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Abstract

In this thesis, I will discuss two separate topics which are related to gravitational
wave production in the early universe.

The first part will focus on the tensor power spectrum from inflation, derived using
the Ashtekar variables of loop quantum gravity. This formalism is different from the
ordinary approach in that it uses a complex connection as the central gravitational
variable instead of the metric. Although the choice of variables should not affect any
classical results, it becomes vital when considering quantum mechanical quantities
like vacuum fluctuations. We will find that in this formalism, the tensor power
spectrum is chiral, which would lead to a non-zero T'B correlator in the CMB.
Obtaining the full T'B power spectrum would enable us to probe this chirality and
provide clues about the nature of gravity.

In the second part, I will consider gravitational waves produced from massless
preheating, during which the inflaton transfers energy to a scalar field y. If x is
light, it acquires a scale invariant spectrum of perturbations from inflation. At
the time of preheating, the field will therefore have fluctuations on superhorizon
scales and take a different value in different parts of the observable universe. I will
study GW production for different initial values of x numerically using 3d lattice
simulations. The GW amplitude strongly depends on this initial value, leading to a
GW background that is anisotropic today, with relative fluctuations of order 1%. In
general, anisotropies will occur in any model of preheating with a light scalar field,
and the characteristics should strongly depend on the model parameters. If a GW
background from preheating was measured in the future, it would provide a novel

way to distinguish between different inflationary scenarios.
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1. Introduction

Do not look at stars as bright spots only. Try to take in the vastness of the universe.

Maria Mitchell

Cosmology is the study of the evolution of our universe, from the Big Bang to
the formation of galaxies. Out of its 13.6 billion year history, we understand all
but the first fraction of a second fairly well: As the universe expands and cools, it
undergoes a series of phase transitions, most notably electroweak symmetry breaking
when the weak gauge bosons acquire mass; when it is a few seconds old, the first
elements are formed during nucleosynthesis; after several tens of thousands of years
matter rather than radiation comes to dominate the energy density; 380,000 years
in the Cosmic Microwave Background (CMB) is released; and all the while structure
has been forming due to the presence of small perturbations in the initial density
distribution, culminating in the formation of large structures like galaxies [5].

There are still many unsolved problems surrounding this vast era, like the origin
of baryon asymmetry [6], the nature of dark matter [7] and dark energy [8, 9].
However, most mysterious of all are the first few instants after the Big Bang, during
which the energy density was so high that we can never hope to probe such scales
directly. Instead, we need to understand how the universe we observe today could
have originated, and identify suitable models for this early period, which makes it
a fascinating playground for theoretical cosmologists.

Nowadays, the most accepted and widely popularised theory of the universe when
it was a tiny fraction of a second old is inflation, a period of rapid expansion.
This is driven by an as-yet unidentified source referred to as the inflaton, usually
taken to be one (or several) scalar fields or some scalar condensate. The idea of
an inflationary phase in the early universe was proposed independently by several
physicists between 1979 and 1980 [10, 11, 12, 13]. Such a mechanism solves many
mysteries that have plagued cosmologists in the past, like the observed large scale
homogeneity and isotropy of our universe. Most importantly, it provides a seed for
all the structure we observe today. Proving whether inflation indeed occurred, and

finding out exactly how, could therefore shine light onto the age old question of how



we came into existence. Furthermore, it could also provide one of very few ways to
link observations with theories of quantum gravity, as at no other time in our history
will energies have been high enough to probe the Planck scale, at which some new
physics must leave their mark.

To test the validity of inflation, cosmologists primarily resort to the analysis of
the CMB, the “leftover” radiation from the Big Bang. It was first discovered in 1964
[14] when Arno Penzias and Robert Wilson, using an antenna built to measure radio
waves, detected a uniform background of microwave radiation with a temperature
of 2.7K and a near-perfect blackbody spectrum. It was soon realised [15] that this
background corresponded to radiation that had cooled down due to the expansion of
the universe and was emitted very early on, at the recombination redshift z = 1100,
when the temperature was about a thousand times higher. Even earlier, the photons
were tightly coupled to the baryons, but at the time of recombination neutral atoms
formed and photons could eventually decouple from the plasma and free-stream to
us observing them today.

It was not until the COBE satellite [16] measured the background more precisely in
1992 (with the results vastly improved upon by later experiments like BOOMERanG
(1997) [17], WMAP (2003) [18] and Planck (2012) [19]), that cosmologists were able
to observe the tiny fluctuations (one part in a hundred thousand) in the CMB tem-
perature. These fluctuations must have been laid down during the time of inflation,
and analysing them could indirectly provide information about the conditions right
after the Big Bang. Cosmologists try to understand which models of inflation are
viable by studying the statistics of these photon perturbations. Despite the con-
straints from the most recent data [20] there is still a vast number of scenarios that
are compatible with the universe we observe. If the recent detection of B-mode
polarization of the CMB by the BICEP2 collaboration [21] turns out to be of pri-
mordial origin, it will enable us to constrain the parameter space further, especially
when confirmed by other experiments and complemented with the polarization data
from Planck. Still, it is unlikely that we will be able to single out a model of inflation
using CMB measurements alone.

Gravitational waves (GWs) could provide a new way of understanding the con-
ditions in the very early universe. Predicted by general relativity [22], they should
arise in a number of cosmological and astrophysical settings, particularly during
inflation and phase transitions shortly after. Whereas scalar perturbations of the
metric during inflation are the source of the density perturbations (and therefore
structure), GWs correspond to tensor perturbations [23]. These tensor modes have

an impact on the polarization of the CMB, but may also potentially be measured
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directly. Additionally, GWs are produced from classical field inhomogeneities [24]
by non-equilibrium phenomena after inflation, for example during preheating.

So far, due to their low amplitude (a consequence of the weakness of the gravita-
tional force), no GWs have been directly detected yet. The first indirect evidence
was provided in 1974 from the energy loss of the Hulse-Taylor binary pulsar [25].
Two major experiments will attempt to directly measure GWs from astrophysical
sources in the near future, Advanced LIGO [26] (operational from 2015) and eLISA
[27] (launching in 2032). Neither of these will, most likely, be able to detect the cos-
mological signals that would tell us about the nature of the early universe, however
we can be hopeful that future generations of detectors might be up to the task.

Cosmology is a vast field and there are a number of good textbooks on the subject,
of which [5, 23, 28, 29] have been important in providing the physics background
of this thesis. In this introduction, I will give a general overview of Cosmology,
focussing on the aspects that are important for the work presented in chapters 2
and 3.

In section 1.1, I will introduce key concepts of general relativity and describe
how the homogeneous universe can be described using the Friedmann equations.
The theory of inflation is the topic of section 1.2, and I will explain its classical as
well as its quantum aspects. Section 1.3 provides the link between inflation and the
fluctuations in the CMB we observe. In section 1.4, I will describe reheating, a stage
right after inflation where most elementary particles were produced. I will finish by
discussing gravitational wave propagation, production and detection in section 1.5.

The work carried out during my PhD is described in chapters 2 and 3. Generally
speaking, the focus of the thesis is on how to use gravitational waves as a tool
to uncover new physics. I will discuss two separate topics, one related to tensor
perturbations from inflation, the other to GWs produced during preheating.

In chapter 2, I will consider cosmological perturbation theory from the point of
view of loop quantum gravity, where different gravitational variables to the usual
ones are used. Although classically this does not make a difference, quantum me-
chanical quantities are affected by this choice. I will show how this might lead to a
chirality in the power spectrum of tensor perturbations from inflation. This chiral-
ity could leave a distinctive imprint on the polarization of the CMB, and we should
soon be able to test whether such an effect is actually present.

In chapter 3, I will focus on GWs produced during preheating, a non-equilibrium
stage after inflation where the inflaton decays to other fields. Using a model where
the inflaton is coupled to a light scalar, numerical simulations I carried out show

that the GW background from this time should be anisotropic on large scales today,
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with relative fluctuations of order 1%. The characteristics of this anisotropy strongly
depend on the inflaton potential and its coupling to other fields, providing a novel
way of constraining inflationary models.

Throughout this thesis, I will use natural units where ¢ = kg = h = 1. The
Planck mass will be denoted by Mp; = 1/v/G = 1.22x 10°GeV /c2, and the reduced
Planck mass by mp; = 1/V81G = 2.44 x 10"GeV /c?.

1.1. The homogeneous universe

In this section I want to give the necessary mathematical background to describe
the universe on large scales, where it looks homogeneous and isotropic, and where
its expansion depends on the total matter content. I will start by introducing key
aspects of general gelativity in section 1.1.1 and then discuss its application to

Cosmology in 1.1.2; highlighting the importance of the Friedmann equations.

1.1.1. General Relativity and Einstein’s equation

In GR, the force of gravity is a consequence of the curvature of spacetime. While in
Newtonian physics we can only describe how gravity affects the motion of matter,
in general relativity matter also dictates the geometry of spacetime itself [24]. This

mutual relationship is described by Einstein’s equation,
1
Guw =R, — §gw,R =8rGT,,, (1.1)

where the energy-momentum tensor 7, on the RHS describes the matter content,
and the LHS the geometry of spacetime (and therefore gravity) through the Ricci
tensor R, which is a function of the metric tensor g,, and its derivatives [24].

General relativity has a rich underlying mathematical structure belonging to the
field of differential geometry. A very good and thorough treatment of GR in this
manner can be found in e.g. [22]. Luckily, in the context of Cosmology, we only need
a basic knowledge of differential geometry to carry out calculations; this includes
how tensors transform under coordinate transformations and how we can use the
metric to describe spacetime and its effect on test particles. I will collect these
results and their application to the universe we live in in this section.

In GR, tensors are multi-linear functions defined on spacetime [24]. A rank (m,n)
tensor with m upper and n lower indices maps m dual vectors and n vectors to the
real numbers R. A vector v = v#0, and a dual vector (one-form) w = w,dz" are

objects living on a manifold, where v#,w, are the components and 9, dz" are a
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particular choice of orthogonal (coordinate) basis vectors. We can act with vectors
on dual vectors to obtain a real number and vice versa. Rank zero and (1, 0) tensors
therefore correspond to ordinary scalars and vectors, respectively. Tensors can be
manipulated using their components T#1#m, . (x®) (where indices are raised and
lowered using the metric tensor g"” or g,,) with respect to a basis for the tangent
space of the manifold, and I will usually refer to the components simply as the tensor.
A general tensor with m upper and n lower indices transforms under a change of
coordinates z — 2" as [24]

N oxtt  Qxtm dx¥ .893””

TR () = ort  Qxim Jpvt Oxvh Tty e, (1) (1.2)

Scalars (having no indices) do not change under a change of coordinates, ¢'(z®) =
o(z).
Let us go back to the components of the Einstein equation (1.1). The metric

encodes the notion of distance in spacetime [24]. In particular, the line element
ds® = g, datdx” (1.3)

measures the proper time dr (where dr? = —ds®) elapsing for an object moving an
infinitesimal distance dz* in spacetime. Note that ds®> < 0 for timelike separated
points (ones within the lightcone, whose interior describes the causally connected
region), ds? > 0 for spacelike separated points and ds? = 0 for null separated points
(which are connected by a photon trajectory) [24].
In curved space, we need to define covariant derivatives which act on vectors v®
as
V0% = 90" + T 0", (1.4)

where I'), is an object called the connection which ensures that the covariant deriva-
tive transforms as a tensor [24]. The connection chosen in GR is symmetric in the
lower indices (torsion free) and satisfies V,g,, = 0 (metric compatible). It is called
the Christoffel connection [24],

o 1 (e}
Tow = 59 (94905 + 0ugsn — DpGuw) - (1.5)

The connection can be used to build the Riemann curvature tensor R%g,, = 9,75 —
O + T T0 s — I, 5. R and its contraction R, the Ricci tensor, encode
the curvature of spacetime.

The energy-momentum tensor 7),, is conserved, V, 7" = 0 [24]. This relation

13



includes four separate conservation equations. According to Noether’s theorem [30],
any system with a symmetry will have a corresponding conserved quantity. In the
case of GR, the theory is invariant under infinitesimal time and spatial translations,
with the former leading to energy conservation, V,7#° = 0, and the latter to mo-
mentum conservation, V,T# = (0 [22]. These are continuity equations for the 00
and 0¢ components of 7),,, which in flat space (where V, 7" = 0,T" = 0) can be
identified with the energy and momentum density, respectively.

In flat space with no gravity, the appropriate metric is the Minkowski metric 7,
which is diagonal with elements (—1,1,1,1). This form of the metric is important
on scales where the expansion of the universe can be ignored and the spacetime
therefore looks flat.

In Cosmology, we will often be interested in the energy-momentum tensor of a
perfect fluid [23],

T" = (p+ P)u'u” + Pg"", (1.6)

where u* = dz# /dr is the normalized 4-velocity of the fluid. In the local rest frame
where u* = (1,0), T% = p, T% = 0 (as it measures the momentum density, which is
zero in the rest frame) and T% = P§%, so the fluid is isotropic. Otherwise, it would
also contain an anisotropic stress term II;;.

It will be useful to regard GR in the Lagrangian formulation (see e.g. [24]), where
Einstein’s equations can be derived by minimising the action. The action is given

by
S = / /gL, (1.7)

where d*z\/—g is the covariant volume element [31] (note this is just unity for the
Minkowski metric, i.e. the flat space volume is the familiar d®*zdt). The Lagrangian
density £(®', V,®") depends on a field ®*(a#) and its derivatives and describes the
kinetic and potential energy of the system. We can get an equation of motion for the
field by minimising the action under infinitesimal changes in the field, 65 = 0. In
GR, the action leading to the Einstein equation (1.1) is called the Einstein-Hilbert
action and is given by [24]

Sy = /\/—_ng4m, (1.8)

where R is the Ricci scalar. Varying (1.8) with respect to the metric tensor would
actually only give you eq. (1.1) with RHS = 0, as we have not yet included any

sources. To find the general expression, consider the Lagrangian [23]

1
L= §m%1R + Lonat » (1.9)
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where L. is due to matter fields (where matter here refers to anything that is not
gravity). The energy-momentum tensor can be derived by minimising the action

due to eq. (1.9) with respect to g,.,, and we can then identify [23]

T _ 2 a'Cmat

pv 8 g;w

+ gwﬂCmat . (110)

1.1.2. The Friedmann equations

The universe on large scales is homogeneous and isotropic, so the metric needs to
reflect these properties. The spacetime satisfying these properties is described by
the Friedmann-Robertson-Walker metric, FRW for short, which for general spatial

3-curvature k is given by (in spherical polar coordinates) [5]

2

1 — kr?

ds® = —dt* + d*(t) { + r2d§22} : (1.11)
where d)? = df? + sin® #d¢ is the angular volume element.

The most recent CMB experiments have shown [18, 19] that we live in a flat
universe with k = 0, with dark energy making up around 68% of the energy density
budget (which could correspond to a positive cosmological constant A or a dynamic
field with negative pressure [28]), and about 27% of dark matter and 5% ordinary
matter. Therefore, we are mainly interested in the flat space version of the FRW

metric, which is usually expressed in Cartesian coordinates:
ds? = —dt?* + a*(t)[dx* + dy? + d2?]. (1.12)

The coordinates x, y, z are comoving, i.e. they do not change with the expansion.
Physical distances are related to comoving ones as Ar(t) = a(t)Ax.

It will sometimes be useful to use conformal time 7 instead of ordinary coordinate
time, which is defined by dn = dt/a. This can be integrated to find the value of n

at a time t': y
dt
n(t :/ - 1.13
=] 5 (113

We can then rewrite the FRW metric (1.12) as

ds® = a*(n)n,datdz” . (1.14)

We can assume that the energy-momentum tensor of the universe is decribed by a
perfect fluid, eq. (1.6). As we live in an isotropic universe, the fluid’s rest frame

should coincide with the comoving coordinates in the FRW metric (1.12). From
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the Einstein equations we obtain two equations describing the evolution of the scale

factor depending on the energy content of the universe, the Friedmann equations

[23]:

> = (2 1.15
(a) 3mPl ( )
. 3P
Fep? - 4o P3P (1.16)
a 6ma,

where p contains the density of all species in the universe (like matter, radiation or
a cosmological constant term py = m3,A [23]), P is their pressure and the Hubble
rate H = ¢ is an important physical length (time) scale in Cosmology.

The Friedmann equations can be combined into the continuity equation
p=-3H(p+ P), (1.17)

which corresponds to energy conservation for adiabatic expansion, which is valid in
an isotropic universe [23].

Energy density and pressure can be related by an equation of state P = wp, which
is a constant for ordinary species (but not for a scalar field) [32]. Specifically, w = 0
for matter (no pressure), w = 1/3 for radiation and w = —1 for a cosmological
constant [23]. Using the continuity equation, this implies py; oc a2 for the energy
density of matter, pr oc a=* for radiation (where the extra factor of a can be
undestood as a redshift), and the energy density of A is constant. This means
the evolution of the universe will consist of a series of epochs as the different powers
of the scale factor compete in the Friedmann equations: first radiation domination,
followed by matter domination and eventually dark energy (A) domination when
the matter has been sufficiently diluted by the expansion.

Using the relation p(a), the Friedmann equation (1.15) can be integrated and we
obtain the evolution of the scale factor during the different epochs: a o t*/3 for
matter domination, a o t%/? for radiation domination and a o e for a universe

dominated by a cosmological constant A.

1.2. Inflation

This section is dedicated to introducing the theory of inflation, starting with the
initial motivation for an accelerated stage of expansion to solve problems in the Big
Bang model of Cosmology in 1.2.1. I will then describe single-field slow-roll inflation

as the easiest possible implementation of the theory, section 1.2.2. Having explored
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the homogeneous inflaton field, I will outline in section 1.2.3 how to proceed when
fluctuations are included and define the power spectra that encode the statistical
properties of the field. Before explaining how inflation can act as a seed for all struc-
ture through the stretching of quantum fluctuations to cosmological scales (section
1.2.5), I will need to give some details on the canonical quantization procedure and

its application to curved spacetime in 1.2.4.

1.2.1. The horizon problem

The Big Bang model of the universe is very successful at explaining how we come to
live in in expanding universe [28]. However, three separate observations show that
there is something missing in our understanding of the early universe [23]. The most
important one to understand conceptually is the horizon problem, so I will explain
its significance and how it can be resolved using inflation. At the end, I will briefly
mention the related flatness and monopole problems for completeness.

A very important concept in Cosmology is the particle horizon, the distance trav-
elled by a photon between ¢ = 0 to ¢’ [28]. As for a photon ds? = 0, using eq. (1.11),

we can express this distance in comoving units as

Yot
n:/o o (1.18)

As it has the same form as conformal time, we use the same symbol 1 to denote
it. Clearly this quantity must always increase (as a > 0), and points in space
separated by distances larger than the comoving horizon have non-intersecting past
lightcones, i.e. no signal could have ever been transmitted between them: the points
are “causally disconnected” [28] (although particles located at such points might
come into causal contact in the future as the comoving horizon grows, when enough
time has passed for photons from one particle to reach the other).

With this in mind, the uniformity of the CMB presents a mystery. Assume that
the universe has always been matter dominated, such that a = (t/t()%? and H =
%til, where the subscript zero refers to quantities today and we normalise ag = 1.
We can then derive the comoving distance a photon has travelled at scale factor a,

using eq. (1.18):
t*
n= / 232 = 32313 = 2l Ja, . (1.19)
0

Therefore, the comoving particle horizon at the time of recombination, when a ~
1100, is a factor of 4/1100 smaller than it is today. Indeed, you can show that
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points with an angular separation of more than about 1° on the sky today were
causally disconnected at the time of recombination [23]. However, we observe the
CMB to be close to uniform on all scales. It seems very surprising that photons,
free-streaming since recombination, which come from regions that were separated
by distances larger than the particle horizon should just happen to be at nearly the
same temperature, although no physical process could have led them to equilibrate
[23].

This problem can be resolved if, before the period of radiation domination, the
expansion occurred in an “unusual” manner, in which the increase of the particle
horizon does not imply that the size of causally connected regions grows. This can be
achieved by a period of accelerated expansion where points in space move away from
each other so fast that a photon cannot traverse the distance between them. Regions
that were causally connected early on could therefore move out of “causal contact”,
so a signal transmitted from one point will not reach another point in the region
again until some time far in the future, when it has had enough time to traverse the
distance between them that has grown exponentially due to the expansion.

Thus, if initially causally connected regions have been stretched to a size larger
than the surface of last scattering (the surface in spacetime the CMB photons we
observe originated from), the uniformity of the CMB temperature is not surprising,
as the whole observable universe could have originated from a small homogeneous
patch [23].

To make this more mathematically rigorous, let me define the comoving Hubble
radius (aH)~*. This is a very important length scale in Cosmology, and is often
referred to simply as the (comoving) horizon. Note that unlike the particle horizon,
it is not an actual horizon, and the terminology can be confusing. We can rewrite

eq. (1.18) in terms of this quantity,

’

“ 1
n :/0 d(lna)a—H. (1.20)
To understand the physical significance of the comoving Hubble radius, consider a
small amount of expansion for which the comoving particle horizon grows by an
amount An = N(aH)™!, where N = Aln(a) is the number of e-folds of expansion
(which counts the factors of e the scale factor has grown by). The Hubble radius
then corresponds to the distance travelled by a photon while the universe expands
by N e-folds.

During matter and radiation domination, the comoving Hubble radius grows

monotonically, and is actually proportional to n [24]. However, if there is a stage
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where (aH)™! shrinks, so that photons traverse smaller and smaller distances during
the same amount of expansion, the particle horizon can still grow (with the main
contribution to the integral coming from early times) but the size of the region in
causal contact at the end of this phase is much smaller than it was initially.

As the particle horizon becomes very large early on if the comoving Hubble radius
shrinks, we have solved the horizon problem: At the time of recombination, the
particle horizon is much larger than the distance travelled by photons since then.
Therefore, when we observe the CMB, we see photons from a region whose spatial
extent was within the physical horizon, which means that they could have all been
at nearly the same temperature.

The condition for the comoving radius to shrink is equivalent to accelerated ex-
pansion,
i(aH)_l =——-<0 & i>0. (1.21)
Inflation describes this period of a shrinking comoving Hubble radius. Before de-
scribing what conditions need to be satisfied to lead to this behaviour, let me mention
the other two problems inflation solves: the flatness and the monopole problem. For
a curved FRW metric (1.11) with & # 0, the Friedmann equation (1.15) has an

additional term proportional to the curvature and can be rewritten as [23]

Qa) —1= %, (1.22)
where Q(a) = p(a)/pait(a) and pet(a) is the density for a flat FRW universe. For
perfect flatness £ = 0, we need Q(a) = 1. However, without inflation, any small
deviation from flatness will be amplified with time as (aH)~! grows. As we observe
near flatness today, this means that {2 must have been extremely fine tuned. Inflation
circumvents this as it drives  — 1 in eq. (1.22) while the comoving horizon shrinks,
thus solving the flatness problem.

The monopole problem was actually one of the initial motivations for inflation
[13]. Grand unified theories predict the existence of unwanted relics such as magnetic
monopoles, which we do not currently observe. However, the fast expansion during

inflation can vastly reduce the density of these relics [23].

1.2.2. Single field slow-roll inflation

How can we satisfy the conditions required for inflation? From the second Friedmann
equation (1.16) we see that accelerated expansion implies p + 3P < 0, i.e. we

need a material with negative pressure driving the expansion. Sato, Kazanas and
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Guth [11, 12, 13] first realised that a scalar field with a specific form of the potential
could satisfy this condition. The Lagrangian for a scalar field ¢(x#) is given by [23]

Lo = 30,690~ V(). (1.23)

The stress-energy tensor for a scalar field can then be deduced using eq. (1.10):

T;w = u¢au¢ — Guv <%aa¢aa¢ + V(¢)) : (124)

We can derive an equation of motion for ¢ from the Euler-Lagrange equations, i.e.

from varying the action by d¢. This leads to a wave equation [29]

. . dV

¢+3H¢—V2¢+%:0. (1.25)
For now, we will be concerned with a homogeneous field for which V,;¢ = 0, such
that it only depends on time, ¢ = ¢(¢). We can then locally go to a frame with
Gy = Mu, where the momentum density vanishes [23]. The 00 and ij components
of the stress energy tensor (1.24) can then be simply identified with the rest energy

density and pressure as in section 1.1.1. This gives

1

po = S0 +V(9), (1.26)
Py = 5 -V(0). (1.27)

From eq. (1.26) and (1.27) we see that we can satisfy the condition of negative
pressure if the potential energy dominates the kinetic energy, i.e. ¢? < V(g), for
which we obtain wy = % ~ —1. In the original models [11, 12, 13|, this was
achieved by trapping the inflaton field in a false minimum, with a large potential
energy. While it is trapped, the universe inflates, until the inflaton spontaneously
tunnels to the genuine global vacuum. However, it was found that this process could
not happen in different regions of the universe fast enough to be in agreement with
observations [28].

The “new” slow-roll inflation scenario requires the scalar field to slowly roll down
a flat potential [33, 34, 35]. We need to satisfy two conditions: ¢? < V(¢), to
obtain accelerated expansion, and |¢| < [3H|,|V,s|, which ensures inflation lasts

long enough [32] by preventing the inflaton from simply rolling down to the bottom

20



of its potential. These conditions can be quantified by two slow-roll parameters [36],

m2 V! 2 W
€= Tm (7) ;o N = m123177 (1.28)

where primes denote differentiation with respect to ¢ and the slow-roll regime cor-
responds to €, || < 1.

Note that during slow-roll inflation, the Friedmann equation (1.15) reduces to

H? ~ !

- 2
3mp,

Vi(g), (1.29)

which implies H & const. when ¢ < 1. This can be easily solved to give a(t) ~
eft which is the solution for de Sitter spacetime [37], which describes a universe
dominated by a cosmological constant [5]. Obviously, as the exponential expansion
has to finish eventually, we cannot be in a pure de Sitter universe. Inflation ends
when the slow-roll conditions are not satisfied anymore, which happens when the
inflaton approaches the minimum of its potential. Any reasonable model of inflation
needs to provide a mechanism for the accelerated expansion to stop, which is referred
to as the graceful exit problem [29].

Let me give an example of what the slow-roll conditions imply for a specific inflaton

2 is still just about viable

potential. The simple quadratic potential V' = %m%
according to the most recent Planck data [20]. From the first slow-roll condition in
(1.28), we obtain ¢ > mpy, i.e. super-Planckian field values are needed for inflation
to occur. Furthermore, the second slow-roll parameter 7 implies m3;m? < V. As the
potential dominates the energy density, using eq. (1.29) we can express the potential
in terms of the Hubble rate which yields m? < H?. We see that the inflaton has to
be light compared to the Hubble rate for the slow-roll condition to be satisfied.

A useful quantity to consider is the number of e-foldings N(¢), which measures

the amount of expansion during inflation. It is defined as

ten tend 1 Pend V
N(t) = tn 2Uent) _ Het ~ —5 —do, (1.30)
a(t) t mpy Jg 4

where the approximate equality holds during slow roll. This quantity is zero at the
end of inflation and N(¢) therefore corresponds to the number of e-folds before the
end. To agree with observations, we need the total number of e-folds N** > 60 in
simple slow-roll models. This ensures that the largest currently observable scales
were inside the Hubble horizon during inflation: The comoving Hubble scale (aH)™*

today is €% times larger than at the end of inflation [23], and comoving scales of order
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of the current Hubble scale must have been subhorizon during inflation, providing a
lower bound for the number of e-folds [remember that during inflation, H = const.,

and therefore it does not appear in eq. (1.30)].

General models of inflation

Although I will only consider simple, monomial potentials, let me very briefly give
an overview of the general classes of inflationary models that cosmologists study.
The simple single field models I just described were introduced by Linde [33]
and are referred to as chaotic inflation. In these scenarios, the initial conditions
in the universe are chaotic; in some regions the inflaton is displaced sufficiently
far from its minimum such that it can satisfy the slow-roll conditions and lead
to accelerated expansion [29]. The potential in this case can be either given by
a monomial, V(¢) x ¢ (where p is even due to symmetry and p < 4 to ensure

renormalizability), or by an exponential, V' (¢) o exp (, /1”,212 (b) (where p > 1, such
Pl
that the slow-roll parameters are € = /2 = 1/p). These models require a minimum

duration of the inflationary phase of N = 60 e-folds and a super Planckian initial
field value, ¢gare > mp; [29]. Hence, they are referred to as large-field models.

Large field models suffer from the problem that at these scales there might be cor-
rection terms to the inflaton potential which could prevent inflation from happening
[38]. Therefore, models for which the inflationary phase happened at lower energy
scales were introduced. These include hybrid inflation, where two scalar fields are
present [39], or models inspired by supersymmetric theories [40].

Except for providing a way to drive the expansion and to end it, all models
of inflation need to be consistent with the constraints from CMB measurements.
Large field models typically lead to the production of an observable amount of
primordial gravitational waves, see section 1.2.5. This is in contrast to the small
field models motivated by high energy physics [23]. Although we do not currently
understand physics at super Planckian scales, the BICEP2 results [21] suggest that

(modifications of)) chaotic inflation models could indeed be viable.

1.2.3. Beyond the homogeneous field evolution

Although inflation was initially introduced as a way of solving the Big Bang puzzles
highlighted in section 1.2.1, its main power and appeal lies in the fact that it can
explain the origin of the primordial fluctuations that were the seed of all structure,
and which we can still observe in the CMB [23]. To see this, we need to go beyond

the homogeneous description and consider inhomogeneous fluctuations around the
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background, i.e. expand the inflaton field as:

d(x,t) = ¢(t) + dp(x,t). (1.31)

The homogenous part ¢(t) (which is averaged over fluctuations and therefore inde-
pendent of position) is responsible for the de Sitter-like expansion of the universe,
whereas the fluctuations d¢(x, t) are coupled to the fluctuations in the metric around
the Friedmannian background.

In cosmological perturbation theory (see appendix A.1 for more details), we ex-
pand the metric and energy-momentum tensor to first order in perturbations. Using
the SVT decomposition (appendix A.1), which describes how a general perturbation
in the metric can be split into scalars, vectors and tensors that all transform dif-
ferently under rotations, we find that the scalar perturbations are directly coupled
to the perturbations d¢. Vector perturbations are not produced by inflation and
decay [32], while tensor perturbations correspond to GWs and are not coupled to
the inflaton [23]. Instead, they need a source with non-zero quadrupole moment
(see section 1.5.2) which is related to a non-zero anisotropic stress in the energy-
momentum tensor, not present for a scalar field [28]. Similarly, no perfect fluid can
act a source for GWs [5].

Power spectra

In the next two sections, I will explain how quantum vacuum fluctuations during
inflation can become “classical” once they leave the horizon and lead to a scale-
invariant spectrum of fluctuations. A power spectrum describes the amplitude of
different Fourier modes k of a field ¢ and is defined as an ensemble average of the
fluctuations [32]:

(dxdw) = (2m)°0(k + K) Py(k) . (1.32)

The power spectrum is the Fourier transform of the real space correlation function,
(p(x)o(y)) [32]. The mean fluctuations in all fields are zero on average, i.e. (¢x) =0,
as there should be equally many regions with higher or lower amplitude. The power
spectrum, on the other hand, gives you a statistical measure of the fluctuations as
it estimates the typical deviation from the mean you would expect for each mode.
A real field distribution is a realization of the statistical ensemble, and therefore
drawn from the probability distribution in (1.32) [23].
We can also define a dimensionless power spectrum (denoted by a curly P)

Py(k) = %P¢,(k> . (1.33)
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This is directly related to the real space variance 03, of the field and describes the

power per logarithmic & interval [32]:
o; = (o(x)?) = / Py(k)dInk. (1.34)
0

1.2.4. Canonical quantization

In section 1.2.5, I want to study the evolution of quantum fluctuations during in-
flation. To do this, we need to use the standard approach of canonical quantization
introduced by Dirac [41]. Tt proceeds by promoting fields to operators that sat-
isfy commutation relations (defining an algebra) which makes it possible to define

particle states in terms of eigenstates of the Hamiltonian of the system.

Flat background

Let me outline the quantization procedure for a scalar field ¢(x,t¢) on a flat back-
ground first, before generalising it to a curved background (as needed in Cosmology)
in the next section. I will follow the very clear treatment in [31], working in the
Heisenberg picture where operators are time-dependent and states constant.

The Lagrangian L, of a scalar field is given by eq. (1.23). Let us assume from now
on that we are dealing with a free field, which does not interact with other fields or
itself. In this case, the potential is V(¢) = $m?¢? [31]. The action (1.7) for a scalar
field on a flat background is then

S:%/ﬁ%ﬂ[&—wvw2—m%ﬂ. (1.35)

Just like in classical mechanics, we can use the Hamiltonian instead of the La-

grangian to describe the dynamics of the system. They are related by

H:/ﬁﬂ@-@, (1.36)

where 7(x,t) = 9L _ is the conjugate momentum density. Using eq. (1.23), 7 = qb

T 99(xt)
and the Hamiltonian becomes

H:%/ﬁﬂﬁ+awf+wwy (1.37)

The equation of motion, derived by minimising the action or from Hamilton’s
equations, is just

6=V +mPp=0. (1.38)
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We can expand the field in terms of Fourier modes,

P(x, 1) / - "X pu(t) (1.39)
x,t)= | —= .

’ (2m)3 c ot
and similarly for 7(x,t). Substituting the Fourier space expansion into the equation

of motion (1.38), we find that the field satisfies the equation of a harmonic oscillator,
S+ wid =0, (1.40)

with frequency w? = k? +m?. The reason it is useful to treat the problem in Fourier
space is that the different oscillators k decouple and are therefore independent of
one another [31].

To arrive at the quantum theory, we follow the same approach one would first
learn in a quantum mechanics course when dealing with position and momentum
operators: We promote the field and its conjugate momentum to operators Qg(X, t)

and 7(x,t) that need to satify commutation relations

[&(x, 1), #(y, t)] —id(x—y), (1.41)

with all other commutators zero. Note that as the field ¢ is real, in Fourier space
the operators need to satisfy ngSIT( = qg_k. As the modes ngSk behave like a harmonic
oscillator, it is instructive to define creation and annihilation operators aL and ay,

where

. 1
a = %gbk(0)+i 5 (0)- (1.42)

Plugging the Fourier expansion (1.39) into (1.41), we find that they obey commu-

tation relations

[ak, aL,} = (2m)*0(k — K) . (1.43)

We can now perform the standard Fock space quantization [41], where the vacuum
|0) is defined as the state annihilated by ax (ax|0) = 0), and n-particle states are
defined by repeated application of the creation operator to the vacuum (where each
aL creates a particle with momentum k). The basis of the Fock space are eigenstates
of the number operator Ny = altak, whose eigenvalues count the number of particles
with momentum k. The Hamiltonian (1.37), evaluated at ¢ = 0 (as it does not
explicitly depend on time and is therefore conserved), can be expressed in terms of

the number operator as (ignoring an infinite “vacuum” energy contribution which
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is not important in quantum field theory [31])
ﬁ:/ﬁmmb (1.44)

which clearly shows that the vacuum |0) is the state with the lowest possible energy.
We could also define time dependent creation and annihilation operators. They
are similar to the expressions in eq. (1.42) but are evaluated at a general t. The
time dependent and independent, (for ¢ = 0) operators are related by aj.(t) = al e™*",
ax(t) = axe ™kt
In light of this, we can consider quantization from a different but equivalent
viewpoint: Instead of expressing the annihilation and creation operators as linear

combinations of the field and its conjugate, we simply perform a mode expansion of
the field [31] as

S(t) = [U;;(t)ak +op(t)al k] . (1.45)

The complex mode functions carry all the time dependence and satisfy the equation
of motion
Uy + wivg =0, (1.46)

from eq. (1.40). A general solution to this equation is given by
Vg (t) =A (O./keiwkt + ﬁke_iwkt) s (147)

where A is a normalization factor. Like the frequency wy, the mode functions only
depend on the magnitude |k|, and the directional dependence is contained in the
factors ay, aT_k, which can now be simply regarded as field amplitudes. Plugging the
mode expansion (1.45) into (1.39) we obtain (after changing variables from —k — k

in the second term)

b(x,t) = / (311;3 [v,:(t)akeik'x—i—vk(t)aTke_ik'x] : (1.48)

We can now postulate the CRs (1.43) for the amplitudes ay, aL. To achieve consis-
tency with the CRs for the field and its conjugate, eq. (1.41), the mode functions

vk (t) need to satisfy the normalization condition [32]
O () g (t) — vie(B) g (t) = 1. (1.49)

Eq. (1.46) is a second order differential equation for the complex mode functions,
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so the normalization condition does not suffice to specify them completely. To
determine vy (t) uniquely, we can demand that the vacuum, defined by ax|0) = 0, is
an eigenstate of the Hamiltonian with minimal energy. This fixes the mode functions

to be [32]
1

VvV ka

Having found an exoression for the mode functions, we can define vacuum fluctua-

v(t) = ekt (1.50)

tions of the field ¢(x,t), by studying the expectation value (¢ ¢w/) of Fourier modes
in the ground state. Using equation (1.45) and noting that ay|0) = 0, (0]al. = 0, we
obtain

(Prdre) = e (D) (O] ara’ ,[0) . (1.51)

Using eq. (1.43), this gives
<¢k¢k’> = (27’(’)35(1{ + k,)|’l}k<t)’2 . (152)

Expanding background

The approach involving mode functions is also used to quantize fields on a curved
background. Let us consider a flat (k = 0) Friedmann universe where the metric is
expressed using conformal time, eq. (1.14). In these coordinates, the metric is related
to flat Minkowski space by a conformal transformation [31]. This already tells us
that the problem in a homogeneous isotropic curved background will be similar
to the flat situation we considered above, however there will be some important
differences.

Noting that \/—g = a* for this metric, and that indices are now raised and lowered

with g,, = a*n,,, we see from simple substitution that the action (1.7) becomes

1
S = 3 /d3xdna2 (07 — (V¢)? — m*a®¢?] , (1.53)
where a prime denotes differentiation with respect to to conformal time. To make
this look more like eq. (1.35), define an auxiliary field y = a¢. Then, eq. (1.53) can
be written as [31]

1 "
S = 5 /d3xd77 [X’Q —(Vx)* - (m2a2 - a_) XQ} : (1.54)
a
This looks exactly like the action for a field in flat spacetime, eq. (1.35), except that

al/

the effective mass mZz(n) = m?e* — % is now time dependent. The equation of
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motion for the Fourier modes xy derived from this action is given by [c.f. eq. (1.40)]
Xie +wixie =0, (1.55)

where the frequency w?(n) = k? + m?;(n) is time-dependent.

Due to the similarities in the form of the equations, we can follow the same steps
to quantization as for the flat case. We can start by performing a mode expansion
for x(k,n) as done in eq. (1.45), but the equation of motion for the mode functions
now has the time dependent frequency wy (7).

The explicit time dependence in the action leads to complications when trying
to determine the mode functions. While the same normalization condition still
holds [31], the second condition, related to the choice of vacuum, does not give a
well-defined answer anymore. Like the action, the Hamiltonian for the field y(x,n)
is now explicitly time dependent. Therefore, it cannot possess time independent
eigenvectors. In particular, this means that there is no uniquely defined vacuum
state.

Choosing the correct mode functions will depend on the problem at hand, and
there are approaches such as using the instantaneous vacuum state, defined at a
specific time, or the so-called adiabatic vacuum if the frequency wy(n) varies slowly
[31]. Fortunately, in the case of inflation, the background space can be approximated
by de Sitter and there is a preferred choice for the mode functions, described by
the Bunch-Davies vacuum [42]. We will now consider the quantization of metric

perturbations during inflation.

1.2.5. Quantum fluctuations during inflation

Before deriving the mode functions (and therefore the vacuum fluctuations) of the
metric perturbations during inflation, let me make the following observation. While
in the previous section we quantized the “full” scalar field ¢, ignoring its interaction
with the background, in the case of the inflaton we need to consider the homogeneous
field and its fluctuations separately. Consider equation (1.31). The background ¢(t)
can be regarded as behaving completely classically; it simply drives the expansion
and determines the de Sitter-like background evolution. When deriving the quantum
fluctuations from inflation, we need to consider the inflaton fluctuations d¢(x,t),
which are related to the fluctuations in the metric through Einstein’s equation.

In linear perturbation theory, where the perturbations are small, we can ignore all
terms that are second order or higher. This is the approach used in Cosmology, and

hence the perturbations can be thought of living on a fixed, unperturbed spacetime,
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as any backreaction effects would be of higher order in the perturbation [23].

To study quantum fluctuations during inflation, we consider the metric pertur-
bations as free fields propagating on a fixed FRW background [32]. The scalar
perturbations of the metric are coupled to the inflaton perturbations d¢(x,t), and
we can pick different gauges to study them (see appendix A.1). After inflation, they
will induce density perturbations in the matter distribution and can therefore be
regarded as the source of all structure.

A simpler problem to consider are the tensor perturbations, as they do not couple
to inflaton perturbations [28]. As we will see explicitly in section 1.5.1, the transverse
and traceless spatial metric perturbations h;; correspond to GWs. As GWs are the
main focus of this thesis, I will outline the quantization procedure in this case,
deriving a power spectrum of fluctuations of tensor modes. For completeness, I will
give the result for scalar modes at the end.

To quantize the tensor perturbations h;;, the Einstein-Hilbert action (1.8) in a
Friedmann universe needs to be expanded to second order [32]. Keeping only the

second order term yields [5]

2

mp)
s =

< dnd’za® [(hi;)? — (Ohi;)?] - (1.56)

As the tensor field h;; contains two independent polarizations r = +, x (section
1.5.1), it is useful to transform to Fourier space where it can be expressed in terms

of the polarization tensor €};(k), which satisfies k'e;; = 0, €;(k)e zj(k) = 20,4 [43]:

dskj Z X
hij :/ 32 e e (1.57)

If we also define hj, = Smprhy and substitute expansion (1.57) into the action (1.56)
we obtain [32]

1 - a// ~
S](;[){ = Z §/dnd3k l(h’f(’f — (l{;2 — ;) (hi;)z] : (1.58)

The corresponding expression for the Hamiltonian is given by
H(2) _ 1 dgk Br/ 2 k2 _ CL_// ;Lr 2 1.59
Sr=305 [ ar| o+ (-2 ) G2l (1.59)

The action (1.58) is the same as two copies of eq. (1.54) in Fourier space, but with

no mass term. When quantizing the tensor perturbations, it is therefore the same
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exercise as trying to quantize two massless scalar fields in curved spacetime. If we
expand the Fourier components in terms of creation and annihilation operators as
in eq. (1.45), we find that the mode functions obey [5]

a/l
vy + (k2 — ;) vy =0. (1.60)

This is known as the Mukhanov equation. During inflation, we are in a quasi de
Sitter phase where H = g = const. Changing to conformal time, this implies
a' = a’H and integrating gives

a(n) = ! (1.61)

_H_n )
Note that during de Sitter expansion, conformal time is negative, and becomes
infinite in the past when a — 0. Therefore, we can write “7” = n% and eq. (1.60)

becomes 5
vy + (k2 - ?> v =0. (1.62)

In de Sitter space, there exists a preferred quantum state, the Bunch-Davies vacuum.
It is time independent and can therefore be used to determine unique mode functions
[31]. Let us construct them. In the far past, when |kn| > 1, the second term in
eq. (1.62) becomes negligible. At these early times, all scales were far inside the
horizon and did not feel the curvature of spacetime, so we obtain the mode equation
for Minkowski space, eq. (1.50) with w, = k. The Bunch-Davies vacuum therefore
corresponds to the minimal excitation state in the far past [31]. This condition and
the normalization (1.49) are sufficient to determine the mode functions uniquely.

The general solution of equation (1.62) gives the Bunch-Davies mode functions,

e

welt) = %}: (1 - kin) . (1.63)

To determine the power spectrum, remember from equation (1.52) that we simply
need to calculate the modulus squared of the mode functions which in this case is
given by

1

Eq. (1.64) is defined for hf, however we are interested in the power spectrum of the
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physical field hj = —2—h7:

amp]

ntipine)y = (ot + 1) L (165
= (2m)35(k +K) 21 (1+k*n?), (1.66)

3.2
kE3mg,

where in the second equality we used (1.61). The first line, eq. (1.65), seems to
imply that fluctuations decay with time due to the presence of the factor a?. This is
true for any modes deep inside the horizon, with kn > 1: the mode Bﬁ, rescaled by
a, simply oscillates in a Minkowski vacuum, but the physical mode hy decays due
to the expansion of the universe. The beauty of the de Sitter-like expansion during
inflation is that when the modes become superhorizon, kn < 1, the second term in
(1.66) can be ignored and the spectrum of fluctuations approaches a constant (as

H ~ const). In terms of the dimensionless power spectrum (1.33),

4 (H\?
P = i (50)

The total tensor power spectrum is actually twice this value as we have to take into

(1.67)

k=aH

account both polarizations. Note that eq. (1.67) needs to be evaluated at horizon
crossing, k = aH. H is a constant in pure de Sitter space, and therefore the power
spectrum would be perfectly scale-invariant, i.e. the same for any mode k exiting
the horizon at different times. However, in a slow-roll inflationary model, we only
have quasi de Sitter evolution, where H is not perfectly constant and therefore the
spectrum is slightly redshifted. Modes that exit the horizon earlier will have a
slightly larger amplitude, as H becomes smaller with time. This scale dependence
is taken into account by evaluating the spectrum at horizon crossing, so eq. (1.67)
can be used to describe fluctuations from slow-roll inflation [32].

As the power spectrum is constant on scales kn < 1, fluctuations “freeze out”
after they cross the horizon. This is related to the fact that on scales larger than
the Hubble scale (aH)™!, no causal physics should act [32]. We therefore do not
have to worry about their behaviour until they re-enter the horizon at a later time,
long after inflation. Moreover, the evolution during the de Sitter expansion makes it
possible to stretch quantum fluctuations to very large scales. The power spectrum in
eq. (1.67) can therefore be regarded as a classical probability distribution for tensor
modes [32]. Understanding the quantum-to-classical transition is the subject of the
field of decoherence [44].

Although vacuum fluctuations are always present due to the uncertainty principle,
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usually their amplitude is vanishingly small on large scales [5]. Only because of
the accelerated expansion, which leads to a shrinking comoving Hubble volume,
do we arrive at a situation where these quantum fluctuations can be stretched to
cosmologically relevant scales and retain their amplitude [31].

Inflation produces a nearly scale invariant spectrum of perturbations. I have
shown this explicitly for the tensor modes, but it is also possible to do the same
exercise for scalar perturbations. Unlike tensors, these couple to the inflaton per-
turbation, so we will need to consider the spectrum of a quantity that contains both
scalar metric and inflaton perturbations. A gauge invariant choice is the comoving

curvature perturbation [32]

R = q;+%5¢, (1.68)

where WU is the metric perturbation corresponding to the gravitational potential in
the Newtonian gauge (see appendix A.1). R describes the spatial curvature on
comoving (constant ¢) hypersurfaces, as measured by an observer moving with the
expansion of the universe. It is a useful quantity to consider as it is conserved
outside the horizon, even after the end of inflation when the inflaton (and hence its
perturbation) has decayed [23].

To find the power spectrum of R from inflation, we can choose to quantize either
the metric or inflaton perturbations, depending on the gauge. The approach is
similar to the case of tensor perturbations, but the action now contains a mass
term that depends on the slow-roll parameter e [32]. However, in the pure de
Sitter limit, where ¢ — 0, we again obtain the mode equation for a massless field
(1.62). Even for slow-roll inflation, we can use the Bunch-Davies mode functions:
They are well defined as long as the inflaton is a light field, m* < H?, which is
satisfied by n < 1 [31]. Note, however, that for a heavy field with m? > H?, there
would be a mass term in equation (1.58) that can make the effective frequency
positive [31], resulting in oscillatory behaviour, rather than the freeze-out of modes
as described above. Hence, only light fields can acquire a scale-invariant spectrum
of perturbations during inflation.

The power spectrum of fluctuations for the comoving curvature perturbation is

H? H?

Prh) = G g2

: (1.69)

where again we need to evaluate the Hubble rate at horizon crossing to take its time

dependence into account. Note that this can be derived in the spatially flat gauge,
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where W = 0, from the power spectrum of inflaton fluctuations [32]:

Py (k) = (%)2 : (1.70)

Instead of R, we could also have considered the curvature perturbation ¢ on uniform
density hypersurfaces (for which dp = 0). It is also gauge invariant and equal to

—R during slow-roll inflation [32]:
H
—C = \If—i—?ép. (171)

The curvature perturbations are also equivalent on superhorizon scales k¥ < aH
where ( = —R, as long as there are only adiabatic density perturbations [45], so
they can often be used interchangeably.

The scale dependence of the tensor and curvature power spectra can easily be

quantified by introducing spectral indices n, and n; for the scalar and tensor modes
[23]:

_ dlnPr

ns—1 = Tk = 21 — Ge, (1.72)
. dlnPt .

o= = —2€. (1.73)

The second equality shows the value of the spectral indices in terms of the slow roll
parameters (1.28) when calculated in the slow-roll approximation. As they are very
small, this demonstrates the near scale invariance of the spectra.

It is also useful to define the tensor to scalar ratio [32]

r= P 16€ . (1.74)
Pr
In slow-roll inflation, scalars strongly dominate over tensors. The values of n, and
r are used to constrain inflationary models, with the most recent bounds by Planck
giving ng = 0.9603 £+ 0.0073 and r < 0.11 [20].

While the spectrum of scalar modes has been extensively probed through CMB
temperature and polarization measurements (see next section), tensor modes from
inflation have remained elusive for a long time. Very recently, the BICEP2 collab-
oration [21] detected B-mode polarization of potentially primordial origin, which
remains to be verified by other experiments. Their analysis suggests a value of
r ~ 0.2, however this has been obtained from only a small patch of sky over the

South Pole and will probably change when a full sky analysis is available, which
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would also provide us with the full spectrum of tensor perturbations.

Tensor modes are a very useful tool in constraining models of inflation. From
eq. (1.67) it is clear that the spectrum of tensor perturbations is directly proportional
to H? and therefore P, o< p/mp, from the Friedmann equation (1.15). Hence, it gives
you a direct measure of the energy scale of inflation and therefore the inflationary

potential, which dominates the energy density [28].

1.3. From inflation to the cosmic microwave

background

In this section I want to give a very brief overview of what happens to the primordial
spectra after inflation. Studying this evolution in detail is a complicated field (rooted
in cosmological perturbation theory) and the subject of many Cosmology textbooks,
see e.g. [23, 28]. The scalar perturbations are the seed of all the structure we observe,
while both scalar and tensor modes will leave an imprint on the CMB anisotropies.
In particular, a specific pattern in the polarization of the CMB distribution, the
B-mode, can only be sourced by tensor perturbations and could therefore provide a

direct window into the study of gravitational waves from inflation.

1.3.1. Perturbations in matter and radiation

The power spectra for scalars and tensors derived in the previous section determine
the subsequent evolution of perturbations. Any quantity of cosmological interest
can be ultimately traced back to these initial conditions. After the inflaton decays
(which is the subject of reheating, described in section 1.4), the presence of the
curvature perturbation R will source density fluctuations in each particle species
[23]: baryonic matter, cold dark matter, neutrinos and photons.

The perturbations in the fields set up by the simplest slow-roll inflationary sce-
nario are adiabatic, which means that their number densities are perturbed by the
same factor [29], and Gaussian, so their Fourier components, like the vacuum fluc-
tuation, have independent probability distributions [23] (and we therefore only need
2-point functions to describe them). More complicated models of inflation can lead
to isocurvature perturbations and non-Gaussianity, but both of these features are
subdominant according to the most recent data [19].

We typically study the fluctuations in Fourier space, as for small perturbations
different k modes will evolve independently [5]. Fourier modes behave very differ-

ently depending on whether they are outside (frozen in) or inside the horizon (when
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causal physics can affect them [28]). Particularly, perturbations that re-enter the
horizon (i.e. k modes with wavenumber k > aH) during radiation domination will
evolve very differently to ones that enter during matter domination.

Another important epoch is the time of recombination around 380.000 years after
the Big Bang, when neutral atoms can first form. Until this point, the photons and
baryons were tightly coupled [23], and the photons’ mean free path was very small as
they constantly Compton scattered off free electrons. At the time of recombination,
this mean free path increases until the photons completely decouple from the baryons
and free-stream to us today, where we observe them as the CMB. The position of
this event in spacetime is referred to as the surface of last scattering.

On very large scales, which were superhorizon at the time of recombination, we can
directly relate the fractional temperature perturbation in the CMB to the primordial

curvature perturbation R [23],
oT 1

T = —573. (1.75)
However, on smaller scales fluctuations in the matter and radiation densities have
evolved and will not simply be related to the primordial spectra anymore. Instead,
the evolution is described using transfer functions 7°(t) [23, 28], which relate the
power spectrum of any field g(x) at time ¢ to the primordial spectrum as P,(t) =
T2(t)Pr.

The perturbations in the matter distribution are the seeds of all the structure we
observe, from stars to clusters of galaxies. These gravitationally bound object can
form when the density contrast dp/p becomes large and the equations of motion be-
come non-linear, so cosmological perturbation theory no longer holds. For photons,
on the other hand, radiation pressure prevents perturbations from gravitationally
collapsing [28]. The CMB fluctuations were therefore imprinted when the evolution
was still linear, which makes it possible to check the validity of the inflationary
paradigm by directly probing the primordial power spectra (and taking the transfer
functions into account).

The perturbations in the photon distribution manifest themselves as fractional
temperature perturbation in the CMB, commonly denoted by ©(x, p, t) = §T/T [28].
The photon distribution is mathematically more complicated than non-relativistic
matter, as it depends not only on time ¢ and position x, but also the direction of
propagation of the photons p (so the CMB is not only inhomogeneous, but also
anisotropic [28]). It makes sense to expand the photon distribution function in

terms of Legendre polynomials P, to take care of the p dependence [28]. Specifically,
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defining k - p = cosf, in Fourier space we get

Ok, t) = ﬁ /11 d(cos ) P(cos0)O(k,cosb, 1), (1.76)
so the full photon distribution can be expressed as an infinite series of moments
[. I = 0 is the monopole, [ = 1 the dipole, [ = 2 the quadrupole etc. When we
measure the CMB at our position (xq) today (¢), we can only probe the directional
dependence p. It is then useful to expand the perturbation in terms of spherical
harmonics instead. They enable us to expand the perturbation on a sphere [28], so we
can describe photons arriving at our position which originated at the last scattering
surface. The amplitudes of each spherical harmonic are called the multipole moments

and are given by [32]
o = [ 45100, (1.77)

The label [ of the spherical harmonics is related to the angular size € of the pertur-
bation on the last scattering surface, § ~ 7/l [28], so larger multipoles probe smaller
angular scales.

The multipole moments fully characterise the perturbation. Their mean is zero,
while their variance (ajmaj,, ) = Ci6dmms describes the statistical properties of the
field, i.e. a typical realization of each multipole moment a;, will be drawn from
a Gaussian centred around zero with variance C; [28]. It does not depend on m
(which takes integer values between —[ and [) due to the rotational invariance of the
background. The variance is related to the primordial power spectrum of curvature

perturbations (1.69) (which dominates over tensors),

C) = 4n /OO T3 (k, l)PR(k)% : (1.78)

0
where T (k, 1) is the transfer function for the temperature perturbations [23]. Eq. (1.78)
is the angular power spectrum of temperature fluctuations.

The angular power spectrum has been explored in great detail by WMAP [18] and,
with even higher angular resolution, by Planck [19], providing us with a wealth of in-
formation about the early universe. The temperature power spectrum is dominated
by scalar perturbations and cannot be used to extract parameters characterising
the tensor perturbations [23]. However, primordial tensor modes can be measured

through the CMB polarization [28], which I will discuss now.
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1.3.2. CMB polarization

Analysing the polarization of the CMB [46] is a complicated field, both from a
theoretical and experimental point of view. For a review, see e.g. [47]. Here I want
to discuss the main theoretical aspects of polarization, and describe the B-mode
polarization that provides a direct signature of gravitational waves [48, 49].

Recall that electromagnetic waves are transverse, which means that the direc-
tion of the field oscillation (which determines the polarization) is orthogonal to the
propagation of the wave. The intensity (amplitude) of the wave will therefore only
vary in a plane orthogonal to the wave vector k. If the intensity is the same in
any two orthogonal directions in this plane, the wave is unpolarized, otherwise it is
polarized. The most general type of polarization is called elliptical, however there
are two special cases, circularly polarized waves (where the field amplitude vector
traces out a circle in the plane of oscillation) and linearly polarized waves (where
the field vector traces out a line) [50].

Before recombination, there is no reason for the photon background to be polar-
ized. However, upon decoupling, the photons’ mean free path increases and as long
as the photon distribution ©;(x,t) has a non-zero quadrupole moment (I = 2), the
wave becomes linearly polarized due to Thomson scattering with electrons [51]. Let
me explain this heuristically. Thomson scattering describes how the electric field
of the incoming wave excites the electron, which then emits a wave at the same
frequency in a different direction. The wave can only retain polarization transverse
to the outgoing direction, and will therefore not transmit any intensity in the field
component parallel to it, turning an initially unpolarized into a linearly polarized
wave.

In the case of the CMB, we do not deal with single plane waves but with a
background of photons, which scatter off electrons coming from all directions. It
turns out that a background that is either isotropic or only has dipole anisotropy
will not be polarized by Thomson scattering [28].

For simplicity, first consider two unpolarized light waves with equal intensity com-
ing from orthogonal directions  and ¢, and scattering off an electron at the origin
that transmits radiation in the Z direction. The wave propagating towards the elec-
tron in the —2 direction will retain polarization in the ¢ direction after scattering,
whereas the one from —g will keep the & component of polarization. Therefore,
the transmitted intensity is the same in both directions and the background re-
mains unpolarized. We arrive at the same conclusion for a background with dipole
anisotropies, as photons coming from opposite directions with different temperatures

will average out. To produce linear polarization, we need a quadrupole moment in
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the photon distribution. In this case, orthogonal directions are fundamentally dif-
ferent, and therefore the transmitted intensity will have a preferred direction and

the background becomes polarized, see figure 1.1.

Quadrupole
Anisotropy |
o
Y
Thomson
Scattering

Linear
Polarization

Figure 1.1.: A photon distribution with a quadrupole anisotropy can be linearly
polarized from Thomson scattering with electrons. Reprinted from [47],
with permission from Elsevier.

No further polarization will be induced after the photons have completely decou-
pled (except for late time polarization when the universe becomes reionized, which
leads to a reionization bump in the polarization power spectrum on large scales [52]).

Note that the polarization of the CMB is not very strong, only of the order of a few
percent [47], as the quadrupole during the tight coupling regime is small [28]: Before
decoupling, a photon’s mean free path is very short, so all the photons arriving at
a point x scattered from somewhere nearby. Therefore, they will all have nearly
the same temperature, and there is no strong directional dependence in the photon
distribution. This corresponds to a monopole perturbation ©g(x,t) (which is the
average over all directions). There is also a significant dipole contribution ©,(x,t)
as the electrons have a bulk velocity and the photons move with them. Monopole
and dipole of the fractional temperature distribution therefore dominate, however
the quadrupole is still big enough to lead to a measurable polarization signal.

It is straightforward to see why we need a quadrupole moment in the photon
distribution to produce polarization when we describe polarization mathematically
in terms of Stokes parameters [50]. A polarized wave can be described by the
intensity tensor (with a basis of polarization vectors ¢, &) I;; = 2(EET), where E
is the electric field vector of the polarized wave. Assuming it is moving in the 2

direction,
E(t, z) = Ajetel®= e, 4 A, et®reilawtle, (1.79)
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The Hermitian matrix I;; can be expanded in terms of Pauli matrices and written

as [28]
L. — : ! (1.80)
i“\vtiv 7-0 )" '

where the coefficients are the Stokes parameters [23]:

T = (A} + A%, (1.81)
Q = (Al-4), (1.82)
U = (2A1A5c08(¢1 — ¢2)) , (1.83)
V. = (2A41Assin(¢1 — ¢9)) . (1.84)

The Stokes parameters satisfy 1T? = Q* + U? + V2, where T is the total intensity
(corresponding to the temperature), () and U characterise linear polarization (with
magnitude P = /Q? + U2, angle a = 1tan(U/Q)) and V describes the degree
of circular polarization and is zero for linearly polarized waves (which have field
components that are in phase). When we perform a rotation by an angle ¢ in the
polarization plane, I and V' are invariant (scalars) but @) and U transform like a
spin-2 field (rotate by an angle 2¢) [32]:

Q cos2y  sin 2y Q , 2 .
(U) — (_ Sn 20 cos 2¢> <U> or Q+iU — e™[Q +iU]. (1.85)

To produce linear polarization, we therefore need an object with the same transfor-
mation properties as the spin-2 field (1.85). The quadrupole of the photon distri-
bution ©y(k) depends on Py(cosf) = Yoo(f) from eq. (1.76), i.e. the second order
spherical harmonic, which transforms as spin-2 [53]. It is therefore a necessary re-
quirement for the quadrupole moment of the photon distribution to be non-zero in
order to produce polarization from Thomson scattering.

To study what the strength of polarization is today, we need to integrate over all
incoming directions at each scattering location and consider all outgoing directions.
This calculation requires full use of the Boltzmann equations [28] and can be found
n [54, 55, 56]. As for the temperature fluctuations, we can define a polarization
power spectrum which shows the amount of polarization on different angular scales.
As the Q,U parameters are a spin-2 field, we cannot just use ordinary spherical

harmonics, but need to revert to spin-weighted spherical harmonics 19Y,,(7) [54].
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The field in direction n can then be expanded as:

(Q +iU)(R) =Y azaim +2Yim (D) . (1.86)

Im

Clearly, it would be preferable to describe polarization in terms of scalar quantities,
just like we do for 67/T. Indeed, we can perform a change of basis and define
spherical harmonic coefficients for two scalar quantities E(n) and B(n) [54, 55]:

1 1

Aim = —5 (24m + G_24m), aBim = 5 (@21m — G—24m) - (1.87)

E-modes correspond to polarization fields whose strength varies parallel or perpen-
dicular to the polarization direction (like a curl-free electric field), whereas for B-
modes the variation is at 45° (like a divergence-free magnetic field). As scalars, they
are invariant under rotations, but only F is invariant under a parity transformation
while B changes sign.

The E/B decomposition is useful as you can show that scalars produce only E-
modes, whereas tensors produce both E and B [48, 49]. Heuristically, the reason
scalars and tensors produce different polarization types can be understood as fol-
lows (as explained in [28]): Scalar perturbations can be described by plane waves,
where the wave vector k determines the direction of propagation. There should
be rotational symmetry around this wave vector, and only the parity invariant E-
modes should be produced. Tensor perturbations, on the other hand, introduce an
azimuthal dependence into the photon distribution. This additional component af-
fects the polarization and we find that they can also give rise to a B-mode pattern,
which changes sign under a parity transformation.

The fields T, B and E completely describe the photon field and we can define
power spectra for each of them. We can use polarization alongside temperature
measurements to probe the CMB anisotropies. Unlike the temperature fluctuations
that interact with gravitational fields, the polarization pattern does not change after
production (except due to lensing [23]), as it can only be generated by scattering.

To describe the photon distribution statistically, we can use autocorrelations of
the three different fields, 7', FE and BB, and cross correlations. However, the
correlators T'B, E B vanish by symmetry arguments (as B is odd under parity) and
only the TE cross power spectrum is non-zero [32]. The different angular power

spectra can be denoted as

1 *
XY = ST > (axmayvim) XY =T,E,B. (1.88)

m
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Note that there is a way to produce a non-zero T'B and E B power spectrum: If
gravity was chiral, i.e. the two tensor polarizations (see section 1.5.1) were different,
parity would be violated and the T'B and EB correlators would not vanish [57]. It
could be easier to detect tensor modes through a measurement of the T'B rather
than the BB power spectrum, as the amplitude of T is much bigger than that of
B. A chiral graviton from loop quantum gravity and its implication for the tensor
power spectrum are the subject of the work presented in chapter 2.

Like the temperature power spectrum, the T'E' and E'E spectra are both dom-
inated by the contribution from scalar modes [32]. Measuring the B-mode power
spectrum, on the other hand, enables us to directly probe tensor perturbations.
While the E-mode polarization has already been detected around 10 years ago
[58, 18], due to the small value of 7 it is much more difficult to measure B-modes.
They might have finally been detected by BICEP2 [21], suggesting a value of r ~ 0.2.
This result will need to be complemented by a full sky analysis of polarization, as
performed by the Planck collaboration who are still due to release their results, as
well as confirmed by other experiments [59, 60].

Finally, a remark: It can be shown that gravitational lensing can distort an E-
mode into a B-mode pattern, with the effect peaking on scales I ~ 1000 [61]. This
will affect the primordial B-mode spectrum due to tensors, but leaves it unaffected
at large scales. Lensing B-modes have recently been discovered for the first time by
the South Pole Telescope [62].

1.4. Reheating

Reheating describes the transition from the end of inflation, where the universe is
filled with an oscillating homogeneous field, to radiation domination. Except for
gravitational waves, the subject of chapter 3, we do not expect many cosmological
observables to have been directly affected by this process, making it one of the least
probed stages in the early universe.

For a long time, the detailed dynamics of reheating were not well understood and
the decay was described by a perturbative, effective theory. In 1994, Lev Kofman and
collaborators [63] developed the theory of preheating, which was studied analytically
in great detail and describes the early stages of the transition. In this section, I will
summarize the main aspects of the theory of reheating.

At the end of inflation, when the inflaton oscillates around the minimum of its
potential, we are faced with a problem: during the de Sitter-like exponential expan-

sion, the number density of all particle species reduced dramatically, as n oc a=3.
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Therefore, the universe at the end of inflation is empty and cold, with all of the
energy stored in the homogeneous inflaton field. Somehow, we must recover the hot
Big Bang picture (which states that the universe after inflation should be in thermal
equilibrium) and all the particle species within it.

The idea of reheating, first discussed in [33], states that while the inflaton ¢ os-
cillates about the minimum of its potential, it produces elementary particles. After
(almost) all of the inflaton energy has been transferred, the decay products ther-
malise at the reheating temperature 7)., motivating the name reheating (the prefix
“re”, however, is very misleading, as there was not necessarily a stage of thermal
equilibrium before reheating occurred). The physical mechanism leading to parti-
cle production was described as a perturbative decay of inflaton particles (which
make up the homogeneous field condensate that drove inflation) into other particle
species. This process was studied in detail by [64, 65], where the reheating tem-
perature (providing the initial condition for the hot Big Bang picture) for different
models was derived.

However, it was realised that the reheating process described in this manner pro-
ceeded very slowly and might never complete in some models, for which a lot of the
energy remained stored in the inflaton field [63]. The failure of the theory is related
to the fact that during the initial stage of reheating, the oscillating homogeneous
inflaton should be regarded as a classical condensate, rather than a collection of
single particles. If we think of the inflaton as a classical background, it can source
quantum fluctuations in the fields it couples to: The oscillations of ¢ result in para-
metric resonant behaviour in the field fluctuations, leading to exponential growth of
certain momentum bands, and hence very efficient particle production.

This process was introduced in [63] and called “preheating”, to highlight that it
describes the initial stage of reheating. The model considered was that of an in-
flaton with a quadratic potential V(¢) = m?®?, coupled to a scalar field y. It was
found that the parametric resonance starts off as broad (with a large range of am-
plified momenta) and many y particles are produced, but eventually the resonance
becomes narrow and much less efficient. At some point, the resonance ceases and
the perturbative description becomes appropriate for the final stage of the decay
process.

The analytical investigation of preheating was developed further in [66], where the
expansion of the universe and the backreaction of the created particles was taken
into account. Moreover, in [67] the model of massless preheating was studied, where
the inflaton potential is quartic, V(¢) = A\¢™.

In section 1.4.1, I will summarize the main aspects of the perturbative theory
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of reheating and in 1.4.2 T will explain the physics of preheating, emphasising the
difference between narrow and broad resonance. These sections are primarily based
on the extremely thorough and well written account of reference [66]. Finally, I will
describe massless preheating in 1.4.3. This will be the model under consideration

when I describe gravitational wave production from preheating in chapter 3.

1.4.1. Perturbative reheating

For an inflaton field with a quadratic potential V(¢) = %m2¢2, the homogeneous

background satisfies [recalling the equation of motion (1.25)]
$+3Ho+m’¢ =0. (1.89)

During inflation, the friction term in H (which is approximately constant) dom-
inates, and the slow-roll conditions imply m < H. This is true as long as the
field values are sufficently large, ¢ > mp [remember the Hubble rate is inversely
proportional to mpi, see eq. (1.29)].

Inflation ends when ¢ becomes sub-Planckian and the condition m < H is
no longer satisfied, such that the mass term dominates over the friction term in
eq. (1.89). Therefore, the inflaton behaves like a harmonic oscillator, with a decay-

ing amplitude ®(¢) due to the damping term H¢:

o(t) ~ O(t)sin(mt), D) ~ . (1.90)

mt
During this period (when averaging over several oscillations), the universe evolves
as if dominated by matter, so the energy density of the inflaton field decreases as

-3
a””>.

Let us now consider couplings between the inflaton and other particles, specifically,
the coupling to a scalar y and a spinor (fermion) 1. The scalar field represents any
bosons (which could be standard model or hidden sector particles) the inflaton might
couple to, including vector or higher spin fields. Not including gauge indices will
simplify the calculation dramatically, and should capture the relevant dynamics,
which will mainly depend on the coupling strength and the type of interaction (e.g.

cubic or quartic). The potential term in the Lagrangian is given by

V= V(6)+ 566 + hivs. (1.91)

The coupling constants g, h must be small, as the dynamics during inflation should

be dominated by the inflaton. Small couplings to other fields can be written as
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radiative corrections to the inflaton potential [68], which makes it possible to find
limits on the size of these couplings using the CMB constraints [20]. Typically, the
coupling constants need to satisfy g,h < 1072 [69].

For a quadratic inflaton potential with a minimum at ¢ = o,

V(9) = 5m*(¢ — o), (1.92)

we can perform a field redefinition ¢ — ¢ + o in the potential (1.91) such that we

obtain the usual quadratic term %mZng plus an additional cubic interaction term

—g%0¢x?. Considering the inflaton field as a coherent wave of ¢-particles, there are
3-point interactions between the inflaton and the scalar and spinor fields, i.e. decay
processes ¢ — xX, ¢ — Y1), with cross sections [70]

gto? h?m

- [(p — ) = . (1.93)

Y

(¢ — xx) =

We can see that perturbative decay is a slow process as the cross sections are pro-
portional to powers of the small coupling constants, g* and h?. The corrections to
the inflaton potential can be taken care of by introducing a friction term, given by

the total cross section I' = I'(¢ — xx) + ['(¢ — 1), in the equation of motion:
¢+ 3Ho+T+m2p=0. (1.94)

Reheating ends when the Hubble rate becomes smaller than I', which signals that
the expansion of the universe has become slow enough for the decay of the inflaton to
complete. The relativistic decay products then thermalise and the universe becomes

radiation dominated. The energy density at this point is

T
polt) = BT%miy = =g, T?, (1.95)

where the second equality relates the energy density to the reheating temperature
(assuming thermal equilibrium), and g, is the number of relativistic degrees of free-
dom [23].

1.4.2. Preheating and parametric resonance

Let us approach the problem of inflaton decay from a different point of view, and
consider the boson as a quantum field x interacting with a classical background ¢(t)
(I will ignore fermions from now on, as they do not partake in the efficient paramteric

resonance, which is related to Bose condensation effects). We can expand the field
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in Fourier space by using the standard mode expansion in terms of creation and

annihilation operators (c.f. section 1.2.4),

x(t,x) = /d?’k‘ (dxr(t)e™ ™ + d i () e™™) | (1.96)

(2m)?
where x and k are comoving quantities. Due to its interaction with the inflaton,
X acquires a time dependent effective mass term meg = g?¢*(t), and the equation
of motion for its mode functions in an expanding background is given by (writing

eq. (1.55) in terms of coordinate time)
. . k2 2 2 .. 9
Xt + 3H Xk + pe + g°®(t)*sin*(mt) | xx =0, (1.97)

where the solution for ¢(t), eq. (1.90), was used. Eq. (1.97) describes an oscillator
with a time-dependent frequency that changes periodically. This periodicity is the
source of parametric resonance.

Ignoring the expansion of the universe (by setting a = 1, which makes the ampli-
tude ® time independent) and defining a new time variable z = mt, we can write
(1.97) as the Mathieu equation [71]:

i+ (Ar — 2qcos(22)) xx =0, (1.98)
where a prime denotes differentiation with respect to z and

k2 92 @2

(1.99)

The properties of the Mathieu equation have been extensively studied [71], and
its solutions show parametric resonant behaviour: For certain resonant momentum

bands Ak, there exists a solution of (1.98) for which yy grows exponentially,

Xk = exp (ut) f(t), (1.100)

where py, is the Floquet exponent and f(t) is a periodic function. An exponential
growth of the mode functions leads to an exponential growth in the occupation

number, as
ne ~ |xe|* ~ exp (2uit) . (1.101)

Therefore, particles are being produced very efficiently during parametric resonance.
The resonance parameter ¢ determines the structure of the resonant bands as well

as the Floquet exponents. There are two very different regimes, narrow resonance

45



for ¢ < 1 and broad resonance for ¢ > 1. I will study both cases separately.

Narrow resonance

From the definition of ¢ in (1.99), it is clear that we are in the narrow regime
g < 1 when g® < m. It was shown in [72] that in this case, resonance occurs for
modes A,(Cn) ~ n?, where n is an integer, and the width of each band is of order
AA,(JL) ~ ¢". Therefore, the first band A,(ﬂl) = 1=+ ¢ will dominate. The centre of this
band corresponds to k ~ m, which indicates that two ¢ particles with mass m have
decayed to two x particles of momentum k.

Although this looks like the case of perturbative decay, the actual process is com-
pletely different, as the exponential amplification of modes means that the growth
rate is directly proportional to the number density of produced particles. Narrow
resonance can therefore be seen as a Bose condensation effect [5], for which the
production becomes more efficient the more particles have already been produced.

The maximal Floquet exponent, corresponding to the middle of the resonance
band (outside the band, p; becomes imaginary and therefore the field x simply
oscillates), is given by pr = ¢/2. The smallness of g therefore leads to both a very
narrow resonance band and a small amplification exponent. The situation worsens
when we take the expansion of the universe into account: The inflaton amplitude
® then decays, making ¢ even smaller and thus decreasing the width of the bands.
Also, modes can get redshifted out of the instability bands and simply oscillate.

Narrow resonance is therefore not an extremely efficient process, and will actually
only occur if gm > 3H + I' [66]. Otherwise, there is no resonant behaviour and
the decay happens perturbatively as in section 1.4.1. As ¢ decays with time faster
than the Hubble rate, narrow resonance will inevitably become inefficient eventually,
and thus the final stages of reheating should always be described using perturbative
methods.

Numerical simulations show [66] that during narrow resonance, for each oscillation
of the inflaton, the growing mode y;, = e**! f(t) also oscillates one time. This is very

different to the broad resonance case I will consider now.

Broad resonance

The chaotic inflation model with a quadratic potential actually starts with a pe-
riod of broad resonance, for which ¢ is very large, corresponding to a large (super-
Planckian) initial field amplitude ®. Broad resonance is a lot more complicated than
the narrow case, and I will mainly describe it qualitatively as the proper analytical

treatment is very involved, see [66].
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Let us initially ignore the expansion of the universe. Solving the Mathieu equa-
tion numerically shows that x; oscillates many times (during which the occupation
number remains constant) for each inflaton oscillation and only increases in ampli-
tude during the short periods when ¢(t) crosses zero [66]. The fast oscillations in
Xk occur as its effective mass m); = g¢(t) is much larger (as long as ¢(t) is not
close to zero) than the mass of the inflaton m. Away from ¢(t) = 0, the frequency
w? = k? + g*¢(t)? therefore changes adiabatically, but when the inflaton approaches
zero, this condition ceases to be satisfied, i.e. w > w?. At this point, the occupation
number density is not well defined, but stabilises to a higher level after adiabaticity
is restored.

During broad resonance, particle production occurs for momenta in the range
E* < k?=gmd, (1.102)

during the time interval At, ~ k_! for which the evolution is non-adiabatic. Clearly,
the range of amplified momenta is much larger than in the narrow resonance case,
making broad resonance a lot more efficient.

If we include the expansion of the universe, the upper bound k, becomes time-
dependent and decreases as ®(t) decays. However, at the same time, more physical
momenta are redshifted into the resonant bands. More importantly, the expansion
changes the character of the resonance overall: As ® decays, the change of the
frequency w is not simply periodic anymore, which means that yj will have a different
phase each time the inflaton crosses zero. As shown in [66], this leads to the process
of stochastic resonance, for which the occupation number of the field xy can also
decrease after a zero crossing, but still grows overall.

Backreaction effects of the produced yx particles, as well as the rescattering of
x particles which produce inflaton particles, need to be taken account in the full
treatment of parametric resonance, see [66] for details. In particular, these effects
will determine when broad resonance ends and narrow resonance takes over, after ¢

has become small.

1.4.3. Massless preheating

I will now describe resonance in the case of massless preheating, where the inflaton
has a quartic instead of a quadratic potential, making self-interactions possible.

Details about this model can be found in [67], which this section is based on.

47



The potential for massless preheating is given by

V(6,X) = Pt + 300 (1.103)

We will see that the resonance in this case strongly depends on the ratio of coupling
constants, g%/\.

This theory is particularly interesting as it is scale invariant: as the coupling con-
stants A and g are dimensionless, there is no physical length scale in the Lagrangian.
This is opposed to the case of a quadratic potential, where the mass m is dimen-
sionfull. We will see that, assuming the background behaves like pure radiation,
we can arrive at an equation of motion for the scalar field fluctuations yy that is
independent of the scale factor, showing that the dynamics do not change as the
universe expands. Therefore, we can treat massless preheating like a problem in flat
Minkowski space. This simplifies the calculation and means that the characteristic
dynamics will remain the same throughout, and the resonance only terminates due

to backreaction effects.

Background evolution

For a quartic potential, the equation of motion (1.25) for the homogeneous inflaton
field ¢(t) becomes

¢+ 3H+ \* =0. (1.104)
After the field amplitude has dropped below ¢ < mp, the friction term in H be-
comes subdominant and the inflaton starts oscillating. However, as opposed to the
quadratic potential case, the oscillations are not sinusoidal, but given by an elliptic
cosine. To see this, we need to make a conformal transformation ¢ = a¢ and use
conformal time 7 (1.13), for which eq. (1.104) becomes

"

Ot — Lo =0, (1.105)
a

It has been shown [73] that, averaged over many oscillations, a scalar field with a
quartic potential behaves like radiation, which implies a(n) ~ 7 in conformal time.
Therefore, we can ignore the last term in (1.105) and arrive at the equation of motion

for a scalar field with a quartic potential in Minkowski spacetime,

"+ Ap* =0. (1.106)
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This can be rewritten as the equation for an elliptic function by defining a dimen-

sionless conformal time variable

=V, (1.107)

o\ 1/4
HT%I is the amplitude of the field ¢. The equality is approximate as

where ¢; =~ (
the background evolution is not exactly like in radiation domination, and therefore
the amplitude is actually weakly time dependent. Note that the amplitude of the

original field ¢ decays as 1/a ~ t~'/2. The solution of (1.106) is given by

o= oif(z) = gren (x o, %) , (1.108)

where f(x) is an elliptic cosine, which is a harmonic expansion in terms of ordinary
cosines. The constant xy will simply shift the phase of the oscillations and will be
ignored from now on. As for massless preheating we do not have simple sinusoidal
behaviour, there will be some interesting features in the analytical solution.

Fluctuations in the field y

The equation of motion of the fluctuations yy is given by
. . k2 2 2
Xt + 3H X + ?—i—g o) ) xk =0. (1.109)

Due to the quartic potential, the oscillating background ¢(t) can also source inflaton
fluctuations. Their equation of motion has the same form as (1.109), but with the

term g? replaced by 3\:

2
O + 3Hy + (% + 3>\¢(t)2) ¢ =0. (1.110)

Rescaling both fields by the scale factor, where Xy = ayx, and using the time

variable z from before we obtain

2 1
X]lcl‘l— KQ—I—%CHQ (l’,ﬁ)]Xk = O, (1111)
" 2 2 1 —
Y+ |K + 3cn QT,E Y = 0, (1112)

where k = k/v/Ay; is a dimensionless comoving momentum. Like in the massive

inflaton case, the fluctuations have an oscillatory mass term, which is now given
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by a Jacobi cosine. The mode equation for the inflaton fluctuations is identical to
the one for the fluctuations X with g?/\ = 3, so we will not need to consider it
separately. Eq. (1.111) is known is the Lamé equation [74]. It is determined by only
two parameters, the ratio of coupling constants g?/), and the comoving momentum
K.

Note that the scale factor a has dropped out of the equations. This only hap-
pened because a universe dominated by a scalar field with a quartic potential be-
haves approximately like radiation [73], which reduced the equation of motion for
the background and fluctuations to one in Minkowski space (after a change of co-
ordinates). This is referred to as conformal invariance of massless preheating by
many references [67, 75|, but remember that the background evolution is not ex-
actly conformally invariant as the scale factor only satisfies a o t'/? to a very good
approximation.

Like the Mathieu equation, for any choice of couplings ¢/, the Lamé equation
has unstable solutions for some range of . In these momentum bands, the fluctua-
tions grow exponentially as x;(7) = exp [u(k, g?/\)7] f(7), where f(7) is a periodic
function and p(k, g*/\) is the Floquet exponent quantifying the strength of the
resonance.

However, the band structure in this case is a lot more unusual: the strength of the
resonance and the location and width of the amplified band Ax depends sensitively,
and in no way monotonically, on the ratio g>/\. As opposed to the broad resonance
regime which corresponds to ¢ > 1, a higher value of ¢g?/\ does not necessarily
correspond to stronger amplification.

For certain values, given by ¢g?/\ = n(n + 1)/2, where n is an integer, there is
only a finite number of resonant momentum bands (all other values have an infinite
number of instability bands, which is the also the case for the Mathieu equation).
Specifically, g°/A =1 (n = 1) and ¢g?/A = 3 (n = 3) have a single instability band,
as all higher ones shrink to nodes at this value. Moreover, long wavelength modes
are only amplified if the ratio g?/\ lies between these special integer values. In this
case, the first momentum band extends from x = 0 to some maximum value Kpay.
This is demonstrated for low values of g%/ in Fig. 1.2, which shows the resonance
chart of the Lamé equation. Shaded regions signify instabilities, and darker colours

correspond to a larger exponent fi.

Dynamics in different regimes

The solutions of the Lamé equation can be written in terms of transcendental Jacobi

functions [74]. These are quite complicated, and in [67] it was shown that for the
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Figure 1.2.: Stability chart of the Lamé equation. Shaded regions correspond to
unstable regions where fluctuations grow. The characteristic Floquet
exponent u(k, g?/)) is greater for darker regions, varying from pu ~ 0.2
(darkest region), up to u ~ 0.02 (lightest region), in steps of Ay = 0.02.

special values g?/\ = n(n + 1)/2 simple, closed form solutions can be obtained.
Other interesting cases are the limits g?/\ < 1 and g2/ > 1. For very small values
of g2/, the Lamé equation reduces to the Mathieu equation with a small value of g.
Therefore, we are in the narrow resonance regime, with resonance bands that have
a very small width. However, the expansion of the universe will not affect the band
structure, so the narrow resonance for massless preheating is more efficient than its
massive counterpart.

For large values of g*>/\, we find similar behaviour to that of the broad res-
onance regime: The fluctuations yy oscillate many times for each inflaton oscil-
lation, and only increase in amplitude when the inflaton crosses zero. Further-
more, for g2/ — oo, the width of the resonance band is directly proportional to
g%/ and the characteristic exponent asymptotically approaches its maximum value
fhmax = 0.2377.

Terminating the resonance

For massless preheating, due to the disappearance of the scale factor from the equa-
tions of motion, the resonance structure is not affected by the expansion of the
universe. The only way to terminate the resonance is due to the backreaction of

the produced particles (both y and ¢), which affect the potential of the oscillating
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inflaton field. This leads to a restructuring of the resonance bands, and modes that
were initially amplified move out of the unstable region and start oscillating. This
can happen very fast if the instability band is narrow. The decay of the remaining
inflaton condensate then proceeds more slowly again, described by the perturbative

decay of section 1.4.1.

1.5. Gravitational waves

In this section I will give some mathematical background on gravitational waves:
I will describe why tensor perturbations correspond to GW degrees of freedom in
section 1.5.1, how GWs are generated by sources in 1.5.2 and how much energy they
carry in 1.5.3. Finally, in section 1.5.4 I will explain how to detect GWs directly.

I will mainly consider perturbations around flat spacetime. This makes the ex-
pressions simpler and captures the important physical aspects of GWs. Note that
the Friedmann metric will always look approximately flat on scales much smaller
than the Hubble radius H ! for which we can neglect the expansion of the universe
[23]. Therefore, when we consider GW produced on subhorizon scales, they will
initially behave as if they were in a flat background. However, they will be affected
by the expansion of the universe and redshifted [23], so a long time after their pro-
duction their initial amplitude will have decayed. I will give generalised expressions

taking the curved nature of the FRW metric into account when necessary.

1.5.1. Tensor perturbations as gravitational waves

When gravitational fields are weak, we can use the framework of linearised gravity
where we write the metric as a fixed background with small perturbations around
it. Assuming a flat background for now, we write g,, = 1., + hu, where h,, is a
small perturbation. Therefore, we only need to keep terms to linear order in h,,
when we determine the equations of motion from the Einstein equations.

In appendix A.1, I describe how the metric perturbation can be decomposed into
scalar, vector and tensor parts, see eq. (A.1) (where we need to set a(t) = 1 for a
flat background). In Minkowski space, it can be shown [24] that only the traceless
tensor perturbation Ej;; is a true propagating degree of freedom, while all the others
can be derived from it and the stress energy tensor by means of constraint equations.
This perturbation carries the degree of freedom corresponding to GWs, but to see
its wave nature it is useful to express the perturbed metric in the transverse gauge.

The diffeomorphism invariance of GR requires that physical observables (such as

the proper time or the Ricci scalar) do not depend on the choice of coordinates, i.e.
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they are gauge invariant (see appendix A.1 for more details on selecting gauges in
Cosmology). To satisfy this, the full metric perturbation h,, needs to transform

under an infinitesimal change of coordinates x* — x# — £+ as [24]
h/u/ — h’uy + 28(M§y) . (1113)

Choosing a specific transformation &* determines the gauge and enables us to set
certain metric perturbations to zero.

Consider the transverse gauge, for which the choice of {# ensures that E;;; = 0
and B;; = 0, so both vector and tensor perturbations are transverse [24]. As the
hlr

1]
the superscript TT refers to transverse and traceless. If we consider a situation

tensor perturbation E;; is also traceless by definition, let us denote it as where

without a source (7, = 0), the linearised Einstein equations imply [24] that the
metric perturbations in eq. (A.1) satisfy ® =0, B; =0,V = 0 and

Ohj" (x,t) =0, (1.114)

where [J = 9,0" is the D’Alembertian operator. You can then simply write the full

metric perturbation as

00 0 O
0
T _
=1 - , (1.115)
0
where the transverse and traceless tensor h,, has equation of motion Ok}, = 0.

The solution of this equation is a plane wave, hEE = Ce™ which satisfies
k, k" = 0 (wavevector null) and k,C* = 0 (wave propagation orthogonal to wave
polarization). Therefore, the tensor perturbations hl-TjT indeed behave like waves and
the first condition shows that they must propagate at the speed of light. For a wave

propagating in the z direction, i.e. k* = (w,0,0,w), the second condition implies

00 0 0
0 hy hye O
C = M. : (1.116)
0 hy —hy 0
00 0 0

where we defined hy = Ci1,hy = C15. This shows that GWs have two separate
polarizations, denoted by plus and cross due to the way in which they distort test

particles. Due to the orthogonality condition k,C*” = 0, test particles will only be
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perturbed in a direction orthogonal to the propagation direction of the wave. The
plus polarization (hy = 0) perturbs test particles in the same direction they were
separated in, whereas the cross polarization perturbs them at 45° to their original

separation, see figure 1.3.

Figure 1.3.: The plus (left) and cross (right) polarizations of a GW. Figure repro-
dUCed frOIIl [76] ©http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en

In an expanding universe, the transverse and traceless tensor metric perturbations

are defined as

ds? = —dt* + a*(t) [, + hi"] da'da? . (1.117)

In this case, the wave equation (1.114) acquires a drag term [32]:
hi' (%) + 3Hh (x, ) — gvgh;FjT(x, t)=0. (1.118)

Hence, the amplitude of GWs inside the Hubble volume will decay with time.

1.5.2. Gravitational waves generated by sources

We want to see how to calculate the propagating degrees of freedom of the metric
in the presence of sources. If T, # 0, we cannot set ®, B; and ¥ to zero. However,
there is a useful gauge in this case to describe the behaviour of gravitational waves.
Let us first define BW = hy, — %hn,w, leading to a reversed trace, h = —h. This
reduces to the original h,, in the TT gauge (which can be applied far away from
sources).

We will choose the Lorenz gauge in which we can set &f#“’ = 0. Using this
condition, the linearised Einstein equation for the trace reversed perturbation is a

wave equation for each component with a source term [24],
Oh, = —167GT,, . (1.119)

To solve this equation, we need to use a Green function G (z® — y*), which is the

solution of the d’Alembertian operator O for a delta function source. Eq. (1.119)
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can be expressed as
b = 167G [ G (a® ~ ) Tul)d'y. (1.120)

where the retarded Green’s function (corresponding to waves travelling forward in
time) is [24]

1

GO eyl

[x —y| = (@° = y")] (=" = ¢°). (1.121)
Plugging eq. (1.121) into (1.120) and integrating over y° gives
R (t, x) 4G/ L 7 (tr, y)d® (1.122)
v, X) = T 4w\lnY vy, .
g x -yl "

where t = 2° and ¢, = t—|x—y]| is the retarded time. The disturbance for an observer
at (t,x) is the sum of contributions at points (¢,,y), where t, is the coordinate time
at which the observers past light cone intersects the source located at a distance
x —yl.

To solve eq. (1.122) analytically we need to make a few simplifying assumptions.
Consider a situation where we are measuring the wave far away from an isolated,
slow-moving source (in this regime, the energy-momentum tensor is negligible, so the
tensor perturbations behaves like a propagating wave as in the previous subsection).
Note that due to the Lorenz gauge condition we only need to solve for the space-like
components of h,,, as the components ko can be derived from them. Going through

a few steps of algebra (see e.g. [24]), we obtain the quadrupole formula,

- 2G d1;;
hij(t,x) = —=—5-(t:), (1.123)

where the quadrupole moment tensor is given by
150 = [y Ty (1124)

The gravitational wave produced by an isolated source depends on the second time
derivative of the quadrupole tensor (so stationary or spherically symmetric object
would not emit GWs), evaluated at the retarded time.

Compare this to the situation in EM, where electromagnetic radiation is produced
by the changing dipole moment of an object. A dipole moment cannot lead to
gravitational radiation because of momentum conservation [29]. Therefore we need

a quadrupole moment in the source (which measures the shape of the system [24]) to
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generate GWs. This fact, alongside the general weakness of the coupling of matter
to gravity, is why gravitational radiation is so much weaker than its electromagnetic
counterpart.

The component of the stress energy-tensor 7}, that is affected by the quadrupole
moment of a distribution is the traceless anisotropic stress II;; [28]. Furthermore,
as the GW degrees of freedom are also transverse, only the projection H;?T acts
as a source term for GWs. In an expanding universe, the wave equation of tensor
perturbations can generally be written eq. (1.118) with a source term, given by the

TT part of anisotropic stress [77]:
. . 1
hi; (%, t) + 3Hh (x,t) — gv%;ff(x, t) = 167GII;" . (1.125)

This expression is valid as long as one can regard the anisotropic stress as a pertur-

bation around a perfect fluid [78].

Sources of gravitational waves in Cosmology

The production of gravitational waves I have described in this section is a classical
process and very different in nature to the primordial gravitational wave background
from inflation (see section 1.2.5). This background did not originate from a source,
but corresponds to quantum fluctuations in the metric field. These fluctuations were
stretched to superhorizon scales during the inflationary phase and result in a scale
invariant spectrum of tensor fluctuations.

In this section, I described the emission of GWs by classical sources, due to a
time-varying matter distribution with a non-zero quadrupole moment. Gravita-
tional waves are hence produced during many astrophysical phenomena that involve
colliding or collapsing bodies, such as binary star systems, coalescing black holes or
supernovae (see [76] for a good review on astrophysical GWs). Depending on the
details of the system, the emitted GWs from these point sources will peak at specific
frequencies.

There could also be stochastic gravitational wave backgrounds (travelling to us
from all directions) from the early universe, produced by non-equilibrium phenom-
ena that carry a large amount of energy. Investigating the properties of these
backgrounds is an active area of research, which includes bubble collisions during
phase transitions [79, 80, 81, 82, 83], the creation [84], evolution [85, 86] and decay
[87, 88, 89] of cosmic defects networks and preheating [90, 91, 92, 93], which is the
subject of chapter 3.
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1.5.3. Energy carried by gravitational waves

It is natural to ask how much energy is carried by GWs, however calculating this
quantity is not easy. Firstly, in GR, there is no local definition of energy as we
can always transform to a frame where the perturbation is zero. Even in the case
of linearised gravity, it is not obvious what the energy-momentum tensor of the
gravitational field should be, as we cannot easily separate gravity from the metric
and put it into the right-hand side of Einstein’s equation [24].

In order to obtain an expression for the energy carried by GWs, we need to go to
higher orders in the expansion. To first order, we cannot feel the effects of gravity,
as the Ricci tensor measuring the curvature is zero [29] and test particles therefore
move in straight lines. Hence, we need to consider the Einstein equations to second
order (this is further motivated by the energy-momentum tensor of EM, which is
also quadratic in the fields).

We are interested in the GW energy far away from the source where the vacuum
Einstein equations apply. To second order, we can split the Riemann tensors on
the LHS of the Einstein eq. (1.1) into two parts, one that is linear in the second
order perturbation h,(fy), and one that is quadratic in the first order perturbation

hf}l,) Bringing the second term onto the RHS, we can write this as [24]

1 1
R = RO, = — (Rff} (1] = SR [h(”]n,w) . (1.126)
If we identify
1 1
_ @1, _ L p@p0)
b = — 5= (RW [A] = SRR ]mw) : (1.127)

eq. (1.126) is just the Einstein equation for the second order perturbation in the
metric, sourced by a gravitational energy-momentum tensor (1.127) that is quadratic
in first order perturbations.

This method clearly encodes how the perturbations affect space-time and eq. (1.127)
it is therefore a well motivated choice for the energy-momentum tensor of gravita-
tional waves. Note, however, that ¢,, is not a true tensor and, more importantly, it
is not gauge invariant [24]. It is however possible to find a gauge-invariant measure
of ¢, by averaging over several wavelengths, as this circumvents the non-locality of
the description and makes it possible to capture the effects of curvature. In the T'T

gauge, the averaged energy-momentum tensor can be written as [24]

1 of
= o (OEDOIE) ). (1.125)
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The energy density of GWs is simply given by pagw = tgo. In principle, we can
calculate this quantity numerically, by solving eq. (1.125) for an arbitrary source

and deriving the energy-momentum tensor (1.128) from h;.

1.5.4. Gravitational wave detectors

The direct detection of GWs is extremely difficult, and so far we have not been
successful in measuring a signal. An indirect detection has been achieved by Hulse
and Taylor [25], who observed the change in orbital period of a binary pulsar, which
exactly matches the energy loss due to gravitational waves predicted by GR.

Although the flux of energy of GWs can be substantial (which is why Hulse and
Taylor were able to observe the energy loss), it is very hard to measure their effect
directly [24], as GWs only couple very weakly to matter. As mentioned in section
1.5.1, a passing GW will distort the shape of an object. Due to the coordinate
invariance of GR, this is a tidal effect, which cannot be measured locally [94].

A gravitational wave with amplitude h will lead to a fractional change in the size

of an object of order

AL
L

which is called the strain. The maximum amplitude we can expect for typical astro-

~h, (1.129)

physical sources is around i ~ 1072 (the smallness of h shows why the linearised
gravity approximation works so well). A gravitational wave of this amplitude would
result in a minuscule change AL ~ 107 m over a length of 1km, which is nine
orders of magnitude smaller than the Bohr radius.

To be able to detect such tiny changes, modern GW detectors employ the methods
of laser interferometry. A standard interferometer consists of two arms at a 90° angle
to each other. Photons entering the tubes will travel through a beamsplitter which
sends them down different arms, where they are possibly reflected multiple times,
before recombining at a photodiode. The incoming photon beams are in phase,
and the interferometer is set up in such a way that there will be no signal unless
the outgoing photons are out of phase. A passing GW would stretch one arm and
lengthen the other, and could therefore lead to such a phase shift [24].

The Advanced LIGO detector [26], which will start taking data in 2015, consists
of two interferometers, each with 4km arms, based in Washington and Louisiana. It
is necessary to have several detectors to be able to localize GW sources in the sky.
LIGO actually collaborates with another experiment, VIRGO in Italy [95], and it is
hoped that a new GW detector will be built in India. The spatial configuration of

these four detectors would lead to very large sky coverage. GWs could therefore be
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measured coming from nearly all directions in space [94].

LIGO will be most sensitive to frequencies of the order of 100Hz, with amplitudes
down to h ~ 10723 [96]. Tt should be able to detect signals from the (non-spherical)
collapse of supernovae and the coalescence of neutron stars or black holes [24]. Its
main limitations will be due to the many sources of noise, including photon shot
noise (due to the random nature of emission by a laser), thermal noise and seismic
noise which is particularly important at low frequencies.

The eLISA project [27], which has been delayed multiple times and is supposed
to launch in 2032, is a space based interferometer, consisting of three spacecraft
carrying test masses and which are arranged as an equilateral triangle. The lengths
of the arms is very large, 5 million km, and eLISA would therefore be sensitive to
much lower frequencies, between 10~* and 1Hz, with amplitudes as low as h ~ 10724
[96]. As it is in space, it does not suffer from seismic noise, but will have an additional
error source due to inaccuracies in the arm length [24]. Low frequency sources of
GWs include certain binary systems and supermassive black holes [24].

While all current direct detectors are mainly aimed at measuring GWs from as-
trophysical sources, there are many interesting sources of cosmological origin, as
mentioned at the end of section 1.5.2. The scale invariant background from infla-
tion is distributed over a vast frequency range, however its amplitude is at least five
orders of magnitude lower than the sensitivity of eLISA or LIGO [96]. A proposed
space-based detector that might be able to measure the primordial GW background
directly in the future is the Big Bang Observer (BBO) [97], which is a configuration
of four eLISA type detectors. It would be sensitive to a frequency range between
eLISA and LIGO, where no strong signals are expected from astrophysical sources.
So far, however, it is much easier to investigate the tensor modes from inflation
through the B-mode polarization [21].

For a first order phase transition happening at the electroweak scales, GWs are
produced in a range that might be detectable by eLISA [98]. Gravitational waves
from preheating, on the other hand, are produced at much higher frequencies and
are therefore not accessible by the current detectors [91]. High frequency detectors
have recently been proposed [99, 100, 101], however their sensitivity might not be

sufficient to detect cosmological GW backgrounds.
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2. Chiral Tensor Power Spectrum

from Quantum Gravity

Quantum fluctuations that are produced during inflation freeze out after leaving
the horizon and can survive until today, as was described in section 1.2.5. These
fluctuations, having been produced in the very early universe, might carry some
information about the quantum nature of gravity. The theory of loop quantum
gravity does not use the metric as its fundamental gravitational variable, but a
(generally) complex connection. Therefore, deriving the power spectrum of tensor
perturbations in this framework, which was done in section 1.2.5 in the standard
second order formalism, could lead to a different result. Considering new variables
to describe spacetime is always interesting from a quantum mechanical point of
view, as different quantum theories can give rise to equivalent classical theories
[102]. We cannot know from first principles which description is the correct one,
and experiments that involve quantum mechanical observables like power spectra
might be the only way of finding out.

I will first outline general principles of the canonical quantization of gravity in
section 2.1, starting with the usual approach taken in quantum field theory, and
then describing the framework of loop quantum gravity. I will finish by comparing
the canonical and covariant approaches to quantization.

In the next section, 2.2, I will describe different formalisms used in general rela-
tivity. In particular, the tetrad formalism, the first order formalism which results
in the Palatini action, and the Ashtekar formalism which forms the basis of loop
quantum gravity will be discussed.

Section 2.3 is based work that has been published in [1, 2]. I will describe how
using the Ashtekar variables instead of the standard metric variables to find a per-
turbed gravitational action during inflation leads to a chirality in the tensor power
spectrum, which could leave an observable signature in the CMB. Even though the
Ashtekar variables are motivated by loop quantum gravity, they are interesting to
study regardless of the success of the theory. If we were to observe a chiral ten-

sor spectrum, it might not necessarily mean that LQG is the correct description of
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quantum gravity, but it would definitely give us insight into the quantum nature of

spacetime.

2.1. Canonical quantization of gravity

In this section, I will briefly discuss the main aspects of quantum field theory (QFT),
especially regarding the quantization of gravity, before giving some background on
loop quantum gravity, highlighting its successes and shortcomings. I will finish
by stressing why it might be interesting for Cosmology to consider the Ashtekar
variables, which are motivated by the canonical theory of LQG, as the fundamental

variables describing spacetime.

2.1.1. Quantum Field Theory

Quantum field theory is the union of quantum mechanics and special relativity,
where instead of considering single particle states, we consider fields which are quan-
tized over a (typically) flat, Minkowski background [103].

When one first studies QFT as an undergraduate, one probably learns how to
quantize a scalar field canonically, i.e. using the formalism of section 1.2.4. The
canonical quantization procedure [41] has been very successful in the context of QFT,
and is used in particular to build the theory of quantum electrodynamics (QED),
which has made experimentally verified predictions with astonishing accuracy [68].
One conceptual problem with the approach is the lack of manifest Lorentz invariance
due to the splitting of space and time, although the Feynman rules one derives to
describe interactions obey the Lorentz symmetry [103].

An alternative approach to quantization is the path integral formalism [104], which
uses the Lorentz invariant Lagrangian as its central dynamical variable. It also
preserves all other symmetries of the theory and is therefore more suited to treating
non-Abelian gauge theories like quantum chromodynamics (QCD) [68].

Although the two approaches lead to equivalent results, depending on the situa-
tion, one might be more suitable than the other [103], although the path integral
formalism is usually the method of choice for the most developed theory of quantum
gravity to date, string theory [105, 102].

In all realistic field theories, ultraviolet divergences arise; which means that at very
high energies certain quantities of interest become infinite. Using the procedure
of renormalization, we can deal with these divergences and arrive at a physically
meaningful theory [68, 103]. It is a well known fact that this procedure fails in

the case of gravity: When one tries to quantize the graviton field by treating it
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as a perturbation around flat spacetime [103], divergences arise that cannot be
renormalized. This is probably not surprising; most field theories are effective in
the sense that their regime of validity does not extend to the highest energy scales
[103]. For gravity itself, it seems we cannot simply cut off the highest energy modes

and ignore the nature of spacetime at the Planck scale.

2.1.2. Loop Quantum Gravity

Loop Quantum gravity is an attempt to find a quantum theory of gravity in the most
“conservative” [106] way: Its aim is to quantize gravity in a background independent
(as the background itself is quantized), non-perturbative manner, without resorting
to new physics like higher dimensions, supersymmetry or trying to arrive at a unified
description of all fundamental forces. This is in contrast to string theory, which
incorporates all these aspects and is also based on the standard QFT approach of
quantizing over a fixed, flat background spacetime. LQG, on the other hand, uses a
canonical quantization method.

In LQG, we do not want to consider gravitons propagating on a fixed background
as one would do in standard QFT, but rather define operators corresponding to
spacetime itself. Therefore, the canonical variables should describe spacetime, and
indeed the metric was chosen as the central gravitational variable (with its conjugate
being related to the extrinsic curvature) in the first attempt of defining a canonical
quantum theory of gravity, the ADM formalism [107].

In all canonical theories of GR we need to satisfy a number of constraints, which
correspond to the quantum Einstein equations [108] and incorporate diffeomorphism
invariance. Appendix A.2 gives some background on Hamiltonian constrained sys-
tems, and the specific constraints arising in LQG are given in section 2.3.2. In
particular, the Hamiltonian constraint, which corresponds to invariance under time
translations, on a quantum level leads to the Wheeler-DeWitt equation H|W¥) = 0
[109], where the quantum Hamiltonian H acts on the “wave function of the uni-
verse” |W). It is constrained to vanish to reflect the fact that there is no global time
variable in GR (this is simply the analogue of the Schrodinger equation in canonical
quantum gravity).

Within the ADM formalism, it was very difficult to solve this constraint with the
chosen quantum operators. In 1986, Ashtekhar introduced a set of new variables
[110, 111], discussed in section 2.2.3, where the central canonical variable is a con-
nection, and its conjugate a (densitised) metric field. Further work by [112, 113]
led to the definition of the loop representation (hence the name LQG): The actual

variables promoted to field operators were the holonomy (parallel transport around
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a closed loop) of the connection, and a flux of the densitised metric [108]. Like the
creation and annihilation operators of particle states in section 1.2.4, these operators
create and destroy “loop states”, quantum excitations of spacetime along a single
loop [106] (the idea of a loop basis was also used in the context of Yang Mills theory
in terms of the Wilson loop [114]).

This approach greatly simplified solving the constraint equations [115], especially
after work by Thiemann [116]. The Hilbert space these loop states live in has a
basis in terms of spin network states [117, 118|. It is possible to define area and
volume operators acting on these spin networks (which can be regarded as building
blocks of spacetime [106]) with discrete spectra [119, 120], showing that spacetime
is fundamentally discrete in LQG.

Kinematically, the theory is well developed: There exists a well defined scalar
product [121, 122] and matter can be coupled to the theory [123, 124]. Progress
has also recently been made on identifying n-point functions [125], and therefore an
expression for the graviton propagator can be obtained [126]. However, the dynamics
of the theory are still not well understood and the low-energy limit that should yield
GR has not been established [127].

LQG also has some applications to other areas of physics. It provides a way
to calculate the Bekenstein-Hawking entropy [128] and has also spawned the field
of loop quantum Cosmology [129, 130]. Loop quantum Cosmology contains some
interesting results, including a possible mechanism for driving inflation [131], the
absence of singularities [132] and the replacement of the Big Bang by a Big Bounce
[133]. However, the approach I will take below is not comparable; I will only be

using the Ashtekhar variables, not the loop representation which is the foundation
of the LQG formalism.

2.1.3. Different approaches in quantum gravity

In canonical quantum gravity spacetime has to be foliated into spacelike slices evolv-
ing in time to be able to define the canonical variables [107]. This introduces an
explicit time dependence which manifestly breaks Lorentz invariance. The initial
lack of covariance (invariance under general coordinate transformations) and the re-
lated problem of defining dynamics are the main criticisms faced by this approach.

Although a path integral formulation of LQG now exists using spinfoams [134,
135], it is still in its infancy and work remains to be done trying to link the dif-
ferent formalisms [127]. Arguably the most successful attempt at trying to find a
fundamental theory of quantum gravity to date is string theory [105, 102], which is

a covariant approach and therefore does not suffer from the same problems as LQG
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(although proponents of the latter theory will claim that on the other hand, string
theory does not address the principle of background independence in GR, needing
to define a fixed background [106]).

Of course, there are many other approaches to tackling the problem of quantum
gravity, for example causal dynamical triangulation [136] (which is similar in nature
to the spinfoam formalism) or causal set theory [137, 138], where the causal structure
of spacetime is taken as the most important physical ingredient.

While a mathematically consistent theory of quantum gravity would obviously
be a major breakthrough in theoretical physics, any consistent theory will suffer
from the problem that it seems impossible with current technology to make testable
predictions: The energy scales at which quantum gravity effects play a role are far
too high to be probed directly by experiment. Indirect evidence seems to be the
best we can hope for at the moment, and Cosmology is a great candidate to provide
just that. Clearly, the conditions right after the Big Bang were such that quantum
gravity effects must have played a central role, and they might have left an imprint
in the CMB through inflation, which explicitly describes how quantum fluctuations
become classical observables. Deriving the spectrum of tensor perturbations using

the Ashtekar formalism would provide a test for the predictive power of the theory.

2.2. Different formalisms for general relativity

Usually, the protagonist of GR is the metric g,,,, and the dynamics are defined by the
Einstein-Hilbert action (1.8). However, we can also describe gravitational degrees
of freedom using a formulation in terms of tetrads (which requires introducing the
language of differential forms), as described in section 2.2.1. The content of this
section is based on section 2.9 and appendix J of [24]. T will continue by introducing
the first order formalism in 2.2.2, where the metric and connection are taken to be
independent initially, giving the Palatini action. Combining both of these ingredients

makes it possible to define the Ashtekar formalism in section 2.2.3.

2.2.1. The tetrad formalism

It is sometimes useful, especially when trying to treat GR as a gauge theory, to use
a non-coordinate basis as opposed to the standard basis vectors dz*, 0,. Motivated
by the fact that you can always define a local inertial frame in GR which looks flat,
consider the tetrad basis ef, I = 1---4, that satisfies ds?> = n;sele’, where n;; is
the Minkowski metric. [ is an “internal” index and transforms under the vector

representation of the Lorentz group SO(3,1) [139]. We can write the basis vectors
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e in terms of the old coordinate basis as
el = el da", (2.1)
so the defining condition for the tetrad basis can be written in components as

Juv = nljeluejy . (22)

The spacetime indices, denoted by Greek letters, can be raised and lowered using
the metric g,, and transform by general coordinate transformations, while the in-
ternal indices, denoted by capital Latin letters, can be raised and lowered using
the Minkowski metric n;; and transform by local Lorentz transformations. The

components satisfy orthogonality conditions,
el ety =00, etrel, =" (2.3)

We can also use the components e!,, of the tetrad basis to relate the components of
a vector V' in each basis:
vi=el Vi, (2.4)

To be able to use covariant derivatives in this formalism, we need to define the

spin connection w,’;. The covariant derivative of some tensor A’; is then given by
VAL =0, A +w, (AR —w, B AT (2.5)

To obtain the defining relations for the spin connection and the curvature in the
tetrad basis, it helps to simplify expressions if we use the language of differential
forms. Let me define them and list some of their properties.

A differential p-form is a (0, p) antisymmetric tensor (i.e. a O-form is a scalar, and
a one-form is a dual vector w = w,dz*). The (components of the) wedge product

between a p-form A and ¢-form B is an antisymmetrised tensor product,

(p+q)

1g! B
pq:

(A A B>H1“'#p+q = Hp+1-Hptq] * (26>

(1 pp

A basis for p-forms can be written using the wedge product as Z%!dx’“ A ANdxte.

A p-form A is then given by

1
A= HAM_..deI‘“ Ao Ndxtv (2.7)
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where the components A, .., are totally antisymmetric.
We will also need the exterior derivative which is an antisymmetrised partial

derivative that maps a p-form into a p 4+ 1-form [24]:

(dA)Ml'“MpH =(p+ 1)0[M1A#2---up+q}- (2.8)

Specifically, for zero and one-forms, i.e. a scalar ¢ and vector w = w,dz", the

exterior derivative is
(d¢) = Oupdat, (dw) = Opwydat A dx”. (2.9)

Since partial derivatives commute, and the exterior derivative is antisymmetric, we
have d(dA) = d*A = 0 for any p-form A.
An important property of the exterior derivative is its action on the wedge product

of two forms. If A is a p-form,
d(ANB)=dANB+ (-1)PANdB. (2.10)

Finally, one can use n-forms w in n dimensions to define integration on the man-
ifold, specifically [w = [woasd™x. As differential forms are completely antisym-
metrised, there is only one independent component for an n-form in n dimensions.

We can write the tetrad basis and the spin-connection as one-forms e/ and w?; by
suppressing their spacetime indices. The Cartan equations provide defining relations

for the torsion and the Riemann tensor in the tetrad basis:

7! de’ +w'yne’, (2.11)
RIJ = deJ—i-wIK/\wKJ. (212)

Note that R!; is a two-form; it specifies the entire Riemann tensor (not the Ricci
tensor). It can be regarded as the field strength of the spin-connection [139]. The
Christoffel connection, eq. (1.5), that is commonly used in GR is torsion-free and
ensures V,g,, = 0. The first property leads to eq. (2.11) being zero, which gives
a condition for the spin connection in terms of the tetrad, and the second implies
that the spin connection must be antisymmetric, wf, = —w’,.

The tetrad formalism actually makes calculating metric components, spin connec-
tion and Riemann tensor a lot simpler than the usual coordinate approach. As we
will make use of them in section 2.3, I will derive a tetrad basis and the associated
spin connection for a flat Friedmann background (see also appendix J of [24]).

For a flat FRW metric (1.12) using conformal time, we have g,, = ¢* (no sum),

66



with all off-diagonal components zero. We need to satisfy eq. (2.2), and clearly the

choice €%y = e!'; = €%y = ¢33 = a does the job (any other choice will be related

to this by a local Lorentz transformation [24]). The four tetrad forms e’ = el dz*,

I = 0,1, can then be written as

e’ = adn, (2.13)
¢ = adx'. (2.14)

We can derive the components of the spin connection w’; using the torsion free

condition (2.11). First though, due to the antisymmetry w;; = —w;r, we see that
Wl = 0, (2.15)
W = W, (2.16)
wij = —wji, (217)

where we had to raise and lower indices with the Minkowski metric.

Let us solve equation (2.11) separately for the I = 0 and I = i components (which
all have the same form) using the solutions for the tetrad. To take the exterior
derivatives, regard the forms in eq. (2.13) and (2.14) as a product of a scalar and a
one-form and then use the product rule in eq. (2.10) to obtain (remembering that
d*> = 0) de® = d'dn AN dn = 0 and de' = a/dn A dz*. For I = 0, the torsion free
condition then gives

aw’; ANdz' =0, (2.18)

where I used w® = 0. For I = i, we obtain
d'dn A dz' + aw'y A dn + aw'; Ada? = 0. (2.19)

The only solution compatible with the antisymmetry of the spin connection is to
set w'; = 0 as well, with the only non-zero component being w’y = (a//a)dz’ = He'
[24]. This clearly solves the torsion free conditions, eq. (2.18) and (2.19).

2.2.2. The Palatini formalism

We can rewrite the Einstein-Hilbert action (1.8) using tetrads (remember integration

over 4-forms is well defined in four dimensions). The result is [139]

1

SEH (guy(e)) = 5 / GIJKLGI VAN 6J A RKL (w(e)) . (220)
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This makes the internal gauge symmetry under local Lorentz transformation more
apparent [139]. Now, consider the following change in viewpoint: Instead of thinking
of the action as a function of the tetrad e/ only, we can initially regard it as a
function of both e/ and w’;, and keep metric and connection independent. The

resulting action,

1
SPK (ei, wiJ) = 5 /EIJKL€I N €J A\ RKL((,U) y (221)

is called the Palatini-Kibble action [116]. Varying it with respect to the metric gives
the usual Einstein equations, and varying with respect to w! ; shows that it is indeed
the spin connection w(e) we defined, i.e. it satisfies the torsion-free Cartan equation
(2.11) and it is manifestly antisymmetric. This is also known as the first order
formalism [22] as the equations of motion only contain first derivatives of metric
and connection, while the second order formalism of the Einstein-Hilbert action

contains second derivatives of g, .

2.2.3. The Ashtekar formalism

We can make a further generalization of the Palatini action and add a term 675 ze! A
e/ N RKL(w), where 67551, = 71k 0r)s. This term is compatible with the symmetries
and vanishes on-shell, when we use the equation of motion for the spin connection
w(e) [139]. This gives the Holst action [140]

Sy (ei,wi‘]) = (%E]JKL + %(SIJKL) /el Ael A RFE(w), (2.22)
where the coupling constant introduces the Immirzi parameter . This parameter
will not appear in the classical theory; however, it does play a role in the quantum
theory as we will show later in section 2.3, and also appears in the black hole entropy
formula derived for LQG [128].

The Holst action is the fundamental action of loop quantum gravity and can be
used to derive the new set of canonical variables in terms of a connection A and
its conjugate E, which is related to the metric. This choice greatly simplified the
constraint algebra [127] compared to the old ADM formalism [107]. We can write
eq. (2.22) as [139]

2
mp;

S(A, E,N,N%) =
Y

/ﬁﬂ%w—ﬁg_Nﬂ—mmJ, (2.23)

where (A, E) are the canonically conjugated variables, and A}, N and N are La-
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grange multipliers for the first class constraints (see appendix A.2 for details on
constrained systems). The Hamiltonian H and the space diffeomorphism constraint
H?® encode the invariance of the action under time translations and spatial diffeo-
morphisms, and the Gauss constraint G; generates SU(2) gauge transformations. As
we have made a specific choice for the time coordinate, the local Lorentz symmetry
is broken to a local SO(3) ~ SU(2) symmetry transforming the objects E¢ and A’.

The canonical variables satisfy commutation relations [139]
i gl i
{AL(x), EX(y)} = —-825i5(x — y) . (2.24)
Mpy
Specifically, E corresponds to the densitized inverse triad
E? = det (ei) e, (2.25)

where i = 1,2, 3 is an internal index, and a = 1,2, 3 a spatial index; and A to the
SU(2) connection (as opposed to a Lorentz connection) [139]
i L ik it 0i
Aa:—éej W+ ywy, (2.26)
where w!; is the spin connection satisfying the torsion-free condition. Defining a

mapping (see [116], pp.127)

W' = — =€k Ik (2.27)

the connection can also be written as
Al = Wt 4 . (2.28)

The original variables chosen by Ashtekar [110] were defined for an Immirzi pa-
rameter v = +i. They are special in the sense that the symmetry group of the
connection can be identified with the self dual (SD) SU(2) subgroup of the Lorentz
symmetry for v = 4, and the anti-self dual (ASD) SU(2) for v = —i [139]. These
subgroups correspond to the isomorphism between the complexified Lorentz group
and SU(2)xSU(2). Hence, I will refer to A” as the SD connection if v = i, and as
the ASD connection if v = —i.
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2.3. Spectrum of tensor perturbations using
Ashtekar variables

In this section I will study the tensor perturbations and calculate their power spec-
trum within the Ashtekar formalism. First, I will identify the canonical variables,
perturbed to first order to describe metric perturbations, in section 2.3.1.

The Hamiltonian description is discussed in 2.3.2: The constraints arising in the
Ashtekar formalism will be discussed and Hamilton’s equations will be derived for the
full and the perturbed variables. Finally, I will derive the second order Hamiltonian
describing the dynamics of gravitons (and therefore encoding tensor perturbations).
Although classically it reduces to the well-known result presented in section 1.2.5,
it is still very instructive to carry out the calculation explicitly as a number of
subtleties need to be taken into account which had not been previously identified in
the literature.

In section 2.3.3, I will expand the perturbation variables in Fourier space. As
the connection is complex, there will be separate positive and negative frequency
modes corresponding to gravitons and anti-gravitons, which are related by reality
conditions. I will end the section by deriving the commutation relations for the
modes.

The quantum theory can then be discussed in section 2.3.4. The Fourier space
Hamiltonian can be written in terms of graviton creation and annihilation operators
which are linear combinations of the metric and connection. Having identified these
operators, we can set up a Hilbert space of graviton states. The states with negative
energy are not normalisable under the chosen inner product, which is fixed by the
reality conditions. Therefore, half of the graviton operators are unphysical and
should be removed, after which we are left with the usual two graviton polarizations.
I will show that after normal ordering, we obtain a chiral vacuum energy, the first
real novelty compared to standard perturbation theory.

The chirality will be explored in more detail in section 2.3.5 where I will derive the
main result: The power spectrum of tensor perturbations in the Ashtekar formalism
is chiral, if the Immirzi parameter v has an imaginary part. This would lead to a
non-zero TB correlator in the CMB and therefore potentially be observable.

I will finish by discussing the case of a purely real v in 2.3.6 before concluding.
Note that in the following, in general a complex value of v will be considered, which

can be split into a real and imaginary part,

Y ="yr+ V1. (2.29)
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It will sometimes be instructive to focus on the SD/ASD connection for which vy =
+i, or a purely imaginary -, as these cases exhibit special behaviour. The case of a
purely real v, which renders the connection real, will not be considered until section
2.3.6.

2.3.1. The canonical variables

To study the tensor perturbations during inflation within the Ashtekar formalism,

we will consider the metric
ds® = a*[—dn* 4 (Oap + hap)dzdz"] (2.30)

where a = —H%? for a de Sitter background and we have omitted the T'T superscript
in the perturbation h,;,. Note that we will use the following index convention: I and
i refer to 4D internal and space-time indices, respectively, while 4, 7, ... and a,b, ...
denote the corresponding 3D indices.

We need to express the perturbations in the tetrad basis to relate it to the Ashtekar
variables. To zeroth order, the metric is given by (see section 2.2.1) e/(©) = aé! and
the non-zero spin connection forms are w’,(®) = He’.

Now consider a tetrad basis of the spacetime (2.30) including perturbations, e/ =
e!® 4 gel. Clearly, the time component is not perturbed, so we only care about
the triads e’. A solution for the triad components that satisfies the defining relation

(2.2) to first order (i.e. ignoring second order perturbations) is
. ) 1. .
e, = a(é& + 5%) . (2.31)

Instead of referring to the metric perturbation hg,, we will simply write the pertur-
bation in the triad as
el = ad + del. . (2.32)

The inverse triad, which needs to satisfy eq. (2.3) to first order is then given by

1 1
el = —0F — —=dey . 2.33
i a ’ a2 ¢ ( )
If we remember that d¢’, is defined as the perturbation in the triad (2.32), we do not
need to distinguish between ¢ and a indices and can simply raise and lower them
with the Kronecker delta. Although this mixes internal group and spatial indices,
we can always unambiguously recover the initial perturbation de’. We will therefore

refer to the perturbed triad as de;; (and simply call it the metric), and the perturbed
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Ashtekar connection as a;;. Note that with this convention de;; will turn out to be
proportional to the variable 2" used in section 1.2.5, whose mode functions v obeyed
eq. (1.62).

Like the unperturbed spin connection, its perturbation dw’; must satisfy the
conditions (2.15), (2.16) and (2.17) due to antisymmetry. We need to expand the
torsion free equation (2.11) to first order in terms of dw’ 7, de! ; and the unperturbed

quantities w’ ;© and e! f,o). For I = 0, we have to solve
WO A et + 6w A et® =0, (2.34)

where we only kept non-zero spin connection terms and used de® = 0. Similarly, for
I =i, we obtain
dse’ + dw'o A O 4+ 5w’ A ed® = 0. (2.35)

Using the rules in section 2.2.1, after some algebra we find

1 .
ol = E(Se;jd:c], (2.36)

2
&uij = —aﬁ[zée]]k dIk, (237)

where we lowered spatial indices with the Kronecker delta.

We can now define the Ashteker variables perturbed to first order, eq. (2.25)
and (2.28). Using the background solutions for the triad and spin connection, the
definition of the perturbed triad in eq. (2.33) and noting that det (ei) = a®, we

obtain

E* = a*6" — ade’, (2.38)

Al = ~yHad! + % : (2.39)

The classical solution for the perturbed connection a, is given by the perturbed spin
connections, (2.36) and (2.37):

Clij = eiklﬁkdelj + ")/(56;]- . (240)

Note that this condition is only supposed to be satisfied on-shell, as initially we treat
metric and connection as separate variables according to the first order formalism.

To obtain the Poisson brackets for the perturbation variables (which will be pro-
moted to commutators when quantizing), we simply need to plug in expressions
(2.38) and (2.39) into the full Poisson brackets (2.24). This results in four Poisson
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bracket terms of which only the last one is non-zero, which determines the Poisson

bracket for fluctuations as
i b - Y b
{a(x), del(y)} = ——L-dLatd(x —y) (2.41)
mp)

2.3.2. Hamiltonian formalism

As we know that the Holst action (2.22) is classically equivalent to the ordinary
Einstein-Hilbert action (1.8), the perturbed Ashtekar variables must lead to an
equation of motion for the tensor perturbations that is identical to the one you
would obtain in the second order formalism. The triad satisfies de;; = ah;;/2,
which has the same form as the field redefinition of the tensor modes in section
1.2.5, Bf{ = Smpihy, up to a factor of mp;. It should therefore also obey the mode
equation (1.62). We can obtain the equation of motion for the perturbation de;;
from Hamilton’s equations (derived for the full Ashtekar variables) by keeping only
the first order part. Later in this section I will derive the same equations from a
perturbed Hamiltonian instead.

The Hamiltonian constraint in the Ashtekar formalism for a general ~ is given by

[116):

2 .
H = % /deNEfE;? [eijk(Ffb + Heqpe 7)) — 2(1 + 72)[([1‘&[(;}] , (2.42)
Let me define the new quantities appearing in (2.42): The field strength F" of the

Ashtekar connection A’ is given by
;b = aaAZ - abAfz + Eijk‘él(];nAlbC ) (243)
K is the extrinsic curvature of the spatial surfaces,

) Az o E
i = A= ulB) (2.44)
/‘y
(on shell this becomes K! ~ w%) and N = 1/a? is the lapse density. For a SD/ASD
connection, v = &4, the term involving the extrinsic curvature vanishes, greatly
simplifying the constraint.

We also need to take into account a Hamiltonian boundary term [141, 142, 143],

Hpr = —m12;>1/dEaN€ijkEqugAbk : (2.45)
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Although the boundary term is often ignored by imposing fall-off condition at infinity
[143, 144], this cannot be done in general, e.g. when using a plane wave expansion.
Therefore, it will turn out to be essential to include the boundary term in order to
recover the correct classical solution.

The full Hamiltonian has two other constraints [116] [as was shown in the Holst

action (2.22)], the Gauss constraint
G = D,E! = 0,E! + ;3 AJE! ~ 0, (2.46)

and the vector constraint
Vi =E'FY ~ 0, (2.47)

which is a linear combination of the Gauss and diffeomorphism constraint. Both
constraints are satisfied by the background solution. It can be checked that they
are also satisfied to first order using the perturbed variables (2.38) and (2.39). We
will usually not be concerned with these constraints, as they do not encode the
dynamics of the theory, but I will comment on their significance when perturbing

the Hamiltonian to second order later.

Hamilton’s equations

To derive Hamilton’s equations for the full Ashtekar variables, we need to make use
the Poisson brackets in eq. (2.24) and remember the rule {A, BC} = {A, B}C +
B{A, C}. Hamilton’s equations for v = +i (where the terms proportional to (1+4~?)

in eq. (2.42) can be ignored) take a fairly concise form:

. , 3
A {AD H} = ')/NeijkEJb (Ffb + 5 H?e,,. Ek) , (2.48)
BY = {E}\H} = —yeuDy(NESE}) . (2.49)

where D, is the covariant derivative taken with the connection A*. We can obtain
evolution equations for the perturbations by plugging eq. (2.38) and (2.39) into
(2.48) and (2.49) and expanding to first order. This gives the Hamilton equations

for the perturbations,

agj = 27]‘12&2(561']' - fyeinmanamj ) (250)
1
oey; = ;(%‘ — €inmOn0€n;j) - (2.51)

74



Hamilton’s equation for de;; is the same as (2.40), i.e. it simply encodes the torsion
free condition which must be satisfied on shell. Taking the derivative of (2.51), and
eliminating the time derivative of the perturbed connection through (2.50), makes

it possible to obtain a second order equation for de;;, independent of the connection:
" 2 2

This is the same as eq. (1.62) in real space, proving that classically, the standard for-
malism of cosmological perturbation theory and the Ashtekar framework are equiv-
alent, at least for the case v = +i. Note that v has dropped out of the equation, as
it should not affect any classical results.

The Hamiltonian (2.42) of the Ashtekar formalism has been chosen such that it
can be related to the ordinary Einstein-Hilbert action by a change of variables, for
any choice of . Therefore we know that eq. (2.52) needs to hold in the general case
as well. This will help us in deriving Hamilton’s equations for the perturbations.
For a general v, Hamilton’s equations, derived for the full Ashtekar variables, are a
lot more complicated than in the SD/ASD case. Taking the Poisson brackets with
the Hamiltonian (2.42), we obtain the same expression as in eq. (2.48) and (2.49),
plus additional terms proportional to (1 + ~?):

. 3 o .y
A = N} (Fh + §HauEE) — (142 VENIK, - KU
—m3,(1+~?) / d%NEj?E;{Ag(g;),wf;wQ} (2.53)
EY = —yeuDy(NESED) + (1+9*)N(E!E} — EYE)) K] . (2.54)

The Poisson bracket {A,w(E)} is a very long and messy expression, so the last
term of eq. (2.53) is left unexpanded. As for the case v = +i, we can obtain
the evolution equations for the perturbations by substituting the definition of the
Ashtekar variables into (2.53) and (2.54) and expanding to first order.

In the case of the triad, this yields the same expression as before, eq. (2.51).
We would like to avoid having to work out Hamilton’s equation for a;; explicitly as
it would involve having to compute the unexpanded Poisson bracket in (2.53). As
we know that e;; needs to satisfy the equation of motion (2.52), we can actually
avoid doing the explicit calculation and simply use eq. (2.52) and (2.51) to deduce
Hamilton’s equation for the connection. It should contain the terms on the RHS
of eq. (2.50) plus additional terms proportional to (1 4+ ~?), such that it reduces to

the old expression for v = +:¢. Carrying out these manipulations, we finally obtain
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Hamilton’s equations for the perturbations for a general value of ~:

/ 2 2 1442
a;; = 2yH?a*0¢€;; — YeinmOnm; + ———€inmOn(Gmj — €mmuOrder;), (2.55)
1
66;]' = ;(aij - Einmanéemj) . (256)

At first glance, it might seem odd that these expressions yield the same equation of
motion for the triad [eq. (2.52)] as in the case v = +i, considering the connection
equation has acquired an additional term in 1+~? compared to eq. (2.50). However,
this is necessary as terms proportional to 142 do actually appear in the derivation
of the result for the v = +i case, where they can be set to zero. These terms must

be present in the case of general ~.

Second order Hamiltonian

We have found the equations of motion for the perturbations by perturbing the
full Hamilton equations. However, to be able to quantize the theory, we need to
identify the perturbed Hamiltonian. This exercise is not trivial; as we will see in the
following, a fair number of subtleties need to be taken into account before arriving
at the correct result.

The perturbed Hamiltonian should contain tensor perturbations and encode the
dynamics of gravitons. Therefore, we know that the constraint H & 0, which demon-
strates the lack of dynamics, cannot apply to the perturbative Hamiltonian which
we would like to quantize. Let us think about the Hamiltonian to different orders
in the perturbative expansion.

The first order Hamiltonian is trivially zero (once the other constraints are used).

The second order Hamiltonian, on the other hand, includes two terms,
H =2 +3H, (2.57)

where 2H contains products of first order perturbations, and 2H is linear in second
order perturbations in the triad and connection. Only the sum of these terms
vanishes on shell, ?H ~ 0. We can therefore identify the first term, ?H, with the
dynamical Hamiltonian to second order, while the second term 2H simply encodes
the backreaction or compensation due to the non-linearity of the gravitational field,
which ensures that the Hamiltonian constraint is satisfied. Therefore, we will need
to calculate 2H to understand graviton dynamics.

Let me also stress that in the Ashtekar formulation, off-shell, the Hamiltonian

1s not real, due to the presence of the complex Immirzi parameter v. Of course,
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imposing the constraints, the Hamiltonian becomes weakly zero and is therefore
manifestly real. However, as the constraint does not apply to the dynamical second
order Hamiltonian, 2H is indeed complex. The complexity of ?H will have an effect
on perturbation theory, and the novelties I will describe can be traced back to this
fact. Even though a complex Hamiltonian might seem strange, the quantum theory
we set up later (section 2.3.4) will still be well defined. All classical results can be
recovered and the quantum Hamiltonian will turn out to be hermitian after fixing
the inner product.

Before proceeding, note that the other constraints are also not zero when con-
sidering only the second order part that is quadratic in first order perturbations.

Specifically, for the Gauss constraint we get
%Gz == —eijkafl(SeZ 7é 0. (258)

When deriving (2.42) from the usual ADM action, the Gauss constraint and the
torsion free condition are used [116]. Therefore, non-zero terms proportional to ?G;
and 27 will appear in the expression for 2. However, it can be checked that these
additional terms result in a full divergence and can therefore be ignored.

By expanding the Hamiltonian (2.42) to second order we obtain:

2 : 1 2 2

17‘[ = T/d‘g’x{?aijalj + 26ijk561i8jakl —2H*a (562‘3‘56@'3'
1+42

2
—l——Ha(SeijaZ-j —2 Ha5e,-je,;kl(8k5elj)
Y

1++2
- 727 [ﬁikz(ak561j)aij + Eikzaij(ak561j) - Eiklejmn(ak(selj)(améeni):| } )

(2.59)

where we kept the ordering as it appeared in the calculation, as it will affect the
quantization. Only the first four terms survive for v = +¢. This expression is not the
correct perturbative Hamiltonian, however: it does not reduce to the Hamiltonian
(1.59) obtained for tensor perturbations in the second order formalism on shell, i.e.
when using the torsion free condition (2.40). This is due to two reasons.

First, we have not yet included the boundary term (2.45) at the same order and
level in perturbation theory (second order terms quadratic in first order variables).
It is given by

%HBT = m3, / dYeir0ejay, . (2.60)

To make this into a volume instead of a surface integral, we use Stokes’ theorem [53]
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which introduces a divergence,

?”HBT = mT%l /d3x 2€;10;(degam) (2.61)
where we introduced factors of two to obtain the same pre-factor as in (2.59). The
derivative term can be split into two contributions, one of which cancels the second
term of eq. (2.59) and the other is —2¢;;4(0;0€;)ak.

The second issue is more subtle and related to the terms proportional to H in
(2.59). There should not be any terms linear in the Hubble rate, as we want to
rederive the Hamiltonian for ordinary tensor perturbations, eq. (1.59), where the
only explicitly time dependent term is a”/a, which in de Sitter is given by 2/n* =
202H? and is therefore quadratic in H.

To understand what has gone wrong, recall the perturbed expression for the triad
and connection:

i

Al = yHasi + %2 (2.62)
a

B = a*§ — adel . (2.63)

(2 3

Instead of thinking of this as a zero order part plus a perturbation, you can also
regard it as a canonical transformation [145]: we have replaced variables (A’, E;’)
with variables (a,de?), which have the same symplectic structure as the original
variables (the fact that the Poisson brackets (2.41) have a minus sign compared to
(2.24) is related to the fact that we defined the perturbation 56? in the densitized
triad, not its inverse, initially. We could also absorb the minus sign into a field redefi-
nition of the triad perturbation). Such a transformation can always be performed for
canonical systems, regardless of whether the new variables are small perturbations.
In this viewpoint, instead of “freezing” the background and considering spacetime
perturbations around it, we regard the perturbed variables as equivalent to the full
Ashtekar variables.

If the canonical transformation is explicitly time dependent (which it is as a is a
function of time), the Hamiltonian in terms of the new variables, denoted by K, is
related to the old Hamiltonian by a generating function F' [145]:

K=H+ 8_F . (2.64)

In
To obtain the correct Hamiltonian, in principal we therefore need to compute the
generating function. However, again it is possible to “cheat” slightly by using consis-

tency arguments instead of performing explicit calculations. We know that it should
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be possible to derive Hamilton’s equations for the perturbations by taking the Pois-
son brackets (2.41) with the (correct) perturbed Hamiltonian to second order. By
demanding consistency with equations (2.55) and (2.56), which were obtained from
perturbing the full Hamilton’s equations, we find that the appropriate generating

function must be

oF 2

T = _%/d?’xHaéeij [aij — (1 + ) emOrdey]

Adding this term to the Hamiltonian in (2.59) eliminates the second line, i.e. the
terms proportional to H. The final expression, taking the boundary term (2.61) into
account, is therefore:

2 1 1
Heff — % /d3;p |:,)7aijaij — 2H2a256¢j56ij + (1 - ¥> Ez‘kl(ak:éelj)aij
1 1
— (1 + ?) eiklaij(akéelj) + (1 + ?) eiklejmn(akéelj)(améem')} :

(2.65)

This corresponds to the effective perturbative Hamiltonian, which can be used to
quantize the theory in terms of graviton states.
By using the on-shell condition (2.40), we can derive the Hamiltonian in terms of
the triad only, remembering 2a*H? = a” /a:
m%’l 3 / / 2 a”
Heff‘on—shell = T /d T {561']'56@' + (3;656”) — ;562‘]'562']' . (266)
After identifying the two physical polarizations of the triad by using appropriate
mode expansions in the next section, it will be clear that this is exactly the same as
expression as (1.59), the second order Hamiltonian for tensor modes derived in the

second order formalism.

2.3.3. Fourier space expansion

To be able to quantize the theory, we need to expand the perturbed variables in terms
of Fourier modes. However, we need to be careful that we perform this expansion
correctly, by taking into account two separate, but related points.

Firstly, note that in the Ashtekar formalism, the connection is initially complex
and we are not enforcing any reality conditions before quantizing. Therefore, we
must have graviton and anti-graviton modes in the expansion. This means that the

negative and positive frequencies in the field expansion are initially independent (so
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compared to eq. (1.45), we should have a different operator by associated with the
second term). Secondly, we will make the common field theory choice stipulating
that the spatial vector k points in the direction of propagation for both positive and
negative frequency terms. The reality conditions will then identify gravitons and
anti-gravitons moving in the same direction, not in opposite directions.

This choice not always been made in previous literature on the subject, where non-
physical couplings between k and —k modes appeared in the physical Hamiltonian
inside the horizon [144, 146]. These should only be present outside the horizon,
where they represent the production of particle pairs by the gravitational field (with
the particles in each pair moving in opposite directions) [147].

We therefore make the following Fourier expansion:

d*k , }
Oeij = / (2#)% Zéj(k)ér+(k, n)e > 4 egj*(k)élf(k, n)e kx

4’k r ~ ik-x % ~ —ik-x
iy = /(QW)gZEij(k)aH-(kan)ek +€ij(k)a':[f(k777)e 8 , (2.67)

where é,,(k,n) = e, (k)Wc(k,n) and a,,(k,n) = a,,(k)¥;P(k,7), and €}; are polar-
ization tensors. In a frame where the direction ¢ = 1 is aligned with k, they are

given by [43]:

, 1 |
er) = S0 ] (2.68)

Eq. (2.67) has the same form as the mode expansion for tensor perturbations (1.57)
performed in section 1.2.5, but now with an additional negative frequency term
which is independent of the first, as required. The amplitudes a,,(k) and e,, (k) have
two indices (in contrast with some of the previous literature [144, 146]): r = £1 for
right (R) and left (L) helicities, and p for graviton (p = 1) and anti-graviton (p = —1)
modes (which were not present in eq. (1.57), where the tensor perturbations were
manifestly real).

We can assume that the amplitudes a,, and e,,, which will correspond to annihi-
lation operators upon quantization, are equal, and the differences can be absorbed
into the mode functions ¥, and ¥,. Imposing the on-shell condition we will find
that while W, is independent of helicity and graviton states, the mode functions for

the connection, W, (k,n), must carry an r, p dependence.
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Mode functions

As we have seen that the Ashtekar formalism is equivalent to the second order
formalism of section 1.2.5, we know that the mode functions of the triad will satisfy

the equation of motion (1.62)

2
v+ (k:2 - ?) U, =0, (2.69)

where ’ denotes differentiation with respect to conformal time. This has the Bunch-

Davies solution given in eq. (1.62),

g = 2.70
e_zx/E( _k’_77>' (2.70)

The boundary condition in the far past, |kn| > 1 , is

U(k,n) ~ e (2.71)

This shows that k can be regarded as the direction of propagation of the wave as the
exponentials in which k appears can be written in four-vector form as e~*#7ei* =
ekut | ki = 0.

Let us find an expression for the mode functions of the connection on-shell. We
need to plug the Fourier space expansion (2.67) into the classical solution of the
connection derived from the torsion free condition, eq. (2.40). Making use of the
identity

Cintkney) = —irke.) (2.72)
we find
WP = (yg + py) ¥, + k¥, . (2.73)

This expression can be simplified inside the horizon (k|n| > 1), when the boundary
condition (2.71) holds:
U =Wk (r —ivg +pr) (2.74)

There is only a dependence on p if v has an imaginary part and for a purely real
v, U7 would be the same for gravitons and anti-gravitons. This is to be expected,
as for a manifestly real theory we would not have needed to expand in terms of two
different operators a,. and a,_, but just a single a,..

Before carrying on with the quantization of the perturbations, let us briefly in-

vestigate the relationship between the helicity states, labelled by r, and the duality
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states, defined by v = %i. In this case, eq. (2.74) becomes
VP = (r —ipy)kV, . (2.75)

For an SD connection, iy = —1, and the quantity in brackets is simply (r + p).
This is clearly zero if » and p have different signs. Therefore, the only components
of the connection that survive in the self dual case are the right handed (r = 1)
positive frequency of the graviton (p = 1) and the left handed (r = —1) negative
frequency of the anti-graviton (p = —1). The ASD connection has iy = +1 and
therefore contains the remaining degrees of freedom, right handed anti-graviton and
left-handed graviton. The split of the states into SD and ASD parts is summarized
in table 2.1.

r=+ [R] | r=— [L]
p=+ [G] SD ASD
p=— |[G] ASD SD

Table 2.1.: Relationship between helicity and duality states

This analysis shows that helicity modes and duality modes do not align, i.e. the
SD connection carries both right and left-handed helicity states and similarly for the
ASD connection. This point has been highlighted in [148], but it requires performing
the correct Fourier space expansion including graviton and anti-gravitons states and
was therefore missed in [144, 146].

Reality conditions

When we set up the Hilbert space of quantum states in section 2.3.4, we will need
to impose reality conditions to relate graviton and anti-graviton states (and their
Hermitian conjugates), which will enable us to obtain the physical degrees of free-
dom. The reality conditions will eventually be used to fix the inner product, but it
is instructive to obtain the corresponding conditions on the operators.

The metric is real, de;; = geij. Imposing this on the Fourier expansion, we find
e (k) =e,_(k) . (2.76)

Therefore, graviton and anti-graviton are identified for each polarization and each
mode k. This is a good check that the expansion in eq. (2.67) is physically sensible,

as we do not get relations between different polarizations or wavevectors k and
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—k. On-shell, the triad therefore only needs one set of creation and annihilation
operators in its Fourier expansion.

For the connection, the torsion free condition and the reality condition are linked:
Although the connection can be complex, it must satisfy the torsion-free condition,
which will ensure that the metric is real. From the defining expression for the

Ashtekar connection, eq. (2.28), we know that

RA" = W'+ ypw", (2.77)
JA" = . (2.78)

There are two reality conditions for the connection, but we only need to impose
one as a constraint, as the dynamical evolution (described by Hamilton’s equations)
will make sure that the second condition is satisfied. Let us see what this implies
for the perturbations a;;. Using the solutions for the perturbed spin connection

components, eq. (2.36) and (2.37), we obtain

Q5 + aij = 2a (5wij + "}/R&U?J) = 26iklak5€lj + 2"}/R(56;j 5 (279)
a; —a; = 2ai’yf6w?j = 2iyr0e; . (2.80)

Using the expansion (2.67), in Fourier space this becomes

) = 2eke(n) + 29E, (k). 281)

where a,, = a,, VP and é,, = €,,¥.. The reality condition for the connection we
want to impose as a constraint should be non-dynamical, so let us eliminate the

time derivative of the metric by combining eq. (2.81) and (2.82):

o ary (k,n) —iva,—(k,n) = 2rkvyié,. (k,n) . (2.83)
Its Hermitian conjugate is:

—iyal (k) +iv'a)(k,n) = 2rkyie,_ (k1) (2.84)

where we have used eq. (2.76) to turn p = 1 into p = —1 on the RHS. This shows
that for each r and k there are two independent conditions upon the four operators
arp(k) and e, (k). We will use them later when we define the inner product.

On shell, we can use the full torsion-free conditions, eq. (2.73), which can be
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written as a weak identity on the operators:

ar_(k,n) ~ Tké, +7E = &(r — i)k, (2.85)

k
ary(k,m) =~ rké,+ve. —e.(r—iv)k, (2.86)
where the latter expression is valid in the limit k|| > 1, c.f. eq. (2.74). These
identities will be useful later when deriving the graviton operators for this theory,

as they will show that one of the graviton modes is unphysical.

Commutation relations

Before we can set up a quantum theory in terms of graviton operators we need to
define the commutation relations for the modes. To do this, we first promote the
Poisson brackets (2.24) and (2.41) of the connection and metric in position space to

commutators:
[AL(x), E'(y)] = i~ 0b0id(x ), (2.87)
mp)

[ai(x),éeg(y)} = —iml%lézéj-d(x -y). (2.88)

Note that these commutators have been derived from the fundamental Poisson brack-
ets of the Ashtekar variables and hence have not been gauge fixed yet, i.e. the TT
projection has not been carried out and we therefore have not identified the two
physical polarizations of tensor perturbations. The Fourier expansion (2.67), on the
other hand, assumed by construction that there are only two helicity states r = +1.
It was shown in [149] that the appropriate form of the commutator (2.88), taking

care of the gauge fixing, is

[ai;(x), Sen(y)] = —z'mi%lpijkxx ~y), (2.89)

where the delta function is replaced by a function Pz (x) which takes care of the

TT projection and is given by

Pod) = [ 5 > 600 e (2.00)

To obtain the equivalent of eq. (2.89) for modes, let us first consider the unpro-
jected commutator (2.88) again. Dropping the indices, we can split the metric and

connection into separate positive and negative frequency parts, de = det + de™,
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a = a’ + a~, which are given by

&’k ik-x
det(x,n) = /(2%)36 (k,m)e™™, (2.91)
de (x,m) = /(gﬂ'];g e T(k,n)e >, (2.92)

and similarly for a.
Therefore there are four terms in the commutator and, as is standard in QFT
[68], the only non-vanishing equal-time commutators must be given by positive and

negative frequency parts,

[a¥(x),de (y)] = [a” (x),de" (y)] = —’i%zz o(x—y). (2.93)
For the modes, this implies

(), ()] = o™ (), ()] = — PO 50 aey (200

2mg,
Taking expression (2.89) for the TT projected position space commutators into
account, we see that the operators we have defined in the Fourier expansion (2.67)

have commutation relation

() = DB 5 5 k- 1) (2.95)

2
2mg,

[arp (k). €l
where ¢ = —q.

The dependence on ¢,; shows that we only get non-vanishing commutators when
considering the positive frequency of one variable and the negative frequency of the
other. As before, when we considered the mode functions of the connection, there is
no p dependence if v; = 0, as for a real field there is no distinction between gravitons

and anti-gravitons.

2.3.4. Quantum Hamiltonian

We now have all the ingredients to set up the Hamiltonian in Fourier space which will
be the starting point for the quantum theory. We want to express it in the standard
form where it just reduces to a creation times an annihilation operator, counting
the number of states, c.f. eq. (1.44). In our case, these states will be graviton states
and the operators will create and annihilate gravitons. As we have not imposed the

torsion-free condition yet, the graviton operators will be linear combinations of the
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metric and connection, and only reduce to metric variables on-shell. Due to the
complexity of the Hamiltonian, this exercise is non-trivial. We will find twice as
many particle states as expected as well as unphysical particle production terms.
However, once the correct inner product has been identified, we will reproduce the
expected form of the Hamiltonian.

Note that from now on we will consider the inside horizon limit kn > 1 for which
terms in H can be neglected, as we are not interested in the behaviour of tensor
perturbations outside the horizon where they freeze out.

Inserting the expansion (2.67) into (2.65) and making use of the relations

e (k)er(k) =20, €. (-k)=¢€7(k), (2.96)

i i i i

we obtain a lengthy expression for the Fourier space Hamiltonian:

1
Hepp = m%l/dgkz_{

7

K2 (77 4+ 1) &y (k) = kr (77 + 1) @ri (k) | 4 (k)
+ (P 1) (k) — kr (V24 1) ang (k) & (k)
+ (D) E_(k) —kr (v + 1) al_(k) |64 (k)
+ (D E_(k) —kr (7 +1) df_(k)_ &l (k)
R (57 = 1) @ () ()| (k)
b (2 = 1) e ) + ()] 0l (k)
(- 1)e 09 + al 0], 0
+ :k:r (v* —1)él_(k) + dl,(k): ai(—k)}

(2.97)

Hamiltonian for v = 44

Before trying to make sense of this monstrosity, it is instructive to study the case
of a SD/ASD connection for which 42 = —1. In this case, eq. (2.97) reduces to a

much more tractable form:

Hogs = iy |53 000904 (k) + - ()g] (19

+ i (K)gr (k) + gl (K)gl_ (k) | (2.98)
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where

gr—i—(k) - ar+(k>7 (299)
gio(k) = —al_(k)+2kréel_(k), (2.100)
gr—(k) = —a,1(k) + 2krée,(k), (2.101)
g-(k) = al (k), (2.102)
which can be identified as the the graviton (p = 1) and anti-graviton (p = —1)

creation and annihilation operators g;[p, grp- Note that the creation and annihilation
operators for each index r, p are only hermitian conjugates of each after the reality
conditions (2.83) and (2.84) have been imposed.
Their commutation relations can be derived from eq. (2.95):
gk
[9:p(K), g1y (&)] = ——5(pr) kb0, 0 (k — K') . (2.103)

2
mp)

The Hamiltonian (2.98) has some unusual features. Firstly, for each k we find four
independent modes (r = £1 and p = £ 1), instead of two as would be expected for
tensor perturbations. Half of these states have negative energy (those with iy = pr,
which leads to a minus sign in the commutator instead of the usual plus sign). For
example, for the SD connection v = i the left “graviton” (r = —1 and p = 1)
and the right “anti-graviton” (r = 1 and p = —1) carry negative energy. Secondly,
there are unphysical production terms in the Hamiltonian (2.98) which couple k and
—k modes. These pump terms represent pair production [147], and should not be
present in the subhorizon limit k|n| > 1 where spacetime is approximately flat.

Both of these pathological features are not present for classical solutions, as they
vanish on-shell when imposing the conditions (2.85) and (2.86). For example, for
v = 4, the on-shell conditions imply ag_ ~ 0 and a;, ~ 0. When also imposing the
reality conditions such that we can consider the creation and annihilation operators
as hermitian conjugates of one another, gip = (grp)f, we find that two of the operators
are eliminated. Only gL - gL, which create positive energy states, are non-zero.
Thus, the negative energy modes do not exist classically and you can check that the
pump terms also vanish.

As mentioned previously, quantum mechanically we do not want to treat the
reality conditions as operator conditions but impose them on the inner product,
which should also remove the unphysical states from the Hilbert space. We will use
a holomorphic representation where we consider the states as analytic functions over

the complex domain as introduced by Bargmann [150].
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As mentioned above, the reality conditions simply ensure that gip is indeed the
hermitian conjugate of ¢,,. This condition is sufficient to fix the inner product [144,
151, 152]. A holomorphic representation for wavefunctions ® = (z|®) is defined as

one which diagonalises gf, [150]:
(2191, |®) = zp (2] @), (2.104)

where z,,(k) are complex eigenvalues. Similarly to the case of deriving the action
of the momentum operator on states when working in the usual position space

representation, we can derive the action of g,, from the commutator (2.103):

(o) = i (pr)h =0 (2[) (2,105

Pl 0zpp

We want to define an inner product in this representation. The decomposition of

the unity operator for the complex eigenvectors |z) is given by [152]
1= / dzdze!>?) (2.106)

where e#(*7) is a positive integration measure (for the normal position representation

with eigenstates |z), it is just equal to 1). The inner product can then be written as
(B]Dy) = / dzdze"*A) P (Z)Dy(2) . (2.107)

The defining condition of the hermitian conjugate of an operator is (®1]g},|®2) =
(®2|grp|P1), which can be used to derive an expression for the measure. Using
the defining relations for the creation and annihilation operators, eq. (2.104) and
(2.105), and the definition of the inner product (2.107), we obtain a differential

equation for p(z, 2):

' 0
7;—7(]77‘)/{ 7,u = Zrp - (2.108)

This can be integrated to give

i} M) x— Pr _
iz, z) = /dkTm Ezrp(k)z,ap(k) : (2.109)
Tp

which fixes (®1|®2). The vacuum of this representation is defined by g,,$9 = 0

which gives

Oy = (2]0) =1, (2.110)
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and particle states are monomials in the respective variables,

d,, = (z|n) x (gip)"\llo = Zm - (2.111)
These states are not normalisable for ¢y = pr, as in this case the measure is positive
and the exponential in (2.107) blows up. Hence, these states should be removed
from the physical Hilbert space and therefore their associated operators g,, should
not appear in the Hamiltonian. For ~ = 4, this only leaves two physical modes
g% = grs and g5 = gr_.

For the SD connection we therefore obtain the physical Hamiltonian
h h pht nt ph
Hepr ™ m%/dk (929 +9r 9r)- (2.112)

This looks like the standard Hamiltonian for a harmonic oscillator, with the differ-
ence that only the left handed graviton needs to be normal ordered and produces a
vacuum energy. For the ASD connection only the right handed graviton produces
vacuum energy. Left and right handed gravitons are not on the same footing, and
the theory is chiral. We will explore this chirality in more detail after finding the

graviton operators for general 7.

Hamiltonian for complex values of ~

Let us focus on the general Hamiltonian (inside the horizon) in terms of modes again,
eq. (2.97). We need to identify linear combinations of metric and connection that
can act as graviton operators, equivalent to g,, and glp for v = +i. We want to end
up with two physical operators corresponding to the two independent polarizations,
however initially there should be four different operators. Two of them will be zero
on-shell, representing the unphysical modes, while the other two should commute
with them [c.f. eq. (2.103)] and reduce to metric variables on-shell.

To find the general expression, consider the graviton operators for v = +¢ and
find linear combinations of them that satisfy these conditions. After some algebraic
manipulations that make use of the on-shell conditions (2.85) and (2.86), we can

identify suitable operators:

(r —iy)gry — (r+17)gr—

Gyp, = . : 2.113

P+ _2,.)/2 ( )

Gy = THre — (T Z)gr- (2.114)
—2v1

where the new index P = P,,P_ labels physical and non-physical modes. This
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notation is used to avoid confusions with p = +1 used for positive and negative fre-
quencies, and except for the cases of v = +17, the two indices do not align. Using the
on-shell conditions, we find that G,p_ ~ 0 and G,p, ~ 2rke, as required, and you
can check that their commutator is zero. The index P = P, = 1 therefore denotes
physical modes, which reduce to the metric classically (and quantum mechanically
will have positive energy and norm), and P = P_ = —1 denotes modes that vanish
on-shell (and quantum mechanically will have negative energy and norm).

We can use the expressions in eq. (2.99) to (2.102) to write the new operators
G,p in terms of metric and connection variables. We can find expressions for the
creation operators by demanding that they are hermitian conjugates of the anni-
hilation operators once the reality conditions (2.81) and (2.82) are imposed. The

operators and their commutators are listed in table 2.2.

Physical P =P, =1 Unphysical P =P_ = —1
Gr73'+ - ;_fyr(dr—k - k’(’l“ + 27)67"-1—) Grp_ = Z_'_«:(dr-‘r - k‘(’f‘ - Z’Y)ér-i-)
Glp, = £(al_ —k(r—iy)el) Glp = £@l_ —k(r+iv)e)

(G, (), Glp, (k)] = £-0,0(k = ) [Grp (), Glp_ ()] = =600k — K)

Table 2.2.: Physical and unphysical graviton modes

The Hamiltonian (2.97) can be written in terms of the new graviton operators as
Moy = 0 [EY (4 i)Gp (06 (10— (1= 137)Cop (K)Gop. ()
+(1 +iyr)Grp, (K)GLp, (k) + (1 = iyr)Glp, (K)Gp, (K)
+(1 —iyr)Gyp_ (K)Glp (k) + (1 +ivr)Gly (K)Grp (k)
—(1- WT)GIm (k)Gip,<_k) —(1+ Z'VT)GIP, (k)Glm(_k) .
(2.115)

This is the generalization of eq. (2.98). As before, there are too many graviton
states as well as unphysical pair production terms. They all vanish on shell where
the operator corresponding to P_ is zero. We can now set up the Hilbert space,
fixing the inner product by requiring that the operators in table 2.2 are indeed

hermitian conjugates of one another.
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Again, we use a holomorphic representation which diagonalises Grp, ie.:
(Gl ®) = 2p(2]9) (2.116)

The commutation relations in table 2.2 determine the action of the annihilation

operators,

ko
(2|Grp|®) = Pm—%%@@) : (2.117)

This is formally very similar to the case v = £, but note that the variables z,p are

not the same as before. Using the definition of the inner product eq. (2.107), and

the same formal condition (®,|Gl,|®s) = (By|G,p|®,), We arrive at an expression

w(z, 2) / mPl ZP zp(k)Zp(k) . (2.118)

for the measure:

The vacuum state
by = (2]0) =1, (2.119)

and the particle states
@, = (2|n) (GIP)n‘IJO = Zp, (2.120)

have the same form as before (but are defined in terms of new variables z,p). The
measure implies that states with P = P_ = —1 are not normalisable and the oper-
ators corresponding to P_ should be removed from the Hamiltonian. The physical

Hamiltonian for a general value of « is therefore:
2
w0 / dkc SO [GP G (1 + i) + GPHGIN (1 — i), (2.121)

where GP" = G,p, .

Vacuum energy

Only the first term in the physical Hamiltonian (2.121) needs to be normal ordered,
using the commutation relation in table 2.2. This leads to a chiral (r-dependent)
term corresponding to the vacuum energy, V, o 1 + i¢rvy. The asymmetry in the

vacuum energy between the right- and left-handed gravitons is given by

Ve—VL

BT L g 92.1292
Vo, ( )
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This equation is valid for any complex . There are a few points of interest to note.
If v is purely imaginary and |y| > 1, the vacuum energy V, oc 1 + iy of one of the
modes becomes negative. Negative vacuum energy is often associated with fermionic
degrees of freedom [153], but this will not be investigated further here.

More importantly, if v has a real part the VE for each r is complex. When
right and left helicities are added together, however, we simply obtain Vi + V;,
1+4y+1—14y =2, so the total vacuum energy is indeed real.

The reason we obtain a chiral, complex vacuum energy is because the Hamiltonian
is not hermitian before normal ordering: Although it is real on-shell for any value
of v (which does not appear in any on-shell expressions) and the graviton operators
themselves are hermitian, unless v is imaginary, taking the hermitian conjugate of
the perturbative physical Hamiltonian (2.121) does not yield H' = H.

Hermiticity is restored after normal ordering, when + drops out of the Hamiltonian
and is only present in the vacuum energy term. As the latter is not physically
measurable (and when coupled to the Einstein equations, we need to consider the
total which is indeed real), this result might not be too concerning. However it
might also imply that it is more physical to consider only a purely imaginary -y
or that we should use a symmetric ordering for the Hamiltonian: When we first
defined the Hamiltonian in eq. (2.42), we picked an ordering of the form EEF (the
field strength contains connection terms, which do not commute with metric terms).
Knowing which ordering in quantum mechanics is “correct” is an issue which can
ultimately only be resolved by experiment. It can be checked that using an EFE
or 1 (EEF + FEF) ordering would satisfy H = H' on and off-shell, for any value
of 4. In this case there would be no chirality in the vacuum energy. However, note
that we would obtain the same graviton operators regardless of ordering, and as will

see now, chirality will still be present in the vacuum fluctuations.

2.3.5. Chiral vacuum fluctuations

The central gravitational variable in the Ashtekar formalism is the connection, not
the metric, which can be seen from the Holst action (2.22). Therefore, the power
spectrum of tensor perturbations should be derived from the (TT-projected) per-
turbations of the connection as opposed to the metric. As in the second order
formalism, the Ashtekar tensor perturbations will have an effect on the CMB fluc-
tuations, especially on the polarization. We will not need to worry about the exact
normalization of the tensor fluctuations, as we are mainly interested to see whether

the complex nature of the connection will play a role.
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The analogous expression to the tensor power spectrum (1.65) is given by
(01AL () A, (K)|0) = P, (k)d(k — k') , (2.123)
where A, (k) represents Fourier space connection variables with handedness r, i.e.
A (K) = apy (K)e ™ 4 al_(k)er® . (2.124)

Note that we could have picked a different ordering in the 2-point function (2.123),

so in general we have to consider
ATA = aATA 4 BAAT (2.125)

with o+ =1 and o, § > 0. As opposed to the vacuum energy, we will see that the
power spectrum (2.123), being a measurable variance, is always real and positive.
To compute the physical power spectrum, we need to relate the connection vari-
ables to the physical graviton modes labelled by P, in table 2.2. As we need to go
on-shell to define physical states, we can use conditions (2.85) and (2.86) to express
the metric variables in terms of the connection:
Qg t a,_

o, = """ == 2.12
Cr+ k(r —ivy)’ “r- k(r +1v) ( 6)

These relations can be subsituted into the equations for Gim, G,p, in table 2.2,
which gives expressions for the physical connection modes afi’i and aff]fr. The re-

maining modes can be obtained by taking hermitian conjugates (as we are on-shell,

the reality conditions have been imposed). We find

ph r— iy

@l = G, (2.127)
"t = TJ;ZV*GIM, (2.128)
' = T;ZV*GM, (2.129)
M = r;”aim. (2.130)

We can see that the physical connection modes depend solely on the graviton oper-

ators, so they will be the same for any ordering of the Hamiltonian. Plugging these
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expressions into (2.124) we obtain for the two connection helicity states:

T+

h o r—uy —ik-x ] ik-x
AP (k) = =G, (k)™ + — =G (k)™

ht o= ik, T ikea
APM(k) = 5 Grp, (k)e +—2r Grm(k)e )

This means that the power spectrum (2.123) is given by (using G,p, (k’)|0) = 0)
(O[ AP () A7 (K [0) = P, (1){0]Gop ()Glp, (K]0} . (2131)

We could eliminate the expectation value of graviton operators by using their com-
mutator to give us an expression in terms of delta functions. However, we are only

interested in the chiral dependence of the power spectrum P,, which is given by

(r+i)(r—iv") _1—2ymr 4+

P (y) = 2.132
) . ! (2132)
If yyr < 0, P.(7y) is obviously positive. Otherwise,

Po(y) < 1=2lyl +77+7% = 1= ul)? +%, (2.133)

which is also positive for any complex . Therefore, the 2-point function is indeed
always real and positive, as required. The chiral asymmetry in the power spectrum

can be written as

Pr—P 2
R—L_ S (2.134)
PR + PL 1+ "}/|2
or, for a general ordering of the 2-point function as in (2.125),
Pr—P 2(6 —
r— P 208= ) (2.135)

PR+PL_ 1+|’Y|2

The chirality in the power spectrum of tensor fluctuations is the main new result of
this work, and a big difference to the standard second order formalism described in
section 1.2.5 (which corresponds to the limit |y| — oo, for which the Holst action
reduces to the Palatini action).

We can see that if v was purely real there would be no asymmetry in the vacuum
fluctuations for right and left gravitons. The chirality is related to the fact that for
a v with an imaginary part the connection is a complex field and therefore we must
expand it in terms of graviton and anti-graviton modes. Note, however, that a real
part in the Immirzi parameter does affect the absolute value of the asymmetry due

to the factor |y| in the denominator of (2.134). We can also see that for a completely

94



symmetric ordering of the 2-point function, o = 3, the RHS of eq. (2.135) is zero.
Hence, even if the Ashtekar formalism was the correct description of gravity, we
would not obtain a chiral power spectrum if v was real or the ordering symmetric.
Not measuring chirality would therefore not be able to rule out the theory.

We can plot the power spectrum asymmetry (2.134) against the real and imaginary
parts of ~, see figure 2.1. It is obviously antisymmetric in 77, and the minimum and
maximum are at v = =i respectively which are the values that correspond to a
SD/ASD connection. They display the maximum chirality because the Palatini
action can naturally be split into a SD and ASD part [116]. The axis 77 = 0

corresponds to a real 7 and therefore displays no asymmetry.

Pe-Pr
Pr+Fe

Figure 2.1.: Power spectrum asymmetry as a function of a generally complex Immirzi
parameter .

Measuring a chiral tensor spectrum

As was mentioned in section 1.3.2, in the absence of parity violation, the T'B power
spectrum of the CMB would be zero. In the situation we have just considered,
the chirality of the power spectrum (2.134) breaks parity. The effect of parity
violation on the CMB power spectra was investigated in [57]. It was found that the
ratio between the quadrupole of the T'B correlator (zero in standard cosmological
approaches) and the BB correlator is given by
CTB

_C’zBB ~ freaz, (2.136)
where ap =~ 200 parametrises the relative strength between the T'B and BB spectra

and fpg = 2%;—% is the parity breaking parameter, which is zero if no chirality is
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present. In our case, we therefore find

CzTB ~ 800 (5 - 04)71

s TR (2.137)

for the ratio of tensor induced T'B and BB quadrupole modes. Not only would
chirality render the T'B correlator non-zero, it would also be easier to detect T'B
rather than BB correlation (C32 > CPPB) for a wide range of values of v, given
approximately by

1
— 800 . 2.138
s <hl< (2135)

BICEP2 has recently detected B-modes [21] that might have arisen due to tensor
perturbations from inflation, however we do not yet have tensor power spectra over
a large number of multipoles as the experiment only took data from a small patch of
sky. Although there was no hint of parity violation in their analysis so far, this might
change once the full power spectrum becomes available. It will therefore be possible
in the near future to constrain the model I have described. If the T'B correlator is
consistent with zero, we know that for Ashtekar gravity to be correct, v must be
either quite far from the range in eq. (2.138) or real. If a chirality was detected, on

the other hand, it could indeed have originated from this mechanism.

2.3.6. A purely real v

Before I conclude, let us quickly consider the case of a purely real theory for which
() = 0. Although it will turn out that we can take the limit () — 0 in all of
our main results to obtain the answer in the real theory, it is not initially obvious
why this would work, as a real theory is very different from a complex one. I will
describe the main differences and show why our results are still well defined in the
real case.

A purely real theory would require Fourier mode expansions using operators a,
and e, without a p index, as there is no need to consider separate sets of creation and
annihilation operators. We therefore would only get two modes for each k and r as
usual in the second order theory. As we ignore the p index, what used to be reality
conditions in the complex theory, where we related modes with different p, are now
just operator conditions, €., = €é,._ and a,. = a,_. Similarly, the commutation
relations (2.95) have one less index and must be replaced by

gl

2
mp

[a,(k), el (k)] = ik — k). (2.139)
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The Hamiltonian, on the other hand, will still have the same form, as p = —1
modes always appear with a dagger and p = +1 modes without, see eq. (2.97). This
enables us to define the same physical and unphysical graviton operators as before,
however without a p index on the RHS, e.g.

—r
Grp, = —(a, — k(r+iv)e,) . (2.140)

iy
Note that as opposed to the complex case, were the graviton operators were only
hermitian conjugates of each other after the reality conditions had been imposed,

for the real theory the reality conditions are satisfied by the metric and connection
.|.

T

operators. Therefore, G,p and G,, are automatically conjugates of one another,
which can be trivially seen from their definitions.

We still have a non-physical mode, however, which can be eliminated by imposing
the torsion free condition which relates a, to e,. As before, we can define a holomor-
phic representations and an inner product, which will show that the non-physical
modes have negative energy and should therefore be excluded. Our Hamiltonian
and Hilbert space will therefore have the same structure as for a general complex ~.

Hence, the real theory can be viewed as the limit () — 0 in the sections above.

2.4. Conclusions

I have shown that using the Ashtekar formalism in cosmological perturbation theory
leads to a number of interesting results.

(Classically, rederiving the second order Hamiltonian corresponding to tensor per-
turbations is far from trivial. We saw that we need to take boundary terms into
account, as well as regard the change from the full Ashtekar variables to the pertur-
bations as a canonical transformation in order to arrive at the correct form of the
Hamiltonian. I was then able to reproduce the standard result for the equation of
motion of tensor modes, as obtained in the second order formalism.

On the quantum mechanical front there were several novelties. First of all, the fact
that the connection is complex makes the exercise a lot more involved than in the
usual case. We need to expand the fields in terms of positive and negative frequency
operators, which are related by reality conditions. These are not supposed to be
imposed on the operators, but only at the very end when choosing the inner product
of the Hilbert space. We can write the Hamiltonian in terms of graviton creation
and annhilation operators, which are linear combinations of metric and connection.

When fixing the inner product, we find that half of the operators are unphysical,
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demonstrated by them being zero-on shell, when the torsion free condition relating
metric and connection is imposed. This also gets rid of unphysical coupling terms
between k and —k in the Hamiltonian.

As the connection is complex, so is the dynamical, perturbed Hamiltonian. This is
not a problem as we ensure actual observables are real by requiring the Hamiltonian
to be hermitian through the choice of inner product, at least after normal ordering.
The complexity of the Hamiltonian is, however, the origin of the chiral effects we
observe.

Before normal ordering, if vz # 0, the Hamiltonian is not hermitian, which results
in an imaginary vacuum energy for each helicity. Non-hermitian Hamiltonians have
been studied before [154] and are not necessarily regarded as problematic. In our
case, the total vacuum energy for both helicities is real, and therefore the non-
hermitian nature might not be physically significant.

The main result of this chapter is the chiral power spectrum of tensor perturba-
tions, which is described in terms of perturbed connection variables. This chirality
is present as long as « is not purely real, and the strongest effect occurs for the
SD/ASD connection for which v = £i. The chirality in the power spectrum is a
novelty compared to the standard second order formalism, and demonstrates that
using different variables to describe spacetime does not necessarily lead to equivalent
results.

A chiral graviton would break parity and therefore lead to a non-zero T'B correla-
tor, which can be probed by CMB measurements. As the Planck collaboration will
release their polarization results later this year, it is only a matter of time until the
full power spectrum can be obtained, which will enable us to constrain the value of
the Immirzi parameter.

Although gravitational chirality can be produced in other ways [153, 155, 156],
the mechanism presented here is by far the simplest. If a chiral tensor power spec-
trum was to be observed, it would hint at the Ashtekar formalism being the correct

fundamental description of gravity.
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3. Anisotropic Gravitational Wave
Background from Massless

Preheating

Reheating is one of the least understood periods in the early universe. While nearly
all the elementary particles we observe must have been produced during this period,
we still do not know for sure how the process occurred. Although reheating might
have an effect on the curvature perturbation [157], the main constraint to date
comes from the abundance of light elements which give bounds on the reheating
temperature after thermalisation [158]. However, as was shown in section 1.4, the
detailed preheating dynamics strongly depend on the underlying model of inflation.
Therefore, studying observables that were affected by the reheating process would
give us insight into this period as well as inflation.

Gravitational waves are an ideal candidate to probe the period of reheating, and
therefore inflation, further. As mentioned in section 1.5.2, they will be produced
in large quantities during preheating due to the presence of time-varying matter
inhomogeneities, and their spectrum will peak at a scale that is characteristic of the
preheating dynamics.

If the background of GWs from preheating was to be measured, it would therefore
provide information about the inflaton potential, as well as the couplings of the infla-
ton to other matter fields, which cannot be easily be obtained in other ways. Unlike
the CMB fluctuations, GWs from preheating decouple right upon production (below
the Planck scale), due to their weak interaction with other matter [96]. Therefore,
they do not evolve on their journey towards us, and retain their spectral shape and
frequency (except for a redshift due to expansion), giving us a direct snapshot of
the very early universe. Even though it is currently not possible to directly measure
GW backgrounds from preheating, which peak at very high frequencies [91], it is still
important to characterise them, as they might become a vital tool of observational
Cosmology in the future.

In this section I will discuss GW production from massless preheating, in the
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presence of a light scalar field. As this is a non-linear process, the problem will
naturally have to be solved numerically. I will show that this model leads to an
anisotropic background of GWs today, with relative fluctuations of the order of 1%,
as was presented in [3, 4]. Such anisotropies could arise in any preheating scenario
where a light scalar field is present, providing a novel way to distinguish between
different inflationary models.

I will start by describing gravitational wave production from preheating and how
it can be studied numerically in section 3.1, with particular focus on massless pre-
heating. I will also explain how to relate the frequency and energy density of the
produced GWs to their values today.

In 3.2, T will argue why the presence of a light scalar field, which acquires a scale-
invariant spectrum of perturbations during inflation, would result in anisotropies in
the GW background. The numerical algorithm and the parameters used in the sim-
ulations are the topic of section 3.3, where I will show some results that demonstrate
the usual behaviour of the field dynamics and GW production during preheating.

In 3.4, I will show that the amplitude of GWs strongly depends on the initial value
of the preheating field x. The main result is presented in section 3.5, where I will
demonstrate that the GW background in this model has a scale invariant spectrum
of fluctuations, with anisotropies of the order of 1%. I will discuss how this effect is
related to the field dynamics. Finally, I will conclude in 3.6 and give an outlook on
future work that could be done in this field.

Note that in this chapter, I will use the Planck mass Mp, instead of the more
commonly used reduced Planck mass mp;, which differ by a factor of v/8x. The
simulation code is based on the publicly available ClusterEasy [159], which intro-
duces dimensionless parameters that are rescaled in terms of the Planck mass. To
make comparison with the simulation results simpler, all other equations will also

be given in terms of Mp.

3.1. Gravitational wave production during

preheating

3.1.1. Studying preheating numerically

The analytic study of preheating presented in sections 1.4.2 and 1.4.3 is valid up to
the point where the system becomes non-linear. This happens when the backreac-
tion of the produced particles becomes large enough to induce correction terms in

the inflaton potential and eventually terminate the resonance. Although analytical
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estimates of when this occurs have been obtained in [66, 67], as in any problem
that contains highly non-linear equations, the actual dynamics are best investigated
using numerical methods.

In the case of preheating, numerical simulations were first performed by [160],where
only a quartic self-coupling of the inflaton was considered. The classical field equa-
tion was solved numerically, and the quantum nature of the problem was taken care
of by setting up fluctuations in the modes ¢y as random initial conditions. In [161],
interactions with another scalar field were introduced and studied numerically, using
lattice field theory simulations where the fields are discretized on a regular lattice.
These early numerical simulations gave new insight into the resonant behaviour for
different couplings and the dynamics after the onset of non-linearities.

The non-linear regime of preheating is particularly interesting, as it can lead to
the production of a large amount of gravitational waves: due to the amplification of
specific momentum modes during preheating, after enough energy has been trans-
ferred we are left with large, time-dependent inhomogeneities in the classical field
distribution which act as a source for gravitational waves.

Specifically, if a momentum k, is amplified, this results in field inhomogeneities
in configuration space of size L, ~ 1/k, which introduce an anisotropic stress term
into the stress energy tensor, the transverse-traceless part of which acts as a very
efficient source of GWs, see section 1.5.2. Although initially GWs are produced
on scales corresponding to the amplified momenta, eventually the inhomogeneous
configurations collide and break up into smaller inhomogeneities, which leads to the
production of GW on smaller scales k& > k, [92]. After the fields relax and the
parametric resonance stops, we are left with a spectrum of GWs which is peaked
around k,, and its shape will carry information about the generation process.

GW production during preheating is a highly non-linear process and therefore
needs to be studied numerically. This was first done in [90] and more recently in
[91, 93] for the simple chaotic inflation models considered in sections 1.4.2 and 1.4.3.
Furthermore, numerical simulations of gravitational wave production from hybrid
preheating [92] or due to fermions [162, 163] have also been performed.

Unfortunately, if the energy scale of inflation is high, gravitational waves from
preheating will peak at high frequencies f > 1 MHz today. At the time of production,
the causal horizon was much smaller than it is now, and no gravitational waves
could have been produced on scales larger than the horizon. Hence, it would be
difficult to measure them through the B-mode polarization of the CMB, as unlike
the scale-invariant tensor perturbations from inflation, they would only affect the

very highest multipoles. Instead, we need to resort to direct detection, however
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detector technology so far is not sensitive to such high frequencies.
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Figure 3.1.: The sensitivity ranges of detectors LIGO, eLISA and BBO, and the
ranges at which GW production from preheating peaks for different
models. The straight line is the scale invariant background from infla-
tion. Figure reproduced from [91]. ©SISSA Medialab Srl. Reproduced by permission of IOP

Publishing. All rights reserved.

Figure 3.1 shows the sensitivity ranges of the currently proposed/operating de-
tectors, and clearly they do not coincide with the range predicted from preheating
(see section 3.1.3 on how to obtain the frequency and energy density of GWs from
preheating today). Note that high frequency detectors, capable of measuring signals
around 100MHz, have recently been proposed [99, 100, 101]. While their sensitivity
is currently too low to detect gravitational waves from preheating, there remains
hope that detector technology could evolve to the extent where we are able to di-

rectly probe this regime in the future.

3.1.2. Gravitational waves from massless preheating

In the following sections, I will investigate the effect of a light scalar field x, coupled
to the inflaton during preheating, on gravitational wave production. Numerically, it
will be easiest to do this for the massless preheating model with a quartic inflaton

potential,
A 1
V(o x) = 70"+ 59°°X". (3.1)
Remember that this model is scale invariant (as the coupling constant is dimen-
sionless, it contains no fixed physical length scale, unlike a model with a mass term

m?2¢*) which resulted in equations of motion that were independent of the scale

factor. This makes it particularly convenient for solving numerically on a lattice,
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as one does not have to take the expansion of the universe into account when per-
forming the simulations and can therefore use a fixed lattice size that will cover the
dynamical range at all time steps.

A pure A¢* model has been ruled out by the recent Planck data [20]. However,
we can modify the potential by including a non-minimal coupling of the inflaton to
gravity of the form £¢?R. For £ < 0, this makes the model viable again as it brings
down the tensor to scalar ratio r [164]. If the high value of r suggested by [21]
is confirmed by other experiments, this means that even with a weak non-minimal
coupling [¢| < 0.1 we can achieve consistency with the data. This term was not
included in the simulations as the B-mode discovery was too late to be accounted
for, however it should not strongly affect the results, as |£| is small and the term
will only be significant for large field values of ¢ during inflation.

The Lagrangian for two interacting scalar fields is

1 1
£ = —50,00"0 = 30,00 X = V(6.3 (32)

where V (¢, x) is given by eq. (3.1). The background field evolution can then be
written as [using eq. (1.25)]

. . 1
¢+ 3Hp— ;V% + (A" + %o = 0, (3.3)
. 1
X +3Hyx — §V2X + g%’y = 0. (3.4)

The evolution of the background is determined by the Hubble rate. This is given by
the Friedmann equation (1.15), where the total energy density is the sum of kinetic,

gradient and potential terms (which should be understood as spatially averaged)

47

H? =
3ME,

G+ X7 + (V9) + (VX)2 +2V(9,X)| - (3.5)

Gravitational waves correspond to transverse and traceless tensor perturbations,
which I will simply refer to as h;; with 0;h;; = h;; = 0, dropping the T'T superscript.

The full spatial metric is therefore given by

gij = GQ(t) (513 + h”) . (36)

TT
i

tensor, and their equation of motion in an expanding background is given by eq.

These tensor perturbations are sourced by IL.", the T'T part of the anisotropic stress
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(1.125),
167

hi; + 3Hh;; — %v%j - M—mHiTij, X) . (3.7)
We need to determine the anisotropic stress tensor from preheating. We cannot
expect the scalar fields to behave like a perfect fluid, as the resonant amplification
of momentum bands makes the distribution very inhomogeneous. Therefore, II;; is
not simply a spatial perturbation around a perfect fluid background. However, it
is reasonable to define the anisotropic stress tensor as the full energy-momentum
tensor minus the isotropic stress, which is given by the background homogeneous
pressure [93]:

a’Ily; = Ti; — (P)gij (3.8)

where g;; is the full metric including perturbations, the scale factor a* comes from the
background FRW metric and we have only kept terms to first order in perturbations.

Using eq. (1.24) for the energy-momentum tensor of both scalars, we find
1
My = 5 X O +0:00,6 + g (£~ (P)] (3.9

Note that if we do not have a perfect fluid background, there should be an ad-
ditional term hy; (H? +2%) on the LHS of eq. (3.7) coming from the perturbed
Einstein equations [78]. This term ordinarily cancels with the isotropic pressure
perturbation P h;; of a perfect fluid [which you can see from the Friedmann equa-
tions, eq. (1.15) and (1.16)] and therefore does not appear in the equation of motion
of tensor perturbations. In this case, where the background is not determined by
a perfect fluid, we should include this term when we calculate h;;. However, as
gravitational wave production happens on subhorizon scales for which k > aH, we
can ignore the expansion of the universe and the additional term does not need to
be taken into account [69].

After applying the T'T projection, the term proportional to the metric g;; in (3.9)
vanishes: This is because after the T'T projection, only the tensor perturbation h;;
survives. As the term in brackets is also of order O(h) [recall eq. (1.27)], this results
in a second order perturbation which can be neglected [92]. Therefore, the tensor
modes are simply sourced by the T'T projection of the field gradients.

To study fluctuations, we need to write eq. (3.7) in Fourier space. I will use the
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following Fourier space convention:

foct) = [ dxpexne s, (3.10)

Pk ,
t) = k,t)e™ ™. 3.11
foet) = [ sitne (3.11)

The equation of motion for the fluctuations is given by

. . k? 1
hij(t, k) + 3Hh;(t, k) — —hy;(t, k) = ﬁHiT.T(t, k). (3.12)

a? Mp] J

It is easy to perform the TT projection of the source term in Fourier space by

defining a projector

“ 1
Nijam(k) = Paljm = 5 PijFin, (3.13)
Pij = 5@']' — ]{372]@1']{}]' . (314)
Using Ayjm, We can write
7 —1kx 1
I (K, 1) = Aijm (k) /dX€ 8 = (01X OmX + 019 O @] (x,1) . (3.15)

This projection guarantess that IT};"(k,t) = k111" (k, t) = 0, Yk, t.
Using a field redefinition to express the wave equation (3.12) as one in flat space
which can be solved by a Green function G(k,t—t') (c.f section 1.5.2), you find that

the perturbation h;; has solution [163]

hij(k,t) = ]1\3—7; /t dt'G(k,t —t) 11T (k, 1), (3.16)
Pl Jt;
where the initial conditions are hy;(k,t;) = hi;(k,t;) = 0. However, I will show
in section 3.3.1 that we do not actually need to know the Green function when
performing the numerical calculation.

The stress-energy tensor t,, of gravitational waves, which describes the energy
carried by them, is given by eq. (1.128). The energy density paw = too can therefore
be written as

Pow = M—gli/d% hij(t, x)R% (L, %) (3.17)
oW 32w L3 AT AT

where I have averaged over the lattice volume V' = L3. Writing paw = [ Z’fgg"i,d log k,

we can define the spectrum of gravitational waves in Fourier space (where the addi-
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tional factor of (27)® comes from the Fourier transform):

dpo,,  K3MZ /ko. L .
hij(t, k. k)h(t, k, k 1
dlogk (47TL)3 A U( ) vy ) zg( » vy )7 (3 8)

where df); is the solid angle in k space. Later, I will calculate the total energy

density of gravitational waves, normalized to the critical energy density p.,

1 dp
Qo (t) = — SV ) dlogk . 1
)= [ (e ) diog (3.19)

3.1.3. Gravitational wave background from preheating

today

In the simulations I will obtain spectra of gravitational waves, with a specific peak
momentum and energy density that can be obtained by integrating over all momenta.
However, to predict what the GW background would look like now, we need to relate
the frequency and energy to their values today. Due to the weakness of gravity, the

waves decouple upon production, so their frequency is simply redshifted,

f= ((%) % (3.20)

where a and ag are the scale factor at the beginning of gravitational wave production
and today, respectively, and k is the comoving wave number, related to the physical
wave number as k = kynys(t)a(t)/a.

We therefore need to find an expression for the ratio of the scale factors, which
will depend on two important stages, the end of gravitational wave production and
the onset of radiation domination after preheating. Expressing the scale factors in
terms of the energy density at these times, you can obtain an expression for the

frequency today in terms of parameters defined at the time of preheating [163]:

1—-3w
* 4 k
fa < ¢ > (1) <W> x 5-10Hz, (3.21)
arD Q. Px

where quantities with an asterisk are evaluated at the end of gravitational wave

production and agrp is the scale factor at the onset of radiation domination. This
is the most general expression, valid for any equation of state w = P/p between t,
and trp.

In the case of massless preheating, the background evolves like radiation (see

section 1.4.3), which gives w = 1/3 and hence the first term of eq. (3.21) is unity.
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Furthermore, we can relate the energy density at the end of GW production to its
value at the beginning, as during RD a*p = alp,, cancelling the remaining scale
factors in (3.21).

The simulations described in the next sections begin at the end of inflation (for
which I set a = 1), and gravitational wave production starts very soon afterwards.
Therefore, we can write the energy density as dominated by the inflaton potential,
p = i)\gbf, where ¢; is the inflaton value at the beginning of the simulation. The
comoving momentum will be defined in units of v/ A¢;, so I can write the frequency

today as
k k
~ =) x5-10"°Hz ~ —\* x 7.10°Hz. 3.22
/ (Pl/4) VG (322)

We will also need to relate the energy density (2, of produced gravitational
waves, eq. (3.19), to its value ng today. Following similar arguments as for the

frequency, for massless preheating this is given by [163]:

1/3
90
W20 = h*Qraa (—) Qo (3.23)
where gy and g, are the number of relativistic degrees of freedom today and during
preheating, respectively, and h?Q.,q = 4 x 1075 is the fractional energy density of

radiation today. Using g./go =~ 100, we can therefore rewrite this as
QP ~9x107°Q,, . (3.24)

As was mentioned in section 1.5.4, GW detectors are sensitive to the amplitude
(strain) of the wave and not the energy density. They are related in terms of the
frequency as [96]

hew (f) = 1.263 x 101817HZ h2Q0 (f). (3.25)

Even for a wave with a large energy density h*Q% ~~ 1079 (see figure 3.1), if the
frequency is around 10MHz, this would imply a tiny amplitude of O(1073), which

is the reason why GWs from the very early universe are so hard to detect.

3.2. Massless preheating with a light scalar field

In this section, I will describe the significance of preheating with a light scalar field x
which varies on superhorizon scales. This variation will provide initial conditions for

the homogeneous field value y; to be used in the simulations, and therefore affects
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the GW production in different preheating volumes.

3.2.1. The separate universe approximation

In section 1.2.5 I have argued that any light field (with a mass less than the infla-
tionary Hubble rate) will acquire a scale invariant spectrum of perturbations from
inflation. This is because fluctuations in such a field would freeze out after their
comoving modes exit the horizon, just like for the inflaton itself. In contrast, a heavy
field is not affected by the damping term due to H and would simply roll down to
the bottom of its potential.

In the case of massless preheating, the lightness of the field implies m, = g¢ < H.
The power spectrum of x fluctuations is given by the same expression as the inflaton
spectrum, eq. (1.70), , ,
gf(’fg; ~ %, (3.26)

where the definition of the power spectrum as the power per logarithmic k& interval,

Py =

eq. (1.34), was used. We need to determine for which values of g the field y is light,
such that it satisfies m, = g¢ < H, which depends on the value of the inflaton field.
At a time N e-foldings before the end of inflation, it is given by ¢ = /N /mMp, [23].
Therefore, x is light NV e-foldings before the end of inflation if
my _ 3¢°*Mp _ 3¢ _

2 2mAPt 2N Y

(3.27)

In order for this to be the case for the largest observable scales, which left the
horizon N ~ 60 e-foldings before the end of inflation, the couplings must satisfy
g*/X S 2N/3 ~ 40. We want the condition to be satisfied long enough for large
scale fluctuations of the field y to be significantly amplified, as once the Hubble
rate falls below m,, the field starts oscillating with a decreasing amplitude. In the
simulations, the value g?/\ = 2 was chosen, which guarantees that y is light apart
from the last few moments of inflation.

The lightness of the field ensures that y will vary on superhorizon scales and
therefore take a different value in different preheating volumes. To accurately model
the preheating process, one should consider separate universes, each with a different
initial value x;. However, we can choose the same initial value ¢; for all of them, as
this will simply determine at what point in the inflaton’s evolution the simulation
starts.

Although the initial homogeneous value of y is many orders of smaller than that

of the inflaton field (for x to be subdominant during inflation) and is often set to
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zero, it should not be ignored if y is light as it will provide different initial conditions
for the separate universes.

To study the GW background from preheating, I will therefore consider a range
of x; values (as described in the next section), and perform separate lattice simu-
lations for each of them. The homogeneous field values will be superimposed with
subhorizon vacuum fluctuations.

For the choice of couplings g2/ = 2, the homogeneous mode x = 0 is within the
instability band, see Fig. 1.2. Hence, while initially the linear evolution proceeds
very similarly for the different preheating volumes, at the time the dynamics become
non-linear the homogeneous mode has been significantly amplified and will have a
strong impact on the evolution. Consequently, any quantity that depends on x; will
vary between different preheating horizon volumes.

What does this imply for the GW background from preheating today? With time,
the separate preheating volumes will come into causal contact as the comoving
horizon (aH)™! grows, which is about 60 e-folds larger today than at the end of
inflation [23]. Therefore, there is a very large number of preheating patches in our
current Hubble volume.

Specifically, on Earth we observe GWs originating from a comoving spherical shell
of radius R ~ 1/Hy, whith Hy the Hubble rate today, and any direction 7 points
to a primordial preheating volume at r = Rn. These regions correspond to a tiny
angular size on the sky, much smaller than the 1° angular scales which correspond
to the size of the horizon at last scattering. Although this means that we cannot
distinguish between individual preheating volumes, the GW energy density, which
is a function of position, Q. (1) = Q. [xi(Rn)], can vary on cosmological scales.
Hence, we expect the GW background from preheating with a light scalar field to

be anisotropic.

Impact of light y on curvature perturbations

Before describing which range of x; values we should consider, I want to comment
on the effect of preheating with a light scalar x on the curvature perturbation.
The field fluctuations yy that are amplified during preheating represent an isocur-
vature perturbation, i.e. they do not vanish on spatially flat hypersurfaces. In [45]
it was shown that such a contribution could have an effect on the curvature pertur-
bation ¢, defined in eq. (1.71). This can easily be seen within the separate universe
approximation. The difference in the evolution between different FRW volumes af-
fects ¢ as 6¢ = ON [45], where N = lna. As the evolution of each volume will

depend on the initial value y;, we can therefore expect a contribution towards the
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total curvature perturbation from preheating.

This was first investigated by [165, 166], where a random contribution to éN
was observed which would manifest itself as white noise in the data. However, these
references neglected to include inhomogeneous modes in their simulations which were
taken into account by [167, 168, 157]. In particular, the more accurate simulations in
[157] demonstrated a highly non-Gaussian structure on top of a random background:
for certain periodically spaced values of y;, they observed spikes in 6 N which could
have a measurable effect on ( that would contribute to cold spots in the CMB
temperature. This occurred for values of y; that resulted in a very large amplification
of the homogeneous mode of y, much larger than the initial inflaton amplitude.

Clearly, it would be interesting to study the correlation between the curvature
perturbation and the GWs produced during preheating. However, the numerical al-
gorithm I used, see section 3.3.1, was not accurate enough to calculate the curvature
perturbation, which is related to changes in the scale factor of order O(107°) [23].
I will briefly comment on how the same field dynamics that lead to spikes might
affect the GW amplitude in section 3.5.3.

3.2.2. Varying y; during preheating

To calculate the GW background from preheating, we first need to determine what
range of x; values we can expect the GW background from preheating to have orig-
inated from. Since y; is a Gaussian random field with a scale-invariant spectrum
(3.26), it will have a non-zero average value in any given volume, even in the comov-
ing volume that corresponds to the currently observable universe. This is because
fluctuations that are much larger than the current horizon have been amplified by
inflation, as long as it lasted longer than the minimum 60 e-folds, which is likely.

The total range of amplified, comoving wavelengths extends from the Hubble
length at the end of inflation, & ~ H, (well inside the horizon today), to the Hubble
length at the start of inflation, which probably corresponds to a superhorizon scale
much larger than our current horizon.

From the observational point of view, the wavelengths that are currently inside
the horizon, k 2 agHy, appear as inhomogeneous fluctuations, or anisotropies on
the sky. The variance 0)2( of these fluctuations can be computed from the power

spectrum (3.26),

= n = B
o, kY Am? T agHy  Am? T

e dk H? H, H?
2 / =1 == (3.28)

where the ratio of the comoving Hubble horizon today, (agHy)™!, to the one at the
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end of inflation, H_ ! (where I set a, = 1), is given by N, ~ 60, the number of e-folds
of inflation after the largest observable scales left the inflationary Hubble radius.

If inflation lasted longer than N, ~ 60 e-folds, even larger scales were amplified
and y will have varied on scales that are superhorizon now. The actual mean value
X; across the universe would be a particular realization drawn from a Gaussian

distribution with variance

apHop dk H, dk H, dk
—2
X)) = / —P :/ —P —/ — P
< > (aH)start k * (aH)start k * aoHo k x

H
= (Ntot - N*) ) (3.29)

472

where Nyt = In(1/agpare) (remember H =~ H, throughout inflation) is the total
number of e-foldings of inflation. A typical average field value across a volume as

large as our observable universe is then

H.,
L~ Niot — Ny) - 3.30
%~ 5o N = V) (330

Since the value of Ny is unknown, I will consider the actual realization of ; within

our observable patch as a free parameter, simply restricted to X; > H,/2w. In the
simulations, I will study the dependence of €2, on different values of x;, drawn from
a Gaussian distribution with the variance given in eq. (3.28), and centred around a

mean value ; of order of eq. (3.30).

3.3. Numerical simulations

3.3.1. Numerical algorithm

To study the GW production for different initial values y;, [ performed simulations
on a 3d lattice with periodic boundary conditions, populated with the fields x, ¢ and
the six tensor perturbation components h;;. The code I used is based on the publicly
available ClusterEasy [159], an MPI/C++ package performing lattice simulation of
interacting scalar fields in an expanding universe.

The numerical algorithm used to solve the differential equations is a second-order
leapfrog integrator where field values and their derivatives are stored at different
times. Although this method is not as accurate as more popular fourth order Runge-
Kutta methods, its advantages are its simplicity and speed. In the case under
consideration, where we are interested in gravitational wave production, it is not

necessary to have an extremely accurate integrator. It can be checked that the
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solution is stable by observing the evolution of quantities like the total energy (which
should be conserved), and by ensuring that the chosen time step does not affect the
results. The difference in GW energy which will be a large O(1) effect, as opposed to
measuring the difference in scale factor within the §N formalism, which is O(107°).
Therefore, to calculate curvature perturbations from preheating, a more accurate
integrator is needed, see [157].

To study the field evolution we need to solve discretized versions of the field
equations for the scalars, eqgs. (3.3) and (3.4), and the Friedmann equation (3.5). The
evolution of the scale factor is solely determined by the scalar fields, and I checked
that it indeed evolves as a o t'/2, as if dominated by radiation. I will assume
that each separate preheating volume can be described by an FRW background
metric. This is justified as long as the lattice volume does not strongly exceed
the comoving horizon at the time which determines the spatial extent of causally
connected regions. We know that the variation in scale factor between different
volumes is of order 107 [23], and should therefore not have a strong effect on the
dynamics of the scalar fields.

The evolution of the tensor perturbations, which determines the GW spectrum,
is given by eq. (3.7). I chose not to include backreaction from the tensor perturba-
tions into the scalar field equations, as these were shown to be negligible for GW
production during preheating in [92]. We can see that this should be the case, as
we know from the Lagrangian (3.2), which contains the metric g,, in the derivative
terms, that they will appear as h;;0;,x0;x in the equation of motion for x. As h;;
is a small perturbation, this is clearly negligible compared to the usual derivative
term, and can therefore be ignored.

To compute the spectrum (3.18), in principle, for each time step, we need to
perform the TT projection in eq. (3.7), then go to Fourier space to solve the equa-
tion, and finally transform back to coordinate space. Both the T'T projection and
the Fourier transforms are non-local operations and therefore computationally very
costly. To avoid this, I followed the method introduced in [92], which makes use
of the TT projector A;j;m, defined in eq. (3.13). We saw there that the solution of
eq. (3.7) can formally be written in terms of a Green function, eq. (3.16). This can
be re-written in terms of a function w;;(k,t), related to the tensor perturbation by

the projection operator,

h’ij(kv t) = Aij,lm(l%)ulm(kv t) : (331)
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The solution of 1,; is given by

16
ik, t) = — dt Gk, t — ') T (k. 1) (3.32)
MPI
I have introduced an effective anisotropic stress Heﬁ(k t), which is the Fourier space
version of the unprojected source term
1
H?jﬁ<x7 t) = 2 [0; X9;Xx + 0; ¢aj¢] (x,1), (3.33)
c.f. eq. (3.15). Having rephrased the equations in this manner enables us to avoid

having to perform the TT projection explicitly. Instead, during the simulation, at

each time step I solve the equation of motion for u;; in configuration space,

1

" . 16
ti; + 3Hu;; — @v%ij = WHGH(Q X) - (3.34)

M
Only at the times when we want to compute the GW spectrum (3.18), which is
determined by the time derivatives h;;, we Fourier transform u;;(x,t) to ;;(k, t),
and recover the real GW degrees of freedom hij(k, t) by means of the projection in
eq. (3.31).

To calculate the GW spectrum from the lattice simulation, we need to define a

discretized version of eq. (3.17):

Py = 3% e Zh” (t,n)h3;(t,n), (3.35)

where T used L? = (Néx)3, N being the number of lattice points per dimension
and dx = L/N the lattice spacing, and introduced the discrete position vector

n = (ny,ng,ng) where n; = 0,1,...,N — 1. The discrete Fourier transform is
defined by

Fm) = 5 >0 (i), (3.36)

n

where n is the discrete momentum vector with integer entries n; = —%+1, vy Oy iy %

Using the discrete delta function o~ F(A—)n _ N3§(n — 1), we can obtain eq.
(3.35) in Fourier space:

Mg, 1
pGW 327T N6 Z h‘ZJ ) (337)

To find a simple version of the discretized GW spectrum, it will be necessary to bin
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the momentum space lattice into spherical layers of radius |n| and width 1, where

1| takes integer values between 0, ..., v/3N/2, and the largest radius corresponds to

the absolute value of the momentum vector (ﬂ N %) Following the steps outlined

PREDRE
in [169], we obtain

Pow = D [% k*(n)) <hij(t, I0))A (¢, |f1|)>R(~

A )

Alogk, (3.38)

where we average over all discrete momenta in a shell R(n) = {0'||n| < |n/| <
In| + 1}, k(|n|) = |n|dk, Alogk = 16k and the reciprocal lattice spacing is 0k =
kir = 2m/L. The reciprocal lattice spacing corresponds to the smallest infrared
momentum, or largest wavelength, that fits into the lattice. The term in square
brackets in eq. (3.38) gives the spectrum for each discrete momentum k(|n|) = |n|ok
and is calculated during the simulation. I will later plot spectra that have been
normalized by the critical energy density, which is just determined by the total
energy density of the scalar fields.

While the binning is necessary to obtain the power spectrum, to get an accurate
measure of the GW energy density p,, it is better not to evaluate it using (3.38),
but to calculate it in the Cartesian way, eq. (3.37). This gives more accurate
results as it does not assume that points in the same shell at different lattice sites
correspond to the same momentum. In the following, the relative, total GW energy
density 1, was always calculated using the Cartesian approach.

Note that there are several ways of defining a discretized version of the projection
operator A, in eq. (3.31) on a lattice, which depend on the discretization schemes
for lattice derivatives. The different projections were analysed in detail in [169]. In

the simulations, I used a real projector based on a neutral derivative scheme,

f(n+idz) — f(n —idx)
20x ’

[Vifl(n) = (3.39)

where ¢ is the unit vector in the ¢ direction. Transforming to Fourier space, where

—_—~—

[V:f](1) = —ikeg (1) f(R), we can obtain the effective momentum corresponding to

the neutral derivative [169],

sin(27n; /N)

UL LY (3.40)

keff,i =
The discretized projector in eq. (3.14) for neutral derivatives is therefore given by

keff,ikeff,j

P(n) =0 — (kegt)?

(3.41)
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You can check that this definition ensures the transversality and tracelessness of the
tensor perturbations when acting on them with A;;;,. Although only the neutral
projector was used for the simulations presented below, I made sure that the results

were not affected by the choice of projector.

3.3.2. Choosing the numerical parameters

To carry out the simulations, it is necessary to specify a number of numerical pa-
rameters. Particularly, we need to specify a lattice size L (where the lattice volume
is given by L?) and the number of lattice points N.

The lattice volume is a very important quantity. It should not be significantly
bigger than the Hubble horizon at the time of preheating, as otherwise the assump-
tion of a uniform FRW background breaks down. More importantly, the lattice size
determines the infrared momentum cutoff kg = 27/L, which corresponds to the
largest wavelength that can fit into the simulation box. As the value g?/\ = 2 is
used, we will need good IR coverage as long wavelength modes are amplified most
strongly in this model. However, due to causality, GW modes will not be produced
on scales larger than the horizon volume, and there will be a peak scale which de-
pends on the model parameters. Let me give an order of magnitude estimate of this
value.

During massless preheating, the width of each amplified (dimensionless) momen-

tum band is given by [67]

Ar < =S <g_2)1/4 ~ 0.67 (3.42)
SN A .67. .

where k = k/v/Ag;, see section 1.4.3, and I have used g2/\ = 2. This is an analytical

estimate, valid for values g?/\ 2 1, which becomes more accurate for larger values

of g?/\. For g*/\ = 2, the smallest resonant mode is given by x = 0, so eq. (3.42)

gives the largest momentum value that is amplified by the resonance. From the

numerical solution in Fig. 1.2, you can see that for g*/\ = 2, the principal resonant

band seems to be bounded by Ax? < 0.3, and thus the actual value width of the
resonance band is closer to Ax < 0.55.

Although the field fluctuations are amplified most strongly the smaller the value of

k) will peak at some

%, the spectrum of fluctuations, which goes as k?|xy|? ~ k2e?(
intermediate scale k., between 0 and Ak, typically a fraction of Ak, k, ~ O(0.1).
The fluctuations in the inflaton, on the other hand, depend on the resonance for

g*/\ = 3, which does not amplify any large wavelengths, and will not affect our
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choice of L.
The source of GWs, formed by products of fields, inherits the peak scale x, ~
O(0.1) of the field spectrum, as can be seen from eq. (3.15):

1 .
I (k, t) = Az‘j,lm(k)ﬁ /dq @ Gm Xq(t) Xfie—q () - (3.43)

As the tensor fluctuations are directly related to the anisotropic stress tensor through
eq. (3.16), this peak scale will also translate to the spectrum of gravitational waves
dp .
gy (k. 1) via eq. (3.18).

To facilitate comparison with the dimensionless momentum s, we define the co-

moving lattice size in the same units, L= VA$:L, where L is the physical lattice
size. We will see later that the value L = 80, which corresponds to kg ~ 0.08, is
sufficient to capture the peak scale.

Note that the comoving Hubble volume at the beginning of our simulation, which
is determined by the Hubble rate H? = 12%\7}131/\@, is 1 /aﬁ] ~ 2 in dimensionless
program units (where I used the value of ¢; given below). This is quite a bit smaller

than L = 80, however the Hubble volume grows to scales larger than the horizon
volume before the system becomes non-linear.

While a large enough lattice spacing ensures good IR coverage, we also need to
have sufficient UV coverage, which improves with the number of lattice points N,
which determines the lattice spacing as 0x = L/N. This needs to be smaller than
any relevant length scale in the problem, which in our case is determined by the
inverse of the effective mass of the inflaton, mé = M\p?. As all length scales are
rescaled by the mass v/ A\¢;, this implies that in program units we simply need to
satisfy 0x < 1. For a lattice volume of L= 80, the choice N = 512 therefore led
to a sufficiently small 67 =~ 0.16. For stability, the program requires [159] the time
step to satisfy dt < (5:6/\/§ ~ 0.1, and a value 6t = 0.01 was used in the simulations.
I checked that these choices led to stable, trustworthy results by ensuring that the
total energy in the simulation box was conserved throughout the simulation to high
accuracy.

The value of the inflaton self-coupling was set to A = 9 x 10714, which is the value
that is required for consistency with WMAP data [18]. The only parameters left to
fix are the initial conditions for the fields.

At the start of every simulation, the scale factor was set to a; = 1, and the initial
amplitude of the homogeneous inflaton to ¢; = 0.342Mp,, corresponding to the value
for which ¢; = —H,¢; in the slow roll regime. Note that in the simulations, all fields

have been rescaled by the scale factor a and are given in units of ¢;.
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The initial background value y; was chosen as described in section 3.2.2. From
eq. (3.5), the Hubble rate at the end of inflation (when the potential term dominates)

is given by

72~ 87r)\g25§1

~ ~2.6x 10"PM2. 3.44

Using N, ~ 60 and Eq. (3.28), the variance of x; across the observable universe
is then o2 ~ 4 x 107" Mg,. Taking (Nyox — N.) ~ 100, the mean value of y; in
eq. (3.30) is of order X; ~ 10~"Mp;. In the simulations I made the specific choice
X; = 3.42x 107" Mp,. However, using the Monte Carlo reweighting method explained
in section 3.5.1, the results could be extrapolated to other, neighbouring values of
Xi-

To be able to model the parametric resonance, we also need to set up fluctuations
¢r and x;. These are supposed to mimic quantum fluctuations on scales which are
subhorizon after inflation. I followed the approach of [160]: Consider each mode (¢,
X&) as given by a complex number |fi|e™®*. The phases ¢ are randomly picked
from a uniform distribution between [0, 27), while the amplitudes are set according

to a Rayleigh distribution with variance

1
2y —
Wl =ga5  wr= k2 +mg, (3.45)

where the effective masses are mi = 3\¢? + ¢*x? and mi = ¢°¢?. Hence, more

massive fields have smaller vacuum fluctuations and the amplitude is smaller for
higher momentum modes, which is physically sensible. We should not populate
Fourier modes up to arbitrary large momenta, but introduce a cutoff which needs
be larger than the peak of the GW spectrum. In the simulations, I used the value
Kk« = 2, but checked that the choice of cutoff did not affect the results.

3.3.3. Simulating gravitational wave production

Having specified all of the numerical parameters, we are now ready to look at the
results of the simulations.

Figure 3.2 shows the evolution of the fields and their variances, and confirms
the usual behaviour of parametric resonance as described in 1.4.3. Initially, the
amplitude of ¢ is much larger than that of y, but the oscillations of the former
induce a resonant growth of the x fluctuations. This is shown very clearly by the
variance term (x?), which grows exponentially fast from from 7 = 0 to 7 = 70, where

7 is the rescaled conformal time, dr = (v/A¢i/a)dt. The variance in ¢ also grows
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Figure 3.2.: Evolution of the mean field amplitudes squared, a*(¢)?, a?(x)? and of
their variances, a*({¢?) — (#)?), a*({(x*) — (x)?). The exponential growth
of fluctuations due to parametric resonance can be clearly appreciated.

due to its self-interactions and coupling to y, but its growth only starts at around
7 = 40, once (x?) has already been amplified by around six orders of magnitude.
The energy transferred from ¢ to y is significant, so the (mean) amplitude of y
eventually reaches that of ¢, at about 7 = 70, and the system becomes non-linear.
At this point, backreaction from the produced field fluctuations becomes important,
reducing the amplitude of the inflaton and terminating the resonance.

While GW production starts as soon as the first field inhomogeneities are intro-
duced due to the exponential growth of the y fluctuations, it only becomes significant
when the dynamics are non-linear. Figure 3.3 shows the GW spectrum plotted at
different time steps. The amplified momentum range extends over more than two
orders of magnitude, and the spectrum falls off in the UV which shows that it is not
dominated by lattice artefacts.

During the linear evolution up to 7 = 70, the spectrum peaks at a scale k, &~ 0.25,
which is of O(0.1) as expected from the considerations in section 3.3.2. During the
subsequent stage of non-linear evolution, from 7 = 70 until 7 = 100, the field gra-
dients become much larger, and consequently GWs are being produced with larger
intensity. Due to rescattering [67], power is transferred to higher momentum modes.
The GW production reaches an end at around 7 = 150, however the amplitude is
not constant but oscillates slightly as the system enters into a turbulent regime be-
fore equilibrating [92]. To obtain the final GW spectrum, it was therefore necessary
to average over a few oscillations. This ensured that the value of the calculated

gravitational wave energy density 1, is trustworthy.

W
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Figure 3.3.: Typical GW spectra from massless preheating with g?/\ = 2, shown
at different time steps as the amplitude grows. The highest curve
(continuous line) corresponds to the final time step of our simulation
7 = 250, when the amplitude saturates. The peak of the spectrum is
at k. ~ O(0.1). The production of GWs increases significantly between
7 =70 and 7 = 80, when the system becomes non-linear and there is a
transfer of power into smaller scales (higher momenta).

The oscillations of the total GW energy density, obtained by summing over all
lattice momenta, is shown in Fig. 3.4. The plot shows the evolution of Q2 for two
values of y;. We can already see that the energy in both cases is very different, and
I will explore this in more detail in the next section. The oscillations in the GW
energy for y; = 3.5 x 107" Mp; are quite large. However, this value is unusual in the
sense that it leads to an atypically large GW energy, as discussed more below. For
most values of y;, the magnitude of oscillations is of the order of the lower curve in
figure 3.4.

3.4. The impact of y; on gravitational wave

production

The final amplitude of the GW spectrum for the values x; = 3.5 x 10" Mp, (upper,
blue curves) and x; = 3.4 x 107" Mp, (lower, black curves), chosen for purposes
of illustration, is shown in Fig. 3.5. The spectra were obtained from an average
over several time oscillations, as shown by the error bars. Before investigating the

difference between the two initial values, let me comment on the different types of
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Figure 3.4.: The total energy density of gravitational waves as a function of rescaled
conformal time 7 for two different initial field values ;.

curves in Fig. 3.5, corresponding to different lattice volumes.

The dashed lines correspond to the fiducial choice of lattice size and number
of points per dimension (L, N) = (80,512), whereas the solid lines correspond to
(L, N) = (160, 1024), ensuring the same UV coverage. For L = 160, one can clearly
see a large drop in the IR, which shows that very long wavelength modes are not
excited, as expected from causality.

The runs with (L, N) = (160, 1024) were computationally too expensive for my
purposes: as I want to calculate the GW background on cosmological scales, it was
necessary to perform several hundreds of simulations to get a statistical measure of
the anisotropy. However, I chose to run a few simulations with such a large lattice
volume to show that the spectra for N = 512 and N = 1024 are comparable. For
the majority of initial values, the total integrated GW amplitude from both cases
agrees to better than 1%.

For the upper curves in Fig. 3.5, which have a very high amplitude (which is
actually one of the largest achieved values in the simulation, Q,, ~ 1.2 x 1073, see
Fig. 3.8), the difference is a lot larger, around 15%. However, we can see that the
higher resolution case (Z, N) = (160, 1024) leads to an even larger difference between
the two different initial values y;. Therefore, the effect I want to demonstrate, which
is the strong dependence of GW amplitude on the initial value, would clearly persist
(and even be enhanced) if even better lattice coverage was used.

These considerations show that the fiducial case (L, N) = (80,512), which is used
systematically in section 3.5, is not dominated by lattice artefacts, and can therefore

be trusted. For lattices with N = 256, independently of the volume Z, it was not
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Figure 3.5.: Final spectrum of GWs for x; = 3.4 x 10~7Mp, (upper, blue curves) and
Xi = 3.5x 107" Mp, (lower, black curves), averaged over time oscillations.
The error bars show the variation due to this averaging. The solid curves
are for L = 160, N = 1024, and the dashed curves for L = 80, N = 512.
The area underneath corresponds to the total fractional GW energy
density within a preheating Hubble domain.

possible to capture both the IR and UV behaviour sufficiently well at the same
time. Runs with (L, N) = (> 80,512) improved the IR coverage but would require
to upgrade to N = 1024 to keep sufficient UV coverage, which, as mentioned before,
was too costly computationally.

The choice (Z, N) = (80,512) therefore turned out to be the optimal one, repre-
senting a good compromise between a sufficiently large dynamical range, and low
enough memory usage and shorter duration of the runs.

Let me now comment on the difference between the two spectra in Fig. 3.5. While
during the early stages of the simulations the GW spectra evolve in the same way,
the homogeneous field value y strongly affects the production at the time the system
becomes non-linear. The peaks of the spectra are located at the same scale k, ~ 0.2,
as this is simply related to the value of the resonant momentum, determined by the
choice g?/\ = 2. However, the peak GW amplitude is very different (by about a
factor of four), even though the initial values y; are very similar.

As Fig. 3.5 shows a log-linear plot, the area underneath the curves corresponds to
the total fractional GW energy density within a preheating volume, which is clearly
also going to differ significantly between the two cases. This O(1) effect is much

larger than what could be naively expected.
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Figure 3.6.: 2d snapshots of the 3d distribution of y at different times of the evolu-
tion during preheating, from 7 = 73 to 7 = 79, the time when the GWs
are being sourced most actively. The left panels correspond to the case
Xi = 3.42 x 1078 Mpy, and the right panels to y; = 1.0 x 10~8Mp,. The
color coding is fixed during the evolution, though different between the
two cases. However, the range of y values covered by the axis is the
same in both cases, such that different colours describe the same magni-
tude of difference in both cases. The correlation between the dynamics
of the sources and the amplitude of the GWs is clearly demonstrated by
this sequence of snapshots: the gradients for y; = 3.42 x 1078 Mp are
larger than for x; = 1.0 x 1078 Mpy, in correspondence with the higher
total amplitude of GWs, Q, = 1.1 x 1073 and Q,, = 5.6 x 1074
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One might worry that the difference in amplitude demonstrated in Fig. 3.5 could
be just a statistical effect related to the initial conditions for the UV modes. How-
ever, | checked that the difference in GW amplitude due to statistical fluctuations
(by choosing different random seeds) is much smaller than the difference in ampli-
tude between different initial values. When I present the variation of GW energy
for a large range of x; later, the error bars due to the statistical fluctuation are
included, see Fig. 3.8. Clearly, it is very small compared to the actual effect. The
final discrepancy in amplitude of the GW spectra must therefore arise because of
the different behaviour of the fields sourcing the GWs, which is ultimately related
to the initial amplitude ;.

Because the GWs are sourced by field gradients, the homogeneous component has
no effect until the evolution becomes nonlinear. At this point, the energy in the
homogeneous mode is redistributed among other momenta. Different values of y;
will therefore create a different outcome in the spatial distribution of .

In Fig. 3.6, I show a time sequence of 2d snapshots of the 3d spatial distribution of
the field x. Compared to Fig. 3.5, they were obtained for two different initial values
Xi = 3.4 x 1078 Mp; (left panels) and y; = 1.0 x 1078 Mp; (right panels), but they
can be used to illustrate the physical reason for the difference in GW amplitude.
The GW energy density varies significantly between the simulations in Fig. 3.6,
Qi = 1.1 x 1073 and Q,, = 5.6 x 107

The snapshots are taken at times during the non-linear evolution of the fields, in
AT = 2 intervals between 7 = 73 and 7 = 79, just when the GW production is
strongest. Fig. 3.6 demonstrates very clearly that there is a correlation between the
gradients of y and the amplitude of the produced GWs: for y; = 3.4 x 1078 Mpy,
the gradients and, consequently the GW amplitude, are higher than for y; = 1.0 x
10~8Mp). The physical reason for the sensitive dependence of the gradients of y on

the initial value x; will be investigated in more detail in section 3.5.3.

3.5. Anisotropies in GW background from

massless preheating

I will now present the final result of this chapter: The variation of GW energy from
preheating on cosmological scales. To do this, it will first be necessary to introduce
the mathematical machinery used to analyse the large scale anisotropy in section
3.5.1. In 3.5.2, I will quantify the relative anisotropy and show that it is of the order
of 1%. T will finish by describing how the field dynamics affect the gravitational

wave production during massless preheating in section 3.5.3.
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3.5.1. Toolkit for computing anisotropies

The amount of GW production strongly depends on the value of y;, as I have shown
explicitly in section 3.4 for two values of x;. In the next subsection, I will present
the data from many simulations, each with a different y; amplitude drawn from the
appropriate random distribution. The dependence of 2, on x; turns out to be very
irregular, see Fig. 3.10. We will need to perform a statistical analysis of the data to
extract the anisotropy from the Q. (xi) dependence obtained from the simulations.
Hence, in the following I will provide a mathematical toolkit for such an analysis.
To begin with, let us assume a situation where €, (x;) depends linearly on x;.
We will not need this to be the case in general (and as I mentioned, the dependence
is actually very irregular), but it will be instructive to study the linear relation as
a starting point. Normalizing the x; variations to the natural scale of the problem,
H,, we can then write
Qow(xi) =co + cl% ) (3.46)
with dx; = xi — X;, where X; is the mean value over the currently observable uni-
verse. The constants cg, ¢; are dimensionless and completely characterise the func-
tion Q. (xi) (under the linear assumption). From Eq. (3.46) one can easily see
that ¢y can be identified with the mean amplitude of the GWs over the observable
universe, ¢y = . We can then express the relative fluctuations of the GW energy

density as

-Q c1 0Xi
00, = W "W — — 21 3.47
GW QGW CO H* ( )
As these fluctuations are proportional to dx;, like x; they represent a nearly Gaussian
and scale-invariant random field. The power spectrum of 0€2,, can then be directly

related to the power spectrum P, of x; by

2 2
_aPy 1ag
GW ~— 2 2 2 29
cgHZ  4m*cj

(3.48)

where we used eq. (3.26). To measure fluctuations on the celestial sphere, it is better
to express them in terms of spherical harmonics {Y;,,}. This makes it possible to
characterise the statistical properties of 0{2,, in terms of an angular power spec-
trum, in the same way as one does for the CMB temperature anisotropies. We can

decompose the fluctuations in the GW energy density as

[e's) +1

0% (1) =D g Yim() | (3.49)

[>1 m=-1
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where g, = [, dQY} (7)0Q,,, (1) are (complex) coefficients weighting each angular
moment. The angular power spectrum C; is defined as the ensemble average of the

coefficients,

{Gim G ) = Cr0wmms (3.50)

where the Kronecker delta 6,0, and the dependence of C; on only [ reflects sta-

tistical isotropy. The Cj’s are given by
C,=2n / dcos@P,(cos0)C(cosb), (3.51)

where P)(cos 6) are the Legendre polynomials, and C'(cos 6) is the angular correlation

of the GW fluctuations at different directions in the sky ny and ns:
C(cosB) = (6Qy (11)08 .y, (R2)) (3.52)

with 7 -7y = cos .
Equivalently, the angular correlation can be expressed as a linear sum in the Cj’s

weighted as

[e.e]

(0 (1) (7)) = 3 (214; Y 4 Pi(cost) (3.53)

Because of the assumed linear relation between 69, and dx; in Eq. (3.47), the
angular power spectrum of the GW energy density fluctuations can be calculated
very easily.
Deriving the angular power spectrum C; from the linear power spectrum P, is
a standard exercise which is performed in e.g. [23], where it is used to compute
the temperature power spectrum on large angular scales (which corresponds to the
Sachs-Wolfe plateau). The relation is simply given by
m 1 c

11+ 1)C1 = TPy =

. (3.54)

8rcd’
When this calculation is performed for small [ for the CMB fluctuations, it demon-
strates that on very large angular scales the power spectrum looks approximately
flat when multiplied by [(I + 1). This reflects the scale invariance of the primordial
power spectrum from inflation, as the largest scales were superhorizon at the time
of recombination and therefore had not evolved much. In our case, GWs decouple

upon production and do not evolve inside the horizon, and the relation holds on all
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angular scales.

From (3.54) we can see that as long as d€).,, is linearly dependent on dx; as
in Eq. (3.46), the coefficients ¢y and ¢; completely determine the angular power
spectrum. In the case of massless preheating we are considering, and generally
in any other scenario of preheating, the €2, (x;) relationship will not be linear.
In [170] it was discussed how to derive the angular power spectrum under these
circumstances, which motivated the approach I am going to describe.

To describe fluctuations on any angular scale independent of the functional form
of the relation Q. (xi), we need to compute the two-point correlation function of
the GW energy density originating from two points x and y. Due to isotropy, this

correlator can only depend on the separation |x — y|. It can be written as

Qe ) = [ D Pl )00 (0000 (). (359

where P(xx, Xy) is the joint probability distribution for the field values xx = xi(x)
and xy = xi(y) at the points x and y. Since these are Gaussian random fields, we
have

1 12T A1
P(xx, Xy) = ———— e 20 G700 3.56
(X Xy) or |G! ( )

where I defined the vector 5;( = (Xx — Xis Xy — Xi)- The 2 x 2 covariant matrix G

and its inverse G~', with determinant |G|, are given by
G = Gxx Gx,y Gl = L Gy,y _Gx,y
Gx,y Gy,y |G| _Gx,y Gx,x

with Gxy = (0xi(x)0xi(y)) the field correlator, and o} = Gyxx = (dx*) the field

variance, which is given by eq. (3.28). From the scale-invariant power spectrum

(3.57)

(3.26), on sufficiently large scales (ignoring the oscillating factor exp [—ik - (x —y)])

we can approximate the 2-point function as

H? H? _
Gy ~ 4_%2[111 (ao/|x — y]) —1n(aOH0)} = 5 [(yx—y\Ho) L (3.58)

where I integrated from horizon scales agH,, with Hy the Hubble rate today, up to
comoving subhorizon scales k = ag/|x — y|.

Scales larger than the Hubble volume are not considered, as we are evaluating
the 2-point function of fluctuations around the mean value Y; across the observable

universe. The correlator therefore goes to zero as we approach Hubble scales |x—y| ~
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1/Hy, and is only well defined down to scales |x — y| ~ ag/a.H, of the order of the
Hubble horizon at the end of inflation, for which the expression in eq. (3.58) reduces
to the field variance ai [which has the same high momentum cutoff & = H,, see eq.
(3.28)].

By obtaining the function €, (xi) from lattice simulations, I computed the GW
energy density correlator (3.55) numerically. This is shown in Fig. 3.7 for x; =
3.42 x 107"Mp,. Note that the correlator only depends on the distance |x — y|
through the ratio Gy y/Gxx = Gxy/0}.
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Figure 3.7.: The full GW energy density correlator and its linearised version. The
two results agree very well on the largest currently observable scales,
i.e. for small Gy /02 values.

In principle, one could use the numerical solution to compute the angular corre-
lation of the GW energy density between any two directions ny,n, in the sky by
evaluating eq. (3.55) at positions x = Rf; and y = Riy, with R ~ H; ' the distance
to the ’scattering surface’ at preheating where the GWs were emitted. From there
we could obtain the angular power spectrum C) by means of eq. (3.51).

In practice, this procedure can be cumbersome and, more importantly, since
Q. (xi) may be very irregular, it would be difficult to assess the accuracy in the
final amplitude of the C’s. Instead, I will make use of the fact that on large scales

|x —y| < 1/Hy, for which the logarithm in eq. (3.58) is less than unity, the ratio

~ 0.017, (3.59)

is very small. As Fig. 3.7 shows, the correlator on these scales is very well ap-
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proximated by a linear function. This is because on large scales we average over
the small, irregular fluctuations and only retain the smooth, underlying functional
dependence.

To simplify the analysis and to avoid having to compute the full correlation func-
tion eq. (3.55), we can therefore perform a linear Taylor expansion of the joint
probability distribution in powers of the field correlator normalized to the variance,

Gxy/0%. This gives

(Ox3 +0x3) — 2

Gxy
2
X

) dXx0Xy

P(xx:Xy) o exp

v 52 Gy \ X0 Gey )’
= e (g )ow (-5) [1+(52) 2 o (%) |
20’X 20’X o5 o5 o3

Substituting this expansion into Eq. (3.55), we then obtain

O ()2 (1)) = (2 (x))? 4+ D00 (%) + 0 (G) (3.61)

o} ol o}
where the expectation values on the right hand side are given by
Q) = [ PO (). (3.62
(Oxifle (X1)) = /dXiP(Xi)5XiQGw(Xi) ; (3.63)

which need to be computed using the single-point probability distribution

P(xi) = \/%0 eXp{—%(Xi;—fi)}. (3.64)

Re-arranging the terms on the right-hand side of Eq. (3.61), we can write the equa-

tion as
2 (002 ) = { (200} + TN 5000) (120 + DBl ) ).

(3.65)

This is precisely the form of Eq. (3.46), which was derived for a linear relation-
ship between the fluctuations in GW amplitude and those in the field x. On large

scales, the linear Taylor expansion is a very good approximation to the full function,
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and hence the expression obtained for the angular power spectrum derived for the
linear relation, eq. (3.54), should be valid for any functional dependence Q. (x)-
Identifying the coefficients as

0= Q) 6= 500 () (3.66)

%

we can use eq. (3.54) directly to compute the angular power spectrum of the relative

GW energy density fluctuations:

H2 (0x:iQqw (X1))?
8 o Q)

(l+1)C) = (3.67)

aw)
This equation is one of the main results of this chapter. It is a master formula for the
angular power spectrum of the energy density fluctuations of any GW background
of cosmological origin, whose anisotropies originated from the modulation due to an
inflationary spectator field. It is valid on large angular scales for which the Taylor
expansion holds, which in any case dominate over small scales as the spectrum
decays as C; ~ 1/I?. If detectable, the effect would therefore probably be easiest to
measure on the level of the quadrupole (I = 2), as the dipole might be dominated
by the motion of our galaxy.

We are now able to calculate the typical amplitude of fluctuations ~ +/I(l 4+ 1)C;
for any value of X,, by simply evaluating the expectation values in Eq. (3.67) from

the results of a lattice simulation numerically.

3.5.2. Anisotropic gravitational wave background

According to the considerations in section 3.2.2, I chose a mean value Y; = 3.42 x
107" Mp) across our observable universe, and a variance o = 3.3 x 107> Mg, within
our current Hubble volume, to describe the range of initial y; values the GW back-
ground from preheating is likely to have originated from.

Following the Monte Carlo method [171], I randomly chose A/ = 500 initial values
X/, j€{l,...,N'} from the Gaussian distribution (3.64). To be exact, I randomly
picked 250 values Xf and chose the remaining half to be the symmetric value Xij/ =
2x; — Xij . This ensures that the mean of the distribution will be exactly the required
X; = 3.42 x 107" Mpy, which reduces the error when computing expectation values.
This is necessary as there is only a finite sample of values so we would never be able
to obtain a perfect Gaussian distribution.

The Monte Carlo method has the advantage of making it easier to sample the

highly chaotic variation of the GW energy density QGW(X{ ) without needing to use
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a very small step size in y;, as well as simplifying the computation of the expectation
values in Eq. (3.67).
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QGW
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Figure 3.8.: Q,, for our sample of initial field values x;. The squares show the
Gaussian ensemble used for the analysis. The red error bars show the
standard deviation between different seed values for the same y;. The
dotted line shows the GW energy density for a wider range of x; for
illustration purposes.

For each Xij , I performed one simulation run and evaluated the GW energy density
QGW(Xij ), see Fig. 3.8. The black squares show the 500 initial values picked during
the Monte Carlo simulation, while the blue dotted line includes some smaller values
of x; to show the dependence over a larger range.

As the plot illustrates,

factor of five between nearby values, although there are some ranges of y; where the

w 1s highly dependent on ;, varying by as much as a
dependence is much smoother. This irregular behaviour is in line with the chaotic
field dynamics observed when studying curvature perturbations [165, 166, 46|, but
the amplitude of fluctuations is unexpectedly high.

The figure also shows the variation of €, due to different random realisations
of the field fluctuations for two initial y;, illustrated by the tiny red error bars. The
magnitude of the error in these two cases is representative of the statistical error
in the GW energy density for any value of y;. It is clearly much smaller than the
variation of Q, between different values of x;, confirming that the effect is not
merely statistical fluctuation.

As T used a Monte Carlo method to choose the range of Xij , the expectation values
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in eq. (3.67) can simply be approximated by averages over the sample,

(Q
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z|-

I8¢
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2
=

GW>

Q

(X00u) = 27 30 = T, () (3.65)

Averaging over the 500 data points in Fig. 3.8 which correspond to Y, = 3.42 x
107" Mpy, T obtained (Q,,) = (5.45 + 0.13) x 107* and (0xQyy) = (3.0 £ 1.2) X
107'2Mp;. Substituting these into Eq. (3.67) gives the amplitude of the angular

power spectrum of the relative fluctuations 0Q,, = (/Do — 1) as

VIl +1)C; = 0.017 £ 0.003, (3.69)

where the errors are estimated by the bootstrap method [172]. This method provides
a useful way of measuring the uncertainty in expectation values calculated from a
single data set, by mimicking the process of obtaining new data from the same
probability distribution.

Assuming there are N data points in the original ensemble, for each bootstrap
sample N of these points are randomly selected, without avoiding double counting.
The expectation value is then calculated based on the current set of data points,
and the variance of many such bootstrap samples gives an estimate of the error in
the expectation value.

In this case, I used 1000 bootstrap samples of 250 randomly chosen symmetric
pairs Xij/,xij (to make sure that each bootstrap sample has the correct mean y; =
3.42 x 107" Mpy) to calculate (3.68), and the variance of these samples gave an error
estimate of magnitude 0.003 for the amplitude of relative fluctuations.

The set of initial y; was generated by the Python random number generator,
using a Gaussian probability distribution with the chosen mean and variance. For
unknown reasons, the numerical value of the variance of the data set turned out
to be 02 = 4.3 x 107" M3, which is significantly higher than the desired value
02 = 3.3 x 107" Mp,. To rectify this, I reweighted the data to resemble a sample
with a variance closer to the required one.

Reweighting [173] makes it possible to use Monte Carlo data belonging to a specific
probability distribution to calculate expectation values for other, similar distribu-
tions. Assume values x were drawn from a probability distribution p(z) and you

need to calculate the expectation value of an observable O from a slightly different
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probability distribution function p/(x),

,  Jdap'(z)O(x)
(0) = J Tdup(@) (3.70)
We can re-express this in terms of the old probability distribution p(z) as
dap(x) 2B 0 (x ()0 (2
oy = 14D 00) _ (r@)0(@) _ E;r(#)0) (3.71)

S dxp(x)pl(z)) (r(z)) >or(z)

p(z

where in the last step I used the fact that expectation values are simply sums for a

= I;;((Z)) is the reweighting factor. Therefore,

to calculate expectation values from a slightly different probability distribution to

Monte Carlo data set, and where 7(z)

the original one, we can simply reweight each observable by r(z;). As long as the
probability distributions are close to each other, i.e. > ;7(x;) ~ 1, this method
can be trusted.

The numerical data presented in Fig. 3.8 suggests a Gaussian probability distri-

bution with mean %, and variance o>

. This needs to be reweighted to obtain the
correct variance ai = 3.3 x 107 M3, so we have to evaluate the expectation value

(3.71) for the probability distribution

/ _ 1 (Xi B Yi)2
P'(xi) = Wem <—W) : (3.72)

Note that the reweighting takes place for the whole sample (when calculating the

mean expectation value) and for each bootstrap sample (when estimating the errors).

By employing the method of reweighting, we can also use the Monte Carlo data
to calculate expectation values around different nearby mean values X! (which cor-
responds to a y background with a slightly different average across our observable

universe). These values will have a Gaussian probability distribution

/ 1 (Xi - y{)Q
)= VSV 3.73
() Tno? exp ( 207 (3.73)

where X! is a different mean value to the one chosen in the simulations. The total

reweight factor is therefore

o Od =X | Od —x)?
r(xi) = o P [— st . (3.74)
X

We can use this procedure to calculate C) from the expectation values in (3.68),
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evaluated around the new probability distribution by use of eq. (3.71). The solid
line in Fig. 3.9 shows the relative amplitude of angular fluctuations for different
mean values ; across our observable universe, where the red dot corresponds to our
original choice y; = 3.42 x 107" Mp. For the reweighted mean values, the error bars
in the fluctuations have been obtained by the bootstrap method, similarly to the

original value.

0.03

0.02 {==r7+3

[ia+1c)?

0.01

0.00 L | L | L |
3.0¢107 3.2x107 3.4x107 3.6x10” 3.8x10”

X/ My,

Figure 3.9.: The relative amplitude of the multipoles of the GW background as a
function of the average field value Y;, calculated from Eq. (3.67). The
red dot shows the amplitude for original mean value y, = 3.42x 107" Mpy,
and the curve shows values obtained by reweighting the same data.

One point to note about the plot is that the reweighted data sets have an uncer-
tainty in the value of X!, because once reweighted, the actual mean of each bootstrap
sample (all of which have a mean Y, = 3.42 x 1077 Mp, before reweighting, due to the
choice of symmetric pairs) is slightly different to X!, as we only have a finite number
of data points. The uncertainty in X! becomes larger far away from the original
mean, where we do not have enough coverage to simulate a probability distribution
with the chosen new mean. This is shown by the horizontal error bars in Fig. 3.9.

Due to this uncertainty, when computing expectation values as in eq. (3.68), the
value of the chosen mean X! was actually replaced by the reweighted value, which
ensures that the Monte Carlo averages are performed over the actual mean of the
sample. Again, this was done for the whole sample and each bootstrap sample
separately. Although I am taking this subtlety into account when calculating the
angular power spectrum, ignoring it (and simply using the chosen means ! in all

calculations) does not make a substantial difference to the final result, as the shift
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in mean value due to reweighting is small.

For most of the range of ¥, presented in Fig. 3.9, the amplitude of the fluctu-
ations is above the one percent level, even within error bars. This is much higher
than the relative amplitude of fluctuations in the CMB which is of order 107°. If
the fluctuations in the GW background had been tiny, we would never be able to
detect them. However, it is reasonable to hope that variations of order 1% could be
measured by future GW detectors, although it is very hard to make any statement
about their sensitivity to anisotropies at the current stage.

Unfortunately, as mentioned at the beginning of this chapter, even before con-
sidering anisotropies, GWs from preheating are not within the sensitivity range of
the current main detectors, see Fig. 3.1. Let me demonstrate this for the results
obtained from my simulations. Using eq. (3.22) and the typical dimensionless peak

GW frequency k = 0.2 as shown in Fig. 3.5, we can obtain the frequency today:
fr02x(9-107")Y4 x 7.10"Hz ~ 7.7 MHz. (3.75)

From Fig. 3.8, we can see that the average energy density is approximately €, =
0.00075, and hence its value today is

Q0 ~6.8-1077. (3.76)

This energy density corresponds to the upper end of values in Fig. 3.1. This shows
that the value g?/\ = 2 leads to the production of a very large number of GWs,
which likely is related to the amplification of long wavelength modes which transfer

a lot of power into the field.

3.5.3. Field dynamics

As described in section 3.2.2, the mean value of y across our observable universe, ;,
is a free parameter dependent on the total number of e-folds of inflation. To have
a complete picture of the anisotropies in the GW background, one should therefore
analyse a wider range of y; values than the one considered in the Monte Carlo
simulation.

In Fig. 3.8, I have already included the GW energy density for smaller values of
Xi, and this data is reproduced in Fig. 3.10 on a logarithmic scale for illustrative
purposes. As it is reasonable to assume inflation lasted some number of e-folds
longer than the minimal required number of N, = 60, much smaller values of y;

than presented in Fig. 3.10 are very unlikely, as even with N, = 70 we would have
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at least an expected value of order ; ~ 3 x 1078 Mpy, see eq. (3.30).

On the other hand, there could definitely be larger values of y; in our observable
universe if inflation lasted for a very long time. Due to limitations in computing
power (each run took about six hours on 64 processors, and I had to perform several

hundreds of them), I chose not to perform any simulations for larger values of ;.

T T ‘ T
l - — Gaussian window function]

1.0x10°

GW

5.0x10"

00 1 1 x
1.0x10" 1.0x107

X/ My

Figure 3.10.: 2, plotted with logarithmic y; axis. The blue dot-dashed curve corre-
sponds to the convolution of the data with a Gaussian window function
to make the periodic structure in log y; more apparent.

The data presented in Fig. 3.10 reveals some non-trivial structure. In particular,
the GW energy density has an approximate log-periodic dependence on y;, with
regions of high, quickly varying GW amplitude alternating with regions of low am-
plitude. To make this more apparent, I have also included a curve that shows the
convolution of the data with a Gaussian window function,

~ 1
Qi (log x) =

/ d e~ /?7% Q) (log x +96), (3.77)

2
2mog,

2 =

where o7

0.05 is the spread of the window function. A log-periodic structure
in the field dynamics was predicted by [46] in the context of studying curvature
perturbations from massless preheating, and I will comment on it again at the end
of this section.

First, let me further elucidate the physical origin of the sensitive dependence of
the GW amplitude on y;, by studying the relationship between GW production
and field dynamics. As the source term for tensor perturbations is given by the

field gradients, four powers of which will appear in the equation for the GW power
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spectrum (3.18), it is natural to ask which of the scalar fields is primarily responsible
for the production of GWs.

In Fig. 3.11 I have plotted the total power spectrum of GWs, as well as the power
spectrum obtained from using only ¢ or x as a source of GWs (the total amplitude

will also contain cross terms between the fields). The plot shows that the GWs are

2,0)(10-4 T T T
— Total GW spectrum
— - Spectrum from )
- Spectrum from ¢
15310 - - = Mixed term -
~
(=1
=
~ -4
z 1.0x10 " [~ _
C}O
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Figure 3.11.: The GW amplitude from two different x; sourced by only ¢, x and
both fields respectively.

sourced primarily by the gradients of the x field, which is not surprising, as the
inflaton fluctuations do not get amplified very strongly as we saw in Fig. 3.2. We
can therefore focus on the dynamics of y in order to understand the physical origin
of the variation of the GW energy density.

In Ref. [46] it was observed that the evolution of the system during massless
preheating strongly depends on the relative phase of the homogeneous modes ¢(t)
and x(f) at the time the field dynamics become non-linear (i.e. when x becomes
sufficiently large).

In particular, in some cases x(t) acquires a very large amplitude compared to
the inflaton, leading to a spiky contribution to the curvature. Assume the inflaton

oscillates with period 7" during the linear stage. Initial y configurations related by

/
Xi _ ounT (3.78)
Xi
where n is an integer, will then evolve similarly, as the inflaton will have the same

phase at the time the system becomes non-linear (remember x(¢) oc e#*x;). In fact,

if there were no inhomogeneous modes at all, the behaviour of the fields would be
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exactly the same for all x/, x; related as in Eq. (3.78), as in this case only the phase
information matters.

As at the onset of non-linearities the inhomogeneous modes are still small, we
expect the field behaviour (and therefore the value of physical observables that
depend on it) to repeat periodically in the space of initial values x;. This was
indeed observed for curvature perturbations in [46]. I have found the same effect,
but in the GW amplitude: Regions of high GW amplitude repeat log-periodically,
as shown in Fig. 3.10.

To quantify how the GW production and the dynamics of x are related, I studied
how the maximum value the homogeneous field y reaches during its evolution, Xax,
correlates with the amplitude of the final GW background. Indeed, x..x varies con-
siderably between different y;, indicating that the field dynamics proceed differently
depending on the initial value.

Obviously the GWs are not sourced by the homogeneous field itself, but rather
by its inhomogeneous modes. However, the latter are directly linked to the zero
mode due to the transfer of energy between them during the non-linear stage, and
therefore the correlation between xm.x and €, is meaningful. In Fig. 3.12, Ymax
is plotted against the total amount of GW energy, for the same simulations as in
Fig. 3.10.

1.5x107 [~ —

1.0x10° [~

5.0x10™
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0.5 1 1.5 2

axmax / MPI

Figure 3.12.: The correlation between the maximum amplitude of the homogeneous
part of X, Xmax, and the total GW energy in the simulation.

For small y.« < 1Mp;, we can see a clear correlation between the field dynamics
and GW production: the more energy is deposited into the x field, the more GWs
are being produced. This agrees with the findings from Fig. 3.11, showing that x is
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responsible for the shape and amplitude of the GW spectra.

2> 1.2Mp, the correlation seems to turn around, and less GW are

Y

For high Ymax
being produced, although due to the lack of data in this high Y. region, it is
difficult to make a proper quantitative statement. Using a smaller lattice, L = 25, I
was able to find values of x; which led to a very high field value xpax 2 5Mp), and
for these the GW amplitude was highly suppressed.

A potential reason for the suppression might be that for low enough Y.y, the
homogeneous x(t) field oscillates fast enough to transfer energy to the inhomoge-
neous modes during the time of GW production, thus sourcing more GWs when
more energy can be deposited. For very large Xmax, however, x(¢) only does very
few oscillations, and most of the energy is stored in the homogeneous mode, thus
reducing the field gradients and correspondingly the amount of GW production.

The initial values that lead to a very large amplitude of yyax correspond exactly
to the field behaviour that correlated with non-Gaussian curvature spikes in [46].
This suggests that a spike in the curvature is anti-correlated with the energy of
gravitational waves.

However, I was only able to obtain such high values of yax for very small lattices
L = 25, which do not accurately capture the peak of the GW spectrum. The reason
these scenarios occur very rarely for larger lattices is that the dynamics leading to
spikes are extremely sensitive to tiny variations in initial value, which are amplified
if we include longer wavelength modes. To be able to study these particular values,
a more accurate numerical method than the one used here is needed.

Therefore, no clear statement on the correlation between GW anisotropies and
non-Gaussian features in the CMB can be made at this point. However, note that
if spikes and GWs are actually anti-correlated, this effect would not be observable:
The spikes only appear on very small angular scales, and therefore a suppression
of the GW amplitude across such a region would be completely washed out by the

large scale variation I described in the last section.

3.6. Conclusions and outlook

Gravitational waves from preheating could provide an important tool to constrain
the coupling of the inflaton to other fields and its potential in the future. I have
shown that for massless preheating with a light scalar field, you would obtain an
anisotropic background of GWs with relative fluctuations of the order of 1%.

The anisotropy is a result of two separate effects: The lightness of y and the

amplification of long wavelength modes. The fact that y is a light field is crucial for
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the development of anisotropy. Only if long wavelength modes have been amplified
by inflation, will the initial value vary between different preheating volumes and
therefore modulate the dynamics in different parts of the sky.

The second criterion ensures that the homogeneous, & = 0 mode is amplified by
parametric resonance, and therefore the initial value x; will have a strong impact
on the non-linear dynamics and the production of GWs.

I checked that for coupling constants g®/\ for which k = 0 is not amplified
strongly, e.g. g?/\ = 3,6, no effect was observed. This is because in these models,
the high momentum fluctuations end up dominating over the homogeneous field
evolution. However, this does not mean that we can only hope to observe an effect
in very few, fine-tuned cases: In more general models of preheating, which contain
a mass term and therefore a relevant length scale, the unstable momentum bands
change with time, and typically the £ = 0 mode is amplified for at least part of the
resonance.

The strength of the anisotropy we observed clearly depends on the couplings of
the model. Quantifying the anisotropy for different preheating scenarios with a light
scalar field would give us new constraints on inflationary models, if we are able to
observe the GW background. Primordial gravitational waves could therefore act as
important probes of the early universe, alongside CMB measurements.

Although direct detection might still be a long way off, the study of CMB po-
larization demonstrates the constraining power of tensor fluctuations: If the result
r ~ 0.2 from BICEP2 [21] is confirmed, it would indicate that inflation indeed hap-
pened at a very high energy (GUT) scale, and therefore simple, chaotic inflationary
models with monomial potentials become more viable again. It is therefore very
important to study the preheating dynamics in these scenarios.

An obvious extension to the work presented in this chapter is to consider the Higgs
field as the light scalar and couple it directly to the inflaton. The existence of the
Higgs has been confirmed by the LHC last year [174], with a mass my ~ 126GeV.
The Higgs is a complex SU(2) doublet, H = (h™, h°), with a potential term

V(H) =\ (HTH — %2)2 , (3.79)

where v = 246 GeV the minimum, giving A = 0.13 at tree level.

The Higgs potential depends sensitively on the running of the Higgs self coupling
A(p) with energy scale p. The measured value of the Higgs mass suggests that at at
high energies the potential turns around, and A\ becomes negative as we approach

the Planck scale [175, 176], implying that the electroweak vacuum is metastable and
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there is actually a deeper vacuum at higher field values. The fact that the Higgs
potential does not blow up also means that the Higgs will be a light field even at
high energy scales.

Stability of the EW vacuum (which requires A > 0 all the way up to the Planck
scale) is still a possibility, however, if the value of the top mass (which has the
strongest influence on the running of the self-coupling) is a few sigma away from its
central value [176].

This model is therefore particularly interesting to consider, as we can take the
coupling A to be a small, positive free parameter and investigate how it affects the
GW production. At high energies much larger than v, the Higgs potential (3.79)
reduces to a quartic self-interaction term. Assuming a quartic inflaton potential
and a quadratic coupling to the Higgs just as for the scalar field y, this amounts
to studying a very similar situation as before, but with a different, characteristic
anisotropic background depending on the parameters.

This simple model ignores the coupling of the Higgs to standard model particles,
whose impact on GW production was studied in [177]. For a full picture of preheating
with the Higgs field, all of the couplings should be included and their impact on the
GW anisotropy quantified.
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4. Concluding Remarks

Lack of comfort means we are on the threshold of new insights.

Lawrence M. Krauss

In this thesis, I have demonstrated that gravitational waves can be used as powerful
probes of the early universe. I focussed on two separate topics, tensor perturbations
from inflation within a quantum gravity formalism, and gravitational waves from
preheating in the presence of a light scalar field.

Chapter 2 showed that using the Ashtekar variables in Cosmology, which are an
alternative description of gravitational degrees of freedom, lead to a chiral power
spectrum of tensor perturbations. This would have an effect on the TB correlator,
making it non-zero and potentially measurable, depending on the strength of the
parity violation. Although the BICEP2 collaboration has recently detected B-modes
[21] of potentially primordial origin, there is not yet sufficient data to explore the
TB correlator in detail. To do this, a full sky analysis is needed, which would enable
us to constrain the possible chirality of gravity.

If the fairly large value of r = 0.2750 seen by BICEP2 is confirmed by other
experiments, the model of massless preheating studied in chapter 3 has become more
viable again. Naturally, this value of r will probably change as more data becomes
available, but the observation has undoubtedly given a boost to the simpler models
where inflation happens at high energy scales. I have shown that during massless
preheating, a light scalar field with superhorizon fluctuations would result in an
anisotropic GW background today. Although we cannot currently measure this
background, in the future such aniosotropies might provide a vital clue as to how
the preheating process occurred, and give further constraints on inflationary models.

The study of B-mode polarization of the CMB marks the beginning of our explo-
ration of primordial gravitational wave backgrounds. Current and future B-mode
experiments [21, 59, 60] should be able to enhance our understanding of these tensor
perturbations, and hopefully one day we might also be able to detect cosmological
gravitational wave backgrounds directly. Additionally, detectors like LIGO should

be able to measure gravitational waves emitted by astrophysical sources in the next
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few years, which would provide us with fascinating new insights into the world of
Astrophysics [76].

Gravitational waves were first predicted by Einstein in 1916, and since then much
effort has been invested in understanding their production in the universe and their
significance for Astrophysics and Cosmology. Now, nearly a hundred years later, we

can finally begin to properly explore these ripples in spacetime.
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A. Appendix

A.1. Cosmological perturbation theory

In this appendix I want to describe the basic features of cosmological perturbation
theory. In particular, I will discuss the SVT decomposition into scalars, vectors and
tensors and the importance of choosing a gauge.

When we define a metric in GR, we need to choose a threading, which corresponds
to timelike lines through spacetime (fixed x), and a slicing, corresponding to space-
like hypersurfaces (fixed t) [23]. For an FRW background, eq. (1.12), there exists
a preferred coordinate system, with a threading according to comoving observers
(which measure zero momentum density) and an orthogonal slicing of homogeneous
hypersurfaces [32]. However, as soon as we define perturbations, there is no obvious
choice of coordinates, and you could even pick a threading and slicing such that it
looks like the spacetime is unperturbed [5]. Selecting a specific coordinate system
is referred to as picking a gauge [23], and the choice of gauge strongly depends on
the problem you want to solve.

The most general form of a perturbed FRW metric can be written as [32]
ds® = —(1+4 2®)dt* + 2a(t) Bidtda' + a*(t) [(1 — 2W)d;; + 2Ey;] da'da’ . (A1)

® is called the lapse (which relates coordinate and proper time [23]), B; the shift
(which measures the relative velocity between the threading and worldlines orthog-
onal to the slicing [23]), U the spatial curvature perturbation and E;; (which is
traceless) the shear.

The energy-momentum tensor, eq. (1.6), also needs to be perturbed. The energy
density p and pressure P determine the background FRW metric, so they need to
be supplemented by perturbations dp, 0P (which depend on space and time). As
we are not considering a perfect fluid anymore, we also need a momentum density
p; and a traceless and symmetric anisotropic stress tensor 1I;; (which are both zero
to zeroth order). For details on the exact form of the perturbed stress energy tensor

see e.g. appendix A of [32].
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A.1.1. SVT decomposition

To study the relationship between the metric and matter perturbations, we need
to expand Einstein’s equation (1.1) to first order. This will give us evolution and
constraint equations [23]. Note that perturbation components that transform as
vectors (B;, p;) can be further decomposed into the divergence of a scalar and a
divergenceless vector, and similarly objects transforming as tensors (Ej;, 1I;;) can
be decomposed into scalar, vector and tensor parts [32].

Due to the symmetry of the FRW background, scalar, vector and tensor perturba-
tions decouple and all evolve independently (having different symmetry properties
under rotations) [23]. This is called the SVT decomposition and greatly simplifies
the calculation. We will focus on scalar and tensor perturbations as the vector com-
ponents are not sourced by inflation [32] and furthermore decay with the expansion
of the universe [28]. We therefore care about four scalar perturbations ®, B, E, U,

sourced by the scalar stress energy perturbations dp,d P, p,Il, and a transverse and

TT
h/L] 9

verse traceless anisotropic stress, H;I;T. Tensors therefore only couple to matter

traceless tensor perturbation, which we will call solely sourced by the trans-
distributions that have a non-zero anisotropic stress [28]. This is not the case for

the inflaton, so they are not directly sourced by inflation.

A.1.2. Gauge selection

Due to the diffeomorphism invariance of GR, we can always make a gauge transfor-
mation z# — IH = x# + £H, i.e. a first order change in coordinates, which leaves
the form of the metric invariant [29]. To find out how such a transformation affects
different types of perturbation, we need to invoke the tensor transformation law
(1.2). Scalars do not transform, but they do shift their position, so the new set of
metric perturbations ®, B, E, U will be linear combinations of the old ones. The
perturbations in the stress energy tensor also transform. We find that there are two
redundant degrees of freedom in the metric perturbations that can be eliminated

by appropriately picking two scalars &, ; that determine the gauge transforma-

tion [28]. The tensor perturbation hj;", being transverse (h;; = 0) and traceless
(hi™ = 0), is gauge invariant [28].

Selecting an appropriate gauge is particularly important for the scalar perturba-
tions, which are the source of matter density perturbations. In this case, it is useful
to define gauge invariant quantities, either just in terms of metric perturbations, or
for combinations of both stress energy and metric components [32], like for example

the curvature perturbation R in eq. (1.68). This makes it easy to relate quantities
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defined in different gauges. As scalar perturbations are not the main focus of this

thesis, I refer the reader to [23, 28, 32| for details on popular gauges in Cosmology.

A.2. Hamiltonian constrained systems

Constrained Hamiltonian systems and their quantization have been extensively stud-
ied by Dirac [178, 179]. All gauge theories (like, for example, GR, where the local
symmetry transformations that leave the theory invariant are the diffeomorphisms
[22]) need to be supplemented by constraints in their Hamiltonian formulation [180],
which take care of the fact that the theory should not change under symmetry trans-
formations. In this appendix I will summarise the most important aspects of Dirac’s
procedure, in particular focussing on the meaning of primary, secondary, first and
second class constraints.

First, let us recall the basics of Hamiltonian mechanics [181]: Starting from a
Lagrangian L(q, ¢), we can derive canonical momenta p = ‘Z—é and define the Hamil-

tonian by performing a Legendre transform,

H(p,q)=dp— L. (A.2)
The Hamilton’s equations
OH OH
v = — q = —— A.3

are equivalent to the Euler-Lagrange equations and can be expressed in terms of
Poisson brackets (which become commutation relations upon quantization). The

Poisson bracket is defined as

Uwzﬁ@—g@, (A.4)

and eq. (A.3) can therefore be written as

¢={q¢,H}, p={p H}. (A.5)

The time evolution of any function f(q,p) of the canonical variables can similarly

be expressed as the Poisson bracket with the Hamiltonian,

fa,p) ={f, H}. (A.6)

Note that the Hamiltonian is supposed to be expressed only in terms of ¢ and p
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which relies upon the fact that the Lagrangian is non-singular, such that the relation
p= % can be inverted to find the velocity ¢ in terms of the canonical momentum
p. This is not possible in general and the reason why the standard Hamiltonian
procedure needs to be generalised. The Lagrangian is always singular in the case of
gauge theories [180].

If the Lagrangian cannot be inverted, it means that that the phase space variables

are related, i.e. they satisfy a constraint [179]

¢(q,p) = 0. (A7)

The use of the approximately equal & signals that this is a weak equality, i.e. one
that is only satisfied after the equations of motion have been imposed. In particular,
we can only impose this condition after Poisson brackets have been evaluated [179].
There may be several such conditions ¢,,(q,p) ~ 0 on the phase space variables and
they are known as the primary constraints.

We can take care of these constraints by extending the Hamiltonian to
Hr = H + Uy , (A.8)

where u,, are arbitrary coefficients (Lagrange multipliers) that do not depend on
(¢,p). Clearly Hy ~ H, so the extended Hamiltonian reduces to the ordinary
Hamiltonian when the equations of motion and therefore the constraints are satisfied.
Now, we can easily incorporate the constraints by deriving the equations of motion
for any function f(q,p) using the generalised total Hamiltonian Hr in eq. (A.6).

We need to satisfy ¢,, ~ 0 to ensure that the constraints are conserved. Eq. (A.6)
gives us consistency relations for each of the primary constraints. Using the Hamil-
ton equations (A.3) to solve (A.6) for ¢, leads to three separate cases [179]: For some
values of m, the consistency condition is identically satisfied, giving no new condi-
tions. In other cases, we might obtain further, secondary constraints ¢x(q,p) ~ 0,
which also need to be conserved, i.e. plugged into (A.6). This means that overall
we actually have to satisfy qBj ~ 0, j = 1..M + K where there are M primary
and K secondary constraints. Lastly, we might obtain conditions that enable us to
uniquely determine some of the coefficients u,,, while others remain undetermined.
As I will describe now, the latter play an important role for gauge theories.

The primary constraints ¢, (which in general are a linear combination of the
original primary constraints ¢,,) that correspond to the undetermined Lagrange

multipliers u, are first class [179]. A variable R is first class if it satisfies the
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condition

{¢;, R} =0 Vj, (A.9)

i.e. the Poisson bracket with all primary and secondary constraints is zero. It is
straightforward to show that the total Hamiltonian is first class, and so are the ¢,
[179]. The first class primary constraints are very important as they are generating
functions of infinitesimal transformations that preserve the physical state. In other
worlds, they generate gauge transformations.

Heuristically, the reason the gzga generate gauge transformations is that the un-
determined, arbitrary Lagrange multipliers u, reflect the fact that the phase space
variables (g, p) cannot be determined uniquely from an initial state. However, they
need to correspond to the same physical system regardless of the value of u,, in the
same way that an arbitrary gauge transformation needs to leave the theory invariant
[179].

Constraints not satisfying eq. (A.9) are called second class. They correspond to
redundant physical degrees of freedom, and can be taken care of by using the Dirac
bracket [178] instead of the Poisson bracket: it gives the same time evolution as
before, but makes it possible to set the second class constraints to zero [179)].

In canonical GR, all the constraints are first class and satisfy the symmetries
of general covariance: At each point in space there is a 3d diffeomorphism con-
straint, corresponding to diffeomorphisms on spacelike slices, and the Hamiltonian
constraint, corresponding to time translations [182]. Hence, there seems to be no
meaningful way to describe the evolution of a system with time in the context of
canonical GR. In the Ashtekar formalism, the formulation in terms of a complex spin
connection means there is also an SU(2) gauge group, which leads to an additional
Gauss constraint [139].

Note that in the quantum theory, the constraints are not imposed on the operators,
but as conditions on the Hilbert space: physical states need to be annihilated by
the constraints [139]. This is what gives rise to the Wheeler-DeWitt equation [109]
in canonical quantum gravity, H|V) = 0, where #H is the quantum Hamiltonian

constraint.
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