1 =
(,)om ® (v, )11 and its associated equivariant pairing [-, -1 n41 are symmetric.

Proof. By Lemmas [6.2.4] and [6.2.5], we have
(Fle)()s )1n+1 = (€()s Jon @ (wi,1 (), )11

= (=12, €())on @ (w1,1())11
= ('a f(ei)('))l,n+1a
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for 1 <i <n, and

and

For brevity, we will omit the lower-scripts of (-,-),s and [-, ], s from now on.
+ + + _ Loy 4 n
Let s7,41:t1 41 € Sipgq for n = 0,4 (mod 8), we can write sy, = 55, ® s7; +
- - - — oF - — + Lo +
Som @811 and sy, = 85, ® s, + 85, ® sy, and similarly for 77, ;. We choose the
normalization conditions for sfl and ticl such that

0 _ _ 1
5f1 = tf1 = <1> s S =l = <O> :

+ — —
(sl,n—i-l’ tiF,n—‘rl) = (83_,717 t(—{n) + (SO,n7 tO,n) = (80,7“ to,'fl)'

It follows that

It is not hard to show that
(f(v), [Sin—&—l’ tin+1]> = (v, _[3077“ tO,n]w>7
for all v € R®" ¢ RV and that
(F(er)s [s1nans tppal) = (S0mston),  (Flent1), (5T p1s tinea)) = (805 00w
By Remark we have
(€6 ni1s U il = [€0ms Yol + (€05 P0.0)dz” — (€0,ms V0.0 )wwda™ . (6.2.9)
It is also not hard to show that

FGIm—l = FE(),n — (dA(ﬁl)(UEQ,n — (dAgﬁg)E()m -+ [¢1, ¢2]W607n. (6.2.10)
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(6.2.9) together with (6.2.10|) indicate the supersymmetry transformation behaviours of the
field contents of the N = 2 theory. For the dimensional reduction of the N = 1 Dirac term,
we have

DAt 1 = —w Ao + (61, Vo] + WPz, Yon)-
It follows that

(¢In+17 lﬁAwan) = _(wO,nv lDAwO,n)w + (¢0,m [¢17 %Do,n]) + (w(),na [d)Q; ¢O,n])w-

To conclude, we obtain the following N = (1, 1) Euclidean super Yang-Mills Lagrangian
in dimension n = 0 (mod 4) if there exists a N = 1 theory on (n+2)-dimensional Minkowski
spacetime.

L= HPF) 4 L@ Dab)o — Hdatn.dan) + 2 (datn. dace)

- 5 000]) = 50 20l - {llondalls (6:2.11)

where 9 is a map ¢ : M — ISy ® g, So = ST @ S~ is the irreducible real representation
of the Clifford algebra. The corresponding supersymmetry transformations are

6 A = [e,Y]w, (6.2.12)
5e¢1 = (67 w)v (6213)
56¢2 = _(671[))0.7» (6214)
deth = % (Fe — (dag1)we — (dapa)e + [p1, pa]we) (6.2.15)

where € : M — I1Sj is a parallel spinor field.

Remark 6.2.3. The Lagrangian and supersymmetry transformations are exactly those in
[Zum77] (up to some scalings of parameters). They can also be obtained by performing
the so-called Wick rotation to the N = 2 super Yang-Mills theory on R3 [BT97; VW96].

Let ¢ = %(@2 + ¢1) and ¢* = %((]52 — ¢1). For later use, we want to express the
Lagrangian and the supersymmetry transformations in terms of ¥»*. We have

L= (FF) + 0, Bav) + {dag dad”) — (07, 16,67) + (67, [6%,07) — 19, 67,
(6.2.16)
and
S+ A= —[e", 7], 640=0, 640" =—(",vT), (6.2.17)
SerpT = %F_EJF + (¢, €T, Sp” = —(dad)eT, (6.2.18)
be-A=[e,¢T], O-¢p=(c,9¥7), 6-9¢"=0, (6.2.19)
Setb = ~(dad), et = SFye — [6, 7] (62:20)
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Remark 6.2.4. Using the isomorphism between C1(0,n) ® C1(0,4) = C1(0,n+4), one can
obtain supersymmetric theories on R” from those on R"™ in a similar fashion. Combining

this observation with what we have shown above gives the N = 4 super Yang-Mills theory
on R%.

6.2.3 Twisted N=2 super Yang Mills theory

The largest sub-group of the automorphism group of a super Poincaré algebra which fixes
its underlying Poincaré algebra is called its R-symmetry group. Let .S be a spinor represen-
tation of Spin®(1,n—1). By Remark we know that S can be assumed as a direct sum
of N irreducible spinor representations for n — 2 # 0 (mod 4), and as a direct sum of N
and N~ copies of two inequivalent irreducible spinor representations for n—2 = 0 (mod 4).
Using Proposition [6.1.1], one can obtain a nice classification result for R-symmetry groups

[Var04]. See Table

n—2(mod8) 1,7 0 3,5 4 2,6
Ir SO(N) SO(NT)xSO(N~) Sp(N) Sp(N')xSp(N~) U(N)

Table 6.2.1: R-symmetry groups Zr for n-dimensional Minkowski spaces.

Note that the dimensional reduction procedure introduced in the previous subsec-
tion preserves the corresponding R-symmetry groups. Therefore, one can easily find R-
symmetry groups (or at least their subgroups) for Euclidean spaces. Let’s consider an
n-dimensional Euclidean supersymmetric theory. Suppose that the R-symmetry group Zp
is also a symmetry of our theory. That is to say, the configuration space should carry an
action of the semi-direct product of the R-symmetry group and the super Poincaré group;
the action functional should be invariant under this new action. Since R-symmetry groups
fix the underlying Poincaré algebras, we have a sub- symmetry group of the form

Spin(0,n) x Zg,

which is of course also a symmetry of our theory. We also assume there exists a non-trivial
group homomorphism hpr from Spin(0,n) to Zr. The term topological twisting refers to
the change of the ways of embedding Spin(0,7n) into Spin(0,n) x Zr. More precisely, we
change the canonical embedding (id, 0) to the “twisted” embedding (id, hg).

Let ® denote the field contents of our original theory, which transform under some
representation p of Spin(0,n) x Zg. Note that ® transforms under the new representation
po (id, hR)lSpin(o,n) of Spin(0,n) after the topological twisting.

Example 6.2.1 (Twisting of the N = (1,1) super Poincaré algebra of R*.). In this case,
we have Spin(0,4) = Sp, (1) x Sp_(1), and a R symmetry group Zg inherited from the the
R symmetry group of N = 1 super Poincaré algebra of R1. By checking Table we
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find that Zp = Sp(1). Thus, we can define the twisting homomorphism hpr by setting

hp: Sp+(1) X Sp_(l) —1n
9=1(9+.9-) = g+
The irreducible spinor representation on R15 gives us two inequivalent irreducible spinor

representations ST and S~ after applying the dimensional reduction. We have St =~ §— =
H as vector spaces. The spin group acts on S + via

Spin(0,4) x S — §F

9="(91,9-) x 5> gysT

and the R symmetry group acts on S¥* via

Ip x ST — §*
g X st stg*
where all the multiplications are given by quaternionic multiplications, g* denotes the
conjugate of g € H. The two actions commute because H is an associative algebra. The

action of Spin(0,4) x Zr on S¥ is indeed well defined.
The new actions of Spin(0,4) on ST after twisting is given by

Spin(0,4) x St — S+
gx st gistgl

and

Spin(0,4) x S~ — S~
gxs rg-s g}

One can show that after twisting, S+ becomes R @& A2R?* and S~ becomes R?* as repre-
sentations of Spin(0, 4), where A2 R* is the vector space of anti-self-dual 2-forms. In other
words, since all bundles over R* are trivial, the twisting procedure does nothing but reorga-
nizes the field components of the original theory in a different way by turning spinor fields
into differential forms. The twisted supersymmetric theories can be put on a more general
spacetime, because the existence of covariant differential forms puts far fewer restrictions
on the geometry of the spacetime manifold than the existence of covariant spinors.

Now, let’s examine the twisted super Poincaré algebra closely. Before the twisting, the
paring [-,-] on S is given by [BH09)

[ ]:(ST@ST)x(STas™) —»R!
(st s ) x (T, t7) >t (sT)* + s (¢1)*
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Identifying R, A2 R* with the real part and imaginary part of H, respectively. We have

[]: ReAR* R x (R A2R* ¢ RY) — R?
(M5 x1,01) X (M2, X2, V2) — v2(m — x1) + v1(n2 — X2)

There is a sub-pairing

[ ]: RORY) x (R®R?Y) — R?
(m1,v1) X (M2, v2) — vam + Vi

which gives us a subalgebra [; = R* @ (R @ R*) of the twisted super Poincaré algebra. Let
w;, M, Vi, 1 =1,...,4, be a basis of ;. We have

[wi, wj] =0, [wi,n] =0, [wi,v;] =0, (6.2.21)
,n] =0, [n,vi] =wi, [vi,v5] =0. (6.2.22)

One immediately recognizes that (6.2.21)) and (6.2.22)) are just (4.5.3) and (4.5.4) in the

disguise. In other words, we have reproduced the graded Lie algebra L associated to an
abelian Lie algebra by twisting a super Poincaré algebra. The twisted supersymmetric
theory can be then given naturally a @ K-structure. Since the Lagrangian is invariant
under the [;-action, it is also @)-closed. We then obtain a 4-dimensional CohFT.

Remark 6.2.5. One can also work with the twisted superalgebra defined by ((6.2.21)) and
(6.2.22)) directly, and then use the standard superfield method in physics literature to
construct action functionals on flat spacetimes. This idea was studied in [BBMOS].

As another example, one can twist the N = (2, 2) super Poincaré algebra of R* obtained
by applying dimensional reduction to the N = (1,1) super Poincaré algebra of R™®. The
R-symmetry group in this case is Sp(1) x Sp(1), which is isomorphic to the spin group.
Therefore, there exist three different homomorphisms hr (up to automorphisms). The
twisting associated to the identity one is called the geometric Langlands twisting [KWO07].

Example 6.2.2 (Geometric Langlands twisting of the N = (2,2) super Poincaré algebra
of R%). In this case, the odd part of the super Poincaré algebra is S; @ S,., where S; = S, =
ST @ S~, ST = H. The R-symmetry group acts on S; @ S, via

(Zr =2 Sp;(1) x Sp, (1)) x S;® S, — S;® S,
(glagr) X (Sla 51“) — (Slgl*u STg:)'
It is not hard to see that, after the twisting, S; becomes R @ R* @ A2R* and S, becomes
RaR* @ A%FR‘L. Again, we are only interested in the R @ R* parts of S; and S,. The

pairings [-, -] on each of them are identical to the one defined in Example We then
obtain an abelian Lie superalgebra I; = R* @ (R @ R*); @ (R @ R*),. The Lie bigraded
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algebra g associated to [; is spanned by @; of degree (0,1), @, of degree (0,1), K; of
degree (1,—1), K, of degree (1,—1), and L of degree (1,0). The only non-trivial brackets
between these basis elements are

[QlaKl] = [QT?KT] = L.

The universal enveloping algebra Kgroo of Kqr is generated by Q, @, K;, K., and L,
which are subject to the relations

Q7 =0, QK +KQ =L, KL+LK =0,
Q=0, QK. +KQ =L, K.L+LK, =0,
QlQr + QT‘QZ == 07 KIKT - K’I‘Kl == 07 QlKr + KrQl == 07 QT‘KZ + KZQT = 0.

There exists a TRP!-family of QK-algebras as subalgebras of g1, where TRP! is an
affine bundle modelled on the tangent bundle of the 1-dimensional projective space RP!.
Let (u1,uo,v1,v2) € R* be such that ujvy + ugve = 1. We define

Rz = w1 Qi+ w®r, Ky=uv1K +vkK,.
It is straightforward to verify that
Q2=0, QuKy+KyQz=L, KzL+LK;=0,

where @ = (u1,us) and ¥ = (vy,v2). Let (u},ub,v},vh) be another element in R* such
that wjv] + uhvy, = 1. Obviously, (u1,us2,v1,v2) and (u},ub,v],v5) determine the same
QK-algebra (up to a scaling factor) if there exists an a € R/{0} such that v} = au, u) =
aug, v; = vi/a, vh = va/a. On the other hand, if we fix (u1,u2,v1,v2) and let AKz =
—uo Kj + u1 K, then Qgz, Kz + sAKy, and L form a (QK-algebra for any s € R.

Note that there exists a natural SL(2, R)-action on theses @ K-algebras. More precisely,
for g € SL(2,R), we set

gQﬁ = Qgﬁv 9Kz = K(g—l)tz_)'a gL =1L,

In other words, the Geometric Langlands twisting of the N = (2, 2) supersymmetric theory
gives us a RP*-family of CohFTs which can be related to each other via a natural SL(2, R)-
action.

Remark 6.2.6. One can generalize the above examples by considering bigraded algebra
generated by 2k + 1 generators: @); of degree (1,0), K of degree (1, —1), L of degree (1,0),
1,7 =1,--- ,k, with non-trivial brackets being

Qi,Ki]=L, i=1,--- k.
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Such a bigraded algebra should be obtained from the N = (k, k) super Poincaré algebra of
R*. It follows that there exists a RP*~!-family of CohFTs obtained by twisting N = (k, k)
supersymmetric theories, which can be related to each other via a natural SL(k, R)-action.
For k = 1,2, we recover Examples [6.2.1] and [6.2.2l However, I do not know if it makes
sense to talk about N = (k, k) supersymmetric theories in physics for k > 3.

Let’s work out the details of Example for the supersymmetric Yang-Mills theory.
We can reorganize components of the right-handed spinor field ¢ as (7, x) and reinterpret
the twisted left-handed spinor ¢~ as v, where (n,v, x) is a section of the parity reversed
vector bundle II (AOT M@ A'T*M @ A2T*M ) After twisting, the Lagrangian
takes the form

L= %(F, F) — (v,dan) + 2(x,dav) + (dag,da¢")
— (0,6, n)) = 20x, [, X]) + (v, [6%,0]) — [, *]]>.  (6.2.23)

The factor 2 in front of the y-relevant terms appears because of our normalization conven-
tions for (-,-) and (-,-).
It remains to determine the twisted supersymmetry transformations. The scalar super-

symmetry transformation ) can be easily read off from (6.2.17)) and (6.2.18]), we have
QA = -0, Q¢ = 07 Q¢* = -
. 1
Qn:[¢a¢ ]7 QX:§F*7 QU:*dAd)'
Proposition 6.2.6. For on-shell x, Q*> = 0 up to a gauge transformation generated by
—g.
Proof. This is a result of direct computations.
Q*(A) = —Q(v) = —da(=¢),
Q*(¢) = 0= —[¢,4],
Q2(¢>*) = —Q( ) —[¢. ¢"],
(
(x

(6.2.24)

1
Q*(x) = HQ(F) = —5(dav)- = ~[o.,
Q*(v) = —Q(dA¢) = —[,].
In the fourth line we use the equation of motion of . O

Proposition 6.2.7. For on-shell x, the Lagrangian is Q-exact up to a topological
term. More precisely, it can be rewritten as

L=QV)+ itr (FAF), (6.2.25)

where V = (x, F-) — (v,da¢™) — (n, ¢, d*]).
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Proof. We have

QW) = QU ) — (v, das™) — {n, [6,6°])

= L) — (o da(—0)) — {~daddad?) + (0, [0, 6] + (v, da()
~ 16,61 + (0,19, ~1)

= %(F‘, F7) 4+ (X dav) + (X, dav — 2[0, X]) + (dad, dad”) + (v, [¢7,v]) — (v, dan)
~ g, ") ~ {6,

= £ [P P~ (F7 )
:E—%tr(F/\F),

In the third line we use the equation of motion of Y. O

It is a lot harder to write down the explicit expressions for the vector supersymmetry
transformation K due to the Clifford multiplications involved in the expression of J.-.

However, it is easy to guess from (6.2.19) and (6.2.20)) that

KAxy, K¢pxwv, Ko"=0,

. . (6.2.26)
Knodap™, Ky xxdagp®, Kvox Fy.

We will not bother ourselves to determine the coefficients of K. (We also do not encourage
the reader to do so.) Instead, we remark that with the right coefficients, one should have
QK + KQ = d up to a term of the form dz#d4, for on-shell n, v, and x, where d4, is the
gauge transformation generated by A,,.
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Chapter 7

Mathai-Quillen formalism
revisited: a generalization

7.1 Mathai-Quillen formalism with gauge symmetries

Let P be a principal G-bundle over an n-dimensional manifold M. Let adP denote the
adjoint bundle of P. Let A denote the affine space of connection 1-forms on P. Recall
that A can be identified with T'(C') where C is an affine bundle over M. Let V and W be
two associated vector bundles to P. We consider the variational bigraded manifold My
associated to the graded fiber bundle

Y:adPXMCXMVXMVV,

where the grading is defined by assigning elements of the fibers of ad P, C', V and W degrees
1, 0, —2 and —1, respectively.
A bundle chart of P induces a local coordinate system

(z, 07, A%.1s wh, x4, dzt, 569, SALT, swh, ox}) (7.1.1)
for My . The degrees of the above coordinate functions are
(0’0)7 (07 1)’ (0’0)7 (07 _2)7 (O’_l)a (170)7 (0,2), (07 1)7 (07_1)7 (070)

For simplicity, we omit the indices of the coordinate functions and use ¢, v, 1, b to denote
the odd coordinates §6, 0 A, dw, 0y, respectively. There exist a family of QK ,-structures
parameterized by t € R on My . The cohomological vector field @) is defined by setting

QO =¢, QA=v, Qu=1, Qx =b,

and the action of () on the other coordinates to be 0. The homotopy operator K is defined
by setting

KO =1tA, K¢ =db —tv, Kv=dA, Ki¢=dw, Kb=dy,

99
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and the action of K on the other coordinates to be 0. @) and K are of degrees (0,1) and
(1,—1), respectively. From now on, we set ¢t = 1.

Remark 7.1.1. The notations we adopt here need more explanation. For example, when
we write Qw = 9, we actually mean a family of equations Quw} = ¢7. Likewise, when we
write K¢ = dw, we mean K ¢{ = w}u {M}dx“. The reader may question that the equations
K60 = A and K¢ = df — v are illegal because K need to be of degree (1,—1). However,
what we really mean by writing A is AZ; ;dz* instead of AZ; ;- Likewise, we write v to mean
’UZ; pdxt.

By construction, My can be equipped with an Lg-action. Note that the Lie(G)-action
on A is not linear. This will cause problems when we apply changes of coordinates later.
Hence, we require that Lie(G) acts on A through the adjoint action instead. The contrac-
tions ¢y are then defined by setting

=X g =—[\0], vo=—[\A4], i\xp == w, 1)b=—X\y,

and its action on the other coordinates to be 0. However, 1\ K + Ku) # O,E| i.e., the
L g-structure is not compatible with the QK,-structure. This issue will be solved later.

We apply the Mathai-Quillen map to express the QQK-structure in new coordinates.
We have

1
QA=v—[0,4], Qu=—[0,v]+[¢,A4]
Qu=1v—0w, QY=—-0Y+ow,
RQx=0—-0x, Qb=-0b+9¢x,
as a generalization of the Kalkman differential in Remark We also have
Ko=A, Ké—=db—uv,
KA=0, Kv=dA+I[A A],
Kw=0, Kv¢=dw+ Aw,
Kx=0, Kb=dx-+ Ax.

One can verify Q2 =0 and QK + KQ = L by direct computations. The advantage of the
new coordinates is that we have a simpler expression for ¢y, namely, we have

0o = A,

and O for ¢) acting on the other coordinates.

'One can easily check that (1xK 4+ Kiy)é = ta(df —v) — K[\, 0] = d\ + [\, A] — [\, A] = dA.
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In order to fix the incompatibility between K and ¢y, and to change the Lie(G)-action
on A back to the correct one, we apply the following change of coordinates

v — v —db.

We have now

Q0=0- 3006, Qo=-10.9]
QA=v+dsl, Qu=—[0,v]—dsp
Qu=mn—0w, QY=-0y+juw,
Qx=b—0x, Qb=—-0b+¢x,

and

Ko=A Ko¢=—v,
KA=0, Kuv=2F,
Kw=0, Ki¢=daw,
Kx =0, Kb=dax,

where dy = d+ A and F = dA + %[A,A] can be interpreted as the covariant derivative
and the curvature of A. We set ¢y to be of the same form as before. It is then not hard
to see that d) A give us the correct gauge transformation of a connection 1-form, and that

K+ Ky =0f
Theorem 7.1.1. My is an h-simple QK,, manifold.

Proof. Tt remains to check the h-simple property. Apply the vector fields Kdy — 0, K to
coordinate functions. The only non-vanishing one is

(Kdy — 0\K)0 = K(—[\,0]) — 0yA = —[\ A — dal = —d\.
However, functions dependent on 6 are not in the kernel of ¢y. O

Remark 7.1.2. Cohomological vector fields @) of the above form were first given in
[OSV8Y]. It was noticed there that @ recovers the saclar supersymmetry in [Wit88] by
setting 0 to be 0, i.e., by restricting to the horizontal functions over My .

It remains to specify the Lagrangians and observables. For the Lagrangian, we set

L= Q(<(67 v, 1/% X)> (Oa f17 f27 f3 + b)>)dVOL (712)

°In fact, we have tx K = Kty = 0.
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where f1, fo, f3 are the coefficient functions of a G-equivariant vector field of degree (0, —1)
over My, (-,-) is a G-invariant inner product on the tangent space, and dvol is the volume
form on M, which can be regarded as a function over My of degree (n,0). By con-
struction, £ is a Q)-exact basic function over My. It is easy to see that £ is an infinite
dimensional generalization of in the Mathai-Quillen construction of an Euler class.
Since one cannot have gauge symmetries in the finite dimensional case, this generalization
is essentially non-trivial.

Remark 7.1.3. 0,v,1, x should be viewed as the coefficient functions of the (odd) Euler
vector field (which is of degree (0,0)) over My-.

Remark 7.1.4. fi, fs and f3 are referred to as the gauge fixing functions in the physics
literature. In our case, they should be carefully chosen to have vertical degrees —2,0 and
0, respectively. In this way, £ is homogeneous of degree (n,0).

Let O be a gauge invariant pre-observable of degree 0. It can’t be Q-exact, otherwise
the expectation values of the corresponding observables will vanish. For simplicity, let’s
assume that n is even. A reasonable choice is then @) = Tr(¢™), where m = n/2. Using
Lemma m the standard K-sequence of O©) can be found as

> 0P = exp(K)0O) = Tr(g7), (7.1.3)
p=0

where
ox = exp(K)p=¢—v—F

can be interpreted as the curvature 2-form on the principal G-bundle P = (P x A)/G —
M x A/G [BS8§|. In this sense, is nothing but a Chern class of P. With a slight
abuse of notation, we call P the universal G-bundle, and ¢x the universal curvature 2-form
on P, though both of them depend apparently on the choice of P. Likewise, we set

O =exp(K)0 =6+ A.

0 is called the universal connection 1-form on P. In fact, the de Rham complex of P is a
commutative bigraded algebra of the second kind. By Lemma[4.5.1] we should reset @ and
K to be (—1)PQ and (—1)9K, where p and ¢ are the horizontal degrees of the functions
acted by @ and K, respectively. The universal curvature 2-form ¢x takes the form ¢p—v+F
instead. Let dy,; denote the total differential associated to () and L. It is not hard to show
that

1
oK = diotOK + 5[91(, Ox), diodr + [0k, oK =0.

In the next subsection, we will consider the case where P is the trivial G-bundle over M.
We will give a notion of Weil homomorphism in the infinite dimensional setting which sends
fr and ¢k to connection and curvature forms on a mapping space.
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7.1.1 Topological Yang-Mills theory

The geometric setting is specified by the following data.
1. P is a principal SU(2)-bundle;
2. V=adP, W =adP ® A2 (T*M).

The Lagrangian is specified by the gauge fixing functions

fi=daw, fo=[p,w], f3=7F_,

where F_ is the anti-self-dual part of the curvature F'. Note that f; is of degree —2, fs is
of degree 0, and f3 is of degree 0. The pre-observables are determined by O©) = Tr(¢?).
We have

0 =Tr(¢?),

0(1) = —2T‘I‘(¢U>7

0@ = Tr(v A v —20F),

0B) = 2Tr(v A F),

OW =Te(FAF).
Remark 7.1.5. The topological Yang-Mills theory can also be obtained by twisting the
N = (1, 1) supersymmetric Yang-Mills theory. The @ K-structure obtained from the twist-
ing is more complicated than the QK -structure above. More precisely, since x and b are

su(2)-valued (anti-self-dual) 2-forms, there exists a family of @ K-structures parameterized
by (r,s,t,u) € R* by setting

QO=0¢, QA=v, Qu=1, Qx =b+rF_, Qb= —r(dav)-_,
KA=sy, K0 =tA, K¢ =db —tv, Kv=dA—s(b+rF-), K¢ = dw,
Ky =uxdaw, Kb=dx +rsdax —u* ([v,w] + dat),

and the action of @ and K on the other coordinates to be 0. It is easy to verify that Q% = 0
and QK + KQ =d.

Likewise, we set t = 1. After applying the change of coordinates induced by the
Mathai-Quillen map, we get

Q0=6- 300,01, Qo=-10.9)

QA=v+dal, Qu=—[0,v]—dao,
Qu=1~,u], Qv =—[6,4]+ [6,u],
Qu=b+rF~[0,x], @b=—r(dsv)~ [0, (o+rF )]+ [,



104 CHAPTER 7. MATHAI-QUILLEN FORMALISM REVISITED

and

Ko=A Ko¢=—v,
KA=sxy, Kv=2F-—-s(b+rF.),
Kw=0, Ki¢=daw,
Kx=uxdaw, Kb=(14rs)dax —ux ([v,w]+ dap —[0,dsw]).
Note that the expression of Kb involves . To make the () K-structure compatible with the

L4-structure, we have to set u = 0.
Let’s also set » = 0 for simplicity. We then have

9K29+A+§X,
2

b =6 —v—F+ 2 (b+rF) + Sdax + Tl X

The standard K-sequence of O(©) = Tr(¢?) takes the form

00 = Ta(¢?),
oW = _2Tx(¢v),
O = Tr(v A v+ ¢(sb — 2F)),
OB) = Tr(spdax — v A (sb — 2F),
OW = Tr((sh/2 — F) A (sb/2 — F) — sv A dax + s20[x, x]/4).
Let Ky denote the vector symmetry in the special case of s = 0, i.e., the vector symmetry

defined in Section 6. One can easily check the above standard K-sequence is nothing but
the general Ky-sequence specified by

2
wh =0, WO = sTe(gh), W =0, WH® = —SZTr(b A b+ B[x, X])-

Note that both W@ and W® are gauge invariant and Q-exact. In fact, we have
2
W = 5Q(Te(éx), W =——-Q(Tr(b A x)).

The standard K-sequence is equivalent to the standard Ky-sequence up to an exact se-
quence.

Further examples like Kapustin-Witten theory can also be incorporated into this frame-
work with ease.
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7.2 Chern-Weil homomorphism for mapping spaces

Every physical theory with non-trivial dynamics involves the notion of connections. Theo-
ries with gauge symmetries are characterized by the interpretation of connections as vari-
ables, while theories with no gauge symmetry usually have their connections fixed. One
approach to construct Lagrangians for rigid CohFTs, therefore, is to start with a “uni-
versal” CohGFT and apply a generalization of the Chern-Weil homomorphism. In this
subsection, we explain this idea in detail.

Let the graded fiber bundle Y be as in the previous subsection, i.e., Y = adP Xy C X ps
V xpr W. Let’s consider the trivial principal G-bundle P over M with G = SO(2m). G,
Lie(G), A can then be identified with C*°(M, G), C*°(M, g) and I'(T* M) ® g, respectively.
Let V be a real rank 2m vector bundle associated to P by the fundamental representation
of SO(2m). Let W be the dual bundle of V. G acts on I'(V) and I'(W) fiber-wisely. By
Remark we need to change the Q) K-structure on My by resetting

Quw=1v, QYv=0 Kw=0, Kiy=dw.
The Lg4-structure also changes correspondingly. Namely, we should redefine ¢\ by setting
LY = —Aw.

Moreover, we reassign degree (0,0) to w and degree (0,1) to ¢». We then consider £ of the
form

L = Q(x(w) + (x,b))dvol. (7.2.1)

It is easy to verify that £ is homogeneous of degree (n,0).

On the other hand, let X be a 2m-dimensional Riemannian manifold, 2m > n. Let Py
be a principal G-bundle over ¥ equipped with a connection 1-form A. Let Y denote the
trivial fiber bundle M x Ps; over M. Note that I'(Yy) = C*°(M, Py), which can be viewed
as a principal G-bundle over the mapping space C°°(M,Y). Therefore, the variational
bigraded manifold MYOI associated to Y| carries a canonical Lg-action.

Lemma 7.2.1. MYOI equipped with the canonical QK,-structure and Lg4-structure is a
simple QK,g-manifold, hence particularly an h-simple QK,q-manifold.

Proof. We need to show that [K,:y] = 0 and [K, )] = 0. Let (:E”,ujll, dzxH, 6u][) be a local
coordinate system. It is not hard to see that we only need to check both properties for
coordinates du’. For the first one, we have

K, L)\]&LJI‘ = K((SAu]I‘) + LA(u]}U{H}dm“) =0,

where we use [@, ty] = Jx. For the second one, it is equivalent to show that [L, )] = 0. We
have

L, 1x]0u) = L(6yu}) — (6xud ()dat = By (Oru})da — (Syur) [p)dat =0,

where we use 5,\ug = 07 (6\u?). O
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The evaluation map
ev: M x (700(]V[,f%g) — Px

pulls back A to a g-valued 1-form on M x C*°(M, Ps). It decomposes into two parts: the
horizontal part A, along M, and the vertical part A, along C*°(M, Py). Let V}, and V,
denote the covariant derivatives associated to Ay and A,, respectively. We can write

Vi=d+ Ay, V,=0+A4,,

where d is the horizontal differential and § is the vertical differential. We have three types
of curvatures:

Ry=V};, R,=V. Ry=V,V,+V,V,,
where the subscript m of R,, stands for the word “mixed”. We have
Ry = dAp, + %[Ah,Ah], R, =0A, + %[A@,Av], Ry, = dA, + 0Ap + [An, Ay).
By a simple analysis of degrees, we also have the following four types of Bianchi identities.
ViR, =0, V,R,=0, V,Rp+Vp,R,=0, VpR,+V,R,=0.

Remark 7.2.1. Recall that the sign convention we choose for a variational bigraded man-
ifold is of the first kind. In particular, we should have dé = dd. By Lemma this can
be achieved by redefining § to be (—1)PJ, where p is the horizontal degree of the function
acted by d. Correspondingly, the expressions for the curvature R,, and the third one of
the above Bianchi identities change. We have

Ry = dA, — 6A + [Ap, &), —VuRpm + ViR, = 0.

G can be viewed as a subgroup of G by identifying its element with the corresponding
constant functions in C*°(M, G). Thus, A,, R, can be viewed as Lie(G)-valued 1-form and
2-form of Qj,.(M x C*°(M, Px)), respectively. They determine maps

Lie(G)* — QVL(M x C®(M, Px)), Lie(G)" — Q02(M x C*®(M, Px)).

loc loc

which induce a map
D1 2 Qoc(M x T'(adP)) — Qioe(M x C°(M, Px))

sending 6 and ¢ to A, and R,, respectively. This is the usual Weil homomorphism in the
infinite dimensional setting. Let (z#,da#, A7, v ;) be a coordinate system of Qo (M x A).
We can also define a connection fixing map

B2+ Qioe(M x A) = Quoe(M x C(M, Px))
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which sends A € A to Ay and the vertical differential v of A to —R,,. Combining ¢; and
¢2, we obtain a map

¢W : Qloc(M X F(adP) X .A) — Qloc(M X COO(M, sz)),

which we refer to as the Weil homomorphism for mapping spaces. By definition, it sends
the universal connection 6 and curvature ¢ defined in the previous subsection to the
connection and curvature on M x C*°(M, Py), respectively.

Theorem 7.2.1. ¢w preserves the h-simple QK. 4-structure.

Proof. This follows from direct computations. Let’s check first that K¢y = ow K. We
have

K(¢w(A)) = KA, =0=¢w(KA), K(pw(0)) = KA, = Ap = ¢w(K0).

Since @ is just the vertical differential § for MYO/, we have

KRy = K(QA, + %[Av, A]) = LAy — QK Ay + [Ap, Ay] = dAy — 64y + [Ap, Ay] = B,

KR, = K(LAv — QAR + [Ah,Av]) =—LKA,— LA, — [Ah,KAv] = —2dAj, — [Ah,Ah] = —2Ry,.
Thus,

K(¢w(v)) = —KR,,, = 2Ry, = ow (2F) = ow(Kv), K(ow(¢)) = KRy, = Ry, = dw (K o).

The next step is to check Qow = o). We have

ow(Q8) = pw(9) — 30w ([6,6]) = R — [y, Au] = 54, = Qow(®))
ow(Q6) = ow(~10,0]) = ~[Au, R] = 3R, = Qow(6)),

where we use the Bianchi identity V, R, = 0. We also have

ow(QA) = ow (v) + dw (dal) = =Ry + dA, + [Ap, Ay] = =04, = Q(ow (A)),
ow (Qu) = ¢w (=10, v]) — dw(dag) = [Av, Rin] — dRy — [Ap, Ry] = —0 R = Qow (v)),

where we use the Bianchi identity —V,R,, + V, R, = 0. It follows that
Low = ow L.

To prove that ¢y preserves the Lg-structure, it suffices to check ¢wiy = tax¢w. By
construction, we have

ndw (0) = Ay = A, xow(9) = \Ry =0, txow(A) = txAp = 0.
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It remains to show that ty¢w (v) = 0. In fact, we can check that

IRy = ix(LA, — QAL + [Ap, Ay))
=[x, LJAy + LA = [tx, QAp + QurAp + [Ap, Al
= [0x, K]Ay, — 0 Ap + [Ap, A
= —K(0zAy) + [An, ]
= K([A, Ay]) + [An, Al
— 0,

where we use [y, L] = [0z, K]. O
Let Y/ =Y xp V xpy W. We can extend ¢ naturally to a map
Qioe(M x T(Y)) = Quoc(M x T(Y")),
which is denoted again by ¢y with a slight abuse of notation. There exists a natural map
D(Yg) = C™(M, Py) = T(T"M) ® g = T'(Yp)
f= ATY),

where we identify the tangent map T'f of f as a section of T*M ® f*T Ps,, and identify A
as a map ['(T'Pg) — g. This map together with ¢y determines a morphism My — My
of h-simple K, ,-manifolds.

From now on, we choose Px to be the frame bundle of ¥ and A to be the Levi-Civita
connection. (Qoe(M X T'(Y'))pas can be identified with Qi(M x I'(Yy)), where Yy is the
trivial graded fiber bundle M x (T'Y xx T*X) over M, with (Yx)o being the trivial bundle
M x ¥ over M. ¢y induces a homomorphism

¢CW : Qloc(]\4 X F(Y))bas — Qloc(]w' X F(YE))a

which we refer to as the Chern-Weil homomorphism for mapping spaces.
Let (x,u,w, X, dx, 0u,1,b) be a local coordinate system of Mys,. The QK-structure on
My, is given by

QU = 5“’7 Q(su = 07 QU} = wa Q¢ = 07 QX =b-— A’UX7 Qb = _A’Ub + R’UX7
Ku=0, Kéu=du, Kw=0, Ky=dw, Kx=0, Kb=dx+ Apx.
To define a CohFT, we simply set the Lagrangian to be
L =Q(x, f+b))dvol, (7.2.2)

where (-, ) is the inner product on the tangent spaces of My;, induced by the Riemannian
metric on X, f is a vector field over My, induced by a vector field over C*°(M, ¥), and
dvol is the volume form on M. ([7.2.2)) can be seen as the pullback through f of the image

of (7.2.1) under ¢cw .
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Remark 7.2.2. More generally, one can take W in the construction of My and My to
be the tensor product of the dual bundle of V' and APT*M, and f to be induced by a
section of the bundle APT*M x C*°(M,TX) over M x C*(M, ).

Remark 7.2.3. Lagrangians of the form (7.2.2)) can be found in [BS89; Bla93]

For pre-observables of the CohFT, consider the map

e: M x T(Ys) 2 M x C®(M,TS) x C°(M,T*S) —» 3
(xvflan) = ’/T(fl(x))v

where 7w : T — 3 is the canonical projection. Let a be a closed n-form on . Let
O = e*a. O can be decomposed as O = ZZ:O O®) where O® is of horizontal degree p.

Locally, o can be written as o, ... ,indu“ A -+ A dur. We then have

0P = < >0zi17...7indhu“ A Adpu'™ A Su'PHE A A dut.
p

One can check that O®) = %KO@*U. In other words, {O®) p—o 1s the standard K-
sequence of O,

7.2.1 Topological quantum mechanics

The geometric setting is specified by the following data.

1. M is the real line R;

2. ¥ is a Riemannian manifold equipped with a Morse function h.
The Lagrangian is specified by the gauge fixing function

_du

fdt

+ gradh,

where t is the parameter of R. The pre-observables are specified by the 1-form o = dh on
Y. We have

0O = g;héut,
O = d;huldt.
Remark 7.2.4. In dimension 1, there is no spinor or R-symmetry, hence no topological

twisting. The topological quantum mechanics is just the N = 2 supersymmetric quantum
mechanics.
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7.2.2 Topological sigma model
The geometric setting is specified by the following data.

1. (M,j) is a Riemann surface;
2. (¥,w,J) is a Kéhler manifold.

The Lagrangian is specified by the gauge fixing function
f = 5]”7

where 0ju = %(Du + Jo Duoj), Du is the total differential of u. Note that f is a section
of the bundle T*M x C*°(M,TY) over M x C*°(M,¥). The pre-observables are specified
by a = w, the symplectic form on 3. We have

OO = w; i, 6u u2,

oW = 2wi1i2ufjdaz“5ui2,

(2) — . . g f102 1ol 10V
O = wiyipuy v datda” .

Remark 7.2.5. The topological sigma model can also be obtained by twisting the N = 2
supersymmetric non-linear sigma model.

Further examples like topological M theory can also be incorporated into this framework
with ease.
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