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Abstract: The standard model of cosmology has been enormously successful both at
reproducing many observed properties of the Universe, and at predicting others. Despite
this success one of its key components, a dark matter particle, has not been observed in
targeted searches or indirect detection experiments. In addition, a number of discrepancies
have arisen between observational proxies of DM structure and the small-scale predictions
of this leading cosmological model, challenging its status as the standard paradigm. In
this thesis we focus on two distinct but related lines of enquiry. In the first, we address
the gap in observational capability concerning the satellite galaxies of the Milky Way.
These objects are sensitive probes of the underlying distribution of dark matter, which is
determined by the properties of the dark matter particle itself. Using partial observations
of the Galactic satellite population, we introduce and use a Bayesian approach to infer
the total luminosity function of these objects. We predict that there are 124t‘2“7) (68 per
cent confidence level) satellite galaxies brighter than My = 0 within 300 kpc of the Milky
Way, and that half of this population should, in principle, be detectable by the forthcoming
Large Synoptic Survey Telescope. In the second strand we use these estimates to test the
predictions of alternative models to the standard paradigm and place robust lower limits

on their allowed properties. We focus on two models of warm dark matter: thermal relics,



and sterile neutrinos in the Neutrino Minimal Standard Model (vMSM). For the former
we obtain a robust lower limit on the mass of the dark matter particle, ruling out with
95 per cent confidence models with particle mass, m<1.95 keV, which is competitive
with existing constraints. In the latter case the model depends on the size of the primordial
lepton asymmetry, which we parametrize as Lg. Assuming a particle mass of mg = 7 keV—
motivated by observations of an unexplained 3.55 keV line in X-ray spectra of galaxy

clusters—we exclude values of Lg > 50, in agreement with other work.
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CHAPTER

Introduction

1.1 A model of cosmology

The modern field of cosmology can trace its origins to one of the most famous scientific
theories of the last century: General Relativity (Einstein, 1915} 1917, translated by W.
Perrett and G. B. Jeffery). The Newtonian law of universal gravitation, which had for over
200 years been the accepted model to describe the interactions between massive objects,
was subsumed into this new theory which described gravitational effects as a geometric
property of space and time. The first astrophysical predictions of General Relativity proved
its merits: the advance of the perihelion of the planet Mercury could be explained without
recourse to additional, arbitrary parameters (Einstein, [1915); and its predictions of the
deflection of light by massive objects were confirmed spectacularly by observations of the
total solar eclipse of 29 May 1919 (Dyson et al., |1920). In 1917, Einstein took a broader
astrophysical view and applied General Relativity to study all matter in the Universe
as a whole, under the assumption that spatially it is both homogeneous and isotropic.
Under the action of gravitational attraction, such a model universe would if released from
dynamical equilibrium, collapse in on itself. Dissatisfied that the theory was unable to

produce a temporally infinite universe—this was the prevailing cosmological view of the



2 Chapter 1. Introduction

time—Einstein revised the field equations of General Relativity to include a constant
term, A (Einstein, |1917). This extra term effectively imbues the vacuum of space with
an intrinsic energy density and negative pressure, counterbalancing the attractive force of
gravity and permitting Einstein’s desired spatially finite, ‘static’ universe. However, this
was later proved to be an unstable configuration which could be nudged easily into a state
of permanent expansion or contraction by minute fluctuations in either the value of A, the

matter density, or in the geometric curvature of the universe.

The first exact solutions to the field equations of General Relativity in a homogeneous and
isotropic universe were derived by [Friedman| (1922)), and several years later independently
by Lemaitre (1927), and provided for an expanding (or contracting) universe. These
solutions depend upon two key ingredients: the total mass—energy density of the universe
and the curvature of spacetime. The latter underpins the fundamental tenet of General
Relativity that gravity is the geometric manifestation of the curvature of spacetime due to
a massive object that alters the paths of other objects travelling within that region. In the
same way, the total matter content of the universe also affects its geometry which can be

categorized into three regimes:

Flat If the mass—energy density is equal to the ‘critical’ density, spacetime is said to be
‘flat’ and the universe has zero curvature—analogous to a flat sheet of paper with

infinite spatial extent.

Closed A total mass—energy density greater than the critical density produces a ‘closed’
universe in which the gravitational attraction of its matter content overcomes the
expansion of space and eventually causes the universe to collapse back on itself. A
universe with such ‘positive’ curvature can be imagined as similar to the surface of

a sphere.

Open A universe with a density less than the critical density describes an ‘open’ universe
with negative curvature, analogous to the surface of a saddle which continues to

expand forever.



1.1. A model of cosmology 3

All of these scenarios can be realized without the inclusion of a non-zero cosmological
constant term in the field equations of General Relativity, prompting subsequent cosmo-
logical models to assume A=0. This assumption would come to be reconsidered towards
the end of the 20" century in light of new observational measurements; we will return to

this in Section

The concept of an expanding universe was met with resistance from the astronomical
community until 1929, when Edwin Hubble published observational measurements of the
recession of ‘faint nebulae’, which only recently had been confirmed to be extragalactic
objects (Hubble, 1924} |1925). These demonstrated that the ‘nebulae’, now known to be
nearby galaxies, were all receding with velocities, v, that were proportional to their distance

from the Milky Way (MW), r, such that
v=Hyr, (1.1.1)

where the constant of proportionality, Hy—the ‘Hubble constant’—describes the present
rate of expansion of the Universe (Hubblel |1929). The most recent observational measure-
ments of this quantity place its value at Hy~70 kms~! Mpc~! (Ade et al., 2016; Riess et al.,
2016;; [Planck Collaboration et al.l [2018)). The relationship that is given in equation (L.1.1)
had been demonstrated previously by Lemaitre in his 1927 paper using measurements of
the ‘faint nebulae’, although this received scant attention at the time (Lemaitre, |1927)). The
observational verification of an expanding Universe prompted Lemaitre to extrapolate the
philosophical and mathematical connotations of such a model backwards in time. From
this, Lemaitre concluded that at some finite time in the past all mass was concentrated into
a single point, or ‘primaeval atom’, from which all of space and time came into existence
(Lemaitre, [1931). Thus, the Universe had a beginning, and this cosmological view would

later come to be known as the ‘Big Bang’ model|+]

Many of Lemaitre’s contemporaries found the idea that the Universe had a beginning to
be distasteful, and alternative models were soon advocated (e.g.|Zwicky, 1929} Einstein,

1930; Milnel |1935). By the 1950s only two cosmological models seemed promising: the

*This term was actually coined by Fred Hoyle during a BBC Radio interview broadcast in 1949
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steady-state model of Bondi & Gold|(1948) and |[Hoyle|(1948), and the newly christened
Big Bang theory of Lemaitre. The former acknowledged the observed expansion of the
Universe but required that its appearance does not change over time, obviating the need
for a ‘beginning’ or ‘end’ by continually creating matter in order to maintain the matter
density of the universe. The latter model provided for a universe in which time and space
have a definite beginning and, having been developed further in the intervening years,
could now produce predictions for the formation of the nuclei of light chemical elements
in a ~10° K plasma shortly after the Big Bang (Alpher et al., |1948). Extending these
predictions further, approximately 380 000 years after this the expansion of the Universe
cools this plasma sufficiently to enable the light nuclei to combine with free electrons to
form stable atoms. The disappearance of free electrons decouples radiation from matter
and the Universe becomes transparent to this black-body radiation, enabling photons to
traverse the Universe unimpeded. It was anticipated that the subsequent expansion of
space would redshift this black-body emission to the microwave regime by the present day

(Alpher & Herman, |1948a.bj; (Gamow, |1948a,b)).

Fifteen years later, this emission was discovered by the serendipitous detection of isotropic
microwave radiation by |Penzias & Wilson| (1965) in a spectacular confirmation of the
predictions of the Big Bang model. Today, this model forms a fundamental and accepted
part of our understanding of the Universe. Measurements of this cosmic microwave
background (CMB) are now used to constrain many cosmological parameters such as the
curvature of the Universe and the baryon density with exquisite precision (e.g.Smoot et al.,

1992; Hinshaw et al., 2013} |Planck Collaboration et al., [2018)).

1.2 The development of a standard cosmological

paradigm

The current standard cosmological model, known as ‘A Cold Dark Matter’ (ACDM), is the

culmination of almost 85 years of theoretical and observational endeavour to understand
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the creation and evolution of the Universe. At its foundation is the conceptually simple Big
Bang model, discussed in the preceding section, that describes a Universe that began in an
extremely hot, dense state before rapidly expanding and cooling to form the rich structure
that we observe today (Lemaitre, 1931). This expansion, it is theorized, was driven initially
by a period of exponential cosmic inflation that amplified quantum fluctuations in the
primordial plasma to macroscopic scales (Guth, |1981}; |Linde, 1982a). These seeded the
early Universe with density fluctuations that, in the later gravitationally-dominated epoch,
would be responsible for the formation of cosmic structure (Guth & Pi, [1982; Hawking,

1982} Linde, |1982b}; Starobinsky, [1982).

1.2.1 Dark matter

Contemporaneous with the proposition of the Big Bang model, an observational study of
the Coma cluster of galaxies was carried out by Fritz Zwicky. This showed that there was
hundreds of times more mass in the cluster than was observable from the stellar component
alone (Zwicky, |1933|1937) and was the first unambiguous evidence for what he dubbed
‘dunkle Materie’, or ‘dark matter’ (DM)—taken to mean any astrophysical substance that
is too faint to be detected. It also supplied the answer to other puzzling observations dating
from as early as 1884 that had also identified the need for additional, ‘non-luminous’ matter
to make sense of their measurements (Kelvin, |1904; Poincareé, |1906; Poincaré & Vergnel,
1911; Kapteyn, [1922;|Oort, [1932). The existence of this mysterious substance was further
reinforced by observations of the rotation curve of M31 that indicated that most of its mass
was at large radii, beyond the stellar component (Babcockl, |1939); and by the dynamical
arguments of Kahn & Woltjer| (1959) that required the masses of the MW and M31 to be
much larger than are inferred from their luminous components in order to explain their

present approach towards one another.

Despite a growing base of observational evidence in favour of DM (e.g. Roberts, |1966;
Freeman, [1970; |[Rubin & Ford, 1970; Rogstad & Shostakl, [1972; |Roberts & Rots), |[1973)),

its importance for galaxy formation and cosmological models was not established until
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the mid-1970s, when Ostriker & Peebles|(1973)) demonstrated with numerical simulations
that galaxies require a massive halo in order to stabilize their discs. Support for this
followed in a series of observational papers that endorsed the existence of massive haloes
of non-luminous—or exceptionally faint—matter around galaxies (Einasto et al.,|1974albj
Ostriker et al., |1974; Rubin et al., 1980, see also |[Faber & Gallagher 1979). Quantifying
the contribution of this unseen material to the matter density of the Universe was crucially
important in order to understand its effect on cosmic evolution at late times; however,
the identity of the DM remained entirely speculative (Gershtein & Zel’dovich, [1966alb;
Cowsik & McClelland, [1972, 1973} |Szalay & Marx, 1976)). Four years later, attempts to
model its macroscopic effects on the evolution of cosmic structure resulted in a model of
hierarchical structure formation that incorporated DM as a key component, driving the

evolution of the Universe (White & Rees, [1978)).

The notion that the DM might be particle-like in nature did not receive much consideration
until [Lubimov et al.| (1980) constrained the mass of the electron anti-neutrino to be ~30 eV
by studying the S—decay spectrum of tritium. Shortly after the Big Bang when the
temperature is greater than ~10'° K, neutrinos and other fundamental particles are created
in thermal equilibrium in a primordial plasma. The number density of particular particle
species can be calculated from their momentum distributions in a black-body spectrum,
which in turn can be used to determine the critical density for the closure of the Universe.
This work had been carried out previously by |Gershtein & Zel’dovich| (1966a) and |Cowsik
& McClelland| (1972)), and had demonstrated that neutrinos with masses in the O(10 eV)
regime are sufficient to close the Universe and fulfil the role of the DM (Szalay & Marx,
1976)). Although the mass of the electron anti-neutrino claimed by Lubimov et al.| (1980)
would later be refuted, their work helped to popularize the concept that DM was composed

not of macroscopic astrophysical objects but rather, microscopic fundamental particles.

From a cosmological perspective, the precise identity of particle-like DM is fairly unim-
portant, save for the strength of self-interaction the DM might experience. All that is
required is that the choice of particle species does not introduce a dependence on additional

long-range forces besides gravity on large astrophysical scales, and that it exists in sufficient
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quantity to influence astrophysical objects. Of more consequence for structure formation
is the initial velocity distribution of the DM (Bond et al., |1980; Doroshkevich et al., [1980;
Bond & Szalay, [1983). DM particles with a mass in the range proposed by Lubimov et al.
(1980) would decouple from thermal equilibrium early in the evolutionary history of the
Universe. The temperature at this time far exceeds the rest mass of the DM, imparting the
particles with relativistic velocities which are retained throughout much of the formation
of cosmic structure. Such ‘hot” DM (HDM) particles would have sufficient velocity to
free-stream out of small-scale density fluctuations, suppressing the formation of structures
below a characteristic free-streaming scale that is inversely proportional to the DM particle
mass (Schramm & Steigman, |1981} Peebles, |1982a). This scale was characterized with
one of the first HDM simulations to be carried out within an inflationary cosmology which
predicted significant clustering of galaxies on supercluster scales but very little structure
below this (White et al., [1983). This was in significant disagreement with the first 3D
survey of galaxies in the local Universe that had been carried out by the Harvard Center
for Astrophysics (CfA) a year previously. This showed less clustering on large scales and

more structure on smaller ones, ruling out such HDM models (Davis et al., [1982).

While HDM had proved to be an unsuccessful model of the Universe, it helped to establish
a general template with which to investigate the desired behaviour of DM on astrophysical
scales to find agreement with observations. In contrast with HDM, the class of models that
came to be known as ‘cold’ DM (CDM) preferred DM particles that were non-relativistic
at early times, enabling the formation of much smaller structures (Blumenthal et al., |1984).
The first numerical simulation of CDM in an inflationary cosmology was carried out by
Davis et al.| (1985)) and obtained excellent agreement with the CfA survey observations.
While other DM models were also considered (Bond et al., [1982; |Olive & Turner, 1982
Pagels & Primack, 1982; Peebles| 1982b), the superb agreement of the CDM model
with observations firmly established CDM as a fundamental component of the Big Bang

cosmogony that appears to govern our Universe.
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1.2.2 Dark energy

The dominance of the CDM model extended to the end of the decade until improved
observational measurements determined that galaxy correlations on large scales are stronger
than predicted by CDM (Efstathiou et al., [1990), and that the baryon fractions predicted
by CDM+Big Bang nucleosynthesis models are too low to be consistent with observations
of galaxy clusters (White et al., [1993). The discovery of anisotropies in the CMB by the
COsmic Background Explorer (COBE) satellite challenged further the applicability of
purely CDM models, compelling the introduction of large ‘biasing’ factors that required
visible galaxies to preferentially trace the most massive DM structures (Efstathiou et al.,
1992; Smoot et al., [1992; Wright et al., [1992). This helped to instigate the serious
exploration of several alternative models, including mixed DM models that incorporated
two types of DM component: CDM and HDM (e.g. Davis et al.,|1992), and models with a

non-zero cosmological constant term.

As we discussed in Section [[.I| a non-zero, positive cosmological constant imparts a
positive energy density to the vacuum of space, counteracting the gravitational attraction
of ordinary matter. This ‘dark energy’ was originally introduced by Einstein into his
theory of General Relativity to achieve a ‘static universe’: one in which space is finite and
neither expands nor contracts, while time is infinite in extent (Einstein, [1917). After the
discovery of the expansion of the Universe (Hubblel 1929) a non-zero constant term was no
longer considered necessary in the cosmological models that followed, until the difficulties
encountered in reconciling these with the observed anisotropies of the CMB. Finally,
at the end of the millennium, new observational results provided compelling evidence
in support of a non-zero cosmological constant: measurements of Type la supernovae
in distant galaxies confirmed that the Universe was expanding at an accelerating rate
(Riess et al., [1998; [Schmidt et al., [1998; Perlmutter et al., [1999). This, together with
improved measurements of the CMB demonstrating that the Universe has a flat geometry
(de Bernardis et al., |2000; [Hanany et al., 2000), encouraged the adoption of A>0 as a key

component of the standard cosmological description of the Universe.
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The current cosmological paradigm, ACDM, performs remarkably well at reproducing a
large number of observable properties of the Universe and forms the basis of our present
understanding of cosmic evolutionary history from the first moments of existence to the
present. This rests on three key components: first, a model for the expansion of time and
space that is grounded in the framework of General Relativity and incorporates a period of
exponential inflation that amplifies quantum fluctuations to macroscopic scales, seeding the
formation of cosmic structure. Secondly, the inclusion of a significant matter component
dominated by CDM; a massive, non-baryonic, collisionless and weakly interacting form
of matter that is the primary architect of the observed large-scale structure of the Universe
through its gravitational interactions with ordinary matter. Third, a non-zero, positive
cosmological constant, A, in the field equations of General Relativity which permeates all
of space and constitutes over two-thirds of the total mass—energy content of the Universe
at the present day, and is responsible for the accelerated expansion of the Universe. This
model is the simplest and most widely-accepted description of our present understanding
of the Universe. However, several discrepancies have arisen in the highly non-linear regime
in which small haloes and dwarf galaxies form that could provide an important test of this

cosmological paradigm.

1.3 Small scale challenges to ACDM

ACDM is born of a class of cosmological models that assume the ‘cosmological principle’
of homogeneity and isotropy throughout the Universe. On large scales, this predicts
structure that accords with observations of the Universe. On ‘small scales’, defined as the
non-linear regime where the variance of density fluctuations becomes large, predictions
are more difficult to make, necessitating an increasing reliance on N-body simulations to
probe these scales. This has attracted considerable attention in recent years as increasing
computational power has delivered access to ever more exquisite and detailed simulations
to study the predictions of cosmological models across an enormous range of scales.

Alongside this, developments in instrument design and observational technique have
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improved the observational data used to test the results of these advanced numerical

simulations.

Over the last twenty years, the MW and its immediate environs have provided an ideal
laboratory to probe the outcome of structure formation on the smallest scales. It is difficult
to make theoretical predictions in this non-linear regime, and observations have uncovered
several puzzling deviations from theoretical expectations, spurring considerable efforts to
reconcile theoretical predictions with observational realities. Deficiencies in modelling the
physics of galaxy formation could offer an appealingly simple explanation for some ‘small-
scale challenges’ to the standard cosmological paradigm; however, it is not yet clear that
these offer the entire explanation. What is clear is that ‘small-scale cosmology’ provides
a powerful probe of fundamental theories that can help us to develop our theoretical
understanding and possibly provide hints at more fundamental physics which will lead to

deeper insights on the nature of the cosmos.

1.3.1 ‘Missing’ satellite galaxies

Early simulations of the small scale structure inside individual MW-like ACDM haloes
demonstrated that the DM accumulates into clumps spanning a wide range of masses, at
least down to the resolution limit of numerical simulations (e.g. |Dubinski & Carlberg,
1991; Warren et al., 1992, but see also|Ghigna et al.,|1998}; Moore et al.,|1999). Within a
hierarchically assembled Universe, small clumps are the first to form from the primordial
density fluctuations before merging into larger haloes, occasionally surviving this process
to exist at the present day as small subhaloes. In a typical MW-mass halo, there are
expected to be thousands of such objects, many of which should be capable of hosting a

visible galaxy.

One of the first investigations to compare in detail the abundance of ACDM substructure
in MW haloes with the number of observed satellites was carried out by Kauffmann et al.
(1993). Using semi-analytic models of galaxy formation they found that typical MW-

like haloes are capable of hosting ~100 dwarf galaxies at least as bright as the classical
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satellites, which was a factor of ~10 times more than had been observed. A few years
later a similar study on this question was carried out by Klypin et al.| (1999), this time
with higher-resolution dissipationless DM-only simulations. They compared the number
of subhaloes that formed in their simulations as a function of their maximum circular
velocities with the number of dwarf galaxies observed around both the MW and M31.
The maximum circular velocity of a subhalo measures the depth of the potential well,
providing a reasonable indication of the mass contained within the bound substructure
and importantly, can be compared directly with observational measurements of the same
quantity. |[Klypin et al. found when carrying out this comparison that their higher-resolution
simulations also predicted an overabundance of DM subhaloes at fixed circular velocity,
similar to that found by Kauffmann et al.| (1993). This discrepancy seemingly worsened
further when Moore et al. (1999) found in their numerical simulations that the MW should
contain ~500 DM subhaloes capable of hosting dwarf galaxies at least as faint as the

faintest known classical satellites.

That such a discrepancy might exist is not too surprising, although the scale of the
discovered disparity had not been anticipated. Most early simulations consisted entirely
of DM simulation particles and could not be expected to account for the various physical
processes that govern the growth and formation of the luminous component of galaxy
haloes. One such process is the expulsion of gas from nascent galaxies by the intense
radiation of young stars and the injection of kinetic energy by supernovae (Larson, |1974).
Another is the condensation of the gas needed for star formation into DM haloes, controlled
by the reionization of the surrounding intergalactic neutral hydrogen (White & Rees, 1978,
see also [Efstathioul[1992). While these baryonic feedback mechanisms have been known
about for many years, even today their effects on galaxy formation are still not understood

fully—although the parameter space is constrained much better.

In the late 1990s, the first fully hydrodynamic simulations that self-consistently traced the
evolution of gas and stars at sufficient resolution to model reliably the formation of dwarf
satellite galaxies were still several years away. Moreover, strong observational constraints

on processes such as the reionization of hydrogen at early times in the history of the



12 Chapter 1. Introduction

Universe were also lacking. The best way of quickly exploring the vast and relatively
unconstrained parameter space of baryonic feedback mechanisms was therefore to use semi-
analytic models. This work provided a good qualitative understanding of the importance
and relative contribution of different baryonic feedback processes on the formation and
evolution of dwarf galaxies, and also predicted the existence of a large population of fainter
satellites around the MW waiting to be discovered (Bullock et al., 2000; Benson et al.,
2002a,b; Somerville, [2002). However, additional observations and better simulations were

still needed to verify many of the assumptions.

The first high-resolution hydrodynamic cosmological simulations of the MW and the Local
Group to address this gap in theoretical capability helped to confirm the early semi-analytic
results in more detail, providing firmer ground for additional theoretical developments on
various aspects of baryonic feedback (Okamoto et al., 2005; Maccio et al., 2007; Okamoto
et al., [2008). In particular, some of this work suggested that gas accretion and galaxy
formation is strongly suppressed by the UV background in haloes with masses <10° Mo,
potentially offering a natural solution to the ‘missing satellites problem’. Improvements in
the observational constraints on galaxy formation processes have provided a complimentary
benchmark against which to compare progressively more detailed numerical simulations
(e.g. Fan et al.| 2006} Bolton et al., 2011} |Caruana et al., 2012, 2014; Becker et al., [2015;
Greig et al., 2017; Planck Collaboration et al., 2018]|). This has culminated with the current
generation of state-of-the-art hydrodynamic simulations in ACDM that are capable of
reproducing a number of observed properties of the Local Group. In particular, these have
produced excellent agreement with observations of the bright end of the satellite galaxy
luminosity function around MW like haloes, and in the Local Group more widely (Shen

et al., 2014} Sawala et al.| [2015] 2016b; (Grand et al., 2016; Wetzel et al., [2016)).

Alongside these advancements, further discoveries of Local Group dwarf galaxies have
continued apace. A decade of searches using the Sloan Digital Sky Survey (SDSS), Dark
Energy Survey (DES), and other Galactic surveys have now increased the total population
of known satellite galaxies around the MW to ~60 such systems (e.g. Koposov et al.,

2008; McConnachie, [2012; Bechtol et al., 2015; | Drlica-Wagner et al., 2015; |Koposov et al.,
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2015a). Many of these are very faint and diffuse, vindicating the earlier predictions of
semi-analytic galaxy formation models and further diminishing the status of the ‘missing
satellites problem’ as a failure of ACDM. These surveys cover only a small fraction of
the total virial volume of the MW, leaving open the possibility for a significant number
of future discoveries of nearby ultrafaint dwarf galaxies and motivating work to estimate
the size and properties of the total satellite galaxy population of the MW (Koposov et al.,
2008; [Tollerud et al.l 2008}, [Hargis et al., |2014). We explore our own approach to this

question in Chapter [2and discuss the results in Chapter 3]

The steady development of the theoretical underpinnings of galaxy formation processes,
set in the context of the ACDM framework for the formation and evolution of cosmological
structure, seems to provide a ready solution to the ‘missing satellites problem’. The broad
confirmation of these theoretical insights with observational breakthroughs in the detection
of ultrafaint, diffuse, low surface brightness dwarf galaxies, has further strengthened this
argument. The strongest test will come as the resolution of hydrodynamic simulations
pushes into the regime of the lowest mass subhaloes capable of hosting galaxies. When
new surveys such as the LSST come online over the next decade they will see some of the
faintest dwarf galaxies in the Universe and will provide some of the most detailed insights

into the small scale regime.

1.3.2 Density profiles of DM haloes

Early theoretical calculations suggested that DM haloes experience ‘violent relaxation’
during their collapse, producing an isothermal density distribution of DM in the halo at
late times (Lynden-Bell, [ 1967; Shu, [1978]). This process occurs in collisionless systems
that experience rapid changes in their gravitational potential (e.g. due to merging with
other haloes), leading swiftly to a state of equilibrium that is independent of the details
of the initial state. Later studies of massive DM haloes using early N-body simulations
found that the density profiles scaled as p(r) oc #=2 in support of this conclusion, although

they lacked sufficient resolution to probe the central regions of these haloes (Frenk et al.,
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1985} |Quinn et al.l, [1986).

It was not until the advent of the high-resolution simulations of Dubinski & Carlberg (1991)
and Warren et al.| (1992) that the small-scale structure in the centre of DM haloes was
able to be investigated. These simulations suggested that a Hernquist profile (Hernquist,
1990), which scales as p(r) o 7~ in the central regions of haloes, provides a better fit to
the DM distribution in low-mass haloes down to ~ kpc scales. This profile produces what
is known as a ‘cusp’, where the density profile increases extremely rapidly with decreasing
radius such that p(r) — oo as r — 0 and contrasts with the constant value at r = 0 that is

obtained by an isothermal profile.

The nature of DM precludes direct observational measurements of the density profiles
of haloes. However, the rotation curves of galaxies provide reasonable proxies to them.
Measurements of this quantity are complicated somewhat by uncertainties in the mass-
to-light ratio of the galaxy disc, which describes the mass associated with the baryonic
material. We represent this mass-to-light ratio as 1" (Moore, [1994). A T'~1 implies that
the baryonic material dominates the mass profile in the central regions of the DM halo,
while DM becomes more dominant at larger radii. In effect, this assumed ratio and the
spatial extent of the galaxy defines a radial scale that marks the transition between these
two regimes. Increasing 71" effectively decreases the contribution of DM to the central
matter density, thereby increasing the scale radius that marks the regime transition from

baryon-dominated to DM-dominated.

Dwarf galaxies are small and highly DM-dominated, making them ideal as probes of
the inner density profile of haloes. The first attempt to fit the theoretically-determined
DM density profiles to an observed galaxy rotation curve was made by [Flores & Primack
(1994), who obtained best agreement using an isothermal profile with a constant density
core, such that inside some characteristic radius, r., the density p(r < r.) r0. Later the
same year this procedure was repeated by Moore| (1994)) using several other dwarf galaxy
rotation curves, who found the same result: the rotation curves appeared to favour DM
density profiles with constant density cores, in direct contradiction to the predictions of

CDM N-body simulations.
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Over the subsequent twenty years the search for solutions to this ‘cusp—core problem’,
sometimes also known as the ‘core catastrophe’, spurred considerable efforts to understand
the effect of baryons on the DM. It had been appreciated some years earlier that baryon-poor
dwarf galaxies form via processes such as stellar evolution and supernovae feedback that
lead to the ejection of baryonic material from the system (Dekel & Silk, [1986). In addition
to the destruction of the baryonic disc, the expulsion of mass in this way would also affect
the distribution of DM at the centre of the halo and might lead to the formation of a
core (e.g. Navarro et al., 1996a; Gelato & Sommer-Larsen, |1999; Read & Gilmore, 2005
Pontzen & Governato, 2012). Another possible mechanism to produce cores from initially
‘cuspy’ DM profiles is from resonant effects induced by a stellar bar in the baryonic disc
that transfers angular momentum to the halo. To be relevant for dwarf galaxies these
bars would have had to form early in the galaxy assembly history, and it was argued that
such structures could actually help to drive the evolution of the system towards its final
diffuse, low surface brightness state (Weinberg & Katz, [2002). The effect of dynamical
friction on infalling clumps of material was also shown to provide a potential means of
transferring energy to the halo and flattening the inner DM cusp. This provided a plausible
explanation for the survival of the large population of globular clusters in the Fornax dwarf
galaxy, the orbits of which would otherwise have been expected to decay such that they
had merged into the centre by the present day (El-Zant et al., 2001; Goerdt et al., [2006;
Sanchez-Salcedo et al., [2006; Mashchenko et al., [2008; (Cole et al., [2012).

At approximately the same time, new techniques to measure the inner slopes of density
profiles of nearby dwarf galaxies seemed to find consistency with a wider range of values
than had previously been allowed. One technique made use of dwarf spheroidal galaxies
that have two kinematically and spatially distinct stellar subpopulations to place constraints
on the inner density profile. Initial analyses using measurements of the stellar populations
of the nearby dwarf galaxy, Sculptor, found that both cores and cusps are consistent with
the new data (Battaglia et al., 2008; Amorisco & Evans, 2012), and later work even
showed a preference for cuspy density profiles, rather than cores (Breddels et al., 2013

Richardson & Fairbairn, 2014; |Strigari et al.,|2017). This was disputed strongly by Walker
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& Pefiarrubial (2011]), who developed a method to measure the mass profile slope using
distinct stellar populations independently of assumptions about the particular DM halo
model. Using spectroscopic measurements of two distinct metallicity subpopulations their
results appeared to rule out robustly cuspy density profiles in both the Sculptor and Fornax
dwarf spheroidals at high statistical significance. However, later work by Kowalczyk
et al. (2013) and Genina et al.|(2018)) demonstrated that assuming that dwarf galaxies are
spherical when they are in fact aspherical introduces a strong line-of-sight dependent bias
into the result that can make dwarf galaxies appear to have a core even when the underlying

density profile actually has a cusp.

By the time the new measurements of dwarf galaxies with apparently cuspy density
profiles were made, a number of advanced hydrodynamic simulations had developed a
clear preference for the formation of cores in haloes with masses above some threshold
(Governato et al.l, 2012; [Munshi et al., 2013 Madau et al., 2014} (Chan et al., 2015;
Onorbe et al., 2015; [Tollet et al., [2016; |[Fitts et al., [2017), while others such as APOSTLE
(Sawala et al., |2016b) and Auriga (Grand et al., 2016)) produced only cusps (Bose et al.,
2019). The cause of the discrepancy between the simulations was not entirely clear,
although suspicions fell primarily on differences in the subgrid prescriptions employed
by different codes to model physical processes occurring on scales below the resolution
limit of the simulation. A recent comparison study with the EAGLE simulations (Crain
et al., 2015; Schaye et al., 2015) carried out by |Benitez-Llambay et al.|(2019) suggests that
the choice of threshold density at which gas is converted into stars in such simulations is
the source of the different behaviours and not the ‘burstiness’ or strength of supernovae
feedback, as had previously been thought. This parameter is used to tune the subgrid
prescriptions that control star formation in hydrodynamic simulations; as such it has no
physical meaning and therefore cannot be constrained observationally. This serves to
illustrate the difficulties inherent in performing comparisons of observations with such

simulations and in attributing discrepancies to an underlying physical cause.

It is clear that a complete, physically-motivated treatment of baryonic processes is a

crucial ingredient to understand the formation of structure inside DM haloes in a ACDM
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cosmological framework. While theoretical advances and improvements in simulation
technique have unquestionably furthered our understanding of these complex interactions, it
seems that current state-of-the-art cosmological hydrodynamic simulations cannot provide
reliable predictions of the inner DM density profile. In addition, while a number of
measurements of the density profiles of local dwarf galaxies using a variety of techniques
appear to favour cuspy profiles, the most recent observations of the Carina, Draco, Eridanus
IT and Fornax galaxies contradict this (e.g. (Contenta et al., 2018; Hayashi et al., |2018};
Pascale et al., 2018; Read et al., 2018 Boldrini et al. [2019). Measurements of the
transverse velocity will eventually help but these are a number of years away, so a solution
to the cusp—core problem will depend heavily on the progress of hydrodynamic simulations.
In particular, it would seem that significant advances in the self-consistent modelling of
star formation processes are the necessary next step if we are to make robust comparisons

with observational measurements.

1.3.3 Planes of satellite galaxies

In the mid-1970s, it was noted almost simultaneously by two independent groups that the
Magellanic Clouds and several of the then-known ‘classical’ satellites of the MW appeared
to lie in a thin plane (Kunkel & Demers, 1976; |[Lynden-Bell, [1976)). The kinematic
properties of these objects are dictated by their accretion onto the MW, and although
there was some disagreement over the exact orientation of the plane and precisely which
satellites were members of this structure, it offers the potential to reveal important insights

about the formation of the MW.

A key question raised by this configuration of satellite galaxies is whether such anisotropic
accretion is expected in CDM models, or whether the MW is a ‘less-than-typical” galaxy.
An answer to this question depends fundamentally on the nature of structure formation
in the Universe and more specifically, the particularities of the environment around the
nascent MW. Unfortunately, the development of ACDM was not to be completed until the

early 1990s, and a further decade of work was required before the predictions of structure
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formation on the scales of the MW could be explored (see Section [I.2)). Thus, from its
first notice, the anisotropic distribution of satellites around the MW received little further

attention for nearly thirty years.

After the turn of the 21% century, the alignment of the classical satellites was re-examined
by |Kroupa et al. (2005)), who noted that in the standard paradigm substructures fall into DM
haloes from cosmological filaments. This scenario implies the existence of preferential
points of entry for accreting material into the host halo, which could affect the spatial
distribution of the DM. The subhaloes were thought to follow a similar distribution so,
under the assumption that the substructure provides a vehicle for the formation of most
galaxies, this offers a possible explanation for the anisotropic distribution of the classical
satellites. However, the observational evidence available at the time suggested that the
spatial distribution of DM around the MW is not especially aspherical at large distances,
and it could be approximated as isotropic (e.g.|Olling & Merrifield, |[2000; Ibata et al., 2001}
Martinez-Delgado et al., 2004). Kroupa et al. (2005) found that the likelihood of drawing a
disc-like plane of satellites, as is observed around the MW, from an approximately isotropic
underlying DM subhalo distribution was less than 0.5 per cent. From this they concluded
that the MW dwarf galaxies cannot reside within the DM substructures that simulations
predicted compose most of the structure of the MW halo, posing a direct challenge to

ACDM.

Shortly thereafter, Kang et al. (2005) and Zentner et al.| (2005)) considered the issue using
N-body simulations of CDM haloes and, in the latter case, also with the application of
semi-analytic galaxy formation models. Rather than assuming a completely isotropic
parent distribution as|Kroupa et al. (2005)) had done, Kang et al. (2005) found that drawing
the MW satellite galaxies from the slightly oblate, tri-axial spatial distribution of DM
predicted by simulations improved the likelihood of the formation of a ‘great disc’ of
satellites. In contrast, the subhaloes in the new N-body simulations are preferentially
dispersed along the major axes of their hosts in a very flattened spatial configuration.
Such an arrangement of the substructure around the MW might be expected to yield an

improvement in the likelihood of forming a plane of satellites similar to that observed;
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however, this was not to be. Both [Kang et al.| and Zentner et al.| found that drawing the

satellites from this population produced less favourable results.

A better outcome was achieved by assuming that the brightest satellites inhabited the
most massive subhaloes. [Zentner et al.| (2005) found in both their DM-only and semi-
analytic models that sampling from this population produced satellite galaxies with planar
distributions similar to that seen around the MW. This was refined further by the extensively
tested semi-analytic models employed by Libeskind et al.| (2005). They demonstrated that
the most important subhaloes for satellite galaxy formation are not the most massive at
the present day but rather, those that had the most massive progenitor prior to accretion
into the host halo. This is because the present-day mass of the subhalo can be influenced
by processes such as tidal stripping, in which material is lost from the outer parts of the
subhalo due to tidal interactions with the host. This process has a much smaller impact
on the satellite galaxy itself, as most star formation takes place close to the centre of
haloes before they fall into larger hosts. The spatial distribution of subhaloes selected by
progenitor mass is highly biased and provides a good match to the observations of the
classical satellite distribution, and indeed to later discoveries of MW satellites observed in
the SDSS (Willman et al., 2005}, [Belokurov et al., 2006alb; Zucker et al., 2006alb}; Irwin

et al., 2007; Walsh et al., 2007; Wang et al., 2013]).

This work demonstrated that the ACDM framework is not only capable of producing planes
of satellites but also planes whose present-day configurations can resemble that seen in
observations of the companions of the MW. What was less clear was whether the ‘great
disc’ was a chance alignment of satellites on otherwise random orbits, or if they had a
common origin. [Pawlowski et al. (2012) provided the first tantalising hints at an answer to
this question by uncovering a ‘vast polar structure’ of satellite galaxies, globular clusters,
and streams of stars and gas around the MW. From this, they argued that the likelihood
of a chance alignment of so many systems in such a way as to produce the thin plane is
sufficiently remote that such a scenario could be ruled out. Instead, they favoured the
explanation that the satellites and stellar systems formed at the same time from tidal debris

thrown off in the past during a major interaction between the MW and another galaxy.
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These conclusions seemed to be strengthened further a year later when measurements of
the 6D motions of the classical satellites established that 60—80 per cent of them orbit in a
seemingly rotationally supported, coherent structure (Pawlowski & Kroupa, 2013). This
solution was appealing because it offered a natural explanation for the distribution and
kinematics of the MW satellites, although it also implies that most of the MW satellite
galaxies are actually tidal dwarf galaxies containing very little DM. If this is the case, the
MW is not representative of typical MW-mass haloes that might be found elsewhere in the

Universe.

Concurrent with these developments, observations of the satellite population of M31
suggested that a large fraction of its satellites also inhabited a thin plane (Conn et al.,
2013} Ibata et al., 2013)). Prior to this discovery, the existence of such a structure around
the MW could be explained broadly as a very unusual but possible outcome of ACDM
models. However, two such objects in close proximity are significantly less common. In
the specific case of the MW and M31, this can be redeemed somewhat as they are within
the same group. In this scenario, the filamentary accretion of satellites onto hosts during
hierarchical growth provides a plausible explanation for the existence of coherent planes of
satellites around both the MW and M31, while allowing for the expected rarity of satellite
planes in general (e.g. Libeskind et al., [2009; Cautun et al., 2015). However, now that
observations have confirmed the existence of a similar such kinematically coherent plane
of satellites in the Centaurus A system (Tully et al., 2015; Muller et al.l 2018)), reconciling

ACDM predictions with observations has become much more difficult.

The planes of satellite galaxies around the MW, M31 and Centaurus A, have provided
fertile ground to test detailed predictions of the prevailing cosmological paradigm on small
scales. While the ACDM model has demonstrated an ability to produce kinematically
coherent systems, they are not expected to be common, and the existence of three such
structures around hosts in the local Universe has proved difficult to reconcile with the
standard paradigm. Additional observations of a statistically significant sample of host
galaxies and measurements of the 6D position and velocity phase space of their satellite

complements will enable more robust observational tests of the prevalence of these satellite
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systems to be carried out. Improvements in the resolution and modelling of the physical
processes in simulations will also assist in understanding environmental effects on these
structures as well as any connection with halo properties. Today, the ‘planes of satellites’

problem remains an open challenge to the ACDM cosmological paradigm.

1.3.4 Too big to fail

A relatively recent addition to the catalogue of small-scale issues for ACDM emerged
from a proposed solution to both the missing satellites and cusp—core problems (see

sections [1.3.1]and [1.3.2)). Early analytic calculations, supported by later hydrodynamic

simulations, had shown that various baryonic processes play a significant role in the
assembly of a luminous component inside subhaloes (e.g. Larson, |1974; |White & Rees),
1978); Bullock et al., 2000; Benson et al., 2002a,bj; [Somervillel, 2002). If the interplay
of these complicated mechanisms conspires to preclude the formation of galaxies inside
the majority of low-mass subhaloes, then the missing satellites problem would no longer
present an issue. Rather, a large population of low-mass, ‘dark’ subhaloes accompanied by
a handful of bright satellites that reside in more massive substructure appears to be a natural
outcome of galaxy formation within the ACDM cosmological framework. Semi-analytic
models of galaxy formation soon began to indicate that the most massive subhaloes in
a system are most likely to host visible galaxies (Zentner et al., 2005). In particular,
Libeskind et al.| (2005) showed that subhaloes with higher peak masses at earlier times
are the best predictor of the presence of a luminous baryonic component. This does
not correlate perfectly with high mass at z=0 as various dynamical processes strip mass
from subhaloes during their accretion onto the host, producing considerable scatter. The
present-day mass of a given subhalo is, therefore, a function of its particular evolutionary
history after accretion into the parent halo, and of its mass at the time of infall. Verifying
this observationally is difficult as we cannot yet observe galaxy formation in such low-mass

haloes at high redshift. This is where hydrodynamic simulations become extremely useful.
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Boylan-Kolchin et al.| (201 1)) were one of the first groups to investigate the preferred sites
of galaxy formation around the MW using observations of nearby satellite galaxies. They
compared the masses inferred from kinematic measurements of the centres of the satellites
to the central masses of the most massive subhaloes in DM-only simulations of MW-like
haloes. This avoids the necessity of accounting for the dynamical processes that affect
the subhalo during accretion as the central regions are least likely to have been perturbed
by such mechanisms up to the present time. These comparisons showed that the most
massive simulated DM subhaloes are too centrally dense to host the MW satellite galaxies,
implying that the satellites have formed preferentially in less massive subhaloes while the
most massive structures failed to form galaxies at all (Boylan-Kolchin et al., 2011, 2012).
This is at odds with galaxy formation theory in which the most massive, dense haloes are
sufficiently dynamically ‘hot’ that gas that has been ionized by the UV background is still
cool enough to sink to the bottom of the halo’s gravitational potential well, where it is able
to cool further to form stars. Such haloes should therefore be ‘too big to fail’ at forming a

galaxy.

One possible solution to the ‘too big to fail’ (TBTF) problem concerns the estimated
mass of the MW halo which is highly uncertain, with typical estimates in the range
(0.5-2.0) x 10'2 Mg, (Cautun et al., 2014b; Piffl et al., 2014; Wang et al., 2015). A MW
halo mass at the lower end of this would have fewer massive subhaloes than suggested by
the simulations and would offer a natural solution to the TBTF problem (Boylan-Kolchin
et al., [2012; Wang & White, |2012; Vera-Ciro et al., 2013). However, such a low mass
is unlikely based on a variety of measures such as the Local Group timing argument (Li
& Whitel 2008)), the analysis of the positions, line-of-sight velocities and proper motions
of the MW satellites (Watkins et al., 2010; Li et al., 2017), the radial dependence of the
Galactic escape speed (Piffl et al., 2014)), and from the modelling of stellar streams in the

Galactic halo (Kiipper et al., [2015).

Another possibility is that the MW might simply be somewhat unusual and not representat-
ive of a ‘typical’ MW-mass halo as might be obtained from large cosmological simulations

(Boylan-Kolchin et al., 2011)). This idea was tested observationally using the satellites of
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M31, and later on with the field galaxies of the Local Group which lie outside the virial
radius of either M31 or the MW. Studies of these populations found that both groups of
dwarf galaxies also appear to possess TBTF problems of their own, suggesting that the
TBTF problem cannot be explained entirely by the peculiarities of the evolutionary history

of the MW (Garrison-Kimmel et al., [2014; |Kirby et al., 2014; Tollerud et al.,|2014]).

Perhaps the most compelling solution to the TBTF problem might be supplied by attempts
to model the complex processes that influence the evolution of the baryonic components of
small DM haloes. A number of comparative studies of field dwarf galaxies and MW-like
systems in both DM-only and hydrodynamic simulations have suggested that the TBTF
problem is peculiar only to the DM-only realizations (Brooks & Zolotov, 2014; Madau
et al.l [2014; [Sawala et al., |2015; Dutton et al., 2016; Wetzel et al., 2016). Including
in models a complete treatment of baryonic physics that encompasses feedback from
supernovae and the destruction of subhaloes by the disc of the host galaxy appears to
alleviate the discrepancies that originally gave rise to the TBTF problem. However,
confirming this via comparisons with observations of dwarf galaxies is difficult, and
is complicated by uncertainties in the assumptions required in order to interpret the
observational measurements. An important example of this is the measurement of the
kinematics of HI gas in dwarf galaxies, which is typically used to probe the DM halo at
larger radii than the stellar component is able to. Observational results tend to support the
existence of the TBTF problem even when compared with hydrodynamic simulations that
attempt to model baryonic processes (Papastergis & Shankar,[2016). However, studies with
synthetic radio data soon found that HI measurements systematically underestimate the
mass enclosed, likely due to turbulence in the interstellar medium induced by supernovae
(Verbeke et al., 2017; | Oman et al.,|2019). Such measurements therefore no longer offer a

compelling test of the TBTF problem.

Numerical hydrodynamic simulations have helped to establish the importance of baryonic
processes on both the formation of galaxies and their effect on the DM itself, and will
no doubt play a continuing important role in the identification of a solution to the TBTF

problem (e.g. Arraki et al., 2014} |Brooks & Zolotov, 2014; Brook & Di Cintio, [2015;
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Dutton et al., 2016 [Sawala et al., 2016b; Tomozeiu et al., 2016; |Wetzel et al., 2016, see
also Section[I.3.2). However, relative to their DM-only counterparts the resolution that
current simulations can achieve is poor. The TBTF problem manifests on scales on the
order of 300-500 pc in dwarf galaxies, far below the scales that hydrodynamic simulations
can resolve adequately. Many of the relevant baryonic processes that these simulations try
to capture are therefore consigned to various subgrid prescriptions that vary enormously
between different hydrodynamic schemes. While it has been demonstrated that such
processes have a significant influence on the DM, it would be premature to claim that
they offer a complete solution to the TBTF problem until this regime can be tested more
thoroughly and self-consistently with more advanced simulations. The TBTF problem still

potentially remains an outstanding and unsolved challenge to ACDM.

1.3.5 Summary of small-scale challenges to ACDM

The CDM model produced highly successful predictions of the structure on large scales
which were enhanced further by the inclusion of A>0 in the field equations of General
Relativity. The theoretical and numerical predictions of ACDM on large scales have now
been verified by a diverse number of observational measurements, with such remarkable
success that it has now become the standard cosmological paradigm. On smaller scales, the
first hints at additional complexity beyond that predicted by theoretical calculations of its
predecessor, CDM, came from observations of the spatial distribution of satellite galaxies
around the MW (see Section[1.3.3)). At the time it was difficult to read much into this as
the Local Group had yet to be modelled well, and in any case predictions for particular
DM haloes remained out of reach. This changed in the following decades with continual
improvements in computational power and the availability of additional computational
resources, enabling the development of more detailed numerical simulations of structure

formation in a CDM universe.

By the early 1990s, DM-only simulations were finally able to resolve the internal structure

of DM haloes of a similar scale to the MW. Almost immediately, discrepancies between
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the CDM simulations and observations of nearby dwarf galaxies uncovered the cusp—core
problem (see Section[I.3.2), and shortly thereafter comparisons of the number of dwarf
galaxies around the MW with the number of subhaloes in simulations revealed the missing
satellites problem (see Section|[I.3.T)). As these problems materialized in the highly non-
linear regime of structure formation, the later transition to a cosmological model with a
non-zero cosmological constant was unable to alleviate them. Therefore, these challenges
apply equally to the ACDM model as well. This galvanized significant effort to understand
better, and to model, the baryonic processes that drive star formation and stellar feedback
and shape the evolution of DM, in the pursuit of a solution to these problems. While these
cannot yet solve the cusp—core problem with any degree of certainty, it is now broadly
accepted that the missing satellites problem can be explained entirely by these baryonic

mechanisms.

Along the way, improvements to simulations of the Local Group have allowed the unusual
spatial distribution of MW dwarf galaxies to be probed in more detail. These showed
that while planes of satellites around host galaxies are somewhat unusual, they are not
inconsistent with the predictions of ACDM (see Section[I.3.3)). However, the existence of
three such planes around objects in the local Universe is more challenging to explain and
will require the accumulation of more observational measurements of a larger sample of
hosts to understand fully. The same requirement can also be placed on one of the most recent
additions to the catalogue of challenges to ACDM: the TBTF problem (see Section[I.3.4).
While hydrodynamic simulations appear to show that the problem is mostly alleviated by
the inclusion of baryonic physics, they are unable to probe the scales necessary to confirm
this. In addition, systematics in observational measurements complicate comparisons with
theoretical predictions, making TBTF an unsolved problem that is difficult to reconcile

within the framework of ACDM.

In this section, we have considered several so-called ‘small-scale challenges’ to the
standard cosmological paradigm. Such discrepancies indicate deficiencies in our theoretical
understanding or modelling of physical processes, or more fundamentally, they could

highlight deficiencies in the standard cosmological model itself. In our consideration of
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possible solutions, we have focused primarily on reconciling these problems by modelling
additional baryonic processes within the framework of ACDM. This has achieved varying
degrees of success but some problems remain. If instead, we take these issues to be
indicative of more fundamental structural issues in the ACDM framework itself, then we
must look for an alternative cosmological model. In the next section, we will consider
one particular class of cosmological models that might offer a solution to some of the

outstanding small-scale challenges.

1.4 Warm dark matter

During the development of ACDM several models of DM were proposed that can be
broadly categorized into three families: ‘hot’, ‘cold’, and ‘warm’ DM (the first two of
these were introduced in Section[I.2)). These are distinguished primarily by the velocity
distribution of their DM particles which, in models of DM that produce the particle in
thermal equilibrium with the primordial plasma, is closely tied to the DM particle mass.
Less massive DM particles generally achieve higher thermal velocities at early times in the
evolution of the Universe (i.e. are ‘hotter’), free-streaming out of small density fluctuations
and suppressing the formation of structure below a characteristic free-streaming scale. In
the simplest DM models, this scale depends inversely on the mass of the DM particle, as
illustrated by the late-time linear theory power spectra for examples of each DM model
family in Fig.[I.1] In the hottest models, the suppression is so severe that only objects on
the scale of galaxy clusters can form; such models were swiftly ruled out by comparisons of
N-body simulations with observations of the large-scale structure in our Universe (White

et al., [1983).

The ‘cold” and ‘warm’ DM (WDM) models held more promise because they permitted
the formation of smaller DM objects. Initially, CDM found most favour as it performed
extremely well at reproducing objects on ~ Mpc scales and was relatively easy to motivate
from particle physics considerations. WDM models were also capable of achieving similar

results on large scales but at the time lacked a physically motivated particle candidate
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Figure 1.1

Diagram of the power spectra of different classes of DM model. Models that
produce DM particles with higher velocity distributions suppress the formation of
structures on progressively larger scales in comparison with ‘cold’, non-relativistic
DM. Structures with spatial scales larger than that of the suppression scale are
unaffected by the choice of DM particle and produce the same results as CDM.
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(Bond et al., 1982 Olive & Turner, |1982; |Pagels & Primack, 1982; Peebles| 1982b)). As
we discussed in Section [I.2] the CDM model continued to perform well as numerical
N-body simulations improved; however, eventually, discrepancies emerged on both large
(Efstathiou et al., [1990) and small (Davis & Peebles), [1983; Davis et al., [1985]; [Efstathiou,
1992) scales, which encouraged the exploration and reconsideration of other cosmological

models.

One alternative that gained traction in the 1980s was a two-component model of ‘cold + hot
dark matter’ (C+HDM; Shafi & Stecker, [1984; Davis et al.,|1992). From a cosmological
perspective, this was appealing as the combination of both components approximated
to WDM models and circumvented the lack of an identified WDM particle candidate in
the expected region of parameter space, which had been explored thoroughly by particle
detectors. This also solved the problems produced by modelling either DM component as
a single-component DM cosmology; specifically, that HDM models tended to suppress the
formation of structure on scales below ~7 Mpc in clear disagreement with observations,
while CDM models alone could not supply enough power on large scales to account for that
seen in surveys at the time (Efstathiou et al.,|1990). However, this solution was generally
disfavoured by the particle physics community because of the difficulty of extending the

Standard Model of particle physics to incorporate it in such manner.

The introduction of a positive cosmological constant alleviated a number of discrepancies
between theory and observation. However, no known particle has properties that enable
it to fulfil the role of CDM. Today, several mechanisms have been proposed to generate
WDM particles, either initially in equilibrium with the primordial plasma or through other
means (e.g. Colombi et al., [1996; [Bode et al., 2001). In the continued absence of the
direct detection of a DM particle, AWDM models offer a compelling alternative to ACDM.
Their viability can be assessed in an astrophysical context by comparing their predictions
of the formation of small DM structures with the visible counterparts of these observed
in the Universe today. We describe one approach to achieve this using the abundance of
satellite galaxies of the MW in Chapter ] choosing to focus on two of the simplest models

of WDM: thermal relics and sterile neutrinos, both of which we introduce briefly in the



1.4. Warm dark matter 29

following subsections.

1.4.1 Thermal relics

Thermal relic models represent a generic, non-baryonic WDM particle that is produced
initially in equilibrium with the primordial plasma. As the Universe cools and these
particles decouple from radiation they stream away with relativistic velocities, becoming
non-relativistic at later times and before matter—radiation equality (Avila-Reese et al.,
2001} Bode et al., 2001). As discussed above, the relativistic speed, v, of thermal relic
WDM allows the particles to free-stream out of density fluctuations, smoothing out

inhomogeneities on scales below the free-streaming scale,

hes(t) = /O dt':;g,;, (1.4.1)

where a is the scale factor, a measure of the relative expansion of the Universe over cosmic
time, #. The streaming speed is a function of the momentum imparted to the DM particle
at early times. Consequently it, and hence Ags, is inversely proportional to the rest mass
of the WDM particles. The free-streaming scale imprints onto the power spectrum of
density fluctuations a suppression of large k-modes in Fourier space, while leaving smaller

k-modes unchanged (see Fig. [I.1).

This behaviour was confirmed by comparisons of CDM N-body simulations with numerical
simulations of structure formation in various thermal relic WDM models (Colombi et al.,
1996). The exploration of the thermal relic WDM mass parameter space in large-scale
structure simulations suggested that WDM was unable to match observational data of, for
example, the clustering of galaxies and galaxy clusters when normalized to these scales,
without choosing a very low particle mass akin to HDM. Thereafter, models of WDM
generally fell out of favour; however, measurements of the accelerating expansion of the
Universe using Type Ia supernovae provided a new context in which to consider them
(Riess et al.,|1998;[Schmidt et al.,|1998; Perlmutter et al., 1999). Much like the introduction

of A#0 to CDM models, many of the large-scale problems encountered by solely WDM
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models no longer presented an issue in AWDM and thermal relic particle masses that had
previously been ruled out erroneously, were viable once again. In Chapter[d] we will revise
the constraints on the thermal relic particle mass parameter space by drawing comparisons
between small-scale structure formation in AWDM models and the observed population

of MW satellite galaxies.

1.4.2 Sterile neutrinos

Sterile neutrino WDM was first proposed by Dodelson & Widrow| (1994) as a simple
extension to the family of ‘ordinary’ neutrinos in the Standard Model of particle physics.
In this, fermions possess a fundamental property called ‘chirality’, which can be either
‘left’ or ‘right’. All fermions of the Standard Model have both left- and right-chiral
components, with the notable exception of the neutrinos, all of which are left-chiral.
As gauge bosons only interact with left-chiral fermions and right-chiral anti-fermions,
introducing right-chiral components (a.k.a. ‘sterile’ neutrinos) to the ‘ordinary’ neutrinos
provides a mechanism to produce matter which does not couple to the fundamental forces
and primarily interacts gravitationally. Such a mechanism also offers a natural explanation
for neutrino flavour oscillations that were discovered later by Super-Kamiokande and the
Sudbury Neutrino Observatory collaborations (Super-Kamiokande Collaboration et al.,

1998; SNO Collaboration et al., 2001}, 2002).

Unlike thermal relics, these particles are not produced in equilibrium with the primordial
plasma. Instead, the most efficient way to produce sterile neutrinos is via mixing with
the Standard Model neutrinos (e.g. Manohar, |1987). This process is controlled by the
‘mixing angle’, 8y, that parametrizes the evolution in time of neutrino quantum states
and relates to the abundance of different types of neutrino in the Universe. Under the
simplest extension to the Standard Model of particle physics known as the Neutrino
Minimal Standard Model (vMSM), three right-chiral neutrinos are introduced, all of which

interact extremely weakly via the fundamental forces (Asaka & Shaposhnikov, 2005; Asaka
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et al., 2005}, [Canetti et al., 2013a]b)). Two of these have masses between ~100 MeV[A]and
~245 GeV (the electroweak scale), while the third could have a mass of O(1 keV) and

could act as the WDM.

The two most massive sterile neutrino species rapidly decay into leptons. This produces
a slight overabundance of leptons compared with anti-leptons which can explain the
asymmetry between the density of baryons and anti-baryons in the Universe. The underlying
reason for this dominance of matter over anti-matter has preoccupied astroparticle physicists
for over half a century (e.g. Sakharov, 1967alb, 1991; Canetti et al., 2012), and this
mechanism of the yYMSM offers a natural solution to this unsolved question. The lepton
asymmetry can be encapsulated by the lepton asymmetry parameter, Lg, and relates to
the sterile neutrino mixing angle, 6y, providing a potential observational proxy of sterile
neutrino properties. Unfortunately, Lg is not yet constrained well observationally, so it is
effectively a free parameter. Variations in 6y, represented by changes in L¢, can affect
the power spectrum of a sterile neutrino of fixed mass, myg, in non-trivial ways, allowing
such WDM candidates to circumvent a number of astrophysical constraints on the mass
of thermal DM particles. Sterile neutrino models can, therefore, be fully parametrized by
a combination of mg and Le. In Chapter [5| we discuss the constraints that we obtain on
this parameter space by comparing the suppression of the formation of small-scale DM

structure with the observed abundance of satellite galaxies around the MW.

1.5 Thesis outline

In this thesis, we pursue two primary lines of enquiry. In the first strand, we seek to address
the current gap in observational capability concerning the nearby dwarf galaxies of the
Local Group. Observations of this population of objects now span a significant fraction of
the sky but struggle to detect the faintest objects beyond a few tens of kpc from the MW.

In Chapter 2] we develop and test a Bayesian approach to infer the luminosity function of

AWhen discussing the masses of fundamental particles we choose to follow the convention established
by the particle physics community and use natural units, setting the speed of light, c=1.
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the satellite galaxies of the MW using high-resolution DM-only simulations of MW-mass
host haloes and partial observations of this population by the SDSS and DES. We consider
estimates of the luminosity function in Chapter [3| and explore a number of theoretical
dependencies that could influence the final result, such as the congruence of theoretical
and observational ‘tracers’ of the underlying DM structure, the assumed mass of the MW
halo, and the volume considered in the calculation. We conclude this strand with a look to
future observations of the local Universe, making predictions for the satellite population

that might be observed by the forthcoming Large Synoptic Survey Telescope (LSST).

In the second strand, we turn our attention to alternative models to ACDM, choosing
to focus on the WDM class of cosmological models and their predictions of structure
formation on small scales. In Chapter 4] we develop an improved method to constrain the
viable parameter spaces of WDM models by comparing their predictions of the abundance
of small-scale structure with the satellite population of the MW inferred in the preceding
chapter. We demonstrate the efficacy of this methodology by placing constraints on the
generic class of thermal relic WDM models and consider further the effect on these of
different prescriptions of baryonic physics. We carry out the same procedure for YMSM
sterile neutrino WDM models in Chapter [5| motivated by the recent observations of an
unexplained ~3.5 keV line, setting our consideration of the continued viability of the

standard cosmological paradigm in the context of this ongoing discussion.

Finally, in Chapter [] we summarize our findings and consider future lines of enquiry that

could test further our present understanding of the Universe.



CHAPTER

A Bayesian approach to infer the satellite galaxy

luminosity function of the Milky Way

2.1 Introduction

Proposed in the 1980s (e.g. Peebles, |1982bj; Blumenthal et al., 1984; Davis et al., [1985),
the ACDM model has proved remarkably successful at predicting numerous observable
properties of the Universe and their evolution over time; as a result, it has become the
‘standard model’ of cosmology (see Frenk & Whitel, 2012} Weinberg et al., 2015/ for recent
reviews). Hierarchical structure formation is fundamental to this model, which predicts
that DM haloes form by mergers of smaller haloes and smooth mass accretion. Merged
(sub)haloes that are not completely disrupted are detectable today as satellite galaxies and,

potentially, as non-luminous substructures.

The MW halo and its associated satellite galaxies offer an ideal environment in which to
probe hierarchical growth which, in turn, can be used to constrain the faint end of galaxy
formation and the properties of the DM. However, the current census of MW satellite
galaxies is highly incomplete. The most recent surveys—such as the Sloan Digital Sky

Survey (SDSS; Alam et al., [2015)) and the Dark Energy Survey (DES; Bechtol et al., 2015
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Drlica-Wagner et al., 2015)—do not cover the entirety of the sky and are also subject to
detectability limits that depend on the surface brightness of, and distance to the satellite
galaxies. The goal of this chapter is to overcome some of these limitations and, using
theoretical priors based on cosmological simulations of MW-like haloes, to estimate the

expected total number of MW satellite galaxies.

In the 1990s, DM-only CDM simulations showed that many more subhaloes survive
within MW-like haloes than there are visible satellites orbiting the MW (Klypin et al.,
1999; Moore et al., [ 1999; Springel et al., 2008)). This disparity is often referred to as the
‘missing satellites problem for cold dark matter’ (see Section[I.3.T)). This rather unfortunate
nomenclature is very misleading if, as is common usage, the word ‘satellite’ is taken to
mean a visible galaxy: DM-only simulations have, of course, nothing to say about visible
galaxies. Simple processes, at the heart of galaxy formation theory, such as the reionization
of hydrogen in the early Universe and supernovae feedback, make it impossible for visible
galaxies to form in the vast majority of CDM haloes. Such processes were first discussed
and calculated in this context using semi-analytic techniques with different approximations
in the early 2000s (Bullock et al., 2000; Benson et al., 2002a,b; Somerville, 2002). For
example, Benson et al.| (2002a) showed how the abundance and stellar content of dwarf
galaxies are driven by reionization and supernovae feedback. Their model produced an
excellent match to the luminosity function of the (11 ‘classical’—the only known at the
time) satellites of the MW and predicted that the MW halo should host a large population
of fainter satellites. Just such a population was discovered several years later in the SDSS

(Koposov et al., [2008| and references therein).

The early semi-analytic results have been confirmed using full hydrodynamic simulations
(e.g. Okamoto et al., 2005; Maccio et al., 2007). For example, the most recent such
simulations have confirmed that below a certain halo mass, typically ~10'© M, dwarf
galaxy formation is strongly suppressed, and that the majority of haloes with masses
<10° Mg, should not host a luminous component (stellar mass greater than 10* My)

(Shen et al., 2014; Sawala et al., 2015, 2016a; Wheeler et al., [2015)).

In recent years, alternatives to CDM have elicited considerable interest. Some of these,
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such as Warm Dark Matter (WDM, Avila-Reese et al.,2001; Bode et al.,[2001]), models with
interactions besides gravity between DM particles and photons or neutrinos (Boehm et al.,
2014), and axionic DM (Marsh, 2016), predict a cut-off in the primordial matter power
spectrum on astrophysically relevant scales, which would suppress the formation of small
galaxies (Bode et al., 2001; Polisensky & Ricotti, 2011; Lovell et al., 2012; |Schewtschenko
et al.,2015). The abundance of the faintest galaxies can thus, in principle, reveal or rule out
the presence of a power spectrum cut-off. By requiring that WDM models should produce
at least enough substructures to match the observed Galactic satellite count, constraints
on the mass and properties of the DM particle can be derived (Maccio & Fontanot, [2010;
Lovell et al., 2014; Kennedy et al., 2014; Schneider, [2016; |Bose et al., [2017; Lovell et al.,
2017).

Past and current surveys have now discovered a plethora of satellites around the MW,
with the count currently standing at 56: 11 classical satellites, 17 discovered in each of
the SDSS and DES surveys, and 11 found in other surveys. Despite this relatively large
number of known satellites, current estimates suggest that there could be at least a factor of
3-5 times more still waiting to be discovered (Koposov et al., 2008}; Tollerud et al., 2008;;
Hargis et al., 2014). These estimates were made prior to the DES and are based only on
SDSS data. These predictions start from an assumed radial profile for the distribution of
Galactic satellites: either that it follows the DM density profile—as in|Koposov et al.|(2008,
hereafter KOS|), which is not a good assumption—or that it follows the subhalo number
density profile (as in the other studies cited above). Then, for each observed satellite, they
calculate the number of satellites in the entire fiducial volume that must be present in
order to have, on average, one object with the corresponding properties within the survey

volume.

This and the subsequent chapter improve upon previous estimates of the Galactic satellite
count in three major ways. First, while previous studies were based on SDSS data alone,
our result makes use of the combined SDSS and DES data, which together cover an area
equivalent to nearly half of the sky. Secondly, to properly account for stochastic effects,

we introduce a new Bayesian approach for estimating the total satellite count. Stochastic
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effects—which we find to be the leading cause of uncertainty—have been overlooked in
previous studies, resulting in a significant underestimation of their errors. Finally, we make
use of a set of five high-resolution simulated host haloes—taken from the Aquarius Project
(Springel et al., 2008)—to characterize uncertainties arising from host-to-host variation.
In December 2016, Jethwa et al. (2018) presented a Bayesian estimate of the total number
of Galactic satellites. Their result is the outcome of applying abundance matching to the
SDSS observations and, while it properly accounts for stochastic effects, it depends on
more and uncertain assumptions (mostly related to abundance matching) than the result

presented here.

We organize this chapter as follows. Section[2.2]introduces the observational data set used
in this analysis and Section[2.3]describes, tests, and compares our Bayesian technique with
previous works. We present a summary of the methodology in Section 2.4 We present
our main results in Chapter [3, detailing their sensitivity to the assumed MW halo mass

and the radial dependence of the satellite count.

2.2 Observational Data

Very few of the current set of MW satellites were known prior to the start of the 21% century.
Discoveries made after this time, using a multitude of techniques, together with data from
SDSS data release 2 (DR2) and the Two Micron All-Sky Survey (2MASS)—before a
major advance with SDSS DRS (Adelman-McCarthy et al., 2007)—brought the total to
23 dwarf galaxies. Since then, the SDSS survey area has nearly doubled and DES is now
electronically available. Combining the two surveys produces a sky coverage area of 47 per
cent, with SDSS and DES contributing 14 555 and 5000 square degrees, respectively. An
analysis of DES data added a further 17 dwarf galaxies to the running total (Bechtol et al.,
2015; Drlica-Wagner et al., 2015} Kim et al., 2015} [Koposov et al., 2015a), which, together
with other discoveries, brings the total number of dwarf galaxies, as of February 2018, to

56. These are listed in Tables[2.1land 2.2
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Table 2.1

Known MW satellite galaxies identified in surveys used in this analysis, grouped
according to the survey in which they were detected. For each satellite we provide

its absolute V—band magnitude, My, heliocentric distance, Dy, and—for DES

satellites—its probability of association with the LMC.

Satellite My De (kpe) pf,,- Reference’
Classical
Carina 9.1 105
Draco I -8.8 76
Fornax -134 147
Leol -12.0 254
Leo Il 9.8 233
LMC -18.1 51
Ursa Minor -8.8 76
SMC -16.8 64
Sculptor -11.1 86
Sextans -9.3 86
Sagittarius I -13.5 26
SDSS DR9
Bodotes I -6.3 66
Bootes 11 2.7 42
Canes Venatici | -8.6 218
Canes Venatici I  -4.9 160
Coma -4.1 44
Hercules -6.6 132
Leo IV -5.8 154
LeoV 5.2 178
LeoT -8.0 417
Pegasus III 34 215 (D)
Pisces 1 80 2)
Pisces 11 -5.0 182
Segue [ -1.5 23
Segue I1 -2.5 35
Ursa Major I -5.5 97
Ursa Major II -4.2 32
Willman I 2.7 38
DES
Cetus II¢ 0.0 30 0.00¢ (3)
Columba I -4.2 183 0.11 @)
Eridanus II 7.1 366 0.00¢ (5)
Eridanus IT1¢ 2.4 95 0.00¢ (3)
Grus I¢ -34 120  0.64 (3)
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Table 2.1
Continued...
Satellite My Dgo (kpe) pf,, o Reference®
Grus II¢ -39 53  0.57 (3)
Horologium I -3.5 87 0.79 (3,6)
Horologium II¢ -2.6 78  0.80 (3)
Indus II¢ -4.3 214 0.19 (3)
Phoenix II¢ -3.7 95 0.75 (3)
Pictoris® -3.7 126  0.62 (3
Reticulum II -3.6 32 075 @3,6)
Reticulum III¢ -3.3 92 0.58 (3)
Tucana II -3.9 58 075 (3,7
Tucana III¢ 2.4 25 052 (3
Tucana IV¢ -3.5 48 0.79 (3)
Tucana V¢ -1.6 55 081 (3

¢ Obtained from Jethwa et al. (2016, Fig. 9).

b The method of detection was different to that applied to other satellites in the SDSS
survey.

¢ Not spectroscopically confirmed.

4 No probability of association with LMC provided.

¢ Datareproduced from McConnachie| (2012, tables 2 and 3) unless indicated otherwise:
(1) Kim et al.| (2015} 2016)), (2) Watkins et al. (2009), (3) Drlica-Wagner et al. (2015,
Table 4), (4) Carlin et al.| (2017), (5) [Li et al.| (2017), (6) Koposov et al. (2015b),
(7)|Walker et al.[(2016).
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Table 2.2

Known MW satellite galaxies identified in surveys not used in this analysis, grouped
according to the survey in which they were detected. We provide the same data for
each satellite as described in Table[2.1]

4 Not spectroscopically confirmed.

Satellite My Do (kpc) Reference?
VST ATLAS
Aquarius II -4.2 108 (1)
Crater 11 -8.2 118 (2)
Pan-STARRS
Draco 11 2.9 20 3)
Sagittarius I[I¢ -5.2 67 3)
Triangulum IT  -1.2 28 4)
SMASH
Hydra II -4.8 134 (5)
HSC
Virgo I -0.3 91 (6)
Cetus III¢ 2.4 251 (7)
MaglL.iteS
Carina II -4.5 37 (8)
Carina II1¢ 2.4 28 (8)
Pictoris II¢ -3.2 45 9)

b Data reproduced from: (1) Torrealba et al. (2016b), (2) Torrealba et al. (2016a)),
(3)[Laevens et al.| (2015)), (4)Carlin et al. (2017), (5) Martin et al.| (2015), (6) Homma
et al.[|(2016)), (7)[Homma et al. (2018)), (8) Torrealba et al.[(2018)), (9) |Drlica-Wagner

et al.| (2016)).
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These discoveries resulted from the use of advanced search algorithms that comb through
survey data and identify overdensities of stars which could signal the presence of a faint
dwarf galaxy. For example, the SDSS has been analysed with two such search algorithms,
by KO8 and Walsh et al.| (2009, hereafter W09), to find that both techniques recover the
same number of dwarf galaxies—although the latter is sensitive to fainter objects. Each
algorithm has a response function that—among other factors such as the survey surface
brightness limits—is dependent on the absolute magnitude of the objects being searched
for. Assuming isotropy, the number of observed satellites per unit absolute magnitude,

dNsat/dMy, is given by

stat / / d Nbat
or My, 1) dr droy | 22.1
M, r dr dMy dr E(” Vv rsat) ¥ dFgat ( )

where the first integral is over the survey volume, with & the survey solid angle and r the
radial distance from the Sun. The second integral is over the satellite size, rgy; N is the
distribution of satellites as a function of radial distance from the Sun, absolute magnitude,
My, and size, rg. The last term, €, denotes the efficiency of the search algorithm for
identifying a satellite of magnitude, My, and size, rg, at distance, r, averaged over the
survey’s sky-footprint. At fixed absolute magnitude, most of the satellites detected in
the SDSS have similar sizes and the detection efficiency, €, is approximately equal for
all objects (KO8; W09). Thus, for the observed satellites, the dependence on rg, in

equation (2.2.1)) can be approximated as a dependence on My alone.

The detection efficiency, €, at fixed My, is a function of the radial distance and shows a
rapid transition with radius from a 100 per cent to a O per cent chance of detection. We
may therefore define an equivalent effective detection volume such that, on average, this
effective volume includes the same number of satellites of magnitude My as predicted by
equation (2.2.1)). The effective radius, Res (My), corresponding to this effective detection

volume, is computed by solving the equation,

d Ny _ /Reff(MV) QrZ dr dstat (222)
dMV 0 dr dMV ’ o

where the left-hand term is given by equation (2.2.1)) and Req appears as the upper limit of
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Table 2.3
The parameters of equation (2.2.3) quantifying the dependence on absolute V-
band magnitude of the effective radius in the SDSS and DES surveys. The KO8
parameters are taken from fits by W09.

Survey Algorithm a* b*

SDSS { Koposov et al.| (2008, |KOS) 0.205 1.72
‘Walsh et al.| (2009, [W09)) 0.187 1.58

DES Jethwa et al.| (2016, J16)) 0.228 1.45

the integral. The value of R.g depends on both the radial dependence of € and on the radial
distribution of satellites. As long as the radial distribution of satellites is nearly constant
in the interval where the detection efficiency drops from 100 to O per cent, R.g can be
approximated as the radius at which the detection efficiency is 50 per cent, which is the
value that we use in the rest of this and later chapters. This approximation is reasonable
as € decreases from 1 to O over a narrow radial range (e.g. see fig. 15 in W09). Making
another choice for the effective radius, such as € = 0.9 (as used in |[Hargis et al.[2014),
would underestimate the effective volume and thus overestimate the inferred satellite count.
Both KO8 and (W09 show that, to good approximation, the effective detection radius, which

corresponds to € = 0.5, is given by
Ret (My) =100 MV=0) Mpe | (2.2.3)

where a* and b* are fitting parameters associated with the search algorithm response

function. These values are provided in Table 2.3| for different algorithms.

The dependence of the effective radius on absolute V-band magnitude for the SDSS and
DES surveys is shown in the upper panel of Fig.[2.1] For clarity, in the case of the SDSS we
show only the W09 response function. For DES we give the Jethwa et al.| (2016, hereafter
J16) response function that was shown to give a good match to the actual detections. This
is equal to the KO8|response function as fitted by Tollerud et al.| (2008, hereafter TOS]), but
shifted to account for the additional depth of the DES compared to SDSS; however, this
response function has not been verified at the same level of in-depth analysis as in e.g. ' WOO9.
The figure shows that for the same absolute magnitude, DES is deeper and thus can detect

satellites out to greater distances than SDSS. All bright dwarfs, i.e. My < —5.5 for SDSS



42 Chapter 2. Bayesian method to infer the Milky Way satellite complement
300
E 100 [
< |
60
30
l l —— l l
S
~
;?—)-
e -~ SDSS +DES
: .......... DES |
g —— SDSS
1 1 1 1 1 " 1
0 ~1 —2 -3 -4 -5 -6
My
Figure 2.1

Upper panel: the effective detection radius, R.g, of satellites as a function of
absolute magnitude, My, for the SDSS and DES surveys. The horizontal dashed
line indicates our fiducial choice of outer radius, Ro,;=300 kpc, for the MW satellite
population. Bottom panel: the ratio of the effective volume surveyed by SDSS and
DES, as a function of My, to the volume enclosed within 300 kpc. The dashed
line shows the combined SDSS plus DES effective volumes. The two panels show
the response functions of the W09 and J16|search algorithms, which are given in

Table @
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and My < —4.0 for DES, that are within the survey footprint and within our fiducial choice
of outer radius, R,,;=300 kpc, should have been detected within their respective surveys.
Thus, the surveys may be considered ‘complete’—for the purposes of this analysis—at the
absolute magnitudes at which R.g is greater than 300 kpc. Fainter objects can be detected
only if they are closer than 300 kpc from the observer, with the faintest, My =0, dwarfs
being detected only if they are within ~30 kpc of the Sun. The survey response functions
described here are a simplified representation of the response of the survey and the search
algorithms applied to the survey data. In Appendix[A] we consider the detailed effect of
various parameters such as dwarf galaxy size and distance, and the characteristics of the
observing scheme used. We discuss how these effects are incorporated into the method
described in this Chapter, and any effects these might have on the results presented in

Chapter 3

To obtain a more informative perspective on the survey completeness, the bottom panel of
Fig. shows the ratio between the effective volume of each survey and the total volume
enclosed within our fiducial radius of 300 kpc. The effective volumes of the independent
conical survey regions of the SDSS and DES were calculated from the corresponding
values of Rer given by equation (2.2.3). The total volume probed by these surveys is
given by the sum of the two survey volumes, and the fractional volume probed by these
is indicated by the long dash line in Fig. Even when combining the SDSS and DES
footprints, the observations cover only ~10 per cent of the fiducial volume at My= — 4 and

less than 0.1 per cent of the same volume at My =0.
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2.3 Methods

We require two key ingredients to estimate the total population of satellite galaxies from a
given survey of the MW. First, we need a prior for the radial distribution of satellites. For
this we take the radial number density of subhaloes in simulations of MW analogues from
the Aquarius Project, which, when subhaloes are selected by vpeax—the highest maximum
circular velocity achieved in the subhalo’s history—is the same as the radial distribution of
luminous satellites in hydrodynamic simulations and that of observed MW satellites (see
Section[2.3.1). Secondly, we introduce and test our Bayesian framework used to infer the
total number of satellites (Section[2.3.2). The need for a new methodology is motivated by

several shortcomings of previous approaches, which we discuss in detail in Section [2.3.3]

We assume that the classical satellites, i.e. those with My < —8.8, are bright enough to
have been observed by pre-SDSS surveys and that the observations are complete at these
magnitudes (therefore ignoring the possible existence of concealed satellites in the Zone
of Avoidance, the area of the sky that is obscured by the dust and stars in the plane of
the MW). As such, the inferred luminosity function at the bright end will always match
the observations, in line with previous studies (e.g. TO8)). The inference method is only

applied to fainter satellites, that is, those with My > —8.8.

2.3.1 Tracer population

Any estimation of the total satellite count from incomplete observations needs a prior for
the radial number density of these objects, which we estimate from N-body simulations.
An ideal simulation from which to extract a tracer population should have high enough
resolution for the density profile to be well sampled, and should also offer access to multiple

realizations of MW-like haloes to account for host-to-host variations.

The Aquarius suite of simulations (Springel et al., 2008]) achieves this. It consists of a
set of six ACDM DM-only N-body simulations of isolated MW-like haloes which were

run using the GapGeT3 code and were labelled Ag-A to Ag-F. In this work we use the
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Table 2.4
The DM particle mass, m,, softening length, €, and host halo mass, M, of the
Aquarius simulations used in this work. Here, Moo denotes the mass inside the
radius, Rpoo, within which the mean density equals 200 times the critical density.

Simulation  m, (Me) € (pc) Mago (102 M)

Aq-Al 1.712x 10° 205 1.839
Ag-A2 1.370 x 10*  65.8 1.842
Ag-B2 6.447x 103 65.8 0.819
Ag-C2 1.399 x 10*  65.8 1.774
Aq-D2 1.397 x 10*  65.8 1.774
Aq-E2 9.593x 10°  65.8 1.185

‘level 2’ simulations (L2, with a particle mass of ~10% Mg), which corresponds to the
highest resolution level available across all of the Aquarius haloes. Details of these
simulations are provided in Table 2.4 The Aq-F halo experienced a late-time merger,
making it unsuitable as representative of the MW halo; consequently, it is not used in this
analysis. The cosmological parameters assumed for these simulations are derived from the
WMAP first-year data release (Spergel et al., 2003): Hy = 73 km g1 Mpc_l, Qnm = 0.25,
Qp =0.75, n; = 1.0, 03 = 0.9.

Identifying subhaloes near the centre of simulated haloes using configuration space halo
finders like SUBFIND can be difficult (Springel et al., 2008; |Onions et al., 2012)). In
regions of high background density, these algorithms can struggle to identify substructures,
a problem that is not addressed by improvements in simulation resolution. Subhalo finders
are also affected by the resolution of the simulation to which they are applied; these effects
can be assessed by comparing haloes which have been simulated at different resolution
levels. One of the haloes in the Aquarius suite (Aq-A) was simulated at extremely high-
resolution (‘Level 1’ or L1, with particle mass of ~10° My). Even though the resolution
of L2 is still very high, the abundance of subhaloes that are relevant to our analysis is
suppressed relative to that at L1, particularly in the inner regions of the halo. The difference

between the two levels is comparable to that seen across all other L2 profiles.

We can correct for these resolution effects in a relatively straightforward manner by using
the Durham semi-analytic model caLrorm (Lacey et al., 2016; Simha & Cole, 2017)) to

populate the haloes and subhaloes in the Aquarius simulations with galaxies and track
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their orbital evolution even after its halo is no longer resolved (the so-called ‘orphan’
galaxies). First, the semi-analytic model caLrorM described by Lacey et al. (2016), which
is based on the same cosmology as the Aquarius simulation suite, is applied to each of
the Aquarius DM haloes in turn. We use the |Simha & Cole| (2017) merging scheme to
track the dynamical evolution of subhaloes over the course of cosmic time. Well-resolved
subhaloes are tracked directly by the N-body simulation; however, those that fall below
the resolution limit are lost. Simha & Cole|recover this population by tracking the most
bound particle in these subhaloes from the last epoch at which they were associated with a
resolved subhalo. They then remove subhaloes from this population if one of the following

criteria is satisfied:

(i) A time has elapsed after the last epoch at which the subhalo was resolved, which is

equal to or greater than the dynamical friction timescale.
(ii) The subhalo passes within the halo tidal disruption radius at any time.

In both of the above cases the effects of tidal stripping on the subhalo are ignored, as are

interactions between orbiting subhaloes.

In Fig.[2.2] we compare the normalized cumulative radial subhalo counts of the Aquarius
Al and A2 haloes with the vpeax > 10 km s~! selection threshold applied. Prior to the
application of GaLForM the original normalized subhalo counts are highly discrepant in
the inner regions of the haloes. The spread in the predicted counts at My = 0 in Ag-Al
and Ag-A2 is also wider than the spread in predictions from the other L2 haloes (B2-E2).
When correcting for the ‘orphan’ population, which is very centrally concentrated, the
discrepancy in the Aq-Al and Ag-A2 normalized subhalo counts is almost completely
eliminated. As a result the spread in the My = 0O predictions is also reduced such that it
is much smaller than the spread in the predictions from the other ‘L2 + orphans’ haloes.
The spread in these latter predictions is also significantly reduced by the correction, which

shows that failing to account for this artificially inflates the halo-to-halo scatter.

A further factor that needs to be taken into account is the possible destruction of satellite

galaxies by tidal interactions with the central galaxy in the halo. This effect has been
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Normalized cumulative subhalo number counts for the Aq-A1 and Ag-A2 haloes.
The dashed lines show the original, uncorrected number counts prior to the applica-
tion of GaLForM. The solid lines show the number counts for each halo after adding
‘orphan galaxies’ to the original population. The subhalo populations before the
correction are poorly sampled in the innermost regions, and are not well-converged
between the two haloes.
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calculated by [Sawala et al.| (2017} fig. 4, upper panel) using the APOSTLE hydrodynamic
simulations that show that up to 40 per cent of satellites in the inner ~30 kpc can be
destroyed, although overall the destroyed fraction is much smaller (see also |D’Onghia
et al., 20105 |[Errani et al., [2017; Garrison-Kimmel et al.l 2017). For our purposes this
difference, which changes the radial subhalo distribution, is fairly important but it has
the opposite effect to the omission of orphan galaxies and, as we discuss below, the two
effects partially cancel out. To correct for these baryonic effects, we downsample the
z=0 Aquarius subhaloes according to the value of the radius-dependent depletion rate
derived by Sawala et al|(2017)[f| The radial dependence of the depletion factor and further
details about this procedure are given in Section We refer to this final population,
which incorporates ‘orphan galaxies” and baryonic effects, as our fiducial tracer population.

Unless otherwise stated we use this subhalo population throughout the rest of this chapter.

We apply a selection cut to the fiducial Aquarius subhalo populations on the basis of their
Vpeak Values, under the expectation that this will provide a stronger correlation with the
likelihood of a galaxy forming within the subhalo (Sawala et al.,|2016a) than, for example,
selecting by present-day maximum circular velocity or present-day mass (Libeskind et al.,
2005, Wang et al., 2013)). This correlation has been shown to hold in the ACDM model,
which is one of the priors in our analysis. In Fig.[2.3] we show the radial number density
of subhaloes normalized by the mean subhalo density within Raoo[%] This is used to assess
the appropriateness of applying a vpeak selection, and to determine the vpeax value down
to which the profiles are consistent. We compare this against the radial distribution of
luminous satellites selected from a set of high-resolution hydrodynamic simulations from
the APOSTLE Project (Fattahi et al., 2016} Sawala et al., 2016b). This is a suite of 12
cosmological zoom resimulations of Local Group-like regions run with the GADGET3 code

and EAGLE subgrid physics models (Crain et al., 2015} Schaye et al., |2015). Of these,

TThere is an error in the values of the fitting parameters quoted by Sawala et al.|(2017); see Section
for further details and the correct values of the parameters.

+Throughout this and subsequent chapters, Rx denotes the radius of the spherical volume enclosing a
density equal to A times the critical density for closure, pui(z) = 3H*(z) / 87G; where H(z) is the Hubble
parameter, z is the redshift of interest, and G is the gravitational constant. M, is the mass enclosed by this
volume. Unless noted otherwise these quantities are evaluated at z=0.
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The radial number density of fiducial subhaloes normalized to the mean number
density within R,p9. The thin solid lines show the distributions for subhaloes with
different vpeax cuts averaged over the five Aquarius haloes. The thick dashed line
and associated shaded region show the radial distribution of luminous satellites and
its associated 68 per cent scatter obtained using eight haloes from the APOSTLE
high-resolution hydrodynamic simulations. The thick dotted line shows the best-
fitting Einasto profile to the fiducial population. For ease of comparison the profile
with our chosen selection criterion of vpeax>10 km s7lis provided as a thick solid
line.
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four regions—which contain eight MW and M31 analogues—were re-run at much higher
resolution and are used here. The APOSTLE data are not used beyond the provision of
this reference profile as the simulation is unable to resolve ultrafaint luminous satellites at

the magnitudes we are considering here.

Fig. [2.3] shows that the radial profile of subhaloes is largely independent of the value of
Vpeak, €xcept for values below 10 km s~!, where resolution effects come into play. Most
importantly, we find that the profiles of samples selected with thresholds above this value
are in good agreement with the profile of the luminous APOSTLE satellites, and that of
observed MW satellites (see Section[2.3.1.3), making this a good choice to model the radial
distribution of satellites. We therefore only consider subhaloes with vpeac>10 km s~lin

the rest of our analysis.

2.3.1.1 Baryonic Effects

D’Onghia et al.| (2010),Sawala et al. (2017), and Garrison-Kimmel et al.| (2017) identify
systematic differences in the subhalo radial number density profiles of haloes in DM-only
and hydrodynamic simulations. The enhanced tidal stripping by the central baryonic disc
leads to a reduction in the number of subhaloes in hydrodynamic simulations compared
to their DM-only counterparts. The subhalo depletion is a radially varying function that

peaks in the innermost regions of the host halo.

The subhalo number density profiles can be fit using a double power law functional form,
which is given in Sawala et al.| (2017, equation 2). With help from Till Sawala (private
communication) we determined that some of the values stated for the fitting parameters of
equation (2) in the published version of the paper are incorrect. Taking the raw data from
Till Sawala we made our own fits, binning the data in units of y = r / Rygo. Fig. gives
the averaged subhalo number density profiles of 4 MW-like haloes from the APOSTLE
suite. To improve our statistics we also average over 5 Gyr of cosmic time, similar to

Sawala et al.l To these profiles we fit a double power law of the form

p(r) =257 (ex) (14 [ex )T, 23.1)
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Fits to subhalo number density profiles in DM-only and hydrodynamic simulations.
The points show averaged radial profiles for four APOSTLE haloes. To obtain
better statistics, these points were also averaged over 5 Gyr of cosmic time; see

Sawala et al|(2017) for details. The solid lines show the best-fitting double power
laws (see main text for the best-fitting parameters).
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which gives fitting parameters of
(c, ps» @, B,y) = (2.50, 875, 4.41, 1.80, 0.613)

and

(c, ps» @, B,y) = (2.35, 613, 8.35, 1.66, 0.537)
for the DM-only and hydrodynamic simulations, respectively.

These fits are only constrained in the radial range [10‘2, 1 .0] x butin practice we extrapolate
the profiles over a slightly wider range of [10_3, 2.0] X to subsample our haloes. We find
that only minimal extrapolation is required to achieve this, and that the ratio in this extended

range is also slowly varying.

The subhalo depletion is given by the ratio between the hydrodynamic and DM-only
subhalo number density profiles. We compute this using the best-fitting double power law
fits given above. The ratio varies from ~0.5 for the inner halo to about ~0.8 at Ryp9. We
correct the Aquarius subhalo distributions using this depletion value. For each subhalo, we
compute the subhalo depletion value at its radial position and use a Monte Carlo approach
to decide if this subhalo is retained or discarded. Only retained subhaloes are used as input

to the Bayesian inference method.

2.3.1.2 Rescaling the Aquarius haloes to a fiducial MW halo mass

We would like to assess if the calculation of the total satellite count is sensitive to the mass
of the MW halo. This is important given the large uncertainties in current estimates of
the MW halo mass, with values typically in the range (0.5 — 2.0) x 10'?2 M, (e.g. Cautun
et al., |2014b; |Piffl et al., [2014; [Wang et al., 2015). To do this, we rescale the Aquarius
haloes to a fiducial MW halo mass, Myw target, and apply our Bayesian method to these
rescaled haloes. When expressed as a function of rescaled radial distances, r / Rygo, the
radial number density of subhaloes is largely independent of host mass (Springel et al.,
2008; Han et al.l 2016; |[Hellwing et al., 2016)). Thus, we can rescale the original Aquarius

haloes to different target masses by multiplying the radial distance of each subhalo by
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the ratio Rooo, target / R200, original- Unless specified otherwise, the results presented in this
chapter and Chapter are calculated for a fiducial MW halo mass, Myw=1.0 x 10'2 M.

The variation of these results with MW halo mass is analysed in Section[3.2.2]

2.3.1.3 Comparison to the MW satellite distribution

A further test of the appropriateness of a particular choice of tracer population can be
obtained by comparing its radial distribution with that of the observed MW satellites.
When calculating the latter, we need to correct for the radial incompleteness in the surveys:
faint satellites can be detected only at small radial distances which, if unaccounted for,
leads to a biased, more centrally concentrated satellite distribution. This radial profile,
corrected for radial incompleteness, is given by

dN(r) _ ZiPMW,i 6(1”,‘ - 7‘)
dr i Pyw,i€(r, My i)’

(2.3.2)

where the sum is over all the observed classical, SDSS and DES satellites, r; and My ; are
the position and absolute magnitude of the i-th satellite, and ¢ (r; — r) is the Dirac delta
function. The quantity, Pmw, i, denotes the probability that a satellite is associated with
the MW, which we take to be 1 for all objects except the DES satellites. Many of these
are likely to have fallen in as satellites of the Large Magellanic Cloud (LMC) and, being
at first infall, are still concentrated near the position of the LMC which is adjacent to the
relatively small region surveyed by the DES. For these objects we use the probabilities
of association given by J16; we discuss this point in greater detail in Section|3.1.1|in the
next chapter. The quantity, e, is the detection efficiency (see Section[2.2)) at distance, r, for
satellites of magnitude, My, and accounts for radial incompleteness. The denominator of
equation (2.3.2) is maximal for small r values, where all observed satellites have 100 per

cent detection efficiency, and decreases at large r.

Fig. @] shows that vpeax-selected subhaloes have the same radial distribution as the
observed MW satellites, as predicted by theoretical arguments (Libeskind et al., 2005).
This comparison demonstrates the validity of our fiducial choice for the radial distribution

of satellites. The subhalo distribution given in Fig. [2.5] corresponds to a MW halo mass
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of 1.0 x 10'> Mg, and using a slightly lower value for the MW halo mass leads to an even

better agreement between the two radial distributions.

We also used equation (2.3.2) to compute the model-independent radial number density
for three different observational subsamples: the classical, SDSS, and DES satellites. We
find good agreement between the three subsamples (not shown), indicating that the data
are consistent with the radial distribution being independent of satellite brightness. This
is consistent with Fig. @, where we find that the radial profile of v,eax-selected objects is

largely independent of the value of vpeax.

2.3.1.4 A fit to the radial profile of subhaloes

In a later part of our analysis (Section [3.2.3)), we will make use of a functional form for
the radial profile of satellites in order to scale our results to different MW halo masses or
fiducial volumes. For this, we fit an Einasto profile (Einasto) [1965; Navarro et al., 2004)[§|
to the vpeax>10 km s~! curve shown in Fig. The Einasto profile—or the very similar
NFW profile (Navarro et al., 1995, |1996b, 1997)—provides a good description of the
radial number density of substructures (Sales et al., 2007; |Kuhlen et al.| 2008}, Springel
et al., 2008; Han et al., [2016). We can parametrize the Einasto profile in terms of a shape
parameter, @, and the concentration, c=Rpq / r—», with r_, the scale radius at which the
logarithmic slope of the profile is —2. Using the scaled radial distance, y=r / Rypo, the
Einasto profile is given by

3
n0)_ ae expl—%(ch1 , (2.3.3)

<n> - a % 3 2
3(5)7 7 (33)
where (n) is the mean number density within Ry and the lower incomplete Gamma

function, vy, is defined as

X
y@m:/z“%”m. (2.3.4)
0

§ A fit to the DM density profile of this form was first introduced inNavarro et al.[(2004) but only referred
to as the “Einasto profile” in|Merritt et al.| (2006).
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Comparison of the radial distribution of observed MW satellites (dashed line) with
that of vyeax-selected subhaloes from the five Aquarius haloes (solid line) rescaled to
a host halo mass of 1.0 x 10'> My. The sample of observed satellites was corrected
for survey radial incompleteness (see the text) and consists of the classical, SDSS,
and DES satellites. We further accounted for the possibility that many of the DES
satellites may have fallen in with the LMC by using the probabilities of association
with the MW given by The dark and light shaded regions represent the
68 per cent CL and 95 per cent CL (statistical error) bootstrapped error regions for
the vpeak-selected subhalo distribution, respectively.
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We find that an Einasto profile with ¢=4.9 and @=0.24 provides a good match to the radial

number density of subhaloes, as may be seen in Fig.[2.3]

2.3.2 The Bayesian inference method

We are interested in calculating the probability distribution function (PDF) of the total
number of satellites, Nyo((< My ), if a survey with effective volume, V.(My ), has detected
Nops(< My) satellites. Note that both the effective volume and the number of satellites
are functions of absolute magnitude; however, for ease of readability, we drop the explicit
dependence on My. Within the Bayesian formalism, the posterior probability of having a

total of Ny satellites given that we observe Nyps objects within a volume, V., is given by

P (Nobs |Nt0ta Veff) P (Ntot)

P(NtOt|NOb89 Veff) = P(Nb fo) ,
obss Ve

(2.3.5)

where P (Nops | Nt Vesr ) is the likelihood of having Nyps objects within volume Vg if there
is a total of Ny satellites. For the prior, P (Nyy), we take a flat distribution; the denominator

is a normalization factor. Thus, we have
P(Ntot |N0bs, Veff) & P(Nobs |Nt0t, Veff) . (236)

The method needs two more ingredients: (i) a prior for the radial distribution of satellites,
which we take as that of Aquarius vpea-selected subhaloes, and (ii) a sample of observed
satellites, which we take as that of the SDSS and DES surveys. Thus, N represents the

inferred total number of MW satellites given these priors.

In practice, it is computationally prohibitive to evaluate the likelihood function over the
full parameter space so we use Approximate Bayesian Computation (ABC). ABC methods
approximate the likelihood by selecting model realizations that are consistent with the data.
For our study, ABC is an accurate way to estimate the likelihood function because (i) we
compare the realizations with the actual data rather than with summary statistics and (ii)
our data set consists of a discrete number of satellites and our method selects realizations

that exactly reproduce the observations.
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The likelihood can be computed using a Monte Carlo method applied to each Aquarius
halo. We start by selecting the satellite tracer population—i.e. the DM subhaloes—within
our fiducial MW halo radius and organizing them into a randomly ordered list. Then, for
each observed satellite, we estimate the required number of satellites of equal brightness
such that there is only one such object inside the effective survey volume corresponding
to that observed dwarf galaxy. Starting with the brightest observed satellite, we pick
random numbers, Npung, until we find that only one of the top Npung subhaloes is inside
the corresponding effective survey volume. The resulting N;ang value corresponds to one
possible realization of the total count of objects, Nyot(My), of brightness equal to that of the
observed satellite. We then remove the top Nyang subhaloes and repeat the same procedure

for the next brightest observed satellite.

We considered ordering the subhalo list according to their vpeax values, which is equivalent
to ordering them from brightest to faintest, assuming that vpe,k is a luminosity indicator.
This ordering would have the advantage of capturing correlations between the luminosity
of spatially close satellites as would happen in the case of group accretion. For example, a
massive satellite at first infall is likely to bring with it other luminous galaxies (Wang et al.,
2013; Shao et al., 2016). In practice, we find that the effects of any such correlations are

insignificant compared to the uncertainties introduced by host-to-host variability.

This Monte Carlo procedure generates one possible realization of the dependence of the
total number of satellites on absolute magnitude, Nyo((< My ). To sample the full allowed
space, the procedure must be repeated many times, for different locations of the survey
volume, for different host haloes, and for new randomizations of the subhalo list. The details
of how we achieve this are given in Section[2.3.2.1] together with a more computationally

efficient implementation of the Monte Carlo algorithm just described.

Our Monte Carlo approach represents a discrete sampling of the effective volume, Vg,
which is a smooth function of My. While in principle this may lead to biases, in practice
there are enough observed satellites to sample densely the range of absolute magnitudes

of interest; thus, any such effects are small, as may be seen in Section[2.3.2.2]
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2.3.2.1 Practical implementation

For each Aquarius halo, we position an observer 8 kpc from the halo centre at one of
six vertices of an octahedron, and select a spherical region of 300 kpc in radius centred
on this point, similar to [TO8. All subhaloes within this region are sorted randomly and
assigned an index. We then select a conical region with its apex at the observer position
and its opening angle corresponding to the sky coverage of the survey from which the
observational data are drawn. The maximum radial extent of the conical region, R.g, for

an observed object of given magnitude is calculated using equation (2.2.3).

Starting with the brightest object in the survey, of magnitude My |, we sequentially select
subhaloes from our sorted list until we identify one object within our mock survey volume.
This sets the lower bound for Nyo(< My, ). To set the upper bound, we continue down
the sorted list of subhaloes until we find the largest subhalo index which still corresponds
to only one subhalo inside the mock survey volume. Every choice between the lower and
upper bounds is equally consistent with the observation of one object of My | within the
survey volume; we therefore randomly select one number in this interval and remove this
many subhaloes from the beginning of our ordered list. We then consider the next brightest
object—of magnitude My »—and repeat the above procedure, using the updated list of
subhaloes and the new effective survey volume, V.g(My, ). We continue this process down

to the faintest observed satellites in the survey.

The procedure is repeated for 1000 pointings evenly distributed across the simulated sky,
and for six observer locations, creating 6000 realizations for each simulated halo. There
are 5 Aquarius haloes so, in total, we obtain 3 X 10* realizations that are used to estimate
the median and 68 per cent, 95 per cent, and 98 per cent uncertainties of the complete

satellite luminosity function.
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2.3.2.2 Validation

In order to validate the Bayesian inference method, we tested it on a set of 100 mock SDSS
observations provided by Marius Cautun. The results of these tests, and a sample of 10 of
the mocks, are shown in Fig.[2.6] The mock observations were generated from a ‘blinded’
luminosity function—indicated in the figure by the thick dotted line—and were obtained
from the Ag-Al halo distribution of subhaloes with vpeax > 10 km s~! within 300 kpc.
The selected subhaloes were then randomly assigned absolute magnitudes according to the
input luminosity function. Mock observations were produced for 100 random pointings
of a conical region analogous to the SDSS volume within the halo, taking into account
the effective radius out to which satellites of different magnitudes could be identified. To
model better the observations, mocks were generated using a radially dependent detection
efficiency: for a given magnitude, using equation (2.2.3), we calculated R.s, which is
the radius corresponding to a 50 per cent detection efficiency, and then assumed that
the detection efficiency decreases from 1 to O linearly in the radial range [0.5, 1.5] Reg.
Satellites found in regions where the detection efficiency is below unity were included in
the mocks using a probabilistic approach by comparing a random number between 0 and
1 with the value of the detection efficiency. The luminosity functions for a sample of 10
of the 100 resulting mocks are shown as thin solid lines in Fig.[2.6] Even though all the

mocks survey the same halo, we find a large spread in the number of observed satellites.

Taking each mock survey data set in turn, we apply the Bayesian inference method,
producing 100 estimates of the total satellite luminosity function, 10 of which are shown
in Fig. as thick solid lines. To assess the method fully, we also illustrate the 68 per
cent uncertainty region, taken from one of the mocks and shifted so that the centre of
the region is aligned with the ‘true’ luminosity function. Most of the inferred satellite
luminosity functions lie inside the 68 per cent uncertainty region, in line with statistical
expectations, thus demonstrating the success of the method at reproducing the underlying
true luminosity function. This uncertainty region, taken from one mock, is comparable

to the 68 per cent confidence region obtained from the medians of all 100 mocks, which
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Figure 2.6

Tests of the Bayesian inference method using mock observations. The thick dotted
line shows the input luminosity function used to create 100 SDSS mock observations.
The luminosity functions of a sample of 10 of these are shown as thin solid lines.
Each of the 10 mock observations was used, in turn, to predict a cumulative satellite
luminosity function. The results are shown as thick solid lines. The shaded region
represents the 68 per cent uncertainty from one of the mock predictions, shifted to
lie on top of the input luminosity function. The dashed lines bound the 68 per cent
confidence region over the medians of all 100 mock predictions.
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further demonstrates that the method successfully estimates uncertainties. Note also that
our inference method assumes that the detection efficiency is a step function at Reg, but
the mocks were generated using a radially varying detection efficiency. Thus, this test also
shows that assuming an effective detection radius is a good approximation and does not

bias the inferred total luminosity function.

2.3.3 Comparison to previous inference methods

As we discussed briefly in Section [2.1] the previous method used for inferring the total
satellite count has some drawbacks. The TO8|method, which was also employed by |Hargis
et al.[(2014), used a similar vpeai-selected radial distribution of subhaloes as us (although
not accounting for unresolved subhaloes or baryonic effects). However, the differences
arise from the way in which these distributions are used. The TO8| method employs a
completeness volume, Veomp, that is typically selected as the volume where the detection
efficiency, e(My), has a given non-zero threshold value, e.g. ¢(My) = 0.9. Note that the
T08| completeness volume can be different from the effective volume used in our Bayesian
method. To obtain an unbiased estimate, only observed satellites within that completeness
volume, i.e. satellites with detection efficiencies above the threshold value, should be used
for inferring the total satellite count. The TO8 approach is based on calculating, for each
observed satellite, the fraction of vyeax-selected subhaloes inside the completeness survey
volume associated with that satellite. This fraction, 7=Ngub(< Veomp)/Nmax sub» is the ratio
of the number of subhaloes, Ngub(< Veomp), inside Veomp to the total number of subhaloes,
Nmax sub, inside the halo. Then, for the i-th observed satellite, the fiducial halo volume

contains
1

ni€

(2.3.7)

satellites of absolute magnitude, My i, with ¢ the detection efficiency associated to the

i-th observed satellite.

Fig. shows a comparison of the TO8| approach, discussed above, with our Bayesian

inference approach. These methods were applied to the same SDSS DR9 data set using
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the W09 completeness function (see Table [2.3)) and the subhalo distribution of a single
simulated halo, Ag-Al, corrected for ‘orphan galaxies’ and baryonic effects. Here, when
applying the TO8 method, we choose a completeness radius corresponding to e(My) = 0.5,
which is equal to the effective radius used by the Bayesian method, and only use observed
satellites with detection efficiencies, e > 0.5. All the satellites detected by the W09
algorithm have € > 0.5 and thus pass this selection criterion. The median estimates
produced by the TO8|and Bayesian methods are similar. However, as we show in extensive
tests detailed in Section [2.3.3.1] where we apply the TO8| approach to mock observations

similar to those in Fig.[2.6] the T08 method underestimates the uncertainties.

2.3.3.1 Testing previous methods

Here, we test the TO8 method by applying it to a set of mock satellite observations. This is
similar to the exercise in Section[2.3.2.2] where, using the same blind mock observations,
we demonstrated that the Bayesian approach introduced in this paper successfully infers

the input ‘true’ luminosity function used to generate the mock observations.

A set of 100 mock SDSS observations was generated from a ‘true’ population by Marius
Cautun (see Section [2.3.2.2] for a description of the mocks) and supplied to us, and we
applied the TO8 method. In order to return an unbiased estimate, we applied the [TO8
approach using a completeness radius that corresponds to a detection efficiency, € = 0.5,
and used as input only those observed satellites with detection efficiencies, € > 0.5. Using
a random sample of 10 mock observations, we compare in Fig. [2.§] the scatter among
the various mocks with the typical error of the TO8 method. We find that the typical
68 per cent (statistical) uncertainty range estimated by the TO8 method is too low: for most
magnitude values, most of the 10 mocks are outside the 68 per cent (statistical) confidence
interval. This was also demonstrated in Fig. and arises because the [TO8 method does

not incorporate the effects of stochasticity into its estimation of the uncertainties.
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Figure 2.7

Comparison of two different inference methods for the total dwarf galaxy luminosity
function: the[TO8/method and the Bayesian approach introduced here. Both methods
were applied to the same data set, the SDSS. The median estimate (solid line) and
associated 68 per cent uncertainties (shaded regions) for each method are shown.
The TO8 method does not account for stochastic effects, so it underpredicts the
uncertainties.
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Test of the method using mock observations. The thick dotted line shows the
input luminosity function used to create the 10 SDSS mock observations, whose
luminosity functions are shown as thin solid lines. Each of the mock observations
was used, in turn, to predict a cumulative satellite luminosity function, with the
corresponding results shown as thick solid lines. The shaded region represents the
68 per cent (statistical) uncertainty from one of the mocks, shifted to lie on top of
the input luminosity function. The dashed lines bound the 68 per cent (statistical)
confidence region over the medians of all 100 mock predictions.
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2.3.3.2 Sources of uncertainty

There are two main factors that introduce uncertainties. First, the distribution of satellites is
not isotropic but flattened. As a result, surveying different regions of the halo can introduce
variations in the number of observed objects. Secondly, the presence or absence of satellites
in the observed volume is a stochastic process. Given N satellites and the probability,
n, of a satellite being inside the survey volume, then the number of observed satellites
in the survey is a binomial distribution with parameters N and n. To determine which
of the two effects is dominant, we applied the Bayesian inference method to the original
subhalo distribution of the Ag-A1 halo and to many isotropized versions of it. These were
generated keeping the same radial distances and isotropizing the angular coordinates by
randomly sampling from uniform distributions of 1 — cos 8 and ¢ in spherical coordinates.
The results of this test, presented in Fig.[2.9] show that while anisotropy makes a noticeable
contribution to the uncertainty at faint magnitudes, stochastic effects are the dominant

source of uncertainty.

The |TO8 method accounts for anisotropy, but it does not account for stochastic effects,
which leads to an underestimation of the errors. This underestimate is clearly seen in
the mock observation tests detailed in Section [2.3.3.1] where we find that most of the
TO8| estimates lie further than the 68 per cent uncertainty interval from the input ‘true’
luminosity function. Given the probability, n, that a satellite is inside the volume V., the
TO8|method predicts 7! satellites within the halo—see equation without the € term.
While this is true on average, for any realization the number of satellites in the halo is given
by a negative-binomial distribution with mean value ~!. The width of this distribution,
which characterizes the size of the stochastic effects, gives rise to an additional uncertainty

that is not included in the [TO8| methodology.
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Figure 2.9

Comparison of the dominant sources of uncertainty in estimates of the total satellite
luminosity function: the flattening of the subhalo distribution or the stochastic
effects. The region labelled ‘fiducial subhalo distribution’ corresponds to applying
our method to the fiducial subhalo population of the simulated halo, Aq-A1. This
estimate is affected by both the shape of the tracer distribution and stochastic
effects. The region labelled ‘isotropized fiducial distribution’ assumes the same
radial distribution of subhaloes but with isotropized angular coordinates; this is
affected only by stochastic effects. Both approaches have approximately the same
median (solid line) and 68 per cent scatter (shaded region). Thus, stochastic effects
are a major source of uncertainty.
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2.4 Summary

In this chapter we developed a new method to infer several properties of the total satellite
galaxy population of the MW from incomplete observations of these objects. Our approach
depends upon two key ingredients: (i) observations of the MW satellite galaxy population
using surveys in which the completeness is characterized well, and; (ii) a prior for the
radial distribution of the satellite galaxy population. For the former, our observational
data comprise catalogues of MW satellite galaxies identified by the SDSS and DES, which
we assume are representative of the full satellite population (see Section [2.2)). Our prior
for the radial distribution is vpeax-selected populations of subhaloes from high resolution
DM-only haloes simulated in the Aquarius Project, which we find produce a good match

to observations (see Section [2.3.1)).

We described the Bayesian approach in Section [2.3.2] and carried out several tests with
mock observational data to establish the reliability of the method. These verified that
it successfully reproduces the total satellite galaxy population from partial observations,
and models more completely the associated uncertainties in the estimate compared with
previous approaches. These uncertainties are not affected strongly by anisotropy in the
spatial distribution of the tracer population, and we find that stochastic effects are the

dominant source of uncertainty.

In Chapter 3] we introduce the results of our analysis applied to the satellite galaxies of
the MW. We consider the estimates obtained when using the SDSS and DES observations
separately and together, and assess the effect of the mass of the MW halo—which is not
constrained well—on the result. We set this in context of anticipated future developments
in observational capability that will enable the satellite population to be surveyed to

unprecedented depth and predict what discoveries these improvements will deliver.






CHAPTER

The total satellite population of the Milky Way

In the previous chapter, we introduced a Bayesian approach to infer the total population of
MW satellite galaxies from observational surveys using DM-only numerical simulations
as priors. We now provide the results of our analysis using the Aquarius haloes rescaled to
a fiducial MW halo mass of 1.0 x 10'2 M, and within a fiducial radius, R,,=300 kpc. In
Section[3.1.1] we perform our analysis for the SDSS and DES data separately. Each estimate
requires extrapolations over large unobserved volumes which affects the luminosity function
thatis inferred. The surveys are also complete to different depths: the DES can probe fainter
objects than the SDSS and consequently can estimate the satellite luminosity function
to fainter magnitudes. We combine both surveys in the same analysis in Section [3.1.2]
increasing the volume of the MW halo that is probed and enabling us to infer the total

luminosity function across a larger range of magnitudes.

Our approach depends on several factors which can affect the luminosity function that is
inferred. We consider these in Section [3.2] focusing on our choice of tracer population and
the mass of the MW halo. We also consider how the luminosity function scales for different
choices of the outer radius of interest. In Section[3.3] we look to forthcoming observational
campaigns that will probe a larger volume of the MW halo at fainter magnitudes than extant

surveys and make a prediction for what these will observe. We discuss the implications of
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our results and consider some of the limitations of our method in Section[3.4] We present

concluding remarks for both Chapter 2] and this chapter in Section [3.5]

3.1 Estimates of the luminosity function

3.1.1 Separate estimates from SDSS and DES

The results of applying our Bayesian inference method to the SDSS DR9 data set are
displayed in the left-hand panel of Fig.[3.1] Also plotted here is the luminosity function
of all satellite galaxies observed in the SDSS DRO survey for which absolute magnitude
measurements have been published to date; these data are provided in Table 2.1 We adopt
the response functions of the two search algorithms detailed in Section by KO8 and
WO9L The counts inferred using the KOS8| function are systematically higher than those
obtained using the W09 function at absolute magnitudes fainter than My ~ —5.5. This is
expected and is a consequence of both algorithms detecting the same number of satellites,
but the W09 algorithm probing deeper at fainter magnitudes. The larger scatter in the KO8
estimate reflects the additional uncertainty introduced by requiring an extrapolation over
larger volumes of the halo. In the remainder of this chapter we will use the results obtained

using the W09 algorithm as it is able to detect—at least in principle—fainter objects.

Down to magnitude My= — 2.7 (corresponding to the faintest satellite considered by
Tollerud et al.), the SDSS data imply that there are at least 6432 (98 per cent CL, statistical
error—note that the 68 per cent CL is shown in the figure) dwarf galaxies within a radial
distance of 300 kpc. This is significantly lower than the estimate by [Tollerud et al., who
inferred 322224 at 98 per cent CL. The Tollerud et al.| estimate is higher for two reasons.
First, they adopted the |KO§| response function which is shallower than the W09 function.
Secondly, their estimates were based on the SDSS DRS data release that observed 10
satellites over a footprint of ~8000 square degrees. Since then, while SDSS DR9 has

added an additional ~6500 square degrees of sky coverage, it has detected only four new

satellites brighter than My= — 2.7. Consequently, the number of observed satellites per
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unit volume has decreased, and the size of the satellite population inferred from this is
lower as a result. If future surveys discover few new satellites, this estimate of the total
population could prove to be overstated. This highlights the importance of combining

multiple surveys which probe different parts of the sky to sufficient depth.

The result of applying our method to the DES is shown in the right-hand panel of Fig. 3.1}
in this case we adopt the J16|response function. No satellites are detected in DES with
magnitude in the range —8.9 < My < —4.5, so we interpolate between the values calculated
at each end of the range. Including all the DES satellites in the inference method returns
twice as many satellites with My < — 4 than inferred from the SDSS satellites alone. This
discrepancy is caused by the DES footprint being adjacent to the two Magellanic Clouds
which, models suggest, are on their first infall (Kallivayalil et al., 2013;J16). If that were
the case, then it is likely that the two Magellanic Clouds would have contributed their own
complement of satellite galaxies. These are not distributed uniformly over the sky, but
are still clustered around the Magellanic Clouds (Sales et al., 2011). As many as half of
the satellites detected by DES could have come from the LMC (Sales et al., [2007; J16)).
Failing to account for these localized associations would lead to an overestimate of the
total Galactic satellite population. We adopt the probabilities of association of each of the
DES objects with the LMC inferred by J16 and include an additional step in our analysis:
for each mock survey pointing, we generate a Monte Carlo realization in which the DES
satellites are assigned either to the MW or to the LMC according to these probabilities.

Only the DES satellites assigned to the MW are then included in the Bayesian inference.

The right-hand panel of Fig. [3.1|shows the satellite luminosity function accounting for the
association of some DES satellites to the LMC. This estimate is in good agreement with
the estimate from the SDSS for My < — 4. The discrepancy at brighter magnitudes is due
to the lack of detection in the DES survey of any satellites brighter than My = — 4.5 within
a distance of 300 kpc. While DES is deeper than SDSS, it covers a smaller area on the
sky and thus, for My < — 5 and My > — 0.5, DES samples a smaller effective volume than
SDSS (see Fig. [2.1)). Nonetheless, the luminosity function inferred from DES is generally

consistent with that inferred from SDSS, given the large uncertainties in both estimates.
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3.1.2 Combined estimate from SDSS+DES

The best estimate of the total satellite luminosity function is obtained by combining the
SDSS and DES. We modify the analysis described in Section[2.3.2.1]by including a second
conical region oriented relative to the first one such that it reproduces the approximate
orientation of the real SDSS and DES. The SDSS vector is used to define the pointing
‘direction’ of this configuration; it uniformly samples the sky as before. The second
vector—corresponding to the DES—is fixed at an angle of 120° relative to the SDSS vector
but is allowed to rotate around it. For each SDSS pointing a configuration is generated
and a combined SDSS+DES luminosity function is calculated. In practice, this analysis
corresponds to that of a survey of effective volume, Vi spss + Vest, DES, consisting of two

disjoint regions. The analysis otherwise proceeds as before.

The predicted total satellite luminosity function from the combined SDSS+DES data is
shown in Fig.[3.2] This estimate is consistent with those from the separate analyses of
SDSS and DES data: except in a few bins, the medians of the individual estimates lie
within the 68 per cent uncertainty range of the SDSS+DES estimate. When comparing
with the combined result, we find that the SDSS-only estimate overpredicts the satellite
count for My < —4, which is to be expected given that DES did not find any satellites
brighter than My= — 4.5 within our fiducial radius of 300 kpc. In contrast, for My > —4,
the SDSS-only estimate occasionally lies slightly below the total satellite count, reflecting

the large number of satellites with My > —4.5 observed by DES. The data associated with

Fig.[3.2]are provided in Table [3.1]

We find that the total satellite luminosity function is well-fitted by the broken power law:

0.095My + 1.85 for My< — 5.9
log,g N(<My) = , 3.1.1)

0.156My +2.21 for My>—-15.9

that is, the faint end of the luminosity function is described by a significantly steeper power

law than the bright end.
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The total luminosity function of dwarf galaxies within a radius of 300 kpc from
the Sun obtained from combining the SDSS and DES data. The solid line and the
shaded region show the median estimate and its 68 per cent uncertainty, respectively.
The two dotted lines show the median satellite luminosity functions using SDSS
and DES data separately. The luminosity function of all observed satellites within
the SDSS and DES footprints inside 300 kpc is indicated by the dashed line. The
total satellite luminosity function is well-fitted (not shown here) by the broken

power law given in equation (3.T.1).
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Table 3.1
Cumulative number of satellites as a function of absolute magnitude within a
heliocentric distance of 300 kpc for a 1.0 x 10'> My MW halo, inferred from a
Bayesian analysis of the SDSS DR9 + DES observed satellites. The cumulative
number of these observed satellites is provided for reference. The quoted confidence
limits are for statistical errors only.

M N (< My) Confidence limits: lower — upper
V' Observed Predicted 68%% 95% 98%%

-8.8 11 11
-8.5 12 13 12-15 12-19 12-21
-8.0 12 14 13-16 12-20 12-21
-7.5 12 15 13-17  13-21 13-22
-7.0 12 15 14-17 13 -21 13-23
-6.5 13 16 14-19 13-23 13-25
-6.0 14 19 16-22 15-27 15-30
-5.5 16 22 19-26 17-32 16-34
-5.0 18 27 23-32 20-39 20-43
—4.5 20 31 27-38 23-47 22-50
—4.0 23 41 35-49 30-60 29-064
-3.5 30 52 44 -62 39-76 37-82
-3.0 33 61 51-73 44-89 43-95
-2.5 37 77 64-93 55-114 52-123
-2.0 39 89 74 -108 63-133 60-—142
-1.5 41 96 79 -118 67 -147 63 —-158
-1.0 41 105 86— 131 72-163 68-175
-0.5 41 115 92 -146 75-186 71 -203

0.0 42 124 97 -164 78 -225 73-249
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3.2 Factors influencing the luminosity function

3.2.1 Dependence on the tracer population

In Section [2.3.1] we argued that in order to make accurate predictions, it is necessary
to incorporate two effects into the analysis: the inclusion of unresolved subhaloes, i.e.
‘orphan galaxies’, and the depletion of subhaloes due to tidal disruption by the central
galaxy disc (i.e. baryonic effects). These changes primarily involve the inner ~50 kpc
of the halo, the region to which the faint end of the luminosity function is most sensitive.
Although these two effects have opposite sign, they do not cancel out completely. In
Fig.[3.3]we show the effect of each of the two corrections, which are only important for the
faintest satellites (My > —2). Prior to any correction, the My =0 satellite count is 1413‘5‘;
the addition of unresolved subhaloes reduces this to 1 1333. This is because the unresolved

subhalo population is very centrally concentrated; on average some ~85 per cent of them

lie within 50 kpc. Accounting for subhalo depletion due to baryonic effects produces a

4+40 .

small upward shift in the median to 124777;

a decrease of ~12 per cent relative to the
uncorrected luminosity function inferred using the L2 subhalo distribution of Aquarius

haloes.

3.2.2 Dependence on the mass of the MW halo

As we discussed in Section [2.3.1.2] the MW halo mass is poorly constrained, with recent
estimates varying within a factor of 2 from our fiducial choice of Myw = 1.0 x 10> Mg
(see the compilation of Wang et al., 2015). To investigate the sensitivity of the inferred
total satellite luminosity function to the MW halo mass, we repeated our analysis for two
extreme mass values, 0.5 x 10'> Mg and 2.0 x 10'> M, corresponding roughly to lower
and upper bounds for the MW halo mass (e.g. Wang et al., 2015). To obtain estimates
for these halo masses, we rescaled the fiducial radial distribution of subhaloes using the

procedure described in Section [2.3.1.2] The inferred dwarf galaxy luminosity functions
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The sensitivity of the inferred satellite luminosity function to the two corrections
applied to the subhalo population. The dotted line shows the inferred satellite count
using the original subhalo distribution of Aquarius. The dashed line shows the
effect of adding subhaloes missing due to resolution effects, the so-called ‘orphan
galaxies’. The solid line shows the results from our analysis, in which we also
account for subhalo depletion due to baryonic effects. The shaded region indicates
the 68 per cent uncertainty region of our final result.
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are displayed in Fig.[3.4] which shows that despite the factor of 4 difference between the
lowest and highest halo masses considered, no large discrepancies begin to emerge until
My > — 2.5. Even at fainter magnitudes, the differences are well within the 68 per cent

uncertainty range for a given MW halo mass.

The number of subhaloes in a DM halo scales strongly with halo mass (e.g.[Wang et al.,
2012} Cautun et al., 2014a), so naively we might assume that the inferred satellite count
follows the same relation. As Fig.[3.4]demonstrates, that is not the case; we see only a weak
variation of Ny with Mp,0. The inferred satellite count depends only on the shape of the
normalized radial profile of subhaloes, and not on the fotal number of subhaloes. When
expressed in terms of r / Ry, i.e. radial distance in units of the virial radius of the halo,
the radial profile is largely independent of host mass (Springel et al., 2008; Han et al., 2016;
Hellwing et al.,[2016). Different host masses correspond to different values of Ry, and
thus any features in the radial profile are mapped on to different physical radial distances.
If the radial distribution of subhaloes were a power law, then the inferred satellite count
would be independent of halo mass: for fixed r, changing R>o9 would only lead to a shift

in the normalization of the radial profile, which is unimportant for our analysis.

3.2.3 Dependence on the outer radius cut-off

Fig. illustrates the dependence of the total satellite count within a given radius, r,
as a function of r. These estimates follow from the observation that the radial number
density of subhaloes selected above a vpeqx threshold is independent of the value of the
threshold (see Fig. [2.3)), which suggests that the radial distribution of satellites should also

be independent of satellite luminosity.

The fiducial radial distribution of subhaloes is well described by an Einasto profile: the

number of satellites within y=r / Ry is given by:

N(< y)=4n /Xn()/))ﬁ dy’, (3.2.1)
0

with n (y’) the Einasto profile given by equation (2.3.3)). Performing the integration and
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The dependence of the inferred total dwarf galaxy luminosity function within
300 kpc on the assumed mass of the MW halo. The lines show estimates for our
fiducial MW halo mass of 1.0 X 102> M, (used in previous plots) and for lighter
and heavier MW haloes, as indicated in the legend. For the fiducial case, we show

the median estimate (solid line) and the 68 per cent uncertainty (shaded region).

For the other two cases we show only the median estimates (dotted lines).
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substituting for y gives:

a o
3 2| 300 kpe]®)’
Y| —

R00
where the function v is given by equation (2.3.4). The radial dependence of N (< r) is

y (3, 2 [CX]‘”)

N (< r)=N(<300 kpc) (3.2.2)

affected by the assumed value for the MW halo mass through the dependence of Ry on
halo mass. Fig. shows the radial dependence of N (< r) for the three MW halo masses
assumed in Fig. we find only a mild variation with MW halo mass. Extending to
distances farther than 300 kpc leads only to modest increases in the satellite count, with
an ~20 per cent increase at 400 kpc, which is roughly half way between the MW and M31.
Of all the satellites within 300 kpc, ~80 per cent of them lie within 200 kpc, the Rq
value for a 1.0 x 10!> My, halo mass. At even smaller radial distances, we find ~45 per

cent of the satellites within 100 kpc.

3.3 Apparent magnitude luminosity function

In this section we examine the prospects for discovery of faint satellites in future surveys of
the MW. For simplicity we assume that the only factor that determines the detectability of
a satellite is its apparent luminosity, rather than its size or surface brightness. We can then
calculate the number counts of satellites as a function of V-band magnitude. To estimate
apparent magnitudes, we assign an absolute magnitude, My, to subhaloes by sampling the
inferred luminosity function from Section[3.1.2] i.e. the combined SDSS+DES estimate.
We then use the subhalo distance from the halo centre to compute the distance modulus
and thus the apparent magnitude. This process is repeated for the luminosity functions
generated from each pointing and observer location combination—6000 in all. The results
presented in this section are for a MW halo mass of 1.0 x 10!2 Mg, and for a 300 kpc outer

radius.

Dwarf galaxy counts as a function of apparent magnitude are shown in Fig. where we

split the population into two classes: ultrafaint and hyperfaint dwarf galaxies, which we
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The radial dependence of the total number of satellites enclosed within radius
r. The Y-axis gives the ratio of this number relative to the satellite count within
300 kpc, the fiducial radius used in this analysis. The result is independent of
absolute magnitude, My, since subhaloes with different vyeax cuts have the same
radial profile. There is little dependence on the mass of the MW halo.
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define as objects in the absolute magnitude ranges: —8 < My < -3 and -3 < My <0
respectively. Within 300 kpc from the MW, we expect to find 46J_"é2 (68 per cent CL,
statistical error) ultrafaint and 613; (68 per cent CL, statistical) hyperfaint dwarfs. The
first number can be compared to the slightly higher estimate of 66“:2 (68 per cent CL)
ultrafaints provided by |Hargis et al.| (2014)), based solely on data from SDSS DRS. We
showed in Fig. [3.2]that this population is usually overestimated in predictions based only
on SDSS because of a higher abundance of ultrafaint satellites in the SDSS field than
would be expected from the total observed population. As discussed in Section[2.3.3] their
uncertainties are also 28 per cent too small as stochastic effects were not accounted for
in their estimate. Most ultrafaints have apparent magnitudes brighter than 18, so surveys
just 0.5 magnitudes deeper than DES—which can detect satellites down to my = 17.5—
should be deep enough to observe most ultrafaint dwarfs in the MW. The luminosity
function of hyperfaint dwarfs extends much fainter, with most satellites having my < 21.5.
Discovering these would require a survey 4 mag deeper than DES; the Large Synoptic
Survey Telescope (LSST) is one such future survey. An all-sky DES-like survey would
only lead to the detection of ~30 hyperfaint dwarfs, a factor of 4 more than the currently

known population.



3.3. Apparent magnitude luminosity function

I ' I ' I ' I ' I ' I ' I '
LSST |HSC DES |SDSS All satellites
Hyperfaint
Ultrafaint
§  H14, ultrafaint
100F |
E\
>
S
\
Z
0o -
Inferred satellites h
=== Observed satellites :
1 . 1 . 1 . 1 . 1 . L 1 \
24 22 20 18 16 14 12 10
Apparent magnitude, my
Figure 3.6

The inferred Galactic satellite number counts within 300 kpc as a function of
apparent V-band magnitude, my. The satellites are split into ultra- and hyperfaint
dwarf galaxies, which correspond to objects with absolute magnitude in the range
-8 <My < -3 and -3 < My < 0, respectively. The solid lines display the median
prediction, with the corresponding shaded regions indicating the 68 per cent
uncertainties. For reference the sum of the median predictions of both populations
is also provided (black line). The diamond and associated error bars represent the
Hargis et al. (2014, H14) prediction and 68 per cent uncertainty region for the total
expected number of ultrafaint satellites. As before, the dashed lines display number
counts of observed ultra- and hyperfaint dwarf galaxies within the SDSS and DES.
The vertical arrows indicate the faintest satellites that can be detected in past and
future surveys: SDSS (my = 16.0), DES (my = 17.5), HSC (my = 20.0) and LSST
(my = 21.5).
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3.4 Discussion

We have made new predictions for the total MW satellite luminosity function by extrapol-
ating the numbers of satellites currently known using a new Bayesian inference method.
As input data we use a combination of the recently discovered satellites in the DES and
the population previously known from SDSS DR9. As a prior for the radial distribution of
the MW satellites, which is needed for the extrapolation, we use the radial distribution of
subhaloes in the Aquarius simulations of galactic haloes having peak maximum circular
velocity, vpeak, above a given threshold. We correct the subhalo distribution for unresolved
subhaloes and account for subhalo depletion due to tidal disruption by the central disc.
We showed in Fig. @] that the radial distribution of vpek-selected subhaloes provides a
good match to that of the observed MW satellites. We improve upon previous studies by
introducing a new Bayesian inference method, which overcomes the limitations of earlier
approaches. We also explore the effect of uncertainties in the MW halo mass and derive a

relation for rescaling our estimates to different radii.

We find that, for a 1.0 x 10> My MW halo, there are 1241“2‘9 (68 per cent CL, statistical
error) satellites brighter than My =0 within 300 kpc of the Sun, which is slightly inconsistent
with the result from Hargis et al. (2014). Our estimate is consistent with that of J16/when
adjusted for differing outer radii; their estimate lies at the upper end of our 68 per
cent uncertainty range. Our lower estimate is due to the inclusion of orphan galaxies
and baryonic effects, which decrease the inferred count of MW satellites (see Fig. [3.3).
Compared with the TO8 estimate of 3221’%‘6‘4 (98 per cent CL) satellites brighter than
My= — 2.7 within 300 kpc, our estimate of 6638 (98 per cent CL, statistical) is a factor
of ~5 lower. The origin of this discrepancy is primarily the use by Tollerud et al.| of
the shallower KOS| response function as opposed to the W09| function that we use here.
Furthermore, since their work the SDSS survey footprint has increased in size by ~80 per
cent, while the number of discovered satellites inside this footprint has increased by
very little. We also note that previous studies have underestimated their uncertainty

ranges because they have not properly accounted for stochastic effects, which are broadly
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independent of satellite brightness (see Section [2.3.3]for a more in-depth discussion).

The future detection of dwarfs depends on their apparent magnitude and we can estimate
the luminosity thresholds that future surveys will need to exceed in order to detect the
satellite population inferred in this study. In our total inferred population there are
46:132 (68 per cent CL, statistical) ultrafaint dwarf galaxies (with magnitudes in the range
-8 < My < -3), of which ~20 have been observed so far. We find that the majority
of these have apparent magnitudes brighter than my=18; these would be discoverable
with surveys just 0.5 magnitudes deeper than DES. There are ~30 such dwarfs still to
be discovered in the MW, of which ~7 should lie inside the SDSS DR9 footprint but
beyond its detection limit. Our 613; (68 per cent CL, statistical) hyperfaint dwarfs (with
magnitudes My > —3) make up some 62 per cent of our total population and have apparent
magnitudes brighter than my=21; discovering these would require a survey 4 mag deeper
than DES. The planned LSST survey should cover approximately half of the sky and will
therefore be able to find half of the inferred count of 613; hyperfaint dwarfs. The sizes of

both populations are slightly inconsistent with the lower end of estimates by |Hargis et al.

(2014).

Our inferred satellite galaxy luminosity function likely represents a lower limit to the
true population. Our method takes the observed satellites, which are found in surveys
with various detectability limits, as a sample of the global population. In particular, the
observed surface brightness cut-off suggests that there could be a population of faint,
spatially extended dwarfs that are inaccessible to current surveys (e.g. see Torrealba et al.,
2016a). To account for this in our method would require deeper observations than are

currently available.

A further complication arises from the presence of the LMC, which, given its large mass,
is likely to have brought its own complement of satellites. The LMC may be on its first
infall (Sales et al., 2011} Kallivayalil et al., 2013;|J16) and the spatial distribution of the
satellites it brought with it could be very anisotropic (J16). While we accounted for the
probability that a large fraction of DES detections may be associated with the LMC, our

analysis does not account for the presence of LMC satellites outside the DES footprint.
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To do so would require a prior on the present-day spatial distribution of LMC satellites.
Before infall, the LMC could have had perhaps as much as a third of the MW satellite
count (J16), though this estimate is very uncertain due to poor constraints on the MW and
especially the LMC halo mass. At face value, this could add at most ~50 satellites to the

total count.

Inherent to all analyses that estimate the satellite luminosity function are several systematics
which, with a few exceptions, mainly affect the faint end of the luminosity function. The
most important of these is the assumed radial distribution of subhaloes, which needs
to be determined from cosmological simulations. We showed that the distribution of
Vpeak-selected subhaloes matches both the luminosity-independent radial distribution of
observed MW satellites and that of state-of-the-art hydrodynamic simulations such as
APOSTLE (see Figs [2.3] and [2.5)); consequently, we think that any systematic effect on
the inferred satellite count arising from our choice of fiducial tracer population is likely
to be small. To obtain our fiducial subhalo sample, we needed to correct for two effects
that are not well understood. Even the highest resolution simulations, such as those of
the Aquarius Project, can suffer from resolution effects, particularly near the centre of the
host halo. This issue is common to all cosmological simulations, and we addressed it by
including ‘orphan galaxies’ (i.e. galaxies whose haloes have been disrupted) identified by
applying the Durham semi-analytic model of galaxy formation, GALFORM, to the Aquarius
simulations. This effect is only significant for the faint end of the satellite luminosity
function (My > -3) since ~85 per cent of the orphan population lies within 50 kpc of
the centre, the region to which the faint end is most sensitive. We also accounted for
baryonic effects on the subhalo mass function by lowering its amplitude in accordance
with the prescription in Section [2.3.1.1} using depletion factors based on the APOSTLE
Project (Sawala et al., 2017). |Garrison-Kimmel et al.| (2017) argued for a larger depletion
in the inner ~30 kpc than Sawala et al., while [Errani et al. (2017) claim that, due to
their limited resolution, most simulations overpredict the subhalo depletion factor. As
discussed in Section [3.2.1] although this correction introduces noticeable changes in the

predicted satellite luminosity function, these lie within our error bounds, and are smaller
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in magnitude than those introduced by the addition of orphan galaxies. These changes
primarily affect the faint end of the satellite luminosity function above My > — 2, which is
also the most theoretically and observationally uncertain part of the luminosity function

independently of these effects.

A second important systematic is the choice of observed satellite population. In this work
we used satellites discovered in the SDSS and DES. Although all satellites in the former have
been spectroscopically confirmed as DM-dominated dwarf galaxies, over three-quarters
of the DES satellites have not (yet). We choose to use all DES satellites in our analysis.
This is motivated by considering the size-magnitude plane (e.g. Drlica-Wagner et al., 2015}
fig. 4) that shows that most DES satellites are more consistent with the properties of Local
Group galaxies than with the population of known globular clusters. Reclassifying some
of the DES detections as globular clusters would lower the inferred total satellite count at
the faint end of the luminosity function (My > —4), but would not affect the bright end.
Given the good agreement between the SDSS-only and DES-only estimates of the total

satellite count, we predict that most DES detections are dwarf galaxies.

The mass of the MW halo is poorly constrained. However, the inferred satellite luminosity
function is largely independent of the host halo mass, except at magnitudes fainter than
My= — 3 where it shows a very weak mass dependence (see Fig. 3.4). Instead of
marginalizing over the MW halo mass distribution, we provide a means of converting

between halo masses at the extremes of the range of constraints.

The MW is the smaller partner of a paired system, which could introduce anisotropies into
the MW’s substructure due to interactions with M31; these would be manifest in the form
of more correlated structure. Our choice of 300 kpc for our fiducial radius is less than the
midpoint of the MW-M31 distance, minimizing any effects from interactions with M31
and allowing us to model the MW approximately as an isolated halo. In addition, this value
is often used in the literature (e.g. Hargis et al., 2014} J16) and is close to the expected
virial radius of the MW halo. Our choice of fiducial radius should not be interpreted as

precluding the eventual discovery of other satellites further out than this.

The dependence of the total satellite count on MW halo mass is not determined by the
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number of subhaloes at fixed mass, but by the shape of the normalized subhalo radial
number density profile. A weak halo mass dependence arises from the non-power law
nature of the subhalo radial profile: features in this profile are remapped to different physical
distances for different halo masses, resulting in a variation in the predicted luminosity
function. As a direct consequence, this implies that changes in the assumed MW halo
mass, which determines the number of DM substructures, alter the abundance matching
relation for Galactic dwarfs; in this regime not all subhaloes of a given mass host a visible
galaxy (Sawala et al., [2015). We find that doubling the halo mass roughly doubles the
number of subhaloes (Wang et al., [2012; |(Cautun et al., 2014a), so that there are more of
them at fixed vpeak. A more massive MW halo would then require the same dwarfs to be

placed in subhaloes with higher vpeax than they would for a lower MW-mass halo.

The spatial distribution of subhaloes—upon which our predictions rely—is partly determ-
ined by cosmology but is also affected by the internal dynamics of haloes. In turn, these
are influenced by the mass function of subhaloes and their accretion rate, both of which
are fairly universal in both ACDM and WDM models (Springel et al., [2008; |Ludlow
et al., 2016). Recent work by Bose et al. (2017)) has shown that the radial distribution of
subhaloes is broadly independent of the nature of the DM. Our predictions are therefore
applicable to other DM models and can, in fact, be used to constrain the masses of WDM

particles.

3.5 Conclusions

An estimate of the MW’s complement of satellite galaxies is required until deeper, more
complete surveys that could discover more faint galaxies are undertaken in the next few years.
These predictions can be used to address numerous outstanding astrophysical questions,
from understanding the effects of reionization on low mass haloes, to constraining the

properties of dark matter particles.

In this work we have, for the first time, combined data from SDSS and DES—which

together cover nearly half of the sky—to infer the MW’s full complement of satellite



3.5. Conclusions 89

galaxies. Our method requires a prior for the radial distribution of satellites, which we
obtain from the subhalo populations of the Aquarius suite of high-resolution DM-only
simulations in which we account for the competing effects of resolution and subhalo
depletion due to interaction with the central baryonic disc (see Section [3.4). We have
shown that selecting subhaloes by their peak maximum circular velocity provides a good

match to the radial distribution of observed MW satellites (see Fig. [2.5).

The Bayesian method we have introduced to make these estimates overcomes some of the
limitations of previous analyses (see Fig.[2.7)), and properly accounts for stochastic effects.
For each observed dwarf galaxy, the method estimates how many objects are needed to
find one such satellite in the survey volume. These results are averaged over multiple DM

haloes to characterize uncertainties arising from halo-to-halo variation.

Within 300 kpc of the Sun—and assuming a MW halo mass of 1.0 x 10'> My—we predict
that the MW has 124f‘2‘(7) (68 per cent CL, statistical error) satellites brighter than My =0
(see Fig. . Of these, we expect to find 46:1;2 (68 per cent CL, statistical) ultrafaint
dwarf galaxies (—8 < My < —3), aresult that is marginally inconsistent with the lower end
of the |[Hargis et al. (2014)) estimate, but nearly a factor of 5 smaller than the [TO8| estimate.

All the Galactic ultrafaints could be detected by a survey just 0.5 magnitudes deeper than

7

: 3
DES. We also expect to find a population of 6177

(68 per cent CL, statistical) hyperfaint
dwarfs (-3 < My < 0), and to obtain a full census of this population would need a survey
4 mag deeper than DES. The LSST survey should be able to see at least half of this faint

population of dwarf galaxies in the next decade.

In all methods seeking to estimate the total luminosity function certain assumptions must
be made. In particular, an important assumption is the radial distribution of the true
satellite population, which is best inferred from a cosmological simulation. Here, we have
used a set of the highest resolution DM-only simulations available and, most importantly,
a method for selecting the subhaloes that are expected to host satellites that has been
shown to give consistent results for a number of observed properties of the MW satellite
population, such as the radial distribution of and counts of bright observed MW satellites.

This does not guarantee that the extrapolation is free of systematic effects but as Fig. 2.5]
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shows, in the regime where we can check with available data, any such systematics are

small.

The estimates above represent only lower limits to the total number of Galactic satellites
(see Section[3.4) because they do not take into account very low surface brightness objects
that may have been missed in current observations. In addition, the estimate does not
account for some of the satellites brought in by the LMC which today lie outside the DES
footprint. Assuming that 12 of the DES satellites originate from the LMC (i.e. that have
prymc > 0.5 in Table [2.1)), and that the LMC contributes up to ~50 satellites to the MW
(see J16), LMC satellites outside the DES footprint could increase the total count by at

most 30 per cent.

While our key results assume a MW halo mass of 1.0 x 1012 Mg, our analysis shows that
the predicted dwarf galaxy luminosity function is independent of host halo mass for objects
brighter than My= — 3 (see Fig. [3.4). For fainter satellites we find a weak dependence
on halo mass, with a more massive MW halo playing host to more satellites. Our tests
assuming extreme MW halo mass values ([0.5,2.0] x 10'?> M) reveal that the resulting
luminosity functions lie well within the 68 per cent uncertainty range calculated for our
fiducial MW halo mass. Of the dwarfs within our fiducial distance of 300 kpc, ~45 per

cent and ~80 per cent are found within 100 and 200 kpc, respectively.

The results of this study provide a useful reference point for comparing theoretical predic-
tions with the measured abundance of satellite galaxies in the MW. However, it must be
borne in mind that the MW is only one system and that the abundance of satellites around

similar galaxies exhibits considerable scatter (Guo et al., [2012; Wang & White, |[2012).

The code that implements our method to estimate the total population of MW satellite
galaxies is available online (Newton & Cautun, 2018). In addition, we also make available

all data that are required to reproduce our results (e.g. Fig. [3.2).

In the next two chapters, we address the second strand of this thesis: considering alternative
models to the standard cosmological paradigm, and testing these using visible tracers of

DM structure. The satellite galaxy population of the MW is a sensitive probe of this, and
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we introduce and improve upon previous methods that use estimates of the satellite galaxy

complement to constrain the parameter space of viable DM models.






CHAPTER

Using estimates of MW DM substructure to con-

strain the properties of WDM models

4.1 Introduction

Recent astrophysical observations have provided indirect evidence for a candidate DM
particle with mass in the keV range (e.g. |Boyarsky et al., [2014b; Bulbul et al., 2014b).
Such a particle would be much lighter than is proposed by CDM models and would have
very different clustering properties on small scales (Boyarsky et al., 2015} |Cappelluti et al.,
2018)). This, together with a lack of any experimental detection of a CDM particle despite
considerable advances in particle detector technology (e.g. Liu et al., 2017; | XENON
Collaboration et al.,|2017), has motivated a renewed interest in possible alternatives to the
CDM model (e.g. Boehm et al., 2014; [Marsh, 2016; Escudero et al., 2018). These seek
to replicate the success of CDM on large scales and to explain the small-scale problems
with less reliance on uncertain ‘baryonic processes’. One family of these alternative DM
models posit a less massive WDM particle that would have a much higher thermal velocity
than its CDM counterpart at early times in the evolution of the Universe. These ‘thermal

relics’ are formed in equilibrium with the primordial plasma with masses such that they
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are relativistic at decoupling but non-relativistic by matter-radiation equality (Avila-Reese
et al., 2001; Bode et al., 2001). Such particles would free-stream out of small-scale
primordial density perturbations, preventing their condensation into small haloes and
producing a cut-off in the linear matter power spectrum on astrophysically relevant scales.
Detecting this suppression of structure relative to CDM predictions would provide a means
of discriminating between the prevailing cosmological paradigm and viable WDM models.
The goal of this chapter is to use visible tracers of the DM substructure to rule out thermal
relic WDM models that do not produce enough subhaloes to host the observed number of

low-mass galaxies.

Low mass DM-dominated galaxies provide an excellent probe of the ‘small-scale’ DM
structure (Shen et al., 2014} [Sawala et al., 2015, 2016a; Wheeler et al.,[2015]). The smallest
and faintest of these can be observed best in the environs of the MW; however, the current
census of ~50 satellite galaxies is highly incomplete as extant surveys do not cover the
entire sky to sufficient depth, and large parts of it are partially or totally obscured by the
MW itself (Koposov et al.,[2008; Walsh et al., 2009; Hargis et al., 2014). Simple volume
corrections to the observed complement of satellite galaxies have been used already to
constrain the viable parameter space of thermal relic WDM models by comparing the
number of DM substructures in MW-mass haloes with the number of observed satellites
(Kennedy et al., [2014; Lovell et al., 2014). Such approaches make several assumptions
about the expected spatial distribution of the underlying DM substructure and about the
completeness of the surveys, which could lead to a misestimation of the real satellite
population. More recent estimates of the satellite galaxy luminosity function that account
for the stochasticity of observational data and uncertainties arising from the variability
of host haloes at fixed halo mass suggest that the size of the total complement of MW

satellites could be several times larger than previously assumed (see chapters [2] and 3)).

This chapter improves on previous work to constrain the properties of candidate WDM
particles in several important ways, which we demonstrate using the thermal relic class
of WDM models. First, we use our estimate of the total satellite population of the MW

from Chapter [3] which takes advantage of new observational data to infer a population
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of 124+30 satellites brighter than My = 0 within 300 kpc of the Sun (this was published
in Newton et al., 2018, which forms the substantive content of chapters Q and E[) This
properly accounts for the incompleteness of current surveys and the method used to obtain
this estimate has been tested robustly using mock observations. Secondly, our results
account for resolution effects in N-body simulations that prevent the identification of DM
subhaloes that survive to the present day but fall below the resolution limit of subhalo
finders or are destroyed by numerical effects that enhance tidal stripping (e.g. Springel
et al., |2008; Onions et al., 2012; [van den Bosch & Ogiya, |2018). This significant effect
has been overlooked in previous studies and produces constraints on the viable parameter

space of WDM models that are too restrictive. Finally, we incorporate the uncertainty in

the total number of satellite galaxies, which has not been included in previous analyses.

We organize this chapter as follows. In Section4.2] we describe a new method to constrain
the properties of WDM models by comparing their predictions of the size of the MW
satellite galaxy population with estimates of the total number of MW satellite galaxies from
observations. We apply this methodology to thermal relic WDM and present our main
results in Section[4.3] We investigate further the effect of galaxy formation processes on
the constraints that we can obtain in Section[d.3.1] Section4.4]discusses the implications
of our results and considers some of the limitations of our method. We present concluding

remarks in Section



96 Chapter 4. Constraining WDM properties with DM substructure

4.2 Methods

Our goal is to use the satellite luminosity function of our Galaxy to constrain the properties
of WDM models using a minimal set of assumptions. In DM cosmologies, galaxies of
all masses form almost exclusively]| within DM haloes. The abundance of these can be
probed readily with numerical simulations which provide a useful tool to investigate the
predictions of different models; we introduce these in Section #.2.1 A DM model is
viable only if it forms enough subhaloes to host each MW satellite galaxy. To test for this
condition we need two ingredients. First, we need an accurate estimate of the MW satellite
luminosity function, which we discuss in Section 4.2.2] Secondly, we need a model to
predict the number of substructures given the properties of the WDM particle and the mass

of the host DM halo, which we describe in Section 4.2.3]

4.2.1 N-body simulations

We calibrate our method using high-resolution DM-only N-body simulations of cosmo-
logical volumes. The Copernicus Complexio (COCO) suite consists of two zoom-in
simulations: one of ACDM that we refer to as COCO-COLD (Hellwing et al., 2016), and
the other of 3.3 keV thermal relic WDM, hereafter COCO-WARM (Bose et al., 2016).
These two versions differ only in the matter power spectra used to perturb the simula-
tion particles in the initial conditions (see discussion in Section [[.4). Details of the
techniques needed to generate the perturbations from the matter power spectra can be
found in [Efstathiou et al.| (1985]). Both COCO-COLD and COCO-WARM are simulated
in periodic boxes of side-length 70.4 h~'Mpc using the GapGET3 code that was developed
for the Aquarius Project (Springel et al., [2008). The high-resolution regions correspond

approximately to spherical volumes with radii ~18 4~'Mpc that each contains ~1.3 x 101°

{Dwarf galaxies can also form during the collision of gas-rich massive galaxies and are known as the
so-called ‘tidal dwarf galaxies’ (e.g. Kaviraj et al.l 2012} [Lisenfeld et al., 2016} [Ploeckinger et al., 2018}
Haslbauer et al., [2019). These are low-mass and possess negligible DM content; consequently, they are
thought to be short-lived. As our Galaxy has not experienced any recent major mergers, the MW is unlikely
to contain a significant population of tidal dwarf galaxies.
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DM particles with mass, m,=1.135 X 10° h~'My. Haloes at the edges of these regions can
become contaminated with high-mass simulation particles which disrupt their evolution.
We identify these contaminated haloes as having a low-resolution DM particle within
3Ry of the halo centre. The cleaned catalogues provide large samples of haloes in both
cosmological models and both simulations resolve the subhalo mass functions of DM
haloes down to masses ~107 M. The cosmological parameters assumed for this suite of
simulations are derived from the WMAP seventh-year data release (Komatsu et al., [2011)):

Hy =70.4 kms~! Mpc™!, Qum = 0.272, Qo = 0.728, n, = 0.967, o5 = 0.81.

In N-body cosmological simulations the discreteness of the simulation particles can
give rise to gravitational instabilities that influence the formation of structure artificially.
Models such as WDM that impose a cut-off in the primordial matter power spectrum
are especially susceptible to these effects (Wang & Whitel, |2007; |Angulo et al., 2013
Lovell et al.l 2014). The instabilities are resolution-dependent and lead to the artificial
fragmentation of filaments, giving rise to small ‘spurious’ haloes that create an upturn
at the low mass end of the WDM halo mass function. [Lovell et al. (2014) developed
a method to identify and remove these objects from halo catalogues using their mass
and particle content. The onset of numerical gravitational instabilities translates into a
resolution-dependent mass threshold. Haloes that are unable to surpass this during their
formation and subsequent evolution are likely to be spurious. This coarse requirement
is refined further by a second criterion on the particles that compose the halo when its
mass is half that of its maximum, My,,x /2. In the initial conditions of the simulation,
the Lagrangian regions formed by the particles in spurious haloes are highly aspherical.
This is parametrized by Shaf-max=c / @, where a and c¢ are the major and minor axes of
the diagonalized moment of inertia tensor of the DM particles in Lagrangian coordinates.
These criteria were applied to the COCO-WARM simulation by Bose et al.| (2016) who
find that over 91 per cent of all haloes satisfy the criteria: Mpax<3.1 x 107 7'M, and
Shalf-max <0.1635, indicating that they are spurious. The details of the calculation of these
threshold values can be found in Bose et al.| (2016, section 2.3). We follow the same

prescription to ‘clean’ the COCO-WARM catalogues of spurious haloes for use throughout
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the rest of this chapter.

The resolution of a simulation also affects the identification of subhaloes in the inner
regions of simulated haloes (e.g. Springel et al., | 2008 |Onions et al., [2012). Subhaloes
that fall below the resolution limit at any time are discarded by substructure finders, and
some others are disrupted artificially by numerical effects. Consequently, these objects do
not appear in the subhalo catalogue, even though they may still exist at the present day.
We correct for this by identifying such subhaloes in COCO-COLD and COCO-WARM,
tracking them to z=0, and restoring them to the subhalo catalogues that we use to calibrate

our methodology. Full details of this procedure are supplied in Section 2.3.1]

4.2.2 Model-independent radial density profile

To obtain the best constraints on the WDM particle mass we need a complete census of the
Galactic satellites. The satellite population is dominated by ultra- and hyperfaint galaxies
with absolute magnitudes fainter than My = —8 (see chapters [2|and |3} and also [Tollerud
et al., 2008; Hargis et al.,[2014), which can be detected only in deep surveys. This means
that large areas of the sky remain unexplored and that currently, we have only a partial
census of the MW satellites. However, there are several methods that use the current
observations to infer the total satellite count of our Galaxy (see chapters [2]and 3] and also
Tollerud et al., 2008). Here, we use the estimates from Chapter (3| that are based on a
Bayesian formalism that has been robustly tested using mock observations. These results
were obtained by combining the observations of the Sloan Digital Sky Survey (SDSS;
Alam et al., 20135]) and the Dark Energy Survey (DES; Bechtol et al., 2015} Drlica-Wagner
et al., 2015), which together cover nearly half the sky area, and estimating the MW satellite
luminosity function down to a magnitude, My = 0 (this roughly corresponds to galaxies

with stellar mass higher than 102 Mg, e.g. Bose et al., 2019).

The method described in Chapter [2] takes two input components. First, it uses the sky
coverage of a given survey and the detection distance from the Sun out to which a satellite

galaxy of a given magnitude can be detected within it. This depends on the depth of
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the survey and the satellite detection algorithm that is used. Secondly, the method needs
the shape of the radial number density profile of satellites. Simulations of DM-only
CDM haloes show that subhaloes selected by vpeax, the highest maximum circular velocity
achieved in their evolutionary histories, have the same radial number density profile as that

of the observed satellites (see Chapter[2] and discussion therein).

To obtain a good estimate of the faint end of the luminosity function and the total satellite
count the radial profile must be sampled well at small radii. However, in models such as
WDM where the total number of small structures is suppressed relative to CDM the inner
radial profile is sampled less well. Applying the method described in Chapter [2] to such
haloes would create halo-to-halo scatter that would introduce artificial stochasticity into
estimates of the luminosity function, particularly at the faint end. This can be addressed
by ‘stacking’ together subhaloes from multiple haloes according to their distance from the
halo centre rescaled by the Rygp of the halo. Such an approach ameliorates the issue of
small number statistics in the number of subhaloes close to the halo centre and samples
well the inner radial profile; however, it reduces our ability to characterize uncertainties in
the luminosity function that arise from genuine halo-to-halo variation, as this is averaged

out by the stacking procedure.

In Fig.[.1] we compare the normalized radial number density profiles of stacked populations
of subhaloes obtained from the COCO-WARM and COCO-COLD simulations. The
fiducial populations were obtained by selecting subhaloes with vpeax > 20 km s~! and
identifying and including subhaloes that would exist at z=0 if they had not fallen below the
resolution limit of the simulation (for details see Section[2.3.1)). The size of the complement
of MW satellite galaxies inferred using the method described in Chapter [2] depends on
the shape of the radial number density profile and not on the total number of subhaloes.
While the number of subhaloes scales strongly with halo mass, the radial number density
profiles shown in Fig. .| are almost completely independent of it. Instead, features in the
radial density profile are mapped to different physical radial distances depending on the
value of Ry, leading to very weak dependence on the host halo mass and a similarly weak

dependence on the total number of subhaloes (see Fig.[3.5). As the radial profiles of the
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CDM and WDM models are in excellent agreement at all radii, estimates of the number
of MW satellites obtained using subhalo populations taken from WDM haloes should
be identical to those obtained using CDM haloes. By using CDM haloes to make such
predictions we can take advantage of the improved statistics that a better-sampled radial
distribution provides and to incorporate into our estimates genuine halo-to-halo variation

that would otherwise be averaged out by stacking.

In this chapter, we infer the satellite galaxy luminosity function of the MW within Ry for
assumed host halo masses in the range, Magy = [0.5, 2.0] x 10'> M, using the Bayesian
methodology presented in Chapter[2] As we mentioned above this requires two components:
(i) a tracer population of DM subhaloes with a radial profile that matches that of the observed
satellites, and; (ii) a set of satellite galaxies detected in surveys for which the completeness
is characterized well. For the former, we use the same vpeak-selected (vpeakz 10 km s‘l)
fiducial CDM subhalo populations as used in Chapter 2] These are obtained from five
high-resolution ACDM DM-only N-body simulations of isolated MW-like host haloes
from the Aquarius suite of simulations (Springel et al., 2008)). For the latter, we use the
observations of nearby dwarf galaxies from the SDSS and DES supplied in Table [2.1] of
Section 2.2
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The radial number density of subhaloes with vpeax > 20 km s~! normalized to
the mean density within Rpoo. The solid lines show the profiles averaged over
805 and 798 host haloes with masses Moo > 10'' M from COCO-COLD and
COCO-WARM, respectively. The corresponding shaded region shows the 68 per
cent scatter of the profiles over all haloes in the sample.
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4.2.3 Estimating the amount of halo substructure

Estimates of the average number of subhaloes in MW-like DM haloes can be obtained
using the Extended Press—Schechter (EPS) formalism (Press & Schechter, |1974; Bond
et al., 1991} Bower, 1991 |Lacey & Colel |1993}; Parkinson et al., 2008). In this approach,
the linear matter density field is filtered with a window function to identify regions that
are sufficiently dense enough to collapse to form virialized DM haloes at low redshift. In
CDM models the filter employed for this task takes the form of a top-hat in real space.
However, applying this to models such as WDM in which power is suppressed at small
scales leads to an over-prediction of the number of low-mass haloes (Benson et al., 2013).
This occurs because the variance of the smoothed density field at small radii becomes
independent of the shape of the linear matter power spectrum if the latter decreases faster
than k3. Consequently, the halo mass function continues to increase at small masses
rather than turning over (Lovell et al., 2016; |[Leo et al., 2018, section 3.1), making the
top-hat filter an inappropriate choice. Using a sharp-k space filter seemed to address this
by accounting for the shape of damped power spectra at all radii (Benson et al., [2013;
Schneider et al., 2013); however, subsequent work by |Leo et al.| (2018) demonstrates that
this over-suppresses the production of small haloes. They find that using a smoothed
version of the sharp k-space filter produces halo mass functions in best agreement with
N-body simulations. Throughout this and the next chapter, we use the Leo et al. (2018])

smooth k-space filter for the WDM models that we consider.

To obtain our estimates of the number of substructures, Ngyp, Within Rygo of MW-like haloes
we follow the approach described by (Giocoli et al.| (2008) that was subsequently modified
by |Schneider (2015, section 4.4) for use with sharp k-space filters. Using the |[Leo et al.
(2018)) filter a conditional halo mass function, Nsk, is generated from the primordial linear
matter power spectrum. Bode et al. (2001) showed that WDM power spectra, Pwpm(k),
are related to the CDM power spectrum, Pcpwm(k), by Pwpm(k) = T?(k) Pcpm(k), where
T(k) is the transfer function given by

=

T(k) = [1+ (@k)™]” . 4.2.1)
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Here, v = 1.12 and « is described by Viel et al.| (2005) as being a function of the WDM

particle mass, my,, given by

0.11 [ h
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Schneider (2015) showed that integrating the conditional halo mass function over the
redshift-dependent spherical collapse threshold of a given progenitor, 6.(z), gives the

subhalo mass function

dN. 1 © 4N
sub / K 45, (4.2.3)

where M is the filter mass and Nyorm 1S @ normalization constant. The latter term, which
is a free parameter, corrects the total count for progenitor subhaloes that exist at multiple
redshifts which are counted more than once. Using the|Leo et al. (2018) filter introduces
two other free parameters, B and ¢, that control the ‘smoothness’ and the mass-radius

relationship of the filter function.

We calibrate the free parameters of the EPS formalism by comparing its predictions of
DM substructure with the fiducial subhalo populations of COCO haloes in the mass bin
Maoo = [0.95, 1.10] x10'> Mg. Specifically, we determine the EPS free parameters by

applying the following two criteria:

(i) the EPS estimate of the mean number of CDM subhaloes with mass Mg, > 10° Mg

must equal the mean number of such objects in COCO-COLD haloes, and;

(ii) the EPS prediction of the mean number of WDM subhaloes with M, > 10° M,
(i.e. all subhaloes) must equal the mean number of such objects in COCO-WARM

haloes.

We choose the latter mass as it is below the turnover in the WDM power spectrum. We
obtain excellent agreement between the mean EPS estimates and the COCO simulation
results by setting Nporm = 1.51, ,@ = 4.6, and ¢ = 3.9. This is shown in Fig. which is

discussed below.

The EPS formalism described above predicts only the mean number of subhaloes in DM

haloes of a given mass, and not the host-to-host scatter in the subhalo count. As we
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will discuss later, including this scatter is very important to obtain unbiased results and
thus needs to be accounted for. We do this using the results of cosmological N-body
simulations that have shown that the scatter in the subhalo mass function is modelled well

by a negative binomial distribution (Boylan-Kolchin et al., 2010). This takes the form

I'(N +r)

I (T EY

pra-pV, (4.2.4)

where N is the number of subhaloes and I'(x) =(x — 1)! is the Gamma function. The
variable p = (N) / 0%, where (N) and o2 are, respectively, the mean and the dispersion of
the distribution. This scatter in the subhalo count can be described best as the convolution

of a Poisson distribution with a second distribution that describes the additional intrinsic

2
Poisson

variability of the subhalo count within haloes of fixed mass, such that o’=0 + 0?.
The parameter r then describes the relative contribution of each of these two terms:
r= 01% oisson / 012. We find that the scatter in the subhalo count of haloes in the COCO suite
is modelled well by 6;=0.12 (N), as depicted in Fig. which is discussed below. We use
this approach to characterize the scatter associated with the EPS predictions throughout

the remainder of this chapter.

In Fig.we compare the EPS predictions for haloes in the mass range [0.5, 2.0] x 10> Mg,
to the number of subhaloes in individual COCO haloes of the same mass. We obtain
excellent agreement with N—body results across the entire halo mass range of interest for
this study. In particular, our approach reproduces very well both the mean number of
subhaloes as well as its halo-to-halo scatter, which is shown in Fig. 4.2 by the grey shaded

region and the vertical error bars.

4.2.4 Calculating model acceptance probability

We rule out sections of the viable thermal relic WDM parameter space by calculating the
fraction, fy.c, of WDM systems that have at least as many subhaloes as the total number of
MW satellites. Let us denote with pFP> the probability density function of the number of

DM subhaloes predicted by the EPS formalism. Then, the fraction of haloes with NMW or

sat
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Figure 4.2

The total number of DM subhaloes within Rgg as a function of DM halo mass,
Mjpo. The dashed line shows the mean number of subhaloes predicted by the
EPS formalism and the dark shaded region indicates the associated 68 per cent
Poisson scatter. The light shaded region gives the 68 per cent scatter modelled
using equation (4.2.4). The symbols represent haloes from the COCO-WARM
simulations: unfilled symbols are from a subhalo catalogue where the ‘missing’
subhaloes have not been recovered, and filled symbols indicate the same haloes
from a subhalo catalogue after restoration of the ‘missing’ subhaloes. Triangles
represent individual haloes and circles represent the mean number of subhaloes in a
halo mass bin with width indicated by the horizontal dashed error bars. The 68 per
cent scatter in each halo mass bin obtained from the COCO-WARM simulation
suite is represented by vertical error bars.
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more subhaloes is given by:

facc(Nsub > NSMMW) = /MW stuprPS(Nsub) . (425)
N,

sat

However, as we discussed in Section 4.2.2] the total number of MW satellite galaxies is

affected by uncertainties. We can account for these by marginalizing over the distribution

MW ( NsMatw

of MW satellite counts, p ). Combining everything we find that the fraction of

WDM haloes with at least as many subhaloes as the MW satellite count is given by:

face = / dANMW . (4.2.6)
0

PY(NY) [ N )
NMW

sat

Although the number of MW satellites inferred in Chapter 3| has only a very weak
dependence on the assumed mass of the DM halo (see Fig. [3.4), we choose to calculate
the expected number of satellites within Rogo for each MW halo mass. As the number of
subhaloes varies rapidly with halo mass (e.g. see Fig. [4.2) the fraction of valid WDM

haloes depends strongly on the assumed mass of the Galactic halo.

This approach to calculating the fraction of viable WDM systems for the first time
incorporates the scatter in Ny, at fixed halo mass and the uncertainty in the inferred total
MW satellite population. As we demonstrate in Fig.[4.3] excluding one, or both, of these
sources of uncertainty produces constraints on my, that are too severe. When using our
methodology, these constraints would be ~15 per cent more restrictive across the halo
mass range considered than our reported values. Therefore, the results obtained by some

previous analyses rule out too much of the parameter space.
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Figure 4.3

The fraction, fi.c, of WDM systems with at least as many DM subhaloes,
Ngup, as the inferred total number of MW satellites, Ny, for a DM halo with
Mago = 1 x 10'2 Mg. Thermal relic masses with fiec < 0.05 are ruled out with
95 per cent confidence. Earlier works that do not account for the uncertainty in Ngy
or the scatter in Ny at fixed halo mass (thin lines) artificially exclude too many
thermal relic particle mass values. In this work (thick line) we include both sources
of uncertainty in our calculation. The horizontal dotted line indicates the 5 per cent
rejection threshold that we use to rule out parts of the WDM parameter space.
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4.3 Thermal relic particle mass constraints

Here we present the results of our analysis that were obtained using the EPS formalism
calibrated to fiducial subhalo populations from the COCO-COLD and COCO-WARM
simulations. Our most robust result assumes that all DM subhaloes that form host a galaxy,
thereby making no assumptions about galaxy formation processes which cannot produce

galaxies more efficiently than this.

We compute the model acceptance distributions of DM haloes in the mass range
Moo = [0.5, 2.0] x 10'2 M, for several thermal relic WDM models. In addition to incor-
porating the scatter in Ny, and the uncertainty in Ngy, we account for resolution effects in
the N-body simulations with which we calibrate the EPS formalism by including subhaloes
that have been lost below the resolution limit or destroyed artificially by tracking the most
bound particle of these objects to z=0 (see Section[2.3.T|for details). This problem persists
even when using high-resolution simulations, and the effect is amplified as simulation
resolution decreases. We rule out with 95 per cent confidence all combinations of My

and my, with fyee < 0.05.

The results that we obtain using this approach are displayed in Fig. @.4 The shaded
region represents the parameter combinations that we rule out with 95 per cent confidence.
Within the range of halo mass values favoured by Callingham et al.| (2019), who find a MW
halo mass of M200:1.17f8% x 102 M, (68 per cent CL), we rule out all models with
mn<1.95 keV. These constraints do not depend on uncertain galaxy formation physics
and therefore are the most robust constraints to be placed on the thermal relic particle mass
to date. A more realistic treatment of galaxy formation processes—the effect of which
would be to render a large number of low-mass subhaloes invisible—would allow us to
rule out more of this parameter space as fewer WDM models would produce a sufficient

number of satellites to be consistent with the inferred total population. We consider this

possibility in more detail in Section[4.3.1]

In Fig. @.4] we include for comparison the constraints obtained by [Polisensky & Ricotti
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Constraints on the particle mass, my,, of the thermal relic WDM model. These
depend on the assumed mass of the MW halo, which is shown on the vertical axis.
We exclude with 95 per cent confidence parameter combinations in the shaded
region. The dotted line indicates the extent of the exclusion region if we do not
include ‘missing’ subhaloes when calibrating the EPS formalism with the COCO
simulations (see Section [d.2.3] for details). The constraints obtained by previous
works, which do not consider some of the highest MW halo masses displayed here,
are indicated by the hatched regions. These are overly restrictive as they do not
account for some sources of uncertainty (see Section {.2.4] for details). The two
dashed horizontal lines show the 68 per cent confidence range for the mass of the
MW halo (Callingham et al., 2019).
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(2011) and Lovell et al.| (2014) who use similar analysis techniques. These constraints
suffer from resolution effects that suppress the identification of some substructures that
survive to the present day. The dotted line demarcates the exclusion region that we would
obtain in our analysis if we did not account for these missing subhaloes. Such issues are
not revealed by numerical convergence tests that are typically used to assess the reliability
of particular simulations. For example, even the ‘level 2’ simulations of Aquarius haloes,

which are some of the highest resolution DM-only haloes available, are not fully converged

(see Section [2.3.1).

4.3.1 Modelling galaxy formation processes

In the preceding sections, we described an approach to determine the viability of WDM
models that we used to produce a highly robust, albeit conservative, lower limit on the
allowed mass of the thermal relic particle. However, it does not account for the effect of
galaxy formation processes on the satellite complement of the MW. These mechanisms
play an important role in the evolution of the satellite galaxy luminosity function but still
are not fully understood. Semi-analytic models of galaxy formation allow for the fast and
efficient exploration of such processes and thus to understand how they affect the WDM

constraints.

GaLFOrRM (Cole et al., {1994, 2000) is one of the most advanced semi-analytic models that
are currently available and is tuned to reproduce a selection of properties of the local
galaxy population. A complete summary of the observational constraints used to calibrate
the caLForM model parameters is provided in Lacey et al. (2016| section 4.2; hereafter
[.16). Of particular interest to our study is the reionization of the Universe, which is the
main process that affects the evolution of the faint end of the galaxy luminosity function.
In particular, the UV radiation that permeates the Universe (and which is responsible for
reionization) heats the intergalactic medium and prevents it from cooling into low-mass

haloes, thus depleting the reservoir of cold gas from which stars form.

In caLForMm, the effect of reionization on haloes is modelled using two parameters: a
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circular velocity cooling threshold, V., and the redshift of reionization, Zwjon. The
intergalactic medium is taken to be fully ionized at a redshift, z=2jon, Whereafter the
cooling of gas into haloes with circular velocities, vyi; < Vo, is prevented. This simple
scheme has been verified against more sophisticated calculations of reionization, with
which it has been shown to produce a good agreement (Benson et al., 2002a; Font et al.,
2011). Recent studies by e.g. Bose et al.| (2018) have characterized the sensitivity of
the satellite galaxy luminosity function to changes in these parameters: a later epoch of
reionization allows more faint satellites to form, and a smaller circular velocity cooling

threshold permits those faint satellites to become brighter.

We use caLForM to explore the effect of different parametrizations of reionization on the
number of luminous structures around the MW. This parameter space has been constrained
well already by theoretical calculations and the analysis of recent observational data, so we
consider parametrizations in the ranges 6 < Zpcjon < 7 and 25 km s7! < Ve <35 kms™!
(Okamoto et al., [2008}; [Font et al., 2011; [Robertson et al., 2015 [Banados et al., 2018

Davies et al.l 2018; [Mason et al.| 2018; [Planck Collaboration et al., [2018)).

4.3.2 Constraints using GALFORM models

We explore the different parametrizations of reionization that are described in Section[4.3.1]
by modifications to the L16 model applied to the COCO-COLD and COCO-WARM
merger trees. We use these N—body results to calibrate the algorithm used in GALFORM to
construct Monte Carlo merger trees of these models for the thermal relic WDM particle
masses in the range of interest. The merger trees are generated within GALFORM using
an implementation of the Parkinson, Cole & Helly| (2008, hereafter PCH) merger tree
algorithm which iteratively splits the present-day halo mass into different branches as it
progresses to higher redshifts. The algorithm depends on three free parameters: G¢=0.57,
a normalization constant; y;=0.38, which controls the mass distribution of the progenitor
haloes; and y,= — 0.01, which controls the halo-splitting rate. PCH) calibrated these

parameters by comparing the Monte Carlo progenitor halo mass functions at several
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redshifts with those from the Millennium simulation (Springel et al., 2005). This follows
the evolution of 21603 particles with mass, m, = 8.6 X 108 h_lM@, resolving the halo
mass function to ~1.7 x 10'° h=!Mg, which is three orders of magnitude larger than the
regime of interest for this study. The best-fitting free parameter values derived from the
Millennium simulation predict a factor of two times more faint galaxies than is obtained
by applying caLrorm to the COCO suite. John Helly performed the PCH) calibration
procedure using the COCO simulations and find best-fitting values of G¢=0.75, y1=0.1
and y,= — 0.12; however, this still overestimates the faint end galaxy luminosity function
by a factor of 1.6 compared to COCO. Further improvements to the PCH|algorithm require
more thorough investigation and possibly the introduction of one or more additional free

parameters; these are beyond the scope of this work.

To generate the model-dependent predictions in this section, we apply GALFOrRM to Monte
Carlo merger trees calibrated as closely as possible to the COCO suite. By applying
the modified |L16 models to these merger trees we obtain the dwarf galaxy luminosity
function for 1000 realizations of each MW halo mass, allowing us to compute the model
acceptance distributions in the same manner as before (see Section[4.2.4). As the merger
trees over-predict the faint-end galaxy luminosity function, our constraints on the thermal
relic WDM particle mass are less restrictive than they would be if we were able to obtain
better agreement between the Monte Carlo and N-body luminosity functions. In agreement
with previous work, we find that the resulting constraints on my, are stronger for larger
values of Zgejon and smaller values of V., and that the value chosen for V. has the largest

effect on the number of substructures at fixed halo mass (e.g. Kennedy et al., 2014).

Several previous works that explored the effect of reionization on the satellite complement
used the L16| model, which has zsejon = 10 and V. = 30 kms~!. This combination
of parameters is disfavoured by recent observations (e.g. Mason et al., 2018 Planck
Collaboration et al.,2018). Additionally, others have noted that using this value of Zejon
is not self-consistent and that a modified |L16 model with zjon = 6 is @ more appropriate
choice (Bose et al., 2018)). This modified |L16/ model is a viable parametrization that is

consistent with observations, so we adopt this to obtain the constraints that we plot in
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Figure 4.5

Upper panel: Constraints on the my, mass obtained assuming our fiducial zyejon = 7,
Vet = 30 km s~ model of reionization within the GaALFORM galaxy formation model
(thick solid line). Parameter combinations to the left of and beneath the envelope
are ruled out with 95 per cent confidence. The constraints obtained by previous
works that adopted similar approaches are displayed by the hatched regions
let al.l 2018}; [Nadler et al., 2019). Arrows indicate the 2 keV (Safarzadeh et al.,
2018), 2.96 keV (Baur et al.,[2016)), 3.3 keV (Viel et al.,2013), 3.5 keV
2017), and 3.8 keV (Hsueh et al.| [2019) envelopes of the most robust constraints
on the thermal relic particle mass obtained from the Ly a forest. Bottom panel:
Constraints obtained from other parametrizations of reionization. Different choices
of Veue = [25, 30, 35] km s~! are indicated by the colours purple, blue, or green.
The dotted and solid lines indicate the envelopes of the constraint regions that
assume Zreion = 6 OF Zreion = 7, respectively.
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the upper panel of Fig. @.5] In this model, we rule out all thermal relic WDM particle
masses with m,<2.0 keV, and within the most likely MW halo mass range we rule out
with 95 per cent confidence all models with my<2.9 keV. These constraints improve on
our model-independent constraint and strengthen the constraints in different MW halo
mass regimes when compared with work by Kennedy et al. (2014), Jethwa et al.| (2018)),
and |Nadler et al. (2019) which also incorporate the effects of galaxy formation models. In
Fig. [4.5| we also include for comparison the most conservative constraints derived from
the Ly a forest by |Viel et al. (2013)), Baur et al. (2016), [Irsic et al.|(2017), Safarzadeh et al.

(2018), and Hsueh et al.| (2019), which our results complement.

4.4 Discussion

We have placed new conservative and highly robust constraints on the mass of the thermal
relic WDM particle by comparing EPS predictions of the DM subhalo content of WDM
haloes with the total number of MW satellite galaxies inferred from observations. We obtain
estimates of the total satellite complement using the approach described in Chapter [2] with
recent observations of satellites from the SDSS and DES. To calibrate the EPS formalism
we use DM haloes from the COCO simulation suite with masses in the likely MW halo mass
range Mp0=[0.5, 2.0] x 10! M. We improve upon previous constraints by incorporating
for the first time the uncertainty in the size of the total MW satellite complement and
by accounting for unresolved or numerically disrupted subhaloes in N-body simulations;
these are not identified easily by convergence tests. We also explore the effect of various
assumptions about galaxy formation processes on the constraints that we can place on the

WDM particle mass.

We find that, for MW DM haloes with mass Mppp<1.38 x 10!2 Mg, thermal relic models
with myp<1.95 keV are ruled out with 95 per cent confidence (see Fig. 4.4). Our result
is independent of assumptions about galaxy formation physics, as for our purposes we
treat all DM subhaloes as hosts of visible galaxies. This ensures that the constraints

provide a robust lower limit on the mass of the thermal relic WDM particle, improving
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on the results reported in [Lovell et al. (2014) across the entire MW halo mass range
considered (see Fig.[#.4). Our results are competitive with but slightly less restrictive than
the constraints obtained by |Polisensky & Ricotti| (2011) because we account for subhaloes

that are ‘missing’ from the z=0 halo catalogues.

The resolution of a simulation can affect the population of haloes at z=0 in two major ways.
First, haloes close to the resolution limit of simulations experience stronger tidal disruption
due to numerical effects which can destroy the halo. Secondly, structure finders stop
tracking haloes that fall below a mass threshold at any time during their evolution. Haloes
composed of few simulation particles can occasionally fall below this, even if the main
object survives to the present day; as a result, they are not included in the final catalogue.
Excluding these objects significantly affects the constraints on the WDM parameter space,
strengthening them artificially (see Fig.[4.4). This effect worsens as simulation resolution
decreases, so constraints that are obtained using lower-resolution simulations and using

methods that do not account for the ‘missing’ subhaloes will be a significant overestimate.

The processes underpinning the formation of galaxies are complex and are yet to be
understood fully; nevertheless, they play an important role in shaping the luminosity
function of the dwarf galaxies of the MW. Incorporating the effect of these mechanisms
into our approach allows us to refine the constraints on the properties of the DM and rule
out many more WDM models. In a modified version of the [L16 caLrormM model with
Zreion = 6, and for MW DM haloes with mass Map<1.38 x 10'2 Mg, we rule out with
95 per cent confidence thermal relic models with m, <2.9 keV (see Fig. . Furthermore,
we rule out all thermal relic WDM particle masses with my<2.0 keV. These improve
on our model-independent results and are consistent with the constraints obtained in
previous work by Kennedy et al.| (2014), Jethwa et al.| (2018)), and Nadler et al. (2019),
which adopted similar approaches. However, we note that the overestimation of the
satellite galaxy luminosity function by the PCH) tree algorithm suppresses our constraints
compared to what should be achievable. This is noticeable in the z..jon = 6 constraints,
which are less restrictive on the thermal relic mass parameter space than our conservative

estimates from Section [4.2.2] Future work to improve the algorithm will also improve
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our constraints. Despite this caveat, this result compares favourably with complementary
constraints derived from the Ly a forest by Baur et al.| (2016) and Safarzadeh et al.| (2018)),
and is consistent with other results by Viel et al.|(2013), [IrSic¢ et al. (2017)) and Hsueh et al.

(2019).

Our key results assume a MW halo mass up to Mg = 1.38 X 10'2 Mo, although we also
consider halo masses in the range Moy = [0.5, 2.0] X 10'2 M. The constraints have a
moderate dependence on host halo mass because the number of MW satellite galaxies
inferred from observations scales much less strongly with halo mass than the number of
subhaloes predicted by DM models (see Chapter ). Better measurements of the mass of
the MW halo will improve the number of thermal relic models that can be ruled out; in the
most extreme case a MW halo with mass at the lowest end of the likely range would rule out
thermal relic models with my, <2.3 keV independently of galaxy formation physics. This
estimate does not account for the effect of the central baryonic disc of the host halo, which
destroys subhaloes, and would exclude more of the WDM parameter space. Accounting
for reionization in our fiducial baryonic scenario, this rules out my<4.5 keV with 95 per

cent confidence.

The size of the satellite population inferred by the method described in Chapter [2]is a
lower limit to the true population as it cannot account for spatially-extended dwarf galaxies
that fall below the surface brightness threshold of the surveys. Additionally, it does not
encompass the contribution of the former satellites of the Large Magellanic Cloud that
lie outside the DES footprint that could increase the size of the satellite complement still
further. Taken together these caveats strengthen the robustness of our lower limits on the
thermal relic particle mass as a larger inferred satellite complement would rule out an even

larger WDM parameter space.

4.5 Conclusions

In the continued absence of the direct detection of a DM particle or the observation of

an astrophysical phenomenon that unambiguously constrains the properties of the DM
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particle, the debate about its exact nature—and the acceptability of the current cosmological
paradigm—will continue. This has been spurred on by the apparent ‘small-scale’ challenges
to ACDM: discrepancies between the observations of low-mass galaxies and predictions
of DM substructure, which so far remain unexplained within this framework, leading to
renewed interest in alternative DM models that are free of such issues (see Chapter |1}
Section @ One class of these, which are broadly termed WDM models, produces a
cut-off in the linear matter power spectrum that, depending on the properties of the DM
particle, can suppress the formation of DM haloes on the scale of (and smaller than)
those that would usually host dwarf galaxies. One method to constrain the parameter
space of these models is the use of sophisticated hydrodynamic simulations to simulate
self-consistently the formation and evolution of dwarf galaxies in the Local Group, and
around MW-like hosts in particular. However, the resolution that would be required to
achieve this in a volume that is sufficiently large enough to attain reasonable statistical
power is, at present, computationally prohibitive, and likely will be for some time to
come. The development of other approaches to explore efficiently the viability of different

cosmological models on these scales is, therefore, an imperative.

In this work, we develop an improved method to constrain the properties of WDM models
by comparing EPS predictions of the amount of substructure within MW-mass WDM
haloes with the most recent estimates of the size of the satellite population of the MW

(see sections 4.2.3| and [4.2.4). This approach is complementary to previous work and

for the first time accounts fully for limitations in the resolution of N—body cosmological
simulations, incorporates the scatter in the number of substructures inside haloes at fixed
DM halo mass, and includes the uncertainty associated with estimates of the number of
satellite galaxies in the MW. The constraints that can be produced by this method rule out
efficiently many WDM models independently of any particular choice of galaxy formation

physics, making the results highly robust.

We demonstrate the utility of this approach by applying it to thermal relic WDM models
to constrain the DM particle mass (see Section[4.3). Our most robust constraint rules out

with 95 per cent confidence thermal relic WDM particles with masses m, <1.95 keV. This
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is competitive with existing limits that also use the abundance of MW satellite galaxies to
constrain the WDM parameter space; however, our approach accounts for small subhaloes
in N-body simulations that are not identified by substructure finders, despite some of
these objects surviving to z=0. Excluding them from the subhalo catalogue reduces the
number of subhaloes that are available to host dwarf galaxies, artificially strengthening
restrictions on the viable thermal relic particle mass parameter space (see Fig.[#.4). This
effect worsens as simulation resolution decreases, so constraints that are obtained using
lower-resolution simulations, without accounting for the ‘missing’ subhaloes, will be a

significant overestimate.

All methods that seek to constrain the properties of DM models using visible tracers of
the underlying substructure must make assumptions about galaxy formation processes that
affect the satellite complement of the MW. Here, to obtain our highly robust constraints
on the allowed properties of candidate WDM particles independently of galaxy formation
physics, we have assumed that a galaxy forms in al/l DM haloes. While the details of
baryonic physics mechanisms are still not understood fully, it is clear that many small
subhaloes are unlikely to host a luminous component. Accounting for these physical
processes in models would reduce the effective size of the satellite complement and in our

analysis would significantly improve the constraints on the WDM particle properties.

In particular, the reionization of hydrogen in the early Universe, and the size of DM
haloes in which it suppresses galaxy formation is thought to be the dominant process
that determines the luminosity function of MW satellite galaxies. We use the Durham
semi-analytic model GaLForRM to explore several possible descriptions of this process
and examine how different parametrizations affect the constraints on thermal relic WDM
(see Section {.3.1). By assuming that reionization is complete by Zzreion = 6 and that
galaxy formation is suppressed in DM haloes with circular velocity vyi;<25 kms™!, we
rule out with 95 per cent confidence thermal relic particles with mass my<2.9 keV in
MW haloes with mass Magy<1.38 x 10!2 M, (see Fig. . Of all options considered
this parametrization of reionization produced the largest population of luminous satellite

galaxies in MW haloes of fixed mass, making this constraint a lower bound. This improves
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on the Kennedy et al.| (2014) result and is competitive with recent analyses using the Ly a

forest (e.g. Irsic et al., [2017; Safarzadeh et al., 2018]).

While a DM particle candidate remains undetected, thermal WDM models remain a
feasible alternative to CDM. The satellite galaxy system of the MW provides a powerful
means of probing structure formation on small scales and can help to discriminate between
different cosmological models. However, the MW may not be typical of most DM haloes
of similar mass. Hydrodynamic simulations that self-consistently model star formation
and gas physics on the scale of dwarf galaxies will facilitate more robust astrophysical tests
of this; however, achieving sufficient resolution at present is computationally prohibitive.
A complementary means of testing the predictions of structure formation from different
cosmological models is by considering their predictions of the evolution of structure
across a range of mass scales and comparing these with observations. Currently, this is
challenging to achieve as it is difficult to identify such faint objects at such vast distances
against observational backgrounds. Future improvements in observational capability will

offer the prospect to constrain further the parameter space of viable WDM models.

In the next chapter, we apply the technique introduced here to another model of WDM
that shows promise as a candidate cosmological model: the Neutrino Minimal Standard
Model (vMSM). In addition to the mass of the proposed DM candidate, this model
introduces a dependence on the primordial lepton asymmetry of the Universe, granting
it an extra degree of freedom that enables it to evade current astrophysical bounds on the
mass of thermally-produced WDM. We constrain this parameter space using the estimates
of the MW satellite galaxy population and discuss the implications of this result in the

context of recent astrophysical observations.






CHAPTER

Constraining the particle properties of vMSM

sterile neutrino DM

5.1 Introduction

As we discussed in Chapter|[I] the emergence of discrepancies between CDM predictions
of structure formation and observations of galaxy clustering motivated the consideration of
alternative cosmological models (Efstathiou et al.,|1990; Maddox et al., 1990). One class of
these that gained attention was WDM, the DM particles of which have a warmer momentum
distribution than CDM in the early Universe; however, at the time no mechanism to produce
the DM particle had been found. Following the discovery of the accelerating expansion
of the Universe (Riess et al., |[1998; Schmidt et al., (1998}, |Perlmutter et al., |[1999), the
introduction of a positive cosmological constant solved many of the problems of CDM, and
the combined ACDM model has achieved considerable success at reproducing observations
of the large-scale clustering of galaxies and predicting numerous detailed properties of
the CMB. However, it still suffers from several problems on smaller astrophysical scales
(discussed in detail in Section[I.3]), renewing interest in alternative cosmological models.

One WDM model offers an appealing alternative to CDM in its own right: the yYMSM.
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The vMSM is a minimal extension of the Standard Model of particle physics (Asaka &
Shaposhnikov, 2005} |Asaka et al., 2005} |Canetti et al., [2013a.b)). It entails the addition
of three massive right-chiral neutrinos to the family of three ‘active’ neutrinos that are
already known. These ‘sterile’ neutrinos do not couple to the gauge bosons that mediate
the fundamental forces of the Standard Model, which interact exclusively with left-chiral
fermions and right-chiral anti-fermions. As a result, the only mechanism through which
sterile neutrinos interact with almost all ordinary matter is via gravitational interactions, a
key property of DM candidates. Additionally, the lightest sterile neutrino is expected to
have O(keV) mass and could be long-lived on cosmological timescales (Adhikari et al.,
2017), placing it in parameter space that is within reach of terrestrial and astrophysical

experiments.

A definitive test of DM models is to identify and measure the properties of the particle.
However, to date, no candidate DM particle has been detected in direct detection exper-
iments (LUX Collaboration et al., 2014;  XENON Collaboration et al., 2017, 2018)) or
particle collider searches (e.g. [Khachatryan et al., 2016; |Aaboud et al., 2018; Sirunyan
et al.,|2018)). In the absence of such a detection, the most viable approach to infer indirectly
the properties of the DM is with astrophysical observational techniques. In particular, one
technique that has shown promise is the search for characteristic signatures of DM decay
in the spectra of systems that are thought to host a significant DM component. Recent
studies of such systems have led to the detection of an unexplained excess at 3.55 keV
in the stacked X-ray spectrum of several galaxy clusters (Bulbul et al., 2014b) and the
X-ray spectrum of the centre of M31 (Boyarsky et al., 2014b)). This elicited considerable
interest as there is no known astrophysical origin for a spectral line at this energy. Several
mechanisms have been proposed to describe this line, such as Sulphur charge exchange
(Gu et al., 2015; [Shah et al., 2016) and via the modelling of observational backgrounds
(Boyarsky et al.,|2014a; Bulbul et al., [2014a; Jeltema & Profumo)l 2015} Cappelluti et al.,
2018); however, these are yet to be confirmed. If this line is interpreted as the decay
product of a DM particle the parent particle mass, 7.1 keV, would sit comfortably in the

range expected of a sterile neutrino candidate responsible for all of the DM component of
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the matter density. This possibility spurred a considerable number of follow-up attempts
to detect it in other systems at higher significance. These include the centre of the MW
(Boyarsky et al., 2015} |Perez et al., 2017), the Perseus cluster (Urban et al.,|[2015; Franse
et al., 2016, but see also |Aharonian et al., 2017), and in other galaxy clusters (Bulbul
et al.l, 2016, but see also [Hofmann et al., 2016). While this has met with some success,
other studies of stacked galaxy spectra (Anderson et al., 2015) and the Draco dwarf galaxy
(Ruchayskiy et al.l [2016; Sonbas et al., 2016) either appear to rule out the existence of a
3.55 keV signal or are unable to determine its origin. It is evident that additional, higher
resolution measurements of the soft X-ray spectrum in such objects, as will be achievable
with XRISM (Tashiro et al., 2018; [Lovell et al., 2019alb)), will be needed to determine

unambiguously if the line truly exists or is merely some instrumental systematic.

Another approach to constrain the properties of the DM is to characterize its macroscopic
effects on astrophysical structure. On large scales the clustering of galaxies in WDM
models behaves identically to CDM (Bond et al., 1982; Olive & Turner, 1982; Pagels
& Primack], (1982 [Peebles| [1982b); however, on smaller scales, the two models exhibit
different behaviour. In WDM models the relativistic velocities of the DM particles suppress
the formation of structure relative to CDM below some characteristic length scale, leaving
a distinctive and potentially observable fingerprint on the abundance of small DM haloes
(see Section[I.4). We are best able to probe these using the population of nearby dwarf

galaxies, which act as tracers of the underlying DM substructure of the MW halo.

The current incompleteness of satellite galaxy surveys—due variously to difficulties with
the zone of avoidance and a lack of sky coverage at sufficient depth—has motivated
several attempts to estimate the total size of the MW satellite galaxy population (see
chapters 2] and [3] and also [Koposov et al., 2008} [Tollerud et al.| 2008} Hargis et al., 2014).
As we showed in Chapter [3] the most recent estimate of the size of this population indicates
that we expect to find 124f39 such objects with magnitudes brighter than My = 0 within
300 kpc of the MW. This provides a means of assessing the viability of different WDM
models: those that are unable to produce a sufficient number of DM subhaloes to host

this population can be ruled out. We introduced the methodology behind this approach in
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Chapter 4] and tested it on the generic class of thermal relic WDM models. Here, we adopt

the same approach to constrain the properties of the yYMSM.

5.1.1 The neutrino Minimal Standard Model

In the yYMSM, the sterile neutrinos are produced via the propagation of left-chiral neutrinos
into the right-chiral states. This is characterized by the ‘mixing angle’, ), which is
extremely small and limits the oscillation rates of the right-chiral neutrino species into
left-chiral, and vice-versa. They obtain their masses via a mechanism known as the “Type-I
seesaw’ (Minkowskil [1977; \Gell-Mann et al., 1979; |[Barbieri et al., 1980; Mohapatra &
Senjanovic, 19805 |Yanagidal [1980). The mixing of the active and sterile neutrino states
produces two distinct sets of mass eigenstates: as the masses in one set increase, the
other set becomes lighter; hence, the ‘seesaw’ nomenclature. Such a mechanism offers a
plausible explanation for the extremely small masses of the active neutrinos of the Standard
Model. The high mass eigenstates are ascribed to the sterile neutrinos, producing one
with mass O(keV)—the DM candidate—and two others with masses (100 GeV) (for
a detailed review see Abazajian et al., [2012). Such high mass states are unstable and
extremely short-lived (Adhikari et al., [2017). Their decay into leptons soon after the
Big Bang introduces an asymmetry in the abundance of leptons relative to anti-leptons
in a process known as leptogenesis (Fukugita & Yanagida, |1986). Shortly thereafter this
lepton asymmetry is partially reprocessed into a baryon asymmetry during baryogenesis,
providing a natural explanation for the observed asymmetry of matter to anti-matter in the

Universe (Shaposhnikov, |2008; Canetti et al., 2012, [2013b).

The lepton asymmetry in the early Universe also has a direct effect on the production of the
DM sterile neutrino species, as active neutrinos propagating through matter have different
oscillation parameters compared to those propagating in vacuum. This phenomenon
is described by the Mikheyev—Smirnov—Wolfenstein (MSW) effect (Wolfenstein, [1978;
Mikheyev & Smirnov, |1985). Active neutrinos propagating in a medium weakly interact

with electrons present in the material, increasing their effective mass of the neutrinos. The
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oscillation parameters are proportional to the square of the difference in neutrino mass of
the flavour states, so neutrino oscillations in matter may be different from those in a vacuum.
This can be seen readily in the flavour oscillation of active neutrinos passing through the
Sun and the Earth which creates a deficit of v, compared to theoretical predictions of
models of the fusion processes at the centre of the Sun. This discrepancy was originally
known as the solar neutrino problem (Bahcall, |1964; Davis, [1964). In the early Universe,
the lepton asymmetry affects the mixing parameters between active and sterile states in
much the same way: the effective mass of the active neutrinos in the primordial plasma is
increased, resonantly enhancing the production of sterile neutrinos (Laine & Shaposhnikov,

2008).

The lepton asymmetry of the early Universe can be parametrized as

L = 106 e~ e (5.1.1)

the ratio of the difference between the number densities of electron neutrinos and electron
anti-neutrinos (v,) to the entropy density of the Universe, s. Constraints on the cosmic DM
density restrict the parameter space of the DM properties such that there is a monotonic
relationship between Lg and 6, for a sterile neutrino of given particle mass, mg (Lovell
et al., 2016). Sterile WDM models can, therefore, be parametrized entirely by mg and L.
While observational constraints on Lg are very weak and permit a large number of possible
values (Oldengott & Schwarz, 2017), the mechanisms that generate lepton asymmetry in
the yYMSM restrict this range to 0 < Lg < 700 (Boyarsky et al., 2009, but see also Canetti
et al., [2013a,b). We explore this parameter space for a range of possible values of myg in

the sections that follow.

The size of the lepton asymmetry can significantly affect the momentum distribution of
the DM particles at early times. The behaviour is non-monotonic: at small Lg values,
resonances appear at low momenta. As Lg increases the amplitude and location of these
resonances shift, initially producing colder DM distributions. Only at high Lg values
do the resonances advance to high enough momentum states that the production of DM

at all momenta is enhanced (Laine & Shaposhnikov, 2008} Lovell et al., 2016). The
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‘temperature’ of the yYMSM DM, therefore, depends non-monotonically on the lepton
asymmetry in the early Universe, allowing these models to circumvent cosmological
constraints on the particle mass, including Ly a bounds for thermal neutrinos. A more
comprehensive discourse concerning the effects of Lg on the momentum distribution of

resonantly-produced sterile neutrino WDM can be found in Lovell et al.| (2016)).

In this chapter, we constrain the parameter space of resonantly produced sterile neutrino
WDM models by adopting the approach introduced in Chapter d] We summarize this
approach as applied to YMSM WDM in Section [5.2] and calibrate the method using
DM-only N-body simulations of these models. We present the constraints on the viable
ms—Le—MW halo mass parameter space in Section [5.3| and summarize our findings and

present concluding remarks in Section

5.2 Method

In Chapter 4] we described an approach to constrain the properties of WDM models by
comparing their predictions of the abundance of DM substructure in MW-mass haloes with
the total population of MW satellite galaxies inferred from observations. We tested this
using thermal relic WDM models in Section4.3] Here, we perform the same procedure to
constrain the properties of the yYMSM, using the EPS formalism to generate subhalo mass

functions for combinations of mg and Lg.

5.2.1 Calibrating the EPS formalism with numerical simulations

In the EPS formalism, the density field is filtered using a window function to identify
regions that are dense enough to collapse into virialized haloes by the present day. From
this, the abundance of structure at different mass scales can be calculated (see Section4.2.3]
for full details). The form of the filter function can affect predictions of the mean number
of subhaloes in a halo of a given mass. In CDM models a top-hat filter produces a good

agreement with the results of numerical simulations because the power spectrum changes
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slowly on small scales. However, using this filter with DM models that have a cut-off in
the power spectrum over-predicts the number of low mass objects (Benson et al., [2013). A
smooth filter in k-space produces results in better agreement with simulations, which we
verified in the previous chapter using the COCO suite. The smooth filter introduces two
free parameters: ﬂA and ¢ (Leo et al., | 2018); and the subhalo mass function also depends

on a normalization constant, Nyorm.

We calibrate the EPS parameters using DM-only simulation counterparts of the ‘V2’ and
‘V5’ sets of Local Group-analogue volumes introduced by [Lovell et al.| (2017). These
were simulated using the same initial conditions (except for differences in the properties
of the DM) as the first six simulation volumes of the APOSTLE Project (Fattahi et al.,
2016; Sawala et al., |2016b) and are each composed of a CDM volume and two 7 keV
vMSM volumes with Lg = [10, 120]. All simulations adopt cosmological parameters from
the WMAP seventh-year data release (Komatsu et al., 2011): Hy = 70.4 km s~ Mpc‘l,

Qv = 0.272, Qp = 0.728, ng = 0.967, og = 0.81.

DM models with a power spectrum cut-off form ‘spurious’ haloes produced by the artificial
fragmentation of filaments (Lovell et al., | 2014). This is caused by resolution-dependent
gravitational instabilities that are generated by the discreteness of the simulation particles.
We identify and remove these objects from the subhalo catalogues by adopting the same
procedure that we introduced in Chapter [ to clean the halo catalogues of thermal relic
WDM models (Lovell et al., 2014). We also correct for other resolution-dependent effects:
the failure of structure finders to identify some small haloes that survive to the present day,
and the tidal disruption of small haloes due to numerical effects. We restore these to the
z=0 subhalo catalogue by tracking the most-bound particle in the structure to the present

day using the procedure described in Section [2.3.1]

We obtain excellent agreement between the EPS predictions and the yYMSM APOSTLE
N-body results by setting Nporm = 1.4, B = 4.2, and é = 3.9. These values are very similar
to the values we obtained in Chapter [] for thermal relic WDM. In Fig. [5.1] we plot the
mean number of subhaloes predicted by the EPS formalism within R,y of the centre of

MW-mass DM haloes in the Lg = 10. The shaded regions represent the 68 per cent scatter
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Figure 5.1

The total number of DM subhaloes within R»gg as a function of DM halo mass,
Mjpo. The dashed line shows the mean number of subhaloes predicted by the
EPS formalism and the dark shaded region indicates the associated 68 per cent
Poisson scatter. The light shaded region gives the 68 per cent scatter modelled
using a negative binomial distribution (see equation #.2.4)). The symbols represent
haloes from the 7.1 keV vyMSM APOSTLE simulations for Lg = 10: unfilled
symbols are from a subhalo catalogue where the ‘missing’ subhaloes have not
been recovered, and filled symbols indicate the same haloes after restoration of the
‘missing’ subhaloes by following the procedure detailed in Section@
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in Ngyp at fixed halo mass obtained analytically from a negative binomial distribution that
models well the scatter seen in numerical simulations (Boylan-Kolchin et al., 2010, see
also Section 4.2.3)). When compared with the calibration plot of 3.3 keV thermal relic
WDM (see Fig.[@.2), the 7.1 keV, Lg = 10 yYMSM model produces more DM subhaloes at
fixed halo mass. Therefore, larger fractions of these systems host at least as many satellites
as the inferred total MW satellite population. As no constraints could be placed on the
3.3 keV thermal relic model in Chapter ] this approach will also be unable to constrain

this vYMSM model.

5.2.2 Computing the constraints

The constraints on the yYMSM depend on the assumed mass of the MW, myg, and Ls. We
consider MW halo masses in the likely range (0.5-2.0) x 10'?> My, and lepton asymmetry

parameters, Lg = [0, 700] ; in the same range as used by [Lovell et al.| (2016)).

For each combination of parameters, we compute the fraction of yYMSM WDM systems
that have at least as many DM subhaloes as the number of MW satellite galaxies inferred
from observations using the methodology presented in Chapter[2] The model acceptance
probability is given by equation (4.2.6) and accounts for the scatter in Ny, at fixed halo
mass and the uncertainty in the number of MW satellite galaxies. We rule out combinations

of parameters that have acceptance probability, ficc < 0.05, with 95 per cent confidence.
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5.3 Constraints on the properties of sterile neutrinos in

the yYMSM

Here, we present the results of our analysis that were obtained using the EPS formalism
calibrated to fiducial subhalo populations from DM-only vyMSM versions of the APOSTLE
simulations. Our analysis makes no assumptions about the specifics of galaxy formation
processes. Instead, we assume that all DM subhaloes that form host a galaxy, which
maximizes the model acceptance probability and produces extremely robust lower limits

on the viable parameter space.

In Fig.[5.2]we plot the exclusion envelopes of the YMSM for several values of Lg. Parameter
combinations to the left of, and below, the envelopes are ruled out with 95 per cent
confidence. The coldest model, which predicts the highest number of subhaloes at fixed
halo mass and corresponds to Lg = 12, rules out all yYMSM models with m;<1.65 keV
when assuming a MW halo mass of Mg = 1.38 X 10'2 My. This corresponds to the
upper 84 per cent limit on the MW halo mass obtained by |Callingham et al.|(2019). The
warmest model tested, with Lg = 700, rules out ms<7.85 keV, although such a large value
of Lg is disfavoured by observational constraints if a 7.1 keV sterile neutrino composes all
of the DM (Boyarsky et al., 2014b, 2015; Bulbul et al., 2014b; lakubovskyi et al., [2015;
Ruchayskiy et al.| 2016).

The constraints on the YMSM WDM parameter space become less restrictive if the
mass of the MW DM halo is at the upper end of the allowed range. In Fig. [5.3] we
assume a fiducial MW halo mass of Mygg = 1.4 x 102 Mg, which is consistent with the
upper 84 per cent bound on the halo mass obtained by |Callingham et al.| (2019). The
parameter combinations in the shaded region are ruled out with 95 per cent confidence.
The convoluted shape of the exclusion region arises from the response of the momentum
distribution of the DM to different values of the lepton asymmetry. Values of Lg in the
middle of the range we consider, i.e. those values between Lg = 7 and L¢ = 30, produce

the coldest DM models. As a result, there is little suppression of small-scale power in these



5.3. Constraints on the properties of sterile neutrinos in the YMSM 131
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Figure 5.2

Constraints on viable parametrizations of the YMSM. These depend on the assumed
mass of the MW halo, shown on the vertical axis, the mass of the sterile neutrino
DM particle, shown on the horizontal axis, and the lepton asymmetry parameter,
L¢. We exclude with 95 per cent confidence parameter combinations to the left of,
and below, the envelopes represented by the solid lines. The two dashed horizontal
lines show the 68 per cent confidence range for the mass of the MW halo obtained
by [Callingham et al.| (2019).
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models across almost all sterile neutrino rest mass values we consider. We also include in
Fig.[5.3|the observational constraints from X-ray line non-detections (Watson et al., 2012;
Horiuchi et al., 2014) and gravitational lensing measurements (Vegetti et al., 2018), which
restrict further the allowed parameter space. As the DM neutrino mass decreases below
mg = 6 keV, the viable parameter space reduces significantly. At our fiducial halo mass

< 1 keV; this constraint also holds

we rule out all parametrizations of the yYMSM with m;

at Magp = 2 x 10'2 M, so this neutrino mass is ruled out entirely.

If the 3.55 keV line originates from the decay of a 7.1 keV sterile neutrino, and if such
particles compose all of the DM content of the Universe, strong constraints can be placed
on 6y, using X-ray flux observations (Boyarsky et al.,[2014b, 2015; [Bulbul et al., 2014b;
lakubovskyi et al.| 2015; Ruchayskiy et al., 2016)). Expressed in terms of the primordial
lepton asymmetry, these observations favour 9 < Lg < 11.2 (Lovell et al.,[2017), and we
indicate this range with an error bar in Fig.[5.3] We find that this region of parameter space
is unconstrained for a 7 keV vMSM neutrino; however, at values of Lg > 50 the 7 keV

model is ruled out with 95 per cent confidence.

In Fig. [5.4] we explore the effect of different assumed values of the MW halo mass on
the constraints that we place on L¢ in the ms = 7 keV yMSM parametrization. As before,
combinations of parameters in the blue-shaded and hatched regions are ruled out with
95 per cent confidence, from our analysis and X-ray non-detections, respectively. We find
that Lg = 700 is ruled out for all likely values of the MW halo mass and if we assume our
fiducial MW halo mass, values of Lg = 0 and Lg > 40 are also ruled out. The purple-
shaded region indicates the range of L¢ values that are favoured by X-ray flux observations
if the DM comprises 7.1 keV vyMSM neutrinos. All Lg values in this range and up to
Le = 15 are not constrained by our analysis or by observational limits. We highlight the
boundaries of the unconstrained region of parameter space between the favoured MW halo

mass bounds with a thick solid line.
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Figure 5.3
Constraints on the ms—Le parameters of the vYMSM assuming a MW halo mass
of Magg = 1.4 x 10'2 My. As before, we exclude with 95 per cent confidence
parameter combinations in the shaded region. The hashed regions provide con-
straints from X-ray non-detections (Watson et al., 2012} [Horiuchi et al., 2014) and

gravitational lensing (Vegetti et al, 2018; Ritondale et al., 2019), and the error
bar indicates the 9 < Lg < 11.2 range favoured by X-ray detections if the DM

comprises 7.1 keV yMSM neutrinos.
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Figure 5.4
Constraints on the Lg parameter for different MW halo masses, assuming a YMSM
7.1 keV neutrino composes all of the DM. As before, we exclude with 95 per cent
confidence parameter combinations in the blue-shaded regions, and the hatched
region provides constraints from X-ray non-detections (Watson et al., 2012} Horiuchil
2014). The vertical purple-shaded region indicates the 9 < Lg < 11.2 range
favoured by X-ray flux observations if the DM comprises 7.1 keV vMSM neutrinos.
The unconstrained parameter space between the favoured MW DM halo mass
bounds is indicated by the thick solid line.
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5.4 Discussion and conclusions

The vYMSM is a simple extension to the Standard Model of particle physics that produces
a O(keV) mass neutrino with properties that could enable it to act as the DM and evade
current astrophysical bounds on the mass of thermal WDM. Such a DM candidate could
explain observations of a 3.55 keV X-ray emission line in the spectra of systems dominated
by a significant DM component, such as galaxy clusters and in M31. Additionally, the
vMSM provides a natural explanation for other open questions in cosmology such as
leptogenesis and the matter asymmetry of the Universe. This model is, therefore, an

appealing alternative to the standard cosmological paradigm.

The only mechanism to produce the DM candidate of the yYMSM is by the mixing of the
active neutrinos of the Standard Model of particle physics with a right-chiral, ‘sterile’
state. This is controlled by the mixing angle, 6y, which is extremely small such that,
alone, this mechanism cannot account for the size of the DM component of the observed
matter density of the Universe. However, the neutrino mixing angle can be enhanced when
the neutrino passes through a medium, in a process known as the MSW effect. In the
vMSM this occurred in the early Universe when the active neutrinos propagated through
the primordial plasma in the presence of a significant lepton asymmetry, Lg. This led to
the resonant production of DM particles and introduces an additional degree of freedom
into the model. The momentum distribution of the resulting particles, which affects the
clustering properties of the DM on astrophysical scales, is therefore, a function of two
parameters: the particle mass, mg, and the lepton asymmetry, Lg. Certain values of Lg
produce sterile neutrinos with ‘colder’ momentum distributions than a thermally-produced
DM particle of the same mass. This enables the YMSM to evade existing astrophysical

constraints on the thermal DM particle mass.

We showed in Chapter [ that the satellite galaxies of the MW are a sensitive probe of the
underlying DM structure and that this can be used to constrain the viable parameter space
of WDM models. Here, we adopt the same approach to place robust lower limits on the

mg—Lg parameter space of the vYMSM by comparing predictions of the abundance of DM
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substructure in MW-mass haloes with estimates of the number of satellite galaxies inferred
from observations of the MW. Models that produce an insufficient number of subhaloes to

host the inferred number of dwarf galaxies are ruled out.

We reject mg<1 keV at 95 per cent confidence for all combinations of Lg > 0 and MW halo
mass 0.5 x 10'2 My < Magg < 2.0 x 10'2 My; however, constraints on the other values
of mg are not as strong. Assuming a fiducial MW halo mass of Mo = 1.38 x 102 M,
and a DM mass, ms = 7 keV, we rule out models with Lg > 50 with 95 per cent confidence.
Supplemented by constraints from the non-detection of X-ray lines in observations of
M31 and nearby dwarf galaxies (Watson et al., [2012; Horiuchi et al., 2014), the viable
range of L now lies between 8 and 50. This is consistent with the bounds obtained from
direct detection experiments, collider searches, and other astrophysical measurements, and
encompasses the 9 < Lg < 11.2 range favoured by X-ray flux measurements if sterile

neutrinos compose all of the DM.

Our results are lower limits on the parameter space permitted by theoretical calculations
of the abundance of small-scale DM structure and several constraints derived from obser-
vational measurements. Stronger results can be obtained by applying models of baryonic
physics to populate the DM subhaloes with luminous galaxies; we defer such analysis to
future work. In addition to improvements in theoretical estimates, the constraints will be
strengthened further by future improvements to the completeness and depth of surveys of
the satellite galaxies of the MW. The planned XRISM mission will also resolve the soft

X-ray spectrum sufficiently to confirm or refute a physical origin of the 3.55 keV line.
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Summary

The ACDM cosmological model and its predictions of numerous properties of the Universe
have proved extremely resilient to many detailed observational tests. This relatively simple
model is the culmination of decades of effort and relates the structure seen on astronomical
scales to the properties of a subatomic fundamental particle that lies beyond the Standard
Model of particle physics—the disparity in scale could not be more vast. Despite its
success, to date, no such CDM particle has been found either in collider searches, or other
direct or indirect detection experiments. Given this, it behoves us to ask: can an alternative

DM model explain the nature of the Universe?

Our approach to answering this question comprised two distinct strands. In the first, we
addressed a gap in observational capability concerning the nearby dwarf galaxies of the
Local Group. These highly DM-dominated objects are abundant in the Universe, making
them excellent small-scale cosmological probes of the underlying DM distribution. The
number of such objects produced by different DM models depends on the momentum
distribution of the DM particle at early times, which is also a function of the particle
mass. ‘Warmer’ models suppress structure formation on small scales and, potentially, the
formation of dwarf galaxies. The corollary of this is that the observed abundance of dwarf

galaxies can be used to constrain the viable parameter space of alternative DM models.
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This was the concern of the second strand of this thesis, in which we focused on the WDM
family of models. Of these, we focused on two of the most studied: thermal relics and

sterile neutrinos.

6.1 Satellite galaxies of the Milky Way

The cosmological importance of dwarf galaxies has motivated a number of observational
campaigns to search for these faint objects. This is an extremely difficult undertaking: at
relatively small distances from us the apparent brightness of these objects reduces below
background levels, complicating the acquisition of a large statistical sample. Thus far,
technological limitations in instrument design and the algorithms used to distinguish dwarf
galaxies from the Galactic foreground stars have restricted the sensitivity of surveys. A
better prospect to probe the faint end of galaxy formation may be found even closer to
home with the satellite galaxies of the MW, the proximity of which allows the population
to be characterized at fainter magnitudes. However, distinguishing these objects against
observational fore- and backgrounds is still a challenge. The combined effects of the
Galactic foregrounds, the disc of the MW itself, and the area of the sky that must be

surveyed to sufficient depth, preclude the detection of a large fraction of this population.

In Chapter 2] we developed a Bayesian methodology to infer the luminosity function of
the satellite galaxies of the MW from partial observations of this population in surveys
whose selection functions have been characterized well. As tracers of the underlying DM
substructure, their spatial distribution can tell us a great deal about the formation history
of the MW, which must necessarily affect the characteristics and size of the population
of Galactic satellites. It is, therefore, a key ingredient in the method which takes as a
prior the radial distribution of satellite galaxies. For this, we used fiducial populations of
subhaloes taken from the high-resolution DM-only simulations of MW-mass galaxies of
the Aquarius Project. We found that selecting subhaloes by the highest maximum circular
velocity achieved during their evolution, a property we refer to as vpeak, produces a good

match with the distribution of luminous dwarf galaxies in the APOSTLE hydrodynamic
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simulations of the MW and Local Group. It also reproduces well the radial distribution
of the satellite galaxies observed in the SDSS and DES, after survey incompleteness has

been accounted for.

We tested the approach by applying it to a large set of partial observations of a mock
population of MW satellite galaxies. The method performed extremely well, successfully
reproducing the luminosity function of the satellite galaxies and modelling correctly
uncertainties in the estimate. This is a significant improvement compared with previous
approaches, which underestimated the uncertainties associated with their predictions
because they do not account for stochastic effects. These dominate observations of
satellites in a given survey volume and are responsible for most of the uncertainty in the

estimate of the total satellite galaxy population.

In Chapter 3] we applied this approach to the satellite galaxies observed in the SDSS and
DES. These surveys were chosen as their radial completeness has been characterized well,
and together, they cover almost half of the sky. From a combined analysis of the satellite
populations from both surveys, we predict that there are 124J_r‘2‘(7) (68 per cent CL) satellite
galaxies brighter than My = 0 within 300 kpc of the Sun. Almost 40 per cent of these will
be ultrafaint dwarf galaxies with —8 < My < -3, and a full half of the predicted population
will be hyperfaint galaxies with =3 < My < 0. These estimates are lower limits to the
total number of satellites as they do not account for low surface brightness objects that
may have been missed in current observations, nor do they account for satellites brought
in by the LMC which today lie outside the DES footprint. Future advanced surveys that
can probe significantly deeper will see many more satellite galaxies. We predict that the

Large Synoptic Survey Telescope (LSST) will see half of the population of satellites that

we inferred here.
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6.2 Small-scale cosmology: Probing the nature of DM

A requirement of a viable DM model is that it must correctly reproduce the observed
structure of the Universe. On large scales such a comparison is relatively straightforward:
luminous galaxies trace the DM and comparisons of theoretical and observed clustering
properties can be used to assess the viability of a given model. However, on smaller
scales this scenario becomes more complex. In this regime structure formation becomes
highly non-linear, and numerical simulations become necessary to probe these scales.
Additionally, baryons start to play a more important role in the dynamical evolution of
galaxies. Both of these effects complicate comparisons of theoretical predictions with

observations, as the luminous material may no longer faithfully trace the underlying DM.

The need for visible probes of structure on these scales is a key motivation to understand
better the population of MW satellite galaxies as these objects are highly DM-dominated.
To be viable, cosmological models must produce at least as many subhaloes in MW-mass
DM haloes as there are observed satellite galaxies. While such an approach is appealing
in its conceptual simplicity, it is computationally prohibitive to explore the full parameter
space of DM models in this way carrying out a large number of numerical simulations to
assess the viability of alternative DM models to ACDM in this way is computationally
prohibitive. To circumvent this restriction, in Chapter[dwe introduced an approach that uses
the Extended Press-Schechter formalism to generate analytic estimates of the abundance
of DM structure in MW-mass haloes. These are calibrated with numerical simulations of
the few DM models that have been carried out. We found that this produced a good match
with the results of numerical simulations and that the halo-to-halo scatter in the number of

DM subhaloes could be modelled with a negative binomial distribution.

As we mentioned above, galaxy formation processes and baryonic physics decouple
the direct correspondence of luminous galaxies to the underlying DM structure. These
processes are also not understood in detail, further complicating direct comparisons of
DM substructure abundance and the number of Galactic satellite galaxies. We therefore

considered two approaches: in the first, we assumed that all DM subhaloes host a galaxy.



6.2. Small-scale cosmology: Probing the nature of DM 141

This maximizes the probability of a given DM model producing sufficient DM subhaloes
to host the estimated population of MW satellite galaxies, and produces extremely robust
lower limits on the allowed parameter space of DM models. In the second approach
we used the Durham semi-analytic model of galaxy formation, GALFORM, to account for
the effects of reionization and supernovae feedback on the number of luminous satellite

galaxies in a host DM halo.

We chose to consider one class of cosmological models that have shown promise as
an alternative to the standard cosmological paradigm: WDM. The cut-off in the power
spectrum on small scales suppresses the formation of structure and could provide a solution
to the small-scale challenges to ACDM, while its predictions of the large-scale structure
are identical to the prevailing standard model. We focus on two WDM models in the
sections that follow: thermal relic WDM, and sterile neutrinos from the Neutrino Minimal

Standard Model (vMSM).

6.2.1 Thermal relic WDM

In Chapter 4 we introduced an approach to assess the viability of alternative DM models
using analytic predictions of the abundance of DM substructure in MW-mass haloes. We
applied this to the thermal relic model of WDM, which proposes a DM particle that is
relativistic at early times but becomes non-relativistic by matter-radiation equality. This
model is parametrized by the mass of the thermal relic particle, to which the momentum
distribution of the DM at early times is related: models with a particle that is lower in
mass are ‘hotter’, erasing more structure at small scales than ‘colder’ ones. Our most
conservative constraints place a robust lower limit on the mass of the thermal relic particle,
ruling out models with my,<1.95 keV with 95 per cent confidence. This is competitive
with, and improves upon, existing constraints. We also found that resolution effects in
numerical simulations can have an enormous impact on the constraints on DM models.
Failing to account for these can lead to artificially restrictive constraints on the DM model

parameter space.
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We refined our constraints further by using the semi-analytic model GALFORM to incorporate
the effects of supernovae feedback and reionization. This generates Monte Carlo merger
trees of DM models and applies a galaxy formation prescription to produce predictions of
numerous properties of luminous galaxies in DM haloes. The algorithm to generate the
merger trees is calibrated to the Millennium simulation, the resolution of which is three
orders of magnitude larger than the regime of interest here, and produces predictions of
the satellite galaxy luminosity function that are too large when compared with N-body
simulations. A partially successful attempt to recalibrate this with the COCO suite
of simulations, which are higher resolution, resulted in merger trees that produce 1.6
times more faint galaxies than obtained from the N-body simulations. A more detailed

investigation of this will be required for future work.

Despite this, we demonstrated the potential of the GaALForM models to rule out more of
the thermal relic parameter space. In our fiducial model where reionization has completed
by zreion = 7 and which suppresses the cooling of gas into haloes with circular velocity,
Veire < 30 kms~™!, we rule out thermal relic WDM with mass my<2.9 keV. This is
consistent with previous work and with recent observational constraints derived from the
Ly a forest. However, we note that these constraints are less restrictive than they otherwise

would be if the caLForMm Monte Carlo merger tree algorithm could be calibrated correctly.

6.2.2 Sterile neutrino DM and the yMSM

The second WDM model that we consider is the yYMSM. This provides a well-motivated
mechanism to produce a candidate DM particle, which takes the form of a right-chiral,
‘sterile’ neutrino. This particle has O(keV) mass and is resonantly produced in the early
Universe in the presence of a lepton asymmetry. A particle with mass in this range could
also explain recent observations of a 3.55 keV X-ray line in the spectra of several galaxy
clusters and M31, which might be a decay product of the DM particle. This particular

model has also attracted interest as it provides a natural explanation for leptogenesis and
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the subsequent matter asymmetry of the Universe. It is therefore an appealing alternative

to the standard paradigm.

The vMSM is parametrized by the mass of the sterile neutrino, myg, and the size of the
lepton asymmetry, Lg. The lepton asymmetry has a significant effect on the momentum
distribution of the DM particles at fixed my, and this behaviour is non-monotonic. Certain
values produce sterile neutrinos with ‘colder’ momentum distributions than a thermally-
produced DM particle of the same mass, enabling the yYMSM to evade various astrophysical
constraints on the mass of thermal sterile neutrino DM. In Chapter [5| we used the method
described in Chapter[d]to constrain the yYMSM parameter space. We rule out all ms<1 keV
at 95 per cent, for all combinations of Ls and MW halo mass. For the mg = 7 keV model,
which is the most likely candidate to explain the 3.55 keV line, only a narrow range
of values 9 < Lg < 11.2 are permitted if the sterile neutrino composes all of the DM.
Our lower limits do not rule out any values of Lg in this range for mg = 7 keV, for any
MW halo mass between 0.5 X 10> My, and 2 x 10'> M. These constraints will tighten
considerably with the inclusion of galaxy formation processes and the availability of new
observational constraints from advanced instruments such as XRISM, and particle collider

searches.

6.3 Concluding remarks

We have come a long way in the last 120 years. At the turn of the 20" century, scientific
understanding held that the Universe comprised solely the Milky Way. Within 30 years
this view had been set aside, replaced by the discovery of the existence of other galaxies
outside our own. In this context, General Relativity provided the framework to understand
the observations that were to come, and its predictions have withstood ever more intense
scrutiny flawlessly. Today, the field of cosmology provides an explanation for a Universe
containing many billions of galaxies, of which the Milky Way is only one. We now inhabit
an era of ‘precision cosmology’, wherein the fundamental properties of the Universe are

measured ever more exquisitely. Set against the astrophysical backdrop of the discovery of
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gravitational waves and the first ever ‘photo’ of a black hole—just two developments of

the last five years—these are indeed, exciting times.

There are several milestones on the horizon. Within the next few years, both the LSST
and XRISM will be fully functional. These facilities will revolutionize our observational
capabilities, probing the faint end of galaxy formation in unprecedented detail and providing
much-needed clarity on other observational measurements, such as the nature of the
3.55 keV X-ray line. Gravitational lensing could also play an important role, providing
limits on the smallest DM halo and with it, strong constraints on viable DM models.
These and other measurements will be crucial to advance our understanding of, and
investigate, different cosmological models and the galaxy formation that takes place inside
that framework. Within the next decade, therefore, we might expect an answer to what the

DM is. However, perhaps more realistically, we will certainly know better what it is not.



APPENDIX

Finding satellites in survey data

The response functions presented in Section [2.2] represent simple approximations to the
completeness of the survey using a given search algorithm and depend simply only
on the absolute V—-band magnitude of the satellite. In reality, many variables affect
the completeness function, which could influence the results produced by the method
presented in Chapter[2] Many of these are discussed at great length in the original works
that developed and tested search algorithms with well-characterized detection efficiencies
(KO8; 'W09). Here, we summarize these contributions and their possible effect on the

results of Chapter[3]

Ultra- and hyperfaint dwarf galaxies are identified in survey data as enhancements in the
projected spatial density of resolved stars relative to the density of Galactic foreground
stars. This approach is subject to confusion with other objects: interloping Galactic
foreground stars and distant background galaxies or galaxy clusters, in projection, can
artificially enhance the number of apparent stellar overdensities in the observed field. This
contamination could obscure the presence of true Galactic satellites and must be accounted

for when interpreting raw survey data.

In the two works discussed above, contamination is accounted for by applying ‘matched

filters’ to the survey data—cuts in colour and magnitude chosen using theoretical isochrones
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from stellar population synthesis models. In dwarf galaxies, the stellar population is
assumed to be composed mainly of old, metal-poor stars. This is not an unreasonable
assumption. Theoretical models of structure formation, gas accretion, and reionization
suggest a dwarf galaxy archetype of rapid, early star formation that tails off after the onset
of reionization (e.g. Bullock et al.,|2000; Benson et al., [2002a,b; [Somerville, 2002). This
model is supported by spectroscopic measurements of several ultrafaint dwarf galaxies in
the local Universe, which show that they have very low metallicities, with [Fe / H] < -2
(Munoz et al., [2006; |Martin et al., 2007; |Simon & Geha, |2007; Kirby et al., 2008). Their
small stellar masses also imply that they have experienced limited supernova activity
over their lifetimes, maintaining a stellar population with relatively unpolluted chemical

signatures.

The location of the isochrones in colour-magnitude space depends on the distance to
the object of interest, and also on the chemical composition of the stellar population. In
‘W09, the scatter in the theoretical isochrones is included in the matched filter, which is
recalculated assuming the stellar population lies at various distances from the MW. The
photometric cuts derived from these remove a large fraction of the contaminating objects
from the sample while preserving most ‘genuine’ ones that could be members of dwarf

galaxies.

After the application of the matched filter, the map of projected positions of the stars is
convolved with a spatial kernel which corresponds to the expected surface density profile of
a dwarf galaxy—by assuming a Plummer profile—to obtain a smoothed density field. The
choice of smoothing kernel can affect the detection of some overdensities as it introduces a
preferred scale (at a fixed distance), biasing the algorithm toward objects of this preferred
size. Objects falling at or below the scale of the smoothing kernel will be detected more
efficiently, while more diffuse or distant objects may not be detectable if the number of
stars inside the kernel falls below foreground levels. The physical size of the object and the
distance to it are, therefore, degenerate quantities which affect the detectability response of
the algorithm. Both of these quantities can be expressed in terms of My and the latitude of

detection. KO8 and W09 adopt different approaches to account for this. In the former, they
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apply kernels of different sizes to identify stellar overdensities, the results of which are
considered separately in the identification of dwarf galaxy or globular cluster candidates.
In W09, the scale is chosen as a compromise between the angular sizes of compact/distant
objects, and extended/closer objects. This means that some satellites might be missed, at
the expense of being able to characterize well the efficiency of detection of objects by the
algorithm. However, the improved understanding of the detection efficiency allows missed

detections to be accommodated.

A.1 Characterizing survey response

Characterizing the detection efficiency when using a given search algorithm requires an
understanding of the detectability of objects compared with the observational foreground.
This can be studied by injecting simulated objects into stellar foreground fields that are
understood well and applying the search algorithm to the composite field. Its response
depends on the distance to the object, the object’s luminosity, its scale length, and the
Galactic latitude, b, at which it is observed. Here, we summarize the key findings of (W09

and the implications of these for the results of Chapter 3]

The foreground density of stars in the SDSS footprint depends on latitude. At low latitudes
close to the Galactic plane, the density of objects in the SDSS is a factor of ~3 times larger
than at high Galactic latitudes close to the poles. This could make the detection of faint
or very diffuse satellites more difficult as the higher foreground density could obscure the
stellar overdensities created by such objects. These considerations are incorporated into
the characterization of the response function by W09 when they generate their foreground
fields, by matching the density of resolved objects to observed fields at three different
latitudes spanning the range encompassed by the SDSS footprint. The stars in the generated
fields are distributed randomly, rather than according to the real data, which Willman|(2003)
showed could lead to a small overestimation of the detection efficiency. Satellite galaxy
luminosity functions inferred using overestimated response functions—such as the result

we report in Chapter [3}—will, therefore, slightly under-predict the true number of satellites.
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To generate the mock galaxies, W09 draw stars from the resolved stellar populations
of the Carina, Draco, and Ursa Minor dwarf galaxies. These are a good match to the
theoretical isochrones used elsewhere in their work. The stars are placed randomly within
the simulated galaxy assuming a circular Plummer surface brightness profile of a specific
physical scale length. However, in reality, many ultrafaint satellites are elliptical (e.g.
Martin et al., 2008). Combined with the spherically-symmetric smoothing kernel, this
could lead to a small overestimation of the efficiency of detection of some objects, and a

more optimistic response function.

When seeding the galaxies at a given distance, |W09| adjust the photometry of the stellar
population to the correct distance modulus. They also add photometric scatter to account
for measurement uncertainty, which is especially prevalent at faint magnitudes. In the
faintest objects, stochasticity in the stellar luminosity function becomes more important,
introducing stochasticity in the distances that such objects can be observed at. These
effects smooth out the sharp transition in detection efficiency from € = 1.0 to 0.0 with

increasing distance.

The final key component of an assessment of the response function of the survey is the
observing strategy of the survey—in particular, the length of time certain regions of the sky
have been observed for compared to others in the survey footprint. In the SDSS, certain
areas of the sky have deeper exposures, enabling the detection of fainter satellites than in
other SDSS fields. Therefore, in detail, the detection efficiency is not uniform across the
survey footprint. However, for the purposes of the methodology presented in Chapter [2]
we neglect such a detailed treatment and account for these effects by taking an average
sensitivity across the survey area, corresponding to an average depth and background

number of stars.
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