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Abstract: We review our recent studies on chiral crossover and chiral phase transition temperatures in
this special issue. We will firstly present a lattice QCD based determination of the chiral crossover trans-
ition temperature at zero and nonzero baryon chemical potential pp which is T,.=(156.5 £ 1.5) MeV. At
nonzero temperature the curvatures of the chiral crossover transition line are x5=0.012(4) and 5=
0.000(4) for the 2nd and 4th order of pg/T. We will then present a first determination of chiral phase
transition temperature in QCD with two degenerate, massless quarks and a physical strange quark. After
thermodynamic, continuum and chiral extrapolations we find the chiral phase transition temperature
T0=132%} MeV.

Key words: chiral crossover temperature; chiral phase transition temperature; critical end point; lattice
QCD

CLC number: O571.53 Document code: A DOI: 10.11804/NuclPhysRev.37.2019CNPC65

Introduction that T2 is about 25 MeV smaller than the pseudo-crit-

One of ultimate goals of lattice QCD calculations
is to map out the QCD phase diagram[l]. The current
understanding of the QCD phase structure at zero ba-
ryon chemical potential is sketched in the so-called
Columbia plot (see Fig. 1). The horizontal axis of Fig. 1
is the mass of degenerate up and down quarks, while
the vertical axis is the mass of the strange quark. The
physical point (m"j, m") corresponding to a physic-
al pion mass of 140 MeV has been confirmed to pos-
sess a crossover type transition but not a true phase
transition?). As the strange quark mass keeps its
physical quark mass value m™ and the light quark
masses move towards zero, the chiral phase transition
is supposed to become a true phase transition[?. Based
on recent studies, the chiral phase transition in the
chiral limit of light quarks in N;=241 QCD is expec-
ted to be a second order phase transition belonging to
an O(4) universality class* ™). Since the chiral phase
transition temperature 79 is a fundamental quantity

of QCD and QCD-inspired model calculations predict
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ical temperature 7,, at the physical point[6_7}, the de-
termination of T is thus important. The chiral phase
transition temperature is also relevant to the search
for the elusive QCD critical end point (CEP). As seen
from Fig. 2, the 2nd order O(4) phase transition in
the chiral limit of light quarks will terminate at a tri-

tri

critical point (u%, T™) at a sufficiently large baryon
chemical potential. It has been found that in the chir-
al limit the curvature of the transition line is negat-
ive up to the 2nd order of ug [8_9], which suggests
T? > T . While on the other hand, the crossover
transition line at the physical quark mass will end at
a critical end point which possesses a 2nd order phase
transition belonging to a Z(2) universality class. This
critical end point is what people are looking for and is
connected to the tri-critical point via a transition line
belonging to the Z(2) universality class. The tri-critic-
al temperature T is expected larger than the critic-
al end point temperature T<F from model studies, i.e.
T — T (mg) oc m2/® 10712 S0 the chiral phase
transition T can be regarded as an upper bound of
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the critical temperature T at the CEP. The de-
termination of T} is thus helpful to constrain the loc-
ation of the CEP.
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Fig. 1 (color online)QCD phase structure in the mass
quark plane!*.
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Fig. 2 (color online)QCD phase structure in the 3-D

plane of temperature (7), quark mass (myq) and
baryon chemical potential (pp)

In the next two sections we will summarize our
recent studies on the determination of chiral crossover
transition temperature at small baryon chemical po-
tentials, and the chiral phase transition temperature.

2 QCD transition at the physical quark
mass and small baryon chemical po-
tentials

Since the transition at the physical point is not a
true phase transition there is no unique "critical" tem-
perature whose definition can be arbitrary. While the
chiral phase transition region of 3-flavor QCD in the
lower-left corner of the Columbia plot (see Fig. 1) is
small and far away from the physical pointm*m, the
2nd order O(4) transition line in the chiral limit of

light quarks should have more influence to the ther-
modynamics at the physical point. Based on the rem-
nant scaling behavior at the physical point we define
the chiral crossover temperature through the peak/in-
flection points of many chiral observables such that all
of them converge to a single value in the chiral limit,
i.e. the chiral phase transition temperature. The con-
tinuum extrapolation of the chiral crossover trans-
ition temperature is shown in Fig. 3. Note that the
results do not reply on critical exponents of any uni-
versality class and the determination of chiral crossov-
er temperature is done, e.g. by extracting the peak
location of light quark susceptibilities and inflection
point of light quark chiral condensates etc at each lat-
tice cutoff. It is not expected that the transition tem-
perature extracted via these various chiral observ-
ables will converge to a rather precise point or value
of 156.5+1.5MeV even at the physical values of light
quarks. In Fig. 4 we show the dependence of chiral
crossover transition temperature on the baryon chem-
ical potential up to the order of (ug/T)*. The trans-

ition line at nonzero up is parameterized as

The(ptn) =The(pn = 0) [1 2 (T:j?()))z -
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Fig. 3 (color online)The continuum extrapolation of

chiral crossover transition temperature at the
physical pion mass 18],
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Fig. 4  (color online)Chiral crossover transition line in

(2+1)-flavor QCD!8],
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we found x5=0.012(4) and «%=0.000(4). These res-

ults are consistent with other
[19—22]

studies on the
lattice . Also shown in Fig. 4 are the freeze-out
temperatures T; obtained at RHIC and LHC energies.
The freeze-out temperature at the LHC energy ob-
tained from particle yields is in very good agreement
with chiral crossover temperature at vanishing bary-
on chemical potential obtained from lattice QCD com-
putations, while 7; at RHIC energies are also in good
agreement to QCD transition line at pp larger than
about 80MeV and the 200GeV data point is about

1.5 sigma away from the transition line.

3 QCD transition towards the chiral
limit

To determine the chiral phase transition line we
start by introducing the subtracted chiral condens-
ates and their susceptibilities which are free from UV
divergences,

s (40— B

fx ’
aM mQXl subtot
== 2
Xum OH [T (2)

where H represents the breaking field of chiral sym-
metry and is defined as the ratio of the light quark
mass to the strange quark mass, i.e. H =m;/m,. We
have normalized the chiral observables by multiply-
ing proper powers of the kaon decay constant
frx =156.1/y/2 MeV.

As shown in Fig. 5, the pseudo-critical temperat-
ure T,.(H) (peak location) decreases with decreasing
pion mass, and the peak height at each pion mass
X (T, H) increases with decreasing pion mass which
is consistent with the O(4) scaling relation.

700
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300
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100
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130 135 140 145 150 155 160 165 170 175 180

T/MeV
(color online)Chiral susceptibilities obtained
from (2+41)-flavor QCD with various quark
masses as a function of temperature on N, =38
lattices'??].

Fig. 5

To determine the chiral phase transition temper-
ature T, we employ a novel estimators Tyo(V, H)
which was introduced in Refs. [4, 5, 23] and denotes
the temperature satisfying Xu(Teo, H, V) =
0.6 X xar(Tpe, H, V) with Tgo < Tpe, and Tgo(V, H)
will converge to T in the chiral limit and thermody-
namic limit according to the following O(4) scaling re-
lation,

Tx(H,L) =T? <1 + (ZX(ZL)> Hl/Bé) +

20

ex HYVH/B5 X — 60, 5. (3)

The advantage of using Ty, as well as another
quantity Ts as estimators for the chiral phase trans-
ition temperature is that these estimators are insensit-
ive to the universality class. Based on the above O(4)
scaling relation, we have performed thermodynamic
limit, continuum limit and chiral limit extrapolation

23] As shown in

of chiral phase transition temperature
Fig. 6, we perform the chiral limit using the data
points Teo(V — 00, N, = 00), T,(V — 00, N, = 00).
We have considered two types of the continuum limit,
leaving out or including our coarsest lattice N,=6.
Here the black square (triangle) points give the ther-
modynamic extrapolated and continuum extrapolated
results of chiral crossover temperature T,.(H) ob-
tained from  simulations with lattices with
N, =6,8,12 (N, =38,12), where the data points at
my = my/27 (the physical point) stands for the trans-
ition temperature T,(1/27) =156.5(1.5) MeV. The
decreasing behavior of the pseudo-critical temperat-
ure with decreasing light quark mass obeys the follow-
ing O(4) scaling relation,

T)(H) = T° (1 + ZHV“) . (4)

Based on Eq. (4) we extrapolated the data points
to the chiral limit as shown in Fig. 6 in which the col-
or blocks show the critical temperature and its error
bar in the chiral limit. The black star (circle) points
in Fig. 6 show the results of T4(H) in the thermody-
namic limit and continuum limit. Since Ty, is already
close to chiral phase transition temperature 70, it
gives more reliable estimate of T comparing that ob-
tained by 7,.. We extrapolated the Tg, and another
estimate T to the chiral limit based on the O(4) scal-
ing relation as shown in Eq. 3. This gives the value of
the chiral phase transition temperature 7° = 1327,
where the asymmetric error bar stands for the uncer-
tainties from continuum extrapolations of two estim-
ators of the chiral phase transition temperature of by
either including or discarding results obtained on the
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Fig. 6  (color online)Extrapolation of the transition

temperature to the chiral limit using T and Teo.

coarsest (N, =6) lattices MeV[23],
4 Summary & outlook

In this proceedings we reported our recent stud-
ies on the chiral crossover transition temperature and
chiral phase transition temperature. We determined
the chiral crossover transition temperature at zero ba-
ryon chemical potential to be 156.5+1.5 MeV in the
continuum limit, and the curvatures for the chiral
crossover transition line at nonzero values of g to be
k5=0.012(4) and k%5=0.000(4). We also presented a
first lattice QCD determination of chiral phase trans-
ition temperature in the thermodynamic, continuum
and chiral limit, 7° = 132%3 MeV.

While consistent results on the chiral crossover
transition temperature at small baryon density has
been obtained from other Lattice QCD groups[lg’ 21],
the determination of chiral phase transition temperat-
ure at small and nonzero baryon density in the con-
tinuum limit is absent although the curvature of chir-
al phase transition line at small baryon density has
been studied using the p4fat3 action® and recently
the HISQ action!) at finite lattice cutoffs. It would be
interesting to determine the chiral phase transition
temperature also at nonzero baryon density based on
the studies reported in Ref. [23] to narrow down the
critical temperature at the critical end point in the T -
ups plane of the QCD phase diagram.

Towards the chiral limit there still remain quite a
lot unknowns in understanding the Columbia plot (cf.
Fig. 1), e.g. order of the transition and the universal-
ity class in the chiral limit of light quarks in N;=3
and Ny=2+1 QCD[N]. It has been found that in IN;
=3 QCD the critical quark mass where the crossover
transition ends at a second order line belonging to the
Z(2) universality class reduces with improved discret-
ization schemes and finer lattice spacingm*l& 24725],
and further studies towards the continuum limit

would be needed to map out the region of 1st order
chiral phase transition which could shed light on the
possible origin of the critical end point in the T -pug
phase diagram[%*%]. Another important and unre-
solved aspect of QCD at nonzero temperature is the
fate of axial U(1) symmetry which has a big impact
on the order of chiral phase transition. Studies using
various discretization schemes have been carried out

recently[29741] and detailed investigations in the chiral,
thermodynamic and continuum limit will be crucially

needed.
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