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Abstract

In this thesis, I will discuss two separate topics which are related to gravitational

wave production in the early universe.

The first part will focus on the tensor power spectrum from inflation, derived using

the Ashtekar variables of loop quantum gravity. This formalism is different from the

ordinary approach in that it uses a complex connection as the central gravitational

variable instead of the metric. Although the choice of variables should not affect any

classical results, it becomes vital when considering quantum mechanical quantities

like vacuum fluctuations. We will find that in this formalism, the tensor power

spectrum is chiral, which would lead to a non-zero TB correlator in the CMB.

Obtaining the full TB power spectrum would enable us to probe this chirality and

provide clues about the nature of gravity.

In the second part, I will consider gravitational waves produced from massless

preheating, during which the inflaton transfers energy to a scalar field χ. If χ is

light, it acquires a scale invariant spectrum of perturbations from inflation. At

the time of preheating, the field will therefore have fluctuations on superhorizon

scales and take a different value in different parts of the observable universe. I will

study GW production for different initial values of χ numerically using 3d lattice

simulations. The GW amplitude strongly depends on this initial value, leading to a

GW background that is anisotropic today, with relative fluctuations of order 1%. In

general, anisotropies will occur in any model of preheating with a light scalar field,

and the characteristics should strongly depend on the model parameters. If a GW

background from preheating was measured in the future, it would provide a novel

way to distinguish between different inflationary scenarios.
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1. Introduction

Do not look at stars as bright spots only. Try to take in the vastness of the universe.

Maria Mitchell

Cosmology is the study of the evolution of our universe, from the Big Bang to

the formation of galaxies. Out of its 13.6 billion year history, we understand all

but the first fraction of a second fairly well: As the universe expands and cools, it

undergoes a series of phase transitions, most notably electroweak symmetry breaking

when the weak gauge bosons acquire mass; when it is a few seconds old, the first

elements are formed during nucleosynthesis; after several tens of thousands of years

matter rather than radiation comes to dominate the energy density; 380,000 years

in the Cosmic Microwave Background (CMB) is released; and all the while structure

has been forming due to the presence of small perturbations in the initial density

distribution, culminating in the formation of large structures like galaxies [5].

There are still many unsolved problems surrounding this vast era, like the origin

of baryon asymmetry [6], the nature of dark matter [7] and dark energy [8, 9].

However, most mysterious of all are the first few instants after the Big Bang, during

which the energy density was so high that we can never hope to probe such scales

directly. Instead, we need to understand how the universe we observe today could

have originated, and identify suitable models for this early period, which makes it

a fascinating playground for theoretical cosmologists.

Nowadays, the most accepted and widely popularised theory of the universe when

it was a tiny fraction of a second old is inflation, a period of rapid expansion.

This is driven by an as-yet unidentified source referred to as the inflaton, usually

taken to be one (or several) scalar fields or some scalar condensate. The idea of

an inflationary phase in the early universe was proposed independently by several

physicists between 1979 and 1980 [10, 11, 12, 13]. Such a mechanism solves many

mysteries that have plagued cosmologists in the past, like the observed large scale

homogeneity and isotropy of our universe. Most importantly, it provides a seed for

all the structure we observe today. Proving whether inflation indeed occurred, and

finding out exactly how, could therefore shine light onto the age old question of how
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we came into existence. Furthermore, it could also provide one of very few ways to

link observations with theories of quantum gravity, as at no other time in our history

will energies have been high enough to probe the Planck scale, at which some new

physics must leave their mark.

To test the validity of inflation, cosmologists primarily resort to the analysis of

the CMB, the “leftover” radiation from the Big Bang. It was first discovered in 1964

[14] when Arno Penzias and Robert Wilson, using an antenna built to measure radio

waves, detected a uniform background of microwave radiation with a temperature

of 2.7K and a near-perfect blackbody spectrum. It was soon realised [15] that this

background corresponded to radiation that had cooled down due to the expansion of

the universe and was emitted very early on, at the recombination redshift z = 1100,

when the temperature was about a thousand times higher. Even earlier, the photons

were tightly coupled to the baryons, but at the time of recombination neutral atoms

formed and photons could eventually decouple from the plasma and free-stream to

us observing them today.

It was not until the COBE satellite [16] measured the background more precisely in

1992 (with the results vastly improved upon by later experiments like BOOMERanG

(1997) [17], WMAP (2003) [18] and Planck (2012) [19]), that cosmologists were able

to observe the tiny fluctuations (one part in a hundred thousand) in the CMB tem-

perature. These fluctuations must have been laid down during the time of inflation,

and analysing them could indirectly provide information about the conditions right

after the Big Bang. Cosmologists try to understand which models of inflation are

viable by studying the statistics of these photon perturbations. Despite the con-

straints from the most recent data [20] there is still a vast number of scenarios that

are compatible with the universe we observe. If the recent detection of B-mode

polarization of the CMB by the BICEP2 collaboration [21] turns out to be of pri-

mordial origin, it will enable us to constrain the parameter space further, especially

when confirmed by other experiments and complemented with the polarization data

from Planck. Still, it is unlikely that we will be able to single out a model of inflation

using CMB measurements alone.

Gravitational waves (GWs) could provide a new way of understanding the con-

ditions in the very early universe. Predicted by general relativity [22], they should

arise in a number of cosmological and astrophysical settings, particularly during

inflation and phase transitions shortly after. Whereas scalar perturbations of the

metric during inflation are the source of the density perturbations (and therefore

structure), GWs correspond to tensor perturbations [23]. These tensor modes have

an impact on the polarization of the CMB, but may also potentially be measured
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directly. Additionally, GWs are produced from classical field inhomogeneities [24]

by non-equilibrium phenomena after inflation, for example during preheating.

So far, due to their low amplitude (a consequence of the weakness of the gravita-

tional force), no GWs have been directly detected yet. The first indirect evidence

was provided in 1974 from the energy loss of the Hulse-Taylor binary pulsar [25].

Two major experiments will attempt to directly measure GWs from astrophysical

sources in the near future, Advanced LIGO [26] (operational from 2015) and eLISA

[27] (launching in 2032). Neither of these will, most likely, be able to detect the cos-

mological signals that would tell us about the nature of the early universe, however

we can be hopeful that future generations of detectors might be up to the task.

Cosmology is a vast field and there are a number of good textbooks on the subject,

of which [5, 23, 28, 29] have been important in providing the physics background

of this thesis. In this introduction, I will give a general overview of Cosmology,

focussing on the aspects that are important for the work presented in chapters 2

and 3.

In section 1.1, I will introduce key concepts of general relativity and describe

how the homogeneous universe can be described using the Friedmann equations.

The theory of inflation is the topic of section 1.2, and I will explain its classical as

well as its quantum aspects. Section 1.3 provides the link between inflation and the

fluctuations in the CMB we observe. In section 1.4, I will describe reheating, a stage

right after inflation where most elementary particles were produced. I will finish by

discussing gravitational wave propagation, production and detection in section 1.5.

The work carried out during my PhD is described in chapters 2 and 3. Generally

speaking, the focus of the thesis is on how to use gravitational waves as a tool

to uncover new physics. I will discuss two separate topics, one related to tensor

perturbations from inflation, the other to GWs produced during preheating.

In chapter 2, I will consider cosmological perturbation theory from the point of

view of loop quantum gravity, where different gravitational variables to the usual

ones are used. Although classically this does not make a difference, quantum me-

chanical quantities are affected by this choice. I will show how this might lead to a

chirality in the power spectrum of tensor perturbations from inflation. This chiral-

ity could leave a distinctive imprint on the polarization of the CMB, and we should

soon be able to test whether such an effect is actually present.

In chapter 3, I will focus on GWs produced during preheating, a non-equilibrium

stage after inflation where the inflaton decays to other fields. Using a model where

the inflaton is coupled to a light scalar, numerical simulations I carried out show

that the GW background from this time should be anisotropic on large scales today,
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with relative fluctuations of order 1%. The characteristics of this anisotropy strongly

depend on the inflaton potential and its coupling to other fields, providing a novel

way of constraining inflationary models.

Throughout this thesis, I will use natural units where c = kB = ~ = 1. The

Planck mass will be denoted by MPl = 1/
√
G = 1.22×1019GeV/c2, and the reduced

Planck mass by mPl = 1/
√

8πG = 2.44× 1018GeV/c2.

1.1. The homogeneous universe

In this section I want to give the necessary mathematical background to describe

the universe on large scales, where it looks homogeneous and isotropic, and where

its expansion depends on the total matter content. I will start by introducing key

aspects of general gelativity in section 1.1.1 and then discuss its application to

Cosmology in 1.1.2, highlighting the importance of the Friedmann equations.

1.1.1. General Relativity and Einstein’s equation

In GR, the force of gravity is a consequence of the curvature of spacetime. While in

Newtonian physics we can only describe how gravity affects the motion of matter,

in general relativity matter also dictates the geometry of spacetime itself [24]. This

mutual relationship is described by Einstein’s equation,

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.1)

where the energy-momentum tensor Tµν on the RHS describes the matter content,

and the LHS the geometry of spacetime (and therefore gravity) through the Ricci

tensor Rµν , which is a function of the metric tensor gµν and its derivatives [24].

General relativity has a rich underlying mathematical structure belonging to the

field of differential geometry. A very good and thorough treatment of GR in this

manner can be found in e.g. [22]. Luckily, in the context of Cosmology, we only need

a basic knowledge of differential geometry to carry out calculations; this includes

how tensors transform under coordinate transformations and how we can use the

metric to describe spacetime and its effect on test particles. I will collect these

results and their application to the universe we live in in this section.

In GR, tensors are multi-linear functions defined on spacetime [24]. A rank (m,n)

tensor with m upper and n lower indices maps m dual vectors and n vectors to the

real numbers R. A vector v = vµ∂µ and a dual vector (one-form) w = wµdx
µ are

objects living on a manifold, where vµ, wµ are the components and ∂µ, dx
µ are a
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particular choice of orthogonal (coordinate) basis vectors. We can act with vectors

on dual vectors to obtain a real number and vice versa. Rank zero and (1, 0) tensors

therefore correspond to ordinary scalars and vectors, respectively. Tensors can be

manipulated using their components T µ1···µmν1···νn(xα) (where indices are raised and

lowered using the metric tensor gµν or gµν) with respect to a basis for the tangent

space of the manifold, and I will usually refer to the components simply as the tensor.

A general tensor with m upper and n lower indices transforms under a change of

coordinates xα → xα
′

as [24]

T µ
′
1···µ′m

ν′1···ν′n(xα
′
) =

∂xµ
′
1

∂xµ1
· · · ∂x

µ′m

∂xµm
∂xν1

∂xν
′
1
· · · ∂x

νn

∂xν′n
T µ1···µmν1···νn(xα) . (1.2)

Scalars (having no indices) do not change under a change of coordinates, φ′(xα
′
) =

φ(xα).

Let us go back to the components of the Einstein equation (1.1). The metric

encodes the notion of distance in spacetime [24]. In particular, the line element

ds2 = gµνdx
µdxν , (1.3)

measures the proper time dτ (where dτ 2 = −ds2) elapsing for an object moving an

infinitesimal distance dxµ in spacetime. Note that ds2 < 0 for timelike separated

points (ones within the lightcone, whose interior describes the causally connected

region), ds2 > 0 for spacelike separated points and ds2 = 0 for null separated points

(which are connected by a photon trajectory) [24].

In curved space, we need to define covariant derivatives which act on vectors vα

as

∇µv
α = ∂µv

α + Γαµνv
ν , (1.4)

where Γαµν is an object called the connection which ensures that the covariant deriva-

tive transforms as a tensor [24]. The connection chosen in GR is symmetric in the

lower indices (torsion free) and satisfies ∇αgµν = 0 (metric compatible). It is called

the Christoffel connection [24],

Γαµν =
1

2
gαβ(∂µgνβ + ∂νgβµ − ∂βgµν) . (1.5)

The connection can be used to build the Riemann curvature tensor Rα
βµν = ∂µΓανβ−

∂νΓ
α
µβ + ΓαµσΓσνβ − ΓανσΓσµβ. Rα

βµν and its contraction Rµν , the Ricci tensor, encode

the curvature of spacetime.

The energy-momentum tensor Tµν is conserved, ∇µT
µν = 0 [24]. This relation
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includes four separate conservation equations. According to Noether’s theorem [30],

any system with a symmetry will have a corresponding conserved quantity. In the

case of GR, the theory is invariant under infinitesimal time and spatial translations,

with the former leading to energy conservation, ∇µT
µ0 = 0, and the latter to mo-

mentum conservation, ∇µT
µi = 0 [22]. These are continuity equations for the 00

and 0i components of Tµν , which in flat space (where ∇µT
µν = ∂µT

µν = 0) can be

identified with the energy and momentum density, respectively.

In flat space with no gravity, the appropriate metric is the Minkowski metric ηµν

which is diagonal with elements (−1, 1, 1, 1). This form of the metric is important

on scales where the expansion of the universe can be ignored and the spacetime

therefore looks flat.

In Cosmology, we will often be interested in the energy-momentum tensor of a

perfect fluid [23],

T µν = (ρ+ P )uµuν + Pgµν , (1.6)

where uµ = dxµ/dτ is the normalized 4-velocity of the fluid. In the local rest frame

where uµ = (1, 0), T 00 = ρ, T 0i = 0 (as it measures the momentum density, which is

zero in the rest frame) and T ij = Pδij, so the fluid is isotropic. Otherwise, it would

also contain an anisotropic stress term Πij.

It will be useful to regard GR in the Lagrangian formulation (see e.g. [24]), where

Einstein’s equations can be derived by minimising the action. The action is given

by

S =

∫
d4x
√
−gL , (1.7)

where d4x
√
−g is the covariant volume element [31] (note this is just unity for the

Minkowski metric, i.e. the flat space volume is the familiar d3xdt). The Lagrangian

density L(Φi,∇µΦi) depends on a field Φi(xµ) and its derivatives and describes the

kinetic and potential energy of the system. We can get an equation of motion for the

field by minimising the action under infinitesimal changes in the field, δS = 0. In

GR, the action leading to the Einstein equation (1.1) is called the Einstein-Hilbert

action and is given by [24]

SH =

∫ √
−gR d4x , (1.8)

where R is the Ricci scalar. Varying (1.8) with respect to the metric tensor would

actually only give you eq. (1.1) with RHS = 0, as we have not yet included any

sources. To find the general expression, consider the Lagrangian [23]

L =
1

2
m2

PlR + Lmat , (1.9)
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where Lmat is due to matter fields (where matter here refers to anything that is not

gravity). The energy-momentum tensor can be derived by minimising the action

due to eq. (1.9) with respect to gµν , and we can then identify [23]

Tµν = −2
∂Lmat

∂gµν
+ gµνLmat . (1.10)

1.1.2. The Friedmann equations

The universe on large scales is homogeneous and isotropic, so the metric needs to

reflect these properties. The spacetime satisfying these properties is described by

the Friedmann-Robertson-Walker metric, FRW for short, which for general spatial

3-curvature k is given by (in spherical polar coordinates) [5]

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.11)

where dΩ2 = dθ2 + sin2 θdφ is the angular volume element.

The most recent CMB experiments have shown [18, 19] that we live in a flat

universe with k = 0, with dark energy making up around 68% of the energy density

budget (which could correspond to a positive cosmological constant Λ or a dynamic

field with negative pressure [28]), and about 27% of dark matter and 5% ordinary

matter. Therefore, we are mainly interested in the flat space version of the FRW

metric, which is usually expressed in Cartesian coordinates:

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] . (1.12)

The coordinates x, y, z are comoving, i.e. they do not change with the expansion.

Physical distances are related to comoving ones as ∆r(t) = a(t)∆x.

It will sometimes be useful to use conformal time η instead of ordinary coordinate

time, which is defined by dη = dt/a. This can be integrated to find the value of η

at a time t′:

η(t′) =

∫ t′

0

dt

a(t)
. (1.13)

We can then rewrite the FRW metric (1.12) as

ds2 = a2(η)ηµνdx
µdxν . (1.14)

We can assume that the energy-momentum tensor of the universe is decribed by a

perfect fluid, eq. (1.6). As we live in an isotropic universe, the fluid’s rest frame

should coincide with the comoving coordinates in the FRW metric (1.12). From
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the Einstein equations we obtain two equations describing the evolution of the scale

factor depending on the energy content of the universe, the Friedmann equations

[23]:

H2 =

(
ȧ

a

)2

=
ρ

3m2
Pl

, (1.15)

Ḣ +H2 =
ä

a
= −ρ+ 3P

6m2
Pl

, (1.16)

where ρ contains the density of all species in the universe (like matter, radiation or

a cosmological constant term ρΛ = m2
PlΛ [23]), P is their pressure and the Hubble

rate H ≡ ȧ
a

is an important physical length (time) scale in Cosmology.

The Friedmann equations can be combined into the continuity equation

ρ̇ = −3H(ρ+ P ) , (1.17)

which corresponds to energy conservation for adiabatic expansion, which is valid in

an isotropic universe [23].

Energy density and pressure can be related by an equation of state P = wρ, which

is a constant for ordinary species (but not for a scalar field) [32]. Specifically, w = 0

for matter (no pressure), w = 1/3 for radiation and w = −1 for a cosmological

constant [23]. Using the continuity equation, this implies ρM ∝ a−3 for the energy

density of matter, ρR ∝ a−4 for radiation (where the extra factor of a can be

undestood as a redshift), and the energy density of Λ is constant. This means

the evolution of the universe will consist of a series of epochs as the different powers

of the scale factor compete in the Friedmann equations: first radiation domination,

followed by matter domination and eventually dark energy (Λ) domination when

the matter has been sufficiently diluted by the expansion.

Using the relation ρ(a), the Friedmann equation (1.15) can be integrated and we

obtain the evolution of the scale factor during the different epochs: a ∝ t2/3 for

matter domination, a ∝ t1/2 for radiation domination and a ∝ eHt for a universe

dominated by a cosmological constant Λ.

1.2. Inflation

This section is dedicated to introducing the theory of inflation, starting with the

initial motivation for an accelerated stage of expansion to solve problems in the Big

Bang model of Cosmology in 1.2.1. I will then describe single-field slow-roll inflation

as the easiest possible implementation of the theory, section 1.2.2. Having explored
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the homogeneous inflaton field, I will outline in section 1.2.3 how to proceed when

fluctuations are included and define the power spectra that encode the statistical

properties of the field. Before explaining how inflation can act as a seed for all struc-

ture through the stretching of quantum fluctuations to cosmological scales (section

1.2.5), I will need to give some details on the canonical quantization procedure and

its application to curved spacetime in 1.2.4.

1.2.1. The horizon problem

The Big Bang model of the universe is very successful at explaining how we come to

live in in expanding universe [28]. However, three separate observations show that

there is something missing in our understanding of the early universe [23]. The most

important one to understand conceptually is the horizon problem, so I will explain

its significance and how it can be resolved using inflation. At the end, I will briefly

mention the related flatness and monopole problems for completeness.

A very important concept in Cosmology is the particle horizon, the distance trav-

elled by a photon between t = 0 to t′ [28]. As for a photon ds2 = 0, using eq. (1.11),

we can express this distance in comoving units as

η =

∫ t′

0

dt

a(t)
. (1.18)

As it has the same form as conformal time, we use the same symbol η to denote

it. Clearly this quantity must always increase (as a > 0), and points in space

separated by distances larger than the comoving horizon have non-intersecting past

lightcones, i.e. no signal could have ever been transmitted between them: the points

are “causally disconnected” [28] (although particles located at such points might

come into causal contact in the future as the comoving horizon grows, when enough

time has passed for photons from one particle to reach the other).

With this in mind, the uniformity of the CMB presents a mystery. Assume that

the universe has always been matter dominated, such that a = (t/t0)2/3 and H =
2
3
t−1, where the subscript zero refers to quantities today and we normalise a0 = 1.

We can then derive the comoving distance a photon has travelled at scale factor a∗

using eq. (1.18):

η =

∫ t∗

0

t
2/3
0 t−2/3dt = 3t

2/3
0 t1/3∗ = 2H−1

0

√
a∗ . (1.19)

Therefore, the comoving particle horizon at the time of recombination, when a ≈
1100, is a factor of

√
1100 smaller than it is today. Indeed, you can show that
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points with an angular separation of more than about 1◦ on the sky today were

causally disconnected at the time of recombination [23]. However, we observe the

CMB to be close to uniform on all scales. It seems very surprising that photons,

free-streaming since recombination, which come from regions that were separated

by distances larger than the particle horizon should just happen to be at nearly the

same temperature, although no physical process could have led them to equilibrate

[23].

This problem can be resolved if, before the period of radiation domination, the

expansion occurred in an “unusual” manner, in which the increase of the particle

horizon does not imply that the size of causally connected regions grows. This can be

achieved by a period of accelerated expansion where points in space move away from

each other so fast that a photon cannot traverse the distance between them. Regions

that were causally connected early on could therefore move out of “causal contact”,

so a signal transmitted from one point will not reach another point in the region

again until some time far in the future, when it has had enough time to traverse the

distance between them that has grown exponentially due to the expansion.

Thus, if initially causally connected regions have been stretched to a size larger

than the surface of last scattering (the surface in spacetime the CMB photons we

observe originated from), the uniformity of the CMB temperature is not surprising,

as the whole observable universe could have originated from a small homogeneous

patch [23].

To make this more mathematically rigorous, let me define the comoving Hubble

radius (aH)−1. This is a very important length scale in Cosmology, and is often

referred to simply as the (comoving) horizon. Note that unlike the particle horizon,

it is not an actual horizon, and the terminology can be confusing. We can rewrite

eq. (1.18) in terms of this quantity,

η =

∫ a′

0

d(ln a)
1

aH
. (1.20)

To understand the physical significance of the comoving Hubble radius, consider a

small amount of expansion for which the comoving particle horizon grows by an

amount ∆η = N(aH)−1, where N = ∆ ln(a) is the number of e-folds of expansion

(which counts the factors of e the scale factor has grown by). The Hubble radius

then corresponds to the distance travelled by a photon while the universe expands

by N e-folds.

During matter and radiation domination, the comoving Hubble radius grows

monotonically, and is actually proportional to η [24]. However, if there is a stage
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where (aH)−1 shrinks, so that photons traverse smaller and smaller distances during

the same amount of expansion, the particle horizon can still grow (with the main

contribution to the integral coming from early times) but the size of the region in

causal contact at the end of this phase is much smaller than it was initially.

As the particle horizon becomes very large early on if the comoving Hubble radius

shrinks, we have solved the horizon problem: At the time of recombination, the

particle horizon is much larger than the distance travelled by photons since then.

Therefore, when we observe the CMB, we see photons from a region whose spatial

extent was within the physical horizon, which means that they could have all been

at nearly the same temperature.

The condition for the comoving radius to shrink is equivalent to accelerated ex-

pansion,
d

dt
(aH)−1 =

d

dt

1

ȧ
< 0 ⇔ ä > 0 . (1.21)

Inflation describes this period of a shrinking comoving Hubble radius. Before de-

scribing what conditions need to be satisfied to lead to this behaviour, let me mention

the other two problems inflation solves: the flatness and the monopole problem. For

a curved FRW metric (1.11) with k 6= 0, the Friedmann equation (1.15) has an

additional term proportional to the curvature and can be rewritten as [23]

Ω(a)− 1 =
k

a2H2
, (1.22)

where Ω(a) = ρ(a)/ρcrit(a) and ρcrit(a) is the density for a flat FRW universe. For

perfect flatness k = 0, we need Ω(a) = 1. However, without inflation, any small

deviation from flatness will be amplified with time as (aH)−1 grows. As we observe

near flatness today, this means that Ω must have been extremely fine tuned. Inflation

circumvents this as it drives Ω→ 1 in eq. (1.22) while the comoving horizon shrinks,

thus solving the flatness problem.

The monopole problem was actually one of the initial motivations for inflation

[13]. Grand unified theories predict the existence of unwanted relics such as magnetic

monopoles, which we do not currently observe. However, the fast expansion during

inflation can vastly reduce the density of these relics [23].

1.2.2. Single field slow-roll inflation

How can we satisfy the conditions required for inflation? From the second Friedmann

equation (1.16) we see that accelerated expansion implies ρ + 3P < 0, i.e. we

need a material with negative pressure driving the expansion. Sato, Kazanas and
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Guth [11, 12, 13] first realised that a scalar field with a specific form of the potential

could satisfy this condition. The Lagrangian for a scalar field φ(xµ) is given by [23]

Lφ = −1

2
∂µφ∂

µφ− V (φ) . (1.23)

The stress-energy tensor for a scalar field can then be deduced using eq. (1.10):

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂αφ∂

αφ+ V (φ)

)
. (1.24)

We can derive an equation of motion for φ from the Euler-Lagrange equations, i.e.

from varying the action by δφ. This leads to a wave equation [29]

φ̈+ 3Hφ̇−∇2φ+
dV

dφ
= 0 . (1.25)

For now, we will be concerned with a homogeneous field for which ∇iφ = 0, such

that it only depends on time, φ = φ(t). We can then locally go to a frame with

gµν = ηµν , where the momentum density vanishes [23]. The 00 and ij components

of the stress energy tensor (1.24) can then be simply identified with the rest energy

density and pressure as in section 1.1.1. This gives

ρφ =
1

2
φ̇2 + V (φ) , (1.26)

Pφ =
1

2
φ̇2 − V (φ) . (1.27)

From eq. (1.26) and (1.27) we see that we can satisfy the condition of negative

pressure if the potential energy dominates the kinetic energy, i.e. φ̇2 � V (φ), for

which we obtain wφ =
Pφ
ρφ
' −1. In the original models [11, 12, 13], this was

achieved by trapping the inflaton field in a false minimum, with a large potential

energy. While it is trapped, the universe inflates, until the inflaton spontaneously

tunnels to the genuine global vacuum. However, it was found that this process could

not happen in different regions of the universe fast enough to be in agreement with

observations [28].

The “new” slow-roll inflation scenario requires the scalar field to slowly roll down

a flat potential [33, 34, 35]. We need to satisfy two conditions: φ̇2 � V (φ), to

obtain accelerated expansion, and |φ̈| � |3Hφ̇|, |V,φ|, which ensures inflation lasts

long enough [32] by preventing the inflaton from simply rolling down to the bottom
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of its potential. These conditions can be quantified by two slow-roll parameters [36],

ε =
m2

Pl

2

(
V ′

V

)2

, η = m2
Pl

V ′′

V
, (1.28)

where primes denote differentiation with respect to φ and the slow-roll regime cor-

responds to ε, |η| � 1.

Note that during slow-roll inflation, the Friedmann equation (1.15) reduces to

H2 ' 1

3m2
Pl

V (φ) , (1.29)

which implies H ≈ const. when ε � 1. This can be easily solved to give a(t) ∼
eHt which is the solution for de Sitter spacetime [37], which describes a universe

dominated by a cosmological constant [5]. Obviously, as the exponential expansion

has to finish eventually, we cannot be in a pure de Sitter universe. Inflation ends

when the slow-roll conditions are not satisfied anymore, which happens when the

inflaton approaches the minimum of its potential. Any reasonable model of inflation

needs to provide a mechanism for the accelerated expansion to stop, which is referred

to as the graceful exit problem [29].

Let me give an example of what the slow-roll conditions imply for a specific inflaton

potential. The simple quadratic potential V = 1
2
m2φ2 is still just about viable

according to the most recent Planck data [20]. From the first slow-roll condition in

(1.28), we obtain φ > mPl, i.e. super-Planckian field values are needed for inflation

to occur. Furthermore, the second slow-roll parameter η implies m2
Plm

2 � V . As the

potential dominates the energy density, using eq. (1.29) we can express the potential

in terms of the Hubble rate which yields m2 � H2. We see that the inflaton has to

be light compared to the Hubble rate for the slow-roll condition to be satisfied.

A useful quantity to consider is the number of e-foldings N(t), which measures

the amount of expansion during inflation. It is defined as

N(t) = ln
a(tend)

a(t)
=

∫ tend

t

Hdt ≈ 1

m2
Pl

∫ φend

φ

V

V ′
dφ , (1.30)

where the approximate equality holds during slow roll. This quantity is zero at the

end of inflation and N(t) therefore corresponds to the number of e-folds before the

end. To agree with observations, we need the total number of e-folds N tot & 60 in

simple slow-roll models. This ensures that the largest currently observable scales

were inside the Hubble horizon during inflation: The comoving Hubble scale (aH)−1

today is e60 times larger than at the end of inflation [23], and comoving scales of order
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of the current Hubble scale must have been subhorizon during inflation, providing a

lower bound for the number of e-folds [remember that during inflation, H = const.,

and therefore it does not appear in eq. (1.30)].

General models of inflation

Although I will only consider simple, monomial potentials, let me very briefly give

an overview of the general classes of inflationary models that cosmologists study.

The simple single field models I just described were introduced by Linde [33]

and are referred to as chaotic inflation. In these scenarios, the initial conditions

in the universe are chaotic; in some regions the inflaton is displaced sufficiently

far from its minimum such that it can satisfy the slow-roll conditions and lead

to accelerated expansion [29]. The potential in this case can be either given by

a monomial, V (φ) ∝ φp (where p is even due to symmetry and p ≤ 4 to ensure

renormalizability), or by an exponential, V (φ) ∝ exp
(√

2
pm2

Pl
φ
)

(where p > 1, such

that the slow-roll parameters are ε = η/2 = 1/p). These models require a minimum

duration of the inflationary phase of N = 60 e-folds and a super Planckian initial

field value, φstart � mPl [29]. Hence, they are referred to as large-field models.

Large field models suffer from the problem that at these scales there might be cor-

rection terms to the inflaton potential which could prevent inflation from happening

[38]. Therefore, models for which the inflationary phase happened at lower energy

scales were introduced. These include hybrid inflation, where two scalar fields are

present [39], or models inspired by supersymmetric theories [40].

Except for providing a way to drive the expansion and to end it, all models

of inflation need to be consistent with the constraints from CMB measurements.

Large field models typically lead to the production of an observable amount of

primordial gravitational waves, see section 1.2.5. This is in contrast to the small

field models motivated by high energy physics [23]. Although we do not currently

understand physics at super Planckian scales, the BICEP2 results [21] suggest that

(modifications of) chaotic inflation models could indeed be viable.

1.2.3. Beyond the homogeneous field evolution

Although inflation was initially introduced as a way of solving the Big Bang puzzles

highlighted in section 1.2.1, its main power and appeal lies in the fact that it can

explain the origin of the primordial fluctuations that were the seed of all structure,

and which we can still observe in the CMB [23]. To see this, we need to go beyond

the homogeneous description and consider inhomogeneous fluctuations around the
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background, i.e. expand the inflaton field as:

φ(x, t) = φ(t) + δφ(x, t) . (1.31)

The homogenous part φ(t) (which is averaged over fluctuations and therefore inde-

pendent of position) is responsible for the de Sitter-like expansion of the universe,

whereas the fluctuations δφ(x, t) are coupled to the fluctuations in the metric around

the Friedmannian background.

In cosmological perturbation theory (see appendix A.1 for more details), we ex-

pand the metric and energy-momentum tensor to first order in perturbations. Using

the SVT decomposition (appendix A.1), which describes how a general perturbation

in the metric can be split into scalars, vectors and tensors that all transform dif-

ferently under rotations, we find that the scalar perturbations are directly coupled

to the perturbations δφ. Vector perturbations are not produced by inflation and

decay [32], while tensor perturbations correspond to GWs and are not coupled to

the inflaton [23]. Instead, they need a source with non-zero quadrupole moment

(see section 1.5.2) which is related to a non-zero anisotropic stress in the energy-

momentum tensor, not present for a scalar field [28]. Similarly, no perfect fluid can

act a source for GWs [5].

Power spectra

In the next two sections, I will explain how quantum vacuum fluctuations during

inflation can become “classical” once they leave the horizon and lead to a scale-

invariant spectrum of fluctuations. A power spectrum describes the amplitude of

different Fourier modes k of a field φ and is defined as an ensemble average of the

fluctuations [32]:

〈φkφk′〉 = (2π)3δ(k + k′)Pφ(k) . (1.32)

The power spectrum is the Fourier transform of the real space correlation function,

〈φ(x)φ(y)〉 [32]. The mean fluctuations in all fields are zero on average, i.e. 〈φk〉 = 0,

as there should be equally many regions with higher or lower amplitude. The power

spectrum, on the other hand, gives you a statistical measure of the fluctuations as

it estimates the typical deviation from the mean you would expect for each mode.

A real field distribution is a realization of the statistical ensemble, and therefore

drawn from the probability distribution in (1.32) [23].

We can also define a dimensionless power spectrum (denoted by a curly P)

Pφ(k) =
k3

2π2
Pφ(k) . (1.33)
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This is directly related to the real space variance σ2
φ of the field and describes the

power per logarithmic k interval [32]:

σ2
φ ≡ 〈φ(x)2〉 =

∫ ∞
0

Pφ(k)d ln k . (1.34)

1.2.4. Canonical quantization

In section 1.2.5, I want to study the evolution of quantum fluctuations during in-

flation. To do this, we need to use the standard approach of canonical quantization

introduced by Dirac [41]. It proceeds by promoting fields to operators that sat-

isfy commutation relations (defining an algebra) which makes it possible to define

particle states in terms of eigenstates of the Hamiltonian of the system.

Flat background

Let me outline the quantization procedure for a scalar field φ(x, t) on a flat back-

ground first, before generalising it to a curved background (as needed in Cosmology)

in the next section. I will follow the very clear treatment in [31], working in the

Heisenberg picture where operators are time-dependent and states constant.

The Lagrangian Lφ of a scalar field is given by eq. (1.23). Let us assume from now

on that we are dealing with a free field, which does not interact with other fields or

itself. In this case, the potential is V (φ) = 1
2
m2φ2 [31]. The action (1.7) for a scalar

field on a flat background is then

S =
1

2

∫
d3xdt

[
φ̇2 − (∇φ)2 −m2φ2

]
. (1.35)

Just like in classical mechanics, we can use the Hamiltonian instead of the La-

grangian to describe the dynamics of the system. They are related by

H =

∫
d3x

[
πφ̇− L

]
, (1.36)

where π(x, t) ≡ ∂L
∂φ̇(x,t)

is the conjugate momentum density. Using eq. (1.23), π = φ̇

and the Hamiltonian becomes

H =
1

2

∫
d3x

[
π2 + (∇φ)2 +m2φ2

]
. (1.37)

The equation of motion, derived by minimising the action or from Hamilton’s

equations, is just

φ̈−∇2φ+m2φ = 0 . (1.38)
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We can expand the field in terms of Fourier modes,

φ(x, t) =

∫
d3k

(2π)3
eik·xφk(t) , (1.39)

and similarly for π(x, t). Substituting the Fourier space expansion into the equation

of motion (1.38), we find that the field satisfies the equation of a harmonic oscillator,

φ̈k + ω2
kφk = 0 , (1.40)

with frequency ω2
k ≡ k2 +m2. The reason it is useful to treat the problem in Fourier

space is that the different oscillators k decouple and are therefore independent of

one another [31].

To arrive at the quantum theory, we follow the same approach one would first

learn in a quantum mechanics course when dealing with position and momentum

operators: We promote the field and its conjugate momentum to operators φ̂(x, t)

and π̂(x, t) that need to satify commutation relations[
φ̂(x, t), π̂(y, t)

]
= iδ(x− y) , (1.41)

with all other commutators zero. Note that as the field φ is real, in Fourier space

the operators need to satisfy φ̂†k = φ̂−k. As the modes φ̂k behave like a harmonic

oscillator, it is instructive to define creation and annihilation operators a†k and ak,

where

ak =

√
ωk
2
φ̂k(0) + i

√
1

2ωk
π̂k(0) . (1.42)

Plugging the Fourier expansion (1.39) into (1.41), we find that they obey commu-

tation relations [
ak, a

†
k′

]
= (2π)3δ(k− k′) . (1.43)

We can now perform the standard Fock space quantization [41], where the vacuum

|0〉 is defined as the state annihilated by ak (ak|0〉 = 0), and n-particle states are

defined by repeated application of the creation operator to the vacuum (where each

a†k creates a particle with momentum k). The basis of the Fock space are eigenstates

of the number operator Nk = a†kak, whose eigenvalues count the number of particles

with momentum k. The Hamiltonian (1.37), evaluated at t = 0 (as it does not

explicitly depend on time and is therefore conserved), can be expressed in terms of

the number operator as (ignoring an infinite “vacuum” energy contribution which
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is not important in quantum field theory [31])

Ĥ =

∫
d3kωkNk , (1.44)

which clearly shows that the vacuum |0〉 is the state with the lowest possible energy.

We could also define time dependent creation and annihilation operators. They

are similar to the expressions in eq. (1.42) but are evaluated at a general t. The

time dependent and independent (for t = 0) operators are related by a†k(t) = a†ke
iωkt,

ak(t) = ake
−iωkt.

In light of this, we can consider quantization from a different but equivalent

viewpoint: Instead of expressing the annihilation and creation operators as linear

combinations of the field and its conjugate, we simply perform a mode expansion of

the field [31] as

φ̂k(t) =
[
v∗k(t)ak + vk(t)a

†
−k

]
. (1.45)

The complex mode functions carry all the time dependence and satisfy the equation

of motion

v̈k + ω2
kvk = 0 , (1.46)

from eq. (1.40). A general solution to this equation is given by

vk(t) = A
(
αke

iωkt + βke
−iωkt

)
, (1.47)

where A is a normalization factor. Like the frequency ωk, the mode functions only

depend on the magnitude |k|, and the directional dependence is contained in the

factors ak, a
†
−k, which can now be simply regarded as field amplitudes. Plugging the

mode expansion (1.45) into (1.39) we obtain (after changing variables from −k→ k

in the second term)

φ̂(x, t) =

∫
d3k

(2π)3

[
v∗k(t)ake

ik·x + vk(t)a
†
ke
−ik·x

]
. (1.48)

We can now postulate the CRs (1.43) for the amplitudes ak, a
†
k. To achieve consis-

tency with the CRs for the field and its conjugate, eq. (1.41), the mode functions

vk(t) need to satisfy the normalization condition [32]

v̇k(t)v∗k(t)− vk(t)v̇∗k(t) = i . (1.49)

Eq. (1.46) is a second order differential equation for the complex mode functions,
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so the normalization condition does not suffice to specify them completely. To

determine vk(t) uniquely, we can demand that the vacuum, defined by ak|0〉 = 0, is

an eigenstate of the Hamiltonian with minimal energy. This fixes the mode functions

to be [32]

vk(t) =
1√
2ωk

e−iωkt . (1.50)

Having found an exoression for the mode functions, we can define vacuum fluctua-

tions of the field φ(x, t), by studying the expectation value 〈φkφk′〉 of Fourier modes

in the ground state. Using equation (1.45) and noting that ak|0〉 = 0, 〈0|a†k = 0, we

obtain

〈φkφk′〉 = |vk(t)|2〈0|aka†−k|0〉 . (1.51)

Using eq. (1.43), this gives

〈φkφk′〉 = (2π)3δ(k + k′)|vk(t)|2 . (1.52)

Expanding background

The approach involving mode functions is also used to quantize fields on a curved

background. Let us consider a flat (k = 0) Friedmann universe where the metric is

expressed using conformal time, eq. (1.14). In these coordinates, the metric is related

to flat Minkowski space by a conformal transformation [31]. This already tells us

that the problem in a homogeneous isotropic curved background will be similar

to the flat situation we considered above, however there will be some important

differences.

Noting that
√
−g = a4 for this metric, and that indices are now raised and lowered

with gµν = a2ηµν , we see from simple substitution that the action (1.7) becomes

S =
1

2

∫
d3xdηa2

[
φ′2 − (∇φ)2 −m2a2φ2

]
, (1.53)

where a prime denotes differentiation with respect to to conformal time. To make

this look more like eq. (1.35), define an auxiliary field χ ≡ aφ. Then, eq. (1.53) can

be written as [31]

S =
1

2

∫
d3xdη

[
χ′2 − (∇χ)2 −

(
m2a2 − a′′

a

)
χ2

]
. (1.54)

This looks exactly like the action for a field in flat spacetime, eq. (1.35), except that

the effective mass m2
eff(η) = m2a2 − a′′

a
is now time dependent. The equation of
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motion for the Fourier modes χk derived from this action is given by [c.f. eq. (1.40)]

χ′′k + ω2
kχk = 0 , (1.55)

where the frequency ω2
k(η) = k2 +m2

eff(η) is time-dependent.

Due to the similarities in the form of the equations, we can follow the same steps

to quantization as for the flat case. We can start by performing a mode expansion

for χ̂(k, η) as done in eq. (1.45), but the equation of motion for the mode functions

now has the time dependent frequency ωk(η).

The explicit time dependence in the action leads to complications when trying

to determine the mode functions. While the same normalization condition still

holds [31], the second condition, related to the choice of vacuum, does not give a

well-defined answer anymore. Like the action, the Hamiltonian for the field χ̂(x, η)

is now explicitly time dependent. Therefore, it cannot possess time independent

eigenvectors. In particular, this means that there is no uniquely defined vacuum

state.

Choosing the correct mode functions will depend on the problem at hand, and

there are approaches such as using the instantaneous vacuum state, defined at a

specific time, or the so-called adiabatic vacuum if the frequency ωk(η) varies slowly

[31]. Fortunately, in the case of inflation, the background space can be approximated

by de Sitter and there is a preferred choice for the mode functions, described by

the Bunch-Davies vacuum [42]. We will now consider the quantization of metric

perturbations during inflation.

1.2.5. Quantum fluctuations during inflation

Before deriving the mode functions (and therefore the vacuum fluctuations) of the

metric perturbations during inflation, let me make the following observation. While

in the previous section we quantized the “full” scalar field φ, ignoring its interaction

with the background, in the case of the inflaton we need to consider the homogeneous

field and its fluctuations separately. Consider equation (1.31). The background φ(t)

can be regarded as behaving completely classically; it simply drives the expansion

and determines the de Sitter-like background evolution. When deriving the quantum

fluctuations from inflation, we need to consider the inflaton fluctuations δφ(x, t),

which are related to the fluctuations in the metric through Einstein’s equation.

In linear perturbation theory, where the perturbations are small, we can ignore all

terms that are second order or higher. This is the approach used in Cosmology, and

hence the perturbations can be thought of living on a fixed, unperturbed spacetime,
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as any backreaction effects would be of higher order in the perturbation [23].

To study quantum fluctuations during inflation, we consider the metric pertur-

bations as free fields propagating on a fixed FRW background [32]. The scalar

perturbations of the metric are coupled to the inflaton perturbations δφ(x, t), and

we can pick different gauges to study them (see appendix A.1). After inflation, they

will induce density perturbations in the matter distribution and can therefore be

regarded as the source of all structure.

A simpler problem to consider are the tensor perturbations, as they do not couple

to inflaton perturbations [28]. As we will see explicitly in section 1.5.1, the transverse

and traceless spatial metric perturbations hij correspond to GWs. As GWs are the

main focus of this thesis, I will outline the quantization procedure in this case,

deriving a power spectrum of fluctuations of tensor modes. For completeness, I will

give the result for scalar modes at the end.

To quantize the tensor perturbations hij, the Einstein-Hilbert action (1.8) in a

Friedmann universe needs to be expanded to second order [32]. Keeping only the

second order term yields [5]

S
(2)
EH =

m2
Pl

8

∫
dηd3xa2

[
(h′ij)

2 − (∂lhij)
2
]
. (1.56)

As the tensor field hij contains two independent polarizations r = +,× (section

1.5.1), it is useful to transform to Fourier space where it can be expressed in terms

of the polarization tensor εrij(k), which satisfies kiεij = 0, εrij(k)εr
′
ij(k) = 2δr,r′ [43]:

hij =

∫
d3k

(2π)3

∑
r

εrij(k)hrk(η)eik·x . (1.57)

If we also define h̃rk ≡ a
2
mPlh

r
k and substitute expansion (1.57) into the action (1.56)

we obtain [32]

S
(2)
EH =

∑
r

1

2

∫
dηd3k

[
(h̃rk

′)2 −
(
k2 − a′′

a

)
(h̃rk)2

]
. (1.58)

The corresponding expression for the Hamiltonian is given by

H
(2)
EH =

∑
r

1

2

∫
d3k

[
(h̃rk

′)2 +

(
k2 − a′′

a

)
(h̃rk)2

]
. (1.59)

The action (1.58) is the same as two copies of eq. (1.54) in Fourier space, but with

no mass term. When quantizing the tensor perturbations, it is therefore the same
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exercise as trying to quantize two massless scalar fields in curved spacetime. If we

expand the Fourier components in terms of creation and annihilation operators as

in eq. (1.45), we find that the mode functions obey [5]

v′′k +

(
k2 − a′′

a

)
vk = 0 . (1.60)

This is known as the Mukhanov equation. During inflation, we are in a quasi de

Sitter phase where H = ȧ
a

= const. Changing to conformal time, this implies

a′ = a2H and integrating gives

a(η) = − 1

Hη
. (1.61)

Note that during de Sitter expansion, conformal time is negative, and becomes

infinite in the past when a → 0. Therefore, we can write a′′

a
= 2

η2
and eq. (1.60)

becomes

v′′k +

(
k2 − 2

η2

)
vk = 0 . (1.62)

In de Sitter space, there exists a preferred quantum state, the Bunch-Davies vacuum.

It is time independent and can therefore be used to determine unique mode functions

[31]. Let us construct them. In the far past, when |kη| � 1, the second term in

eq. (1.62) becomes negligible. At these early times, all scales were far inside the

horizon and did not feel the curvature of spacetime, so we obtain the mode equation

for Minkowski space, eq. (1.50) with ωk = k. The Bunch-Davies vacuum therefore

corresponds to the minimal excitation state in the far past [31]. This condition and

the normalization (1.49) are sufficient to determine the mode functions uniquely.

The general solution of equation (1.62) gives the Bunch-Davies mode functions,

vk(t) =
e−ikη√

2k

(
1− i

kη

)
. (1.63)

To determine the power spectrum, remember from equation (1.52) that we simply

need to calculate the modulus squared of the mode functions which in this case is

given by

|vk|2 =
1

2k3η2
(k2η2 + 1) . (1.64)

Eq. (1.64) is defined for h̃rk, however we are interested in the power spectrum of the
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physical field hrk = 2
amPl

h̃rk:

〈ĥk(η)ĥk′(η)〉 = (2π)3δ(k + k′)
4|vk(η)|2

a2m2
Pl

(1.65)

= (2π)3δ(k + k′)
2H2

k3m2
Pl

(1 + k2η2) , (1.66)

where in the second equality we used (1.61). The first line, eq. (1.65), seems to

imply that fluctuations decay with time due to the presence of the factor a2. This is

true for any modes deep inside the horizon, with kη � 1: the mode h̃rk, rescaled by

a, simply oscillates in a Minkowski vacuum, but the physical mode hrk decays due

to the expansion of the universe. The beauty of the de Sitter-like expansion during

inflation is that when the modes become superhorizon, kη � 1, the second term in

(1.66) can be ignored and the spectrum of fluctuations approaches a constant (as

H ' const). In terms of the dimensionless power spectrum (1.33),

Ph(k) =
4

m2
Pl

(
H

2π

)2

k=aH

. (1.67)

The total tensor power spectrum is actually twice this value as we have to take into

account both polarizations. Note that eq. (1.67) needs to be evaluated at horizon

crossing, k = aH. H is a constant in pure de Sitter space, and therefore the power

spectrum would be perfectly scale-invariant, i.e. the same for any mode k exiting

the horizon at different times. However, in a slow-roll inflationary model, we only

have quasi de Sitter evolution, where H is not perfectly constant and therefore the

spectrum is slightly redshifted. Modes that exit the horizon earlier will have a

slightly larger amplitude, as H becomes smaller with time. This scale dependence

is taken into account by evaluating the spectrum at horizon crossing, so eq. (1.67)

can be used to describe fluctuations from slow-roll inflation [32].

As the power spectrum is constant on scales kη � 1, fluctuations “freeze out”

after they cross the horizon. This is related to the fact that on scales larger than

the Hubble scale (aH)−1, no causal physics should act [32]. We therefore do not

have to worry about their behaviour until they re-enter the horizon at a later time,

long after inflation. Moreover, the evolution during the de Sitter expansion makes it

possible to stretch quantum fluctuations to very large scales. The power spectrum in

eq. (1.67) can therefore be regarded as a classical probability distribution for tensor

modes [32]. Understanding the quantum-to-classical transition is the subject of the

field of decoherence [44].

Although vacuum fluctuations are always present due to the uncertainty principle,
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usually their amplitude is vanishingly small on large scales [5]. Only because of

the accelerated expansion, which leads to a shrinking comoving Hubble volume,

do we arrive at a situation where these quantum fluctuations can be stretched to

cosmologically relevant scales and retain their amplitude [31].

Inflation produces a nearly scale invariant spectrum of perturbations. I have

shown this explicitly for the tensor modes, but it is also possible to do the same

exercise for scalar perturbations. Unlike tensors, these couple to the inflaton per-

turbation, so we will need to consider the spectrum of a quantity that contains both

scalar metric and inflaton perturbations. A gauge invariant choice is the comoving

curvature perturbation [32]

R = Ψ +
H

φ̇
δφ , (1.68)

where Ψ is the metric perturbation corresponding to the gravitational potential in

the Newtonian gauge (see appendix A.1). R describes the spatial curvature on

comoving (constant φ) hypersurfaces, as measured by an observer moving with the

expansion of the universe. It is a useful quantity to consider as it is conserved

outside the horizon, even after the end of inflation when the inflaton (and hence its

perturbation) has decayed [23].

To find the power spectrum of R from inflation, we can choose to quantize either

the metric or inflaton perturbations, depending on the gauge. The approach is

similar to the case of tensor perturbations, but the action now contains a mass

term that depends on the slow-roll parameter ε [32]. However, in the pure de

Sitter limit, where ε → 0, we again obtain the mode equation for a massless field

(1.62). Even for slow-roll inflation, we can use the Bunch-Davies mode functions:

They are well defined as long as the inflaton is a light field, m2 < H2, which is

satisfied by η � 1 [31]. Note, however, that for a heavy field with m2 > H2, there

would be a mass term in equation (1.58) that can make the effective frequency

positive [31], resulting in oscillatory behaviour, rather than the freeze-out of modes

as described above. Hence, only light fields can acquire a scale-invariant spectrum

of perturbations during inflation.

The power spectrum of fluctuations for the comoving curvature perturbation is

PR(k) =
H2

(2π)2

H2

φ̇2
k=aH

, (1.69)

where again we need to evaluate the Hubble rate at horizon crossing to take its time

dependence into account. Note that this can be derived in the spatially flat gauge,
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where Ψ = 0, from the power spectrum of inflaton fluctuations [32]:

Pφ(k) =

(
H

2π

)2

. (1.70)

Instead of R, we could also have considered the curvature perturbation ζ on uniform

density hypersurfaces (for which δρ = 0). It is also gauge invariant and equal to

−R during slow-roll inflation [32]:

−ζ ≡ Ψ +
H

ρ̇
δρ . (1.71)

The curvature perturbations are also equivalent on superhorizon scales k � aH

where ζ = −R, as long as there are only adiabatic density perturbations [45], so

they can often be used interchangeably.

The scale dependence of the tensor and curvature power spectra can easily be

quantified by introducing spectral indices ns and nt for the scalar and tensor modes

[23]:

ns − 1 ≡ d lnPR
d ln k

= 2η − 6ε , (1.72)

nt ≡
d lnPt
d ln k

= −2ε . (1.73)

The second equality shows the value of the spectral indices in terms of the slow roll

parameters (1.28) when calculated in the slow-roll approximation. As they are very

small, this demonstrates the near scale invariance of the spectra.

It is also useful to define the tensor to scalar ratio [32]

r ≡ Pt
PR

= 16ε . (1.74)

In slow-roll inflation, scalars strongly dominate over tensors. The values of ns and

r are used to constrain inflationary models, with the most recent bounds by Planck

giving ns = 0.9603± 0.0073 and r < 0.11 [20].

While the spectrum of scalar modes has been extensively probed through CMB

temperature and polarization measurements (see next section), tensor modes from

inflation have remained elusive for a long time. Very recently, the BICEP2 collab-

oration [21] detected B-mode polarization of potentially primordial origin, which

remains to be verified by other experiments. Their analysis suggests a value of

r ≈ 0.2, however this has been obtained from only a small patch of sky over the

South Pole and will probably change when a full sky analysis is available, which
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would also provide us with the full spectrum of tensor perturbations.

Tensor modes are a very useful tool in constraining models of inflation. From

eq. (1.67) it is clear that the spectrum of tensor perturbations is directly proportional

to H2 and therefore Ph ∝ ρ/m4
Pl from the Friedmann equation (1.15). Hence, it gives

you a direct measure of the energy scale of inflation and therefore the inflationary

potential, which dominates the energy density [28].

1.3. From inflation to the cosmic microwave

background

In this section I want to give a very brief overview of what happens to the primordial

spectra after inflation. Studying this evolution in detail is a complicated field (rooted

in cosmological perturbation theory) and the subject of many Cosmology textbooks,

see e.g. [23, 28]. The scalar perturbations are the seed of all the structure we observe,

while both scalar and tensor modes will leave an imprint on the CMB anisotropies.

In particular, a specific pattern in the polarization of the CMB distribution, the

B-mode, can only be sourced by tensor perturbations and could therefore provide a

direct window into the study of gravitational waves from inflation.

1.3.1. Perturbations in matter and radiation

The power spectra for scalars and tensors derived in the previous section determine

the subsequent evolution of perturbations. Any quantity of cosmological interest

can be ultimately traced back to these initial conditions. After the inflaton decays

(which is the subject of reheating, described in section 1.4), the presence of the

curvature perturbation R will source density fluctuations in each particle species

[23]: baryonic matter, cold dark matter, neutrinos and photons.

The perturbations in the fields set up by the simplest slow-roll inflationary sce-

nario are adiabatic, which means that their number densities are perturbed by the

same factor [29], and Gaussian, so their Fourier components, like the vacuum fluc-

tuation, have independent probability distributions [23] (and we therefore only need

2-point functions to describe them). More complicated models of inflation can lead

to isocurvature perturbations and non-Gaussianity, but both of these features are

subdominant according to the most recent data [19].

We typically study the fluctuations in Fourier space, as for small perturbations

different k modes will evolve independently [5]. Fourier modes behave very differ-

ently depending on whether they are outside (frozen in) or inside the horizon (when
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causal physics can affect them [28]). Particularly, perturbations that re-enter the

horizon (i.e. k modes with wavenumber k > aH) during radiation domination will

evolve very differently to ones that enter during matter domination.

Another important epoch is the time of recombination around 380.000 years after

the Big Bang, when neutral atoms can first form. Until this point, the photons and

baryons were tightly coupled [23], and the photons’ mean free path was very small as

they constantly Compton scattered off free electrons. At the time of recombination,

this mean free path increases until the photons completely decouple from the baryons

and free-stream to us today, where we observe them as the CMB. The position of

this event in spacetime is referred to as the surface of last scattering.

On very large scales, which were superhorizon at the time of recombination, we can

directly relate the fractional temperature perturbation in the CMB to the primordial

curvature perturbation R [23],
δT

T
= −1

5
R . (1.75)

However, on smaller scales fluctuations in the matter and radiation densities have

evolved and will not simply be related to the primordial spectra anymore. Instead,

the evolution is described using transfer functions T (t) [23, 28], which relate the

power spectrum of any field g(x) at time t to the primordial spectrum as Pg(t) =

T 2
g (t)PR.

The perturbations in the matter distribution are the seeds of all the structure we

observe, from stars to clusters of galaxies. These gravitationally bound object can

form when the density contrast δρ/ρ becomes large and the equations of motion be-

come non-linear, so cosmological perturbation theory no longer holds. For photons,

on the other hand, radiation pressure prevents perturbations from gravitationally

collapsing [28]. The CMB fluctuations were therefore imprinted when the evolution

was still linear, which makes it possible to check the validity of the inflationary

paradigm by directly probing the primordial power spectra (and taking the transfer

functions into account).

The perturbations in the photon distribution manifest themselves as fractional

temperature perturbation in the CMB, commonly denoted by Θ(x, p̂, t) = δT/T [28].

The photon distribution is mathematically more complicated than non-relativistic

matter, as it depends not only on time t and position x, but also the direction of

propagation of the photons p̂ (so the CMB is not only inhomogeneous, but also

anisotropic [28]). It makes sense to expand the photon distribution function in

terms of Legendre polynomials Pl to take care of the p̂ dependence [28]. Specifically,
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defining k̂ · p̂ = cos θ, in Fourier space we get

Θl(k, t) ≡
1

2(−i)l

∫ 1

−1

d(cos θ)Pl(cos θ)Θ(k, cos θ, t) , (1.76)

so the full photon distribution can be expressed as an infinite series of moments

l. l = 0 is the monopole, l = 1 the dipole, l = 2 the quadrupole etc. When we

measure the CMB at our position (x0) today (t0), we can only probe the directional

dependence p̂. It is then useful to expand the perturbation in terms of spherical

harmonics instead. They enable us to expand the perturbation on a sphere [28], so we

can describe photons arriving at our position which originated at the last scattering

surface. The amplitudes of each spherical harmonic are called the multipole moments

and are given by [32]

alm =

∫
dΩY ∗lm(p̂)Θ(p̂) . (1.77)

The label l of the spherical harmonics is related to the angular size θ of the pertur-

bation on the last scattering surface, θ ∼ π/l [28], so larger multipoles probe smaller

angular scales.

The multipole moments fully characterise the perturbation. Their mean is zero,

while their variance 〈alma∗l′m′〉 = Clδll′δmm′ describes the statistical properties of the

field, i.e. a typical realization of each multipole moment alm will be drawn from

a Gaussian centred around zero with variance Cl [28]. It does not depend on m

(which takes integer values between −l and l) due to the rotational invariance of the

background. The variance is related to the primordial power spectrum of curvature

perturbations (1.69) (which dominates over tensors),

Cl = 4π

∫ ∞
0

T 2
Θ(k, l)PR(k)

dk

k
, (1.78)

where T 2
Θ(k, l) is the transfer function for the temperature perturbations [23]. Eq. (1.78)

is the angular power spectrum of temperature fluctuations.

The angular power spectrum has been explored in great detail by WMAP [18] and,

with even higher angular resolution, by Planck [19], providing us with a wealth of in-

formation about the early universe. The temperature power spectrum is dominated

by scalar perturbations and cannot be used to extract parameters characterising

the tensor perturbations [23]. However, primordial tensor modes can be measured

through the CMB polarization [28], which I will discuss now.
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1.3.2. CMB polarization

Analysing the polarization of the CMB [46] is a complicated field, both from a

theoretical and experimental point of view. For a review, see e.g. [47]. Here I want

to discuss the main theoretical aspects of polarization, and describe the B-mode

polarization that provides a direct signature of gravitational waves [48, 49].

Recall that electromagnetic waves are transverse, which means that the direc-

tion of the field oscillation (which determines the polarization) is orthogonal to the

propagation of the wave. The intensity (amplitude) of the wave will therefore only

vary in a plane orthogonal to the wave vector k. If the intensity is the same in

any two orthogonal directions in this plane, the wave is unpolarized, otherwise it is

polarized. The most general type of polarization is called elliptical, however there

are two special cases, circularly polarized waves (where the field amplitude vector

traces out a circle in the plane of oscillation) and linearly polarized waves (where

the field vector traces out a line) [50].

Before recombination, there is no reason for the photon background to be polar-

ized. However, upon decoupling, the photons’ mean free path increases and as long

as the photon distribution Θl(x, t) has a non-zero quadrupole moment (l = 2), the

wave becomes linearly polarized due to Thomson scattering with electrons [51]. Let

me explain this heuristically. Thomson scattering describes how the electric field

of the incoming wave excites the electron, which then emits a wave at the same

frequency in a different direction. The wave can only retain polarization transverse

to the outgoing direction, and will therefore not transmit any intensity in the field

component parallel to it, turning an initially unpolarized into a linearly polarized

wave.

In the case of the CMB, we do not deal with single plane waves but with a

background of photons, which scatter off electrons coming from all directions. It

turns out that a background that is either isotropic or only has dipole anisotropy

will not be polarized by Thomson scattering [28].

For simplicity, first consider two unpolarized light waves with equal intensity com-

ing from orthogonal directions x̂ and ŷ, and scattering off an electron at the origin

that transmits radiation in the ẑ direction. The wave propagating towards the elec-

tron in the −x̂ direction will retain polarization in the ŷ direction after scattering,

whereas the one from −ŷ will keep the x̂ component of polarization. Therefore,

the transmitted intensity is the same in both directions and the background re-

mains unpolarized. We arrive at the same conclusion for a background with dipole

anisotropies, as photons coming from opposite directions with different temperatures

will average out. To produce linear polarization, we need a quadrupole moment in
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thephotondistribution.Inthiscase,orthogonaldirectionsarefundamentallydif-

ferent,andthereforethetransmittedintensitywillhaveapreferreddirectionand

thebackgroundbecomespolarized,seefigure1.1.

Figure1.1.:Aphotondistributionwithaquadrupoleanisotropycanbelinearly
polarizedfromThomsonscatteringwithelectrons.Reprintedfrom[47],
withpermissionfromElsevier.

Nofurtherpolarizationwillbeinducedafterthephotonshavecompletelydecou-

pled(exceptforlatetimepolarizationwhentheuniversebecomesreionized,which

leadstoareionizationbumpinthepolarizationpowerspectrumonlargescales[52]).

NotethatthepolarizationoftheCMBisnotverystrong,onlyoftheorderofafew

percent[47],asthequadrupoleduringthetightcouplingregimeissmall[28]:Before

decoupling,aphoton’smeanfreepathisveryshort,soallthephotonsarrivingat

apointxscatteredfromsomewherenearby. Therefore,theywillallhavenearly

thesametemperature,andthereisnostrongdirectionaldependenceinthephoton

distribution. ThiscorrespondstoamonopoleperturbationΘ0(x,t)(whichisthe

averageoveralldirections).ThereisalsoasignificantdipolecontributionΘ1(x,t)

astheelectronshaveabulkvelocityandthephotonsmovewiththem. Monopole

anddipoleofthefractionaltemperaturedistributionthereforedominate,however

thequadrupoleisstillbigenoughtoleadtoameasurablepolarizationsignal.

Itisstraightforwardtoseewhyweneedaquadrupolemomentinthephoton

distributiontoproducepolarizationwhenwedescribepolarizationmathematically

intermsofStokesparameters[50]. Apolarizedwavecanbedescribedbythe

intensitytensor(withabasisofpolarizationvectors1̂,̂2)Iij=2EE
†,whereE

istheelectricfieldvectorofthepolarizedwave. Assumingitismovingintheẑ

direction,

E(t,z)=A1e
iφ1ei(kz−ωt)1̂+A2e

iφ2ei(kz−ωt)2̂. (1.79)
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The Hermitian matrix Iij can be expanded in terms of Pauli matrices and written

as [28]

Iij =

(
T +Q U − iV
U + iV T −Q

)
, (1.80)

where the coefficients are the Stokes parameters [23]:

T = 〈A2
1 + A2

2〉 , (1.81)

Q = 〈A2
1 − A2

2〉 , (1.82)

U = 〈2A1A2 cos(φ1 − φ2)〉 , (1.83)

V = 〈2A1A2 sin(φ1 − φ2)〉 . (1.84)

The Stokes parameters satisfy T 2 = Q2 + U2 + V 2, where T is the total intensity

(corresponding to the temperature), Q and U characterise linear polarization (with

magnitude P =
√
Q2 + U2, angle α = 1

2
tan(U/Q)) and V describes the degree

of circular polarization and is zero for linearly polarized waves (which have field

components that are in phase). When we perform a rotation by an angle ψ in the

polarization plane, I and V are invariant (scalars) but Q and U transform like a

spin-2 field (rotate by an angle 2ψ) [32]:(
Q

U

)
→

(
cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ

)(
Q

U

)
or Q± iU → e2iψ[Q± iU ] . (1.85)

To produce linear polarization, we therefore need an object with the same transfor-

mation properties as the spin-2 field (1.85). The quadrupole of the photon distri-

bution Θ2(k) depends on P2(cos θ) ≡ Y20(θ) from eq. (1.76), i.e. the second order

spherical harmonic, which transforms as spin-2 [53]. It is therefore a necessary re-

quirement for the quadrupole moment of the photon distribution to be non-zero in

order to produce polarization from Thomson scattering.

To study what the strength of polarization is today, we need to integrate over all

incoming directions at each scattering location and consider all outgoing directions.

This calculation requires full use of the Boltzmann equations [28] and can be found

in [54, 55, 56]. As for the temperature fluctuations, we can define a polarization

power spectrum which shows the amount of polarization on different angular scales.

As the Q,U parameters are a spin-2 field, we cannot just use ordinary spherical

harmonics, but need to revert to spin-weighted spherical harmonics ±2Ylm(n̂) [54].
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The field in direction n̂ can then be expanded as:

[Q± iU ](n̂) =
∑
lm

a±2,lm ±2Ylm(n̂) . (1.86)

Clearly, it would be preferable to describe polarization in terms of scalar quantities,

just like we do for δT/T . Indeed, we can perform a change of basis and define

spherical harmonic coefficients for two scalar quantities E(n̂) and B(n̂) [54, 55]:

aE,lm ≡ −
1

2
(a2,lm + a−2,lm) , aB,lm ≡ −

1

2i
(a2,lm − a−2,lm) . (1.87)

E-modes correspond to polarization fields whose strength varies parallel or perpen-

dicular to the polarization direction (like a curl-free electric field), whereas for B-

modes the variation is at 45◦ (like a divergence-free magnetic field). As scalars, they

are invariant under rotations, but only E is invariant under a parity transformation

while B changes sign.

The E/B decomposition is useful as you can show that scalars produce only E-

modes, whereas tensors produce both E and B [48, 49]. Heuristically, the reason

scalars and tensors produce different polarization types can be understood as fol-

lows (as explained in [28]): Scalar perturbations can be described by plane waves,

where the wave vector k determines the direction of propagation. There should

be rotational symmetry around this wave vector, and only the parity invariant E-

modes should be produced. Tensor perturbations, on the other hand, introduce an

azimuthal dependence into the photon distribution. This additional component af-

fects the polarization and we find that they can also give rise to a B-mode pattern,

which changes sign under a parity transformation.

The fields T , B and E completely describe the photon field and we can define

power spectra for each of them. We can use polarization alongside temperature

measurements to probe the CMB anisotropies. Unlike the temperature fluctuations

that interact with gravitational fields, the polarization pattern does not change after

production (except due to lensing [23]), as it can only be generated by scattering.

To describe the photon distribution statistically, we can use autocorrelations of

the three different fields, TT , EE and BB, and cross correlations. However, the

correlators TB,EB vanish by symmetry arguments (as B is odd under parity) and

only the TE cross power spectrum is non-zero [32]. The different angular power

spectra can be denoted as

CXY
l =

1

2l + 1

∑
m

〈a∗X,lmaY,lm〉 X, Y = T,E,B . (1.88)
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Note that there is a way to produce a non-zero TB and EB power spectrum: If

gravity was chiral, i.e. the two tensor polarizations (see section 1.5.1) were different,

parity would be violated and the TB and EB correlators would not vanish [57]. It

could be easier to detect tensor modes through a measurement of the TB rather

than the BB power spectrum, as the amplitude of T is much bigger than that of

B. A chiral graviton from loop quantum gravity and its implication for the tensor

power spectrum are the subject of the work presented in chapter 2.

Like the temperature power spectrum, the TE and EE spectra are both dom-

inated by the contribution from scalar modes [32]. Measuring the B-mode power

spectrum, on the other hand, enables us to directly probe tensor perturbations.

While the E-mode polarization has already been detected around 10 years ago

[58, 18], due to the small value of r it is much more difficult to measure B-modes.

They might have finally been detected by BICEP2 [21], suggesting a value of r ≈ 0.2.

This result will need to be complemented by a full sky analysis of polarization, as

performed by the Planck collaboration who are still due to release their results, as

well as confirmed by other experiments [59, 60].

Finally, a remark: It can be shown that gravitational lensing can distort an E-

mode into a B-mode pattern, with the effect peaking on scales l ∼ 1000 [61]. This

will affect the primordial B-mode spectrum due to tensors, but leaves it unaffected

at large scales. Lensing B-modes have recently been discovered for the first time by

the South Pole Telescope [62].

1.4. Reheating

Reheating describes the transition from the end of inflation, where the universe is

filled with an oscillating homogeneous field, to radiation domination. Except for

gravitational waves, the subject of chapter 3, we do not expect many cosmological

observables to have been directly affected by this process, making it one of the least

probed stages in the early universe.

For a long time, the detailed dynamics of reheating were not well understood and

the decay was described by a perturbative, effective theory. In 1994, Lev Kofman and

collaborators [63] developed the theory of preheating, which was studied analytically

in great detail and describes the early stages of the transition. In this section, I will

summarize the main aspects of the theory of reheating.

At the end of inflation, when the inflaton oscillates around the minimum of its

potential, we are faced with a problem: during the de Sitter-like exponential expan-

sion, the number density of all particle species reduced dramatically, as n ∝ a−3.
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Therefore, the universe at the end of inflation is empty and cold, with all of the

energy stored in the homogeneous inflaton field. Somehow, we must recover the hot

Big Bang picture (which states that the universe after inflation should be in thermal

equilibrium) and all the particle species within it.

The idea of reheating, first discussed in [33], states that while the inflaton φ os-

cillates about the minimum of its potential, it produces elementary particles. After

(almost) all of the inflaton energy has been transferred, the decay products ther-

malise at the reheating temperature Tr, motivating the name reheating (the prefix

“re”, however, is very misleading, as there was not necessarily a stage of thermal

equilibrium before reheating occurred). The physical mechanism leading to parti-

cle production was described as a perturbative decay of inflaton particles (which

make up the homogeneous field condensate that drove inflation) into other particle

species. This process was studied in detail by [64, 65], where the reheating tem-

perature (providing the initial condition for the hot Big Bang picture) for different

models was derived.

However, it was realised that the reheating process described in this manner pro-

ceeded very slowly and might never complete in some models, for which a lot of the

energy remained stored in the inflaton field [63]. The failure of the theory is related

to the fact that during the initial stage of reheating, the oscillating homogeneous

inflaton should be regarded as a classical condensate, rather than a collection of

single particles. If we think of the inflaton as a classical background, it can source

quantum fluctuations in the fields it couples to: The oscillations of φ result in para-

metric resonant behaviour in the field fluctuations, leading to exponential growth of

certain momentum bands, and hence very efficient particle production.

This process was introduced in [63] and called “preheating”, to highlight that it

describes the initial stage of reheating. The model considered was that of an in-

flaton with a quadratic potential V (φ) = m2φ2, coupled to a scalar field χ. It was

found that the parametric resonance starts off as broad (with a large range of am-

plified momenta) and many χ particles are produced, but eventually the resonance

becomes narrow and much less efficient. At some point, the resonance ceases and

the perturbative description becomes appropriate for the final stage of the decay

process.

The analytical investigation of preheating was developed further in [66], where the

expansion of the universe and the backreaction of the created particles was taken

into account. Moreover, in [67] the model of massless preheating was studied, where

the inflaton potential is quartic, V (φ) = λφ4.

In section 1.4.1, I will summarize the main aspects of the perturbative theory
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of reheating and in 1.4.2 I will explain the physics of preheating, emphasising the

difference between narrow and broad resonance. These sections are primarily based

on the extremely thorough and well written account of reference [66]. Finally, I will

describe massless preheating in 1.4.3. This will be the model under consideration

when I describe gravitational wave production from preheating in chapter 3.

1.4.1. Perturbative reheating

For an inflaton field with a quadratic potential V (φ) = 1
2
m2φ2, the homogeneous

background satisfies [recalling the equation of motion (1.25)]

φ̈+ 3Hφ̇+m2φ = 0 . (1.89)

During inflation, the friction term in H (which is approximately constant) dom-

inates, and the slow-roll conditions imply m � H. This is true as long as the

field values are sufficently large, φ > mPl [remember the Hubble rate is inversely

proportional to mPl, see eq. (1.29)].

Inflation ends when φ becomes sub-Planckian and the condition m � H is

no longer satisfied, such that the mass term dominates over the friction term in

eq. (1.89). Therefore, the inflaton behaves like a harmonic oscillator, with a decay-

ing amplitude Φ(t) due to the damping term Hφ̇:

φ(t) ≈ Φ(t) sin(mt), Φ(t) ∼ mPl

mt
. (1.90)

During this period (when averaging over several oscillations), the universe evolves

as if dominated by matter, so the energy density of the inflaton field decreases as

a−3.

Let us now consider couplings between the inflaton and other particles, specifically,

the coupling to a scalar χ and a spinor (fermion) ψ. The scalar field represents any

bosons (which could be standard model or hidden sector particles) the inflaton might

couple to, including vector or higher spin fields. Not including gauge indices will

simplify the calculation dramatically, and should capture the relevant dynamics,

which will mainly depend on the coupling strength and the type of interaction (e.g.

cubic or quartic). The potential term in the Lagrangian is given by

V = V (φ) +
1

2
g2φ2χ2 + hψ̄ψφ . (1.91)

The coupling constants g, h must be small, as the dynamics during inflation should

be dominated by the inflaton. Small couplings to other fields can be written as
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radiative corrections to the inflaton potential [68], which makes it possible to find

limits on the size of these couplings using the CMB constraints [20]. Typically, the

coupling constants need to satisfy g, h . 10−3 [69].

For a quadratic inflaton potential with a minimum at φ = σ,

V (φ) =
1

2
m2(φ− σ)2 , (1.92)

we can perform a field redefinition φ → φ + σ in the potential (1.91) such that we

obtain the usual quadratic term 1
2
m2φ2 plus an additional cubic interaction term

−g2σφχ2. Considering the inflaton field as a coherent wave of φ-particles, there are

3-point interactions between the inflaton and the scalar and spinor fields, i.e. decay

processes φ→ χχ, φ→ ψψ, with cross sections [70]

Γ(φ→ χχ) =
g4σ2

8πm
, Γ(φ→ ψψ) =

h2m

8π
. (1.93)

We can see that perturbative decay is a slow process as the cross sections are pro-

portional to powers of the small coupling constants, g4 and h2. The corrections to

the inflaton potential can be taken care of by introducing a friction term, given by

the total cross section Γ = Γ(φ→ χχ) + Γ(φ→ ψψ), in the equation of motion:

φ̈+ 3Hφ̇+ Γφ̇+m2φ = 0 . (1.94)

Reheating ends when the Hubble rate becomes smaller than Γ, which signals that

the expansion of the universe has become slow enough for the decay of the inflaton to

complete. The relativistic decay products then thermalise and the universe becomes

radiation dominated. The energy density at this point is

ρφ(tr) = 3Γ2m2
Pl =

π2

30
g?T

4
r , (1.95)

where the second equality relates the energy density to the reheating temperature

(assuming thermal equilibrium), and g∗ is the number of relativistic degrees of free-

dom [23].

1.4.2. Preheating and parametric resonance

Let us approach the problem of inflaton decay from a different point of view, and

consider the boson as a quantum field χ̂ interacting with a classical background φ(t)

(I will ignore fermions from now on, as they do not partake in the efficient paramteric

resonance, which is related to Bose condensation effects). We can expand the field
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in Fourier space by using the standard mode expansion in terms of creation and

annihilation operators (c.f. section 1.2.4),

χ(t,x) =
1

(2π)3

∫
d3k

(
âkχk(t)e

−ik·x + âk
†χ∗k(t)e

ik·x) , (1.96)

where x and k are comoving quantities. Due to its interaction with the inflaton,

χ acquires a time dependent effective mass term meff = g2φ2(t), and the equation

of motion for its mode functions in an expanding background is given by (writing

eq. (1.55) in terms of coordinate time)

χ̈k + 3Hχ̇k +

(
k2

a2
+ g2Φ(t)2 sin2(mt)

)
χk = 0 , (1.97)

where the solution for φ(t), eq. (1.90), was used. Eq. (1.97) describes an oscillator

with a time-dependent frequency that changes periodically. This periodicity is the

source of parametric resonance.

Ignoring the expansion of the universe (by setting a = 1, which makes the ampli-

tude Φ time independent) and defining a new time variable z = mt, we can write

(1.97) as the Mathieu equation [71]:

χ′′k + (Ak − 2q cos(2z))χk = 0 , (1.98)

where a prime denotes differentiation with respect to z and

Ak =
k2

m2
+ 2q , q =

g2Φ2

4m2
. (1.99)

The properties of the Mathieu equation have been extensively studied [71], and

its solutions show parametric resonant behaviour: For certain resonant momentum

bands ∆k, there exists a solution of (1.98) for which χk grows exponentially,

χk = exp (µkt) f(t) , (1.100)

where µk is the Floquet exponent and f(t) is a periodic function. An exponential

growth of the mode functions leads to an exponential growth in the occupation

number, as

nk ∼ |χk|2 ∼ exp (2µkt) . (1.101)

Therefore, particles are being produced very efficiently during parametric resonance.

The resonance parameter q determines the structure of the resonant bands as well

as the Floquet exponents. There are two very different regimes, narrow resonance
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for q � 1 and broad resonance for q � 1. I will study both cases separately.

Narrow resonance

From the definition of q in (1.99), it is clear that we are in the narrow regime

q � 1 when gΦ < m. It was shown in [72] that in this case, resonance occurs for

modes A
(n)
k ≈ n2, where n is an integer, and the width of each band is of order

∆A
(n)
k ∼ qn. Therefore, the first band A

(1)
k = 1± q will dominate. The centre of this

band corresponds to k ∼ m, which indicates that two φ particles with mass m have

decayed to two χ particles of momentum k.

Although this looks like the case of perturbative decay, the actual process is com-

pletely different, as the exponential amplification of modes means that the growth

rate is directly proportional to the number density of produced particles. Narrow

resonance can therefore be seen as a Bose condensation effect [5], for which the

production becomes more efficient the more particles have already been produced.

The maximal Floquet exponent, corresponding to the middle of the resonance

band (outside the band, µk becomes imaginary and therefore the field χ simply

oscillates), is given by µk = q/2. The smallness of q therefore leads to both a very

narrow resonance band and a small amplification exponent. The situation worsens

when we take the expansion of the universe into account: The inflaton amplitude

Φ then decays, making q even smaller and thus decreasing the width of the bands.

Also, modes can get redshifted out of the instability bands and simply oscillate.

Narrow resonance is therefore not an extremely efficient process, and will actually

only occur if qm > 3H + Γ [66]. Otherwise, there is no resonant behaviour and

the decay happens perturbatively as in section 1.4.1. As q decays with time faster

than the Hubble rate, narrow resonance will inevitably become inefficient eventually,

and thus the final stages of reheating should always be described using perturbative

methods.

Numerical simulations show [66] that during narrow resonance, for each oscillation

of the inflaton, the growing mode χk = eµktf(t) also oscillates one time. This is very

different to the broad resonance case I will consider now.

Broad resonance

The chaotic inflation model with a quadratic potential actually starts with a pe-

riod of broad resonance, for which q is very large, corresponding to a large (super-

Planckian) initial field amplitude Φ. Broad resonance is a lot more complicated than

the narrow case, and I will mainly describe it qualitatively as the proper analytical

treatment is very involved, see [66].
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Let us initially ignore the expansion of the universe. Solving the Mathieu equa-

tion numerically shows that χk oscillates many times (during which the occupation

number remains constant) for each inflaton oscillation and only increases in ampli-

tude during the short periods when φ(t) crosses zero [66]. The fast oscillations in

χk occur as its effective mass mχ
eff = gφ(t) is much larger (as long as φ(t) is not

close to zero) than the mass of the inflaton m. Away from φ(t) = 0, the frequency

ω2 = k2 + g2φ(t)2 therefore changes adiabatically, but when the inflaton approaches

zero, this condition ceases to be satisfied, i.e. ω̇ > ω2. At this point, the occupation

number density is not well defined, but stabilises to a higher level after adiabaticity

is restored.

During broad resonance, particle production occurs for momenta in the range

k2 . k2
∗ ≡ gmΦ , (1.102)

during the time interval ∆t∗ ∼ k−1
∗ for which the evolution is non-adiabatic. Clearly,

the range of amplified momenta is much larger than in the narrow resonance case,

making broad resonance a lot more efficient.

If we include the expansion of the universe, the upper bound k∗ becomes time-

dependent and decreases as Φ(t) decays. However, at the same time, more physical

momenta are redshifted into the resonant bands. More importantly, the expansion

changes the character of the resonance overall: As Φ decays, the change of the

frequency ω is not simply periodic anymore, which means that χk will have a different

phase each time the inflaton crosses zero. As shown in [66], this leads to the process

of stochastic resonance, for which the occupation number of the field χ can also

decrease after a zero crossing, but still grows overall.

Backreaction effects of the produced χ particles, as well as the rescattering of

χ particles which produce inflaton particles, need to be taken account in the full

treatment of parametric resonance, see [66] for details. In particular, these effects

will determine when broad resonance ends and narrow resonance takes over, after q

has become small.

1.4.3. Massless preheating

I will now describe resonance in the case of massless preheating, where the inflaton

has a quartic instead of a quadratic potential, making self-interactions possible.

Details about this model can be found in [67], which this section is based on.
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The potential for massless preheating is given by

V (φ, χ) =
1

4
λφ4 +

1

2
g2φ2χ2 . (1.103)

We will see that the resonance in this case strongly depends on the ratio of coupling

constants, g2/λ.

This theory is particularly interesting as it is scale invariant: as the coupling con-

stants λ and g are dimensionless, there is no physical length scale in the Lagrangian.

This is opposed to the case of a quadratic potential, where the mass m is dimen-

sionfull. We will see that, assuming the background behaves like pure radiation,

we can arrive at an equation of motion for the scalar field fluctuations χk that is

independent of the scale factor, showing that the dynamics do not change as the

universe expands. Therefore, we can treat massless preheating like a problem in flat

Minkowski space. This simplifies the calculation and means that the characteristic

dynamics will remain the same throughout, and the resonance only terminates due

to backreaction effects.

Background evolution

For a quartic potential, the equation of motion (1.25) for the homogeneous inflaton

field φ(t) becomes

φ̈+ 3Hφ̇+ λφ3 = 0 . (1.104)

After the field amplitude has dropped below φ < mPl, the friction term in H be-

comes subdominant and the inflaton starts oscillating. However, as opposed to the

quadratic potential case, the oscillations are not sinusoidal, but given by an elliptic

cosine. To see this, we need to make a conformal transformation ϕ = aφ and use

conformal time η (1.13), for which eq. (1.104) becomes

ϕ′′ + λϕ3 − a′′

a
ϕ = 0 . (1.105)

It has been shown [73] that, averaged over many oscillations, a scalar field with a

quartic potential behaves like radiation, which implies a(η) ∼ η in conformal time.

Therefore, we can ignore the last term in (1.105) and arrive at the equation of motion

for a scalar field with a quartic potential in Minkowski spacetime,

ϕ′′ + λϕ3 = 0 . (1.106)
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This can be rewritten as the equation for an elliptic function by defining a dimen-

sionless conformal time variable

x ≡
√
λϕiη , (1.107)

where ϕi ≈
(

12m2
Pl

λ

)1/4

is the amplitude of the field ϕ. The equality is approximate as

the background evolution is not exactly like in radiation domination, and therefore

the amplitude is actually weakly time dependent. Note that the amplitude of the

original field φ decays as 1/a ∼ t−1/2. The solution of (1.106) is given by

ϕ = ϕif(x) = ϕi cn

(
x− x0,

1√
2

)
, (1.108)

where f(x) is an elliptic cosine, which is a harmonic expansion in terms of ordinary

cosines. The constant x0 will simply shift the phase of the oscillations and will be

ignored from now on. As for massless preheating we do not have simple sinusoidal

behaviour, there will be some interesting features in the analytical solution.

Fluctuations in the field χ

The equation of motion of the fluctuations χk is given by

χ̈k + 3Hχ̇k +

(
k2

a2
+ g2φ(t)2

)
χk = 0 . (1.109)

Due to the quartic potential, the oscillating background φ(t) can also source inflaton

fluctuations. Their equation of motion has the same form as (1.109), but with the

term g2 replaced by 3λ:

φ̈k + 3Hφ̇k +

(
k2

a2
+ 3λφ(t)2

)
φk = 0 . (1.110)

Rescaling both fields by the scale factor, where Xk = aχk, and using the time

variable x from before we obtain

X ′′k +

[
κ2 +

g2

λ
cn2

(
x,

1√
2

)]
Xk = 0 , (1.111)

ϕ′′k +

[
κ2 + 3 cn2

(
x,

1√
2

)]
ϕk = 0 , (1.112)

where κ = k/
√
λϕi is a dimensionless comoving momentum. Like in the massive

inflaton case, the fluctuations have an oscillatory mass term, which is now given
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by a Jacobi cosine. The mode equation for the inflaton fluctuations is identical to

the one for the fluctuations Xk with g2/λ = 3, so we will not need to consider it

separately. Eq. (1.111) is known is the Lamé equation [74]. It is determined by only

two parameters, the ratio of coupling constants g2/λ, and the comoving momentum

κ.

Note that the scale factor a has dropped out of the equations. This only hap-

pened because a universe dominated by a scalar field with a quartic potential be-

haves approximately like radiation [73], which reduced the equation of motion for

the background and fluctuations to one in Minkowski space (after a change of co-

ordinates). This is referred to as conformal invariance of massless preheating by

many references [67, 75], but remember that the background evolution is not ex-

actly conformally invariant as the scale factor only satisfies a ∝ t1/2 to a very good

approximation.

Like the Mathieu equation, for any choice of couplings g2/λ, the Lamé equation

has unstable solutions for some range of κ. In these momentum bands, the fluctua-

tions grow exponentially as χk(τ) = exp [µ(k, g2/λ)τ ] f(τ), where f(τ) is a periodic

function and µ(k, g2/λ) is the Floquet exponent quantifying the strength of the

resonance.

However, the band structure in this case is a lot more unusual: the strength of the

resonance and the location and width of the amplified band ∆κ depends sensitively,

and in no way monotonically, on the ratio g2/λ. As opposed to the broad resonance

regime which corresponds to q > 1, a higher value of g2/λ does not necessarily

correspond to stronger amplification.

For certain values, given by g2/λ = n(n + 1)/2, where n is an integer, there is

only a finite number of resonant momentum bands (all other values have an infinite

number of instability bands, which is the also the case for the Mathieu equation).

Specifically, g2/λ = 1 (n = 1) and g2/λ = 3 (n = 3) have a single instability band,

as all higher ones shrink to nodes at this value. Moreover, long wavelength modes

are only amplified if the ratio g2/λ lies between these special integer values. In this

case, the first momentum band extends from κ = 0 to some maximum value κmax.

This is demonstrated for low values of g2/λ in Fig. 1.2, which shows the resonance

chart of the Lamé equation. Shaded regions signify instabilities, and darker colours

correspond to a larger exponent µκ.

Dynamics in different regimes

The solutions of the Lamé equation can be written in terms of transcendental Jacobi

functions [74]. These are quite complicated, and in [67] it was shown that for the

50



Figure 1.2.: Stability chart of the Lamé equation. Shaded regions correspond to
unstable regions where fluctuations grow. The characteristic Floquet
exponent µ(k, g2/λ) is greater for darker regions, varying from µ ≈ 0.2
(darkest region), up to µ ≈ 0.02 (lightest region), in steps of ∆µ = 0.02.

special values g2/λ = n(n + 1)/2 simple, closed form solutions can be obtained.

Other interesting cases are the limits g2/λ� 1 and g2/λ� 1. For very small values

of g2/λ, the Lamé equation reduces to the Mathieu equation with a small value of q.

Therefore, we are in the narrow resonance regime, with resonance bands that have

a very small width. However, the expansion of the universe will not affect the band

structure, so the narrow resonance for massless preheating is more efficient than its

massive counterpart.

For large values of g2/λ, we find similar behaviour to that of the broad res-

onance regime: The fluctuations χk oscillate many times for each inflaton oscil-

lation, and only increase in amplitude when the inflaton crosses zero. Further-

more, for g2/λ → ∞, the width of the resonance band is directly proportional to

g2/λ and the characteristic exponent asymptotically approaches its maximum value

µmax ≈ 0.2377.

Terminating the resonance

For massless preheating, due to the disappearance of the scale factor from the equa-

tions of motion, the resonance structure is not affected by the expansion of the

universe. The only way to terminate the resonance is due to the backreaction of

the produced particles (both χ and φ), which affect the potential of the oscillating
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inflaton field. This leads to a restructuring of the resonance bands, and modes that

were initially amplified move out of the unstable region and start oscillating. This

can happen very fast if the instability band is narrow. The decay of the remaining

inflaton condensate then proceeds more slowly again, described by the perturbative

decay of section 1.4.1.

1.5. Gravitational waves

In this section I will give some mathematical background on gravitational waves:

I will describe why tensor perturbations correspond to GW degrees of freedom in

section 1.5.1, how GWs are generated by sources in 1.5.2 and how much energy they

carry in 1.5.3. Finally, in section 1.5.4 I will explain how to detect GWs directly.

I will mainly consider perturbations around flat spacetime. This makes the ex-

pressions simpler and captures the important physical aspects of GWs. Note that

the Friedmann metric will always look approximately flat on scales much smaller

than the Hubble radius H−1 for which we can neglect the expansion of the universe

[23]. Therefore, when we consider GW produced on subhorizon scales, they will

initially behave as if they were in a flat background. However, they will be affected

by the expansion of the universe and redshifted [23], so a long time after their pro-

duction their initial amplitude will have decayed. I will give generalised expressions

taking the curved nature of the FRW metric into account when necessary.

1.5.1. Tensor perturbations as gravitational waves

When gravitational fields are weak, we can use the framework of linearised gravity

where we write the metric as a fixed background with small perturbations around

it. Assuming a flat background for now, we write gµν = ηµν + hµν , where hµν is a

small perturbation. Therefore, we only need to keep terms to linear order in hµν

when we determine the equations of motion from the Einstein equations.

In appendix A.1, I describe how the metric perturbation can be decomposed into

scalar, vector and tensor parts, see eq. (A.1) (where we need to set a(t) = 1 for a

flat background). In Minkowski space, it can be shown [24] that only the traceless

tensor perturbation Eij is a true propagating degree of freedom, while all the others

can be derived from it and the stress energy tensor by means of constraint equations.

This perturbation carries the degree of freedom corresponding to GWs, but to see

its wave nature it is useful to express the perturbed metric in the transverse gauge.

The diffeomorphism invariance of GR requires that physical observables (such as

the proper time or the Ricci scalar) do not depend on the choice of coordinates, i.e.
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they are gauge invariant (see appendix A.1 for more details on selecting gauges in

Cosmology). To satisfy this, the full metric perturbation hµν needs to transform

under an infinitesimal change of coordinates xµ → xµ − ξµ as [24]

hµν → hµν + 2∂(µξν) . (1.113)

Choosing a specific transformation ξµ determines the gauge and enables us to set

certain metric perturbations to zero.

Consider the transverse gauge, for which the choice of ξµ ensures that Eij,i = 0

and Bi,i = 0, so both vector and tensor perturbations are transverse [24]. As the

tensor perturbation Eij is also traceless by definition, let us denote it as hTT
ij , where

the superscript TT refers to transverse and traceless. If we consider a situation

without a source (Tµν = 0), the linearised Einstein equations imply [24] that the

metric perturbations in eq. (A.1) satisfy Φ = 0, Bi = 0,Ψ = 0 and

�hTT
ij (x, t) = 0 , (1.114)

where � = ∂µ∂
µ is the D’Alembertian operator. You can then simply write the full

metric perturbation as

hTT
µν =


0 0 0 0

0

0 hTT
ij

0

 , (1.115)

where the transverse and traceless tensor hTT
µν has equation of motion �hTT

µν = 0.

The solution of this equation is a plane wave, hTT
µν = Cµνe

ikαxα , which satisfies

kµk
µ = 0 (wavevector null) and kµC

µν = 0 (wave propagation orthogonal to wave

polarization). Therefore, the tensor perturbations hTT
ij indeed behave like waves and

the first condition shows that they must propagate at the speed of light. For a wave

propagating in the z direction, i.e. kµ = (ω, 0, 0, ω), the second condition implies

Cµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (1.116)

where we defined h+ = C11, h× = C12. This shows that GWs have two separate

polarizations, denoted by plus and cross due to the way in which they distort test

particles. Due to the orthogonality condition kµC
µν = 0, test particles will only be
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perturbed in a direction orthogonal to the propagation direction of the wave. The

plus polarization (h× = 0) perturbs test particles in the same direction they were

separated in, whereas the cross polarization perturbs them at 45◦ to their original

separation, see figure 1.3.

Figure 1.3.: The plus (left) and cross (right) polarizations of a GW. Figure repro-
duced from [76]. c©http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en

In an expanding universe, the transverse and traceless tensor metric perturbations

are defined as

ds2 = −dt2 + a2(t)
[
δij + hTT

ij

]
dxidxj . (1.117)

In this case, the wave equation (1.114) acquires a drag term [32]:

ḧTT
ij (x, t) + 3HḣTT

ij (x, t)− 1

a2
∇2hTT

ij (x, t) = 0 . (1.118)

Hence, the amplitude of GWs inside the Hubble volume will decay with time.

1.5.2. Gravitational waves generated by sources

We want to see how to calculate the propagating degrees of freedom of the metric

in the presence of sources. If Tµν 6= 0, we cannot set Φ, Bi and Ψ to zero. However,

there is a useful gauge in this case to describe the behaviour of gravitational waves.

Let us first define h̄µν = hµν − 1
2
hηµν , leading to a reversed trace, h̄ = −h. This

reduces to the original hµν in the TT gauge (which can be applied far away from

sources).

We will choose the Lorenz gauge in which we can set ∂µh̄
µν = 0. Using this

condition, the linearised Einstein equation for the trace reversed perturbation is a

wave equation for each component with a source term [24],

�h̄µν = −16πGTµν . (1.119)

To solve this equation, we need to use a Green function G (xα − yα), which is the

solution of the d’Alembertian operator � for a delta function source. Eq. (1.119)
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can be expressed as

h̄µν = −16πG

∫
G (xα − yα)Tµν(y)d4y , (1.120)

where the retarded Green’s function (corresponding to waves travelling forward in

time) is [24]

G (xα − yα) = − 1

4π|x− y|
δ
[
|x− y| − (x0 − y0)

]
θ(x0 − y0) . (1.121)

Plugging eq. (1.121) into (1.120) and integrating over y0 gives

h̄µν(t,x) = 4G

∫
1

|x− y|
Tµν(tr,y)d3y , (1.122)

where t = x0 and tr = t−|x−y| is the retarded time. The disturbance for an observer

at (t,x) is the sum of contributions at points (tr,y), where tr is the coordinate time

at which the observers past light cone intersects the source located at a distance

|x− y|.
To solve eq. (1.122) analytically we need to make a few simplifying assumptions.

Consider a situation where we are measuring the wave far away from an isolated,

slow-moving source (in this regime, the energy-momentum tensor is negligible, so the

tensor perturbations behaves like a propagating wave as in the previous subsection).

Note that due to the Lorenz gauge condition we only need to solve for the space-like

components of h̄µν as the components h̄µ0 can be derived from them. Going through

a few steps of algebra (see e.g. [24]), we obtain the quadrupole formula,

h̄ij(t,x) =
2G

r

d2Iij
dt2

(tr) , (1.123)

where the quadrupole moment tensor is given by

Iij(t) =

∫
yiyjT 00(t,y)d3y . (1.124)

The gravitational wave produced by an isolated source depends on the second time

derivative of the quadrupole tensor (so stationary or spherically symmetric object

would not emit GWs), evaluated at the retarded time.

Compare this to the situation in EM, where electromagnetic radiation is produced

by the changing dipole moment of an object. A dipole moment cannot lead to

gravitational radiation because of momentum conservation [29]. Therefore we need

a quadrupole moment in the source (which measures the shape of the system [24]) to
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generate GWs. This fact, alongside the general weakness of the coupling of matter

to gravity, is why gravitational radiation is so much weaker than its electromagnetic

counterpart.

The component of the stress energy-tensor Tµν that is affected by the quadrupole

moment of a distribution is the traceless anisotropic stress Πij [28]. Furthermore,

as the GW degrees of freedom are also transverse, only the projection ΠTT
ij acts

as a source term for GWs. In an expanding universe, the wave equation of tensor

perturbations can generally be written eq. (1.118) with a source term, given by the

TT part of anisotropic stress [77]:

ḧTT
ij (x, t) + 3HḣTT

ij (x, t)− 1

a2
∇2hTT

ij (x, t) = 16πGΠTT
ij . (1.125)

This expression is valid as long as one can regard the anisotropic stress as a pertur-

bation around a perfect fluid [78].

Sources of gravitational waves in Cosmology

The production of gravitational waves I have described in this section is a classical

process and very different in nature to the primordial gravitational wave background

from inflation (see section 1.2.5). This background did not originate from a source,

but corresponds to quantum fluctuations in the metric field. These fluctuations were

stretched to superhorizon scales during the inflationary phase and result in a scale

invariant spectrum of tensor fluctuations.

In this section, I described the emission of GWs by classical sources, due to a

time-varying matter distribution with a non-zero quadrupole moment. Gravita-

tional waves are hence produced during many astrophysical phenomena that involve

colliding or collapsing bodies, such as binary star systems, coalescing black holes or

supernovae (see [76] for a good review on astrophysical GWs). Depending on the

details of the system, the emitted GWs from these point sources will peak at specific

frequencies.

There could also be stochastic gravitational wave backgrounds (travelling to us

from all directions) from the early universe, produced by non-equilibrium phenom-

ena that carry a large amount of energy. Investigating the properties of these

backgrounds is an active area of research, which includes bubble collisions during

phase transitions [79, 80, 81, 82, 83], the creation [84], evolution [85, 86] and decay

[87, 88, 89] of cosmic defects networks and preheating [90, 91, 92, 93], which is the

subject of chapter 3.
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1.5.3. Energy carried by gravitational waves

It is natural to ask how much energy is carried by GWs, however calculating this

quantity is not easy. Firstly, in GR, there is no local definition of energy as we

can always transform to a frame where the perturbation is zero. Even in the case

of linearised gravity, it is not obvious what the energy-momentum tensor of the

gravitational field should be, as we cannot easily separate gravity from the metric

and put it into the right-hand side of Einstein’s equation [24].

In order to obtain an expression for the energy carried by GWs, we need to go to

higher orders in the expansion. To first order, we cannot feel the effects of gravity,

as the Ricci tensor measuring the curvature is zero [29] and test particles therefore

move in straight lines. Hence, we need to consider the Einstein equations to second

order (this is further motivated by the energy-momentum tensor of EM, which is

also quadratic in the fields).

We are interested in the GW energy far away from the source where the vacuum

Einstein equations apply. To second order, we can split the Riemann tensors on

the LHS of the Einstein eq. (1.1) into two parts, one that is linear in the second

order perturbation h
(2)
µν , and one that is quadratic in the first order perturbation

h
(1)
µν . Bringing the second term onto the RHS, we can write this as [24]

R(1)
µν [h(2)]− 1

2
R(1)[h(2)]ηµν = −

(
R(2)
µν [h(1)]− 1

2
R(2)[h(1)]ηµν

)
. (1.126)

If we identify

tµν = − 1

8πG

(
R(2)
µν [h(1)]− 1

2
R(2)[h(1)]ηµν

)
, (1.127)

eq. (1.126) is just the Einstein equation for the second order perturbation in the

metric, sourced by a gravitational energy-momentum tensor (1.127) that is quadratic

in first order perturbations.

This method clearly encodes how the perturbations affect space-time and eq. (1.127)

it is therefore a well motivated choice for the energy-momentum tensor of gravita-

tional waves. Note, however, that tµν is not a true tensor and, more importantly, it

is not gauge invariant [24]. It is however possible to find a gauge-invariant measure

of tµν by averaging over several wavelengths, as this circumvents the non-locality of

the description and makes it possible to capture the effects of curvature. In the TT

gauge, the averaged energy-momentum tensor can be written as [24]

tµν =
1

32πG

〈
(∂µh

TT
αβ )(∂νh

αβ
TT)

〉
. (1.128)
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The energy density of GWs is simply given by ρGW = t00. In principle, we can

calculate this quantity numerically, by solving eq. (1.125) for an arbitrary source

and deriving the energy-momentum tensor (1.128) from hTT
µν .

1.5.4. Gravitational wave detectors

The direct detection of GWs is extremely difficult, and so far we have not been

successful in measuring a signal. An indirect detection has been achieved by Hulse

and Taylor [25], who observed the change in orbital period of a binary pulsar, which

exactly matches the energy loss due to gravitational waves predicted by GR.

Although the flux of energy of GWs can be substantial (which is why Hulse and

Taylor were able to observe the energy loss), it is very hard to measure their effect

directly [24], as GWs only couple very weakly to matter. As mentioned in section

1.5.1, a passing GW will distort the shape of an object. Due to the coordinate

invariance of GR, this is a tidal effect, which cannot be measured locally [94].

A gravitational wave with amplitude h will lead to a fractional change in the size

of an object of order
∆L

L
∼ h , (1.129)

which is called the strain. The maximum amplitude we can expect for typical astro-

physical sources is around h ∼ 10−21 (the smallness of h shows why the linearised

gravity approximation works so well). A gravitational wave of this amplitude would

result in a minuscule change ∆L ∼ 10−18 m over a length of 1km, which is nine

orders of magnitude smaller than the Bohr radius.

To be able to detect such tiny changes, modern GW detectors employ the methods

of laser interferometry. A standard interferometer consists of two arms at a 90◦ angle

to each other. Photons entering the tubes will travel through a beamsplitter which

sends them down different arms, where they are possibly reflected multiple times,

before recombining at a photodiode. The incoming photon beams are in phase,

and the interferometer is set up in such a way that there will be no signal unless

the outgoing photons are out of phase. A passing GW would stretch one arm and

lengthen the other, and could therefore lead to such a phase shift [24].

The Advanced LIGO detector [26], which will start taking data in 2015, consists

of two interferometers, each with 4km arms, based in Washington and Louisiana. It

is necessary to have several detectors to be able to localize GW sources in the sky.

LIGO actually collaborates with another experiment, VIRGO in Italy [95], and it is

hoped that a new GW detector will be built in India. The spatial configuration of

these four detectors would lead to very large sky coverage. GWs could therefore be
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measured coming from nearly all directions in space [94].

LIGO will be most sensitive to frequencies of the order of 100Hz, with amplitudes

down to h ∼ 10−23 [96]. It should be able to detect signals from the (non-spherical)

collapse of supernovae and the coalescence of neutron stars or black holes [24]. Its

main limitations will be due to the many sources of noise, including photon shot

noise (due to the random nature of emission by a laser), thermal noise and seismic

noise which is particularly important at low frequencies.

The eLISA project [27], which has been delayed multiple times and is supposed

to launch in 2032, is a space based interferometer, consisting of three spacecraft

carrying test masses and which are arranged as an equilateral triangle. The lengths

of the arms is very large, 5 million km, and eLISA would therefore be sensitive to

much lower frequencies, between 10−4 and 1Hz, with amplitudes as low as h ∼ 10−24

[96]. As it is in space, it does not suffer from seismic noise, but will have an additional

error source due to inaccuracies in the arm length [24]. Low frequency sources of

GWs include certain binary systems and supermassive black holes [24].

While all current direct detectors are mainly aimed at measuring GWs from as-

trophysical sources, there are many interesting sources of cosmological origin, as

mentioned at the end of section 1.5.2. The scale invariant background from infla-

tion is distributed over a vast frequency range, however its amplitude is at least five

orders of magnitude lower than the sensitivity of eLISA or LIGO [96]. A proposed

space-based detector that might be able to measure the primordial GW background

directly in the future is the Big Bang Observer (BBO) [97], which is a configuration

of four eLISA type detectors. It would be sensitive to a frequency range between

eLISA and LIGO, where no strong signals are expected from astrophysical sources.

So far, however, it is much easier to investigate the tensor modes from inflation

through the B-mode polarization [21].

For a first order phase transition happening at the electroweak scales, GWs are

produced in a range that might be detectable by eLISA [98]. Gravitational waves

from preheating, on the other hand, are produced at much higher frequencies and

are therefore not accessible by the current detectors [91]. High frequency detectors

have recently been proposed [99, 100, 101], however their sensitivity might not be

sufficient to detect cosmological GW backgrounds.
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2. Chiral Tensor Power Spectrum

from Quantum Gravity

Quantum fluctuations that are produced during inflation freeze out after leaving

the horizon and can survive until today, as was described in section 1.2.5. These

fluctuations, having been produced in the very early universe, might carry some

information about the quantum nature of gravity. The theory of loop quantum

gravity does not use the metric as its fundamental gravitational variable, but a

(generally) complex connection. Therefore, deriving the power spectrum of tensor

perturbations in this framework, which was done in section 1.2.5 in the standard

second order formalism, could lead to a different result. Considering new variables

to describe spacetime is always interesting from a quantum mechanical point of

view, as different quantum theories can give rise to equivalent classical theories

[102]. We cannot know from first principles which description is the correct one,

and experiments that involve quantum mechanical observables like power spectra

might be the only way of finding out.

I will first outline general principles of the canonical quantization of gravity in

section 2.1, starting with the usual approach taken in quantum field theory, and

then describing the framework of loop quantum gravity. I will finish by comparing

the canonical and covariant approaches to quantization.

In the next section, 2.2, I will describe different formalisms used in general rela-

tivity. In particular, the tetrad formalism, the first order formalism which results

in the Palatini action, and the Ashtekar formalism which forms the basis of loop

quantum gravity will be discussed.

Section 2.3 is based work that has been published in [1, 2]. I will describe how

using the Ashtekar variables instead of the standard metric variables to find a per-

turbed gravitational action during inflation leads to a chirality in the tensor power

spectrum, which could leave an observable signature in the CMB. Even though the

Ashtekar variables are motivated by loop quantum gravity, they are interesting to

study regardless of the success of the theory. If we were to observe a chiral ten-

sor spectrum, it might not necessarily mean that LQG is the correct description of
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quantum gravity, but it would definitely give us insight into the quantum nature of

spacetime.

2.1. Canonical quantization of gravity

In this section, I will briefly discuss the main aspects of quantum field theory (QFT),

especially regarding the quantization of gravity, before giving some background on

loop quantum gravity, highlighting its successes and shortcomings. I will finish

by stressing why it might be interesting for Cosmology to consider the Ashtekar

variables, which are motivated by the canonical theory of LQG, as the fundamental

variables describing spacetime.

2.1.1. Quantum Field Theory

Quantum field theory is the union of quantum mechanics and special relativity,

where instead of considering single particle states, we consider fields which are quan-

tized over a (typically) flat, Minkowski background [103].

When one first studies QFT as an undergraduate, one probably learns how to

quantize a scalar field canonically, i.e. using the formalism of section 1.2.4. The

canonical quantization procedure [41] has been very successful in the context of QFT,

and is used in particular to build the theory of quantum electrodynamics (QED),

which has made experimentally verified predictions with astonishing accuracy [68].

One conceptual problem with the approach is the lack of manifest Lorentz invariance

due to the splitting of space and time, although the Feynman rules one derives to

describe interactions obey the Lorentz symmetry [103].

An alternative approach to quantization is the path integral formalism [104], which

uses the Lorentz invariant Lagrangian as its central dynamical variable. It also

preserves all other symmetries of the theory and is therefore more suited to treating

non-Abelian gauge theories like quantum chromodynamics (QCD) [68].

Although the two approaches lead to equivalent results, depending on the situa-

tion, one might be more suitable than the other [103], although the path integral

formalism is usually the method of choice for the most developed theory of quantum

gravity to date, string theory [105, 102].

In all realistic field theories, ultraviolet divergences arise; which means that at very

high energies certain quantities of interest become infinite. Using the procedure

of renormalization, we can deal with these divergences and arrive at a physically

meaningful theory [68, 103]. It is a well known fact that this procedure fails in

the case of gravity: When one tries to quantize the graviton field by treating it
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as a perturbation around flat spacetime [103], divergences arise that cannot be

renormalized. This is probably not surprising; most field theories are effective in

the sense that their regime of validity does not extend to the highest energy scales

[103]. For gravity itself, it seems we cannot simply cut off the highest energy modes

and ignore the nature of spacetime at the Planck scale.

2.1.2. Loop Quantum Gravity

Loop Quantum gravity is an attempt to find a quantum theory of gravity in the most

“conservative” [106] way: Its aim is to quantize gravity in a background independent

(as the background itself is quantized), non-perturbative manner, without resorting

to new physics like higher dimensions, supersymmetry or trying to arrive at a unified

description of all fundamental forces. This is in contrast to string theory, which

incorporates all these aspects and is also based on the standard QFT approach of

quantizing over a fixed, flat background spacetime. LQG, on the other hand, uses a

canonical quantization method.

In LQG, we do not want to consider gravitons propagating on a fixed background

as one would do in standard QFT, but rather define operators corresponding to

spacetime itself. Therefore, the canonical variables should describe spacetime, and

indeed the metric was chosen as the central gravitational variable (with its conjugate

being related to the extrinsic curvature) in the first attempt of defining a canonical

quantum theory of gravity, the ADM formalism [107].

In all canonical theories of GR we need to satisfy a number of constraints, which

correspond to the quantum Einstein equations [108] and incorporate diffeomorphism

invariance. Appendix A.2 gives some background on Hamiltonian constrained sys-

tems, and the specific constraints arising in LQG are given in section 2.3.2. In

particular, the Hamiltonian constraint, which corresponds to invariance under time

translations, on a quantum level leads to the Wheeler-DeWitt equation H|Ψ〉 = 0

[109], where the quantum Hamiltonian H acts on the “wave function of the uni-

verse” |Ψ〉. It is constrained to vanish to reflect the fact that there is no global time

variable in GR (this is simply the analogue of the Schrödinger equation in canonical

quantum gravity).

Within the ADM formalism, it was very difficult to solve this constraint with the

chosen quantum operators. In 1986, Ashtekhar introduced a set of new variables

[110, 111], discussed in section 2.2.3, where the central canonical variable is a con-

nection, and its conjugate a (densitised) metric field. Further work by [112, 113]

led to the definition of the loop representation (hence the name LQG): The actual

variables promoted to field operators were the holonomy (parallel transport around
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a closed loop) of the connection, and a flux of the densitised metric [108]. Like the

creation and annihilation operators of particle states in section 1.2.4, these operators

create and destroy “loop states”, quantum excitations of spacetime along a single

loop [106] (the idea of a loop basis was also used in the context of Yang Mills theory

in terms of the Wilson loop [114]).

This approach greatly simplified solving the constraint equations [115], especially

after work by Thiemann [116]. The Hilbert space these loop states live in has a

basis in terms of spin network states [117, 118]. It is possible to define area and

volume operators acting on these spin networks (which can be regarded as building

blocks of spacetime [106]) with discrete spectra [119, 120], showing that spacetime

is fundamentally discrete in LQG.

Kinematically, the theory is well developed: There exists a well defined scalar

product [121, 122] and matter can be coupled to the theory [123, 124]. Progress

has also recently been made on identifying n-point functions [125], and therefore an

expression for the graviton propagator can be obtained [126]. However, the dynamics

of the theory are still not well understood and the low-energy limit that should yield

GR has not been established [127].

LQG also has some applications to other areas of physics. It provides a way

to calculate the Bekenstein-Hawking entropy [128] and has also spawned the field

of loop quantum Cosmology [129, 130]. Loop quantum Cosmology contains some

interesting results, including a possible mechanism for driving inflation [131], the

absence of singularities [132] and the replacement of the Big Bang by a Big Bounce

[133]. However, the approach I will take below is not comparable; I will only be

using the Ashtekhar variables, not the loop representation which is the foundation

of the LQG formalism.

2.1.3. Different approaches in quantum gravity

In canonical quantum gravity spacetime has to be foliated into spacelike slices evolv-

ing in time to be able to define the canonical variables [107]. This introduces an

explicit time dependence which manifestly breaks Lorentz invariance. The initial

lack of covariance (invariance under general coordinate transformations) and the re-

lated problem of defining dynamics are the main criticisms faced by this approach.

Although a path integral formulation of LQG now exists using spinfoams [134,

135], it is still in its infancy and work remains to be done trying to link the dif-

ferent formalisms [127]. Arguably the most successful attempt at trying to find a

fundamental theory of quantum gravity to date is string theory [105, 102], which is

a covariant approach and therefore does not suffer from the same problems as LQG
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(although proponents of the latter theory will claim that on the other hand, string

theory does not address the principle of background independence in GR, needing

to define a fixed background [106]).

Of course, there are many other approaches to tackling the problem of quantum

gravity, for example causal dynamical triangulation [136] (which is similar in nature

to the spinfoam formalism) or causal set theory [137, 138], where the causal structure

of spacetime is taken as the most important physical ingredient.

While a mathematically consistent theory of quantum gravity would obviously

be a major breakthrough in theoretical physics, any consistent theory will suffer

from the problem that it seems impossible with current technology to make testable

predictions: The energy scales at which quantum gravity effects play a role are far

too high to be probed directly by experiment. Indirect evidence seems to be the

best we can hope for at the moment, and Cosmology is a great candidate to provide

just that. Clearly, the conditions right after the Big Bang were such that quantum

gravity effects must have played a central role, and they might have left an imprint

in the CMB through inflation, which explicitly describes how quantum fluctuations

become classical observables. Deriving the spectrum of tensor perturbations using

the Ashtekar formalism would provide a test for the predictive power of the theory.

2.2. Different formalisms for general relativity

Usually, the protagonist of GR is the metric gµν , and the dynamics are defined by the

Einstein-Hilbert action (1.8). However, we can also describe gravitational degrees

of freedom using a formulation in terms of tetrads (which requires introducing the

language of differential forms), as described in section 2.2.1. The content of this

section is based on section 2.9 and appendix J of [24]. I will continue by introducing

the first order formalism in 2.2.2, where the metric and connection are taken to be

independent initially, giving the Palatini action. Combining both of these ingredients

makes it possible to define the Ashtekar formalism in section 2.2.3.

2.2.1. The tetrad formalism

It is sometimes useful, especially when trying to treat GR as a gauge theory, to use

a non-coordinate basis as opposed to the standard basis vectors dxµ, ∂µ. Motivated

by the fact that you can always define a local inertial frame in GR which looks flat,

consider the tetrad basis eI , I = 1 · · · 4, that satisfies ds2 = ηIJe
IeJ , where ηIJ is

the Minkowski metric. I is an “internal” index and transforms under the vector

representation of the Lorentz group SO(3,1) [139]. We can write the basis vectors
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eI in terms of the old coordinate basis as

eI = eIµdx
µ , (2.1)

so the defining condition for the tetrad basis can be written in components as

gµν = ηIJe
I
µe
J
ν . (2.2)

The spacetime indices, denoted by Greek letters, can be raised and lowered using

the metric gµν and transform by general coordinate transformations, while the in-

ternal indices, denoted by capital Latin letters, can be raised and lowered using

the Minkowski metric ηIJ and transform by local Lorentz transformations. The

components satisfy orthogonality conditions,

eIµe
µ
J = δIJ , eµIe

I
ν = δµν . (2.3)

We can also use the components eIµ of the tetrad basis to relate the components of

a vector V in each basis:

V I = eIµV
µ . (2.4)

To be able to use covariant derivatives in this formalism, we need to define the

spin connection ωµ
I
J . The covariant derivative of some tensor AIJ is then given by

∇µA
I
J = ∂µA

I
J + ωµ

I
KA

K
J − ωµKJAIK . (2.5)

To obtain the defining relations for the spin connection and the curvature in the

tetrad basis, it helps to simplify expressions if we use the language of differential

forms. Let me define them and list some of their properties.

A differential p-form is a (0, p) antisymmetric tensor (i.e. a 0-form is a scalar, and

a one-form is a dual vector ω = ωµdx
µ). The (components of the) wedge product

between a p-form A and q-form B is an antisymmetrised tensor product,

(A ∧B)µ1···µp+q =
(p+ q)!

p!q!
A[µ1···µpBµp+1···µp+q ] . (2.6)

A basis for p-forms can be written using the wedge product as 1
p!
dxµ1 ∧ · · · ∧ dxµp .

A p-form A is then given by

A =
1

p!
Aµ1···µpdx

µ1 ∧ · · · ∧ dxµp , (2.7)
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where the components Aµ1···µp are totally antisymmetric.

We will also need the exterior derivative which is an antisymmetrised partial

derivative that maps a p-form into a p+ 1-form [24]:

(dA)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+q ]. (2.8)

Specifically, for zero and one-forms, i.e. a scalar φ and vector ω = ωµdx
µ, the

exterior derivative is

(dφ) = ∂µφ dx
µ , (dω) = ∂[µων]dx

µ ∧ dxν . (2.9)

Since partial derivatives commute, and the exterior derivative is antisymmetric, we

have d(dA) = d2A = 0 for any p-form A.

An important property of the exterior derivative is its action on the wedge product

of two forms. If A is a p-form,

d(A ∧B) = dA ∧B + (−1)pA ∧ dB . (2.10)

Finally, one can use n-forms ω in n dimensions to define integration on the man-

ifold, specifically
∫
ω =

∫
ω0123d

nx. As differential forms are completely antisym-

metrised, there is only one independent component for an n-form in n dimensions.

We can write the tetrad basis and the spin-connection as one-forms eI and ωIJ by

suppressing their spacetime indices. The Cartan equations provide defining relations

for the torsion and the Riemann tensor in the tetrad basis:

T I ≡ deI + ωIJ ∧ eJ , (2.11)

RI
J ≡ dωIJ + ωIK ∧ ωKJ . (2.12)

Note that RI
J is a two-form; it specifies the entire Riemann tensor (not the Ricci

tensor). It can be regarded as the field strength of the spin-connection [139]. The

Christoffel connection, eq. (1.5), that is commonly used in GR is torsion-free and

ensures ∇αgµν = 0. The first property leads to eq. (2.11) being zero, which gives

a condition for the spin connection in terms of the tetrad, and the second implies

that the spin connection must be antisymmetric, ωµIJ = −ωµJI .
The tetrad formalism actually makes calculating metric components, spin connec-

tion and Riemann tensor a lot simpler than the usual coordinate approach. As we

will make use of them in section 2.3, I will derive a tetrad basis and the associated

spin connection for a flat Friedmann background (see also appendix J of [24]).

For a flat FRW metric (1.12) using conformal time, we have gµµ = a2 (no sum),
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with all off-diagonal components zero. We need to satisfy eq. (2.2), and clearly the

choice e0
0 = e1

1 = e2
2 = e3

3 = a does the job (any other choice will be related

to this by a local Lorentz transformation [24]). The four tetrad forms eI = eIµdx
µ,

I = 0, i, can then be written as

e0 = adη , (2.13)

ei = adxi . (2.14)

We can derive the components of the spin connection ωIJ using the torsion free

condition (2.11). First though, due to the antisymmetry ωIJ = −ωJI , we see that

ω0
0 = 0 , (2.15)

ω0
i = ωi0 , (2.16)

ωij = −ωj i , (2.17)

where we had to raise and lower indices with the Minkowski metric.

Let us solve equation (2.11) separately for the I = 0 and I = i components (which

all have the same form) using the solutions for the tetrad. To take the exterior

derivatives, regard the forms in eq. (2.13) and (2.14) as a product of a scalar and a

one-form and then use the product rule in eq. (2.10) to obtain (remembering that

d2 = 0) de0 = a′dη ∧ dη = 0 and dei = a′dη ∧ dxi. For I = 0, the torsion free

condition then gives

aω0
i ∧ dxi = 0 , (2.18)

where I used ω0
0 = 0. For I = i, we obtain

a′dη ∧ dxi + aωi0 ∧ dη + aωij ∧ dxj = 0 . (2.19)

The only solution compatible with the antisymmetry of the spin connection is to

set ωij = 0 as well, with the only non-zero component being ωi0 = (a′/a)dxi = Hei

[24]. This clearly solves the torsion free conditions, eq. (2.18) and (2.19).

2.2.2. The Palatini formalism

We can rewrite the Einstein-Hilbert action (1.8) using tetrads (remember integration

over 4-forms is well defined in four dimensions). The result is [139]

SEH (gµν(e)) =
1

2

∫
εIJKLe

I ∧ eJ ∧RKL (ω(e)) . (2.20)
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This makes the internal gauge symmetry under local Lorentz transformation more

apparent [139]. Now, consider the following change in viewpoint: Instead of thinking

of the action as a function of the tetrad eI only, we can initially regard it as a

function of both eI and ωIJ , and keep metric and connection independent. The

resulting action,

SPK

(
eIµ, ω

IJ
µ

)
=

1

2

∫
εIJKLe

I ∧ eJ ∧RKL(ω) , (2.21)

is called the Palatini-Kibble action [116]. Varying it with respect to the metric gives

the usual Einstein equations, and varying with respect to ωIJ shows that it is indeed

the spin connection ω(e) we defined, i.e. it satisfies the torsion-free Cartan equation

(2.11) and it is manifestly antisymmetric. This is also known as the first order

formalism [22] as the equations of motion only contain first derivatives of metric

and connection, while the second order formalism of the Einstein-Hilbert action

contains second derivatives of gµν .

2.2.3. The Ashtekar formalism

We can make a further generalization of the Palatini action and add a term δIJKLe
I∧

eJ ∧RKL(ω), where δIJKL = δI[KδL]J . This term is compatible with the symmetries

and vanishes on-shell, when we use the equation of motion for the spin connection

ω(e) [139]. This gives the Holst action [140]

SH

(
eIµ, ω

IJ
µ

)
=

(
1

2
εIJKL +

1

γ
δIJKL

)∫
eI ∧ eJ ∧RKL(ω) , (2.22)

where the coupling constant introduces the Immirzi parameter γ. This parameter

will not appear in the classical theory; however, it does play a role in the quantum

theory as we will show later in section 2.3, and also appears in the black hole entropy

formula derived for LQG [128].

The Holst action is the fundamental action of loop quantum gravity and can be

used to derive the new set of canonical variables in terms of a connection A and

its conjugate E, which is related to the metric. This choice greatly simplified the

constraint algebra [127] compared to the old ADM formalism [107]. We can write

eq. (2.22) as [139]

S(A,E,N,Na) =
m2

Pl

γ

∫
d4x

[
ȦiaE

a
i − Ai0Gi −NH −NaHa

]
, (2.23)

where (A,E) are the canonically conjugated variables, and Ai0, N and Na are La-
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grange multipliers for the first class constraints (see appendix A.2 for details on

constrained systems). The Hamiltonian H and the space diffeomorphism constraint

Ha encode the invariance of the action under time translations and spatial diffeo-

morphisms, and the Gauss constraint Gi generates SU(2) gauge transformations. As

we have made a specific choice for the time coordinate, the local Lorentz symmetry

is broken to a local SO(3) ∼ SU(2) symmetry transforming the objects Ea
i and Aia.

The canonical variables satisfy commutation relations [139]

{Aia(x), Eb
j (y)} =

γ

m2
Pl

δbaδ
i
jδ(x− y) . (2.24)

Specifically, E corresponds to the densitized inverse triad

Ea
i = det

(
ejb
)
eai , (2.25)

where i = 1, 2, 3 is an internal index, and a = 1, 2, 3 a spatial index; and A to the

SU(2) connection (as opposed to a Lorentz connection) [139]

Aia = −1

2
εijkωjka + γω0i

a , (2.26)

where ωIJ is the spin connection satisfying the torsion-free condition. Defining a

mapping (see [116], pp.127)

ωi = −1

2
εijkωjk , (2.27)

the connection can also be written as

Ai = ωi + γω0i . (2.28)

The original variables chosen by Ashtekar [110] were defined for an Immirzi pa-

rameter γ = ±i. They are special in the sense that the symmetry group of the

connection can be identified with the self dual (SD) SU(2) subgroup of the Lorentz

symmetry for γ = i, and the anti-self dual (ASD) SU(2) for γ = −i [139]. These

subgroups correspond to the isomorphism between the complexified Lorentz group

and SU(2)×SU(2). Hence, I will refer to Ai as the SD connection if γ = i, and as

the ASD connection if γ = −i.
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2.3. Spectrum of tensor perturbations using

Ashtekar variables

In this section I will study the tensor perturbations and calculate their power spec-

trum within the Ashtekar formalism. First, I will identify the canonical variables,

perturbed to first order to describe metric perturbations, in section 2.3.1.

The Hamiltonian description is discussed in 2.3.2: The constraints arising in the

Ashtekar formalism will be discussed and Hamilton’s equations will be derived for the

full and the perturbed variables. Finally, I will derive the second order Hamiltonian

describing the dynamics of gravitons (and therefore encoding tensor perturbations).

Although classically it reduces to the well-known result presented in section 1.2.5,

it is still very instructive to carry out the calculation explicitly as a number of

subtleties need to be taken into account which had not been previously identified in

the literature.

In section 2.3.3, I will expand the perturbation variables in Fourier space. As

the connection is complex, there will be separate positive and negative frequency

modes corresponding to gravitons and anti-gravitons, which are related by reality

conditions. I will end the section by deriving the commutation relations for the

modes.

The quantum theory can then be discussed in section 2.3.4. The Fourier space

Hamiltonian can be written in terms of graviton creation and annihilation operators

which are linear combinations of the metric and connection. Having identified these

operators, we can set up a Hilbert space of graviton states. The states with negative

energy are not normalisable under the chosen inner product, which is fixed by the

reality conditions. Therefore, half of the graviton operators are unphysical and

should be removed, after which we are left with the usual two graviton polarizations.

I will show that after normal ordering, we obtain a chiral vacuum energy, the first

real novelty compared to standard perturbation theory.

The chirality will be explored in more detail in section 2.3.5 where I will derive the

main result: The power spectrum of tensor perturbations in the Ashtekar formalism

is chiral, if the Immirzi parameter γ has an imaginary part. This would lead to a

non-zero TB correlator in the CMB and therefore potentially be observable.

I will finish by discussing the case of a purely real γ in 2.3.6 before concluding.

Note that in the following, in general a complex value of γ will be considered, which

can be split into a real and imaginary part,

γ = γR + iγI . (2.29)
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It will sometimes be instructive to focus on the SD/ASD connection for which γ =

±i, or a purely imaginary γ, as these cases exhibit special behaviour. The case of a

purely real γ, which renders the connection real, will not be considered until section

2.3.6.

2.3.1. The canonical variables

To study the tensor perturbations during inflation within the Ashtekar formalism,

we will consider the metric

ds2 = a2[−dη2 + (δab + hab)dx
adxb] , (2.30)

where a = − 1
Hη

for a de Sitter background and we have omitted the TT superscript

in the perturbation hab. Note that we will use the following index convention: I and

µ refer to 4D internal and space-time indices, respectively, while i, j, ... and a, b, ...

denote the corresponding 3D indices.

We need to express the perturbations in the tetrad basis to relate it to the Ashtekar

variables. To zeroth order, the metric is given by (see section 2.2.1) eIµ
(0) = aδIµ and

the non-zero spin connection forms are ωi0
(0) = Hei.

Now consider a tetrad basis of the spacetime (2.30) including perturbations, eI =

eI (0) + δeI . Clearly, the time component is not perturbed, so we only care about

the triads ei. A solution for the triad components that satisfies the defining relation

(2.2) to first order (i.e. ignoring second order perturbations) is

eia = a

(
δia +

1

2
hia

)
. (2.31)

Instead of referring to the metric perturbation hab, we will simply write the pertur-

bation in the triad as

eia = aδia + δeia . (2.32)

The inverse triad, which needs to satisfy eq. (2.3) to first order is then given by

eai =
1

a
δai −

1

a2
δeai . (2.33)

If we remember that δeia is defined as the perturbation in the triad (2.32), we do not

need to distinguish between i and a indices and can simply raise and lower them

with the Kronecker delta. Although this mixes internal group and spatial indices,

we can always unambiguously recover the initial perturbation δeia. We will therefore

refer to the perturbed triad as δeij (and simply call it the metric), and the perturbed
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Ashtekar connection as aij. Note that with this convention δeij will turn out to be

proportional to the variable h̃r used in section 1.2.5, whose mode functions v obeyed

eq. (1.62).

Like the unperturbed spin connection, its perturbation δωIJ must satisfy the

conditions (2.15), (2.16) and (2.17) due to antisymmetry. We need to expand the

torsion free equation (2.11) to first order in terms of δωIJ , δeIJ and the unperturbed

quantities ωIJ
(0) and eI

(0)
J . For I = 0, we have to solve

ω0
i
(0) ∧ δei + δω0

i ∧ ei(0) = 0 , (2.34)

where we only kept non-zero spin connection terms and used δe0 = 0. Similarly, for

I = i, we obtain

dδei + δωi0 ∧ e0(0) + δωij ∧ ej(0) = 0 . (2.35)

Using the rules in section 2.2.1, after some algebra we find

δω0
i =

1

a
δe′ij dx

j , (2.36)

δωij = −2

a
∂[iδej]k dx

k , (2.37)

where we lowered spatial indices with the Kronecker delta.

We can now define the Ashteker variables perturbed to first order, eq. (2.25)

and (2.28). Using the background solutions for the triad and spin connection, the

definition of the perturbed triad in eq. (2.33) and noting that det
(
ejb
)

= a3, we

obtain

Ea
i = a2δai − aδeai , (2.38)

Aia = γHaδia +
aia
a
. (2.39)

The classical solution for the perturbed connection aia is given by the perturbed spin

connections, (2.36) and (2.37):

aij = εikl∂kδelj + γδe′ij . (2.40)

Note that this condition is only supposed to be satisfied on-shell, as initially we treat

metric and connection as separate variables according to the first order formalism.

To obtain the Poisson brackets for the perturbation variables (which will be pro-

moted to commutators when quantizing), we simply need to plug in expressions

(2.38) and (2.39) into the full Poisson brackets (2.24). This results in four Poisson
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bracket terms of which only the last one is non-zero, which determines the Poisson

bracket for fluctuations as

{aia(x), δebj(y)} = − γ

m2
Pl

δbaδ
i
jδ(x− y) . (2.41)

2.3.2. Hamiltonian formalism

As we know that the Holst action (2.22) is classically equivalent to the ordinary

Einstein-Hilbert action (1.8), the perturbed Ashtekar variables must lead to an

equation of motion for the tensor perturbations that is identical to the one you

would obtain in the second order formalism. The triad satisfies δeij = ahij/2,

which has the same form as the field redefinition of the tensor modes in section

1.2.5, h̃rk ≡ a
2
mPlh

r
k, up to a factor of mPl. It should therefore also obey the mode

equation (1.62). We can obtain the equation of motion for the perturbation δeij

from Hamilton’s equations (derived for the full Ashtekar variables) by keeping only

the first order part. Later in this section I will derive the same equations from a

perturbed Hamiltonian instead.

The Hamiltonian constraint in the Ashtekar formalism for a general γ is given by

[116]:

H =
m2

Pl

2

∫
d3xNEa

i E
b
j

[
εijk(F

k
ab +H2εabcE

c
k)− 2(1 + γ2)Ki

[aK
j
b]

]
. (2.42)

Let me define the new quantities appearing in (2.42): The field strength F i of the

Ashtekar connection Ai is given by

F i
ab = ∂aA

i
b − ∂bAia + εijkAjaA

k
b , (2.43)

Ki is the extrinsic curvature of the spatial surfaces,

Ki
a =

Aia − ωia(E)

γ
(2.44)

(on shell this becomes Ki
a ≈ ω0i

a ) and N = 1/a2 is the lapse density. For a SD/ASD

connection, γ = ±i, the term involving the extrinsic curvature vanishes, greatly

simplifying the constraint.

We also need to take into account a Hamiltonian boundary term [141, 142, 143],

HBT = −m2
Pl

∫
dΣaNεijkE

a
i E

b
jAbk . (2.45)
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Although the boundary term is often ignored by imposing fall-off condition at infinity

[143, 144], this cannot be done in general, e.g. when using a plane wave expansion.

Therefore, it will turn out to be essential to include the boundary term in order to

recover the correct classical solution.

The full Hamiltonian has two other constraints [116] [as was shown in the Holst

action (2.22)], the Gauss constraint

Gi = DaE
a
i = ∂aE

a
i + εijkA

j
aE

a
k ≈ 0 , (2.46)

and the vector constraint

Vb = Ea
i F

i
ab ≈ 0 , (2.47)

which is a linear combination of the Gauss and diffeomorphism constraint. Both

constraints are satisfied by the background solution. It can be checked that they

are also satisfied to first order using the perturbed variables (2.38) and (2.39). We

will usually not be concerned with these constraints, as they do not encode the

dynamics of the theory, but I will comment on their significance when perturbing

the Hamiltonian to second order later.

Hamilton’s equations

To derive Hamilton’s equations for the full Ashtekar variables, we need to make use

the Poisson brackets in eq. (2.24) and remember the rule {A,BC} = {A,B}C +

B{A,C}. Hamilton’s equations for γ = ±i (where the terms proportional to (1+γ2)

in eq. (2.42) can be ignored) take a fairly concise form:

Aia
′

= {Aia,H} = γNεijkE
b
j

(
F k
ab +

3

2
H2εabcE

c
k

)
, (2.48)

Ea
i
′ = {Ea

i ,H} = −γεijkDb(NE
a
jE

b
k) , (2.49)

where Da is the covariant derivative taken with the connection Ai. We can obtain

evolution equations for the perturbations by plugging eq. (2.38) and (2.39) into

(2.48) and (2.49) and expanding to first order. This gives the Hamilton equations

for the perturbations,

a′ij = 2γH2a2δeij − γεinm∂namj , (2.50)

δe′ij =
1

γ
(aij − εinm∂nδemj) . (2.51)
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Hamilton’s equation for δeij is the same as (2.40), i.e. it simply encodes the torsion

free condition which must be satisfied on shell. Taking the derivative of (2.51), and

eliminating the time derivative of the perturbed connection through (2.50), makes

it possible to obtain a second order equation for δeij, independent of the connection:

δe′′ij −
(
∇2 +

2

η2

)
δeij = 0 . (2.52)

This is the same as eq. (1.62) in real space, proving that classically, the standard for-

malism of cosmological perturbation theory and the Ashtekar framework are equiv-

alent, at least for the case γ = ±i. Note that γ has dropped out of the equation, as

it should not affect any classical results.

The Hamiltonian (2.42) of the Ashtekar formalism has been chosen such that it

can be related to the ordinary Einstein-Hilbert action by a change of variables, for

any choice of γ. Therefore we know that eq. (2.52) needs to hold in the general case

as well. This will help us in deriving Hamilton’s equations for the perturbations.

For a general γ, Hamilton’s equations, derived for the full Ashtekar variables, are a

lot more complicated than in the SD/ASD case. Taking the Poisson brackets with

the Hamiltonian (2.42), we obtain the same expression as in eq. (2.48) and (2.49),

plus additional terms proportional to (1 + γ2):

Aia
′

= γNεijkE
b
j

(
F k
ab +

3

2
H2εabcE

c
k

)
− γ(1 + γ2)NEb

j (K
j
bK

i
a −Kj

aK
i
b)

−m2
Pl(1 + γ2)

∫
d3yNEb

jE
c
k{Aia(x), ωj[bω

k
c]} (2.53)

Ea
i
′ = −γεijkDb(NE

a
jE

b
k) + (1 + γ2)N(Ea

i E
b
j − Ea

jE
b
i )K

j
b . (2.54)

The Poisson bracket {A, ω(E)} is a very long and messy expression, so the last

term of eq. (2.53) is left unexpanded. As for the case γ = ±i, we can obtain

the evolution equations for the perturbations by substituting the definition of the

Ashtekar variables into (2.53) and (2.54) and expanding to first order.

In the case of the triad, this yields the same expression as before, eq. (2.51).

We would like to avoid having to work out Hamilton’s equation for aij explicitly as

it would involve having to compute the unexpanded Poisson bracket in (2.53). As

we know that eij needs to satisfy the equation of motion (2.52), we can actually

avoid doing the explicit calculation and simply use eq. (2.52) and (2.51) to deduce

Hamilton’s equation for the connection. It should contain the terms on the RHS

of eq. (2.50) plus additional terms proportional to (1 + γ2), such that it reduces to

the old expression for γ = ±i. Carrying out these manipulations, we finally obtain
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Hamilton’s equations for the perturbations for a general value of γ:

a′ij = 2γH2a2δeij − γεinm∂namj +
1 + γ2

γ
εinm∂n(amj − εmkl∂kδelj) , (2.55)

δe′ij =
1

γ
(aij − εinm∂nδemj) . (2.56)

At first glance, it might seem odd that these expressions yield the same equation of

motion for the triad [eq. (2.52)] as in the case γ = ±i, considering the connection

equation has acquired an additional term in 1+γ2 compared to eq. (2.50). However,

this is necessary as terms proportional to 1+γ2 do actually appear in the derivation

of the result for the γ = ±i case, where they can be set to zero. These terms must

be present in the case of general γ.

Second order Hamiltonian

We have found the equations of motion for the perturbations by perturbing the

full Hamilton equations. However, to be able to quantize the theory, we need to

identify the perturbed Hamiltonian. This exercise is not trivial; as we will see in the

following, a fair number of subtleties need to be taken into account before arriving

at the correct result.

The perturbed Hamiltonian should contain tensor perturbations and encode the

dynamics of gravitons. Therefore, we know that the constraintH ≈ 0, which demon-

strates the lack of dynamics, cannot apply to the perturbative Hamiltonian which

we would like to quantize. Let us think about the Hamiltonian to different orders

in the perturbative expansion.

The first order Hamiltonian is trivially zero (once the other constraints are used).

The second order Hamiltonian, on the other hand, includes two terms,

2H = 2
1H + 2

2H , (2.57)

where 2
1H contains products of first order perturbations, and 2

2H is linear in second

order perturbations in the triad and connection. Only the sum of these terms

vanishes on shell, 2H ≈ 0. We can therefore identify the first term, 2
1H, with the

dynamical Hamiltonian to second order, while the second term 2
2H simply encodes

the backreaction or compensation due to the non-linearity of the gravitational field,

which ensures that the Hamiltonian constraint is satisfied. Therefore, we will need

to calculate 2
1H to understand graviton dynamics.

Let me also stress that in the Ashtekar formulation, off-shell, the Hamiltonian

is not real, due to the presence of the complex Immirzi parameter γ. Of course,
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imposing the constraints, the Hamiltonian becomes weakly zero and is therefore

manifestly real. However, as the constraint does not apply to the dynamical second

order Hamiltonian, 2
1H is indeed complex. The complexity of 2

1H will have an effect

on perturbation theory, and the novelties I will describe can be traced back to this

fact. Even though a complex Hamiltonian might seem strange, the quantum theory

we set up later (section 2.3.4) will still be well defined. All classical results can be

recovered and the quantum Hamiltonian will turn out to be hermitian after fixing

the inner product.

Before proceeding, note that the other constraints are also not zero when con-

sidering only the second order part that is quadratic in first order perturbations.

Specifically, for the Gauss constraint we get

2
1Gi = −εijkajaδeak 6= 0 . (2.58)

When deriving (2.42) from the usual ADM action, the Gauss constraint and the

torsion free condition are used [116]. Therefore, non-zero terms proportional to 2
1Gi

and 2
1T

a will appear in the expression for 2
1H. However, it can be checked that these

additional terms result in a full divergence and can therefore be ignored.

By expanding the Hamiltonian (2.42) to second order we obtain:

2
1H =

m2
Pl

2

∫
d3x

{
1

γ2
aijaij + 2εijkδeli∂jakl − 2H2a2δeijδeij

+
2

γ
Haδeijaij − 2

1 + γ2

γ
Haδeijεikl(∂kδelj)

−1 + γ2

γ2

[
εikl(∂kδelj)aij + εiklaij(∂kδelj)− εiklεjmn(∂kδelj)(∂mδeni)

]}
,

(2.59)

where we kept the ordering as it appeared in the calculation, as it will affect the

quantization. Only the first four terms survive for γ = ±i. This expression is not the

correct perturbative Hamiltonian, however: it does not reduce to the Hamiltonian

(1.59) obtained for tensor perturbations in the second order formalism on shell, i.e.

when using the torsion free condition (2.40). This is due to two reasons.

First, we have not yet included the boundary term (2.45) at the same order and

level in perturbation theory (second order terms quadratic in first order variables).

It is given by
2
1HBT = m2

Pl

∫
dΣiεijkδeljalk . (2.60)

To make this into a volume instead of a surface integral, we use Stokes’ theorem [53]
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which introduces a divergence,

2
1HBT =

m2
Pl

2

∫
d3x 2εijk∂i(δeljalk) , (2.61)

where we introduced factors of two to obtain the same pre-factor as in (2.59). The

derivative term can be split into two contributions, one of which cancels the second

term of eq. (2.59) and the other is −2εijk(∂jδeli)akl.

The second issue is more subtle and related to the terms proportional to H in

(2.59). There should not be any terms linear in the Hubble rate, as we want to

rederive the Hamiltonian for ordinary tensor perturbations, eq. (1.59), where the

only explicitly time dependent term is a′′/a, which in de Sitter is given by 2/η2 =

2a2H2 and is therefore quadratic in H.

To understand what has gone wrong, recall the perturbed expression for the triad

and connection:

Aia = γHaδia +
aia
a
, (2.62)

Ea
i = a2δai − aδeai . (2.63)

Instead of thinking of this as a zero order part plus a perturbation, you can also

regard it as a canonical transformation [145]: we have replaced variables (Aia, E
b
j )

with variables (aia, δe
b
j), which have the same symplectic structure as the original

variables (the fact that the Poisson brackets (2.41) have a minus sign compared to

(2.24) is related to the fact that we defined the perturbation δebj in the densitized

triad, not its inverse, initially. We could also absorb the minus sign into a field redefi-

nition of the triad perturbation). Such a transformation can always be performed for

canonical systems, regardless of whether the new variables are small perturbations.

In this viewpoint, instead of “freezing” the background and considering spacetime

perturbations around it, we regard the perturbed variables as equivalent to the full

Ashtekar variables.

If the canonical transformation is explicitly time dependent (which it is as a is a

function of time), the Hamiltonian in terms of the new variables, denoted by K, is

related to the old Hamiltonian by a generating function F [145]:

K = H +
∂F

∂η
. (2.64)

To obtain the correct Hamiltonian, in principal we therefore need to compute the

generating function. However, again it is possible to “cheat” slightly by using consis-

tency arguments instead of performing explicit calculations. We know that it should
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be possible to derive Hamilton’s equations for the perturbations by taking the Pois-

son brackets (2.41) with the (correct) perturbed Hamiltonian to second order. By

demanding consistency with equations (2.55) and (2.56), which were obtained from

perturbing the full Hamilton’s equations, we find that the appropriate generating

function must be

∂F

∂η
= −m

2
Pl

γ

∫
d3xHaδeij

[
aij − (1 + γ2)εikl∂kδelj

]
.

Adding this term to the Hamiltonian in (2.59) eliminates the second line, i.e. the

terms proportional to H. The final expression, taking the boundary term (2.61) into

account, is therefore:

Heff =
m2

Pl

2

∫
d3x

[
1

γ2
aijaij − 2H2a2δeijδeij +

(
1− 1

γ2

)
εikl(∂kδelj)aij

−
(

1 +
1

γ2

)
εiklaij(∂kδelj) +

(
1 +

1

γ2

)
εiklεjmn(∂kδelj)(∂mδeni)

]
.

(2.65)

This corresponds to the effective perturbative Hamiltonian, which can be used to

quantize the theory in terms of graviton states.

By using the on-shell condition (2.40), we can derive the Hamiltonian in terms of

the triad only, remembering 2a2H2 = a′′/a:

Heff on−shell =
m2

Pl

2

∫
d3x

[
δe′ijδe

′
ij + (∂kδeij)

2 − a′′

a
δeijδeij

]
. (2.66)

After identifying the two physical polarizations of the triad by using appropriate

mode expansions in the next section, it will be clear that this is exactly the same as

expression as (1.59), the second order Hamiltonian for tensor modes derived in the

second order formalism.

2.3.3. Fourier space expansion

To be able to quantize the theory, we need to expand the perturbed variables in terms

of Fourier modes. However, we need to be careful that we perform this expansion

correctly, by taking into account two separate, but related points.

Firstly, note that in the Ashtekar formalism, the connection is initially complex

and we are not enforcing any reality conditions before quantizing. Therefore, we

must have graviton and anti-graviton modes in the expansion. This means that the

negative and positive frequencies in the field expansion are initially independent (so
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compared to eq. (1.45), we should have a different operator bk associated with the

second term). Secondly, we will make the common field theory choice stipulating

that the spatial vector k points in the direction of propagation for both positive and

negative frequency terms. The reality conditions will then identify gravitons and

anti-gravitons moving in the same direction, not in opposite directions.

This choice not always been made in previous literature on the subject, where non-

physical couplings between k and −k modes appeared in the physical Hamiltonian

inside the horizon [144, 146]. These should only be present outside the horizon,

where they represent the production of particle pairs by the gravitational field (with

the particles in each pair moving in opposite directions) [147].

We therefore make the following Fourier expansion:

δeij =

∫
d3k

(2π)
3
2

∑
r

εrij(k)ẽr+(k, η)eik·x + εr?ij (k)ẽ†r−(k, η)e−ik·x ,

aij =

∫
d3k

(2π)
3
2

∑
r

εrij(k)ãr+(k, η)eik·x + εr?ij (k)ã†r−(k, η)e−ik·x , (2.67)

where ẽrp(k, η) = erp(k)Ψe(k, η) and ãrp(k, η) = arp(k)Ψrp
a (k, η), and εrij are polar-

ization tensors. In a frame where the direction i = 1 is aligned with k, they are

given by [43]:

ε
(r)
ij =

1√
2

 0 0 0

0 1 ±i
0 ±i −1

 . (2.68)

Eq. (2.67) has the same form as the mode expansion for tensor perturbations (1.57)

performed in section 1.2.5, but now with an additional negative frequency term

which is independent of the first, as required. The amplitudes arp(k) and erp(k) have

two indices (in contrast with some of the previous literature [144, 146]): r = ±1 for

right (R) and left (L) helicities, and p for graviton (p = 1) and anti-graviton (p = −1)

modes (which were not present in eq. (1.57), where the tensor perturbations were

manifestly real).

We can assume that the amplitudes arp and erp, which will correspond to annihi-

lation operators upon quantization, are equal, and the differences can be absorbed

into the mode functions Ψe and Ψa. Imposing the on-shell condition we will find

that while Ψe is independent of helicity and graviton states, the mode functions for

the connection, Ψa(k, η), must carry an r, p dependence.
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Mode functions

As we have seen that the Ashtekar formalism is equivalent to the second order

formalism of section 1.2.5, we know that the mode functions of the triad will satisfy

the equation of motion (1.62)

Ψ′′e +

(
k2 − 2

η2

)
Ψe = 0, (2.69)

where ′ denotes differentiation with respect to conformal time. This has the Bunch-

Davies solution given in eq. (1.62),

Ψe =
e−ikη

2
√
k

(
1− i

kη

)
. (2.70)

The boundary condition in the far past, |kη| � 1 , is

Ψ(k, η) ∼ e−ikη . (2.71)

This shows that k can be regarded as the direction of propagation of the wave as the

exponentials in which k appears can be written in four-vector form as e−ikηeik·x =

eikµx
µ
, kµk

µ = 0.

Let us find an expression for the mode functions of the connection on-shell. We

need to plug the Fourier space expansion (2.67) into the classical solution of the

connection derived from the torsion free condition, eq. (2.40). Making use of the

identity

εinlknε
(r)
lj = −irkε(r)ij , (2.72)

we find

Ψrp
a = (γR + pγI)Ψ

′
e + rkΨe . (2.73)

This expression can be simplified inside the horizon (k|η| � 1), when the boundary

condition (2.71) holds:

Ψrp
a = Ψek (r − iγR + pγI) , (2.74)

There is only a dependence on p if γ has an imaginary part and for a purely real

γ, Ψr
a would be the same for gravitons and anti-gravitons. This is to be expected,

as for a manifestly real theory we would not have needed to expand in terms of two

different operators ar+ and ar−, but just a single ar.

Before carrying on with the quantization of the perturbations, let us briefly in-

vestigate the relationship between the helicity states, labelled by r, and the duality
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states, defined by γ = ±i. In this case, eq. (2.74) becomes

Ψrp
a = (r − ipγ)kΨe . (2.75)

For an SD connection, iγ = −1, and the quantity in brackets is simply (r + p).

This is clearly zero if r and p have different signs. Therefore, the only components

of the connection that survive in the self dual case are the right handed (r = 1)

positive frequency of the graviton (p = 1) and the left handed (r = −1) negative

frequency of the anti-graviton (p = −1). The ASD connection has iγ = +1 and

therefore contains the remaining degrees of freedom, right handed anti-graviton and

left-handed graviton. The split of the states into SD and ASD parts is summarized

in table 2.1.

r = + [R] r = − [L]
p = + [G] SD ASD
p = − [G] ASD SD

Table 2.1.: Relationship between helicity and duality states

This analysis shows that helicity modes and duality modes do not align, i.e. the

SD connection carries both right and left-handed helicity states and similarly for the

ASD connection. This point has been highlighted in [148], but it requires performing

the correct Fourier space expansion including graviton and anti-gravitons states and

was therefore missed in [144, 146].

Reality conditions

When we set up the Hilbert space of quantum states in section 2.3.4, we will need

to impose reality conditions to relate graviton and anti-graviton states (and their

Hermitian conjugates), which will enable us to obtain the physical degrees of free-

dom. The reality conditions will eventually be used to fix the inner product, but it

is instructive to obtain the corresponding conditions on the operators.

The metric is real, δeij = δeij. Imposing this on the Fourier expansion, we find

er+(k) = er−(k) . (2.76)

Therefore, graviton and anti-graviton are identified for each polarization and each

mode k. This is a good check that the expansion in eq. (2.67) is physically sensible,

as we do not get relations between different polarizations or wavevectors k and
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−k. On-shell, the triad therefore only needs one set of creation and annihilation

operators in its Fourier expansion.

For the connection, the torsion free condition and the reality condition are linked:

Although the connection can be complex, it must satisfy the torsion-free condition,

which will ensure that the metric is real. From the defining expression for the

Ashtekar connection, eq. (2.28), we know that

<Ai = ωi + γRω
0i , (2.77)

=Ai = γIω
0i . (2.78)

There are two reality conditions for the connection, but we only need to impose

one as a constraint, as the dynamical evolution (described by Hamilton’s equations)

will make sure that the second condition is satisfied. Let us see what this implies

for the perturbations aij. Using the solutions for the perturbed spin connection

components, eq. (2.36) and (2.37), we obtain

aij + aij = 2a
(
δωij + γRδω

0
ij

)
= 2εikl∂kδelj + 2γRδe

′
ij , (2.79)

aij − aij = 2aiγIδω
0
ij = 2iγIδe

′
ij . (2.80)

Using the expansion (2.67), in Fourier space this becomes

ãr+(k, η) + ãr−(k, η) = 2rkẽr+(k, η) + 2γRẽ
′
r+(k, η) , (2.81)

ãr+(k, η)− ãr−(k, η) = 2iγI ẽ
′
r+(k, η) , (2.82)

where ãrp = arpΨ
rp
a and ẽrp = erpΨe. The reality condition for the connection we

want to impose as a constraint should be non-dynamical, so let us eliminate the

time derivative of the metric by combining eq. (2.81) and (2.82):

iγ∗ãr+(k, η)− iγãr−(k, η) = 2rkγI ẽr+(k, η) . (2.83)

Its Hermitian conjugate is:

−iγã†r+(k, η) + iγ∗ã†r−(k, η) = 2rkγI ẽ
†
r−(k, η) , (2.84)

where we have used eq. (2.76) to turn p = 1 into p = −1 on the RHS. This shows

that for each r and k there are two independent conditions upon the four operators

arp(k) and erp(k). We will use them later when we define the inner product.

On shell, we can use the full torsion-free conditions, eq. (2.73), which can be
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written as a weak identity on the operators:

ãr−(k, η) ≈ rkẽr + γ∗ẽ′r → ẽr(r − iγ∗)k , (2.85)

ãr+(k, η) ≈ rkẽr + γẽ′r → ẽr(r − iγ)k , (2.86)

where the latter expression is valid in the limit k|η| � 1, c.f. eq. (2.74). These

identities will be useful later when deriving the graviton operators for this theory,

as they will show that one of the graviton modes is unphysical.

Commutation relations

Before we can set up a quantum theory in terms of graviton operators we need to

define the commutation relations for the modes. To do this, we first promote the

Poisson brackets (2.24) and (2.41) of the connection and metric in position space to

commutators:

[
Aia(x), Eb

j (y)
]

= i
γ

m2
Pl

δbaδ
i
jδ(x− y) , (2.87)[

aia(x), δebj(y)
]

= −i γ
m2

Pl

δbaδ
i
jδ(x− y) . (2.88)

Note that these commutators have been derived from the fundamental Poisson brack-

ets of the Ashtekar variables and hence have not been gauge fixed yet, i.e. the TT

projection has not been carried out and we therefore have not identified the two

physical polarizations of tensor perturbations. The Fourier expansion (2.67), on the

other hand, assumed by construction that there are only two helicity states r = ±1.

It was shown in [149] that the appropriate form of the commutator (2.88), taking

care of the gauge fixing, is

[aij(x), δekl(y)] = −i γ
m2

Pl

Pijkl(x− y) , (2.89)

where the delta function is replaced by a function Pijkl(x) which takes care of the

TT projection and is given by

Pijkl(x) =

∫
d3k

(2π)3

∑
r

εrij(k)εr?kl (k)eik·x . (2.90)

To obtain the equivalent of eq. (2.89) for modes, let us first consider the unpro-

jected commutator (2.88) again. Dropping the indices, we can split the metric and

connection into separate positive and negative frequency parts, δe = δe+ + δe−,
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a = a+ + a−, which are given by

δe+(x, η) =

∫
d3k

(2π)
3
2

e+(k, η)eik·x , (2.91)

δe−(x, η) =

∫
d3k

(2π)
3
2

e−†(k, η)e−ik·x , (2.92)

and similarly for a.

Therefore there are four terms in the commutator and, as is standard in QFT

[68], the only non-vanishing equal-time commutators must be given by positive and

negative frequency parts,

[a+(x), δe−(y)] = [a−(x), δe+(y)] = −i γ

2m2
Pl

δ(x− y) . (2.93)

For the modes, this implies

[a+(k), e−†(k′)] = [a−(k), e+†(k′)] = −i(γR + piγI)

2m2
Pl

δ(k− k′) , (2.94)

Taking expression (2.89) for the TT projected position space commutators into

account, we see that the operators we have defined in the Fourier expansion (2.67)

have commutation relation

[ãrp(k), ẽ†sq(k
′)] = −i(γR + piγI)

2m2
Pl

δrsδpq̄δ(k− k′) , (2.95)

where q = −q.
The dependence on δpq̄ shows that we only get non-vanishing commutators when

considering the positive frequency of one variable and the negative frequency of the

other. As before, when we considered the mode functions of the connection, there is

no p dependence if γI = 0, as for a real field there is no distinction between gravitons

and anti-gravitons.

2.3.4. Quantum Hamiltonian

We now have all the ingredients to set up the Hamiltonian in Fourier space which will

be the starting point for the quantum theory. We want to express it in the standard

form where it just reduces to a creation times an annihilation operator, counting

the number of states, c.f. eq. (1.44). In our case, these states will be graviton states

and the operators will create and annihilate gravitons. As we have not imposed the

torsion-free condition yet, the graviton operators will be linear combinations of the
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metric and connection, and only reduce to metric variables on-shell. Due to the

complexity of the Hamiltonian, this exercise is non-trivial. We will find twice as

many particle states as expected as well as unphysical particle production terms.

However, once the correct inner product has been identified, we will reproduce the

expected form of the Hamiltonian.

Note that from now on we will consider the inside horizon limit kη � 1 for which

terms in H can be neglected, as we are not interested in the behaviour of tensor

perturbations outside the horizon where they freeze out.

Inserting the expansion (2.67) into (2.65) and making use of the relations

εrij(k)εs?ij (k) = 2δrs , εrij(−k) = εr?ij (k) , (2.96)

we obtain a lengthy expression for the Fourier space Hamiltonian:

Heff = m2
Pl

∫
d3k

∑
r

1

γ2

{
[
k2
(
γ2 + 1

)
ẽr+(k)− kr

(
γ2 + 1

)
ãr+(k)

]
ẽr+(−k)

+
[
k2
(
γ2 + 1

)
ẽr+(k)− kr

(
γ2 + 1

)
ãr+(k)

]
ẽ†r−(k)

+
[
k2
(
γ2 + 1

)
ẽ†r−(k)− kr

(
γ2 + 1

)
ã†r−(k)

]
ẽr+(k)

+
[
k2
(
γ2 + 1

)
ẽ†r−(k)− kr

(
γ2 + 1

)
ã†r−(k)

]
ẽ†r−(−k)

+
[
kr
(
γ2 − 1

)
ẽr+(k) + ãr+(k)

]
ãr+(−k)

+
[
kr
(
γ2 − 1

)
ẽr+(k) + ãr+(k)

]
ã†r−(k)

+
[
kr
(
γ2 − 1

)
ẽ†r−(k) + ã†r−(k)

]
ãr+(k)

+
[
kr
(
γ2 − 1

)
ẽ†r−(k) + ã†r−(k)

]
ã†r−(−k)

}
.

(2.97)

Hamiltonian for γ = ±i

Before trying to make sense of this monstrosity, it is instructive to study the case

of a SD/ASD connection for which γ2 = −1. In this case, eq. (2.97) reduces to a

much more tractable form:

Heff = m2
Pl

∫
d3k

∑
r

gr−(k)gr+(−k) + gr−(k)g†r−(k)

+ g†r+(k)gr+(k) + g†r+(k)g†r−(−k) , (2.98)
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where

gr+(k) = ãr+(k) , (2.99)

g†r+(k) = −ã†r−(k) + 2krẽ†r−(k) , (2.100)

gr−(k) = −ãr+(k) + 2krẽr+(k) , (2.101)

g†r−(k) = ã†r−(k) , (2.102)

which can be identified as the the graviton (p = 1) and anti-graviton (p = −1)

creation and annihilation operators g†rp, grp. Note that the creation and annihilation

operators for each index r, p are only hermitian conjugates of each after the reality

conditions (2.83) and (2.84) have been imposed.

Their commutation relations can be derived from eq. (2.95):

[grp(k), g†sq(k
′)] = − iγ

m2
Pl

(pr)kδrsδpqδ(k− k′) . (2.103)

The Hamiltonian (2.98) has some unusual features. Firstly, for each k we find four

independent modes (r = ±1 and p = ± 1), instead of two as would be expected for

tensor perturbations. Half of these states have negative energy (those with iγ = pr,

which leads to a minus sign in the commutator instead of the usual plus sign). For

example, for the SD connection γ = i the left “graviton” (r = −1 and p = 1)

and the right “anti-graviton” (r = 1 and p = −1) carry negative energy. Secondly,

there are unphysical production terms in the Hamiltonian (2.98) which couple k and

−k modes. These pump terms represent pair production [147], and should not be

present in the subhorizon limit k|η| � 1 where spacetime is approximately flat.

Both of these pathological features are not present for classical solutions, as they

vanish on-shell when imposing the conditions (2.85) and (2.86). For example, for

γ = i, the on-shell conditions imply aR− ≈ 0 and aL+ ≈ 0. When also imposing the

reality conditions such that we can consider the creation and annihilation operators

as hermitian conjugates of one another, g†rp = (grp)
†, we find that two of the operators

are eliminated. Only g†R+, g
†
L−, which create positive energy states, are non-zero.

Thus, the negative energy modes do not exist classically and you can check that the

pump terms also vanish.

As mentioned previously, quantum mechanically we do not want to treat the

reality conditions as operator conditions but impose them on the inner product,

which should also remove the unphysical states from the Hilbert space. We will use

a holomorphic representation where we consider the states as analytic functions over

the complex domain as introduced by Bargmann [150].
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As mentioned above, the reality conditions simply ensure that g†rp is indeed the

hermitian conjugate of grp. This condition is sufficient to fix the inner product [144,

151, 152]. A holomorphic representation for wavefunctions Φ = 〈z|Φ〉 is defined as

one which diagonalises g†rp [150]:

〈z|g†rp|Φ〉 = zrp〈z|Φ〉 , (2.104)

where zrp(k) are complex eigenvalues. Similarly to the case of deriving the action

of the momentum operator on states when working in the usual position space

representation, we can derive the action of grp from the commutator (2.103):

〈z|grp|Φ〉 = −i γ
m2

Pl

(pr)k
∂

∂zrp
〈z|Φ〉 . (2.105)

We want to define an inner product in this representation. The decomposition of

the unity operator for the complex eigenvectors |z〉 is given by [152]

1 =

∫
dzdz̄eµ(z,z̄) , (2.106)

where eµ(z,z̄) is a positive integration measure (for the normal position representation

with eigenstates |x〉, it is just equal to 1). The inner product can then be written as

〈Φ1|Φ2〉 =

∫
dzdz̄eµ(z,z̄)Φ̄1(z̄)Φ2(z) . (2.107)

The defining condition of the hermitian conjugate of an operator is 〈Φ1|g†rp|Φ2〉 =

〈Φ2|grp|Φ1〉, which can be used to derive an expression for the measure. Using

the defining relations for the creation and annihilation operators, eq. (2.104) and

(2.105), and the definition of the inner product (2.107), we obtain a differential

equation for µ(z, z̄):
iγ

m2
Pl

(pr)k
∂µ

∂z̄rp
= zrp . (2.108)

This can be integrated to give

µ(z, z̄) =

∫
dk
m2

Pl

k

∑
rp

pr

iγ
zrp(k)z̄rp(k) , (2.109)

which fixes 〈Φ1|Φ2〉. The vacuum of this representation is defined by grpΦ0 = 0

which gives

Φ0 = 〈z|0〉 = 1 , (2.110)
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and particle states are monomials in the respective variables,

Φn = 〈z|n〉 ∝ (g†rp)
nΨ0 = znrp . (2.111)

These states are not normalisable for iγ = pr, as in this case the measure is positive

and the exponential in (2.107) blows up. Hence, these states should be removed

from the physical Hilbert space and therefore their associated operators grp should

not appear in the Hamiltonian. For γ = i, this only leaves two physical modes

gphR = gR+ and gphL = gL−.

For the SD connection we therefore obtain the physical Hamiltonian

Hph
eff ≈ m2

Pl

∫
dk (gphL g

ph
L

†
+ gphR

†
gphR ) . (2.112)

This looks like the standard Hamiltonian for a harmonic oscillator, with the differ-

ence that only the left handed graviton needs to be normal ordered and produces a

vacuum energy. For the ASD connection only the right handed graviton produces

vacuum energy. Left and right handed gravitons are not on the same footing, and

the theory is chiral. We will explore this chirality in more detail after finding the

graviton operators for general γ.

Hamiltonian for complex values of γ

Let us focus on the general Hamiltonian (inside the horizon) in terms of modes again,

eq. (2.97). We need to identify linear combinations of metric and connection that

can act as graviton operators, equivalent to grp and g†rp for γ = ±i. We want to end

up with two physical operators corresponding to the two independent polarizations,

however initially there should be four different operators. Two of them will be zero

on-shell, representing the unphysical modes, while the other two should commute

with them [c.f. eq. (2.103)] and reduce to metric variables on-shell.

To find the general expression, consider the graviton operators for γ = ±i and

find linear combinations of them that satisfy these conditions. After some algebraic

manipulations that make use of the on-shell conditions (2.85) and (2.86), we can

identify suitable operators:

GrP+ =
(r − iγ)gr+ − (r + iγ)gr−

−2γi
, (2.113)

GrP− =
(r + iγ)gr+ − (r − iγ)gr−

−2γi
, (2.114)

where the new index P = P+,P− labels physical and non-physical modes. This
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notation is used to avoid confusions with p = ±1 used for positive and negative fre-

quencies, and except for the cases of γ = ±i, the two indices do not align. Using the

on-shell conditions, we find that GrP− ≈ 0 and GrP+ ≈ 2rker as required, and you

can check that their commutator is zero. The index P = P+ = 1 therefore denotes

physical modes, which reduce to the metric classically (and quantum mechanically

will have positive energy and norm), and P = P− = −1 denotes modes that vanish

on-shell (and quantum mechanically will have negative energy and norm).

We can use the expressions in eq. (2.99) to (2.102) to write the new operators

GrP in terms of metric and connection variables. We can find expressions for the

creation operators by demanding that they are hermitian conjugates of the anni-

hilation operators once the reality conditions (2.81) and (2.82) are imposed. The

operators and their commutators are listed in table 2.2.

Physical P = P+ = 1 Unphysical P = P− = −1

GrP+ = −r
iγ

(ãr+ − k(r + iγ)ẽr+) GrP− = −r
iγ

(ãr+ − k(r − iγ)ẽr+)

G†rP+
= r

iγ
(ã†r− − k(r − iγ)ẽ†r−) G†rP− = r

iγ
(ã†r− − k(r + iγ)ẽ†r−)[

GrP+(k), G†sP+
(k′)

]
= k

m2
Pl
δrsδ(k− k′)

[
GrP−(k), G†sP−(k′)

]
= − k

m2
Pl
δrsδ(k− k′)

Table 2.2.: Physical and unphysical graviton modes

The Hamiltonian (2.97) can be written in terms of the new graviton operators as

Heff =
m2

Pl

2

∫
d3k

∑
r

−(1 + iγr)GrP+(k)GrP−(−k)− (1− iγr)GrP−(k)GrP+(−k)

+(1 + iγr)GrP+(k)G†rP+
(k) + (1− iγr)G†rP+

(k)GrP+(k)

+(1− iγr)GrP−(k)G†rP−(k) + (1 + iγr)G†rP−(k)GrP−(k)

−(1− iγr)G†rP+
(k)G†rP−(−k)− (1 + iγr)G†rP−(k)G†rP+

(−k) .

(2.115)

This is the generalization of eq. (2.98). As before, there are too many graviton

states as well as unphysical pair production terms. They all vanish on shell where

the operator corresponding to P− is zero. We can now set up the Hilbert space,

fixing the inner product by requiring that the operators in table 2.2 are indeed

hermitian conjugates of one another.
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Again, we use a holomorphic representation which diagonalises G†rP , i.e.:

〈z|G†rP |Φ〉 = zrP〈z|Φ〉 . (2.116)

The commutation relations in table 2.2 determine the action of the annihilation

operators,

〈z|GrP |Φ〉 = P k

m2
Pl

∂

∂zrP
〈z|Φ〉 . (2.117)

This is formally very similar to the case γ = ±i, but note that the variables zrP are

not the same as before. Using the definition of the inner product eq. (2.107), and

the same formal condition 〈Φ1|G†rP |Φ2〉 = 〈Φ2|GrP |Φ1〉, we arrive at an expression

for the measure:

µ(z, z̄) =

∫
dk
m2

Pl

k

∑
rP

PzrP(k)z̄rP(k) . (2.118)

The vacuum state

Φ0 = 〈z|0〉 = 1 , (2.119)

and the particle states

Φn = 〈z|n〉 ∝ (G†rP)nΨ0 = znrP , (2.120)

have the same form as before (but are defined in terms of new variables zrP). The

measure implies that states with P = P− = −1 are not normalisable and the oper-

ators corresponding to P− should be removed from the Hamiltonian. The physical

Hamiltonian for a general value of γ is therefore:

Hph
eff ≈

m2
Pl

2

∫
dk
∑
r

[Gph
r G

ph†
r (1 + irγ) +Gph†

r Gph
r (1− irγ)] , (2.121)

where Gph
r = GrP+ .

Vacuum energy

Only the first term in the physical Hamiltonian (2.121) needs to be normal ordered,

using the commutation relation in table 2.2. This leads to a chiral (r-dependent)

term corresponding to the vacuum energy, Vr ∝ 1 + irγ. The asymmetry in the

vacuum energy between the right- and left-handed gravitons is given by

VR − VL
VR + VL

= iγ . (2.122)
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This equation is valid for any complex γ. There are a few points of interest to note.

If γ is purely imaginary and |γ| > 1, the vacuum energy Vr ∝ 1 + irγ of one of the

modes becomes negative. Negative vacuum energy is often associated with fermionic

degrees of freedom [153], but this will not be investigated further here.

More importantly, if γ has a real part the VE for each r is complex. When

right and left helicities are added together, however, we simply obtain VR + VL ∝
1 + iγ + 1− iγ = 2, so the total vacuum energy is indeed real.

The reason we obtain a chiral, complex vacuum energy is because the Hamiltonian

is not hermitian before normal ordering: Although it is real on-shell for any value

of γ (which does not appear in any on-shell expressions) and the graviton operators

themselves are hermitian, unless γ is imaginary, taking the hermitian conjugate of

the perturbative physical Hamiltonian (2.121) does not yield H† = H.

Hermiticity is restored after normal ordering, when γ drops out of the Hamiltonian

and is only present in the vacuum energy term. As the latter is not physically

measurable (and when coupled to the Einstein equations, we need to consider the

total which is indeed real), this result might not be too concerning. However it

might also imply that it is more physical to consider only a purely imaginary γ

or that we should use a symmetric ordering for the Hamiltonian: When we first

defined the Hamiltonian in eq. (2.42), we picked an ordering of the form EEF (the

field strength contains connection terms, which do not commute with metric terms).

Knowing which ordering in quantum mechanics is “correct” is an issue which can

ultimately only be resolved by experiment. It can be checked that using an EFE

or 1
2

(EEF + FEE) ordering would satisfy H = H† on and off-shell, for any value

of γ. In this case there would be no chirality in the vacuum energy. However, note

that we would obtain the same graviton operators regardless of ordering, and as will

see now, chirality will still be present in the vacuum fluctuations.

2.3.5. Chiral vacuum fluctuations

The central gravitational variable in the Ashtekar formalism is the connection, not

the metric, which can be seen from the Holst action (2.22). Therefore, the power

spectrum of tensor perturbations should be derived from the (TT-projected) per-

turbations of the connection as opposed to the metric. As in the second order

formalism, the Ashtekar tensor perturbations will have an effect on the CMB fluc-

tuations, especially on the polarization. We will not need to worry about the exact

normalization of the tensor fluctuations, as we are mainly interested to see whether

the complex nature of the connection will play a role.
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The analogous expression to the tensor power spectrum (1.65) is given by

〈0|A†r(k)Ar(k
′)|0〉 = Pr(k)δ(k− k′) , (2.123)

where Ar(k) represents Fourier space connection variables with handedness r, i.e.

Ar(k) = ãr+(k)e−ik·x + ã†r−(k)eik·x . (2.124)

Note that we could have picked a different ordering in the 2-point function (2.123),

so in general we have to consider

A†A→ αA†A+ βAA† , (2.125)

with α+β = 1 and α, β > 0. As opposed to the vacuum energy, we will see that the

power spectrum (2.123), being a measurable variance, is always real and positive.

To compute the physical power spectrum, we need to relate the connection vari-

ables to the physical graviton modes labelled by P+ in table 2.2. As we need to go

on-shell to define physical states, we can use conditions (2.85) and (2.86) to express

the metric variables in terms of the connection:

ẽr+ =
ãr+

k(r − iγ)
, ẽ†r− =

ã†r−
k(r + iγ)

. (2.126)

These relations can be subsituted into the equations for G†rP+
, GrP+ in table 2.2,

which gives expressions for the physical connection modes aphr+ and aph†r− . The re-

maining modes can be obtained by taking hermitian conjugates (as we are on-shell,

the reality conditions have been imposed). We find

aphr+ =
r − iγ

2r
GrP+ , (2.127)

aph†r+ =
r + iγ∗

2r
G†rP+

, (2.128)

aphr− =
r − iγ∗

2r
GrP+ , (2.129)

aph†r− =
r + iγ

2r
G†rP+

. (2.130)

We can see that the physical connection modes depend solely on the graviton oper-

ators, so they will be the same for any ordering of the Hamiltonian. Plugging these
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expressions into (2.124) we obtain for the two connection helicity states:

Aphr (k) =
r − iγ

2r
GrP+(k)e−ik·x +

r + iγ

2r
G†rP+

(k)eik·x ,

Aph†r (k) =
r − iγ∗

2r
GrP+(k)e−ik·x +

r + iγ∗

2r
G†rP+

(k)eik·x .

This means that the power spectrum (2.123) is given by (using GrP+(k′)|0〉 = 0)

〈0|Aph†r (k)Aphr (k′)|0〉 = Pr(γ)〈0|GrP+(k)G†rP+
(k′)|0〉 . (2.131)

We could eliminate the expectation value of graviton operators by using their com-

mutator to give us an expression in terms of delta functions. However, we are only

interested in the chiral dependence of the power spectrum Pr, which is given by

Pr(γ) =
(r + iγ)(r − iγ∗)

4
=

1− 2γIr + |γ|2

4
. (2.132)

If γIr < 0, Pr(γ) is obviously positive. Otherwise,

Pr(γ) ∝ 1− 2|γI |+ γ2
I + γ2

R = (1− |γI |)2 + γ2
R , (2.133)

which is also positive for any complex γ. Therefore, the 2-point function is indeed

always real and positive, as required. The chiral asymmetry in the power spectrum

can be written as
PR − PL
PR + PL

= − 2γI
1 + |γ|2

, (2.134)

or, for a general ordering of the 2-point function as in (2.125),

PR − PL
PR + PL

=
2(β − α)γI

1 + |γ|2
. (2.135)

The chirality in the power spectrum of tensor fluctuations is the main new result of

this work, and a big difference to the standard second order formalism described in

section 1.2.5 (which corresponds to the limit |γ| → ∞, for which the Holst action

reduces to the Palatini action).

We can see that if γ was purely real there would be no asymmetry in the vacuum

fluctuations for right and left gravitons. The chirality is related to the fact that for

a γ with an imaginary part the connection is a complex field and therefore we must

expand it in terms of graviton and anti-graviton modes. Note, however, that a real

part in the Immirzi parameter does affect the absolute value of the asymmetry due

to the factor |γ| in the denominator of (2.134). We can also see that for a completely
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symmetric ordering of the 2-point function, α = β, the RHS of eq. (2.135) is zero.

Hence, even if the Ashtekar formalism was the correct description of gravity, we

would not obtain a chiral power spectrum if γ was real or the ordering symmetric.

Not measuring chirality would therefore not be able to rule out the theory.

We can plot the power spectrum asymmetry (2.134) against the real and imaginary

parts of γ, see figure 2.1. It is obviously antisymmetric in γI , and the minimum and

maximum are at γ = ±i respectively which are the values that correspond to a

SD/ASD connection. They display the maximum chirality because the Palatini

action can naturally be split into a SD and ASD part [116]. The axis γI = 0

corresponds to a real γ and therefore displays no asymmetry.

Figure 2.1.: Power spectrum asymmetry as a function of a generally complex Immirzi
parameter γ.

Measuring a chiral tensor spectrum

As was mentioned in section 1.3.2, in the absence of parity violation, the TB power

spectrum of the CMB would be zero. In the situation we have just considered,

the chirality of the power spectrum (2.134) breaks parity. The effect of parity

violation on the CMB power spectra was investigated in [57]. It was found that the

ratio between the quadrupole of the TB correlator (zero in standard cosmological

approaches) and the BB correlator is given by

CTB
2

CBB
2

≈ fPBα2 , (2.136)

where α2 ≈ 200 parametrises the relative strength between the TB and BB spectra

and fPB = 2PR−PL
PR+PL

is the parity breaking parameter, which is zero if no chirality is
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present. In our case, we therefore find

CTB
2

CBB
2

≈ 800
(β − α)γI
1 + |γ|2

, (2.137)

for the ratio of tensor induced TB and BB quadrupole modes. Not only would

chirality render the TB correlator non-zero, it would also be easier to detect TB

rather than BB correlation (CTB
2 > CBB

2 ) for a wide range of values of γ, given

approximately by
1

800
< |γ| < 800 . (2.138)

BICEP2 has recently detected B-modes [21] that might have arisen due to tensor

perturbations from inflation, however we do not yet have tensor power spectra over

a large number of multipoles as the experiment only took data from a small patch of

sky. Although there was no hint of parity violation in their analysis so far, this might

change once the full power spectrum becomes available. It will therefore be possible

in the near future to constrain the model I have described. If the TB correlator is

consistent with zero, we know that for Ashtekar gravity to be correct, γ must be

either quite far from the range in eq. (2.138) or real. If a chirality was detected, on

the other hand, it could indeed have originated from this mechanism.

2.3.6. A purely real γ

Before I conclude, let us quickly consider the case of a purely real theory for which

=(γ) = 0. Although it will turn out that we can take the limit =(γ) → 0 in all of

our main results to obtain the answer in the real theory, it is not initially obvious

why this would work, as a real theory is very different from a complex one. I will

describe the main differences and show why our results are still well defined in the

real case.

A purely real theory would require Fourier mode expansions using operators ar

and er without a p index, as there is no need to consider separate sets of creation and

annihilation operators. We therefore would only get two modes for each k and r as

usual in the second order theory. As we ignore the p index, what used to be reality

conditions in the complex theory, where we related modes with different p, are now

just operator conditions, ẽr+ = ẽr− and ãr+ = ãr−. Similarly, the commutation

relations (2.95) have one less index and must be replaced by

[ãr(k), ẽ†s(k
′)] = −i γ

2m2
Pl

δrsδ(k− k′) . (2.139)
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The Hamiltonian, on the other hand, will still have the same form, as p = −1

modes always appear with a dagger and p = +1 modes without, see eq. (2.97). This

enables us to define the same physical and unphysical graviton operators as before,

however without a p index on the RHS, e.g.

GrP+ =
−r
iγ

(ãr − k(r + iγ)ẽr) . (2.140)

Note that as opposed to the complex case, were the graviton operators were only

hermitian conjugates of each other after the reality conditions had been imposed,

for the real theory the reality conditions are satisfied by the metric and connection

operators. Therefore, GrP and G†rP are automatically conjugates of one another,

which can be trivially seen from their definitions.

We still have a non-physical mode, however, which can be eliminated by imposing

the torsion free condition which relates ar to er. As before, we can define a holomor-

phic representations and an inner product, which will show that the non-physical

modes have negative energy and should therefore be excluded. Our Hamiltonian

and Hilbert space will therefore have the same structure as for a general complex γ.

Hence, the real theory can be viewed as the limit =(γ)→ 0 in the sections above.

2.4. Conclusions

I have shown that using the Ashtekar formalism in cosmological perturbation theory

leads to a number of interesting results.

Classically, rederiving the second order Hamiltonian corresponding to tensor per-

turbations is far from trivial. We saw that we need to take boundary terms into

account, as well as regard the change from the full Ashtekar variables to the pertur-

bations as a canonical transformation in order to arrive at the correct form of the

Hamiltonian. I was then able to reproduce the standard result for the equation of

motion of tensor modes, as obtained in the second order formalism.

On the quantum mechanical front there were several novelties. First of all, the fact

that the connection is complex makes the exercise a lot more involved than in the

usual case. We need to expand the fields in terms of positive and negative frequency

operators, which are related by reality conditions. These are not supposed to be

imposed on the operators, but only at the very end when choosing the inner product

of the Hilbert space. We can write the Hamiltonian in terms of graviton creation

and annhilation operators, which are linear combinations of metric and connection.

When fixing the inner product, we find that half of the operators are unphysical,
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demonstrated by them being zero-on shell, when the torsion free condition relating

metric and connection is imposed. This also gets rid of unphysical coupling terms

between k and −k in the Hamiltonian.

As the connection is complex, so is the dynamical, perturbed Hamiltonian. This is

not a problem as we ensure actual observables are real by requiring the Hamiltonian

to be hermitian through the choice of inner product, at least after normal ordering.

The complexity of the Hamiltonian is, however, the origin of the chiral effects we

observe.

Before normal ordering, if γR 6= 0, the Hamiltonian is not hermitian, which results

in an imaginary vacuum energy for each helicity. Non-hermitian Hamiltonians have

been studied before [154] and are not necessarily regarded as problematic. In our

case, the total vacuum energy for both helicities is real, and therefore the non-

hermitian nature might not be physically significant.

The main result of this chapter is the chiral power spectrum of tensor perturba-

tions, which is described in terms of perturbed connection variables. This chirality

is present as long as γ is not purely real, and the strongest effect occurs for the

SD/ASD connection for which γ = ±i. The chirality in the power spectrum is a

novelty compared to the standard second order formalism, and demonstrates that

using different variables to describe spacetime does not necessarily lead to equivalent

results.

A chiral graviton would break parity and therefore lead to a non-zero TB correla-

tor, which can be probed by CMB measurements. As the Planck collaboration will

release their polarization results later this year, it is only a matter of time until the

full power spectrum can be obtained, which will enable us to constrain the value of

the Immirzi parameter.

Although gravitational chirality can be produced in other ways [153, 155, 156],

the mechanism presented here is by far the simplest. If a chiral tensor power spec-

trum was to be observed, it would hint at the Ashtekar formalism being the correct

fundamental description of gravity.
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3. Anisotropic Gravitational Wave

Background from Massless

Preheating

Reheating is one of the least understood periods in the early universe. While nearly

all the elementary particles we observe must have been produced during this period,

we still do not know for sure how the process occurred. Although reheating might

have an effect on the curvature perturbation [157], the main constraint to date

comes from the abundance of light elements which give bounds on the reheating

temperature after thermalisation [158]. However, as was shown in section 1.4, the

detailed preheating dynamics strongly depend on the underlying model of inflation.

Therefore, studying observables that were affected by the reheating process would

give us insight into this period as well as inflation.

Gravitational waves are an ideal candidate to probe the period of reheating, and

therefore inflation, further. As mentioned in section 1.5.2, they will be produced

in large quantities during preheating due to the presence of time-varying matter

inhomogeneities, and their spectrum will peak at a scale that is characteristic of the

preheating dynamics.

If the background of GWs from preheating was to be measured, it would therefore

provide information about the inflaton potential, as well as the couplings of the infla-

ton to other matter fields, which cannot be easily be obtained in other ways. Unlike

the CMB fluctuations, GWs from preheating decouple right upon production (below

the Planck scale), due to their weak interaction with other matter [96]. Therefore,

they do not evolve on their journey towards us, and retain their spectral shape and

frequency (except for a redshift due to expansion), giving us a direct snapshot of

the very early universe. Even though it is currently not possible to directly measure

GW backgrounds from preheating, which peak at very high frequencies [91], it is still

important to characterise them, as they might become a vital tool of observational

Cosmology in the future.

In this section I will discuss GW production from massless preheating, in the
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presence of a light scalar field. As this is a non-linear process, the problem will

naturally have to be solved numerically. I will show that this model leads to an

anisotropic background of GWs today, with relative fluctuations of the order of 1%,

as was presented in [3, 4]. Such anisotropies could arise in any preheating scenario

where a light scalar field is present, providing a novel way to distinguish between

different inflationary models.

I will start by describing gravitational wave production from preheating and how

it can be studied numerically in section 3.1, with particular focus on massless pre-

heating. I will also explain how to relate the frequency and energy density of the

produced GWs to their values today.

In 3.2, I will argue why the presence of a light scalar field, which acquires a scale-

invariant spectrum of perturbations during inflation, would result in anisotropies in

the GW background. The numerical algorithm and the parameters used in the sim-

ulations are the topic of section 3.3, where I will show some results that demonstrate

the usual behaviour of the field dynamics and GW production during preheating.

In 3.4, I will show that the amplitude of GWs strongly depends on the initial value

of the preheating field χ. The main result is presented in section 3.5, where I will

demonstrate that the GW background in this model has a scale invariant spectrum

of fluctuations, with anisotropies of the order of 1%. I will discuss how this effect is

related to the field dynamics. Finally, I will conclude in 3.6 and give an outlook on

future work that could be done in this field.

Note that in this chapter, I will use the Planck mass MPl instead of the more

commonly used reduced Planck mass mPl, which differ by a factor of
√

8π. The

simulation code is based on the publicly available ClusterEasy [159], which intro-

duces dimensionless parameters that are rescaled in terms of the Planck mass. To

make comparison with the simulation results simpler, all other equations will also

be given in terms of MPl.

3.1. Gravitational wave production during

preheating

3.1.1. Studying preheating numerically

The analytic study of preheating presented in sections 1.4.2 and 1.4.3 is valid up to

the point where the system becomes non-linear. This happens when the backreac-

tion of the produced particles becomes large enough to induce correction terms in

the inflaton potential and eventually terminate the resonance. Although analytical
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estimates of when this occurs have been obtained in [66, 67], as in any problem

that contains highly non-linear equations, the actual dynamics are best investigated

using numerical methods.

In the case of preheating, numerical simulations were first performed by [160],where

only a quartic self-coupling of the inflaton was considered. The classical field equa-

tion was solved numerically, and the quantum nature of the problem was taken care

of by setting up fluctuations in the modes φk as random initial conditions. In [161],

interactions with another scalar field were introduced and studied numerically, using

lattice field theory simulations where the fields are discretized on a regular lattice.

These early numerical simulations gave new insight into the resonant behaviour for

different couplings and the dynamics after the onset of non-linearities.

The non-linear regime of preheating is particularly interesting, as it can lead to

the production of a large amount of gravitational waves: due to the amplification of

specific momentum modes during preheating, after enough energy has been trans-

ferred we are left with large, time-dependent inhomogeneities in the classical field

distribution which act as a source for gravitational waves.

Specifically, if a momentum k∗ is amplified, this results in field inhomogeneities

in configuration space of size L∗ ∼ 1/k∗ which introduce an anisotropic stress term

into the stress energy tensor, the transverse-traceless part of which acts as a very

efficient source of GWs, see section 1.5.2. Although initially GWs are produced

on scales corresponding to the amplified momenta, eventually the inhomogeneous

configurations collide and break up into smaller inhomogeneities, which leads to the

production of GW on smaller scales k > k∗ [92]. After the fields relax and the

parametric resonance stops, we are left with a spectrum of GWs which is peaked

around k∗, and its shape will carry information about the generation process.

GW production during preheating is a highly non-linear process and therefore

needs to be studied numerically. This was first done in [90] and more recently in

[91, 93] for the simple chaotic inflation models considered in sections 1.4.2 and 1.4.3.

Furthermore, numerical simulations of gravitational wave production from hybrid

preheating [92] or due to fermions [162, 163] have also been performed.

Unfortunately, if the energy scale of inflation is high, gravitational waves from

preheating will peak at high frequencies f > 1 MHz today. At the time of production,

the causal horizon was much smaller than it is now, and no gravitational waves

could have been produced on scales larger than the horizon. Hence, it would be

difficult to measure them through the B-mode polarization of the CMB, as unlike

the scale-invariant tensor perturbations from inflation, they would only affect the

very highest multipoles. Instead, we need to resort to direct detection, however
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detector technology so far is not sensitive to such high frequencies.

Figure 3.1.: The sensitivity ranges of detectors LIGO, eLISA and BBO, and the
ranges at which GW production from preheating peaks for different
models. The straight line is the scale invariant background from infla-
tion. Figure reproduced from [91]. c©SISSA Medialab Srl. Reproduced by permission of IOP

Publishing. All rights reserved.

Figure 3.1 shows the sensitivity ranges of the currently proposed/operating de-

tectors, and clearly they do not coincide with the range predicted from preheating

(see section 3.1.3 on how to obtain the frequency and energy density of GWs from

preheating today). Note that high frequency detectors, capable of measuring signals

around 100MHz, have recently been proposed [99, 100, 101]. While their sensitivity

is currently too low to detect gravitational waves from preheating, there remains

hope that detector technology could evolve to the extent where we are able to di-

rectly probe this regime in the future.

3.1.2. Gravitational waves from massless preheating

In the following sections, I will investigate the effect of a light scalar field χ, coupled

to the inflaton during preheating, on gravitational wave production. Numerically, it

will be easiest to do this for the massless preheating model with a quartic inflaton

potential,

V (φ, χ) =
λ

4
φ4 +

1

2
g2φ2χ2 . (3.1)

Remember that this model is scale invariant (as the coupling constant is dimen-

sionless, it contains no fixed physical length scale, unlike a model with a mass term

m2φ2) which resulted in equations of motion that were independent of the scale

factor. This makes it particularly convenient for solving numerically on a lattice,
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as one does not have to take the expansion of the universe into account when per-

forming the simulations and can therefore use a fixed lattice size that will cover the

dynamical range at all time steps.

A pure λφ4 model has been ruled out by the recent Planck data [20]. However,

we can modify the potential by including a non-minimal coupling of the inflaton to

gravity of the form ξφ2R. For ξ < 0, this makes the model viable again as it brings

down the tensor to scalar ratio r [164]. If the high value of r suggested by [21]

is confirmed by other experiments, this means that even with a weak non-minimal

coupling |ξ| < 0.1 we can achieve consistency with the data. This term was not

included in the simulations as the B-mode discovery was too late to be accounted

for, however it should not strongly affect the results, as |ξ| is small and the term

will only be significant for large field values of φ during inflation.

The Lagrangian for two interacting scalar fields is

L = −1

2
∂µφ∂

µφ− 1

2
∂µχ∂

µχ− V (φ, χ) , (3.2)

where V (φ, χ) is given by eq. (3.1). The background field evolution can then be

written as [using eq. (1.25)]

φ̈+ 3Hφ̇− 1

a2
∇2φ+ (λφ2 + g2χ2)φ = 0 , (3.3)

χ̈+ 3Hχ̇− 1

a2
∇2χ+ g2φ2χ = 0 . (3.4)

The evolution of the background is determined by the Hubble rate. This is given by

the Friedmann equation (1.15), where the total energy density is the sum of kinetic,

gradient and potential terms (which should be understood as spatially averaged)

H2 =
4π

3M2
Pl

[
φ̇2 + χ̇2 + (∇φ)2 + (∇χ)2 + 2V (φ, χ)

]
. (3.5)

Gravitational waves correspond to transverse and traceless tensor perturbations,

which I will simply refer to as hij with ∂ihij = hii = 0, dropping the TT superscript.

The full spatial metric is therefore given by

gij = a2(t)(δij + hij) . (3.6)

These tensor perturbations are sourced by ΠTT
ij , the TT part of the anisotropic stress

tensor, and their equation of motion in an expanding background is given by eq.
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(1.125),

ḧij + 3Hḣij −
1

a2
∇2hij =

16π

MPl

ΠTT
ij (φ, χ) . (3.7)

We need to determine the anisotropic stress tensor from preheating. We cannot

expect the scalar fields to behave like a perfect fluid, as the resonant amplification

of momentum bands makes the distribution very inhomogeneous. Therefore, Πij is

not simply a spatial perturbation around a perfect fluid background. However, it

is reasonable to define the anisotropic stress tensor as the full energy-momentum

tensor minus the isotropic stress, which is given by the background homogeneous

pressure [93]:

a2Πij = Tij − 〈P 〉gij , (3.8)

where gij is the full metric including perturbations, the scale factor a2 comes from the

background FRW metric and we have only kept terms to first order in perturbations.

Using eq. (1.24) for the energy-momentum tensor of both scalars, we find

Πij =
1

a2
[∂iχ∂jχ+ ∂iφ ∂jφ+ gij(L − 〈P 〉)] . (3.9)

Note that if we do not have a perfect fluid background, there should be an ad-

ditional term hij
(
H2 + 2 ä

a

)
on the LHS of eq. (3.7) coming from the perturbed

Einstein equations [78]. This term ordinarily cancels with the isotropic pressure

perturbation P hij of a perfect fluid [which you can see from the Friedmann equa-

tions, eq. (1.15) and (1.16)] and therefore does not appear in the equation of motion

of tensor perturbations. In this case, where the background is not determined by

a perfect fluid, we should include this term when we calculate hij. However, as

gravitational wave production happens on subhorizon scales for which k � aH, we

can ignore the expansion of the universe and the additional term does not need to

be taken into account [69].

After applying the TT projection, the term proportional to the metric gij in (3.9)

vanishes: This is because after the TT projection, only the tensor perturbation hij

survives. As the term in brackets is also of order O(h) [recall eq. (1.27)], this results

in a second order perturbation which can be neglected [92]. Therefore, the tensor

modes are simply sourced by the TT projection of the field gradients.

To study fluctuations, we need to write eq. (3.7) in Fourier space. I will use the
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following Fourier space convention:

f̃(k, t) =

∫
d3x f(x, t)e−ik·x , (3.10)

f(x, t) =

∫
d3k

(2π)3
f̃(k, t)eik·x . (3.11)

The equation of motion for the fluctuations is given by

ḧij(t,k) + 3Hḣij(t,k)− k2

a2
hij(t,k) =

16π

MPl

ΠTT
ij (t,k) . (3.12)

It is easy to perform the TT projection of the source term in Fourier space by

defining a projector

Λij,lm(k̂) = PilPjm −
1

2
PijPlm, (3.13)

Pij ≡ δij − k−2kikj . (3.14)

Using Λij,lm, we can write

ΠTT
ij (k, t) = Λij,lm(k̂)

∫
dx e−ikx

1

a2
[∂lχ∂mχ+ ∂lφ ∂mφ](x, t) . (3.15)

This projection guarantess that ΠTT
ii (k, t) = kiΠ

TT
ij (k, t) = 0, ∀k, t.

Using a field redefinition to express the wave equation (3.12) as one in flat space

which can be solved by a Green function G(k, t− t′) (c.f section 1.5.2), you find that

the perturbation hij has solution [163]

hij(k, t) =
16π

M2
Pl

∫ t

ti

dt′G(k, t− t′) ΠTT
ij (k, t′) , (3.16)

where the initial conditions are hij(k, ti) = ḣij(k, ti) = 0. However, I will show

in section 3.3.1 that we do not actually need to know the Green function when

performing the numerical calculation.

The stress-energy tensor tµν of gravitational waves, which describes the energy

carried by them, is given by eq. (1.128). The energy density ρGW = t00 can therefore

be written as

ρ
GW

=
M2

Pl

32π

1

L3

∫
d3x ḣij(t,x)ḣ∗ij(t,x) , (3.17)

where I have averaged over the lattice volume V = L3. Writing ρGW =
∫ dρ

GW

d log k
d log k,

we can define the spectrum of gravitational waves in Fourier space (where the addi-
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tional factor of (2π)3 comes from the Fourier transform):

dρ
GW

d log k
≡ k3M2

Pl

(4πL)3

∫
dΩk

4π
ḣij(t, k, k̂)ḣ∗ij(t, k, k̂) , (3.18)

where dΩk is the solid angle in k space. Later, I will calculate the total energy

density of gravitational waves, normalized to the critical energy density ρc,

Ω
GW

(t) =
1

ρc

∫ (
dρ

GW

d log k

)
d log k . (3.19)

3.1.3. Gravitational wave background from preheating

today

In the simulations I will obtain spectra of gravitational waves, with a specific peak

momentum and energy density that can be obtained by integrating over all momenta.

However, to predict what the GW background would look like now, we need to relate

the frequency and energy to their values today. Due to the weakness of gravity, the

waves decouple upon production, so their frequency is simply redshifted,

f ≡
(
a

a0

)
k

2π
, (3.20)

where a and a0 are the scale factor at the beginning of gravitational wave production

and today, respectively, and k is the comoving wave number, related to the physical

wave number as k = kphys(t)a(t)/a.

We therefore need to find an expression for the ratio of the scale factors, which

will depend on two important stages, the end of gravitational wave production and

the onset of radiation domination after preheating. Expressing the scale factors in

terms of the energy density at these times, you can obtain an expression for the

frequency today in terms of parameters defined at the time of preheating [163]:

f ≈
(
a∗
aRD

) 1−3w
4
(
a

a∗

)(
k

ρ
1/4
∗

)
× 5 · 1010Hz , (3.21)

where quantities with an asterisk are evaluated at the end of gravitational wave

production and aRD is the scale factor at the onset of radiation domination. This

is the most general expression, valid for any equation of state w = P/ρ between t∗

and tRD.

In the case of massless preheating, the background evolves like radiation (see

section 1.4.3), which gives w = 1/3 and hence the first term of eq. (3.21) is unity.
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Furthermore, we can relate the energy density at the end of GW production to its

value at the beginning, as during RD a4ρ = a4
∗ρ∗, cancelling the remaining scale

factors in (3.21).

The simulations described in the next sections begin at the end of inflation (for

which I set a = 1), and gravitational wave production starts very soon afterwards.

Therefore, we can write the energy density as dominated by the inflaton potential,

ρ = 1
4
λφ4

i , where φi is the inflaton value at the beginning of the simulation. The

comoving momentum will be defined in units of
√
λφi, so I can write the frequency

today as

f ≈
(

k

ρ1/4

)
× 5 · 1010Hz ≈ k√

λφi

λ1/4 × 7 · 1010Hz . (3.22)

We will also need to relate the energy density Ω
GW

of produced gravitational

waves, eq. (3.19), to its value Ω0
GW

today. Following similar arguments as for the

frequency, for massless preheating this is given by [163]:

h2Ω0
GW

= h2Ωrad

(
g0

g∗

)1/3

Ω
GW

, (3.23)

where g0 and g∗ are the number of relativistic degrees of freedom today and during

preheating, respectively, and h2Ωrad = 4 × 10−5 is the fractional energy density of

radiation today. Using g∗/g0 ≈ 100, we can therefore rewrite this as

h2Ω0
GW
≈ 9× 10−6 Ω

GW
. (3.24)

As was mentioned in section 1.5.4, GW detectors are sensitive to the amplitude

(strain) of the wave and not the energy density. They are related in terms of the

frequency as [96]

h
GW

(f) ' 1.263× 10−18 1Hz

f

√
h2Ω0

GW
(f) . (3.25)

Even for a wave with a large energy density h2Ω0
GW
≈ 10−9 (see figure 3.1), if the

frequency is around 10MHz, this would imply a tiny amplitude of O(10−30), which

is the reason why GWs from the very early universe are so hard to detect.

3.2. Massless preheating with a light scalar field

In this section, I will describe the significance of preheating with a light scalar field χ

which varies on superhorizon scales. This variation will provide initial conditions for

the homogeneous field value χi to be used in the simulations, and therefore affects

107



the GW production in different preheating volumes.

3.2.1. The separate universe approximation

In section 1.2.5 I have argued that any light field (with a mass less than the infla-

tionary Hubble rate) will acquire a scale invariant spectrum of perturbations from

inflation. This is because fluctuations in such a field would freeze out after their

comoving modes exit the horizon, just like for the inflaton itself. In contrast, a heavy

field is not affected by the damping term due to H and would simply roll down to

the bottom of its potential.

In the case of massless preheating, the lightness of the field implies mχ = gφ < H.

The power spectrum of χ fluctuations is given by the same expression as the inflaton

spectrum, eq. (1.70),

Pχ ≡
∂〈χ2〉
∂ log k

' H2

4π2
, (3.26)

where the definition of the power spectrum as the power per logarithmic k interval,

eq. (1.34), was used. We need to determine for which values of g the field χ is light,

such that it satisfies mχ = gφ < H, which depends on the value of the inflaton field.

At a time N e-foldings before the end of inflation, it is given by φ =
√
N/πMPl [23].

Therefore, χ is light N e-foldings before the end of inflation if

m2
χ

H2
=

3g2φ2M2
Pl

2πλφ4
=

3g2

2Nλ
. 1. (3.27)

In order for this to be the case for the largest observable scales, which left the

horizon N ∼ 60 e-foldings before the end of inflation, the couplings must satisfy

g2/λ . 2N/3 ∼ 40. We want the condition to be satisfied long enough for large

scale fluctuations of the field χ to be significantly amplified, as once the Hubble

rate falls below mχ, the field starts oscillating with a decreasing amplitude. In the

simulations, the value g2/λ = 2 was chosen, which guarantees that χ is light apart

from the last few moments of inflation.

The lightness of the field ensures that χ will vary on superhorizon scales and

therefore take a different value in different preheating volumes. To accurately model

the preheating process, one should consider separate universes, each with a different

initial value χi. However, we can choose the same initial value φi for all of them, as

this will simply determine at what point in the inflaton’s evolution the simulation

starts.

Although the initial homogeneous value of χ is many orders of smaller than that

of the inflaton field (for χ to be subdominant during inflation) and is often set to
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zero, it should not be ignored if χ is light as it will provide different initial conditions

for the separate universes.

To study the GW background from preheating, I will therefore consider a range

of χi values (as described in the next section), and perform separate lattice simu-

lations for each of them. The homogeneous field values will be superimposed with

subhorizon vacuum fluctuations.

For the choice of couplings g2/λ = 2, the homogeneous mode κ = 0 is within the

instability band, see Fig. 1.2. Hence, while initially the linear evolution proceeds

very similarly for the different preheating volumes, at the time the dynamics become

non-linear the homogeneous mode has been significantly amplified and will have a

strong impact on the evolution. Consequently, any quantity that depends on χi will

vary between different preheating horizon volumes.

What does this imply for the GW background from preheating today? With time,

the separate preheating volumes will come into causal contact as the comoving

horizon (aH)−1 grows, which is about 60 e-folds larger today than at the end of

inflation [23]. Therefore, there is a very large number of preheating patches in our

current Hubble volume.

Specifically, on Earth we observe GWs originating from a comoving spherical shell

of radius R ∼ 1/H0, whith H0 the Hubble rate today, and any direction n̂ points

to a primordial preheating volume at r = Rn̂. These regions correspond to a tiny

angular size on the sky, much smaller than the 1◦ angular scales which correspond

to the size of the horizon at last scattering. Although this means that we cannot

distinguish between individual preheating volumes, the GW energy density, which

is a function of position, Ω
GW

(n̂) = Ω
GW

[χi(Rn̂)], can vary on cosmological scales.

Hence, we expect the GW background from preheating with a light scalar field to

be anisotropic.

Impact of light χ on curvature perturbations

Before describing which range of χi values we should consider, I want to comment

on the effect of preheating with a light scalar χ on the curvature perturbation.

The field fluctuations χk that are amplified during preheating represent an isocur-

vature perturbation, i.e. they do not vanish on spatially flat hypersurfaces. In [45]

it was shown that such a contribution could have an effect on the curvature pertur-

bation ζ, defined in eq. (1.71). This can easily be seen within the separate universe

approximation. The difference in the evolution between different FRW volumes af-

fects ζ as δζ = δN [45], where N = ln a. As the evolution of each volume will

depend on the initial value χi, we can therefore expect a contribution towards the
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total curvature perturbation from preheating.

This was first investigated by [165, 166], where a random contribution to δN

was observed which would manifest itself as white noise in the data. However, these

references neglected to include inhomogeneous modes in their simulations which were

taken into account by [167, 168, 157]. In particular, the more accurate simulations in

[157] demonstrated a highly non-Gaussian structure on top of a random background:

for certain periodically spaced values of χi, they observed spikes in δN which could

have a measurable effect on ζ that would contribute to cold spots in the CMB

temperature. This occurred for values of χi that resulted in a very large amplification

of the homogeneous mode of χ, much larger than the initial inflaton amplitude.

Clearly, it would be interesting to study the correlation between the curvature

perturbation and the GWs produced during preheating. However, the numerical al-

gorithm I used, see section 3.3.1, was not accurate enough to calculate the curvature

perturbation, which is related to changes in the scale factor of order O(10−5) [23].

I will briefly comment on how the same field dynamics that lead to spikes might

affect the GW amplitude in section 3.5.3.

3.2.2. Varying χi during preheating

To calculate the GW background from preheating, we first need to determine what

range of χi values we can expect the GW background from preheating to have orig-

inated from. Since χi is a Gaussian random field with a scale-invariant spectrum

(3.26), it will have a non-zero average value in any given volume, even in the comov-

ing volume that corresponds to the currently observable universe. This is because

fluctuations that are much larger than the current horizon have been amplified by

inflation, as long as it lasted longer than the minimum 60 e-folds, which is likely.

The total range of amplified, comoving wavelengths extends from the Hubble

length at the end of inflation, k ∼ H∗ (well inside the horizon today), to the Hubble

length at the start of inflation, which probably corresponds to a superhorizon scale

much larger than our current horizon.

From the observational point of view, the wavelengths that are currently inside

the horizon, k & a0H0, appear as inhomogeneous fluctuations, or anisotropies on

the sky. The variance σ2
χ of these fluctuations can be computed from the power

spectrum (3.26),

σ2
χ =

∫ H∗

a0H0

dk

k
Pχ =

H2
∗

4π2
ln

H∗
a0H0

=
H2
∗

4π2
N∗ , (3.28)

where the ratio of the comoving Hubble horizon today, (a0H0)−1, to the one at the
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end of inflation, H−1
∗ (where I set a∗ = 1), is given by N∗ ∼ 60, the number of e-folds

of inflation after the largest observable scales left the inflationary Hubble radius.

If inflation lasted longer than N∗ ∼ 60 e-folds, even larger scales were amplified

and χ will have varied on scales that are superhorizon now. The actual mean value

χi across the universe would be a particular realization drawn from a Gaussian

distribution with variance

〈χ2
i 〉 =

∫ a0H0

(aH)start

dk

k
Pχ =

∫ H∗

(aH)start

dk

k
Pχ −

∫ H∗

a0H0

dk

k
Pχ

=
H2
∗

4π2
(Ntot −N∗) , (3.29)

where Ntot = ln(1/astart) (remember H ≈ H∗ throughout inflation) is the total

number of e-foldings of inflation. A typical average field value across a volume as

large as our observable universe is then

χi ∼
H∗
2π

√
(Ntot −N∗) . (3.30)

Since the value of Ntot is unknown, I will consider the actual realization of χi within

our observable patch as a free parameter, simply restricted to χi > H∗/2π. In the

simulations, I will study the dependence of Ω
GW

on different values of χi, drawn from

a Gaussian distribution with the variance given in eq. (3.28), and centred around a

mean value χi of order of eq. (3.30).

3.3. Numerical simulations

3.3.1. Numerical algorithm

To study the GW production for different initial values χi, I performed simulations

on a 3d lattice with periodic boundary conditions, populated with the fields χ, φ and

the six tensor perturbation components hij. The code I used is based on the publicly

available ClusterEasy [159], an MPI/C++ package performing lattice simulation of

interacting scalar fields in an expanding universe.

The numerical algorithm used to solve the differential equations is a second-order

leapfrog integrator where field values and their derivatives are stored at different

times. Although this method is not as accurate as more popular fourth order Runge-

Kutta methods, its advantages are its simplicity and speed. In the case under

consideration, where we are interested in gravitational wave production, it is not

necessary to have an extremely accurate integrator. It can be checked that the
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solution is stable by observing the evolution of quantities like the total energy (which

should be conserved), and by ensuring that the chosen time step does not affect the

results. The difference in GW energy which will be a large O(1) effect, as opposed to

measuring the difference in scale factor within the δN formalism, which is O(10−5).

Therefore, to calculate curvature perturbations from preheating, a more accurate

integrator is needed, see [157].

To study the field evolution we need to solve discretized versions of the field

equations for the scalars, eqs. (3.3) and (3.4), and the Friedmann equation (3.5). The

evolution of the scale factor is solely determined by the scalar fields, and I checked

that it indeed evolves as a ∝ t1/2, as if dominated by radiation. I will assume

that each separate preheating volume can be described by an FRW background

metric. This is justified as long as the lattice volume does not strongly exceed

the comoving horizon at the time which determines the spatial extent of causally

connected regions. We know that the variation in scale factor between different

volumes is of order 10−5 [23], and should therefore not have a strong effect on the

dynamics of the scalar fields.

The evolution of the tensor perturbations, which determines the GW spectrum,

is given by eq. (3.7). I chose not to include backreaction from the tensor perturba-

tions into the scalar field equations, as these were shown to be negligible for GW

production during preheating in [92]. We can see that this should be the case, as

we know from the Lagrangian (3.2), which contains the metric gµν in the derivative

terms, that they will appear as hij∂iχ∂jχ in the equation of motion for χ. As hij

is a small perturbation, this is clearly negligible compared to the usual derivative

term, and can therefore be ignored.

To compute the spectrum (3.18), in principle, for each time step, we need to

perform the TT projection in eq. (3.7), then go to Fourier space to solve the equa-

tion, and finally transform back to coordinate space. Both the TT projection and

the Fourier transforms are non-local operations and therefore computationally very

costly. To avoid this, I followed the method introduced in [92], which makes use

of the TT projector Λij,lm defined in eq. (3.13). We saw there that the solution of

eq. (3.7) can formally be written in terms of a Green function, eq. (3.16). This can

be re-written in terms of a function uij(k, t), related to the tensor perturbation by

the projection operator,

ḣij(k, t) = Λij,lm(k̂)u̇lm(k, t) . (3.31)
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The solution of u̇ij is given by

u̇ij(k, t) ≡
16π

M2
Pl

∫ t

ti

dt′Ġ(k, t− t′) Πeff
ij (k, t′) . (3.32)

I have introduced an effective anisotropic stress Πeff
ij (k, t), which is the Fourier space

version of the unprojected source term

Πeff
ij (x, t) ≡ 1

a2
[∂iχ∂jχ+ ∂iφ∂jφ] (x, t) , (3.33)

c.f. eq. (3.15). Having rephrased the equations in this manner enables us to avoid

having to perform the TT projection explicitly. Instead, during the simulation, at

each time step I solve the equation of motion for uij in configuration space,

üij + 3Hu̇ij −
1

a2
∇2uij =

16π

M2
Pl

Πeff
ij (φ, χ) . (3.34)

Only at the times when we want to compute the GW spectrum (3.18), which is

determined by the time derivatives ḣij, we Fourier transform u̇ij(x, t) to u̇ij(k, t),

and recover the real GW degrees of freedom ḣij(k, t) by means of the projection in

eq. (3.31).

To calculate the GW spectrum from the lattice simulation, we need to define a

discretized version of eq. (3.17):

ρ
GW

=
M2

Pl

32π

1

N3

∑
n

ḣij(t,n)ḣ∗ij(t,n) , (3.35)

where I used L3 = (Nδx)3, N being the number of lattice points per dimension

and δx = L/N the lattice spacing, and introduced the discrete position vector

n = (n1, n2, n3) where ni = 0, 1, . . . , N − 1. The discrete Fourier transform is

defined by

f(n) =
1

N3

∑
n

e−
2πi
N

ñ·nf̃(ñ) , (3.36)

where ñ is the discrete momentum vector with integer entries ñi = −N
2

+1, ..., 0, ..., N
2

.

Using the discrete delta function
∑

n e
− 2πi

N
(ñ−ñ′)n = N3δ(ñ− ñ′), we can obtain eq.

(3.35) in Fourier space:

ρ
GW

=
M2

Pl

32π

1

N6

∑
ñ

ḣij(t, ñ)ḣ∗ij(t, ñ) . (3.37)

To find a simple version of the discretized GW spectrum, it will be necessary to bin
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the momentum space lattice into spherical layers of radius |ñ| and width 1, where

|ñ| takes integer values between 0, ...,
√

3N/2, and the largest radius corresponds to

the absolute value of the momentum vector
(
N
2
, N

2
, N

2

)
. Following the steps outlined

in [169], we obtain

ρ
GW

=
∑
|ñ|

[
dx6M2

Pl

(4π)3L3
k3(|ñ|)

〈
ḣij(t, |ñ|)ḣ∗ij(t, |ñ|)

〉
R(ñ)

]
∆ log k , (3.38)

where we average over all discrete momenta in a shell R(ñ) = {ñ′ |ñ| ≤ |ñ′| ≤
|ñ| + 1}, k(|ñ|) = |ñ|δk, ∆ log k = 1

k
δk and the reciprocal lattice spacing is δk =

kIR = 2π/L. The reciprocal lattice spacing corresponds to the smallest infrared

momentum, or largest wavelength, that fits into the lattice. The term in square

brackets in eq. (3.38) gives the spectrum for each discrete momentum k(|ñ|) = |ñ|δk
and is calculated during the simulation. I will later plot spectra that have been

normalized by the critical energy density, which is just determined by the total

energy density of the scalar fields.

While the binning is necessary to obtain the power spectrum, to get an accurate

measure of the GW energy density ρ
GW

, it is better not to evaluate it using (3.38),

but to calculate it in the Cartesian way, eq. (3.37). This gives more accurate

results as it does not assume that points in the same shell at different lattice sites

correspond to the same momentum. In the following, the relative, total GW energy

density Ω
GW

was always calculated using the Cartesian approach.

Note that there are several ways of defining a discretized version of the projection

operator Λij,lm in eq. (3.31) on a lattice, which depend on the discretization schemes

for lattice derivatives. The different projections were analysed in detail in [169]. In

the simulations, I used a real projector based on a neutral derivative scheme,

[∇if ] (n) ≡ f(n + îδx)− f(n− îδx)

2δx
, (3.39)

where î is the unit vector in the i direction. Transforming to Fourier space, where

[̃∇if ](ñ) ≡ −ikeff(ñ)f̃(ñ), we can obtain the effective momentum corresponding to

the neutral derivative [169],

keff,i =
sin(2πñi/N)

δx
. (3.40)

The discretized projector in eq. (3.14) for neutral derivatives is therefore given by

Pij(ñ) = δij −
keff,ikeff,j

(keff)2
. (3.41)
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You can check that this definition ensures the transversality and tracelessness of the

tensor perturbations when acting on them with Λij,lm. Although only the neutral

projector was used for the simulations presented below, I made sure that the results

were not affected by the choice of projector.

3.3.2. Choosing the numerical parameters

To carry out the simulations, it is necessary to specify a number of numerical pa-

rameters. Particularly, we need to specify a lattice size L (where the lattice volume

is given by L3) and the number of lattice points N .

The lattice volume is a very important quantity. It should not be significantly

bigger than the Hubble horizon at the time of preheating, as otherwise the assump-

tion of a uniform FRW background breaks down. More importantly, the lattice size

determines the infrared momentum cutoff kIR = 2π/L, which corresponds to the

largest wavelength that can fit into the simulation box. As the value g2/λ = 2 is

used, we will need good IR coverage as long wavelength modes are amplified most

strongly in this model. However, due to causality, GW modes will not be produced

on scales larger than the horizon volume, and there will be a peak scale which de-

pends on the model parameters. Let me give an order of magnitude estimate of this

value.

During massless preheating, the width of each amplified (dimensionless) momen-

tum band is given by [67]

∆κ .
1√
π

(
g2

λ

)1/4

≈ 0.67 . (3.42)

where κ = k/
√
λϕi, see section 1.4.3, and I have used g2/λ = 2. This is an analytical

estimate, valid for values g2/λ & 1, which becomes more accurate for larger values

of g2/λ. For g2/λ = 2, the smallest resonant mode is given by κ = 0, so eq. (3.42)

gives the largest momentum value that is amplified by the resonance. From the

numerical solution in Fig. 1.2, you can see that for g2/λ = 2, the principal resonant

band seems to be bounded by ∆κ2 . 0.3, and thus the actual value width of the

resonance band is closer to ∆κ . 0.55.

Although the field fluctuations are amplified most strongly the smaller the value of

κ, the spectrum of fluctuations, which goes as k2|χk|2 ∼ k2e2µ(k), will peak at some

intermediate scale κ∗ between 0 and ∆κ, typically a fraction of ∆κ, κ∗ ∼ O(0.1).

The fluctuations in the inflaton, on the other hand, depend on the resonance for

g2/λ = 3, which does not amplify any large wavelengths, and will not affect our
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choice of L.

The source of GWs, formed by products of fields, inherits the peak scale κ∗ ∼
O(0.1) of the field spectrum, as can be seen from eq. (3.15):

ΠTT
ij (k, t) = Λij,lm(k̂)

1

a2

∫
dq ql qm χq(t)χ

∗
|k−q|(t) . (3.43)

As the tensor fluctuations are directly related to the anisotropic stress tensor through

eq. (3.16), this peak scale will also translate to the spectrum of gravitational waves
dρ

GW

d log k
(k, t) via eq. (3.18).

To facilitate comparison with the dimensionless momentum κ, we define the co-

moving lattice size in the same units, L̃ ≡
√
λφiL, where L is the physical lattice

size. We will see later that the value L̃ = 80, which corresponds to κIR ≈ 0.08, is

sufficient to capture the peak scale.

Note that the comoving Hubble volume at the beginning of our simulation, which

is determined by the Hubble rate H2
i = 8π

12M2
Pl
λφi, is 1/aH̃ ≈ 2 in dimensionless

program units (where I used the value of φi given below). This is quite a bit smaller

than L̃ = 80, however the Hubble volume grows to scales larger than the horizon

volume before the system becomes non-linear.

While a large enough lattice spacing ensures good IR coverage, we also need to

have sufficient UV coverage, which improves with the number of lattice points N ,

which determines the lattice spacing as δx = L/N . This needs to be smaller than

any relevant length scale in the problem, which in our case is determined by the

inverse of the effective mass of the inflaton, m2
φ = λφ2. As all length scales are

rescaled by the mass
√
λφi, this implies that in program units we simply need to

satisfy δx̃ < 1. For a lattice volume of L̃ = 80, the choice N = 512 therefore led

to a sufficiently small δx̃ ≈ 0.16. For stability, the program requires [159] the time

step to satisfy δt < δx/
√

3 ≈ 0.1, and a value δt = 0.01 was used in the simulations.

I checked that these choices led to stable, trustworthy results by ensuring that the

total energy in the simulation box was conserved throughout the simulation to high

accuracy.

The value of the inflaton self-coupling was set to λ = 9×10−14, which is the value

that is required for consistency with WMAP data [18]. The only parameters left to

fix are the initial conditions for the fields.

At the start of every simulation, the scale factor was set to ai = 1, and the initial

amplitude of the homogeneous inflaton to φi = 0.342MPl, corresponding to the value

for which φ̇i = −H∗φi in the slow roll regime. Note that in the simulations, all fields

have been rescaled by the scale factor a and are given in units of φi.
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The initial background value χi was chosen as described in section 3.2.2. From

eq. (3.5), the Hubble rate at the end of inflation (when the potential term dominates)

is given by

H2
∗ ≈

8πλφ4
i

12M2
Pl

' 2.6× 10−15M2
Pl. (3.44)

Using N∗ ∼ 60 and Eq. (3.28), the variance of χi across the observable universe

is then σ2
χ ' 4 × 10−15M2

Pl. Taking (Ntot − N∗) ∼ 100, the mean value of χi in

eq. (3.30) is of order χi ∼ 10−7MPl. In the simulations I made the specific choice

χi = 3.42×10−7MPl. However, using the Monte Carlo reweighting method explained

in section 3.5.1, the results could be extrapolated to other, neighbouring values of

χi.

To be able to model the parametric resonance, we also need to set up fluctuations

φk and χk. These are supposed to mimic quantum fluctuations on scales which are

subhorizon after inflation. I followed the approach of [160]: Consider each mode (φk,

χk) as given by a complex number |fk|e+iϕk . The phases ϕk are randomly picked

from a uniform distribution between [0, 2π), while the amplitudes are set according

to a Rayleigh distribution with variance

〈|fk|2〉 =
1

2a2ωk
, ωk ≡

√
k2 +m2

f , (3.45)

where the effective masses are m2
φ ≡ 3λφ2

i + g2χ2
i and m2

χ ≡ g2φ2
i . Hence, more

massive fields have smaller vacuum fluctuations and the amplitude is smaller for

higher momentum modes, which is physically sensible. We should not populate

Fourier modes up to arbitrary large momenta, but introduce a cutoff which needs

be larger than the peak of the GW spectrum. In the simulations, I used the value

κ∗ = 2, but checked that the choice of cutoff did not affect the results.

3.3.3. Simulating gravitational wave production

Having specified all of the numerical parameters, we are now ready to look at the

results of the simulations.

Figure 3.2 shows the evolution of the fields and their variances, and confirms

the usual behaviour of parametric resonance as described in 1.4.3. Initially, the

amplitude of φ is much larger than that of χ, but the oscillations of the former

induce a resonant growth of the χ fluctuations. This is shown very clearly by the

variance term 〈χ2〉, which grows exponentially fast from from τ = 0 to τ = 70, where

τ is the rescaled conformal time, dτ = (
√
λφi/a)dt. The variance in φ also grows
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Figure 3.2.: Evolution of the mean field amplitudes squared, a2〈φ〉2, a2〈χ〉2 and of
their variances, a2(〈φ2〉−〈φ〉2), a2(〈χ2〉−〈χ〉2). The exponential growth
of fluctuations due to parametric resonance can be clearly appreciated.

due to its self-interactions and coupling to χ, but its growth only starts at around

τ = 40, once 〈χ2〉 has already been amplified by around six orders of magnitude.

The energy transferred from φ to χ is significant, so the (mean) amplitude of χ

eventually reaches that of φ, at about τ = 70, and the system becomes non-linear.

At this point, backreaction from the produced field fluctuations becomes important,

reducing the amplitude of the inflaton and terminating the resonance.

While GW production starts as soon as the first field inhomogeneities are intro-

duced due to the exponential growth of the χ fluctuations, it only becomes significant

when the dynamics are non-linear. Figure 3.3 shows the GW spectrum plotted at

different time steps. The amplified momentum range extends over more than two

orders of magnitude, and the spectrum falls off in the UV which shows that it is not

dominated by lattice artefacts.

During the linear evolution up to τ = 70, the spectrum peaks at a scale κ∗ ≈ 0.25,

which is of O(0.1) as expected from the considerations in section 3.3.2. During the

subsequent stage of non-linear evolution, from τ = 70 until τ = 100, the field gra-

dients become much larger, and consequently GWs are being produced with larger

intensity. Due to rescattering [67], power is transferred to higher momentum modes.

The GW production reaches an end at around τ = 150, however the amplitude is

not constant but oscillates slightly as the system enters into a turbulent regime be-

fore equilibrating [92]. To obtain the final GW spectrum, it was therefore necessary

to average over a few oscillations. This ensured that the value of the calculated

gravitational wave energy density Ω
GW

is trustworthy.
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Figure 3.3.: Typical GW spectra from massless preheating with g2/λ = 2, shown
at different time steps as the amplitude grows. The highest curve
(continuous line) corresponds to the final time step of our simulation
τ = 250, when the amplitude saturates. The peak of the spectrum is
at κ∗ ∼ O(0.1). The production of GWs increases significantly between
τ = 70 and τ = 80, when the system becomes non-linear and there is a
transfer of power into smaller scales (higher momenta).

The oscillations of the total GW energy density, obtained by summing over all

lattice momenta, is shown in Fig. 3.4. The plot shows the evolution of Ω
GW

for two

values of χi. We can already see that the energy in both cases is very different, and

I will explore this in more detail in the next section. The oscillations in the GW

energy for χi = 3.5× 10−7MPl are quite large. However, this value is unusual in the

sense that it leads to an atypically large GW energy, as discussed more below. For

most values of χi, the magnitude of oscillations is of the order of the lower curve in

figure 3.4.

3.4. The impact of χi on gravitational wave

production

The final amplitude of the GW spectrum for the values χi = 3.5× 10−7MPl (upper,

blue curves) and χi = 3.4 × 10−7MPl (lower, black curves), chosen for purposes

of illustration, is shown in Fig. 3.5. The spectra were obtained from an average

over several time oscillations, as shown by the error bars. Before investigating the

difference between the two initial values, let me comment on the different types of
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Figure 3.4.: The total energy density of gravitational waves as a function of rescaled
conformal time τ for two different initial field values χi.

curves in Fig. 3.5, corresponding to different lattice volumes.

The dashed lines correspond to the fiducial choice of lattice size and number

of points per dimension (L̃, N) = (80, 512), whereas the solid lines correspond to

(L̃, N) = (160, 1024), ensuring the same UV coverage. For L̃ = 160, one can clearly

see a large drop in the IR, which shows that very long wavelength modes are not

excited, as expected from causality.

The runs with (L̃, N) = (160, 1024) were computationally too expensive for my

purposes: as I want to calculate the GW background on cosmological scales, it was

necessary to perform several hundreds of simulations to get a statistical measure of

the anisotropy. However, I chose to run a few simulations with such a large lattice

volume to show that the spectra for N = 512 and N = 1024 are comparable. For

the majority of initial values, the total integrated GW amplitude from both cases

agrees to better than 1%.

For the upper curves in Fig. 3.5, which have a very high amplitude (which is

actually one of the largest achieved values in the simulation, Ω
GW

� 1.2× 10−3, see

Fig. 3.8), the difference is a lot larger, around 15%. However, we can see that the

higher resolution case (L̃, N) = (160, 1024) leads to an even larger difference between

the two different initial values χi. Therefore, the effect I want to demonstrate, which

is the strong dependence of GW amplitude on the initial value, would clearly persist

(and even be enhanced) if even better lattice coverage was used.

These considerations show that the fiducial case (L̃, N) = (80, 512), which is used

systematically in section 3.5, is not dominated by lattice artefacts, and can therefore

be trusted. For lattices with N = 256, independently of the volume L̃, it was not
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Figure 3.5.: Final spectrum of GWs for χi = 3.4×10−7MPl (upper, blue curves) and
χi = 3.5×10−7MPl (lower, black curves), averaged over time oscillations.
The error bars show the variation due to this averaging. The solid curves
are for L̃ = 160, N = 1024, and the dashed curves for L̃ = 80, N = 512.
The area underneath corresponds to the total fractional GW energy
density within a preheating Hubble domain.

possible to capture both the IR and UV behaviour sufficiently well at the same

time. Runs with (L̃, N) = (> 80, 512) improved the IR coverage but would require

to upgrade to N = 1024 to keep sufficient UV coverage, which, as mentioned before,

was too costly computationally.

The choice (L̃, N) = (80, 512) therefore turned out to be the optimal one, repre-

senting a good compromise between a sufficiently large dynamical range, and low

enough memory usage and shorter duration of the runs.

Let me now comment on the difference between the two spectra in Fig. 3.5. While

during the early stages of the simulations the GW spectra evolve in the same way,

the homogeneous field value χ strongly affects the production at the time the system

becomes non-linear. The peaks of the spectra are located at the same scale κ∗ � 0.2,

as this is simply related to the value of the resonant momentum, determined by the

choice g2/λ = 2. However, the peak GW amplitude is very different (by about a

factor of four), even though the initial values χi are very similar.

As Fig. 3.5 shows a log-linear plot, the area underneath the curves corresponds to

the total fractional GW energy density within a preheating volume, which is clearly

also going to differ significantly between the two cases. This O(1) effect is much

larger than what could be naively expected.
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Figure 3.6.: 2d snapshots of the 3d distribution of χ at different times of the evolu-
tion during preheating, from τ = 73 to τ = 79, the time when the GWs
are being sourced most actively. The left panels correspond to the case
χi = 3.42× 10−8MPl, and the right panels to χi = 1.0× 10−8MPl. The
color coding is fixed during the evolution, though different between the
two cases. However, the range of χ values covered by the axis is the
same in both cases, such that different colours describe the same magni-
tude of difference in both cases. The correlation between the dynamics
of the sources and the amplitude of the GWs is clearly demonstrated by
this sequence of snapshots: the gradients for χi = 3.42 × 10−8MPl are
larger than for χi = 1.0 × 10−8MPl, in correspondence with the higher
total amplitude of GWs, Ω

GW
= 1.1× 10−3 and Ω

GW
= 5.6× 10−4.
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One might worry that the difference in amplitude demonstrated in Fig. 3.5 could

be just a statistical effect related to the initial conditions for the UV modes. How-

ever, I checked that the difference in GW amplitude due to statistical fluctuations

(by choosing different random seeds) is much smaller than the difference in ampli-

tude between different initial values. When I present the variation of GW energy

for a large range of χi later, the error bars due to the statistical fluctuation are

included, see Fig. 3.8. Clearly, it is very small compared to the actual effect. The

final discrepancy in amplitude of the GW spectra must therefore arise because of

the different behaviour of the fields sourcing the GWs, which is ultimately related

to the initial amplitude χi.

Because the GWs are sourced by field gradients, the homogeneous component has

no effect until the evolution becomes nonlinear. At this point, the energy in the

homogeneous mode is redistributed among other momenta. Different values of χi

will therefore create a different outcome in the spatial distribution of χ.

In Fig. 3.6, I show a time sequence of 2d snapshots of the 3d spatial distribution of

the field χ. Compared to Fig. 3.5, they were obtained for two different initial values

χi = 3.4 × 10−8MPl (left panels) and χi = 1.0 × 10−8MPl (right panels), but they

can be used to illustrate the physical reason for the difference in GW amplitude.

The GW energy density varies significantly between the simulations in Fig. 3.6,

Ω
GW

= 1.1× 10−3 and Ω
GW

= 5.6× 10−4.

The snapshots are taken at times during the non-linear evolution of the fields, in

∆τ = 2 intervals between τ = 73 and τ = 79, just when the GW production is

strongest. Fig. 3.6 demonstrates very clearly that there is a correlation between the

gradients of χ and the amplitude of the produced GWs: for χi = 3.4 × 10−8MPl,

the gradients and, consequently the GW amplitude, are higher than for χi = 1.0×
10−8MPl. The physical reason for the sensitive dependence of the gradients of χ on

the initial value χi will be investigated in more detail in section 3.5.3.

3.5. Anisotropies in GW background from

massless preheating

I will now present the final result of this chapter: The variation of GW energy from

preheating on cosmological scales. To do this, it will first be necessary to introduce

the mathematical machinery used to analyse the large scale anisotropy in section

3.5.1. In 3.5.2, I will quantify the relative anisotropy and show that it is of the order

of 1%. I will finish by describing how the field dynamics affect the gravitational

wave production during massless preheating in section 3.5.3.
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3.5.1. Toolkit for computing anisotropies

The amount of GW production strongly depends on the value of χi, as I have shown

explicitly in section 3.4 for two values of χi. In the next subsection, I will present

the data from many simulations, each with a different χi amplitude drawn from the

appropriate random distribution. The dependence of Ω
GW

on χi turns out to be very

irregular, see Fig. 3.10. We will need to perform a statistical analysis of the data to

extract the anisotropy from the Ω
GW

(χi) dependence obtained from the simulations.

Hence, in the following I will provide a mathematical toolkit for such an analysis.

To begin with, let us assume a situation where Ω
GW

(χi) depends linearly on χi.

We will not need this to be the case in general (and as I mentioned, the dependence

is actually very irregular), but it will be instructive to study the linear relation as

a starting point. Normalizing the χi variations to the natural scale of the problem,

H∗, we can then write

Ω
GW

(χi) = c0 + c1
δχi

H∗
, (3.46)

with δχi ≡ χi − χi, where χi is the mean value over the currently observable uni-

verse. The constants c0, c1 are dimensionless and completely characterise the func-

tion Ω
GW

(χi) (under the linear assumption). From Eq. (3.46) one can easily see

that c0 can be identified with the mean amplitude of the GWs over the observable

universe, c0 ≡ Ω
GW

. We can then express the relative fluctuations of the GW energy

density as

δΩ
GW
≡ Ω

GW
− Ω

GW

Ω
GW

≡ c1

c0

δχi

H∗
. (3.47)

As these fluctuations are proportional to δχi, like χi they represent a nearly Gaussian

and scale-invariant random field. The power spectrum of δΩ
GW

can then be directly

related to the power spectrum Pχ of χi by

P
GW

=
c2

1

c2
0

Pχ
H2
∗

=
1

4π2

c2
1

c2
0

, (3.48)

where we used eq. (3.26). To measure fluctuations on the celestial sphere, it is better

to express them in terms of spherical harmonics {Ylm}. This makes it possible to

characterise the statistical properties of δΩ
GW

in terms of an angular power spec-

trum, in the same way as one does for the CMB temperature anisotropies. We can

decompose the fluctuations in the GW energy density as

δΩ
GW

(n̂) =
∞∑
l≥1

+l∑
m=−l

glmYlm(n̂) , (3.49)
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where glm =
∫

4π
dΩY∗lm(n̂)δΩ

GW
(n̂) are (complex) coefficients weighting each angular

moment. The angular power spectrum Cl is defined as the ensemble average of the

coefficients,

〈 g∗lmgl′m′ 〉 ≡ Clδll′δmm′ , (3.50)

where the Kronecker delta δll′δmm′ and the dependence of Cl on only l reflects sta-

tistical isotropy. The Cl’s are given by

Cl ≡ 2π

∫
d cos θPl(cos θ)C(cos θ) , (3.51)

where Pl(cos θ) are the Legendre polynomials, and C(cos θ) is the angular correlation

of the GW fluctuations at different directions in the sky n̂1 and n̂2:

C(cos θ) ≡ 〈δΩ
GW

(n̂1)δΩ
GW

(n̂2)〉 , (3.52)

with n̂1 · n̂2 ≡ cos θ.

Equivalently, the angular correlation can be expressed as a linear sum in the Cl’s

weighted as

〈δΩ
GW

(n̂1)δΩ
GW

(n̂2)〉 =
∞∑
l≥1

(2l + 1)

4π
Cl Pl(cos θ) . (3.53)

Because of the assumed linear relation between δΩ
GW

and δχi in Eq. (3.47), the

angular power spectrum of the GW energy density fluctuations can be calculated

very easily.

Deriving the angular power spectrum Cl from the linear power spectrum P
GW

is

a standard exercise which is performed in e.g. [23], where it is used to compute

the temperature power spectrum on large angular scales (which corresponds to the

Sachs-Wolfe plateau). The relation is simply given by

l(l + 1)Cl =
π

2
P

GW
=

1

8π

c2
1

c2
0

. (3.54)

When this calculation is performed for small l for the CMB fluctuations, it demon-

strates that on very large angular scales the power spectrum looks approximately

flat when multiplied by l(l + 1). This reflects the scale invariance of the primordial

power spectrum from inflation, as the largest scales were superhorizon at the time

of recombination and therefore had not evolved much. In our case, GWs decouple

upon production and do not evolve inside the horizon, and the relation holds on all
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angular scales.

From (3.54) we can see that as long as δΩ
GW

is linearly dependent on δχi as

in Eq. (3.46), the coefficients c0 and c1 completely determine the angular power

spectrum. In the case of massless preheating we are considering, and generally

in any other scenario of preheating, the Ω
GW

(χi) relationship will not be linear.

In [170] it was discussed how to derive the angular power spectrum under these

circumstances, which motivated the approach I am going to describe.

To describe fluctuations on any angular scale independent of the functional form

of the relation Ω
GW

(χi), we need to compute the two-point correlation function of

the GW energy density originating from two points x and y. Due to isotropy, this

correlator can only depend on the separation |x− y|. It can be written as

〈Ω
GW

(x)Ω
GW

(y)〉 ≡
∫
dχxdχyP (χx, χy)Ω

GW
(χx)Ω

GW
(χy) , (3.55)

where P (χx, χy) is the joint probability distribution for the field values χx = χi(x)

and χy = χi(y) at the points x and y. Since these are Gaussian random fields, we

have

P (χx, χy) =
1

2π
√
|G|

e−
1
2
~δχ

T
G−1 ~δχ , (3.56)

where I defined the vector ~δχ ≡ (χx − χi, χy − χi). The 2 × 2 covariant matrix G

and its inverse G−1, with determinant |G|, are given by

G ≡

(
Gx,x Gx,y

Gx,y Gy,y

)
, G−1 ≡ 1

|G|

(
Gy,y −Gx,y

−Gx,y Gx,x

)
,

(3.57)

with Gx,y ≡ 〈δχi(x)δχi(y)〉 the field correlator, and σ2
χ = Gx,x = 〈δχ2〉 the field

variance, which is given by eq. (3.28). From the scale-invariant power spectrum

(3.26), on sufficiently large scales (ignoring the oscillating factor exp [−ik · (x− y)])

we can approximate the 2-point function as

Gx,y ≈
H2
∗

4π2

[
ln (a0/|x− y|)− ln(a0H0)

]
=
H2
∗

4π2
ln
[

(|x− y|H0)−1
]
, (3.58)

where I integrated from horizon scales a0H0, with H0 the Hubble rate today, up to

comoving subhorizon scales k = a0/|x− y|.
Scales larger than the Hubble volume are not considered, as we are evaluating

the 2-point function of fluctuations around the mean value χ̄i across the observable

universe. The correlator therefore goes to zero as we approach Hubble scales |x−y| ∼
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1/H0, and is only well defined down to scales |x− y| ∼ a0/a∗H∗ of the order of the

Hubble horizon at the end of inflation, for which the expression in eq. (3.58) reduces

to the field variance σ2
χ [which has the same high momentum cutoff k = H∗, see eq.

(3.28)].

By obtaining the function Ω
GW

(χi) from lattice simulations, I computed the GW

energy density correlator (3.55) numerically. This is shown in Fig. 3.7 for χi =

3.42 × 10−7MPl. Note that the correlator only depends on the distance |x − y|
through the ratio Gx,y/Gx,x = Gx,y/σ

2
χ.

σχ

<Ω
Ω

Figure 3.7.: The full GW energy density correlator and its linearised version. The
two results agree very well on the largest currently observable scales,
i.e. for small Gx,y/σ

2
χ values.

In principle, one could use the numerical solution to compute the angular corre-

lation of the GW energy density between any two directions n̂1, n̂2 in the sky by

evaluating eq. (3.55) at positions x = Rn̂1 and y = Rn̂2, with R ∼ H−1
0 the distance

to the ’scattering surface’ at preheating where the GWs were emitted. From there

we could obtain the angular power spectrum Cl by means of eq. (3.51).

In practice, this procedure can be cumbersome and, more importantly, since

Ω
GW

(χi) may be very irregular, it would be difficult to assess the accuracy in the

final amplitude of the Cl’s. Instead, I will make use of the fact that on large scales

|x− y| � 1/H0, for which the logarithm in eq. (3.58) is less than unity, the ratio

Gx,y

σ2
χ

� 1

N∗
� 0.017 , (3.59)

is very small. As Fig. 3.7 shows, the correlator on these scales is very well ap-
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proximated by a linear function. This is because on large scales we average over

the small, irregular fluctuations and only retain the smooth, underlying functional

dependence.

To simplify the analysis and to avoid having to compute the full correlation func-

tion eq. (3.55), we can therefore perform a linear Taylor expansion of the joint

probability distribution in powers of the field correlator normalized to the variance,

Gx,y/σ
2
χ. This gives

P (χx, χy) ∝ exp

−
(δχ2

x + δχ2
y)− 2

(
Gx,y

σ2
χ

)
δχxδχy

2σ2
χ

[
1−

(
Gx,y

σ2
χ

)2
]

 (3.60)

≈ exp

(
−δχ

2
x

2σ2
χ

)
exp

(
−
δχ2

y

2σ2
χ

)[
1 +

(
Gx,y

σ2
χ

)
δχxδχy

σ2
χ

+ O
(
Gx,y

σ2
χ

)2
]
.

Substituting this expansion into Eq. (3.55), we then obtain

〈Ω
GW

(x)Ω
GW

(y)〉 ' 〈Ω
GW

(χi)〉2 +
〈δχiΩGW

(χi)〉2

σ2
χ

(
Gx,y

σ2
χ

)
+ O

(
Gx,y

σ2
χ

)2

, (3.61)

where the expectation values on the right hand side are given by

〈Ω
GW
〉 ≡

∫
dχiP (χi)ΩGW

(χi) , (3.62)

〈δχiΩGW
(χi)〉 ≡

∫
dχiP (χi)δχiΩGW

(χi) , (3.63)

which need to be computed using the single-point probability distribution

P (χi) =
1√

2π σχ
exp

{
−1

2

(χi − χi)
2

σ2
χ

}
. (3.64)

Re-arranging the terms on the right-hand side of Eq. (3.61), we can write the equa-

tion as

〈Ω
GW

(x)Ω
GW

(y)〉 '
〈(
〈Ω

GW
〉+
〈δχiΩGW

(χi)〉
σ2
χ

δχi(x)

)(
〈Ω

GW
〉+
〈δχiΩGW

(χi)〉
σ2
χ

δχi(y)

)〉
.

(3.65)

This is precisely the form of Eq. (3.46), which was derived for a linear relation-

ship between the fluctuations in GW amplitude and those in the field χ. On large

scales, the linear Taylor expansion is a very good approximation to the full function,
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and hence the expression obtained for the angular power spectrum derived for the

linear relation, eq. (3.54), should be valid for any functional dependence Ω
GW

(χ).

Identifying the coefficients as

c0 = 〈Ω
GW
〉 , c1 =

H∗
σ2
χ

〈δχiΩGW
(χi)〉 , (3.66)

we can use eq. (3.54) directly to compute the angular power spectrum of the relative

GW energy density fluctuations:

l(l + 1)Cl =
H2
∗

8π

〈δχiΩGW
(χi)〉2

σ4
χ〈ΩGW

〉2
. (3.67)

This equation is one of the main results of this chapter. It is a master formula for the

angular power spectrum of the energy density fluctuations of any GW background

of cosmological origin, whose anisotropies originated from the modulation due to an

inflationary spectator field. It is valid on large angular scales for which the Taylor

expansion holds, which in any case dominate over small scales as the spectrum

decays as Cl ∼ 1/l2. If detectable, the effect would therefore probably be easiest to

measure on the level of the quadrupole (l = 2), as the dipole might be dominated

by the motion of our galaxy.

We are now able to calculate the typical amplitude of fluctuations ∼
√
l(l + 1)Cl

for any value of χi, by simply evaluating the expectation values in Eq. (3.67) from

the results of a lattice simulation numerically.

3.5.2. Anisotropic gravitational wave background

According to the considerations in section 3.2.2, I chose a mean value χi = 3.42 ×
10−7MPl across our observable universe, and a variance σ2

χ = 3.3× 10−15M2
Pl within

our current Hubble volume, to describe the range of initial χi values the GW back-

ground from preheating is likely to have originated from.

Following the Monte Carlo method [171], I randomly chose N = 500 initial values

χji , j ∈ {1, . . . ,N} from the Gaussian distribution (3.64). To be exact, I randomly

picked 250 values χji and chose the remaining half to be the symmetric value χj
′

i =

2χi−χ
j
i . This ensures that the mean of the distribution will be exactly the required

χi = 3.42 × 10−7MPl, which reduces the error when computing expectation values.

This is necessary as there is only a finite sample of values so we would never be able

to obtain a perfect Gaussian distribution.

The Monte Carlo method has the advantage of making it easier to sample the

highly chaotic variation of the GW energy density Ω
GW

(χji ) without needing to use
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a very small step size in χi, as well as simplifying the computation of the expectation

values in Eq. (3.67).

χ

Ω

Figure 3.8.: Ω
GW

for our sample of initial field values χi. The squares show the
Gaussian ensemble used for the analysis. The red error bars show the
standard deviation between different seed values for the same χi. The
dotted line shows the GW energy density for a wider range of χi for
illustration purposes.

For each χj
i , I performed one simulation run and evaluated the GW energy density

Ω
GW

(χj
i ), see Fig. 3.8. The black squares show the 500 initial values picked during

the Monte Carlo simulation, while the blue dotted line includes some smaller values

of χi to show the dependence over a larger range.

As the plot illustrates, Ω
GW

is highly dependent on χi, varying by as much as a

factor of five between nearby values, although there are some ranges of χi where the

dependence is much smoother. This irregular behaviour is in line with the chaotic

field dynamics observed when studying curvature perturbations [165, 166, 46], but

the amplitude of fluctuations is unexpectedly high.

The figure also shows the variation of Ω
GW

due to different random realisations

of the field fluctuations for two initial χi, illustrated by the tiny red error bars. The

magnitude of the error in these two cases is representative of the statistical error

in the GW energy density for any value of χi. It is clearly much smaller than the

variation of Ω
GW

between different values of χi, confirming that the effect is not

merely statistical fluctuation.

As I used a Monte Carlo method to choose the range of χj
i , the expectation values
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in eq. (3.67) can simply be approximated by averages over the sample,

〈Ω
GW
〉 ≈ 1

N
∑
j

Ω
GW

(χji ),

〈δχΩ
GW
〉 ≈ 1

N
∑
j

(χji − χi)ΩGW
(χji ). (3.68)

Averaging over the 500 data points in Fig. 3.8 which correspond to χi = 3.42 ×
10−7MPl, I obtained 〈Ω

GW
〉 = (5.45 ± 0.13) × 10−4 and 〈δχΩ

GW
〉 = (3.0 ± 1.2) ×

10−12MPl. Substituting these into Eq. (3.67) gives the amplitude of the angular

power spectrum of the relative fluctuations δΩ
GW

= (Ω
GW
/Ω

GW
− 1) as√

l(l + 1)Cl = 0.017± 0.003, (3.69)

where the errors are estimated by the bootstrap method [172]. This method provides

a useful way of measuring the uncertainty in expectation values calculated from a

single data set, by mimicking the process of obtaining new data from the same

probability distribution.

Assuming there are N data points in the original ensemble, for each bootstrap

sample N of these points are randomly selected, without avoiding double counting.

The expectation value is then calculated based on the current set of data points,

and the variance of many such bootstrap samples gives an estimate of the error in

the expectation value.

In this case, I used 1000 bootstrap samples of 250 randomly chosen symmetric

pairs χj
′

i ,χji (to make sure that each bootstrap sample has the correct mean χi =

3.42× 10−7MPl) to calculate (3.68), and the variance of these samples gave an error

estimate of magnitude 0.003 for the amplitude of relative fluctuations.

The set of initial χi was generated by the Python random number generator,

using a Gaussian probability distribution with the chosen mean and variance. For

unknown reasons, the numerical value of the variance of the data set turned out

to be σ2 = 4.3 × 10−15M2
Pl, which is significantly higher than the desired value

σ2
χ = 3.3 × 10−15M2

Pl. To rectify this, I reweighted the data to resemble a sample

with a variance closer to the required one.

Reweighting [173] makes it possible to use Monte Carlo data belonging to a specific

probability distribution to calculate expectation values for other, similar distribu-

tions. Assume values x were drawn from a probability distribution p(x) and you

need to calculate the expectation value of an observable O from a slightly different

131



probability distribution function p′(x),

〈O〉′ =
∫
dxp′(x)O(x)∫
dxp′(x)

. (3.70)

We can re-express this in terms of the old probability distribution p(x) as

〈O〉′ =
∫
dxp(x)p

′(x)
p(x)

O(x)∫
dxp(x)p

′(x)
p(x)

=
〈r(x)O(x)〉
〈r(x)〉

≡
∑

j r(xj)O(xj)∑
j r(xj)

, (3.71)

where in the last step I used the fact that expectation values are simply sums for a

Monte Carlo data set, and where r(x) = p′(x)
p(x)

is the reweighting factor. Therefore,

to calculate expectation values from a slightly different probability distribution to

the original one, we can simply reweight each observable by r(xj). As long as the

probability distributions are close to each other, i.e. 1
N

∑
j r(xj) ≈ 1, this method

can be trusted.

The numerical data presented in Fig. 3.8 suggests a Gaussian probability distri-

bution with mean χi and variance σ2. This needs to be reweighted to obtain the

correct variance σ2
χ = 3.3× 10−15M2

Pl, so we have to evaluate the expectation value

(3.71) for the probability distribution

p′(χi) =
1√

2πσ2
χ

exp

(
−(χi − χi)

2

2σ2
χ

)
. (3.72)

Note that the reweighting takes place for the whole sample (when calculating the

mean expectation value) and for each bootstrap sample (when estimating the errors).

By employing the method of reweighting, we can also use the Monte Carlo data

to calculate expectation values around different nearby mean values χ′i (which cor-

responds to a χ background with a slightly different average across our observable

universe). These values will have a Gaussian probability distribution

p′(χi) =
1√

2πσ2
χ

exp

(
−(χi − χ′i)2

2σ2
χ

)
, (3.73)

where χ′i is a different mean value to the one chosen in the simulations. The total

reweight factor is therefore

r(χji ) =
σ

σχ
exp

[
−(χji − χ′i)2

2σ2
χ

+
(χji − χi)

2

2σ2

]
. (3.74)

We can use this procedure to calculate Cl from the expectation values in (3.68),
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evaluated around the new probability distribution by use of eq. (3.71). The solid

line in Fig. 3.9 shows the relative amplitude of angular fluctuations for different

mean values χi across our observable universe, where the red dot corresponds to our

original choice χi = 3.42× 10−7MPl. For the reweighted mean values, the error bars

in the fluctuations have been obtained by the bootstrap method, similarly to the

original value.

χ

Figure 3.9.: The relative amplitude of the multipoles of the GW background as a
function of the average field value χi, calculated from Eq. (3.67). The
red dot shows the amplitude for original mean value χi = 3.42×10−7MPl,
and the curve shows values obtained by reweighting the same data.

One point to note about the plot is that the reweighted data sets have an uncer-

tainty in the value of χ′
i, because once reweighted, the actual mean of each bootstrap

sample (all of which have a mean χi = 3.42×10−7MPl before reweighting, due to the

choice of symmetric pairs) is slightly different to χ′
i, as we only have a finite number

of data points. The uncertainty in χ′
i becomes larger far away from the original

mean, where we do not have enough coverage to simulate a probability distribution

with the chosen new mean. This is shown by the horizontal error bars in Fig. 3.9.

Due to this uncertainty, when computing expectation values as in eq. (3.68), the

value of the chosen mean χ′
i was actually replaced by the reweighted value, which

ensures that the Monte Carlo averages are performed over the actual mean of the

sample. Again, this was done for the whole sample and each bootstrap sample

separately. Although I am taking this subtlety into account when calculating the

angular power spectrum, ignoring it (and simply using the chosen means χ′
i in all

calculations) does not make a substantial difference to the final result, as the shift
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in mean value due to reweighting is small.

For most of the range of χi presented in Fig. 3.9, the amplitude of the fluctu-

ations is above the one percent level, even within error bars. This is much higher

than the relative amplitude of fluctuations in the CMB which is of order 10−5. If

the fluctuations in the GW background had been tiny, we would never be able to

detect them. However, it is reasonable to hope that variations of order 1% could be

measured by future GW detectors, although it is very hard to make any statement

about their sensitivity to anisotropies at the current stage.

Unfortunately, as mentioned at the beginning of this chapter, even before con-

sidering anisotropies, GWs from preheating are not within the sensitivity range of

the current main detectors, see Fig. 3.1. Let me demonstrate this for the results

obtained from my simulations. Using eq. (3.22) and the typical dimensionless peak

GW frequency κ = 0.2 as shown in Fig. 3.5, we can obtain the frequency today:

f ≈ 0.2× (9 · 10−14)1/4 × 7 · 1010Hz ≈ 7.7 MHz . (3.75)

From Fig. 3.8, we can see that the average energy density is approximately Ω
GW

=

0.00075, and hence its value today is

h2Ω0
GW
≈ 6.8 · 10−9 . (3.76)

This energy density corresponds to the upper end of values in Fig. 3.1. This shows

that the value g2/λ = 2 leads to the production of a very large number of GWs,

which likely is related to the amplification of long wavelength modes which transfer

a lot of power into the field.

3.5.3. Field dynamics

As described in section 3.2.2, the mean value of χ across our observable universe, χi,

is a free parameter dependent on the total number of e-folds of inflation. To have

a complete picture of the anisotropies in the GW background, one should therefore

analyse a wider range of χi values than the one considered in the Monte Carlo

simulation.

In Fig. 3.8, I have already included the GW energy density for smaller values of

χi, and this data is reproduced in Fig. 3.10 on a logarithmic scale for illustrative

purposes. As it is reasonable to assume inflation lasted some number of e-folds

longer than the minimal required number of N∗ = 60, much smaller values of χi

than presented in Fig. 3.10 are very unlikely, as even with Ntot = 70 we would have
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at least an expected value of order χi ∼ 3× 10−8MPl, see eq. (3.30).

On the other hand, there could definitely be larger values of χi in our observable

universe if inflation lasted for a very long time. Due to limitations in computing

power (each run took about six hours on 64 processors, and I had to perform several

hundreds of them), I chose not to perform any simulations for larger values of χi.

χ

Ω

Figure 3.10.: Ω
GW

plotted with logarithmic χi axis. The blue dot-dashed curve corre-
sponds to the convolution of the data with a Gaussian window function
to make the periodic structure in logχi more apparent.

The data presented in Fig. 3.10 reveals some non-trivial structure. In particular,

the GW energy density has an approximate log-periodic dependence on χi, with

regions of high, quickly varying GW amplitude alternating with regions of low am-

plitude. To make this more apparent, I have also included a curve that shows the

convolution of the data with a Gaussian window function,

Ω̃
GW

(logχ) =
1√
2πσ2

w

∫
dδ e−δ2/2σ2

wΩ
GW

(logχ+ δ) , (3.77)

where σ2
w = 0.05 is the spread of the window function. A log-periodic structure

in the field dynamics was predicted by [46] in the context of studying curvature

perturbations from massless preheating, and I will comment on it again at the end

of this section.

First, let me further elucidate the physical origin of the sensitive dependence of

the GW amplitude on χi, by studying the relationship between GW production

and field dynamics. As the source term for tensor perturbations is given by the

field gradients, four powers of which will appear in the equation for the GW power
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spectrum (3.18), it is natural to ask which of the scalar fields is primarily responsible

for the production of GWs.

In Fig. 3.11 I have plotted the total power spectrum of GWs, as well as the power

spectrum obtained from using only φ or χ as a source of GWs (the total amplitude

will also contain cross terms between the fields). The plot shows that the GWs are

λ φ

Ω

χ
φ

Figure 3.11.: The GW amplitude from two different χi sourced by only φ, χ and
both fields respectively.

sourced primarily by the gradients of the χ field, which is not surprising, as the

inflaton fluctuations do not get amplified very strongly as we saw in Fig. 3.2. We

can therefore focus on the dynamics of χ in order to understand the physical origin

of the variation of the GW energy density.

In Ref. [46] it was observed that the evolution of the system during massless

preheating strongly depends on the relative phase of the homogeneous modes φ(t)

and χ(t) at the time the field dynamics become non-linear (i.e. when χ becomes

sufficiently large).

In particular, in some cases χ(t) acquires a very large amplitude compared to

the inflaton, leading to a spiky contribution to the curvature. Assume the inflaton

oscillates with period T during the linear stage. Initial χ configurations related by

χ′
i

χi

= eμnT , (3.78)

where n is an integer, will then evolve similarly, as the inflaton will have the same

phase at the time the system becomes non-linear (remember χ(t) ∝ eμtχi). In fact,

if there were no inhomogeneous modes at all, the behaviour of the fields would be
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exactly the same for all χ′
i, χi related as in Eq. (3.78), as in this case only the phase

information matters.

As at the onset of non-linearities the inhomogeneous modes are still small, we

expect the field behaviour (and therefore the value of physical observables that

depend on it) to repeat periodically in the space of initial values χi. This was

indeed observed for curvature perturbations in [46]. I have found the same effect,

but in the GW amplitude: Regions of high GW amplitude repeat log-periodically,

as shown in Fig. 3.10.

To quantify how the GW production and the dynamics of χ are related, I studied

how the maximum value the homogeneous field χ reaches during its evolution, χmax,

correlates with the amplitude of the final GW background. Indeed, χmax varies con-

siderably between different χi, indicating that the field dynamics proceed differently

depending on the initial value.

Obviously the GWs are not sourced by the homogeneous field itself, but rather

by its inhomogeneous modes. However, the latter are directly linked to the zero

mode due to the transfer of energy between them during the non-linear stage, and

therefore the correlation between χmax and Ω
GW

is meaningful. In Fig. 3.12, χmax

is plotted against the total amount of GW energy, for the same simulations as in

Fig. 3.10.

χ

Ω

Figure 3.12.: The correlation between the maximum amplitude of the homogeneous
part of χ, χmax, and the total GW energy in the simulation.

For small χmax < 1MPl, we can see a clear correlation between the field dynamics

and GW production: the more energy is deposited into the χ field, the more GWs

are being produced. This agrees with the findings from Fig. 3.11, showing that χ is
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responsible for the shape and amplitude of the GW spectra.

For high χmax & 1.2MPl, the correlation seems to turn around, and less GW are

being produced, although due to the lack of data in this high χmax region, it is

difficult to make a proper quantitative statement. Using a smaller lattice, L̃ = 25, I

was able to find values of χi which led to a very high field value χmax & 5MPl, and

for these the GW amplitude was highly suppressed.

A potential reason for the suppression might be that for low enough χmax, the

homogeneous χ(t) field oscillates fast enough to transfer energy to the inhomoge-

neous modes during the time of GW production, thus sourcing more GWs when

more energy can be deposited. For very large χmax, however, χ(t) only does very

few oscillations, and most of the energy is stored in the homogeneous mode, thus

reducing the field gradients and correspondingly the amount of GW production.

The initial values that lead to a very large amplitude of χmax correspond exactly

to the field behaviour that correlated with non-Gaussian curvature spikes in [46].

This suggests that a spike in the curvature is anti-correlated with the energy of

gravitational waves.

However, I was only able to obtain such high values of χmax for very small lattices

L̃ = 25, which do not accurately capture the peak of the GW spectrum. The reason

these scenarios occur very rarely for larger lattices is that the dynamics leading to

spikes are extremely sensitive to tiny variations in initial value, which are amplified

if we include longer wavelength modes. To be able to study these particular values,

a more accurate numerical method than the one used here is needed.

Therefore, no clear statement on the correlation between GW anisotropies and

non-Gaussian features in the CMB can be made at this point. However, note that

if spikes and GWs are actually anti-correlated, this effect would not be observable:

The spikes only appear on very small angular scales, and therefore a suppression

of the GW amplitude across such a region would be completely washed out by the

large scale variation I described in the last section.

3.6. Conclusions and outlook

Gravitational waves from preheating could provide an important tool to constrain

the coupling of the inflaton to other fields and its potential in the future. I have

shown that for massless preheating with a light scalar field, you would obtain an

anisotropic background of GWs with relative fluctuations of the order of 1%.

The anisotropy is a result of two separate effects: The lightness of χ and the

amplification of long wavelength modes. The fact that χ is a light field is crucial for
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the development of anisotropy. Only if long wavelength modes have been amplified

by inflation, will the initial value vary between different preheating volumes and

therefore modulate the dynamics in different parts of the sky.

The second criterion ensures that the homogeneous, k = 0 mode is amplified by

parametric resonance, and therefore the initial value χi will have a strong impact

on the non-linear dynamics and the production of GWs.

I checked that for coupling constants g2/λ for which k = 0 is not amplified

strongly, e.g. g2/λ = 3, 6, no effect was observed. This is because in these models,

the high momentum fluctuations end up dominating over the homogeneous field

evolution. However, this does not mean that we can only hope to observe an effect

in very few, fine-tuned cases: In more general models of preheating, which contain

a mass term and therefore a relevant length scale, the unstable momentum bands

change with time, and typically the k = 0 mode is amplified for at least part of the

resonance.

The strength of the anisotropy we observed clearly depends on the couplings of

the model. Quantifying the anisotropy for different preheating scenarios with a light

scalar field would give us new constraints on inflationary models, if we are able to

observe the GW background. Primordial gravitational waves could therefore act as

important probes of the early universe, alongside CMB measurements.

Although direct detection might still be a long way off, the study of CMB po-

larization demonstrates the constraining power of tensor fluctuations: If the result

r ≈ 0.2 from BICEP2 [21] is confirmed, it would indicate that inflation indeed hap-

pened at a very high energy (GUT) scale, and therefore simple, chaotic inflationary

models with monomial potentials become more viable again. It is therefore very

important to study the preheating dynamics in these scenarios.

An obvious extension to the work presented in this chapter is to consider the Higgs

field as the light scalar and couple it directly to the inflaton. The existence of the

Higgs has been confirmed by the LHC last year [174], with a mass mH ≈ 126GeV.

The Higgs is a complex SU(2) doublet, H = (h+, h0), with a potential term

V (H) = λ

(
H†H − v2

2

)2

, (3.79)

where v = 246 GeV the minimum, giving λ = 0.13 at tree level.

The Higgs potential depends sensitively on the running of the Higgs self coupling

λ(µ) with energy scale µ. The measured value of the Higgs mass suggests that at at

high energies the potential turns around, and λ becomes negative as we approach

the Planck scale [175, 176], implying that the electroweak vacuum is metastable and
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there is actually a deeper vacuum at higher field values. The fact that the Higgs

potential does not blow up also means that the Higgs will be a light field even at

high energy scales.

Stability of the EW vacuum (which requires λ > 0 all the way up to the Planck

scale) is still a possibility, however, if the value of the top mass (which has the

strongest influence on the running of the self-coupling) is a few sigma away from its

central value [176].

This model is therefore particularly interesting to consider, as we can take the

coupling λ to be a small, positive free parameter and investigate how it affects the

GW production. At high energies much larger than v, the Higgs potential (3.79)

reduces to a quartic self-interaction term. Assuming a quartic inflaton potential

and a quadratic coupling to the Higgs just as for the scalar field χ, this amounts

to studying a very similar situation as before, but with a different, characteristic

anisotropic background depending on the parameters.

This simple model ignores the coupling of the Higgs to standard model particles,

whose impact on GW production was studied in [177]. For a full picture of preheating

with the Higgs field, all of the couplings should be included and their impact on the

GW anisotropy quantified.
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4. Concluding Remarks

Lack of comfort means we are on the threshold of new insights.

Lawrence M. Krauss

In this thesis, I have demonstrated that gravitational waves can be used as powerful

probes of the early universe. I focussed on two separate topics, tensor perturbations

from inflation within a quantum gravity formalism, and gravitational waves from

preheating in the presence of a light scalar field.

Chapter 2 showed that using the Ashtekar variables in Cosmology, which are an

alternative description of gravitational degrees of freedom, lead to a chiral power

spectrum of tensor perturbations. This would have an effect on the TB correlator,

making it non-zero and potentially measurable, depending on the strength of the

parity violation. Although the BICEP2 collaboration has recently detected B-modes

[21] of potentially primordial origin, there is not yet sufficient data to explore the

TB correlator in detail. To do this, a full sky analysis is needed, which would enable

us to constrain the possible chirality of gravity.

If the fairly large value of r = 0.2+0.07
−0.05 seen by BICEP2 is confirmed by other

experiments, the model of massless preheating studied in chapter 3 has become more

viable again. Naturally, this value of r will probably change as more data becomes

available, but the observation has undoubtedly given a boost to the simpler models

where inflation happens at high energy scales. I have shown that during massless

preheating, a light scalar field with superhorizon fluctuations would result in an

anisotropic GW background today. Although we cannot currently measure this

background, in the future such aniosotropies might provide a vital clue as to how

the preheating process occurred, and give further constraints on inflationary models.

The study of B-mode polarization of the CMB marks the beginning of our explo-

ration of primordial gravitational wave backgrounds. Current and future B-mode

experiments [21, 59, 60] should be able to enhance our understanding of these tensor

perturbations, and hopefully one day we might also be able to detect cosmological

gravitational wave backgrounds directly. Additionally, detectors like LIGO should

be able to measure gravitational waves emitted by astrophysical sources in the next
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few years, which would provide us with fascinating new insights into the world of

Astrophysics [76].

Gravitational waves were first predicted by Einstein in 1916, and since then much

effort has been invested in understanding their production in the universe and their

significance for Astrophysics and Cosmology. Now, nearly a hundred years later, we

can finally begin to properly explore these ripples in spacetime.
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A. Appendix

A.1. Cosmological perturbation theory

In this appendix I want to describe the basic features of cosmological perturbation

theory. In particular, I will discuss the SVT decomposition into scalars, vectors and

tensors and the importance of choosing a gauge.

When we define a metric in GR, we need to choose a threading, which corresponds

to timelike lines through spacetime (fixed x), and a slicing, corresponding to space-

like hypersurfaces (fixed t) [23]. For an FRW background, eq. (1.12), there exists

a preferred coordinate system, with a threading according to comoving observers

(which measure zero momentum density) and an orthogonal slicing of homogeneous

hypersurfaces [32]. However, as soon as we define perturbations, there is no obvious

choice of coordinates, and you could even pick a threading and slicing such that it

looks like the spacetime is unperturbed [5]. Selecting a specific coordinate system

is referred to as picking a gauge [23], and the choice of gauge strongly depends on

the problem you want to solve.

The most general form of a perturbed FRW metric can be written as [32]

ds2 = −(1 + 2Φ)dt2 + 2a(t)Bidtdx
i + a2(t) [(1− 2Ψ)δij + 2Eij] dx

idxj . (A.1)

Φ is called the lapse (which relates coordinate and proper time [23]), Bi the shift

(which measures the relative velocity between the threading and worldlines orthog-

onal to the slicing [23]), Ψ the spatial curvature perturbation and Eij (which is

traceless) the shear.

The energy-momentum tensor, eq. (1.6), also needs to be perturbed. The energy

density ρ and pressure P determine the background FRW metric, so they need to

be supplemented by perturbations δρ, δP (which depend on space and time). As

we are not considering a perfect fluid anymore, we also need a momentum density

pi and a traceless and symmetric anisotropic stress tensor Πij (which are both zero

to zeroth order). For details on the exact form of the perturbed stress energy tensor

see e.g. appendix A of [32].
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A.1.1. SVT decomposition

To study the relationship between the metric and matter perturbations, we need

to expand Einstein’s equation (1.1) to first order. This will give us evolution and

constraint equations [23]. Note that perturbation components that transform as

vectors (Bi, pi) can be further decomposed into the divergence of a scalar and a

divergenceless vector, and similarly objects transforming as tensors (Eij, Πij) can

be decomposed into scalar, vector and tensor parts [32].

Due to the symmetry of the FRW background, scalar, vector and tensor perturba-

tions decouple and all evolve independently (having different symmetry properties

under rotations) [23]. This is called the SVT decomposition and greatly simplifies

the calculation. We will focus on scalar and tensor perturbations as the vector com-

ponents are not sourced by inflation [32] and furthermore decay with the expansion

of the universe [28]. We therefore care about four scalar perturbations Φ, B,E,Ψ,

sourced by the scalar stress energy perturbations δρ, δP, p,Π, and a transverse and

traceless tensor perturbation, which we will call hTT
ij , solely sourced by the trans-

verse traceless anisotropic stress, ΠTT
ij . Tensors therefore only couple to matter

distributions that have a non-zero anisotropic stress [28]. This is not the case for

the inflaton, so they are not directly sourced by inflation.

A.1.2. Gauge selection

Due to the diffeomorphism invariance of GR, we can always make a gauge transfor-

mation xµ → x̃µ = xµ + ξµ, i.e. a first order change in coordinates, which leaves

the form of the metric invariant [29]. To find out how such a transformation affects

different types of perturbation, we need to invoke the tensor transformation law

(1.2). Scalars do not transform, but they do shift their position, so the new set of

metric perturbations Φ̃, B̃, Ẽ, Ψ̃ will be linear combinations of the old ones. The

perturbations in the stress energy tensor also transform. We find that there are two

redundant degrees of freedom in the metric perturbations that can be eliminated

by appropriately picking two scalars ξ0, ξ,j that determine the gauge transforma-

tion [28]. The tensor perturbation hTT
ij , being transverse (hTT

ij,i = 0) and traceless

(hii
TT = 0), is gauge invariant [28].

Selecting an appropriate gauge is particularly important for the scalar perturba-

tions, which are the source of matter density perturbations. In this case, it is useful

to define gauge invariant quantities, either just in terms of metric perturbations, or

for combinations of both stress energy and metric components [32], like for example

the curvature perturbation R in eq. (1.68). This makes it easy to relate quantities
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defined in different gauges. As scalar perturbations are not the main focus of this

thesis, I refer the reader to [23, 28, 32] for details on popular gauges in Cosmology.

A.2. Hamiltonian constrained systems

Constrained Hamiltonian systems and their quantization have been extensively stud-

ied by Dirac [178, 179]. All gauge theories (like, for example, GR, where the local

symmetry transformations that leave the theory invariant are the diffeomorphisms

[22]) need to be supplemented by constraints in their Hamiltonian formulation [180],

which take care of the fact that the theory should not change under symmetry trans-

formations. In this appendix I will summarise the most important aspects of Dirac’s

procedure, in particular focussing on the meaning of primary, secondary, first and

second class constraints.

First, let us recall the basics of Hamiltonian mechanics [181]: Starting from a

Lagrangian L(q, q̇), we can derive canonical momenta p = ∂L
∂q̇

and define the Hamil-

tonian by performing a Legendre transform,

H(p, q) = q̇p− L . (A.2)

The Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (A.3)

are equivalent to the Euler-Lagrange equations and can be expressed in terms of

Poisson brackets (which become commutation relations upon quantization). The

Poisson bracket is defined as

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
, (A.4)

and eq. (A.3) can therefore be written as

q̇ = {q,H} , ṗ = {p,H} . (A.5)

The time evolution of any function f(q, p) of the canonical variables can similarly

be expressed as the Poisson bracket with the Hamiltonian,

ḟ(q, p) = {f,H} . (A.6)

Note that the Hamiltonian is supposed to be expressed only in terms of q and p
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which relies upon the fact that the Lagrangian is non-singular, such that the relation

p = ∂L
∂q̇

can be inverted to find the velocity q̇ in terms of the canonical momentum

p. This is not possible in general and the reason why the standard Hamiltonian

procedure needs to be generalised. The Lagrangian is always singular in the case of

gauge theories [180].

If the Lagrangian cannot be inverted, it means that that the phase space variables

are related, i.e. they satisfy a constraint [179]

φ(q, p) ≈ 0 . (A.7)

The use of the approximately equal ≈ signals that this is a weak equality, i.e. one

that is only satisfied after the equations of motion have been imposed. In particular,

we can only impose this condition after Poisson brackets have been evaluated [179].

There may be several such conditions φm(q, p) ≈ 0 on the phase space variables and

they are known as the primary constraints.

We can take care of these constraints by extending the Hamiltonian to

HT = H + umφm , (A.8)

where um are arbitrary coefficients (Lagrange multipliers) that do not depend on

(q, p). Clearly HT ≈ H, so the extended Hamiltonian reduces to the ordinary

Hamiltonian when the equations of motion and therefore the constraints are satisfied.

Now, we can easily incorporate the constraints by deriving the equations of motion

for any function f(q, p) using the generalised total Hamiltonian HT in eq. (A.6).

We need to satisfy φ̇m ≈ 0 to ensure that the constraints are conserved. Eq. (A.6)

gives us consistency relations for each of the primary constraints. Using the Hamil-

ton equations (A.3) to solve (A.6) for φm leads to three separate cases [179]: For some

values of m, the consistency condition is identically satisfied, giving no new condi-

tions. In other cases, we might obtain further, secondary constraints φk(q, p) ≈ 0,

which also need to be conserved, i.e. plugged into (A.6). This means that overall

we actually have to satisfy φ̇j ≈ 0, j = 1...M + K where there are M primary

and K secondary constraints. Lastly, we might obtain conditions that enable us to

uniquely determine some of the coefficients um, while others remain undetermined.

As I will describe now, the latter play an important role for gauge theories.

The primary constraints φ̃a (which in general are a linear combination of the

original primary constraints φm) that correspond to the undetermined Lagrange

multipliers ua are first class [179]. A variable R is first class if it satisfies the
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condition

{φj, R} ≈ 0 ∀j , (A.9)

i.e. the Poisson bracket with all primary and secondary constraints is zero. It is

straightforward to show that the total Hamiltonian is first class, and so are the φ̃a

[179]. The first class primary constraints are very important as they are generating

functions of infinitesimal transformations that preserve the physical state. In other

worlds, they generate gauge transformations.

Heuristically, the reason the φ̃a generate gauge transformations is that the un-

determined, arbitrary Lagrange multipliers ua reflect the fact that the phase space

variables (q, p) cannot be determined uniquely from an initial state. However, they

need to correspond to the same physical system regardless of the value of ua, in the

same way that an arbitrary gauge transformation needs to leave the theory invariant

[179].

Constraints not satisfying eq. (A.9) are called second class. They correspond to

redundant physical degrees of freedom, and can be taken care of by using the Dirac

bracket [178] instead of the Poisson bracket: it gives the same time evolution as

before, but makes it possible to set the second class constraints to zero [179].

In canonical GR, all the constraints are first class and satisfy the symmetries

of general covariance: At each point in space there is a 3d diffeomorphism con-

straint, corresponding to diffeomorphisms on spacelike slices, and the Hamiltonian

constraint, corresponding to time translations [182]. Hence, there seems to be no

meaningful way to describe the evolution of a system with time in the context of

canonical GR. In the Ashtekar formalism, the formulation in terms of a complex spin

connection means there is also an SU(2) gauge group, which leads to an additional

Gauss constraint [139].

Note that in the quantum theory, the constraints are not imposed on the operators,

but as conditions on the Hilbert space: physical states need to be annihilated by

the constraints [139]. This is what gives rise to the Wheeler-DeWitt equation [109]

in canonical quantum gravity, H|Ψ〉 = 0, where H is the quantum Hamiltonian

constraint.
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