

DETECTING A STOCHASTIC GRAVITATIONAL WAVE BACKGROUND
WITH SPACE-BASED INTERFEROMETERS

by

Matthew Raymond Adams

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Physics

MONTANA STATE UNIVERSITY
Bozeman, Montana

August, 2014

© COPYRIGHT

by

Matthew Raymond Adams

2014

All Rights Reserved

DEDICATION

To my wife Liz and our three children Millie, Amy, and Nicholas for their unending support and encouragement.

ACKNOWLEDGEMENTS

Firstly, I'd like to acknowledge and thank Neil Cornish for being a superb graduate advisor. I am particularly grateful for his patience and continued help over the past couple of years as this thesis and its defense were delayed several times. I appreciate his guidance and teaching in the classroom and in my research in helping me understand and enjoy the field of gravitational wave astronomy.

I also appreciate the invaluable insight and help the members of my graduate committee have provided along the way and through the various delays over the past couple of years. They have always been willing to meet and reschedule. I appreciate the numerous faculty members who have taught me in courses and enhanced my knowledge of physics. I also thank Margaret Jarrett for continually supporting me and making sure all the logistical i's were dotted and t's crossed.

I thank my parents for instilling a scientific curiosity in me when I was young and for always encouraging me in my schooling and other endeavors. I thank Eric Swager for first opening my eyes to the joy of physics and for David Cinabro for working with me at Wayne State and sparking my interest in gravity through our particle physics research.

Lastly, I thank my wife, Liz, and our children for their support and patience during the graduate school process. We were married in the midst of the process and I appreciate Liz's help raising our young family while I finished my graduate degree. Liz may be more excited to see me graduate than I myself am, and I am indebted to her for her selfless support.

TABLE OF CONTENTS

1. INTRODUCTION	1
2. SPACE-BASED GRAVITATIONAL WAVE DETECTORS	9
2.1 Noise.....	11
2.2 Simulated Data.....	17
2.3 Detector Response to a Gravitational Wave Signal	19
2.4 Null Channel for Unequal Arm LISA.....	22
3. COSMOLOGICAL SOURCES OF GRAVITATIONAL WAVES	26
3.1 Characterizing a Gravitational Wave Background.....	27
3.2 Bounds.....	29
3.2.1 BBN	30
3.2.2 COBE and WMAP	32
3.2.3 LIGO and PTA Bounds	33
3.3 Sources of Gravitational Waves	34
3.3.1 Amplification of Quantum Fluctuations	34
3.3.2 Reheating.....	38
3.3.3 Phase Transitions	38
3.3.4 Cosmic Strings	39
3.4 Model	39
3.5 Simulated Data.....	40
4. ASTROPHYSICAL GRAVITATIONAL WAVE FOREGROUNDS	42
4.1 Sources of Astrophysical Stochastic Signals.....	42
4.2 White Dwarf Population Model	43
4.2.1 Modeling Individual White Dwarf Binaries	44
4.2.2 Modeling the Galactic Distribution	45
4.3 Confusion Foreground Model	46
4.4 Simulated Data.....	51
5. ANALYSIS TECHNIQUES	53
5.1 Bayesian Basics.....	54
5.1.1 Gravitational Wave Applications	56
5.1.1.1 Parameter Estimation and Model Selection	57
5.2 MCMC Techniques	58
5.2.1 Metropolis Hastings	59

TABLE OF CONTENTS – CONTINUED

5.2.2	Parallel Tempering.....	60
5.2.3	Thermodynamic Integration	61
5.3	Hierarchical Bayes.....	64
5.3.1	Toy Model I	66
5.3.1.1	Numerical Simulation	68
5.3.2	Toy Model II.....	70
5.3.2.1	Approximating the Likelihood	72
6.	GRAVITATIONAL WAVE ASTRONOMY APPLICATIONS	75
6.1	Measurement of Galaxy Distribution Parameters	75
6.1.1	White Dwarf Likelihood	78
6.1.2	Prior and Hyperparameters	79
6.1.3	Results.....	80
6.1.4	Approximating the Likelihood	83
6.1.5	Conclusion	86
6.2	Separating a Background from Instrument Noise.....	87
6.2.1	Stochastic Likelihood	87
6.2.1.1	Mock LISA Data Challenge Training Data Results	90
6.2.2	Detection Limits.....	92
6.2.3	The Role of Null Channels and 4-link Operation.....	94
6.3	Including the Galactic Foreground	98
6.3.1	Bayesian Model Selection	102
6.3.2	Comparison to MLDC.....	103
6.3.3	Analysis with a Galactic Foreground.....	104
6.3.4	Conclusion	108
7.	CONCLUSIONS	110
	REFERENCES CITED.....	112
	APPENDIX A: Noise Cross-spectra	125

LIST OF TABLES

Table	Page
-------	------

6.1 Galaxy Distribution Parameter MAP Values	84
6.2 Prior Ranges for Model Parameters	89

LIST OF FIGURES

Figure	Page
2.1 Schematic of the proposed LISA satellites. Each of the three satellites has two proof masses, shown as boxes.....	10
2.2 Depiction of light travel times for two signals that can be combined to create a TDI channel. For the general case of an unequal arm interferometer, the delay corresponds to the light travel time to go up and down each of two adjacent arms.....	13
2.3 Our model for the noise in the <i>A</i> and <i>T</i> channels compared to smoothed spectra formed from the MLDC training data.	18
2.4 The sensitivity curve for the <i>A</i> , <i>E</i> , and <i>T</i> channels, showing the insensitivity of the <i>T</i> channel to a gravitational wave signal.....	22
2.5 Sensitivity curve for unequal arm LISA. Our new <i>T</i> channel restores the usual low-frequency insensitivity to a stochastic gravitational wave background.....	23
4.1 The time domain noise, galaxy, and stochastic background signal components for the <i>X</i> -channel. They have been bandpass filtered between 0.1 and 4 mHz. We show that we are able to detect a scale invariant background with $\Omega_{\text{gw}} = 5 \cdot 10^{-13}$, which is well below the instrument noise and galaxy levels.....	47
4.2 Several galaxy realizations showing the scatter in the modulation levels throughout the year compared to the galaxy used in our simulations. The points are scaled by the first Fourier coefficient, C_0	49
4.3 Several galaxy realizations showing the scatter in the Fourier coefficients for different galaxy realizations. The $\pm 3\sigma$ upper and lower bounds are used as the prior range on the Fourier coefficients in our analysis.....	50
4.4 Our smoothed, simulated data with the model overlaid in black (solid)...	51
5.1 The marginalized PDF for α . The injected value is indicated by the vertical black line.	69
5.2 MAP values for 30 different simulations of the toy model. The red curve includes noise in the simulated signal and converges to α_0 as expected. The blue curves does not include noise in the simulation and converges to $\alpha_0^2 - \beta^2$	70

LIST OF FIGURES – CONTINUED

Figure	Page
5.3 MAP values for 30 different realizations of the toy model II. Using the full likelihood (red) the MAP values converge to the injected value, but with the Fisher Matrix approximation to the likelihood (blue) there is a bias.	72
5.4 PDFs for the prior hyperparameter α and the noise level β for toy model II. Both are individually constrained in this model. The injected values are shown by the black lines.	73
6.1 The percentage of sources which are detectable as a function of frequency. Virtually 100% of the white dwarf binaries in the Milky Way above 4 mHz would be detected by LISA.	77
6.2 The chirp mass distribution of the 5000 binaries used in our simulations is shown in red. The green distribution shows the MAP values of the recovered chirp mass for each binary, and the blue shows the model (Eq. 6.3) using the MAP values for the chirp mass prior hyperparameters. The brightest binaries accurately capture the chirp mass distribution, which serves as a useful prior for sources whose chirp masses are not so well determined.	81
6.3 PDFs for the four galaxy model hyperparameters. The red is for a simulation using 100 binaries, the green 1000 binaries, and the blue 5000 binaries. The black lines show the true values of the distribution from which the binaries were drawn.	82
6.4 PDFs for the three chirp mass model hyperparameters and the FWHM of the distribution. The red is for a simulation using 100 binaries, the green 1000 binaries, and the blue 5000 binaries.	83
6.5 PDFs from a simulation using 5000 binaries for the four galaxy model hyperparameters using the full likelihood (red), a Fisher approximation in d (green), and a Fisher approximation in $1/d$ (blue)	85
6.6 MAP values and corresponding averages from a simulation using 5000 binaries for the four galaxy model hyperparameters using the full likelihood (red), a Fisher Matrix approximation parameterized with d (green), and a Fisher Matrix approximation using $1/d$ (blue).	86

LIST OF FIGURES – CONTINUED

Figure	Page
6.7 Histograms showing the PDFs for the position noise levels, scaled by the nominal level, Eq. 2.10. On the left are the sums along each arm, and on the right are the differences. The vertical lines denote the injected values.....	91
6.8 Histograms showing the PDFs for the position noise levels, scaled by the nominal level, Eq. 2.11. On the left are the sums along each arm, and on the right are the differences. The vertical lines denote the injected values.....	92
6.9 PDF for the gravitational wave background level (scaled up by 10^{13}). The vertical line denotes the injected values.....	93
6.10 PDF for the gravitational wave background slope.....	94
6.11 Bayes factor showing the detectability versus background level. The curve shows the average values of the scattered points.....	95
6.12 Bayes factors for the X, Y, and Z channels.....	96
6.13 The PDFs for the 6 constrained noise parameter combinations for the AET channels. The position noise parameters are on the left and the acceleration noise parameters on the right. The black (solid) vertical lines show the injected values. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.....	99
6.14 The constrained position (left) and acceleration (right) noise parameters for X. The black (solid) vertical lines show the injected values. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.....	100
6.15 The stochastic gravitational wave background level, Ω_{gw} , and slope parameter, m , for AET. The black (solid) vertical lines show the injected values. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.....	101
6.16 The stochastic gravitational wave background level, Ω_{gw} , and slope parameter, m , for X. The black (solid) vertical lines show the injected values. The blue (dashed) PDF includes slope fitting and the red (solid) PDF does not.....	102

LIST OF FIGURES – CONTINUED

Figure	Page
6.17 The first three (left) and last three (right) Fourier coefficients for the A-channel. The first coefficients are well constrained while the later ones are not. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.....	103
6.18 The first three (left) and last three (right) Fourier coefficients for the X-channel. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.....	104
6.19 A comparison of the Bayes factors for the MLDC data and for our simulated data without a galaxy. The lower panel includes slope fitting. A Bayes factor of 30 is considered a strong detection.	105
6.20 A comparison of Bayes factors for data without the galaxy vs. data with the galaxy included. Including the galaxy does not significantly decrease our detection ability. The lower panel includes slope fitting.....	106
6.21 A comparison of Bayes Factors for the full AET vs. running on the low frequency end of the spectrum, single weeks of data, and a stochastic background with a spectral shape identical to the galaxy spectrum used in this paper. We see that both the spectral shape and the galaxy signal modulation help separate the three model components. The lower panel includes slope fitting.	108

ABSTRACT

The detection of a stochastic background of gravitational waves could significantly impact our understanding of the physical processes that shaped the early Universe. The challenge lies in separating the cosmological signal from other stochastic processes such as instrument noise and astrophysical foregrounds. One approach is to build two or more detectors and cross correlate their output, thereby enhancing the common gravitational wave signal relative to the uncorrelated instrument noise. When only one detector is available, as will likely be the case with space based gravitational wave astronomy, alternative analysis techniques must be developed. Here we develop an end to end Bayesian analysis technique for detecting a stochastic background with a gigameter Laser Interferometer Space Antenna (LISA) operating with both 6- and 4-links. Our technique requires a detailed understanding of the instrument noise and astrophysical foregrounds. In the millihertz frequency band, the predominate foreground signal will be unresolved white dwarf binaries in the galaxy. We consider how the information from multiple detections can be used to constrain astrophysical population models, and present a method for constraining population models using a Hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We find that a mission that is able to resolve ~ 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%. Having constrained the galaxy shape parameters, we obtain posterior distribution functions for the instrument noise parameters, the galaxy level and modulation parameters, and the stochastic background energy density. We find that we are able to detect a scale-invariant stochastic background with energy density as low as $\Omega_{\text{gw}} = 2 \times 10^{-13}$ for a 6-link interferometer and $\Omega_{\text{gw}} = 5 \times 10^{-13}$ for a 4-link interferometer with one year of data.

CHAPTER 1

INTRODUCTION

Einstein’s theory of general relativity, published in 1915 [1], is currently our best and most complete theory of the gravitational interaction. General relativity accounts for several problems that arose in Newtonian gravity, including the perihelion precession of Mercury [2, 3]. General relativity also correctly predicts the bending of light by massive objects [3], which was experimentally verified in 1919 [4], and predicts the existence of gravitational waves [5, 6, 7]. To date, gravitational waves have not been directly detected.

Hulse and Taylor discovered the binary pulsar, PSR1913+16, in 1974 [8] which led to indirect evidence for gravitational wave radiation. General relativity predicts that the orbit of a binary system will gradually decay due to energy loss from departing gravitational waves. Hulse and Taylor’s measurements of the binary pulsar show that the decay of the orbit agrees exquisitely with Einstein’s predictions [9]. They were awarded the Nobel Prize in 1993 for their work.

The first direct detections of gravitational waves are expected to be made within a few years by either the Laser Interferometer Gravitational Wave Observatory (LIGO) [10, 11] or by a collaboration of pulsar timing arrays (PTAs) known as the International Pulsar Timing Array (IPTA) [12]. The members of IPTA are the European Pulsar Timing Array (EPTA) [13], the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) [14], and the Parkes Pulsar Timing Array (PPTA) [15]. Later detections could be made by space-based gravitational wave detectors such as the European mission, the New Gravitational Wave Observatory (NGO), which is nicknamed evolved LISA (eLISA) [16] since it was derived from

the joint NASA-ESA mission, the Laser Interferometer Space Antenna (LISA) [17]. We expect these missions to detect gravitational waves from binary systems, mergers of compact objects, and burst sources such as supernovae, but one of the most exciting potential discoveries for gravitational wave observatories is the detection of a stochastic gravitational wave background. Just as studies of the cosmic microwave background (CMB) have revolutionized our understanding of cosmology, the detection of a gravitational wave background would provide unique insight into the processes that shaped the early Universe.

Most of our current knowledge about the early Universe comes from measurements of the CMB. Before the detection of the CMB, we were limited in our ability to test and constrain models of the early history of the Universe. The detection of the CMB opened the field of cosmology as a full fledged observational science [18]. Using data from first the Cosmic Background Explorer (COBE) [19], then the Wilkinson Microwave Anisotropy Probe (WMAP) [20], and most recently the Planck mission [21], we are able to test, constrain, and rule out various theories of the origins of our Universe. Most notably, the CMB observations provided evidence for the Big Bang and ruled out steady state models of the Universe. Recently, the Background Imaging of Cosmic Extragalactic Polarization (BICEP2) experiment reported detection of B-mode polarization in the CMB and attributed it to primordial gravitational waves [22, 23]. This would be the first direct measurements supporting inflation and primordial gravitational waves, but others have put forth an alternative explanation and find the BICEP2 measurements to be consistent with dust polarization [24, 25]. Further measurements are needed to confirm the results.

Despite the success of CMB science, there is a limit to how far back we can look in time with electromagnetic radiation. At what is known as the surface of last scattering, the Universe was so dense and energetic, that photons were not able to

propagate freely. When atoms formed, light and matter decoupled and the Universe became transparent. When we observe the CMB, we are observing the Universe at the time of this decoupling, approximately 400,000 years after the Big Bang.

Inflation is one of the most successful models of the early Universe. It is hypothesized to have occurred within a fraction of the first second of the Universe, long before the time of the surface of last scattering. Inflation was proposed by Alan Guth in 1981 [26] as a possible solution to the horizon and flatness problems in cosmology. Inflation suggests that the Universe underwent a period of exponential expansion that can account for the large scale smoothness we observe today. Because inflation happened so early in the history of the Universe, we only indirectly observe its affects in the CMB. We are currently unable to directly probe back in time to the era of inflation.

However, Big Bang and inflationary models also predict residual gravitational wave radiation. Gravitational waves couple very weakly to matter and we do not expect that they will be appreciably damped or scattered as they propagate across the Universe. We could potentially detect gravitational waves from the inflationary epoch and see back in time farther than we've ever been able to see, opening a new window to the early Universe [27, 28, 29, 30, 31, 32].

Primordial gravitational waves from the early Universe may be detectable by current and future gravitational wave observatories. LIGO [33] and PTAs [34] have already set bounds on the energy density in a stochastic gravitational wave background in their respective wavebands. In this dissertation we show that complementary bounds can be set in the millihertz waveband with a space-based interferometer.

The challenge in detecting a primordial stochastic gravitational wave background is that we expect other stochastic signals to compete with and possibly overwhelm any primordial signals. Even if there is a primordial signal of sufficient strength to be

detected, it must be modeled and distinguished from the other stochastic signals. In this dissertation, we develop several techniques for modeling and separating the various stochastic signals that could appear in a space-based gravitational wave detector's data.

There are two types of stochastic signals that we must contend with: instrument noise and astrophysical foregrounds. When multiple independent detectors are available, as is the case with the ground based interferometers, the signal from one interferometer can be used as a (noise corrupted) template for a second interferometer. The common gravitational wave signal will combine coherently, while the contributions from instrument noise will average to zero [35, 36, 37]. Terrestrial detectors such as LIGO and PTAs use this technique to separate stochastic signals from stochastic instrument noise [38, 36, 39]. The LSC for example, has detectors in Italy; Hanford, Washington; and Livingston, Louisiana. The noise at one site, will be uncorrelated from the noises at the other two sites. Likewise, PTAs can correlate data from multiple pulsars.

With prospects for only one space-based detector in the foreseeable future, we will not be able to cross correlate between detectors. For space-based gravitational wave interferometry, we need to develop other techniques for separating instrument noise and stochastic signals. In this dissertation, we develop a technique that can successfully distinguish between instrument noise and stochastic signals with only one space-based detector [40, 41]. The key to our technique is that the noise and stochastic signals manifest differently in the detector. The transfer functions have different spectral shapes, which gives sufficient leverage to separate the various components.

The original measurement of the CMB by Penzias and Wilson did not use cross correlation either. Penzias and Wilson made their measurements with the Horn antenna in Holmdel, New Jersey. They were actually not even looking for the CMB, but

were interested in detecting radio waves reflected from echo balloon satellites. These faint signals required a very sensitive instrument.

The Horn antenna, designed to detect these faint radio signals, was cooled to 4 degrees Kelvin. Penzias and Wilson accounted for all known noise sources including radar and radio broadcasting interference. However, their measurements still contained an extra white noise. They dutifully cleaned the instrument by removing some nesting pigeons and their droppings, but the extra signal remained. It was isotropic and present day and night. Finally, because they were confident that they understood the noise in their detector, Penzias and Wilson were convinced that the signal was not an instrument artifact. Because of its isotropy, they deduced that it did not come from the Earth, solar system, or even our own galaxy.

Dicke, Peebles, and Wilkinson (DPW) at Princeton University were looking for the CMB at the same time Penzias and Wilson made their discovery. Penzias and Wilson were alerted to the work by Dicke, Peebles, and Wilkinson and contacted them with their results. DPW realized they had been scooped, but the two groups released publications together in 1965 with their findings and interpretation [42, 43].

The relevant, key point to our study is that Penzias and Wilson understood their instrument noise well enough that they were able to confidently say that the extra signal was not instrument noise. We follow a similar approach in this dissertation and show that a detailed understanding of the instrument noise allows us to distinguish it from stochastic signals.

This approach is more difficult in ground based interferometry. The LSC deals with terrestrial noise sources that require more complex noise models. In space, we expect the noise to be linear and more easily modeled. With an adequate noise model, spectral templates provide a very powerful method for separating the components that allows us to detect stochastic signals to levels that put them below the instrument

noise. While it is in principle possible for the various contributions to the instrument noise to have spectra that mimic the geometrical transfer functions of the signal, or vice-versa, in practice the signal and noise transfer functions are so complex and distinct that this situation should never arise.

Not only do we need to account for instrument noise, but there will likely be astrophysical stochastic foregrounds that may mask an underlying primordial background. The sources that we need to be aware of depend on the frequency band of interest. In the very low frequency PTA band, supermassive black hole binaries are expected to overwhelm any primordial stochastic signal [44, 45, 46, 47, 34], and in the LIGO band, neutron star binaries could be a limiting factor [48, 49, 38]. Proposed spaced based gravitational wave detectors will operate in the milliHertz frequency range. Of the three frequency regimes, the most certain foreground source will be white dwarf binaries in the Milky Way in the milliHertz band [50, 51, 52]. Several bright white dwarf binaries have already been optically detected. The brightest of these would be easily detectable with proposed space-based detectors [53, 54]. In total, several thousands of white dwarf binaries will be individually resolvable [55]. The rest will form a confusion foreground that could overwhelm any extragalactic stochastic signals if not properly modeled. It is also possible that extreme-mass-ratio inspirals (EMRIs) [56] of compact objects or binary black hole systems [57] could form stochastic foregrounds in the milliHertz band.

There is an old joke in astrophysics that with one source you have a discovery, and with two you have a population. This joke will be all too true in gravitational wave astronomy as we are seeking our first discovery and subsequently will have only a very small sample of sources. However, as we discover more and more sources it becomes possible to constrain astrophysical population models.

Inferring the underlying population model, and the attendant astrophysical processes responsible for the observed source distribution, from the time series of a gravitational wave detector is the central science challenge for a future space mission. It folds together the difficult task of identifying and disentangling the multiple overlapping signals that are in the data, inferring the individual source parameters, and reconstructing the true population distributions from incomplete and imperfect information. Until recently, studies of milli-Hertz gravitational wave science have either focused on making predictions about the source populations, or have looked at detection and parameter estimation for individual sources. These types of studies have featured heavily in the science assessment of alternative space-based gravitational wave mission concepts, where metrics such as detection numbers and histograms of the parameter resolution capabilities for fiducial population models were used to rate science performance (see *eg.* Ref. [58]). These are certainly useful metrics, but they only tell part of the story. A more powerful and informative measure of the science capabilities is the ability to discriminate between alternative population models.

The past few years have seen the first studies of the astrophysical model selection problem in the context of space-based gravitational astronomy. Gair and collaborators [59, 60, 61, 62] have looked at how EMRI formation scenarios and massive black hole binary assembly scenarios can be constrained by GW observations using Bayesian model selection with a Poisson likelihood function. Plowman and collaborators [63, 64] have performed similar studies of black hole population models using a frequentist approach based on error kernels and the Kolmogorov-Smirnov test. Related work on astrophysical model selection for ground based detectors can be found in Refs. [65, 66].

In this dissertation, we show how observations of individual white dwarf binaries can be used to simultaneously infer the parameters of individual binaries and to

model the population of binaries throughout the galaxy. The constraints placed on the shape of the galaxy from the bright binaries can then be used to model the leftover, confusion foreground of unresolved binaries. We fold the model of the galaxy into our analysis of stochastic signals and show that we are able to detect a relatively very weak, underlying stochastic background, even in the presence of the strong galactic foreground.

The remainder of the dissertation is organized as follows. In Chapter 2, we discuss two current proposals for space-based gravitational wave detectors, LISA and eLISA. We derive the detector noise functions and the signal transfer functions. We also discuss the sensitivity for the missions. In Chapter 3, we discuss various sources and formation mechanisms for gravitational waves in the early Universe. We show how to model a stochastic gravitational wave background and show how one manifests in a detector. We derive expressions used for simulating stochastic background data. In Chapter 4, we discuss astrophysical foregrounds in the millihertz frequency band. We show how to model individual white dwarf binaries, the galaxy population distribution, and a confusion foreground of sources. We also discuss how we simulated white dwarf data for our studies. Chapter 5 gives a brief primer on Bayesian data analysis and details the specific techniques we use. In particular we develop a Hierarchical Bayesian algorithm for simultaneously doing parameter estimation of white dwarf binaries and population model studies. In Chapter 6, we present our results and show that we are able to detect a stochastic gravitational wave background that is much weaker than the instrument noise or galactic foreground. We discuss these results and mention future lines of work in Chapter 7.

CHAPTER 2

SPACE-BASED GRAVITATIONAL WAVE DETECTORS

The only space-based mission currently under active development is the European Space Agency (ESA) mission, evolved LISA (eLISA), which is derived from the NASA-ESA mission, the Laser Interferometer Space Antenna (LISA). The first NASA white paper on LISA was published in 1998 [67] and research on the mission progressed over the next 15 years [17]. After the James Webb Space Telescope [68] took most of the funding at NASA, the original LISA partnership was dissolved. However, ESA began development of eLISA, which has now moved into mission phase. Since the missions are so similar, we present results for both types of instruments throughout this dissertation. The basic detector theory presented here also applies to any other space-based interferometer.

The LISA mission concept is a constellation composed of three satellites in an approximately equilateral triangle configuration (Fig. 2.1). Laser beams are transmitted between each pair of satellites, and interferometry signals are formed using these beams. Each of the three satellites has two proof masses, one for each of the two incoming laser beams. Laser beams are transmitted in both directions between adjacent satellite pairs. This gives six laser links between the satellites and we refer to LISA as a 6-link configuration. Gravitational waves are detected as variations in the light travel time, or equivalently, the distance, between the proof masses along each arm of the interferometer.

The eLISA mission also has 3 satellites, but there are active laser links along only two arms, making eLISA a 4-link mission. This, along with lower mass satellites and drift away orbits, creates a savings in mission cost, making eLISA a much more

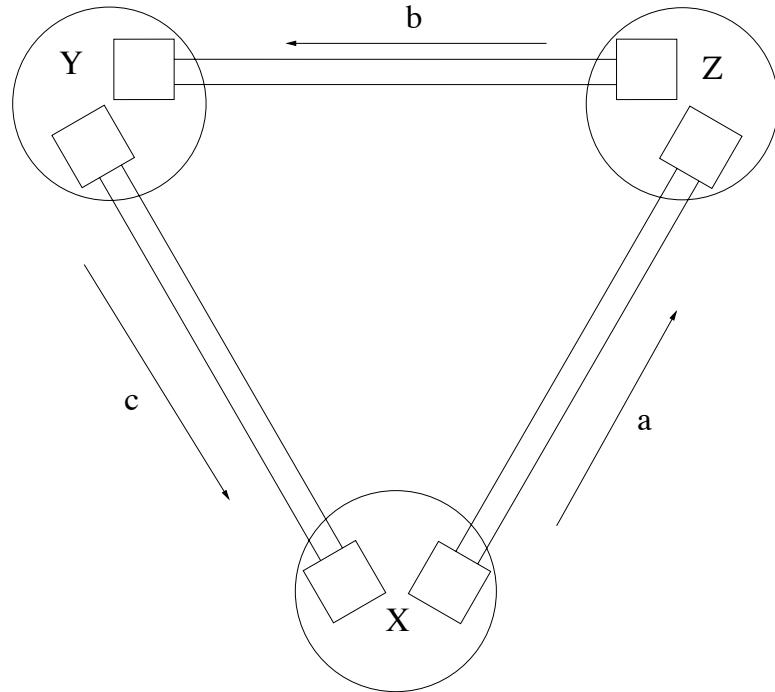


Figure 2.1: Schematic of the proposed LISA satellites. Each of the three satellites has two proof masses, shown as boxes.

practical mission financially. Additionally, eLISA will have shorter armlengths, which will shift its sensitivity curve to higher frequencies.

The derivations and equations below are correct for both a LISA mission and an eLISA mission. We need only plugin in the appropriate arm length and nominal noise levels to switch between the missions. Much of this work was done in support of the LISA mission, and we use the values appropriate for LISA in our analysis. LISA, being a 6-link mission has the benefit of redundancy. If one link were to fail, LISA could still operate as a 4-link mission like eLISA. As one would expect, the extra links also make LISA a more sensitive instrument. We do analysis for both 6-link and 4-link LISA configurations to show the effectiveness of the extra arm link in detecting a stochastic gravitational wave background.

These differences in arm length and noise levels affect the sensitivity of the two missions and the number of sources that can be detected. The two missions have different peak frequencies, with eLISA's being five times higher than LISA's. The shift in frequency will slightly affect which sources are available to each mission as well. For example, both missions will detect at least some of the galactic white dwarf binaries in our galaxy. However, most of these binaries will be at lower frequency, and eLISA will miss out on these lower frequency sources.

With only a single detector planned for the foreseeable future, the key to detecting a stochastic background will be a detailed understanding of the instrument noise and instrument response to gravitational wave signals. Luckily, in space-based interferometry, the noise is more manageable than for a terrestrial detector like LIGO. We can reasonably expect through a combination of preflight testing, on-orbit commissioning studies, and theoretical modeling to have a solid understanding of the instrument noise. We rely on knowing the spectral shape of the noise and that it is different than any expected stochastic signals. While the instrument noise spectra could in principle conspire to mimic the geometrical transfer functions of the signal, or vice-versa, this is unlikely to occur in practice as the signal and noise models have very distinct and complicated transfer functions. In the rest of this chapter we develop the formalism for a LISA detector and derive the instrument noise and detector response functions.

2.1 Noise

Noise enters a LISA measurement when the proof masses move in response to local disturbances, and in the process of measuring the phase of the laser light. The various LISA noise sources are discussed in several references [17, 69, 70]. As is commonly done, we group all the noise sources into two categories, position and acceleration.

Each proof mass will have a position and an acceleration noise associated with it, making a total of six position and six acceleration noise levels for a 6-link mission, or four of each for a 4-link mission.

We start by writing down the phase output $\Phi_{ij}(t)$, for the link connecting space-craft i and j :

$$\Phi_{ij}(t) = C_i(t - L_{ij}) - C_j(t) + \psi_{ij}(t) + n_{ij}^p - \hat{x}_{ij} \cdot (\vec{n}_{ij}^a(t) - \vec{n}_{ji}^a(t - L_{ij})) \quad (2.1)$$

Here the C_i are the laser phase noises, ψ_{ij} is the gravitational wave strain, and n_{ij}^p and \vec{n}_{ij}^a denote the position and acceleration noise. A Michelson signal can be formed at any of the three vertices by combining the phase at that detector with the time delayed signal from the two detectors at the ends of the two adjacent arms. For example, if we label the spacecraft 1, 2, and 3, the Michelson signal at spacecraft 1 is given by:

$$M_1(t) = \Phi_{12}(t - L_{12}) + \Phi_{21}(t) - \Phi_{13}(t - L_{13}) - \Phi_{31}(t). \quad (2.2)$$

The laser phase noise would easily overwhelm any gravitational wave signals if left unchecked. However, the phase noise is canceled using clever combinations of the three Michelson interferometry channels. This technique, developed by Armstrong, Estabrook, and Tinto, is known as Time Delay Interferometry (TDI) [71, 72].

Fig. 2.2, adapted from Ref. [73], shows how the laser phase noise is canceled. The key is to combine two time delayed signals at each vertex such that the time delays are equal for each signal. Eq. 2.1 shows the two laser phase terms that need to be canceled. Eq. 2.2 shows how the terms are canceled in the equal arm case. Since all the L_{ij} are equal, the same phase noise terms enter into the $\Phi_{21}(t)$ and $\Phi_{31}(t)$

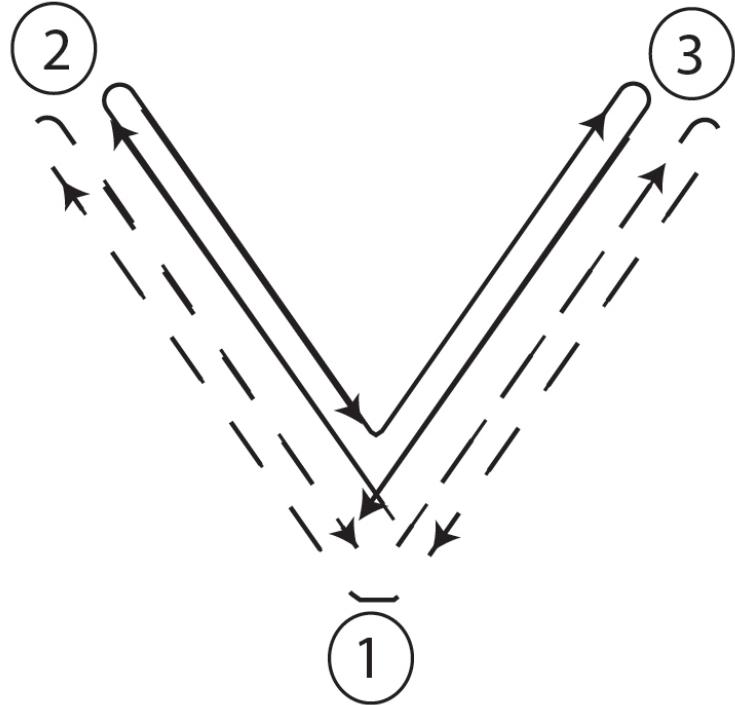


Figure 2.2: Depiction of light travel times for two signals that can be combined to create a TDI channel. For the general case of an unequal arm interferometer, the delay corresponds to the light travel time to go up and down each of two adjacent arms.

terms, but with different signs. The same is true of the time delayed terms in Eq. 2.2. The unequal arm case is only slightly trickier. Each beam must travel down each of the adjacent arms such that the light travel time is equal for the two beams. For simplicity, we show here the equal arm case, but comment later on how to adapt some of our results to the unequal arm case.

The TDI channels which cancel laser phase noise for an equal arm LISA ($L_{ij} = L = 5 \cdot 10^6$ km) are formed by subtracting a time delayed Michelson signal as follows:

$$X(t) = M_1(t) - M_1(t - 2L). \quad (2.3)$$

The three TDI channels are commonly referred to as X , Y , and Z corresponding to the signals extracted from spacecrafts 1, 2, and 3 respectively. The Y and Z channels are given by permuting indices in the X channel expression. Moving to the frequency domain, the signal at vertex 1 can be written as

$$\begin{aligned} X(f) = & 2i \sin\left(\frac{f}{f_*}\right) e^{f/f_*} \left[e^{f/f_*} (n_{13}^p - n_{12}^p) + n_{31}^p - n_{21}^p \right] \\ & + 4i \sin\left(\frac{2f}{f_*}\right) e^{2f/f_*} \left[(n_{12}^a + n_{13}^a) - (n_{21}^a + n_{31}^a) \cos\left(\frac{f}{f_*}\right) \right]. \end{aligned} \quad (2.4)$$

Here $f/f_* = c/(2\pi L)$, n_{ij}^p is the position noise for the link between spacecraft i and j , and n_{ij}^a is the acceleration noise level.

We form cross spectral densities between TDI channel pairs. For the X-channel, we get

$$\langle XX_p^* \rangle = 4 \sin^2\left(\frac{f}{f_*}\right) (S_{12}^p + S_{21}^p + S_{13}^p + S_{31}^p) \quad (2.5)$$

and

$$\langle XX_a^* \rangle = 16 \sin^2\left(\frac{f}{f_*}\right) \left(S_{12}^a + S_{13}^a + (S_{21}^a + S_{31}^a) \cos^2\left(\frac{f}{f_*}\right) \right) \quad (2.6)$$

where $S_{ij}(f) = \langle n_{ij}(f) n_{ij}^*(f) \rangle$. In forming the spectral density, we separated out the position and acceleration noise contributions of Eq. 2.4 into $\langle XX_p^* \rangle$ and $\langle XX_a^* \rangle$ respectively. The gravitational wave strain has disappeared from our equations as it is assumed to be uncorrelated with the noise and will have an expectation value of zero when multiplied by anything other than itself.

The six cross spectral densities that can be formed for a 6-link mission, or the single cross spectra for a 4-link mission are our model templates for the noise. The model parameters are the twelve (6-link) or eight (4-link) noise spectral density levels, S_{ij} , which we assume fully describe the instrument noise. In reality, it may be necessary

to include additional parameters in the noise model to account for uncertainties in the spectral shape of the individual noise spectra. However, if the a priori known distributions on these additional parameters are narrowly peaked, there will be little impact on our ability to detect a stochastic background signal.

Alternative combinations of the phase measurements can be used to derive noise orthogonal TDI variables [74]. We use a different set of TDI variables formed from combinations of the X , Y , and Z channels:

$$\begin{aligned} A &= \frac{1}{3}(2X - Y - Z) \\ E &= \frac{1}{\sqrt{3}}(Z - Y) \\ T &= \frac{1}{3}(X + Y + Z). \end{aligned} \quad (2.7)$$

We calculate the six cross-spectral densities for these channels in the appendix. As an example, we quote here the position and acceleration noise contributions to $\langle AA^* \rangle$:

$$\begin{aligned} \langle AA_p^* \rangle &= \frac{4}{9} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \cos \left(\frac{f}{f_*} \right) [4(S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p) - 2(S_{23}^p + S_{32}^p)] \right. \\ &\quad \left. + 5(S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p) + 2(S_{23}^p + S_{32}^p) \right\} \end{aligned} \quad (2.8)$$

and

$$\begin{aligned} \langle AA_a^* \rangle &= \frac{16}{9} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \left(\cos \left(\frac{f}{f_*} \right) \right) \left[4(S_{12}^a + S_{13}^a + S_{31}^a + S_{21}^a) - 2(S_{23}^a + S_{32}^a) \right] \right. \\ &\quad + \cos \left(\frac{f}{f_*} \right) \left[\frac{3}{2}(S_{12}^a + S_{13}^a + S_{23}^a + S_{32}^a) + 2(S_{31}^a + S_{21}^a) \right] \\ &\quad \left. + \frac{9}{2}(S_{12}^a + S_{13}^a) + 3(S_{31}^a + S_{21}^a) + \frac{3}{2}(S_{23}^a + S_{32}^a) \right\}. \end{aligned} \quad (2.9)$$

Models for the TDI cross-spectra have previously been considered in the context of LISA instrument noise determination [75], and the insensitivity of certain TDI variables to gravitational wave signals have been put forward as a technique for discriminating between a stochastic background and instrument noise [71, 72, 75]. Our approach extends the noise characterization study of Sylvestre and Tinto [75] to include the signal cross-spectra, and improves upon the simple estimator used by Hogan and Bender [76] by using an optimal combination of all six cross-spectra. Our approach is able to detect stochastic signals buried well below the instrument noise.

For this study we adopted the model used for the Mock LISA Data Challenges (MLDC) [77]. The position noise affecting each proof mass is assumed to be white, with a nominal spectral density of

$$S_p(f) = 4 \times 10^{-42} \text{ Hz}^{-1}. \quad (2.10)$$

The acceleration noise is taken as white above 0.1 mHz, with a red component below this frequency. Integrated to give an effective position noise, the proof mass disturbances on each test mass have a nominal spectral density of

$$S_a(f) = 9 \times 10^{-50} \left(1 + \left(\frac{10^{-4} \text{ Hz}}{f} \right)^2 \right) \left(\frac{\text{mHz}}{2\pi f} \right)^4 \text{ Hz}^{-1}. \quad (2.11)$$

The precise level of each contribution is to be determined from the data. A more realistic model for the noise contributions would include a parameterized model for the frequency dependence, with the model parameters to be inferred from the data. Allowing for this additional freedom would weaken the bounds that can be placed on the contribution from the stochastic background.

2.2 Simulated Data

In this study, we use both our own simulated data as well as data provided as part of the MLDC. We simulated our data using a combination of LISA Simulator [78, 79] and our own codes. We create a 1-year long data set sampled every 10 seconds. We chose the low sampling rate for computational expediency. The galaxy signal, which we describe in Chapter 4, only extends to 3 mHz and a stochastic gravitational wave background falls well below the noise shortly thereafter. With a faster sampling rate, we could extend to higher frequencies. We would better constrain the position noise, but our results would be otherwise unaffected.

In comparison, in the third round of the MLDC, Challenge 3.5 provides an approximately 3-week long data set of 2^{21} samples with 1 second sampling. A scale invariant isotropic background was simulated with a frequency spectrum of f^{-3} . The background was injected with a level that is ~ 10 times the nominal noise levels at 1 mHz, giving a range of $\Omega_{\text{gw}} = 8.95 \times 10^{-12} - 1.66 \times 10^{-11}$ for the energy density in gravitational waves relative to the closure density per logarithmic frequency interval [77]. The MLDC noise levels were randomly chosen for each component with power levels that range within $\pm 20\%$ of their nominal values, given in Eqs. 2.10 and 2.11. We use the same noise model to create our noise realizations. The noise amplitudes are randomly drawn from strain spectral densities.

$$n_{ij}^B = \frac{\sqrt{S_{ij}}}{2} \delta \quad (2.12)$$

where δ is a unit standard deviate and B signifies either the real or imaginary part.

As the LISA spacecraft orbit, the distance between them fluctuates by approximately 3%. To simplify our analysis we assume an equal arm rigid LISA constellation.

This is not a bad approximation over short periods of time compared to the yearly orbit of the constellation. The MLDC data was less than a month long. We look at year long observation times when including the galactic foreground signal, but we break the year up into 50 segments in our model. Each segment is approximately one week in length. The arm lengths will not change appreciably over that amount of time. Additionally, the galactic foreground signal is also approximately constant over a one week period.

Fig. 2.3 compares our model spectra to simulated LISA noise spectra from the MLDC training data. We show the strain spectral density in the TDI A and T channels. The E channel is almost identical to the A channel.

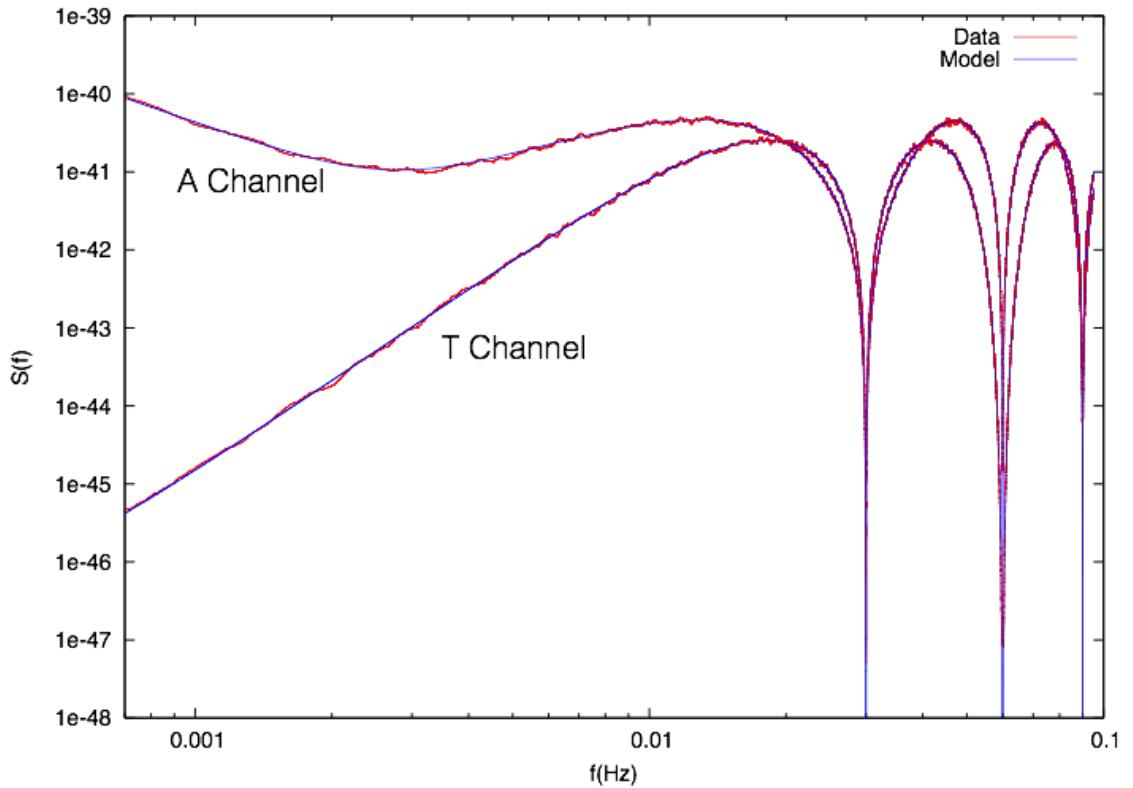


Figure 2.3: Our model for the noise in the *A* and *T* channels compared to smoothed spectra formed from the MLDC training data.

2.3 Detector Response to a Gravitational Wave Signal

In this section we re-derive the LISA response to a stochastic gravitational wave background. The details for how to calculate the detector response are given in Ref. [79]. We include here the main results needed to simulate our data. We later extend this calculation to take into account the effect of unequal arm-lengths. We begin by expanding the gravitational wave background in plane waves:

$$h_{ij}(t, \vec{x}) = \sum_P \int_{-\infty}^{\infty} df \int d\Omega \tilde{h}(f, \hat{\Omega}) e^{-2\pi f(t - \hat{\Omega} \cdot \vec{x})} \epsilon_{ij}^P(\hat{\Omega}). \quad (2.13)$$

Here the ϵ_{ij} are the components of the polarization tensor and P sums over the two polarizations. The polarization tensors are formed by using the basis vectors \hat{u} and \hat{v} and the sky location vector $\hat{\Omega}$,

$$\begin{aligned} \hat{u} &= \cos \theta \cos \phi \hat{x} + \cos \theta \sin \phi \hat{y} - \sin \theta \hat{z} \\ \hat{v} &= \sin \phi \hat{x} - \cos \phi \hat{y} \\ \hat{\Omega} &= \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}. \end{aligned} \quad (2.14)$$

The polarization tensors are formed as

$$\epsilon^+(\hat{\Omega}, \psi) = \mathbf{e}^+(\hat{\Omega}) \cos(2\psi) - \mathbf{e}^\times(\hat{\Omega}) \sin(2\psi) \quad (2.15)$$

and

$$\epsilon^\times(\hat{\Omega}, \psi) = \mathbf{e}^+(\hat{\Omega}) \sin(2\psi) + \mathbf{e}^\times(\hat{\Omega}) \cos(2\psi) \quad (2.16)$$

where ψ is the polarization angle and \mathbf{e}^+ and \mathbf{e}^\times are given by:

$$\mathbf{e}^+ = \hat{u} \otimes \hat{u} - \hat{v} \otimes \hat{v} \quad (2.17)$$

and

$$\mathbf{e}^\times = \hat{u} \otimes \hat{v} + \hat{v} \otimes \hat{u}. \quad (2.18)$$

The single arm detector tensor is given by:

$$\mathbf{D}(\hat{\Omega}, f) = \frac{1}{2}(\hat{r}_{ij} \otimes \hat{r}_{ij}) \mathcal{T}(\hat{r}_{ij} \cdot \hat{\Omega}, f) \quad (2.19)$$

where \hat{r}_{ij} is an arm vector and \mathcal{T} is the single arm transfer function given by

$$\mathcal{T} = \text{sinc} \left(\frac{f}{2f_*} (1 - \hat{\Omega} \cdot \hat{r}_{ij}(t_i)) \right) \exp \left(i \frac{f}{2f_*} (1 - \hat{\Omega} \cdot \hat{r}_{ij}) \right). \quad (2.20)$$

The signal is a convolution of the detector tensor with the gravitational waveform,

$$s(t) = \mathbf{D}(\hat{\Omega}, f) : \mathbf{h}(f, t). \quad (2.21)$$

In general, the gravitational waveform is given by a combination of the two polarizations:

$$\mathbf{h} = h_+ \mathbf{\epsilon}^+ + h_\times \mathbf{\epsilon}^\times \quad (2.22)$$

where $\mathbf{\epsilon}^{+,\times}$ are the basis tensors for the wave's orientation with respect to the detector. We can absorb the basis tensors into the detector tensor function to get the beam pattern functions:

$$F^P(\hat{\Omega}, f) = \mathbf{D}(\hat{\Omega}, f) : \mathbf{e}^P(\hat{\Omega}). \quad (2.23)$$

We then rewrite the signal as

$$s(t) = h_+ F^+ + h_\times F^\times. \quad (2.24)$$

Now h_+ and h_\times depend only on the source parameters and we can plug in different wave templates. We show in later chapters how h_+ and h_\times are generated for the galaxy and stochastic background.

The detector response functions are

$$R_{ij}(f) = \sum_P \int \frac{d\Omega}{4\pi} F_i^P(\hat{\Omega}, f) F_j^{P*}(\hat{\Omega}, f). \quad (2.25)$$

In general, the integral in Eq. 2.25 must be performed numerically, though we can develop analytic expressions in the low frequency limit using the Taylor expansion:

$$\begin{aligned} R_{AA} = R_{EE} &= 4 \sin^2 \left(\frac{f}{f_*} \right) \left[\frac{3}{10} - \frac{169}{1680} \left(\frac{f}{f_*} \right)^2 + \frac{85}{6048} \left(\frac{f}{f_*} \right)^4 \right. \\ &\quad \left. - \frac{178273}{159667200} \left(\frac{f}{f_*} \right)^6 + \frac{19121}{24766560000} \left(\frac{f}{f_*} \right)^8 + \dots \right] \end{aligned} \quad (2.26)$$

and

$$R_{TT} = 4 \sin^2 \left(\frac{f}{f_*} \right) \left[\frac{1}{12096} \left(\frac{f}{f_*} \right)^6 - \frac{61}{4354560} \left(\frac{f}{f_*} \right)^8 + \dots \right]. \quad (2.27)$$

The A , E , and T channels were created to be noise orthogonal, but they also happen to be signal orthogonal in the equal arm case. All of the cross terms in the response function R_{AE} , R_{AT} , etc. are zero in the equal arm-length limit. Sensitivity curves for the various channels are generated by plotting

$$h_K = \sqrt{\frac{S_{KK}(f)}{R_{KK}(f)}} \quad (2.28)$$

where S_{KK} and R_{KK} are the noise and signal spectral densities in the K channel. Fig. 2.4 shows the sensitivity curves for the A , E , and T channels along with a scale invariant gravitational wave background with $\Omega_{\text{gw}} = 10^{-10}$. We see that the T channel is insensitive to the gravitational wave background for $f < f_*$.

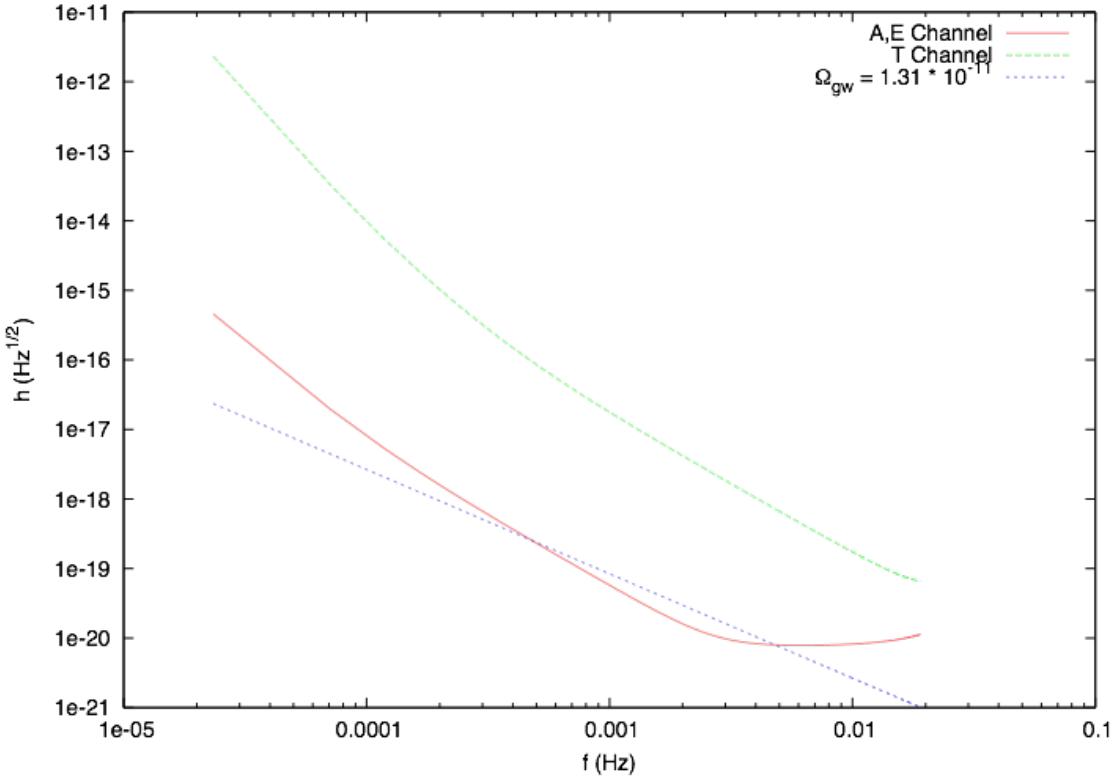


Figure 2.4: The sensitivity curve for the A , E , and T channels, showing the insensitivity of the T channel to a gravitational wave signal.

2.4 Null Channel for Unequal Arm LISA

The various null channels that have been identified for LISA - the symmetric Sagnac channel, the Sagnac T channel, and the Michelson T channel - are null only if the arm-lengths of the detector are equal. The orbits of the LISA spacecraft cause the arm-lengths to vary by a few percent over the course of a year. In practice the

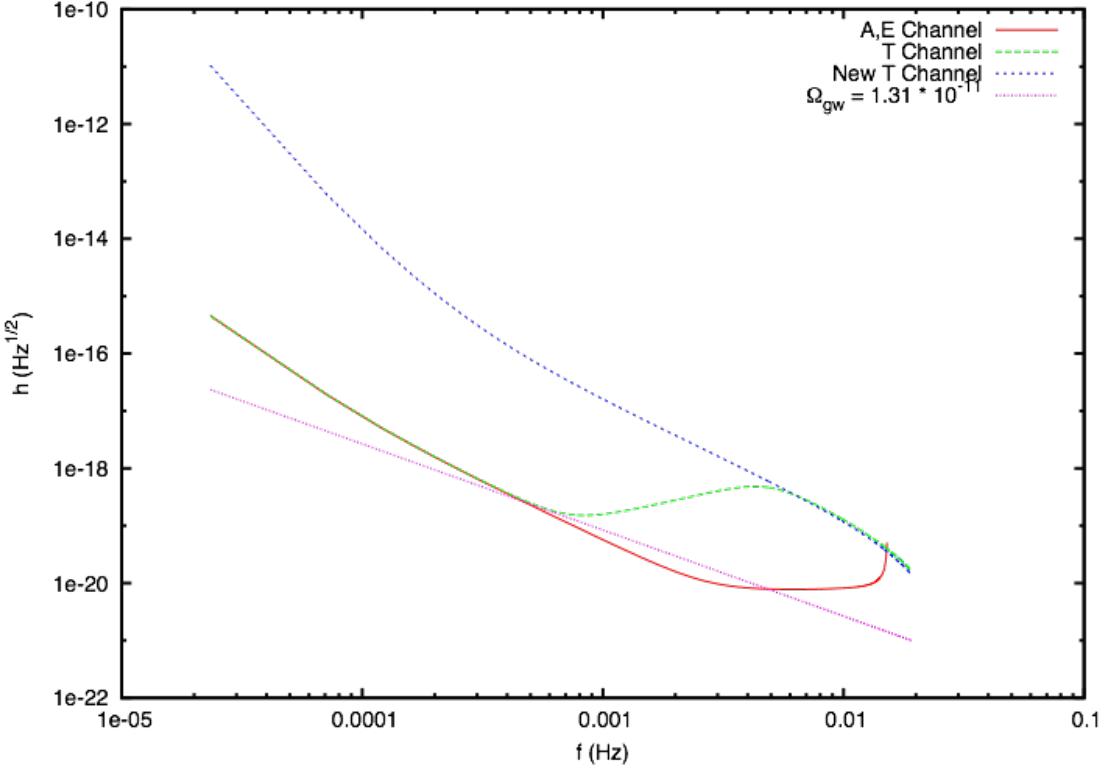


Figure 2.5: Sensitivity curve for unequal arm LISA. Our new T channel restores the usual low-frequency insensitivity to a stochastic gravitational wave background.

arm-lengths will never be equal. For unequal arm-lengths we find that the Michelson T channel has *exactly* the same sensitivity curve as the A or E channels, at least for low frequencies. We found that it is possible to restore the relative insensitivity of the T channel by forming a new, time delayed combination of the X , Y , and Z channels. Since the arm-lengths will be approximately equal, we write

$$\begin{aligned}
 L_a &= L(1 + \epsilon_a) \\
 L_b &= L(1 + \epsilon_b) \\
 L_c &= L(1 + \epsilon_c), \tag{2.29}
 \end{aligned}$$

with $|\epsilon_i| \ll 1$. Here an “a” subscript denotes the “12” arm, “b” the “23” arm, and “c” the “13” arm. In the frequency domain we define a modified T channel:

$$T = \frac{1}{3} (X + \alpha Y + \beta Z), \quad (2.30)$$

where α and β are factors that will restore the signal insensitivity of the T channel. Working to leading order in ϵ_i and expanding α and β in a Taylor series in f/f_* , we are able to set the response function R_{TT} to zero out to order f^8 (the same as in the equal arm-length limit) with the coefficients

$$\begin{aligned} \alpha &= 1 + \epsilon \left[j_0 + ij_1 \left(\frac{f}{f_*} \right) + j_2 \left(\frac{f}{f_*} \right)^2 + j_4 \left(\frac{f}{f_*} \right)^4 \right] \\ \beta &= 1 + \epsilon \left[k_0 + k_2 \left(\frac{f}{f_*} \right)^2 \right] \end{aligned} \quad (2.31)$$

where j_0 , j_1 , j_2 , j_4 , k_0 , and k_2 are given by:

$$\begin{aligned} j_0 &= \epsilon_a - \epsilon_b \\ j_1 &= \sqrt{\frac{1}{2}(\epsilon_a - \epsilon_b)^2 + \frac{1}{2}(\epsilon_b - \epsilon_c)^2 + \frac{1}{2}(\epsilon_a - \epsilon_c)^2} \\ j_2 &= \frac{1}{3}(\epsilon_b - \epsilon_a) \\ j_4 &= \frac{17}{3780}(\epsilon_b + \epsilon_c - 2\epsilon_a) \\ k_0 &= \epsilon_c - \epsilon_b \\ k_2 &= \frac{1}{3}(\epsilon_b - \epsilon_c). \end{aligned} \quad (2.32)$$

The α and β coefficients define delay operators in the time domain.

Fig. 2.5 shows the sensitivity curves for unequal arm LISA. We see that at low frequencies, the original T channel has identical sensitivity to the A and E channels,

while the new T channel restores the usual low-frequency insensitivity to a stochastic gravitational wave background.

CHAPTER 3

COSMOLOGICAL SOURCES OF GRAVITATIONAL WAVES

The detection of the cosmic microwave background (CMB) revolutionized the field of cosmology. We expect the detection of a primordial stochastic gravitational wave background to similarly open a window of exploration and provide new information about the early Universe and inflation. Because the Universe was opaque to electromagnetic radiation before the surface of last scattering, there is large uncertainty in the processes that occurred during early epochs. This uncertainty leads to multiple viable models of early Universe processes that are not yet well constrained by data. Different models lead to different amounts of gravitational wave production and potentially different spectra. Just as detecting the CMB supported Big Bang cosmology over a steady state model, detecting a primordial stochastic gravitational wave background will allow us to constrain and estimate early Universe parameters and rule out models inconsistent with the data.

Despite this current uncertainty, there are features of a stochastic background that would be common to all models. We can reasonably expect that the background will be stationary, isotropic, and Gaussian. We can infer the isotropy of the background from measurements of the CMB. WMAP data shows that the CMB is isotropic to within approximately 1 part in 10^5 . Stationarity is implied because the time scales on which a stochastic background could change are much longer than the time scales on which we might observe the background. Gaussianity is implied largely by the central limit theorem. A detailed discussion of these assumptions is given in [39, 80].

As discussed in [28], a stochastic background from the early Universe is expected to extend over a very large waveband. LIGO, PTAs, and space-based missions can offer

complementary observations of the background at different frequencies. Detecting a primordial background across a wide band would help pin down a model for the production of gravitational waves in the early Universe. While the background may be too low to detect with first generation detectors, upper bounds can be set that will potentially rule out some models. In the remainder of this chapter, we discuss how to characterize a background, existing bounds on the strength of a stochastic background, several production mechanisms, and show how we model and simulate data for our studies.

3.1 Characterizing a Gravitational Wave Background.

We will discuss several production mechanisms below, but regardless, we can use the plane wave approximation to characterize the incoming radiation at our detector. The radiation is typically characterized by its energy density, ρ_{gw} . However, we will be comparing a stochastic signal to instrument noise, and the instrument noise is not characterized by its energy density, but rather by the strain spectral noise density, S_n . We need to compute the strain spectral density of the background S_h for comparison to S_n .

We briefly summarize how to derive the relationship between S_h and ρ_{gw} following the treatment given in [80]. Working in the transverse traceless (TT) gauge, the plane wave expansion for gravitational waves is given by Eq. 2.13. Under the assumptions listed above, and the further assumption that the background is unpolarized, S_h is defined as

$$\langle \tilde{h}_A^*(f, \hat{\Omega}) \tilde{h}_{A'}^*(f', \hat{\Omega}') \rangle = \delta(f - f') \frac{\delta^2(\hat{\Omega}, \hat{\Omega}')}{4\pi} \delta_{AA'} \frac{1}{2} S_h(f). \quad (3.1)$$

We normalize such that when we integrate over $d\Omega$, we get

$$\int d\Omega d\Omega' \langle \tilde{h}_A^*(f, \hat{\Omega}) \tilde{h}_{A'}^*(f', \hat{\Omega}') \rangle = \delta(f - f') \delta_{AA'} \frac{1}{2} S_h(f) \quad (3.2)$$

where $d\Omega = d\cos\theta d\phi$. Taking the ensemble average of Eq. 2.13 gives

$$\langle h_{ij}(t) h^{ij}(t) \rangle = 4 \int_0^\infty df S_h(f). \quad (3.3)$$

We also compute the time derivative of Eq. 2.13

$$\dot{h}_{ij}(t, \vec{x}) = \sum_P \int_{-\infty}^\infty df \int d\Omega (-2\pi i f) \tilde{h}(f, \hat{\Omega}) e^{-2\pi f(t - \hat{\Omega} \cdot \vec{x})} \epsilon_{ij}^P(\hat{\Omega}) \quad (3.4)$$

since the energy density is given in terms of \dot{h}_{ij} ,

$$\rho_{gw} = \frac{c^2}{32\pi G} \langle \dot{h}_{ij} \dot{h}^{ij} \rangle. \quad (3.5)$$

Combining Eqs. 3.3 and 3.5 gives

$$\rho_{gw} = \frac{c^2}{8\pi G} \int_{f=0}^{f=\infty} df (2\pi f)^2 S_h(f), \quad (3.6)$$

which successfully relates the energy density in gravitational waves to the strain spectral density. However, in cosmology, energy densities are typically expressed as fractions of the critical closure density ρ_c ,

$$\Omega_{\text{gw}} \equiv \frac{\rho_{gw}}{\rho_c}. \quad (3.7)$$

The dimensionless energy density Ω_{gw} is defined as

$$\Omega_{\text{gw}}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{\text{gw}}}{d \log f} \quad (3.8)$$

where $d\rho_{\text{gw}}/d \log f$ is the energy density per logarithmic frequency interval. This means that Ω_{gw} will be given by

$$\rho_{\text{gw}} = \int_{f=0}^{f=\infty} d(\log f) \frac{d\rho_{\text{gw}}}{d \log f}. \quad (3.9)$$

To relate Ω_{gw} to S_h we change Eq. 3.6 to an integral over $\log f$, noting that $d \log f = df/f$.

$$\rho_{\text{gw}} = \frac{c^2}{8\pi G} \int_{f=0}^{f=\infty} d(\log f) f (2\pi f)^2 S_h(f). \quad (3.10)$$

Comparing the integrands of Eqs. 3.9 and 3.10, we see that

$$\Omega_{\text{gw}}(f) = \frac{\pi c^2}{2G} f^3 S_h(f) = \frac{4\pi^2}{3H_0^2} f^3 S_h(f). \quad (3.11)$$

Throughout the remainder of this dissertation, the energy density in a stochastic gravitational wave background is characterized by $\Omega_{\text{gw}}(f)$, with the strain spectral density given by

$$S_h(f) = \frac{3H_0^2}{4\pi^2} \frac{\Omega_{\text{gw}}(f)}{f^3}. \quad (3.12)$$

3.2 Bounds

Even though we have not yet detected any gravitational waves, let alone a primordial stochastic background, we already have upper bounds on a potential background set by Big-Bang Nucleosynthesis, COBE and WMAP data, and by existing gravitational wave missions. The bounds allow us to do gravitational wave science

even without detections. As the bounds improve, we will be able to rule out models inconsistent with the data.

3.2.1 BBN

The theory of Big Bang nucleosynthesis successfully predicts the abundances of lighter elements in the Universe like deuterium, ^3He , ^4He , and ^7Li . Deuterium and ^4He are particularly important because there doesn't seem to be any other major formation mechanisms for them. Stars do produce both deuterium and ^4He , but in extremely small amounts. Therefore, the amount of present day ^4He gives information about the abundance of its constituent particles, protons and neutrons, in the early Universe.

The basic idea is that when the temperature of the Universe was approximately $T \approx 1 \text{ MeV}$, there was a particle zoo in thermal equilibrium. Thermal equilibrium here means that particle reaction rates were in equilibrium, progressing forward as often as backward. For protons and neutrons, the reaction is

with reaction rate $\Gamma_{pe \rightarrow n\nu}$. The reaction rate is given by

$$\Gamma = n\sigma|v| \quad (3.14)$$

where n is the particle number density, σ is the cross section of the process, and $|v|$ is a typical velocity. Thermal equilibrium is maintained as long as $\Gamma_{pe \rightarrow n\nu} > H$, meaning the reaction occurs many times in one Hubble time. Once the rate falls below the Hubble constant, the reaction is “frozen-out”. The ratio of neutrons to protons n_n/n_p remains constant after this point. Almost all of the neutrons present

at the time of freeze-out will eventually form ${}^4\text{He}$, so the present day abundance of ${}^4\text{He}$ is very sensitive to the neutron to proton ratio at the time of freeze-out.

The neutron to proton ratio is related to temperature by

$$n_n/n_p = e^{Q/T}, \quad (3.15)$$

where $Q = m_n - m_p \approx 1.3 \text{ MeV}$. When the Universe reaches the freeze-out temperature, T_f , the ratio is fixed and most of the neutrons later become Helium.

Gravitational waves contribute to the overall energy density of the Universe. The freeze-out temperature depends on the energy density, and consequently the frozen-out neutron to proton ratio is affected by the energy density in gravitational waves. We briefly sketch out the effect of gravitational waves on nucleosynthesis here. See [31, 28] and references therein for a fuller treatment.

The energy density of weakly-interacting gas particles is given by

$$\rho = \frac{g}{(2\pi)^3} \int \frac{|\vec{p}|^2}{3E} f(\vec{p}) d^3p, \quad (3.16)$$

where g is the number of internal degrees of freedom. In thermal equilibrium and in the relativistic limit, we obtain

$$\rho = \frac{\pi^2}{30} g T^4. \quad (3.17)$$

For gravitational waves, $\rho_{gw} = \frac{2\pi^2}{30} T^4$.

Based on dimensional grounds, we can take

$$\Gamma_{ne \rightarrow pe} = G_F^2 T^5. \quad (3.18)$$

At the freeze-out temperature, $\Gamma_{ne \rightarrow pe} \approx H$, where H is given by T_f^2/M_{Pl} . The relationship also depends on the particle abundances and it can be shown that

$$G_F^2 T_F^5 \approx \left(\frac{8\pi^3 g_*}{90} \right)^{1/2} \frac{T_f^2}{M_{\text{Pl}}}. \quad (3.19)$$

The freeze-out temperature T_f is sensitive to g_* which contains contributions from gravitational waves. Detailed calculations give the bound on the energy density in gravitational waves as

$$\int_{f=0}^{f=\infty} d \log f h_0^2 \Omega_{\text{gw}}(f) \leq 5.6 \times 10^{-6} (N_\nu - 3). \quad (3.20)$$

where N_ν is the effective number of neutrino species. The integral is positive definite, which means we can also state bounds on the integrand. If the gravitational wave background were to be narrowly peaked around a single frequency, we'd have

$$h_0^2 \Omega_{\text{gw}} \leq 5.6 \times 10^{-6} \quad (3.21)$$

where we have taken $N_\nu = 4$ [81].

3.2.2 COBE and WMAP

Constraints placed on the gravitational wave background from observations of the CMB are due to what is known as the Sachs-Wolfe effect. Long wavelength gravitational waves in the early Universe induced stochastic variations in the photons that today make up the CMB. These fluctuations appear in the COBE and WMAP temperature maps of the CMB. Typically, we expand the CMB temperature fluctuations in spherical harmonics:

$$\frac{\delta T(\hat{\Omega})}{T} = \sum_{l=2}^{\infty} \sum_{m=-l}^l a_{lm}(\vec{r}) Y_{lm(\hat{\Omega})}. \quad (3.22)$$

The gravitational wave background Ω_{gw} is related to the temperature fluctuations by

$$\Omega_{\text{gw}}(f) < \left(\frac{H_0}{f}\right)^2 \left(\frac{\delta T}{T}\right). \quad (3.23)$$

The range over which this is valid is

$$3 \times 10^{-18} \text{ Hz} < f < 1 \times 10^{-16} \text{ Hz}, \quad (3.24)$$

with the upper end coming from the requirement that waves are outside the Hubble radius at the time of last scattering and the lower limit from the requirement that they be inside the Hubble radius today. The bound from COBE data is given by

$$\Omega_{\text{gw}}(f) h_{100}^2 < 7 \times 10^{-11} \left(\frac{H_0}{f}\right)^2 \quad (3.25)$$

and the bound from WMAP is

$$\Omega_{\text{gw}}(f) h_{100}^2 < 1.6 \times 10^{-9} \left(\frac{H_0}{f}\right)^2, \quad (3.26)$$

which are both valid inside the range given by Eq. 3.24.

3.2.3 LIGO and PTA Bounds

Existing gravitational wave detectors are not expected to be sensitive enough to detect a primordial stochastic gravitational wave background. Regardless, LIGO and PTAs can still place upper limits on the level of a stochastic gravitational wave

background. As the sensitivity of the instruments improves, the bound will become lower and may help rule out certain models, even if a detection is not made. The current bounds set by the LSC [33] are

$$\Omega_{\text{gw}}(f) = 0.33 \left(\frac{f}{900 \text{ Hz}} \right)^3 \quad (3.27)$$

with $h_{100} = 0.72$. The PTA bounds [34] are

$$\Omega_{\text{gw}}(1/8 \text{ yr})h^2 \leq 2.0 \times 10^{-8}. \quad (3.28)$$

In this dissertation we will show that a 4-link space-based interferometer is capable of placing constraints on a background with a flat spectrum of order

$$\Omega_{\text{gw}} \leq 5 \times 10^{-13}. \quad (3.29)$$

As mentioned before, these bounds are complementary and cover different wavebands.

3.3 Sources of Gravitational Waves

3.3.1 Amplification of Quantum Fluctuations

The amplification of quantum fluctuations is a general mechanism across different models that can lead to gravitational wave production [82, 83]. The CMB spectrum agrees with predictions of quantum fluctuations during inflation. These waves would extend over a large frequency band starting at the energy scale when the fluctuation occurred and being stretched out up to the length of the horizon during inflation. Different models predict different amplitudes for tensor fluctuations, but the most optimistic models give an energy density level of 10^{-17} . This is too low for current

detectors to detect. Proposed future space-based missions, the Big Bang Observatory and the Deci-Hertz Interferometer Gravitational wave Observatory are specifically designed to detect this spectrum [84, 85].

The perturbations can either be scalar perturbations, which lead to structure formation in the Universe, or tensor perturbations, which lead to the production of gravitational waves. The perturbations become amplified during inflation and lead to excess particle production as inflation gives way to later phases in the history of the Universe.

To see how gravitational waves arise from early Universe quantum fluctuations, we start with a perturbed metric in Friedmann-Robertson-Walker (FRW) cosmology,

$$g_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu}), \quad (3.30)$$

where ν is conformal time and $h_{\mu\nu}$ is the metric perturbation. We can write the perturbation as a mode expansion of the wavenumbers,

$$h_{ab}(\eta, \vec{x}) = \sqrt{8\pi G_N} \sum_{A=+, \times} \sum_{\vec{k}} \phi_{\vec{k}}^A(\eta) e^{i\vec{k}\cdot\vec{x}} e_{ab}^A(\hat{\Omega}), \quad (3.31)$$

where the indices ab indicate that we are in the transverse traceless (TT) gauge.

We can linearize the Einstein equations to get a differential equation for ϕ [86, 28, 31],

$$\phi''_{\mathbf{k}} + 2\frac{a'}{a}\phi'_{\mathbf{k}} + k^2\phi_{\mathbf{k}} = 0. \quad (3.32)$$

The prime denotes a derivative with respect to conformal time. If we make the substitution

$$\psi_{\mathbf{k}}(\eta) = \frac{1}{a}\phi_{\mathbf{k}}(\eta), \quad (3.33)$$

Eq. 3.32 can be rearranged to give

$$\psi''_{\mathbf{k}} + \left(k^2 - \frac{a''}{a} \right) \psi_{\mathbf{k}} = 0, \quad (3.34)$$

which we recognize as the equation for a harmonic oscillator. We can use the formalism of the simple harmonic oscillator to get an intuitive feel for how quantum fluctuations become amplified. A more detailed derivation of the amplification is given in [28, 31].

First, imagine that there are two phases in the early Universe and the transition from phase I to phase II occurs over some time interval ΔT at time t_* . The Hubble time is of order the time it takes for the Universe to expand appreciably, so we can take $\Delta T \approx H^{-1}$. This gives a relation between the different fluctuation modes and the Hubble distance. If the wavelength of a mode is large, we have

$$2\pi f_* H_*^{-1} \ll 1, \quad (3.35)$$

where f_* and H_* are the frequency of the mode and the Hubble parameter at time t_* respectively. The modes are said to be outside the horizon since their wavelength is larger than the horizon. The evolution of the wave happens on timescales larger than the Hubble time and the wave doesn't have time to adjust to the changing vacuum state. For modes whose wavelengths are smaller than the Hubble length, we have

$$2\pi f_* H_*^{-1} \gg 1. \quad (3.36)$$

For these modes, the evolution of the wave happens much faster than the phase transition and they adiabatically change with the vacuum.

Now consider again that each mode fluctuates like a harmonic oscillator. The creation and annihilation operators for a harmonic oscillator are defined such that the annihilation operator acting on the ground state gives zero. If we denote the vacuum state in phase I as $|0\rangle_I$, we get

$$a_+(\mathbf{k})|0\rangle_I = a_\times(\mathbf{k})|0\rangle_I = 0. \quad (3.37)$$

The new vacuum state in phase two is $|0\rangle_{II}$, and we need to define new creation and annihilation operators $A_A(\mathbf{k})$ and $A_A^\dagger(\mathbf{k})$,

$$A_+(\mathbf{k})|0\rangle_{II} = A_\times(\mathbf{k})|0\rangle_{II} = 0. \quad (3.38)$$

The occupation numbers in each state must be expressed in terms of the occupation number operator, which is in turn defined by the creation and annihilation operators in each phase,

$$N_I = a^\dagger a \quad N_{II} = A^\dagger A. \quad (3.39)$$

States that change rapidly with respect to the Hubble time have time to evolve adiabatically with the vacuum state and there is no new particle production. However, the change for states outside the horizon is abrupt. The quantum state in phase I can't evolve with the vacuum state and the occupation numbers in phase II are evaluated with the new operators, which leads to particle production. These gravitons would lead to a stochastic gravitational wave background which is in principle observable today.

3.3.2 Reheating

After inflation, all the energy density in the Universe is stored in the scalar inflaton field. Somehow the energy needs to be removed from the inflaton field to create the radiation and matter dominated phases of the Universe. This process is called reheating [87, 88, 89]. In the basic reheating scenario, the inflaton decays into other particles, including the familiar particles that will initiate nucleosynthesis. In a more complicated scenario known as preheating [90, 91, 92, 93, 94, 95, 96, 97, 98], the inflationary field may decay much more rapidly through parametric resonance with a bosonic field. The decay of the inflaton field leads to the thermal bath of the Hot Big Bang. This thermalization is non-linear. The matter and energy fluctuations during this period create a stochastic gravitational wave background that may contribute a significant portion of the total primordial background.

3.3.3 Phase Transitions

Another possible source of gravitational waves is from early Universe phase transitions. A phase transition occurs when there is a symmetry breaking, such as the electroweak symmetry. First order phase transitions offer several methods for producing gravitational waves [99, 100], but second order phase transitions may also be able to produce gravitational radiation [101]. Whether a transition is first order or second order can be model dependent. Consequently, gravitational wave observations could help differentiate amongst some of these models.

During these phase transitions, bubbles can nucleate, and then expand and collide with one another. These collisions can be highly energetic and produce gravitational waves. The bubbles can also interact with the surrounding plasma. As bubbles release energy into the plasma, they cause turbulence if the plasma Reynold's number is high enough. If there are seed magnetic fields present in the plasma, MHD effects may

also come into play. As with reheating, the dynamics and turbulence leads to the production of gravitational waves.

3.3.4 Cosmic Strings

The last potential source of early Universe gravitational waves is from cosmic strings [102, 96, 103]. Cosmic strings are topological defects that may be formed during phase transitions. Cosmic strings also emerge in string theory, in which case they are referred to as cosmic super-strings.

Cosmic strings carry very high energy densities. Strings themselves will not produce gravitational waves, but they can form loops and collide with each other. During these high energy interactions gravitational waves will be produced. The frequency of the wave produced depends on the length of the string, so we expect that cosmic strings would form a background over a large frequency band corresponding to a wide variety of string lengths.

3.4 Model

We adopt here a simple model for a stochastic gravitational wave background. More complicated models can be incorporated for the analysis, but for our present purposes we only show that as long as the background spectrum is different than the instrument noise and any foregrounds signals, we can differentiate it from the other signals.

For an isotropic background, the signal cross spectra of the interferometer channels are given by the detector response function (Eq. 2.25) and the strain spectral density for the background,

$$\langle S_i(f), S_j(f) \rangle = S_h(f) R_{ij}(f). \quad (3.40)$$

We only need supply $S_h(f)$, which is dependent on the formation mechanisms. We consider two cases, a flat spectrum where Ω_{gw} does not depend on the frequency, and a spectrum that allows for a power law dependence on frequency. Since we won't know the slope of a stochastic gravitational wave background a priori, we want the flexibility in our model to fit for different slopes,

$$\Omega_{\text{gw}}^{\text{slope}}(f) = \Omega_{\text{gw}} \left(\frac{f}{1\text{mHz}} \right)^m \quad (3.41)$$

In the latter case, Eq. 3.12 becomes

$$S_h(f) = \frac{3H_0^2}{4\pi^2} \frac{\Omega_{\text{gw}}}{f^3} \left(\frac{f}{1\text{mHz}} \right)^m. \quad (3.42)$$

3.5 Simulated Data

Later, we show two studies involving simulated stochastic gravitational wave background data. In the first study, we used simulated data from the MLDC to search for a stochastic gravitational wave background amidst instrument noise. For the second study, we simulated our own data for the stochastic background.

The stochastic gravitational wave background is generated using Eq. 2.23. To simulate an isotropic background, we create equal area sky pixels using the HEALpix routines [104]. We generate $N = 192$ sky pixels, the same number used in the MLDC. In each sky pixel we randomly draw plus and cross polarization amplitudes for the stochastic background,

$$h_A^B = \frac{\sqrt{\Omega_{\text{gw}}/N}}{2} \delta, \quad (3.43)$$

where A signifies the polarization plus or cross, B is the real or imaginary part, δ is a unit standard deviate, and Ω_{gw} is the energy density in gravitational waves per

logarithmic frequency interval defined above. We then fold the background into the full data stream using Eq. 2.24.

CHAPTER 4

ASTROPHYSICAL GRAVITATIONAL WAVE FOREGROUNDS

In the last chapter, we discussed how to model a primordial gravitational wave background. We also expect there to be many unresolved astrophysical foreground sources across the wavebands spanned by current and planned gravitational wave detectors. A superposition of many astrophysical sources forms a stochastic signal that could compete with a stochastic background. Since most models predict a weak stochastic background, astrophysical stochastic signals will likely overwhelm a primordial background, and must be properly modeled if we hope to separate the astrophysical foreground from a stochastic background. Unlike a stochastic background, we do not necessarily expect astrophysical foreground signals to be isotropic, nor do we expect them to have the same spectrum as a primordial background. The features of the foreground signals will depend entirely on the type of source and the population of the sources. Therefore, modeling a foreground folds together the tasks of modeling individual sources and their population.

4.1 Sources of Astrophysical Stochastic Signals

There are several candidates for astrophysical foreground signals in the millihertz waveband. There will almost certainly be a foreground signal from the white dwarf binaries in our own galaxy. Many of these white dwarf binaries will be individually resolvable [55]. The rest will form a confusion foreground that could overwhelm any extragalactic stochastic signals if not properly modeled. We show later that our ability to detect an isotropic stochastic gravitational wave background is not significantly reduced when the galactic foreground is properly modeled.

There may also be a foreground signal from extragalactic white dwarf binaries [105]. We would expect the extragalactic white dwarf signal to be fairly isotropic, but it may be possible to see some hint of anisotropy due to the stronger signal from nearby galaxies. Other compact objects may form confusion foregrounds including extreme-mass-ratio inspirals (EMRIs) [56] and less certain, but still an interesting possibility is an astrophysical foreground from inspirals of massive black hole binaries [57].

In this work we will focus on the galactic white dwarf foreground only. The analysis can easily be extended by including other foreground signals. As long as each foreground is adequately modeled, and the spectrum is unique from other stochastic components of the data, the addition of more foregrounds will not significantly reduce the effectiveness of our analysis to follow.

4.2 White Dwarf Population Model

We start by modeling white dwarf binaries and their population in the galaxy. Some of the binaries will be bright enough to be individually resolvable. Assuming that the bright binaries have the same distribution as the dimmer binaries, we can use the bright binaries to constrain the parameters in our population distribution model. We show how we constrain the distribution parameters and then how we use them to model the confusion foreground.

4.2.1 Modeling Individual White Dwarf Binaries

The first step is to model and regress individually resolvable binaries. The white dwarf waveforms [106] to be used in Eq. 2.24 are:

$$\begin{aligned} h_+(t) &= A_+ \cos(2\psi) \cos(\Phi(t)) + A_\times \sin(2\psi) \sin(\Phi(t)) \\ h_\times(t) &= -A_+ \sin(2\psi) \cos(\Phi(t)) + A_\times \cos(2\psi) \sin(\Phi(t)) \end{aligned} \quad (4.1)$$

where ψ is the polarization angle and the amplitudes are given by

$$\begin{aligned} A_+ &= \frac{2G^2 M_1 M_2}{c^4 r} \left(\frac{(\pi f_o)^2}{G(M_1 + M_2)} \right)^{1/3} (1 + \cos^2 \iota) \\ A_\times &= \frac{4G^2 M_1 M_2}{c^4 r} \left(\frac{(\pi f_o)^2}{G(M_1 + M_2)} \right)^{1/3} \cos^2 \iota. \end{aligned} \quad (4.2)$$

Here M_1 and M_2 are the white dwarf masses and ι is the inclination angle. The phase is given by:

$$\Phi(t) = 2\pi f_o t + \pi \dot{f}_o t^2 + \phi_o - \Phi_D(t) \quad (4.3)$$

where f_o is the instantaneous frequency, ϕ_o is the phase angle, and the modulation frequency Φ_D is:

$$\Phi_D(t) \equiv \frac{2\pi f_o}{c} \hat{k} \cdot \vec{x}_i(t). \quad (4.4)$$

To leading order, the frequency evolves as

$$\dot{f}_o = \frac{96\pi}{5} (\pi \mathcal{M})^{5/3} f_o^{11/3}, \quad (4.5)$$

where \mathcal{M} is the chirp mass. Later, we describe Bayesian inference techniques that can be used to generate distribution functions for each of the parameters in Eq. 4.1, indicating our confidence in the values of those parameters. The brightest sources

will be individually regressed from the data [107], and we will use the information gained about their sky locations to constrain the shape of the galaxy distribution.

4.2.2 Modeling the Galactic Distribution

We can draw on current electromagnetic observations to choose a reasonable model for the galaxy shape distribution. The model will be refined by the added data obtained from gravitational wave observations. There is currently no reason to believe that white dwarfs will have a significantly different population than other stars, but having the flexibility to model the white dwarf distribution is wise.

We adopt a bulge plus disk model for the galaxy shape [108, 109, 110, 111]. Choosing the x-y plane as the plane of the galaxy, the density of stars in the galaxy is given by

$$\rho(x, y, z) = \rho_0 \left(\frac{A}{(\sqrt{\pi} R_b)^3} e^{-r^2/R_b^2} + \frac{1-A}{4\pi R_d^2 Z_d} e^{-u/R_d} \operatorname{sech}^2(z/Z_d) \right). \quad (4.6)$$

Here, $r^2 = x^2 + y^2 + z^2$, $u^2 = x^2 + y^2$, R_b is the characteristic radius for the bulge, and R_d and Z_d are a characteristic radius and height for the disk respectively. The quantity ρ_0 is a reference density of stars and the coefficient A , which ranges between 0 and 1, weights the number of stars in the bulge versus the number in the disk.

Using the best fit sky location parameters for the bright binaries, we will map out and constrain the white dwarf distribution throughout the galaxy. We assume the same distribution for the unresolved sources. The more bright sources we detect, the better constrained will be the distribution for the unresolved sources.

4.3 Confusion Foreground Model

Once the resolvable binaries are removed, a stochastic, confusion foreground made from the superposition of all other binaries remains. There are two key factors involved in modeling the galactic foreground. The first is the same idea alluded to earlier. The galactic foreground has a spectral shape that is distinct from the instrument noise and typical stochastic gravitational wave background models [99, 112, 113] (it would take an extremely fine tuned and bizarre primordial signal to match the spectral shape of the unresolved galactic foreground). The differences in spectral shapes provide the main discriminating power amongst the three components. In addition, most of the higher frequency white dwarf binaries will be individually resolved and regressed, meaning that the higher frequency data can be used to pin down parameters for the noise and the stochastic background with little or no galactic contamination.

Secondly, the galactic foreground signal is modulated with a 1-year period due to the motion of the LISA constellation around the Sun. As LISA cartwheels around the Sun, the beam pattern will sweep across the sky. The sweet spot of the beam pattern will hit different parts of the galaxy at different times throughout the year. The variation in the detector response to the galaxy throughout the year creates the modulation in the signal. Fig. 4.1 shows the full galaxy signal for 1 year of data. The sweet spot of the beam pattern hits near the center of the galaxy twice throughout the year, giving the two peaks. Fig. 4.1 also shows the confusion foreground signal after the bright binaries have been removed and the instrument noise. At certain times throughout the year, the galactic foreground will be much stronger than the instrument noise and a stochastic background. It may seem that the galaxy could overwhelm any underlying signals, but as we show later, we can detect a background

well below the instrument noise. We will show that after properly modeling the galactic foreground, we are able to detect a background with energy density as small as 5×10^{-13} with a 4-link interferometer, as shown in Fig. 4.1.

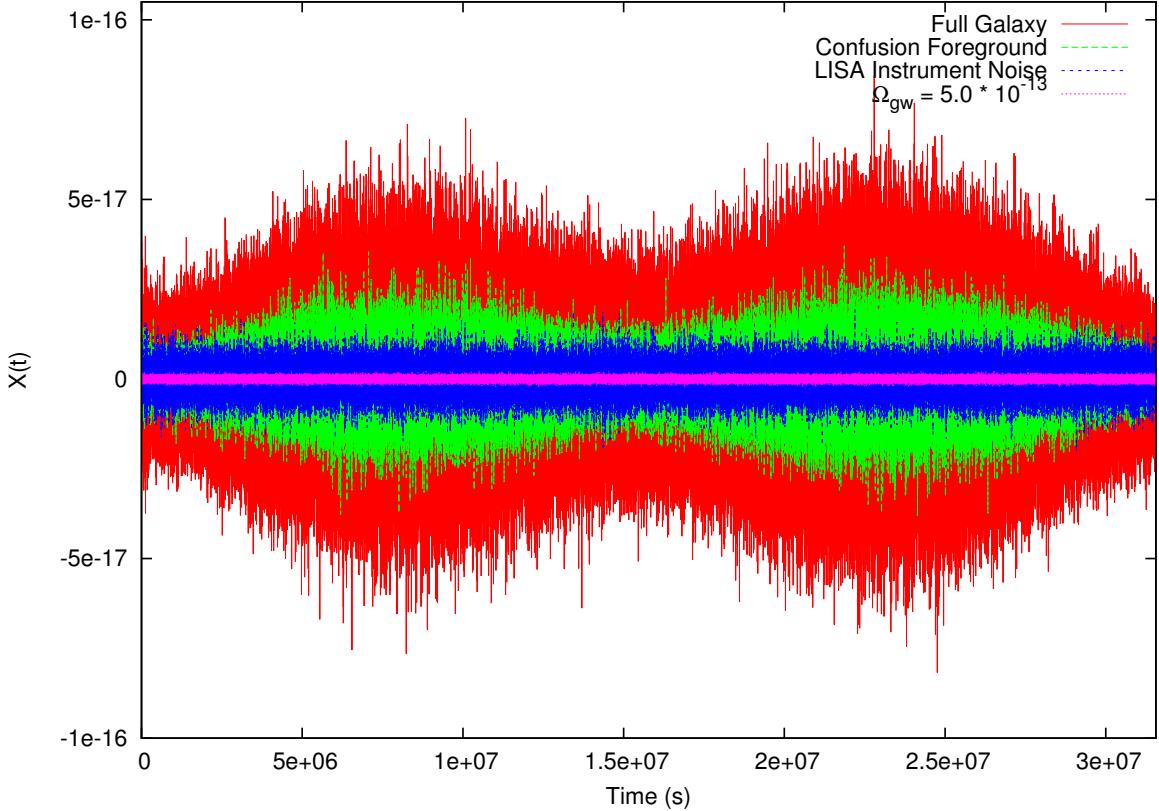


Figure 4.1: The time domain noise, galaxy, and stochastic background signal components for the X-channel. They have been bandpass filtered between 0.1 and 4 mHz. We show that we are able to detect a scale invariant background with $\Omega_{\text{gw}} = 5 \cdot 10^{-13}$, which is well below the instrument noise and galaxy levels.

The amount of modulation in the signal depends on the shape of the galaxy and the distribution of white dwarf binaries throughout the galaxy. Therefore, to accurately model the galaxy modulation, we need accurate measurements of the spatial distribution of white dwarf binaries in the galaxy. One way to do this is to parameterize the galaxy shape distribution and simultaneously fit those parameters along with the

noise and stochastic background parameters. In principle this works, but we find that the confusion foreground signal can only provide very weak constraints on population model parameters. Instead, we use the constraints placed on the galaxy distribution model from the individually resolvable bright sources. We show later that the bright sources constrain the shape of the galaxy to levels better than current electromagnetic constraints. Including information from the confusion foreground does not tighten these constraints, so we fix the distribution parameters at the maximum a posteriori values obtained from the bright source analysis, which is described in detail in the next chapter.

We obtain the spectral shape by generating many different galaxies using LISA Simulator [78]. We then smooth the spectrum in the frequency domain and average the spectra from each of the different realizations. In practice, with a single galaxy observation, we could use the residual from the bright source removal and the information they give about the galactic model to better constrain the spectrum.

The modulation can be modeled by finding an average strain spectral density for each segment of the year. For our approximately week long segments, the amplitude does not change appreciably and averaging the strain in each segment gives a good approximation to the modulation level for each week. Fig. 4.2 is made by plotting the average amplitude of each segment versus the central time for each weekly segment. The two peaks correspond to the peaks shown in the time domain plot, Fig. 4.1. We see that the beam pattern slightly misses the center of the galaxy for the first peak, but hits it almost dead on for the second peak. The amount of modulation, or difference between the peaks and troughs, depends on the shape of the galaxy.

Even for the same galaxy parameters, different realizations of the galaxy will have significant variation due to the placement of a finite number of stars, as shown in Fig. 4.2. We need to account for the amount of variation that can occur from one

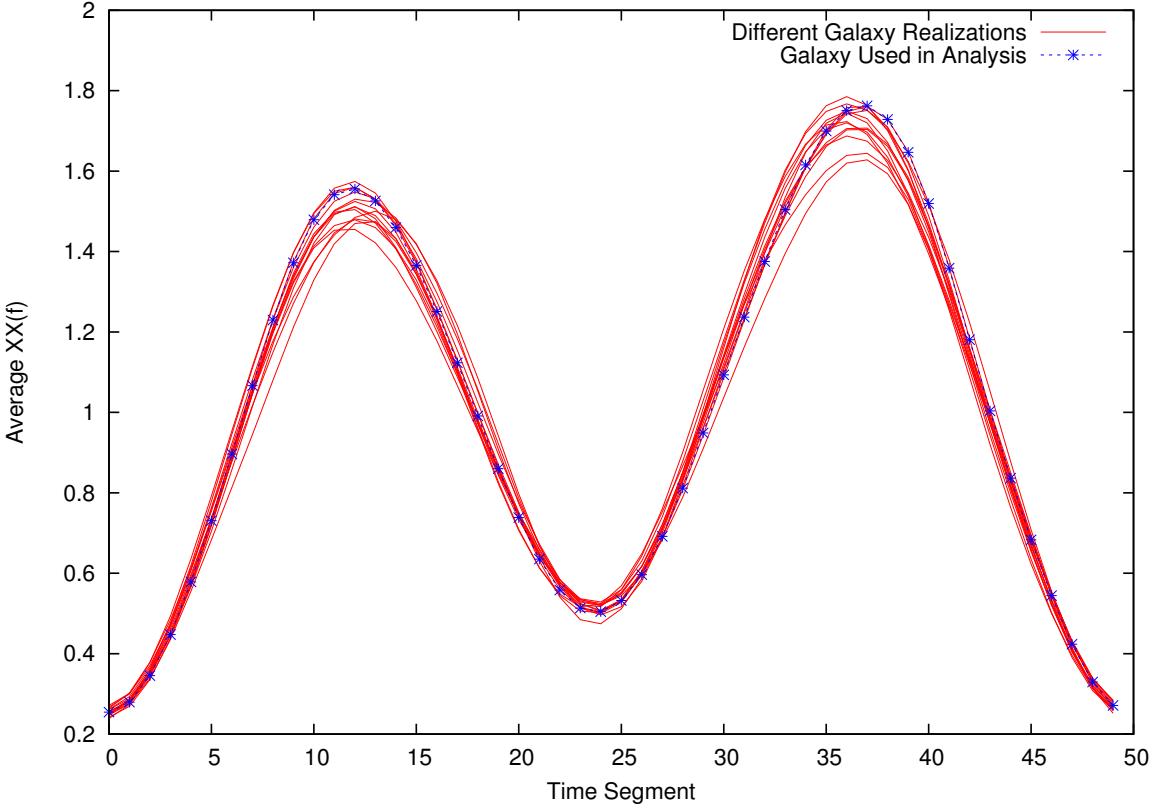


Figure 4.2: Several galaxy realizations showing the scatter in the modulation levels throughout the year compared to the galaxy used in our simulations. The points are scaled by the first Fourier coefficient, C_0 .

realization to the next. If we fixed the model curve at the average value for the curves shown in Fig. 4.2, fitting for our particular galaxy could take some power away from a stochastic background to try to adjust for the variation from the average.

To account for the variation from one simulation to the next, we simulate many galaxies with the same parameters. To fit the variation, we could use the 50 amplitudes in the modulation curve as parameters in our model, but that is a large increase in our parameter space. We instead use the Fourier coefficients as our model parameters. The modulation curve in Fig. 4.2 can be uniquely characterized by 17 Fourier coefficients [114, 115]. Fig. 4.3 shows the Fourier coefficients for several galaxy realizations using the same shape parameters. We average the Fourier coefficients from the

different runs and set the prior range to be $\pm 3\sigma$ around the average. Fig. 4.3 shows the average coefficients, the prior range, and the coefficients from several generated galaxies. Using the Fourier coefficients reduces the number of galaxy parameters by more than a factor of two. In practice, the savings are even better because only the first 5 or 6 coefficients are well constrained.

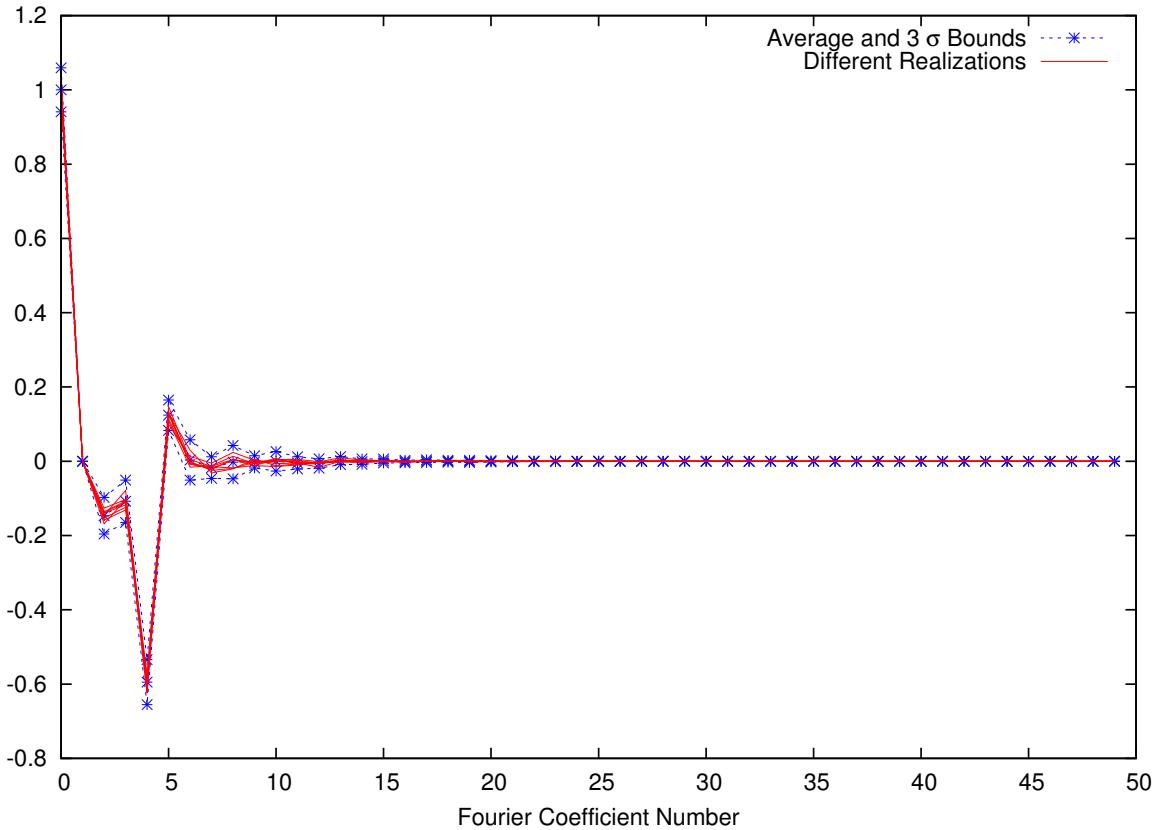


Figure 4.3: Several galaxy realizations showing the scatter in the Fourier coefficients for different galaxy realizations. The $\pm 3\sigma$ upper and lower bounds are used as the prior range on the Fourier coefficients in our analysis.

Fig. 4.4 shows smoothed data and our model for the various components. The galaxy is shown during the first week of the year, when the signal is at a minimum, and at a later time of year when the signal is near the second peak shown in Fig. 4.2.

As mentioned earlier, we see the difference in the spectral shapes and that the galaxy extends over a shorter band.

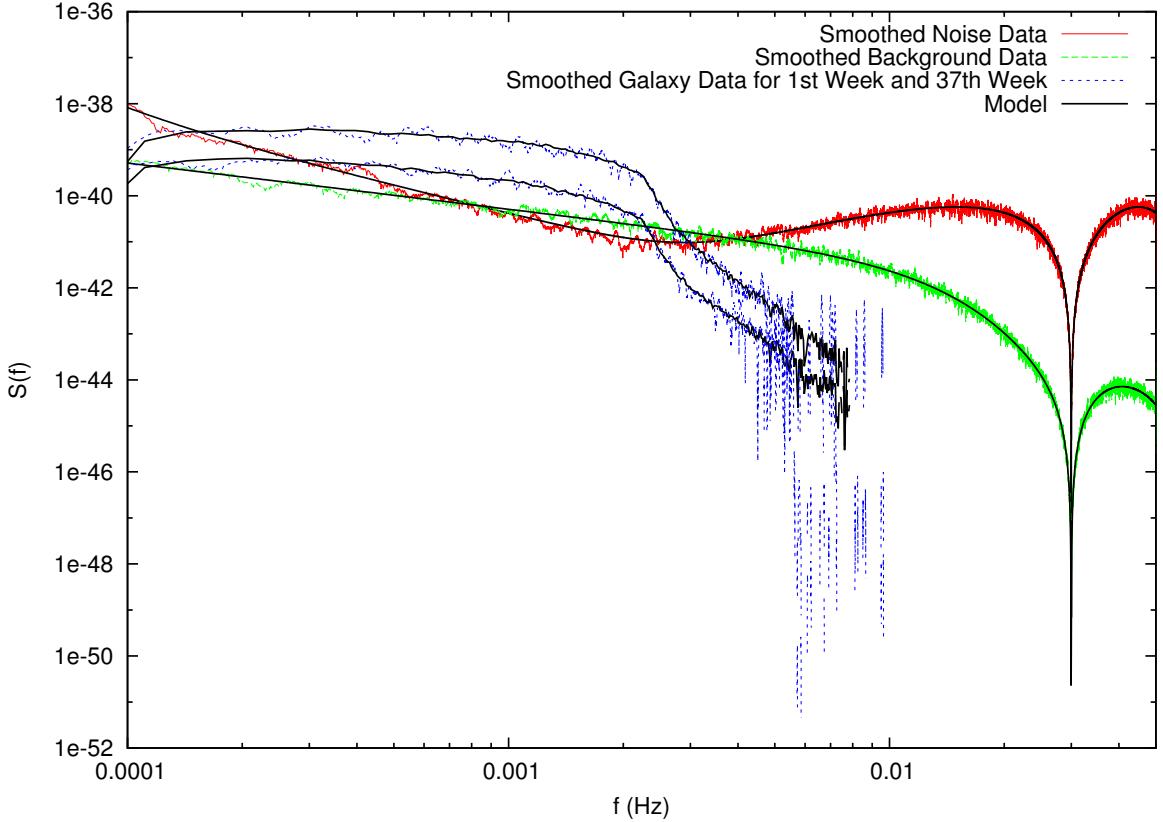


Figure 4.4: Our smoothed, simulated data with the model overlaid in black (solid).

4.4 Simulated Data

We produce synthetic galaxies using the catalog of binaries provided by Gijs Nelemans for the Mock LISA Data Challenges (MLDC), which contains approximately 29 million binaries [116, 109, 110]. We give each binary a sky location drawn from the population distribution, Eq. 4.6. We chose $A = 0.25$, $R_b = 500$, $R_d = 2500$, and $Z_d = 200$ as done in [111]. We calculate the SNR for each binary and designate

sources with an $\text{SNR} > 7$ as bright [55]. The bright sources are used in our population study and the remaining sources are used in the confusion foreground.

CHAPTER 5

ANALYSIS TECHNIQUES

The goal of our analysis is to take the models described in previous chapters and evaluate their goodness given some data. Bayesian inference is a powerful tool for comparing models and finding probability distributions for model parameters. Although frequentist statistics are also widely used, Bayesian data analysis is becoming more prevalent. In frequentist statistics, an experiment is repeated multiple times and a resulting frequency distribution of outcomes for some event is constructed. Model parameters are considered fixed, meaning we focus on the probability of the data given those parameters. Bayesian inference reflects our belief in some model, rather than a frequency distribution for some event. The data is considered fixed, meaning we focus on the probability of some hypothesis or set of model parameters given the data, and the model parameters are allowed to vary to find a best match between our model and the data.

Bayesian inference is particularly useful in gravitational wave astronomy (and astronomy in general). We are not able to repeat our experiments. We must take what the Universe gives us. We do not, as of this writing, have a single direct detection of gravitational waves. As the field matures and we make the first and then a handful of detections, we seek to make inferences from the data with our limited information. This is the strength of Bayesian analysis. In this chapter, we develop an end-to-end Bayesian analysis pipeline that is able to search for, characterize and assign confidence levels for the detection of a stochastic gravitational wave background.

5.1 Bayesian Basics

Bayes' theorem can be derived from the product rule of conditional probability. In conditional probability, for two events A and B, we may write:

$$p(A|B) \quad (5.1)$$

which we would read as the probability of A given that B is true. Anything to the right of the vertical bar is given as true. If we add in event C, we can write the conditional probability of both A and B given that C is true as

$$p(A, B|C), \quad (5.2)$$

where the comma denotes “and”. The product rule of conditional probability is

$$p(A, B) = p(B)p(A|B), \quad (5.3)$$

which reads as the probability of A and B is the probability of B times the probability of A given that B is true. The product is commutative and we could just as easily have written

$$p(A, B) = p(A)p(B|A). \quad (5.4)$$

If we add in event C as before, we can write

$$p(A, B|C) = p(A|C)p(B|A, C) = p(B|C)p(A|B, C). \quad (5.5)$$

Bayes' Theorem is a simple rearrangement of the product rule (Eq. 5.5).

$$p(B|A, C) = \frac{p(B|C)p(A|B, C)}{p(A|C)} \quad (5.6)$$

Our goal in science is to make inferences about some hypothesis based on information we already have and any new data we measure or observe. Let C be our existing information, B be some hypothesis of interest, and A be our measured or observed data. Following the treatment in [117], we can then write Bayes' Theorem as

$$p(H|d, I) = \frac{p(H|I)p(d|H, I)}{p(d|I)} \quad (5.7)$$

In words, the term on the left is the probability of our hypothesis H given our existing information and our new data. It is called the a posteriori distribution or the posterior probability distribution. The first term on the right, $P(H|I)$ is the a priori or prior probability distribution of H . It is the probability of hypothesis H based on all the information we have available prior to collecting our new data. The term $P(d|H, I)$ is called the likelihood. It is the probability, or likelihood, that we would have obtained data d given that our hypothesis H and prior information I are true. The term in the denominator, $P(d|I)$, is sometimes called the marginal likelihood. It serves as a normalizing factor to ensure that the posterior distribution is a proper probability distribution. It is the sum of all possible outcomes of the numerator.

If we consider a case with only two valid hypotheses, the marginal likelihood is given by the law of total probability

$$p(d|I) = p(d|H_1, I)p(H_1) + p(d|H_2, I)p(H_2|I), \quad (5.8)$$

which for a discrete number of hypotheses generalizes to

$$p(d|I) = \sum_{i=1}^N p(d|H_i, I)p(H_i, I). \quad (5.9)$$

Often we will only be interested in comparing two hypotheses. In that case, we can avoid calculating the marginal likelihood since Bayes' theorem for two different hypotheses and the same data will have the same marginal likelihood. Instead we look at what is called an odds ratio between the two models. The odds ratio gives the odds that one model is preferred above another. We take the ratio of the posterior distributions and the marginal likelihood cancels out giving:

$$\frac{p(H_2|d, I)}{p(H_1|d, I)} = \frac{p(d|H_2, I)}{p(d|H_1, I)} \frac{p(H_2|I)}{p(H_1|I)} \quad (5.10)$$

The term involving the likelihoods is known as the Bayes' factor. As discussed in [118], the equation can be expressed in words as:

$$\text{posterior odds} = \text{Bayes Factor} \times \text{prior odds} \quad (5.11)$$

The Bayes' factor transforms the prior odds ratio to the posterior odds ratio. For uniform priors, the Bayes' factor is equal to the posterior odds ratio.

5.1.1 Gravitational Wave Applications

In gravitational wave astronomy, the hypotheses we test are various models that describe the data. Typically, a model will be a waveform that describes how the gravitational radiation from some system depends on the parameters of that system. For example, using general relativity we can derive the expected gravitational radia-

tion from a white dwarf binary system [119], and we get the equations shown earlier, Eqs. 4.1.

5.1.1.1 Parameter Estimation and Model Selection Given some waveform, we can use Bayes' theorem to test which waveform parameters give the best fit to our data. We denote all the parameters of a system with a parameter vector, $\vec{\lambda}$. We rewrite Bayes' theorem using d for our data again, and our hypothesis is some model for the gravitational waveform, which we denote as M . We have dropped all the $|I\rangle$ terms and implicitly assume them for the remainder of the paper.

$$p(\vec{\lambda}|d, M) = \frac{p(d|\vec{\lambda}, M)p(\vec{\lambda}|M)}{p(d|M)} \quad (5.12)$$

The posterior distribution gives what is called the posterior distribution function (PDF) for each parameter. It is a distribution of the expected values for a given parameter. The highest mode of a PDF is called the maximum a posteriori (MAP) estimate for that parameter [55], and the width of the PDF gives the uncertainty for the parameter. The distributions reflect our degree of belief in the set of parameters.

Generally, the model parameters can take on any values over some range. We obtain the marginal likelihood by integrating over all possible values of $\vec{\lambda}$,

$$p(d|M) = \int d\vec{\lambda} p(d|\vec{\lambda}, M)p(\vec{\lambda}|M). \quad (5.13)$$

Notice that the marginalization over $\vec{\lambda}$ gives us the likelihood function for model M , $p(d|M)$. We then use Eq. 5.10 to compare two models and evaluate which is better supported by the data. We form the posterior odds ratio which we denote as O .

$$O \equiv \frac{p(M_1|d)}{p(M_0|d)} = \frac{p(d|M_1)p(M_1)}{p(d|M_0)p(M_0)} \quad (5.14)$$

where we have used the indices 0 and 1 to denote the two different models M_1 and M_0 . The two different models may be a waveform with different numbers of parameters. For example, consider a white dwarf binary system. Most binary systems will not have a rapidly evolving frequency. The data for some binary may be better fit by a 7-dimensional model that excludes the frequency derivative than by the 8-dimensional model [120]. Other examples include comparing the waveform for a black hole system given by general relativity to the waveform from an alternative theory of gravity [121]. Later we will compare various models for stochastic gravitational wave data. One model contains instrument noise and a stochastic gravitational wave background, another is instrument noise only, and a third contains the galactic confusion foreground signal. Comparing two models using a Bayes' factor is called model selection. If model 1 has a higher posterior value, the ratio above will be greater than one. A ratio of 1 means neither model is preferred over the other. To make a confident detection we say that we need a Bayes' factor of 30 or greater. Given the example above of a model with noise only versus a model with noise and a stochastic background, we are asking whether there is enough information in the data to state that our signal model provides a better fit to the data than does the noise model alone.

5.2 MCMC Techniques

In principle, all of our work is done at this point. We turn the Bayes' theorem crank and it returns a posterior distribution. In practice, there are often difficulties in applying Bayes' theorem to real world problems. As mentioned above, often the marginal likelihood cannot be calculated analytically and can be computationally

expensive to calculate numerically. Instead, we use Markov chain Monte Carlo (MCMC) techniques to sample the posterior distribution.

5.2.1 Metropolis Hastings

The term MCMC can refer to a large range of stochastic data analysis techniques. In our work we use a Metropolis Hastings MCMC algorithm to explore the parameter space of our model. We keep a sequential history of locations visited in parameter space, which is referred to as a chain. A chain is started at some particular location in parameter space, and the algorithm then proposes to move to a different location. We evaluate the un-normalized posterior (likelihood \times prior density) at the new location and compare it to the un-normalized posterior at the old location using a Hastings ratio.

$$H_{x \rightarrow y} = \frac{L(\vec{y})p(\vec{y})q(\vec{x}|\vec{y})}{L(\vec{x})p(\vec{x})q(\vec{y}|\vec{x})} \quad (5.15)$$

where p and q are the priors and distributions from which we draw to make our jumps to go from position x to position y respectively. Note that the Hastings ratio is very similar to the posterior odds ratio. The only difference is the inclusion of the jump distributions to maintain what is called detailed balance. By forming the ratio we are again able to avoid calculating the marginal likelihood. In the case of uniform priors and if we draw from the same distribution, a gaussian, in both directions, our Hastings ratio is simply the ratio of the likelihoods,

$$H_{x \rightarrow y} = \frac{L(\vec{y})}{L(\vec{x})}. \quad (5.16)$$

We then compare the Hastings ratio to a randomly drawn number between 0 and 1. If the new location has a higher likelihood, the Hastings ratio will be greater than one,

and hence greater than the random number drawn, and the jump will be accepted. If the new position is worse, the jump may or may not be accepted depending on whether or not the Hastings ratio is greater than or less than the random number. Allowing jumps to poorer likelihood values gives the algorithm a chance to explore the whole parameter space and not get stuck on a local maximum. The time the chain spends at each location in parameter space is the posterior weight for that location. By histogramming the MCMC chain after it is done running, we map out the PDF for each parameter.

5.2.2 Parallel Tempering

Given enough time, our algorithm will find the MAP values for the model parameters. However, the MCMC algorithm only guarantees convergence after an infinite time. To expedite the process we use a Parallel Tempered Markov chain Monte Carlo (PTMCMC) [122] search. PTMCMC searches the data with multiple chains, each at a different “heat”. The unnormalized posterior becomes

$$p(\vec{\lambda}|d) = p(d|\vec{\lambda})^\beta p(\vec{\lambda}) \quad (5.17)$$

where β is the heat for some chain. The heats are calculated by

$$\beta_i = \frac{1}{(T_{\max})^{i/\text{NC}}} \quad (5.18)$$

where i labels the chains and NC is the total number of chains. The effect of the heat is to “melt” or smooth the likelihood surface. The peaks in the likelihood surface become smooth and the hotter chains don’t stick on local maxima. Chains are allowed to propose parameter swaps, such that if a cold chain is stuck on some local maximum, it has a chance to get moved off that local maximum by exchanging parameters with

a hotter chain. The maximum temperature, T_{\max} , is chosen such that the surface will be smooth enough for the hottest chain to freely explore the entire prior volume.

5.2.3 Thermodynamic Integration

The Metropolis Hastings algorithm allows us to do parameter estimation without having to calculate the marginal likelihood. However, as mentioned earlier, the likelihood for a model is given by marginalizing over all model parameters $\vec{\lambda}$. If we want to do model selection, we need a way to calculate the marginal likelihood of the waveforms. Luckily, not only does a PTMCMC algorithm allow us to explore the parameter space more efficiently, it also enables us to calculate the marginal likelihood so that we can do model selection. This technique is known as thermodynamic integration [123, 124, 117, 125], which parallels techniques used in thermodynamics as the name suggests.

Thermodynamic integration uses the chains of different heats used in parallel tempering to calculate the marginal likelihood, which we need for the Bayes' factor calculation between models. To help clean up the algebra in what follows, we generalize the method with an unnormalized probability distribution $q(\vec{\lambda})$, and a true probability distribution $p(\vec{\lambda})$ given by the normalization factor Z . This corresponds to making the following substitutions:

$$\begin{aligned}
 q(\vec{\lambda}) &= p(d|\vec{\lambda}, M)p(\vec{\lambda}|M) \\
 q(\vec{\lambda}, \beta) &= p(d|\vec{\lambda}, M)^\beta p(\vec{\lambda}|M) \\
 p(\vec{\lambda}) &= p(\vec{\lambda}|d, M) \\
 Z &= p(d|M) = \int p(d|\vec{\lambda}, M)p(\vec{\lambda}|M)d\vec{\lambda}.
 \end{aligned} \tag{5.19}$$

Near the end of the derivation we will substitute back in the more specific distributions to make the application to gravitational wave astronomy more clear.

It may not be possible to calculate Z directly, but we can calculate it by defining a partition function:

$$Z(\beta) \equiv \int q(\vec{\lambda}, \beta) d\vec{\lambda} \quad (5.20)$$

where β ranges from 0 to 1. We then take the natural log of Z and differentiate with respect to β .

$$\frac{\partial \ln Z(\beta)}{\partial \beta} = \frac{1}{Z} \frac{\partial}{\partial \beta} Z = \frac{1}{Z} \frac{\partial}{\partial \beta} \int q(\vec{\lambda}, \beta) d\vec{\lambda} \quad (5.21)$$

Assuming the interchangeability of integration and differentiation, and following the steps in [124], we get:

$$\begin{aligned} \frac{\partial \ln Z(\beta)}{\partial \beta} &= \frac{1}{Z} \frac{\partial}{\partial \beta} \int q(\vec{\lambda}, \beta) d\vec{\lambda} \\ &= \int d\vec{\lambda} \frac{\partial}{\partial \beta} q(\vec{\lambda}, \beta) \frac{1}{Z} \\ &= \int d\vec{\lambda} \frac{1}{q(\vec{\lambda}, \beta)} \frac{\partial}{\partial \beta} q(\vec{\lambda}, \beta) \frac{q(\vec{\lambda}, \beta)}{Z} \\ &= \int d\vec{\lambda} \frac{\partial \ln q(\vec{\lambda}, \beta)}{\partial \beta} \frac{q(\vec{\lambda}, \beta)}{Z} \\ &= \int d\vec{\lambda} \frac{\partial \ln q(\vec{\lambda}, \beta)}{\partial \beta} p(\vec{\lambda}, \beta) \end{aligned} \quad (5.22)$$

where $p(\vec{\lambda}, \beta)$ is the properly normalized posterior distribution. The last line is simply the expectation value of the log term.

$$\frac{\partial \ln Z(\beta)}{\partial \beta} = E \left[\frac{\partial \ln q(\vec{\lambda}, \beta)}{\partial \beta} \right] \quad (5.23)$$

From parallel tempering, we already have a good parameterizing factor β which ranges from 0 to 1. Using Eqs. 5.19, Eq. 5.23 becomes

$$\begin{aligned}
\frac{\partial \ln Z(\beta)}{\partial \beta} &= \left\langle \frac{\partial \ln (p(d|\vec{\lambda}, M)^\beta p(\vec{\lambda}, M))}{\partial \beta} \right\rangle \\
&= \left\langle \frac{\partial}{\partial \beta} (\ln p(d|\vec{\lambda}, M)^\beta + \ln p(\vec{\lambda}, M)) \right\rangle \\
&= \left\langle \frac{\partial}{\partial \beta} (\beta \ln p(d|\vec{\lambda}, M)) \right\rangle \\
&= \left\langle \ln p(d|\vec{\lambda}, M) \right\rangle.
\end{aligned} \tag{5.24}$$

Now we can integrate over β ,

$$\ln Z_1 - \ln Z_0 = \int_0^1 d\beta \langle \ln p(d|\vec{\lambda}, M) \rangle_\beta. \tag{5.25}$$

But from Eq. 5.19, we have

$$Z_\beta = p_\beta(d|M) = \int (p(d|\vec{\lambda}, M)^\beta p(\vec{\lambda}|M)). \tag{5.26}$$

For $\beta = 1$, this gives $Z = p(d|M)$, and for $\beta = 0$, $\ln Z_0 = 0$. We are left with

$$\ln p(d|M) = \int_0^1 \langle \ln p(d|\vec{\lambda}, M) \rangle d\beta \tag{5.27}$$

which is what we were looking for. The Bayes' Factor is given by:

$$\ln B_{10} = \frac{\ln p(d|M_1)}{\ln p(d|M_0)} \tag{5.28}$$

The integral in Eq. 5.27 can be approximated using the chains from our parallel tempering. We can approximate the expectation value by taking the average of

all likelihood values visited by each chain, and we can then perform the integral numerically.

The above formalism gives an end-to-end algorithm for finding posterior distributions for all model parameters and for performing model selection between pairs of models [120]. In the rest of the chapter, we develop a Hierarchical Bayesian algorithm that also folds in the task of modeling a source population distribution.

5.3 Hierarchical Bayes

In the case of our population study, we can do parameter estimation and model selection simultaneously using a technique known as Hierarchical Bayes. We develop here a simple yet comprehensive Hierarchical Bayesian modeling approach that uses the full multi-dimensional and highly correlated parameter uncertainties of a collection of signals to constrain the joint parameter distributions of the underlying astrophysical models. The method is general and can be applied to any number of astrophysical model selection problems [126, 127, 128].

A remarkable feature of the Hierarchical Bayesian method is that in its purest form it is completely free of selection effects such as Malmquist bias. By “purest form” we mean where the signal model extends over the entire source population, including those with vanishingly small signal-to-noise ratio [129]. In practice it is unclear how to include arbitrarily weak sources in the analysis, and in any case the computational cost would be prohibitive, so we are forced to make some kind of selection cuts on the signals, and this will introduce a bias if left uncorrected [130].

To illustrate the Hierarchical Bayesian approach and to investigate where bias can arise, we look at the problem of determining the population model for white dwarf binaries in the Milky Way. Future space-based missions are expected to detect

thousands to tens of thousands of white dwarf binaries [62, 107, 131, 106, 132]. Here we focus on determining the spatial distribution and the chirp mass distribution, but in future work we plan to extend our study to include a wider class of population characteristics such as those described in Ref. [131]. Determining the galaxy shape using gravitational wave observations of white dwarf binaries will be an independent measure on the shape of the galaxy to complement electromagnetic observations. Additionally, the white dwarf binaries that are not detectable form a very bright stochastic foreground. Accurately modeling the confusion foreground level is crucial for the detection of extragalactic stochastic gravitational wave signals [40].

Hierarchical Bayesian modeling has been around since at least the 1950's [133, 134, 135, 136], but it is only now becoming widely known and used. The term "hierarchical" arises because the analysis has two levels. At the highest level are the space of models being considered, and at the lower level are the parameters of the models themselves. Hierarchical Bayes provides a method to simultaneously perform model selection and parameter estimation. In this work we will consider models of fixed dimension that can be parameterized by smooth functions of one or more hyperparameters. The joint posterior distribution for the model parameters $\vec{\lambda}$ and the hyperparameters $\vec{\alpha}$ given data d follows from Bayes' theorem:

$$p(\vec{\lambda}, \vec{\alpha}|d) = \frac{p(d|\vec{\lambda}, \vec{\alpha})p(\vec{\lambda}|\vec{\alpha})p(\vec{\alpha})}{p(d)}, \quad (5.29)$$

where $p(d|\vec{\lambda}, \vec{\alpha})$ is the likelihood, $p(\vec{\lambda}|\vec{\alpha})$ is the prior on the model parameters for a model described by hyperparameters $\vec{\alpha}$, $p(\vec{\alpha})$ is the hyperprior and $p(d)$ is a normalizing factor

$$p(d) = \int p(d, \vec{\alpha})d\vec{\alpha} = \int p(d|\vec{\lambda}, \vec{\alpha})p(\vec{\lambda}|\vec{\alpha})p(\vec{\alpha})d\vec{\lambda}d\vec{\alpha}. \quad (5.30)$$

The quantity $p(d, \vec{\alpha})$ can be interpreted as the “density of evidence” for a model with hyperparameters $\vec{\alpha}$.

As was the case when calculating the marginal likelihood, the integral marginalizing over the hyperparameters is often only tractable numerically, and this can be computationally expensive. Empirical Bayes is a collection of methods that seek to estimate the hyperparameters in various ways from the data [137, 138]. The MCMC techniques developed above allow us to implement Hierarchical Bayesian modeling without approximation by producing samples from the joint posterior distributions, which simultaneously informs us about the model parameters $\vec{\lambda}$ and the hyperparameters $\vec{\alpha}$. This approach helps reduce systematic errors due to mis-modeling, as the data helps select the appropriate model. An example of this is the use of hyperparameters in the instrument noise model, such that the noise spectral density is treated as an unknown to be determined from the data [55, 139, 40]. Hierarchical Bayesian modeling can be extended to discrete and even disjoint model spaces using the Reverse Jump Markov chain Monte Carlo (RJMCMC) [140] algorithm. Each discrete model can be assigned its own set of continuous hyperparameters.

5.3.1 Toy Model I

As a simple illustration of Hierarchical Bayesian modeling, consider some population of N signals, each described by a single parameter x_i that is drawn from a normal distribution with standard deviation α_0 . The measured values of these parameters are affected by instrument noise that is drawn from a normal distribution with standard deviation β . The maximum likelihood value for the parameters is then $\bar{x}_i = \alpha_0\delta_1 + \beta\delta_2$ where the δ ’s are i.i.d. unit standard deviates. Now suppose that we employ a population model where the parameters are distributed according to a

normal distribution with standard deviation α . Each choice of α corresponds to a particular model with posterior distribution

$$p(x_i|s, \alpha) = \frac{1}{p(s, \alpha)} \prod_{i=1}^N \frac{1}{(2\pi\alpha\beta)} e^{-(\bar{x}_i - x_i)^2/2\beta^2} e^{-x_i^2/2\alpha^2}, \quad (5.31)$$

and model evidence

$$p(s, \alpha) = \frac{1}{(\sqrt{2\pi}\sqrt{\alpha^2 + \beta^2})^N} \prod_i e^{-\bar{x}_i^2/2(\alpha^2 + \beta^2)}. \quad (5.32)$$

To arrive at a Hierarchical Bayesian model we elevate α to a hyperparameter and introduce a hyperprior $p(\alpha)$ which yields the joint posterior distribution

$$p(x_i, \alpha|s) = \frac{p(x_i|s, \alpha)p(\alpha)}{p(s)}. \quad (5.33)$$

Rather than selecting a single “best fit” model, Hierarchical Bayesian methods reveal the range of models that are consistent with the data. In the more familiar, non-hierarchical approach we would maximize the model evidence (Eq. 5.32) to find the model that best describes the data, which is here given by

$$\alpha_{\text{ME}}^2 = \frac{1}{N} \sum_{i=1}^N \bar{x}_i^2 - \beta^2. \quad (5.34)$$

Since $\text{Var}(\bar{x}_i) = \alpha_0^2 + \beta^2$, we have

$$\alpha_{\text{ME}}^2 = \alpha_0^2 \pm \mathcal{O}(\sqrt{2}(\alpha_0^2 + \beta^2)/\sqrt{N}). \quad (5.35)$$

The error estimate comes from the sample variance of the variance estimate. In the limit that the experimental errors β are small compared to the width of the prior α_0 ,

the error in α scales uniformly as $1/\sqrt{N}$. The scaling is more complicated when we have a collection of observations with a range of measurement errors. Suppose that the measurement errors are large compared to the width of the prior, and that we have N_1 observations with standard error β_1 , N_2 observations with standard error β_2 , etc., then the error in the estimate for α is

$$\Delta\alpha^2 = \left(\sum_i \frac{N_i}{\beta_i^4} \right)^{-1/2}. \quad (5.36)$$

Recalling that $1/\beta_i$ scales with the signal-to-noise ratio of the observation, we see that a few high SNR observations constrain α far more effectively than a large number of low SNR observations.

The above calculation shows that the maximum evidence criteria provides an unbiased estimator for the model parameter α_0 , but only if the measurement noise is consistently included in both the likelihood and the simulation of the \bar{x}_i . Using the likelihood from (Eq. 5.31) but failing to include the noise in the simulations leads to the biased estimate $\alpha_{\text{ME}}^2 = \alpha_0^2 - \beta^2$. Conversely, including noise in the simulation and failing to account for it in the likelihood leads to the biased estimate $\alpha_{\text{ME}}^2 = \alpha_0^2 + \beta^2$. These same conclusions apply to the Hierarchical Bayesian approach, as we shall see shortly.

5.3.1.1 Numerical Simulation The joint posterior distribution (Eq. 5.33) can be explored using MCMC techniques. To do this we produced simulated data with $N = 1000$, $\alpha_0 = 2$, and $\beta = 0.4$ and adopted a flat hyperprior for α . The posterior distribution function for α , marginalized over the x_i , is shown in Fig. 5.1. The distribution includes the injected value, and has a spread consistent with the error

estimate of (Eq. 5.35). The Maximum-a-Posteriori (MAP) estimate for α has been displaced from the injected value of $\alpha_0 = 2$ by the simulated noise.

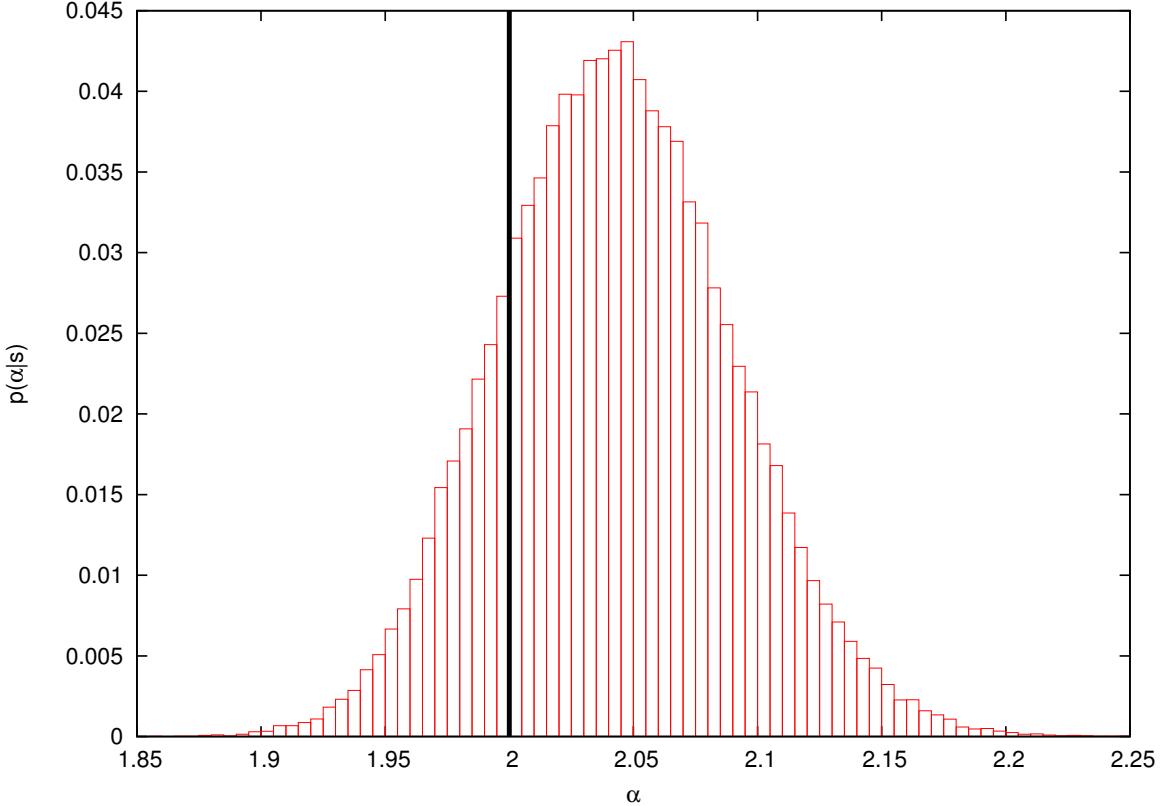


Figure 5.1: The marginalized PDF for α . The injected value is indicated by the vertical black line.

To test that there is no bias in the recovery of the model hyperparameter α , we produced 30 different realizations of the data and computed the average MAP value. Fig. 5.2 shows the MAP value for each of these realizations and the corresponding average. We see that as we average over multiple realizations α does indeed converge to the injected value. The blue line in Fig. 5.2 shows a biased recovery for α when noise is not included in the data. We instead recover $\alpha = \sqrt{\alpha_0^2 - \beta^2} \approx 1.96$.

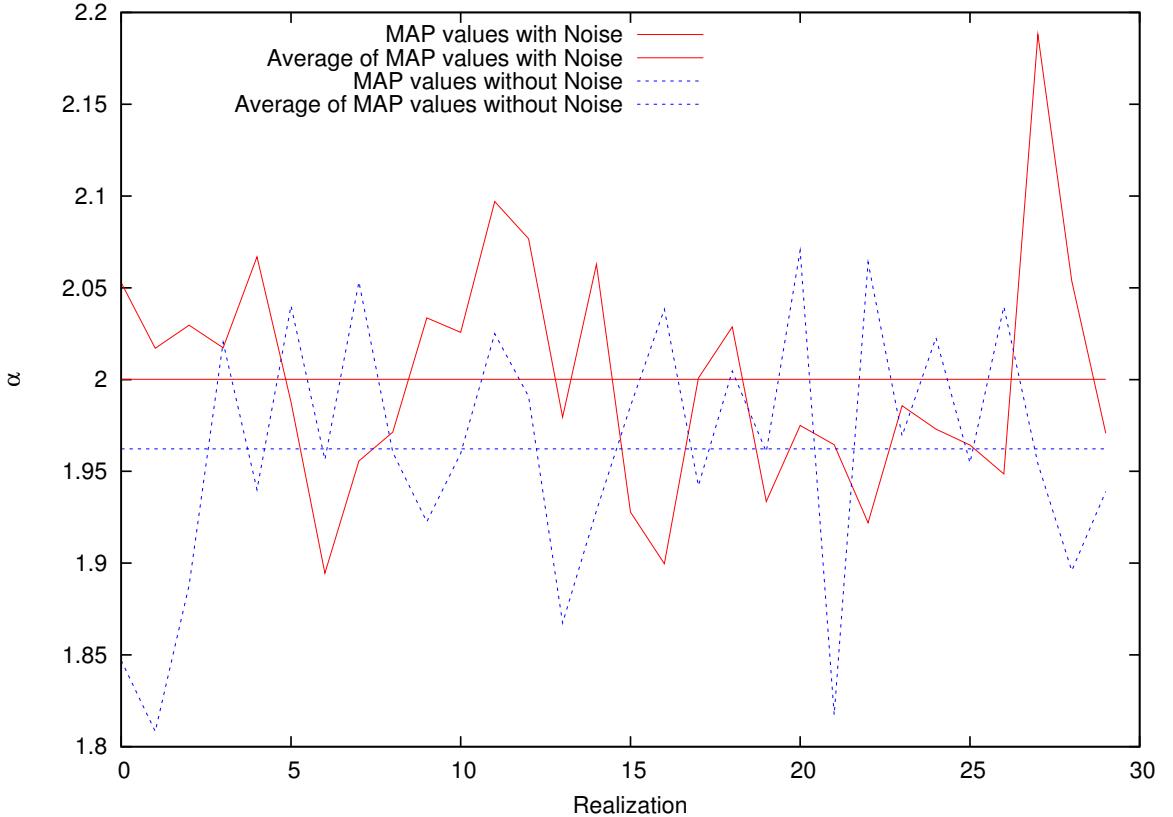


Figure 5.2: MAP values for 30 different simulations of the toy model. The red curve includes noise in the simulated signal and converges to α_0 as expected. The blue curves does not include noise in the simulation and converges to $\alpha_0^2 - \beta^2$.

5.3.2 Toy Model II

The Hierarchical Bayesian approach produces un-biased estimates for the model parameters if the signal and the noise (and hence the likelihood) are correctly modeled. However, in some situations the cost of computing the likelihood can be prohibitive, and it becomes desirable to use approximations to the likelihood, such as the Fisher Information Matrix. For example, to investigate how the design of a detector influences its ability to discriminate between different astrophysical models, it is necessary to Monte Carlo the analysis over many realizations of the source population for many different instrument designs, which can be very costly using the full likelihood.

To explore these issues we introduce a new toy model that more closely resembles the likelihood functions encountered in gravitational wave data analysis. Consider a waveform h_0 that represents a single data point (*e.g.* the amplitude of a wavelet or a Fourier component), which can be parameterized in terms of the distance to the source d_0 . The instrument noise n is assumed to be Gaussian with variance β^2 . Here we will treat the noise level β as a hyperparameter to be determined from the observations. Adopting a fiducial noise level β_0 allows us to define a reference signal-to-noise ratio $\text{SNR}_0^2 = h_0^2/\beta_0^2$. The likelihood of observing data $s = h_0 + n$ for a source at distance d with noise level β is then

$$p(s|d, \beta) = \frac{1}{\sqrt{2\pi}\beta} e^{-(s-h)^2/(2\beta^2)}, \quad (5.37)$$

where $h = (d_0/d)h_0$. The likelihood is normally distributed in the inverse distance $1/d$, with a maximum that depends on the particular noise realization n ,

$$\frac{1}{d_{\text{ML}}} = \frac{1 + n/(\beta_0 \text{SNR}_0)}{d_0}. \quad (5.38)$$

Now suppose that the distances follow a one-sided normal distribution $p(d \geq 0) = \frac{2}{\sqrt{2\pi}\beta} \exp(-d^2/2\alpha_0^2)$, and that we adopt a corresponding model for the distance distribution with hyperparameter α and a flat hyperprior.

We simulate the data with $N = 1000$ sources with $\alpha_0 = 2$ and $\beta = 0.05$. The values of α_0 and β were chosen to give a fiducial $\text{SNR} = 5$ for $d = 2\alpha_0$. In the first of our simulations the value of β was assumed to be known and we computed the MAP estimates of α for 30 different simulated data sets. As shown in Fig. 5.3, the average MAP estimate for α converges to the injected value.

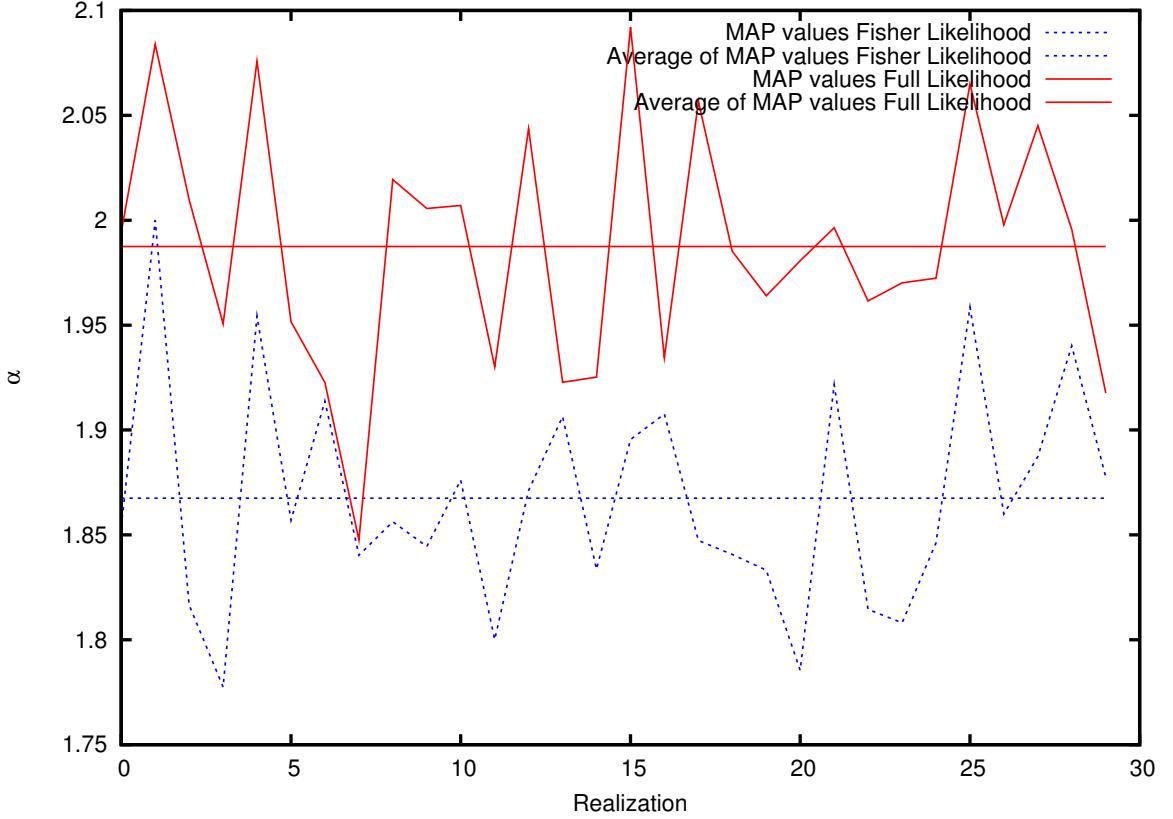


Figure 5.3: MAP values for 30 different realizations of the toy model II. Using the full likelihood (red) the MAP values converge to the injected value, but with the Fisher Matrix approximation to the likelihood (blue) there is a bias.

In contrast to the first toy model where only the combination $\alpha^2 + \beta^2$ is constrained by the data, in this more realistic toy model both the noise level β and the model hyperparameter α are separately constrained. Fig. 5.4 shows the marginalized PDFs for both β and α . Tests using multiple realizations of the data show that the MAP values of α and β are un-biased estimators of the injected parameter values.

5.3.2.1 Approximating the Likelihood For stationary and Gaussian instrument noise the log likelihood for a signal described by parameters $\vec{\lambda}$ is given by

$$L(\vec{\lambda}) = -\frac{1}{2}(s - h(\vec{\lambda})|s - h(\vec{\lambda})), \quad (5.39)$$

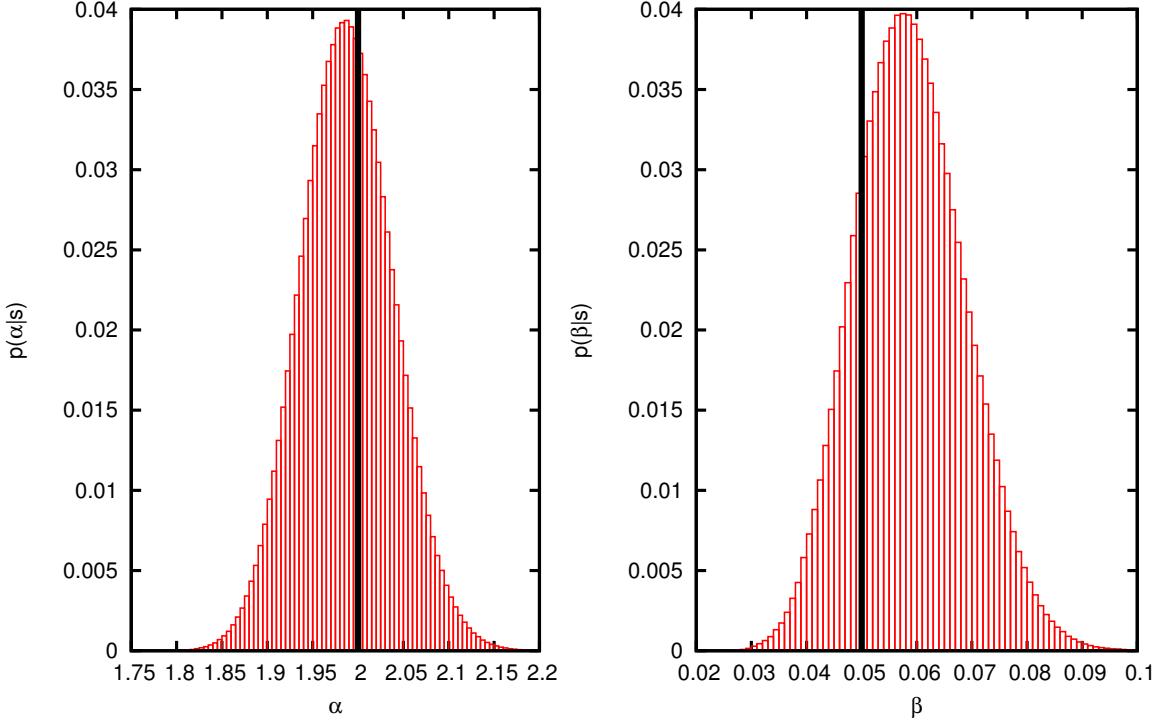


Figure 5.4: PDFs for the prior hyperparameter α and the noise level β for toy model II. Both are individually constrained in this model. The injected values are shown by the black lines.

where $(a|b)$ denotes the standard noise-weighted inner product, and we have suppressed terms that depend on the noise hyperparameters. We expand the waveform $h(\vec{\lambda})$ about the injected source parameters $\vec{\lambda}_0$ and get

$$h(\vec{\lambda}) = h(\vec{\lambda}_0) + \Delta\lambda^i \bar{h}_{,i} + \Delta\lambda^i \Delta\lambda^j \bar{h}_{,ij} + \mathcal{O}(\Delta\lambda^3) \quad (5.40)$$

where $\Delta\vec{\lambda} = \vec{\lambda} - \vec{\lambda}_0$, and it is understood that the derivatives are evaluated at $\vec{\lambda}_0$.

Expanding the log likelihood we find:

$$\begin{aligned} L(\Delta\vec{\lambda}) = & - \frac{1}{2}(n|n) + \Delta\lambda^i(n|h_{,i}) \\ & - \frac{1}{2}\Delta\lambda^i \Delta\lambda^j (h_{,i}|h_{,j}) + \mathcal{O}(\Delta\lambda^3). \end{aligned} \quad (5.41)$$

The maximum likelihood solution is found from $\partial L/\partial \Delta\lambda^i = 0$, which yields $\Delta\lambda_{\text{ML}}^i = (n|h_j)\Gamma^{ij}$, where Γ^{ij} is the inverse of the Fisher Information Matrix $\Gamma_{ij} = (h_{,i}|h_{,j})$. Using this solution to eliminate $(n|h_i)$ from (Eq. 5.41) yields the quadratic, Fisher Information Matrix approximation to the likelihood:

$$L(\vec{\lambda}) = \text{const.} - \frac{1}{2}(\lambda^i - \lambda_{\text{ML}}^i)(\lambda^j - \lambda_{\text{ML}}^j)\Gamma_{ij} . \quad (5.42)$$

This form of the likelihood can be used in simulations by drawing the $\Delta\lambda_{\text{ML}}^i$ from a multi-variate normal distribution with covariance matrix Γ^{ij} .

In our toy model $\Gamma_{dd} = \text{SNR}_0^2\beta_0^2/(\beta^2 d_0^2)$, and $L(d) = -\text{SNR}_0^2\beta_0^2(d - d_{\text{ML}})^2/(2\beta^2 d_0^2)$. The approximate likelihood follows a normal distribution in d while the full likelihood follows a normal distribution in $1/d$. For signals with large SNR this makes little difference, but at low SNR the difference becomes significant and results in a bias in the recovery of the model hyperparameters, as shown in Fig. 5.3. In this instance there is a simple remedy: using $u = 1/d$ in place of d in the quadratic approximation to the likelihood exactly reproduces the full likelihood in this simple toy model. However, it is not always so easy to correct the deficiencies of the quadratic Fisher Information Matrix approximation to the likelihood.

CHAPTER 6

GRAVITATIONAL WAVE ASTRONOMY APPLICATIONS

In this chapter, we present several LISA and eLISA results using the Bayesian formalism described in the previous chapter. We first show a Hierarchical Bayesian analysis of the white dwarf binary population in the galaxy. We achieve constraints that are applied in the subsequent analysis of stochastic signals. We then look at the simplest case of searching for a stochastic background amidst instrument noise only. Lastly, we fold in the added complexity of the white dwarf binary confusion foreground signal.

6.1 Measurement of Galaxy Distribution Parameters

To illustrate how the Hierarchical Bayesian approach developed in the last chapter can be applied to an astrophysically relevant problem, we investigate how population models for the distribution of white dwarf binaries in the Milky Way galaxy can be constrained by data from a space-based gravitational wave detector. Several studies have looked at parameter estimation for individual white dwarf binaries in the Milky Way [141, 142, 143]. We extend these studies to consider how the individual observations can be combined to infer the spatial and mass distributions of white dwarf binaries in the Galaxy.

We present results for both LISA and eLISA missions. We focus this analysis on short-period galactic binaries, with gravitational wave frequencies above 4 mHz. Our conclusions for the two missions are very similar, as both are able to detect roughly the same number of galactic binaries in the frequency bands considered here.

The 4 mHz lower limit is chosen to simplify the analysis in two ways. Firstly, it avoids the signal overlap and source confusion problems that become significant at lower frequencies [107], and secondly, it circumvents the issue of sample completeness and Malmquist selection bias since LISA’s coverage of the galaxy is complete at high frequencies. This claim is substantiated in Fig. 6.1 showing the cumulative percentage of binaries detected as a function of frequency for a 4 year LISA mission. A given frequency bin represents the percentage of binaries of that frequency and higher that are detected. All binaries above ~ 4 mHz are detectable by LISA, of which there are ~ 5000 .

It would be possible to extend our analysis to include all detectable white dwarf binaries if we were to properly account for the undetectable sources. One way to do this is to convolve the astrophysical model priors by a function that accounts for the selection effects [130] so that we are working with the predicted observed distribution rather than the theoretical distribution. Another approach is to marginalize over the un-detectable signals [129].

The high frequency signals are not only the simplest to analyze, but they also tend to have the highest signal-to-noise ratios, the best sky localization, and the best mass and distance determination due to their more pronounced evolution in frequency. When simulating the population of detectable sources we will assume that binaries of all frequencies above 4 mHz are homogeneously distributed throughout the galaxy and share the same chirp mass distribution. In reality, the population is likely to be more heterogenous, and more complicated population models will have to be used.

Analyzing simulated data with the full likelihood is computationally taxing and, when performing a large suite of such studies, could prove to be prohibitive. To mitigate the cost of such analyses, we test a much faster approach (approximately 50 times faster), using the Fisher matrix approximation to the likelihood that we

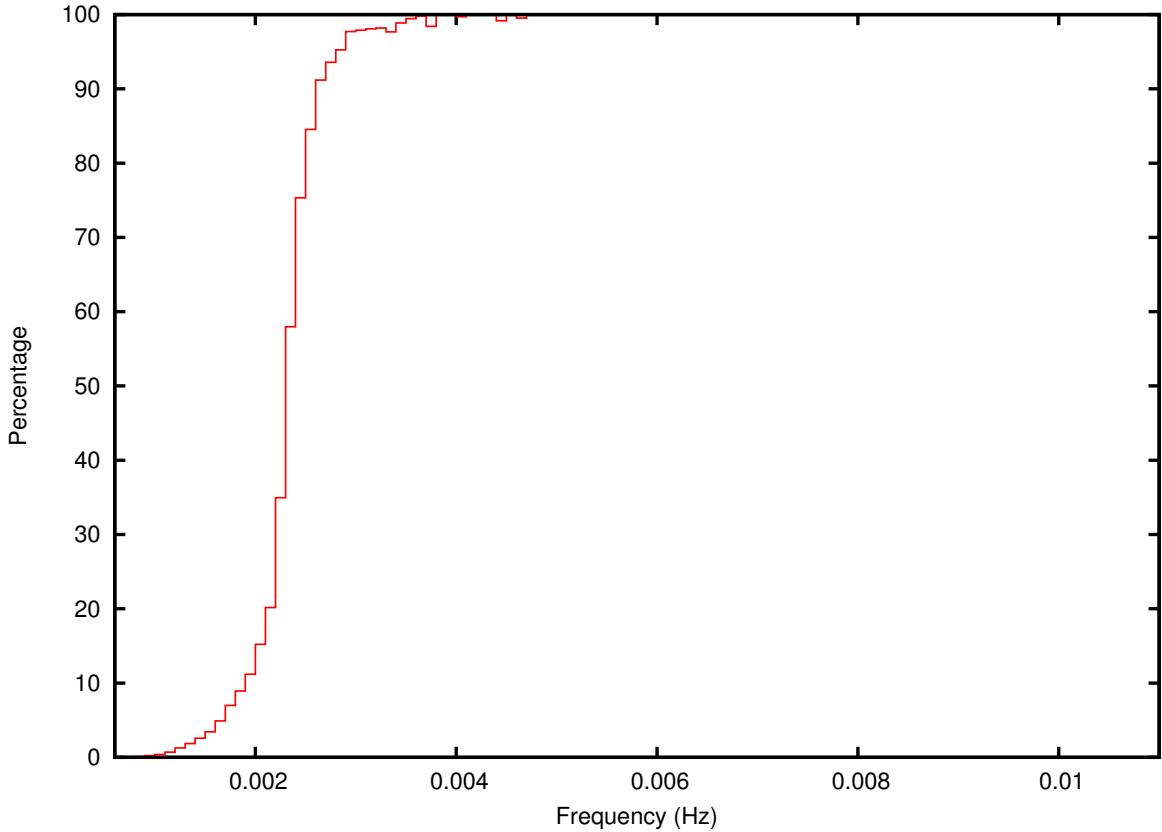


Figure 6.1: The percentage of sources which are detectable as a function of frequency. Virtually 100% of the white dwarf binaries in the Milky Way above 4 mHz would be detected by LISA.

demonstrated with a toy model in Chapter 5. We find the results are significantly less biased by the Fisher approximation when using $1/d$ as the parameter that encodes the distance to the source. This simple adjustment gives adequately reliable results in significantly less time than the brute-force calculation, and will provide an additional, useful metric to gauge the relative merits of proposed space-based gravitational wave missions.

6.1.1 White Dwarf Likelihood

The likelihood for a single source is given by

$$p(s|\vec{\lambda}) = Ce^{-(s-h(\vec{\lambda})|s-h(\vec{\lambda}))^2/2}. \quad (6.1)$$

Here $p(s|\vec{\lambda})$ is the likelihood that the residual $s - h(\vec{x})$ is drawn from Gaussian noise, where s is the data, and $h(\vec{\lambda})$ is the signal produced in the detector by a source described by parameters $\vec{\lambda}$. The simulated data $s = h(\vec{\lambda}_0) + n$ includes a waveform $h(\vec{\lambda}_0)$ and a realization of the LISA instrument noise n . The normalization constant C depends on the instrument noise levels, but is independent of the waveform parameters.

The waveform for a white dwarf binary is well approximated by

$$\begin{aligned} h_+(t) &= \frac{1}{d} \frac{4G\mathcal{M}\Omega^2}{c^4} \left(\frac{1 + \cos^2 \iota}{2} \right) \cos(\Omega t) \\ h_\times(t) &= \frac{1}{d} \frac{4G\mathcal{M}\Omega^2}{c^4} \cos \iota \sin(\Omega t), \end{aligned} \quad (6.2)$$

where $\Omega = 2\pi f$. Eq. 6.2 is an abbreviated form of Eq. 4.1, where we have explicitly separated out the distance dependence in Eq. 6.2 to emphasize its importance to the analysis here. We have 8 parameters that describe a white dwarf binary signal, the frequency f , the distance to the source d , the chirp mass \mathcal{M} , the inclination angle ι , a polarization angle ψ , a phase angle φ_0 , and sky location parameters θ and ϕ . The frequency evolution is given by Eq. 4.5. Sources with $\dot{f}T^2 \text{SNR} \sim 1$, where T is the observation time, provide useful measurements of the chirp mass \mathcal{M} and the distance d [144, 145]. The strong f dependence in Eq. 4.5 is the reason why high frequency binaries are the best candidates for placing strong constraints on the distance and chirp mass.

6.1.2 Prior and Hyperparameters

The spatial density ρ , Eq. 4.6, becomes our prior distribution for the spatial distribution of galactic binaries. The parameters of the density distribution A , R_b , R_d and Z_d become hyperparameters in the Hierarchical Bayesian analysis. Each set of values for the four parameters corresponds to a distinct model for the shape of the galaxy. For our simulations, we chose a galaxy with $A = 0.25$, $R_b = 500$ pc, $R_d = 2500$ pc, and $Z_d = 200$ pc.

Our ability to measure the hyperparameters of the spatial distribution depends on how well we measure the sky location and distance for each binary. For many sources, the distance is poorly determined because it is highly correlated with the chirp mass. However, there are enough binaries that have sufficiently high frequency, chirp mass and/or SNR to provide tight constraints on the chirp mass distribution. The empirically determined chirp mass distribution can then be used as a prior for the lower SNR, less massive, or lower frequency sources to improve their distance constraints.

Fig. 6.2 shows the chirp mass distribution for binaries in our simulated galaxy. We use this distribution to construct a hyperprior on the chirp mass, approximated by the following distribution:

$$\rho_{\mathcal{M}_c} = \frac{C}{\left(\frac{M}{\mathcal{M}_0}\right)^{-a} + \frac{a}{b} \left(\frac{M}{\mathcal{M}_0}\right)^b}, \quad (6.3)$$

where \mathcal{M}_0 , a , and b are hyperparameters in our model. C is the normalization constant which can be calculated analytically and is given by

$$C = \mathcal{M}_0 \pi \frac{b^{\frac{a+1}{a+b}} a^{-\frac{a+1}{a+b}}}{(a+b) \sin \frac{\pi(b-1)}{a+b}}. \quad (6.4)$$

\mathcal{M}_0 is the mode of the distribution. The hyperparameters a and b determine the width of the distribution, which can be seen by calculating the full width at half maximum (FWHM). It is given by

$$\text{FWHM} = \mathcal{M}_0 \left([2(b/a + 1)]^{1/b} - [2(a/b + 1)]^{-1/a} \right). \quad (6.5)$$

We further assume that the orbital evolution is due only to the emission of gravitational waves, and is thus adequately described by Eq. 4.5. In principle, one would want to be more careful and consider tidal effects and mass transfer [146] as possible contributions to \dot{f} . However, it is expected that the high frequency sources we are focusing on will be mostly detached white dwarf binaries where tidal or mass transfer effects are unlikely to be significant [147].

6.1.3 Results

We are able to efficiently calculate the full likelihood for each source (Eq. 6.1) using the fast waveform generator developed by Cornish and Littenberg [55]. The following results are all derived from simulations using the full likelihood. Using the same MCMC approach from our toy models, we sample the posterior and get PDFs for source and model parameters simultaneously. We check for convergence by starting the chains at different locations in the prior volume and find that regardless of starting location, the chains converge to the same PDFs.

Our procedure successfully recovers the correct chirp mass distribution, as shown in Fig. 6.2 and is able to meaningfully constrain the parameters of the galaxy distribution and chirp mass distribution models, with PDFs shown in Fig. 6.3 and Fig. 6.4 respectively.

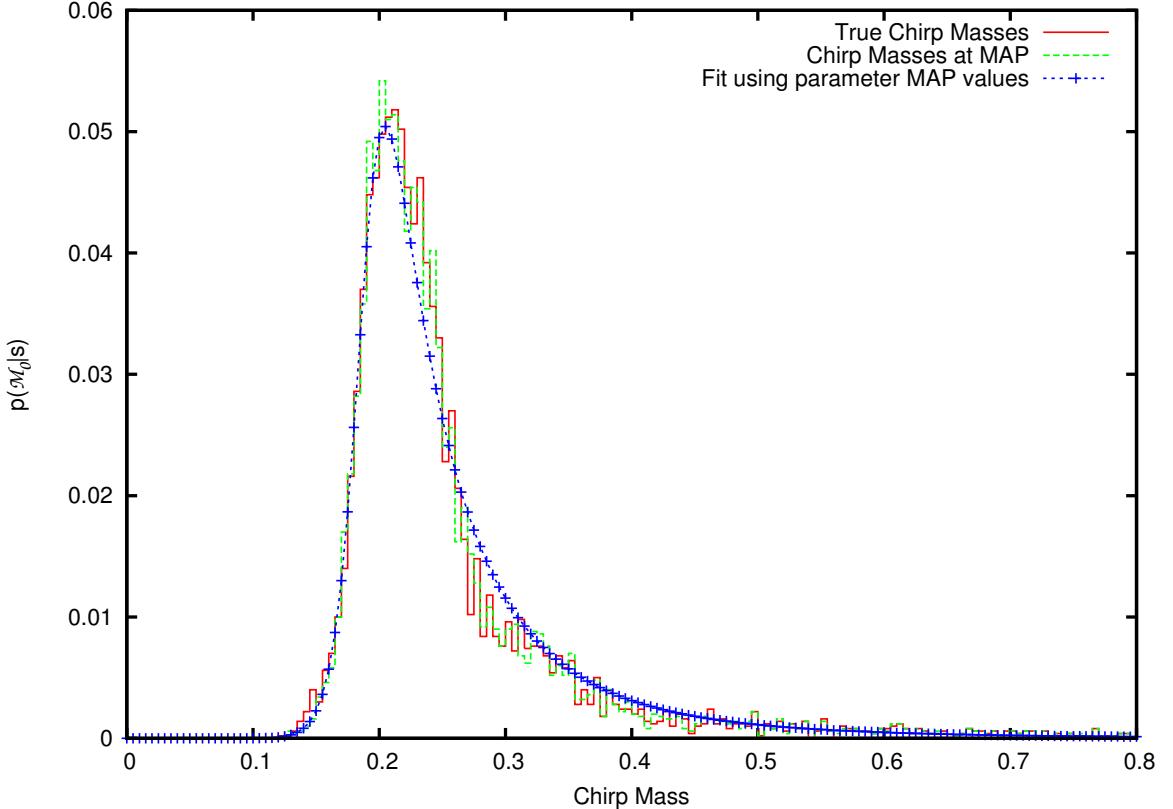


Figure 6.2: The chirp mass distribution of the 5000 binaries used in our simulations is shown in red. The green distribution shows the MAP values of the recovered chirp mass for each binary, and the blue shows the model (Eq. 6.3) using the MAP values for the chirp mass prior hyperparameters. The brightest binaries accurately capture the chirp mass distribution, which serves as a useful prior for sources whose chirp masses are not so well determined.

We ran simulations with 100, 1000, and 5000 binaries to show how the constraints on the galaxy hyperparameters improve as we include more sources (for comparison, eLISA is expected to detect between 3500-4100 white dwarf binaries during a 2-year mission lifetime [62]). The chains run for 1 million, 500k, and 100k iterations respectively. Even for a relatively modest number of detections we begin to get meaningful measurements on the population model of white dwarf binary systems. The more binaries we use in our analysis the tighter our constraints on the hyperparameters will be.

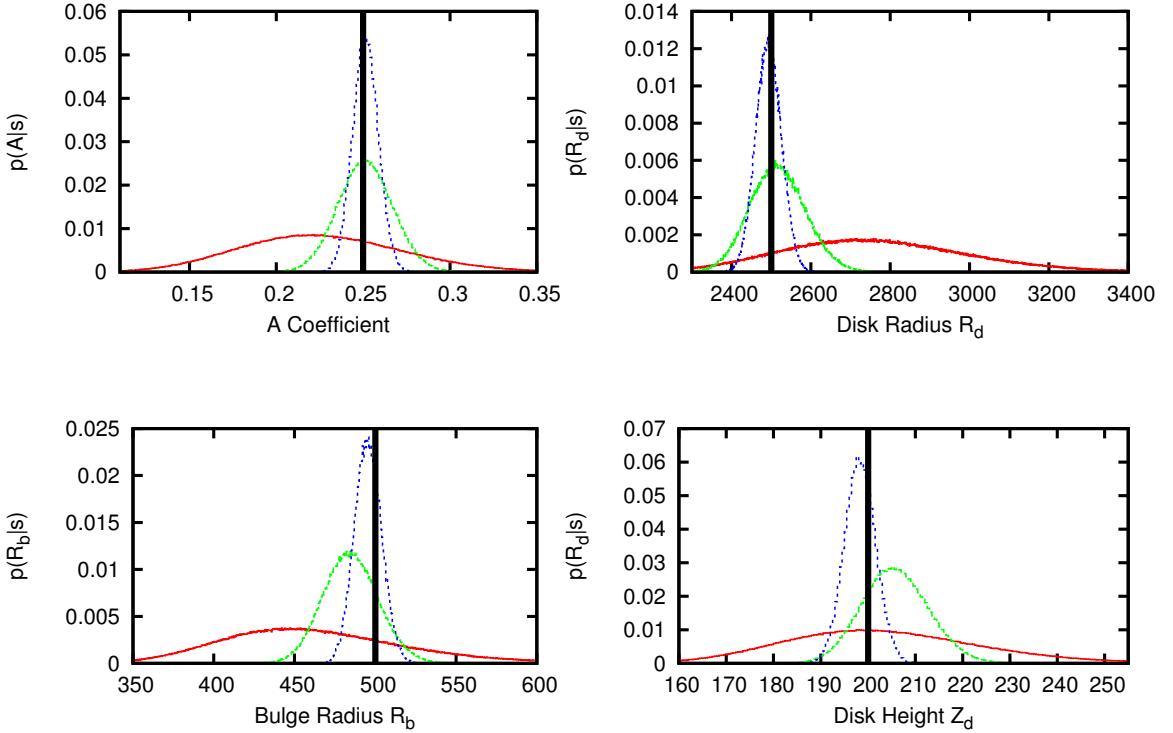


Figure 6.3: PDFs for the four galaxy model hyperparameters. The red is for a simulation using 100 binaries, the green 1000 binaries, and the blue 5000 binaries. The black lines show the true values of the distribution from which the binaries were drawn.

Table 1 lists the recovered MAP values and the variance of the marginalized posterior distribution function for each hyperparameter. Gravitational wave observations would be very competitive with existing electromagnetic observations in constraining the shape of the galaxy [148, 149]. Making direct comparisons between our results to those in the literature is complicated, as the actual values of the bulge and disk radii are very model dependent. For example, Juric uses a model where the galaxy is comprised of both a thin and thick disk. With GW data in hand, this comparison could easily be made by trivially substituting the density profile used here.

What matters for this proof-of-principle study is how well the parameters can be constrained. In the models of Juric et al., constraints for the disk radii are around

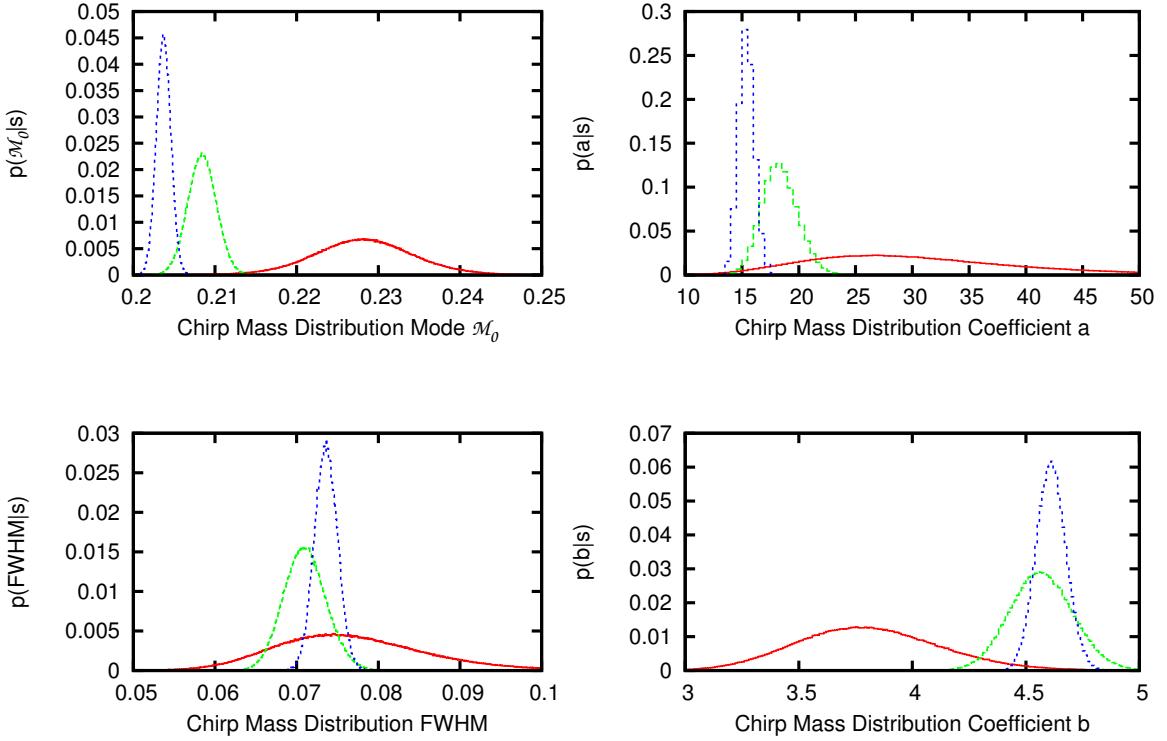


Figure 6.4: PDFs for the three chirp mass model hyperparameters and the FWHM of the distribution. The red is for a simulation using 100 binaries, the green 1000 binaries, and the blue 5000 binaries.

20%. We find similar accuracy when using a pessimistic population of 100 systems. Adopting a source catalog that is more consistent with theoretical predictions, we find constraints for the disk parameters as low as 1.5% – a substantial improvement over the state-of-the-art.

6.1.4 Approximating the Likelihood

While in this case it is very efficient, the full likelihood is nonetheless expensive to compute, posing problems if we wish to do extensive studies of many astrophysical models or detector configurations. For such exploratory studies, it is preferable to use the Fisher Information Matrix approximation to the likelihood of Eq. 5.42. However, as we saw with the toy model in Chapter 5, this can lead to biases in the recovered

Table 6.1: Galaxy Distribution Parameter MAP Values

Parameter	100		1000		5000	
	MAP	σ	MAP	σ	MAP	σ
A	0.262	0.047	0.226	0.0157	0.249	0.0074
R_b (pc)	440	58.9	490	17.1	480	8.38
R_d (pc)	2465	237.5	2584	70.2	2461	32.4
Z_d (pc)	193	20.8	201	7.02	195	3.25
\mathcal{M}_0	0.226	0.0063	0.208	0.0018	0.205	0.00088
FWHM	0.07	0.0094	0.071	0.0026	0.076	0.0014

MAP values and variances for the galaxy hyperparameters when using 100, 1000 and 5000 galactic binaries in the analysis. The simulated values were $A = 0.25$, $R_b = 500$ pc, $R_d = 2500$ pc, and $Z_d = 200$ pc.

parameters. The Fisher matrix Γ_{ij} is not a coordinate invariant quantity, and we can at least partially correct the bias by reparameterizing our likelihood. Just as in Chapter 5, instead of using the distance d as a variable, we can instead use $1/d$, which provides a much better approximation to the full likelihood. We test these short-cuts by redoing the analysis of the galactic population using the Fisher matrix approximation to the likelihood (both with d and $1/d$ as parameters) and compare it to the results from the previous analysis using the full likelihood. Fig. 6.5 shows PDFs for the galaxy hyperparameters using the three different methods for computing $p(d|\vec{\lambda})$ with the full sample of 5000 binaries.

We find that the approximation using $1/d$ matches the full likelihood better than the likelihood parameterized with d , however there are additional discrepancies due to non-quadratic terms in the sky location $\{\theta, \phi\}$ that we have not accounted for. The dependence of the waveform on $\{\theta, \phi\}$ is more complicated than the distance, and is not so easily corrected by a simple reparameterization. The approximation could be

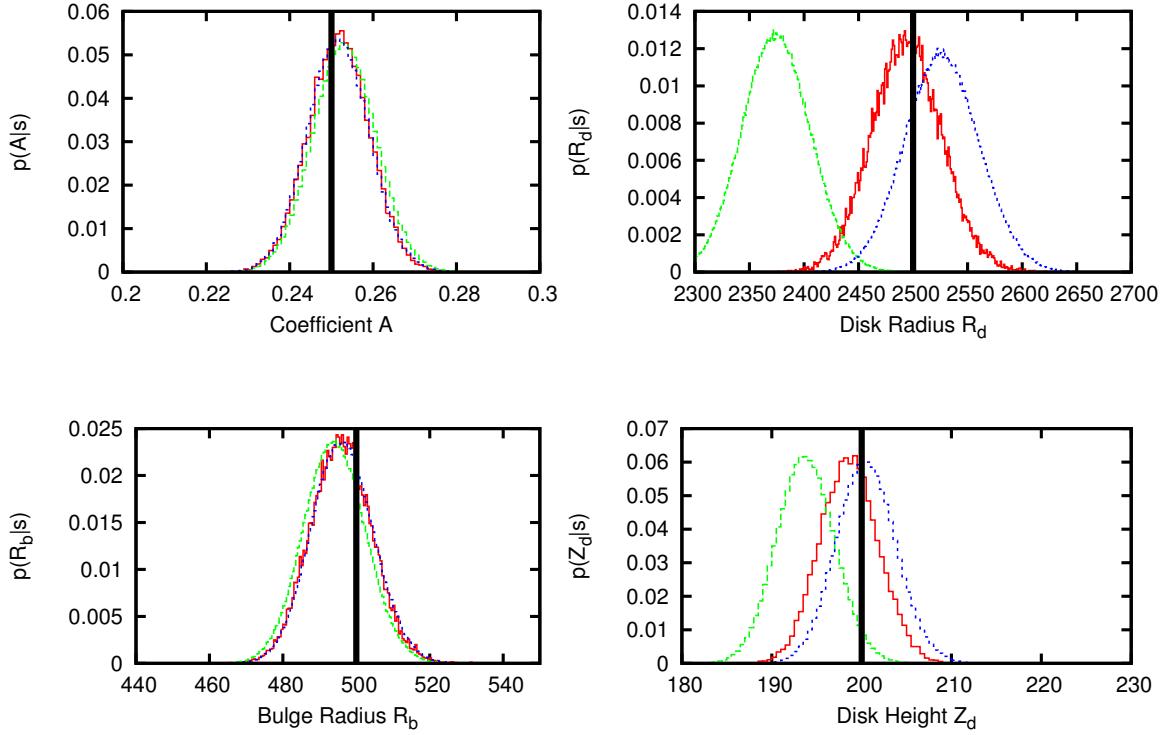


Figure 6.5: PDFs from a simulation using 5000 binaries for the four galaxy model hyperparameters using the full likelihood (red), a Fisher approximation in d (green), and a Fisher approximation in $1/d$ (blue).

improved by carrying the expansion of the likelihood beyond second order, however this is computationally expensive and can be numerically unstable.

If we analyze several realizations of the galaxy using the three different likelihood functions and average the results, we find the biases are persistent for the approximate methods. Fig. 6.6 shows the MAP values and the average of the MAP values for 10 realizations of our fiducial galaxy model. The biases in the recovered disk radius and disk height are particularly pronounced when using the Fisher Matrix approximation to the likelihood parameterized with d .

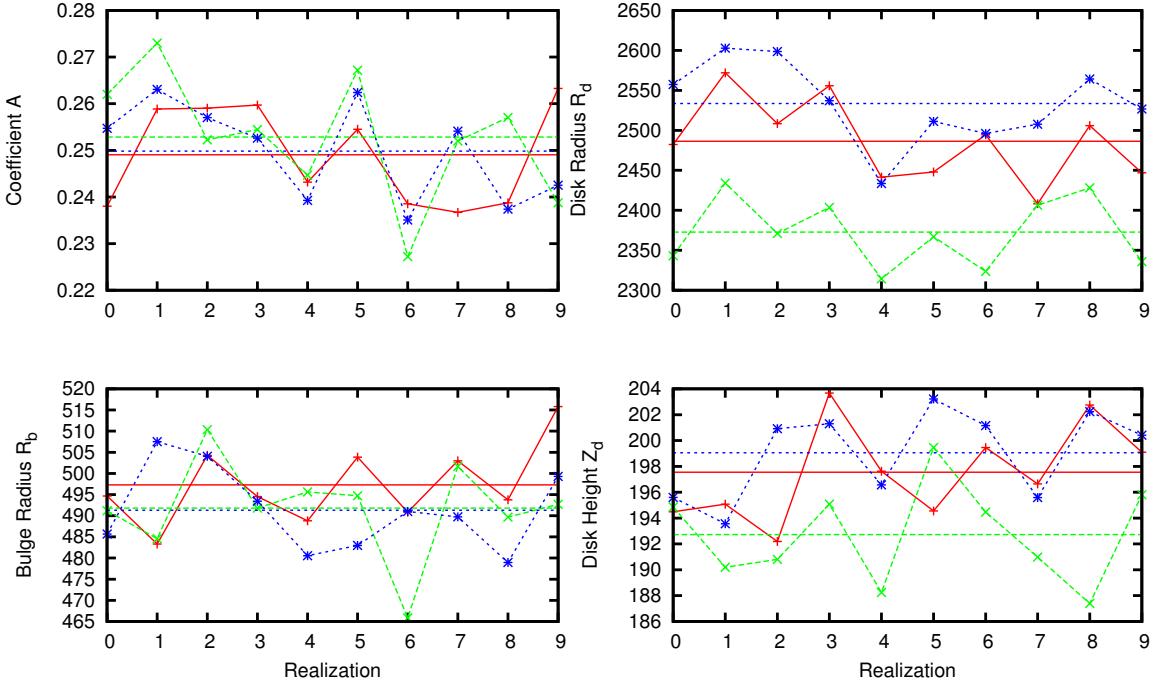


Figure 6.6: MAP values and corresponding averages from a simulation using 5000 binaries for the four galaxy model hyperparameters using the full likelihood (red), a Fisher Matrix approximation parameterized with d (green), and a Fisher Matrix approximation using $1/d$ (blue).

6.1.5 Conclusion

In summary, when the data from a space-borne detector has been collected, the resolvable white dwarf binaries will be regressed from the data, leaving behind a confusion-limited foreground which will significantly contribute to the overall power in the data around ~ 1 mHz. The bright binaries will place tight constraints on the distribution of white dwarf binaries throughout the galaxy. Measuring the overall shape of the galaxy as demonstrated here will provide additional means to characterize the level of the confusion noise. As we will show below, we can then use the detailed understanding of the foreground signal to detect a stochastic gravitational wave background at levels well below the confusion noise.

6.2 Separating a Background from Instrument Noise

We first show the simple case of separating a stochastic background from instrument noise by applying our approach to simulated data from the third round of the MLDC, and show that we are able to accurately recover the stochastic signal and independently measure the position and acceleration noise levels in each arm of the interferometer. We carry out our analysis using a noise orthogonal A, E, T set of TDI channels. In this basis, and for equal arm-lengths, the T channel is insensitive to gravitational wave signals at low frequencies. We show how this gives an improvement for a 6-link detector over a 4-link configuration.

6.2.1 Stochastic Likelihood

Unlike the likelihood for white dwarf binaries, our likelihood for stochastic signals does not include a source template h . The signal s is equal to what we call the noise n , but here the “noise” includes contributions from instrument noise as well as stochastic signals. For Gaussian signals and noise, the likelihood of measuring cross-spectra $\langle X_i X_j^* \rangle$ is given by:

$$p(\mathbf{X}|\vec{\lambda}) = \Pi \frac{1}{(2\pi)^{N/2}|C|} e^{X_i C_{ij}^{-1} X_j} \quad (6.6)$$

where C is the noise correlation matrix, $X_i = \{A, E, T\}$, N is the number of samples in each channel and $\vec{\lambda} \rightarrow (S_i^a, S_j^p, \Omega_{\text{gw}}, n)$ denotes the parameters in our model. The noise correlation matrix is given by

$$C_{ij} = \begin{pmatrix} \langle AA^* \rangle & \langle AE^* \rangle & \langle AT^* \rangle \\ \langle EA^* \rangle & \langle EE^* \rangle & \langle ET^* \rangle \\ \langle TA^* \rangle & \langle TE^* \rangle & \langle TT^* \rangle \end{pmatrix}. \quad (6.7)$$

For a 4-link detector, the matrix simplifies to

$$C_{ij} = \langle XX^* \rangle. \quad (6.8)$$

In general, our model consists of the strain spectral densities for the confusion foreground, the instrument noise, and a stochastic gravitational wave background for each of the interferometer cross spectra (XX^* , AA^* , TT^* , etc.). As mentioned before, we use an equal arm, stationary approximation for the LISA arm lengths. For a stochastic background and instrument noise only, the model is the sum of the two individual pieces:

$$\langle XX^* \rangle = \langle XX_{\text{noise}}^* \rangle + \langle XX_{\text{sgwb}}^* \rangle. \quad (6.9)$$

We compute the posterior distribution function $p(S_i^a, S_j^p | x_k)$ using the MCMC techniques developed in Chapter 5.

Following the search phase, we employ the Bayesian analysis of Chapter 5 to calculate posterior distributions for our model parameters. We also calculate a Bayes ratio of the evidences for a model without a stochastic background and a model with a stochastic background using thermodynamic integration. This Bayes factor for the two models indicates our level of confidence in which model better describes the data. For a Bayes factor of 30 or above, we can generally claim a confident detection. We use several different stochastic background strengths to determine the lowest level that we are confidently able to detect.

Combined with a prior for the model parameters, $p(\vec{\lambda})$, we are able to generate samples from the posterior distributions function $p(\vec{\lambda} | \mathbf{X}) = p(\mathbf{X} | \vec{\lambda})p(\vec{\lambda})/p(\mathbf{X})$ using the PTMCMC algorithm from Chapter 5. Lacking a detailed instrument model or relevant experimental data, we choose to use uniform priors for the 12 instrument

Table 6.2: Prior Ranges for Model Parameters

Parameter	Range	
Position Noise	$4 \cdot 10^{-43}$	$4 \cdot 10^{-41}$
Acceleration Noise	$9 \cdot 10^{-51}$	$9 \cdot 10^{-49}$
$\ln \Omega_{\text{gw}}$	-30.0	-24.5
Ω_{gw}	$9.4 \cdot 10^{-14}$	$2.3 \cdot 10^{-11}$
Slope	-1	1

noise levels, allowing a factor of ten variation above and below the nominal levels. Our prior ranges are given in Table 6.2. The energy density was taken to be uniform in $\ln(\Omega_{\text{gw}})$ across the range $[-30, -24.5]$. We considered two models for the spectral slope, either assuming a scale invariant background and fixing $m = 0$, or allowing the spectral index m to be uniform in the range $[-1, 1]$.

For the proposal distribution we used a mixture of uniform draws from the full prior range, and draws from a multivariate Gaussian distribution computed from the Fisher Information Matrix [120]. Correlations between the parameters, and the frequency dependence of the spectra complicate the computation of the Fisher Matrix, but the basic idea can be understood by considering zero mean white noise with variance σ . The relevant question is, how well can the noise level σ^2 be determined from N noise samples? The likelihood of observing the data $\{x_i\}$ is

$$L = \frac{1}{(2\pi)^{N/2}\sigma^N} \exp\left(-\frac{\sum_{i=1}^N x_i^2}{2\sigma^2}\right), \quad (6.10)$$

which yields a maximum likelihood estimate for the noise level of $\hat{\sigma}^2 = \sum_i x_i^2/N$. The Fisher Matrix has a single element:

$$\Gamma_{\sigma\sigma} = -\frac{\partial^2 \ln L}{\partial \sigma^2}|_{\text{ML}} = \frac{N}{2\hat{\sigma}^2}. \quad (6.11)$$

Thus, the error in the estimated noise level is $\Delta\sigma^2 = 2\sigma\Delta\sigma = \sigma^2/\sqrt{N/2}$. We see that the fractional error in the noise level estimate scales as the square root of the number of data points. The same is true for the more complicated colored spectra in our LISA noise model. Noting that the acceleration noise dominates below ~ 1 mHz, while the position noise dominates above ~ 3 mHz, it follows that the effective number of samples available to constrain the acceleration noise is of order $N_a \sim 1 \text{ mHz} \times T_{\text{obs}}$. The position noise is far better constrained, with order $N_p \sim f_N \times T_{\text{obs}}$ samples, where f_N is the Nyquist frequency of the data. We show later that only the sums of the instrument noise levels in each arm are strongly constrained, so the Fisher matrix approach leads to very large jumps being proposed in the noise level differences in each arm. To maintain a good acceptance rate, we capped the variance in the weakly constrained directions to be ten times the variance in the well constrained directions.

6.2.1.1 Mock LISA Data Challenge Training Data Results We tested our analysis technique on simulated data from the third round of the Mock LISA Data Challenge. We ran our analysis on Challenge 3.5 which is described in Section 2. Note that we used prior ranges far wider than those described in the MLDC as we wanted to test our approach in a more realistic setting.

We found that the signal transfer functions in the training data did not match our analytic model. We traced the problem to the time domain filters that were used to generate the data sets, which introduced additional transfer functions in the frequency domain. Since the analytic form for these transfer functions has not been published, we used the training data to estimate the transfer functions and update our signal model.

Using the analysis from Chapter 5, we recover the PDFs for the noise parameters and stochastic background energy density as shown in Figs. 6.7-6.10.

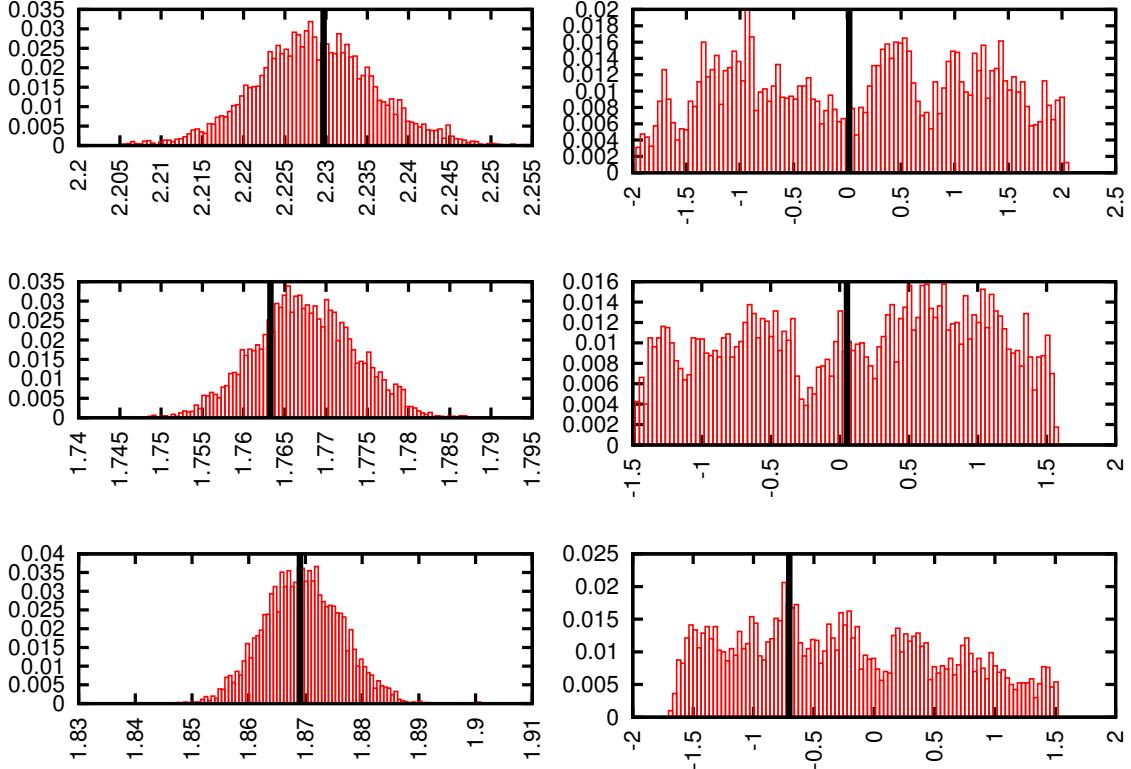


Figure 6.7: Histograms showing the PDFs for the position noise levels, scaled by the nominal level, Eq. 2.10. On the left are the sums along each arm, and on the right are the differences. The vertical lines denote the injected values.

We see that only the sums of the noise contributions in each arm are constrained (the acceleration and position noise contributions can be separated though as they have very different transfer functions). The detector is only sensitive to the change in length for each arm, not to the movement of the individual test masses. Fig. 6.7 provides an example of this by showing that the sums $S_{ji}^p + S_{ij}^p$ are well constrained, while the differences $S_{ji}^p - S_{ij}^p$ are poorly constrained. Also note that the position noise levels are far better determined than the acceleration noise levels, as expected from our Fisher Matrix analysis. The position noise extends over more frequency bins, and this added information leads to tighter constraints on the uncertainty.

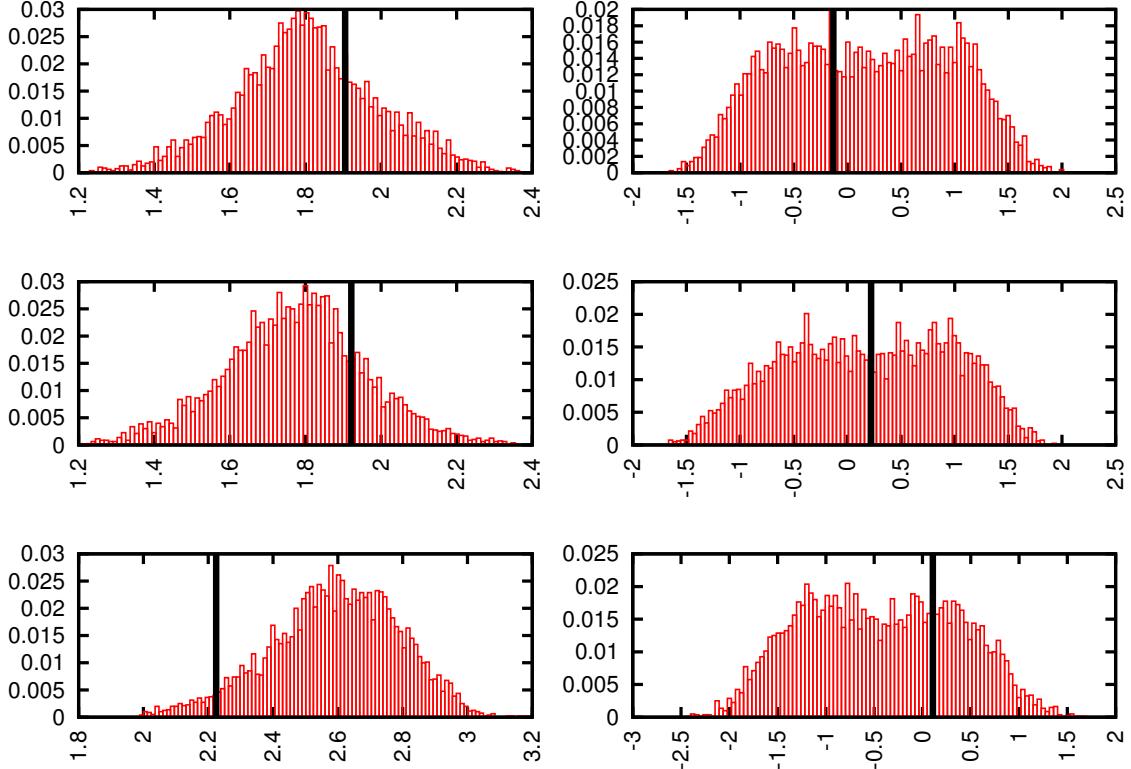


Figure 6.8: Histograms showing the PDFs for the position noise levels, scaled by the nominal level, Eq. 2.11. On the left are the sums along each arm, and on the right are the differences. The vertical lines denote the injected values.

6.2.2 Detection Limits

Having established that our algorithm can faithfully recover a stochastic background level of $\Omega_{\text{gw}} \sim 10^{-11}$ with one month of data, we next turned to the problem of determining the LISA detection limit for an approximately scale invariant stochastic gravitational wave background. To do this we generated a new set of simulated data sets by re-scaling the gravitational wave contribution to the MLDC training data, and used Bayesian model selection to compare the evidence for two models, M_0 - the data is described by instrument noise alone, and M_1 - the data is described by instrument noise and a stochastic gravitational wave background. Plots of the Bayes factor, or evidence ratio, as a function of Ω_{gw} are shown in Fig. 6.11. We performed

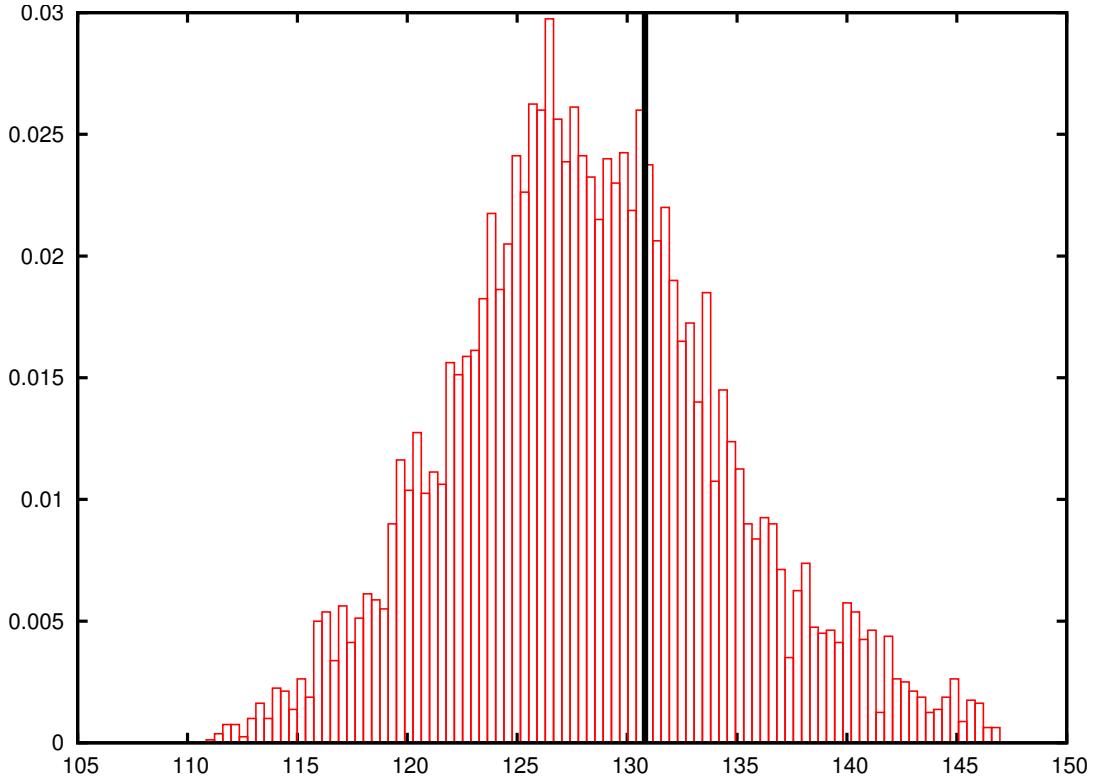


Figure 6.9: PDF for the gravitational wave background level (scaled up by 10^{13}). The vertical line denotes the injected values.

multiple runs with different random number seeds as a way to estimate the numerical error in our Bayes factors. Our detection confidence becomes very strong (a Bayes factor of 30) for a background level of $\Omega_{\text{gw}} = 6 \times 10^{-13}$ with one month of data. With one year of data the limit improves to $\Omega_{\text{gw}} = 1.7 \times 10^{-13}$, based on the scaling argument described in Section 6.2.1.

It is interesting to note that the detection limit does not change if we include the spectral slope of the background as a model parameter. At first this seems a little surprising, as the simulated data has a spectral slope of $m = 0$, so we would expect the simpler model with $m = 0$ to be favored over the more complicated model with m as a free parameter. Further investigation revealed that the more complicated model was able to provide a slightly better fit to the data, and that this was enough

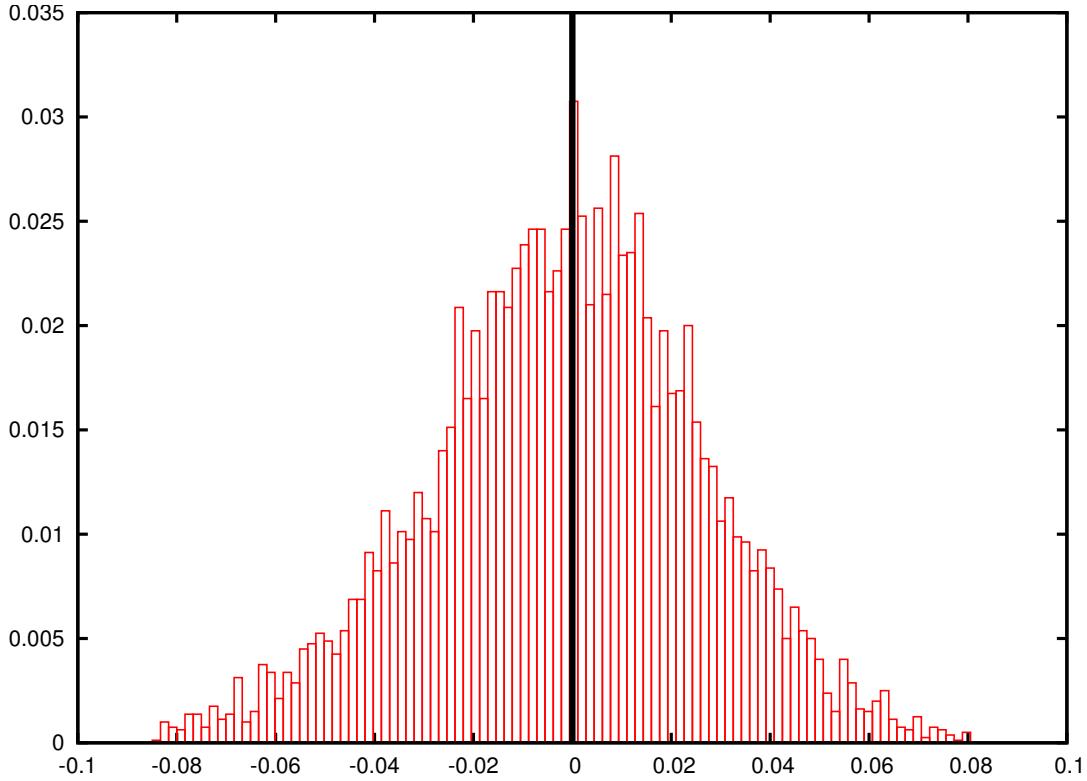


Figure 6.10: PDF for the gravitational wave background slope.

to compensate for the additional complexity of the model in the calculation of the model evidence. Our hypothesis is that our signal model is imperfect because of the need to use numerical fits to the transfer functions introduced by the simulation software, and that the freedom to adjust the spectral slope of the background is able to compensate for this imperfection.

6.2.3 The Role of Null Channels and 4-link Operation

Previous analyses of stochastic background detection with LISA have emphasized the importance of the gravitational wave insensitive null channel that can be formed from the Sagnac or Michelson interferometry channels (to be precise these channels are only null in the zero frequency limit, at non-zero frequencies they do respond weakly to gravitational signals because of finite arm-length effects). Hogan and Ben-

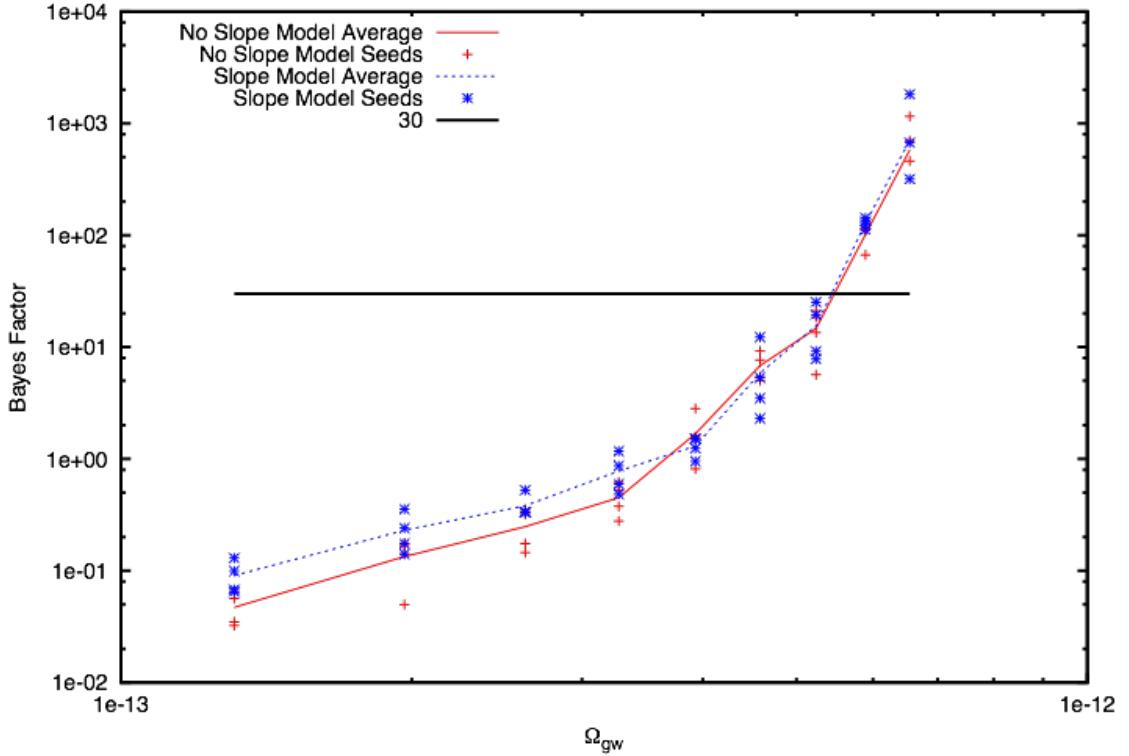


Figure 6.11: Bayes factor showing the detectability versus background level. The curve shows the average values of the scattered points.

der showed how this null channel could be used to construct a statistic that measures the amplitude of the stochastic background [76]. The importance of null channels has also been emphasized in the context of searches for un-modeled gravitational wave signals in ground and space-based detectors. For example, in the LIGO-Virgo searches for un-modeled gravitational wave bursts, it has been shown that the sensitivity can be improved by using the sums and differences of the output from the two ($H2$) and four ($H1$) kilometer detectors at the Hanford site. The null channel $H_- = H1 - H2$ is insensitive to gravitational waves, and has proven useful as a tool to distinguish between instrumental artifacts and gravitational wave signals [38, 150].

It may therefore seem a little surprising that the null “ T ” channel plays no privileged role in the present analysis. The reason is simple: when using a Gaussian

likelihood function the coordinate transformation in signal space that produces the null channel leaves the likelihood unchanged. For example, when we repeat our analysis using the cross spectra for the $\{X, Y, Z\}$ channels we get results that are *identical* to what we found with the $\{A, E, T\}$ channels. It is only when the instrument noise is not well understood, and there are significant departures from stationarity and Gaussianity that null channels become important. It would be naive to assume that the LISA data will be perfectly stationary and Gaussian, and we expect the T -channel will play a key role in detector characterization studies. That is our motivation for the calculation described in the next section, where we derive a new version of the T -channel that is insensitive to gravitational waves for unequal arm-lengths.

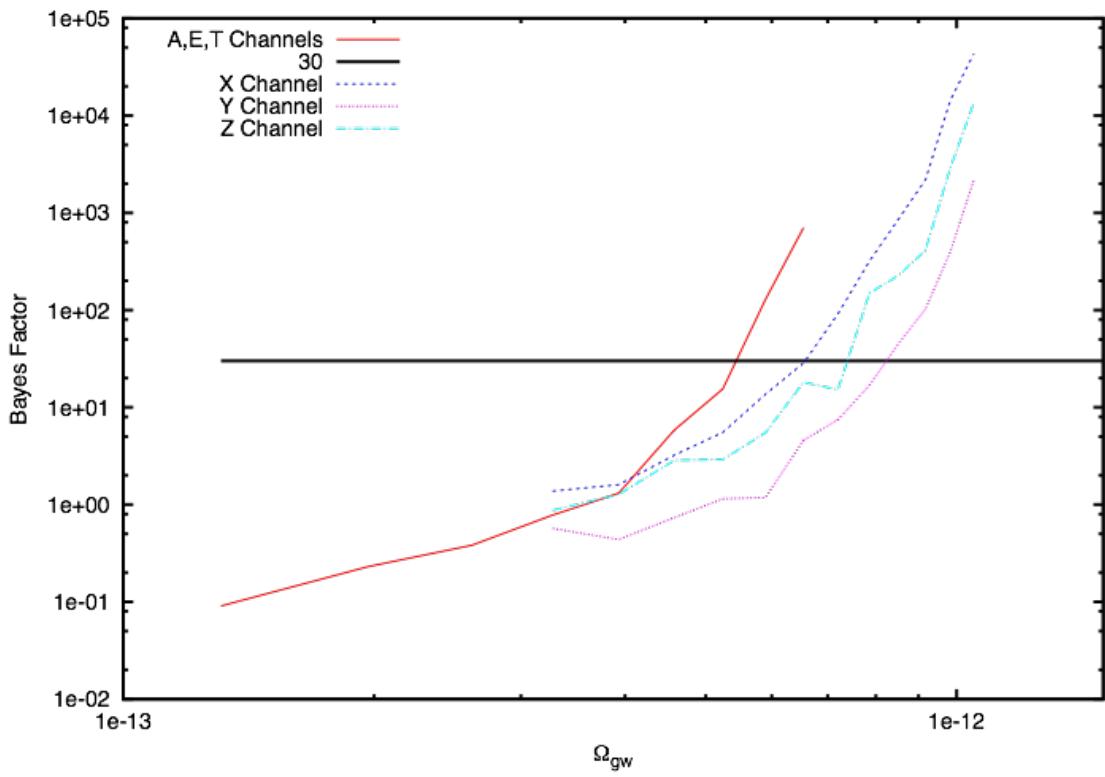


Figure 6.12: Bayes factors for the X, Y, and Z channels.

With the current baseline design for LISA, the failure of one proof mass leaves us with a single interferometry channel. In most instances, it is then possible to configure the array to produce a single X type TDI channel (alternatively we can work with a single Beacon, Monitor or Relay channel). LISA has a built in redundancy that eLISA lacks. With one channel the number of cross-spectra drops from 6 to 1, and the null direction in signal space (the T channel) is lost. On the other hand, the number of noise variables drops from 12 to 8 (the effective dimension of the noise model drops from 6 to 4 since only the sums of noise contributions along each arm can be inferred from the gravitational wave data). To study these competing effects and to compare LISA and eLISA, we repeated our analysis using a single X type TDI channel. We performed runs on each of the X , Y and Z channels to see how the particular noise and signal realization in each channel impacted our ability to detect a stochastic background signal. The results of this study are shown in Fig. 6.12. We see that the detection threshold for a single channel is roughly a factor of two worse than when all links are operational. This result appears to contradict the usual statement that LISA can only detect stochastic backgrounds when the null channel is available, but it should be remembered that we are using the very strong assumption that the instrument noise is stationary and Gaussian, and the individual noise sources have known spectral shape. With these assumptions we find that the high frequency portion of the spectrum fixes the shot noise levels to very high precision, so any deviations in the total spectrum in the $1 \rightarrow 10$ mHz range caused by a scale invariant stochastic background stand out in stark relief.

In future studies it would be interesting to see how the detection limits are affected by relaxing the assumptions in our noise model. It would also be interesting to have a better sense of how well component level engineering models, ground testing and in-flight commissioning studies can constrain the instrument noise model.

6.3 Including the Galactic Foreground

Having shown that a single space-based detector is capable of separating a stochastic gravitational wave background from instrument noise, we now turn to the problem of including the galactic white dwarf foreground in our analysis. Using the constraints on the galaxy distribution parameters found at the beginning of this chapter, we can proceed to the full analysis containing a galactic white dwarf foreground. Our model, Eq. 6.9, becomes

$$\langle XX^* \rangle = \langle XX_{\text{noise}}^* \rangle + \langle XX_{\text{sgwb}}^* \rangle + \langle XX_{\text{galaxy}}^* \rangle. \quad (6.12)$$

As before, our analysis provides uncertainties for the instrument noise levels, the galaxy shape Fourier coefficients, and the stochastic background energy density and spectral slope.

We use the same Bayesian analysis pipeline from Chapter 5 to calculate PDFs for our model parameters and to do Bayesian model selection. The only difference in the likelihood arises from our treatment of the modulation. We divide the year into 50 segments and calculate the likelihood for each segment. We then take the product of the segments to get a total posterior distribution for all the data,

$$p(\mathbf{X}|\vec{\lambda}) = \prod \frac{1}{(2\pi)^{N/2}|C^d|} e^{X_i^d C_{ij}^{d-1} X_j^d}. \quad (6.13)$$

Here, d labels the time segments.

We ran our analysis for both a full 6-link LISA as well as a 4-link version. For the 6-link configuration, we use the orthogonal A, E, and T channels.

Figs. 6.13 and 6.14 show the posterior distributions for our noise model parameters. We see again that only the total noise (i.e. $S_{12}^p + S_{21}^p$) in each interferometer arm is well constrained.

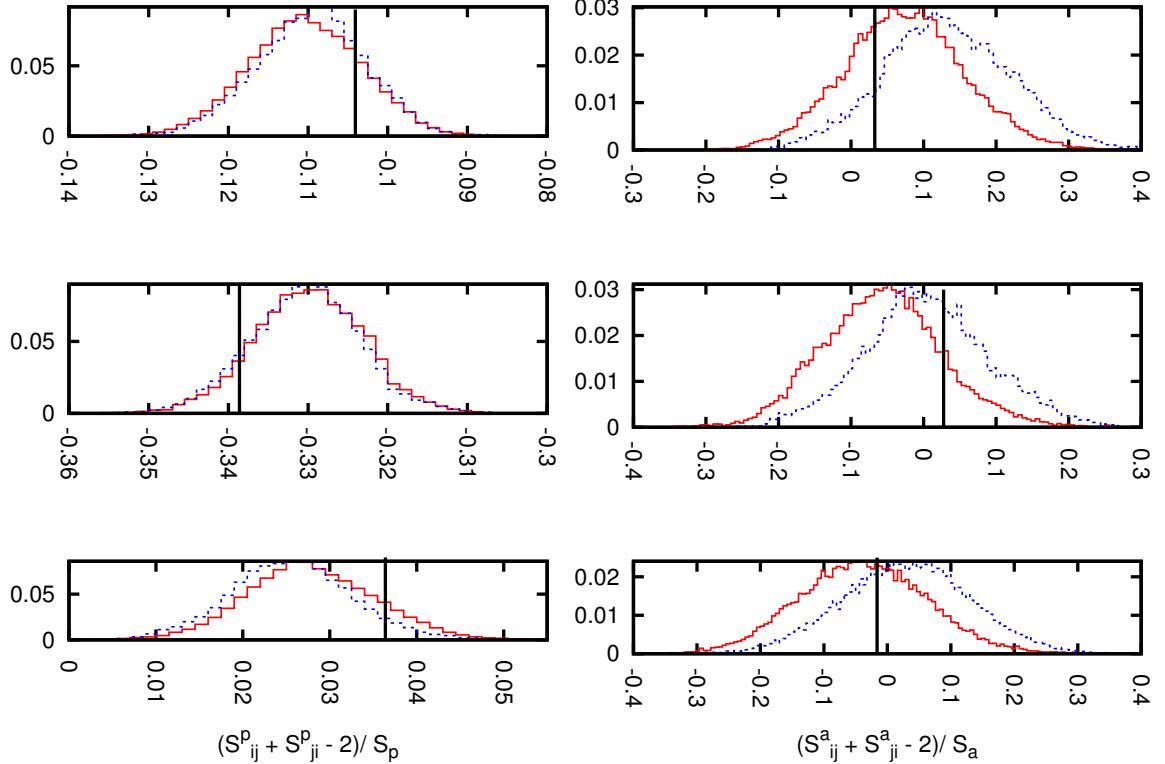


Figure 6.13: The PDFs for the six constrained noise parameter combinations for the AET channels. The position noise parameters are on the left and the acceleration noise parameters on the right. The black (solid) vertical lines show the injected values. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

For the 4-link configuration, the sum of all four noise levels is constrained. This can be seen from Eqs. 2.5 and 2.6. The position noise extends over a larger frequency band and is better constrained than the acceleration noise.

Figs. 6.15 and 6.16 show the posterior distributions for Ω_{gw} for both the flat spectrum case and the frequency dependent case. In Fig. 6.15, the injected background level is $\Omega_{\text{gw}} = 2 \cdot 10^{-13}$ and in Fig. 6.16 it is $\Omega_{\text{gw}} = 5 \cdot 10^{-13}$. We show later that

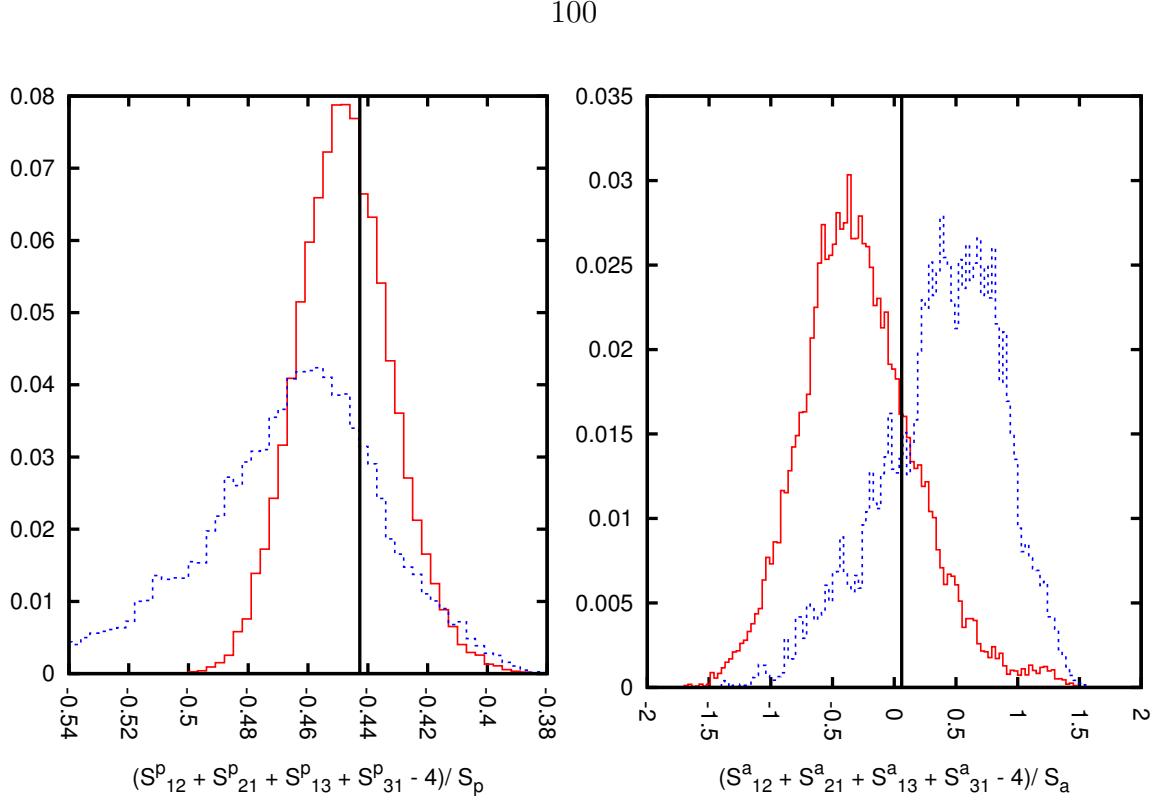


Figure 6.14: The constrained position (left) and acceleration (right) noise parameters for X. The black (solid) vertical lines show the injected values. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

these are the lowest background levels that could be confidently detected for the AET channels and X channel respectively.

When the proposed slope of the stochastic background matches or nearly matches the slope for either the instrument noise or the galactic foreground, there will be some correlation between the model parameters. This leads to greater spreads in the PDFs of the model parameters. Figs. 6.15 and 6.16 show that the PDFs from the model with a spectral slope are indeed broader than the PDFs for the model with $m = 0$. The effect is more pronounced for the X-channel case than for AET. For the slope parameter in the X-channel case, we even see in Fig. 6.15 that there is a peak for $m = -1$. The PDF is broad enough that we wouldn't be able to confidently distinguish between a slope of 0 and a slope of -1 . In Figs. 6.19 - 6.21, we see that this

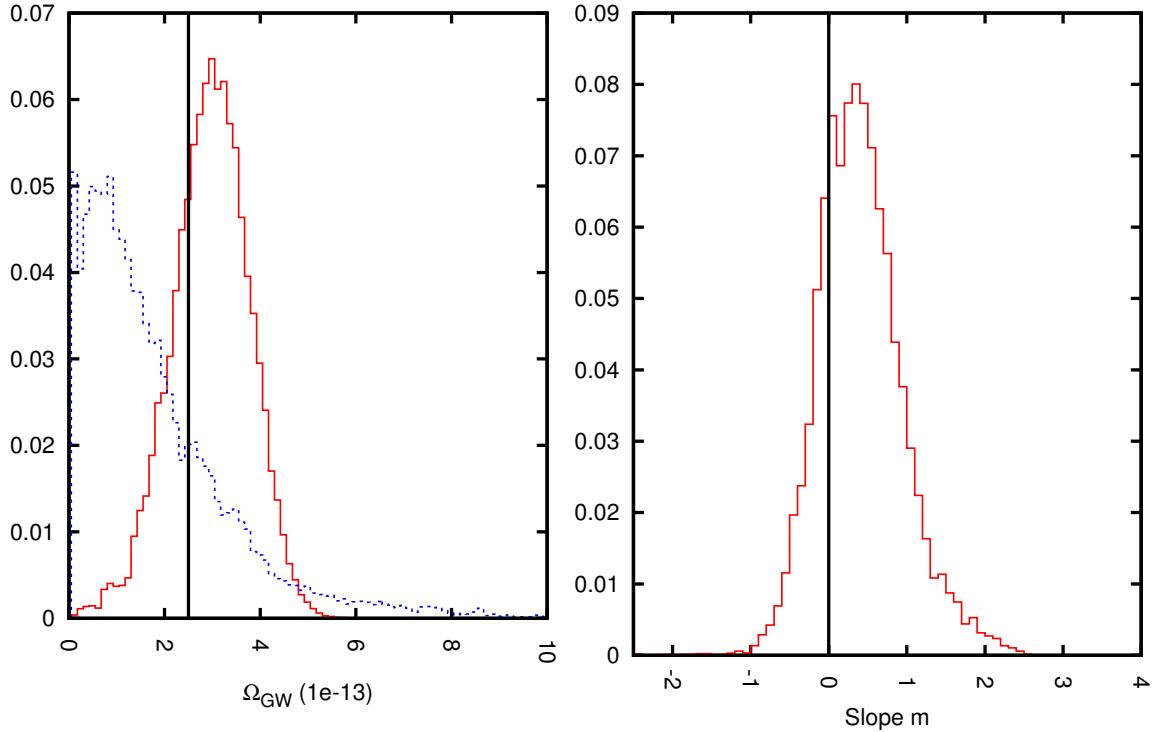


Figure 6.15: The stochastic gravitational wave background level, Ω_{gw} , and slope parameter, m , for AET. The black (solid) vertical lines show the injected values. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

increase in uncertainty leads to a higher upper bound on the stochastic background level.

Figs. 6.17 and 6.18 show the PDFs for the galactic foreground model parameters. We show the first three Fourier coefficients and the last three. The C_0 coefficient sets the DC amplitude level for the galaxy. The other Fourier coefficients determine the shape. While there are 17 Fourier coefficients, the basic shape is determined by the first 5 or 6 and the higher coefficients only add fine details that are not well resolved in our analysis.

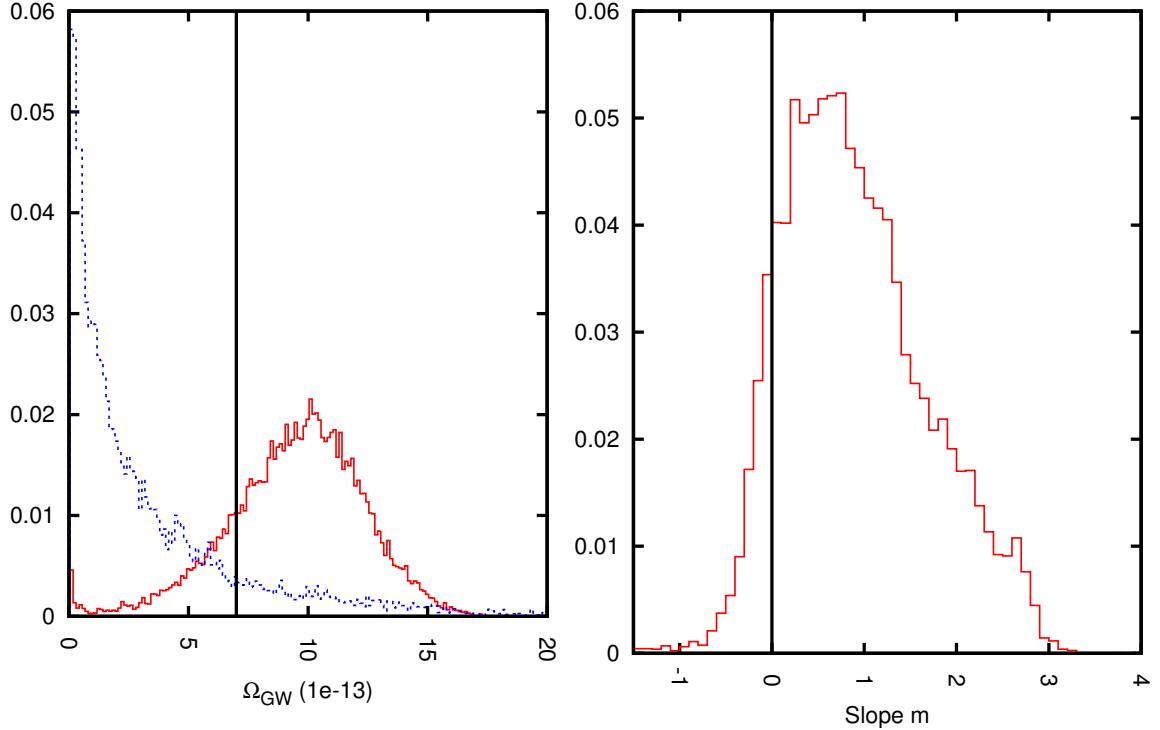


Figure 6.16: The stochastic gravitational wave background level, Ω_{gw} , and slope parameter, m , for X. The black (solid) vertical lines show the injected values. The blue (dashed) PDF includes slope fitting and the red (solid) PDF does not.

6.3.1 Bayesian Model Selection

In Section 6.2.2, we suggested that the model with a spectral slope parameter should always perform worse than the model without a slope. The extra degree of freedom will allow the model to fit the data better, however, it also comes with a penalty. In Bayesian model selection, higher dimensional models have a larger prior volume to explore. Since the injected data had a spectral slope of $m = 0$, we wouldn't expect the model that allows for spectral slope fitting to ever outperform the model that assumes $m = 0$.

However, our results above showed that both models performed comparably well. We postulated that this was due to our having to use a numerical model for the stochastic background spectrum. With an imperfect model, there was a benefit to

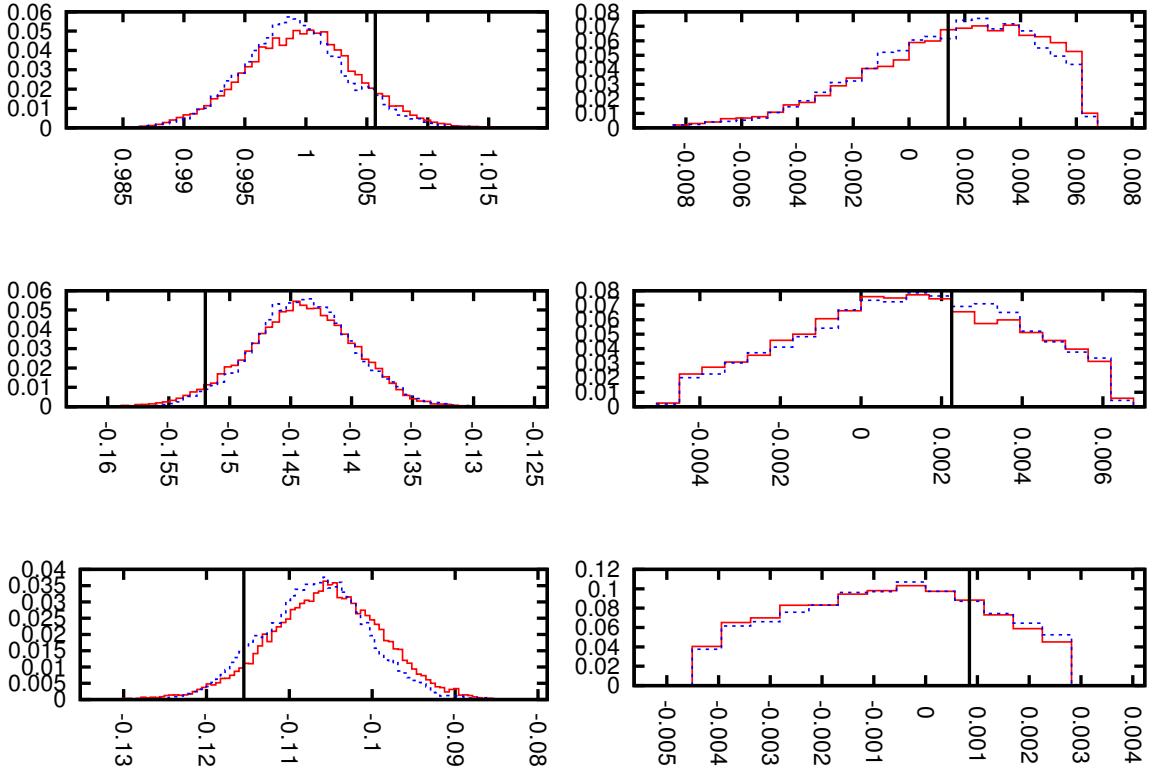


Figure 6.17: The first three (left) and last three (right) Fourier coefficients for the A-channel. The first coefficients are well constrained while the later ones are not. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

having the extra slope parameter that outweighed the penalty of having to explore a larger prior volume. The two effects essentially canceled out. With the analytic model used here, we find that the extra slope parameter does make a difference. In Figs. 6.19 - 6.21, the model with spectral slope fitting always performs worse than the model with $m = 0$. The effect is not large and does not significantly inflate the bounds that could be placed on a stochastic background, which makes sense because the single additional parameter is not a large increase in our parameter space.

6.3.2 Comparison to MLDC

As a consistency check, we compare the analytic model used with our own data, to the numerical model used with the MLDC data. We ran our analytic model on data

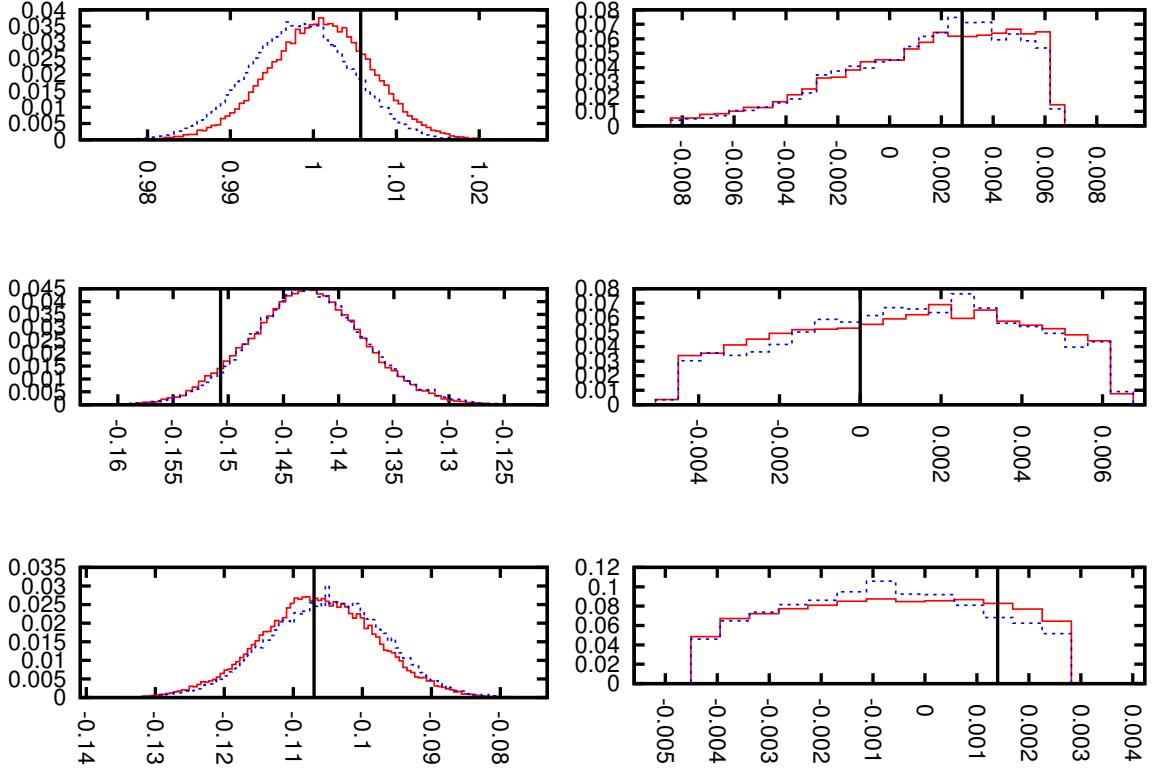


Figure 6.18: The first three (left) and last three (right) Fourier coefficients for the X-channel. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

containing instrument noise and a stochastic background, but no galaxy. We find that our results are consistent with our work on the MLDC data. We would expect that a 1-year data set, which is ~ 15 times longer than the ~ 3 -week MLDC data set, should perform approximately $\sqrt{15}$ better than the MLDC data. In Fig. 6.19, we see that the new results agree very well with the MLDC results after taking into account the different observation times.

6.3.3 Analysis with a Galactic Foreground

We now compare our results for the data set with no galaxy component versus a data set that includes instrument noise, a stochastic background, and a galactic confusion foreground. We find that our recovery of the stochastic background is not

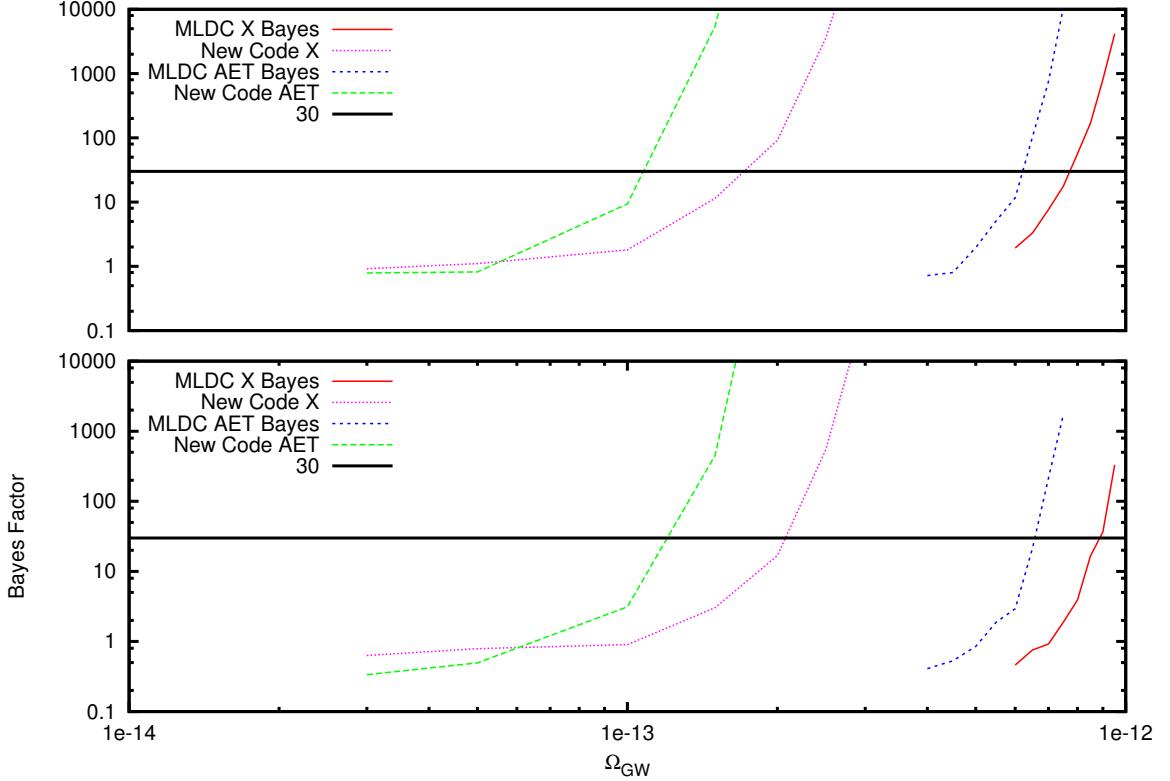


Figure 6.19: A comparison of the Bayes factors for the MLDC data and for our simulated data without a galaxy. The lower panel includes slope fitting. A Bayes factor of 30 is considered a strong detection.

significantly diminished when including the galactic foreground. Fig. 6.20 compares the Bayes factors for the analysis without the confusion foreground to those that contain the galaxy. The addition of the galaxy adds a small amount of uncertainty into the posterior distributions of each parameter, and we see that the detection threshold is slightly raised. This indicates that the correlation between the various model components is not large and that the model is successfully distinguishing amongst the three components.

We investigated the two effects that enable us to separate the galactic foreground from the stochastic background, namely, the shape of the spectrum and the time modulation of the signal throughout the year. Before, we relied solely on the discrim-

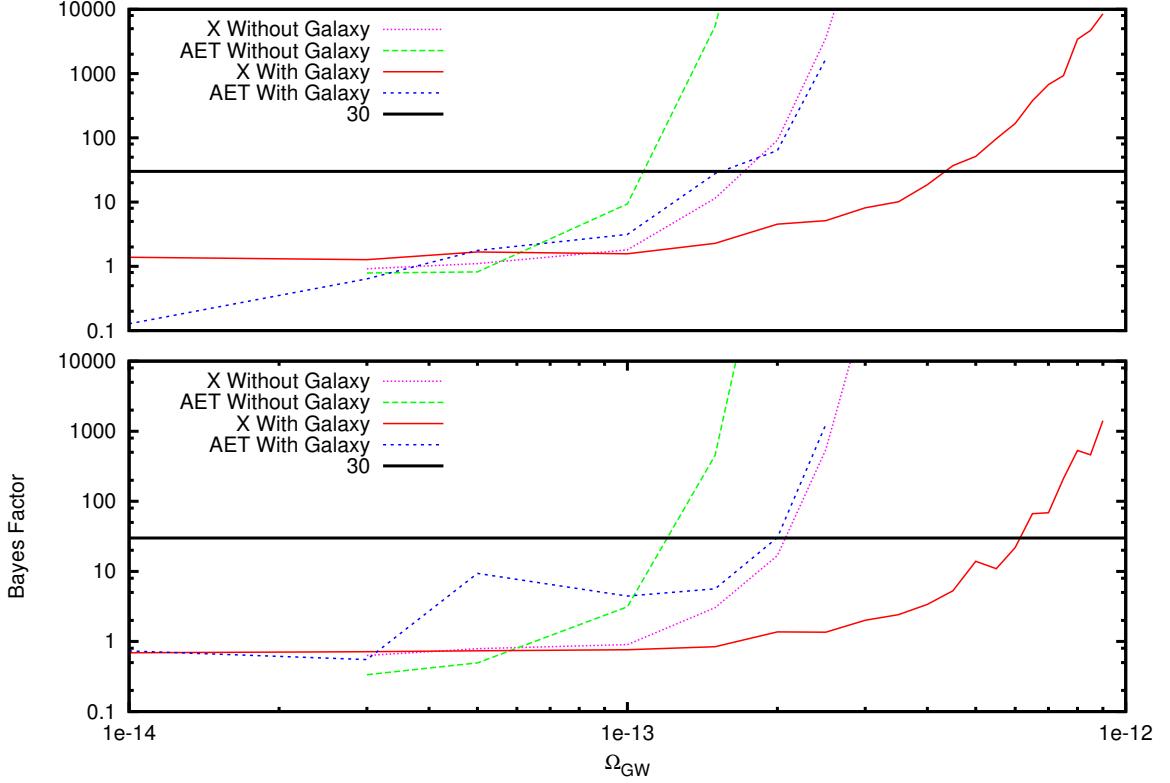


Figure 6.20: A comparison of Bayes factors for data without the galaxy vs. data with the galaxy included. Including the galaxy does not significantly decrease our detection ability. The lower panel includes slope fitting.

inating power of the different spectral shapes for the noise and stochastic background. Fig. 6.21 shows how both the modulation and spectral shape help. To show that our method does not depend solely on the galaxy modulation, we ran our analysis on a single week of data. We used the first week of the year when the foreground signal is at a minimum, and the 37th week when the foreground is at a maximum. For one week of observation time, the foreground signal is essentially constant, and we won't get any information from the modulation. With only one week of data, we have fewer data points and would expect to perform worse by a factor of approximately $\sqrt{50} \simeq 7$. The performance actually decreases by a factor of 15. Excluding the

modulation reduces the effectiveness of our analysis by about a factor of 2, but we are still able to pick apart the various components in the data.

Next we showed what happens if we remove the spectral information and rely on the time domain modulation alone. We created a stochastic background that had the exact spectrum of the galaxy. We took the galaxy spectral shape and scaled it by the gravitational wave energy density and the appropriate Hubble and numerical factors from Eq. 3.12. The galaxy and artificial background spectrum are correlated to a much greater degree in this case. We found for the X-channel that we were in general no longer able to distinguish the galaxy from the stochastic background. However, if the constraints on the galaxy parameters from the bright sources are sufficiently stringent, we are still able to recover a stochastic background that has the same spectrum as the galaxy since the galaxy distribution priors will tightly constrain the galaxy confusion level. For the AET-channel case, the bound is weakened by almost two orders of magnitude. However, the galaxy parameters and background are still recovered at a level well below the instrument noise and galactic foreground. If we are unlucky, the Universe may have produced a stochastic background with a spectral slope that matches the galaxy or the acceleration noise. In that case, we see that we would have much higher upper bounds for a stochastic gravitational wave background. However, we are showing a worst case scenario where the galaxy had the exact same spectral shape and extended over the exact same frequency band. It is very unlikely that a stochastic background would match the galaxy or instrument noise that well.

Lastly, we ran on the low frequency end of the spectrum. The acceleration noise, galaxy, and stochastic background dominate out to ~ 20 mHz, after which the position noise dominates. Running on the low frequency end of the spectrum gives all of the various signal components approximately equal weighting since they all extend over approximately the same number of frequency bins. The background is recovered at a

slightly higher level, showing that we do gain by using the high frequency information to pin down the position noise levels.

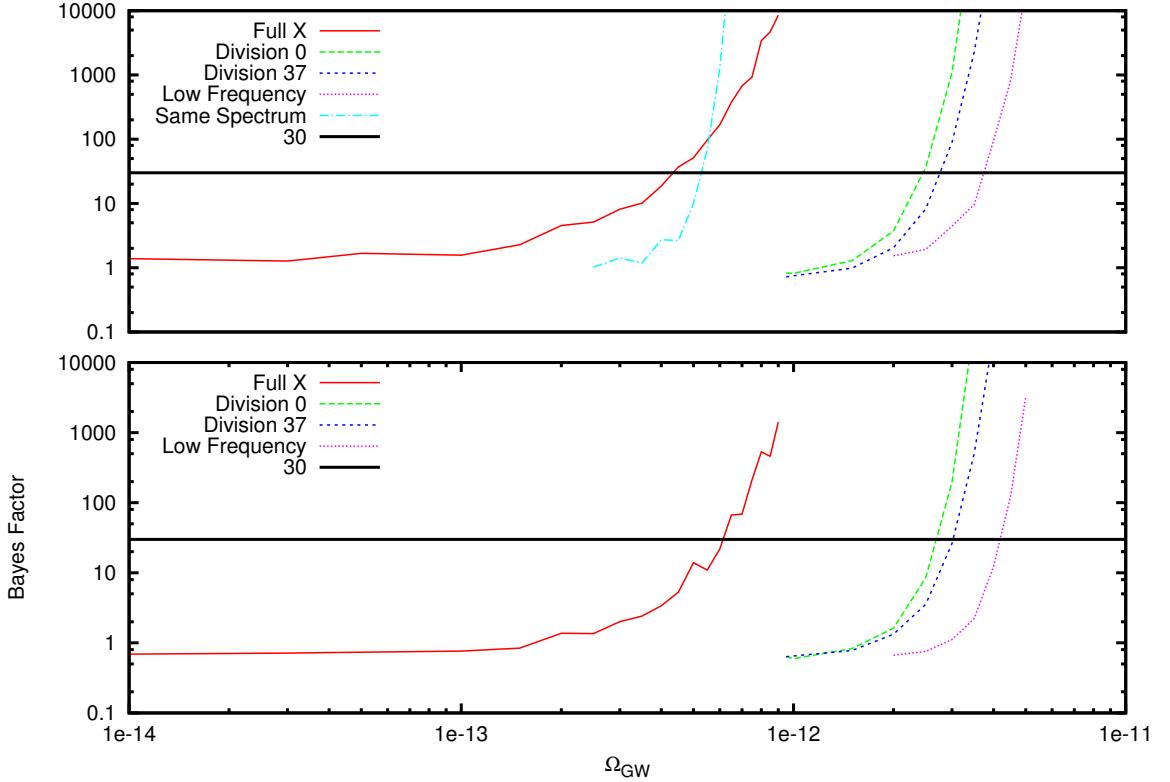


Figure 6.21: A comparison of Bayes Factors for the full AET vs. running on the low frequency end of the spectrum, single weeks of data, and a stochastic background with a spectral shape identical to the galaxy spectrum used in this paper. We see that both the spectral shape and the galaxy signal modulation help separate the three model components. The lower panel includes slope fitting.

6.3.4 Conclusion

We have shown that a single space-based detector such as LISA or eLISA is able to detect a stochastic gravitational wave background in the presence of both instrument noise and a strong astrophysical foreground signal. As we expect only one space detector in the near future, this technique is important because it doesn't rely on cross correlation amongst multiple detectors. The levels achieved in the analysis here

would be the most stringent bounds placed on the energy density of a stochastic gravitational wave background in the millihertz frequency regime.

CHAPTER 7

CONCLUSIONS

This dissertation demonstrates two very promising results for space-based gravitational wave interferometers. We have shown that a single space-based detector can be used to detect a stochastic gravitational wave background. Our analysis can separate various stochastic signals and noise in the data from each other without relying on cross correlation. The technique works for both 6-link and 4-link detector configurations. We also developed a general Hierarchical Bayesian method capable of constraining the model parameters for a population of sources. In the particular case of white dwarf binaries in the Milky Way, we can constrain the spatial distribution of the galaxy to levels better than current electromagnetic observations using the anticipated number of systems detectable by space-based gravitational wave detectors. Even if the currently held event rates for white dwarf binaries turn out to be optimistic by more than an order of magnitude, the constraints possible with a gravitational wave detector are comparable to our current estimates of the Milky Way's shape.

We showed that after modeling the galactic foreground and instrument noise we can detect a background of order $\Omega_{\text{gw}} \sim 10^{-13}$. This is a very optimistic level for a gravitational wave background. Standard inflation models predict that the background would be at a level of approximately $\Omega_{\text{gw}} \sim 10^{-17}$. However, a LISA-like detector would set the best experimental bound in the milliHertz frequency regime, and may potentially uncover phase transitions in the early Universe [28, 101, 100, 99, 112, 113], or astrophysical backgrounds from EMRIs [56], extragalactic white dwarfs [105], or inspirals of massive black hole binaries [57]. Esti-

mates of the extragalactic white dwarf confusion noise [105] predict $\Omega_{\text{gw}}(f) \sim 3 \times 10^{-12}$ at $f \sim 2 - 3 \text{ mHz}$, which should be detectable even with the galactic foreground to contend with. The extragalactic astrophysical foreground will likely set the floor for detecting stochastic backgrounds of cosmological origin, preventing us from reaching the limits that the LISA observatory is theoretically capable of.

One line of future study is to investigate how the limits shown here are affected by weakening the assumptions that went into the instrument noise model. Another line of future study is to include some of the other potential astrophysical foregrounds in our analysis. We could investigate our ability to detect any anisotropies in the extragalactic background, but neither LISA nor eLISA will have very good spatial sky resolution for a stochastic background. Later generation detectors such as BBO and DECIGO could achieve much better sky resolution using radiometer techniques, and it would be interesting to investigate the sky resolution of these later generation missions.

REFERENCES CITED

- [1] A. Einstein. Die Feldgleichungen der Gravitation. *Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin)*, Seite 844-847., pages 844–847, 1915.
- [2] A. Einstein. Erklärung der Perihelionbewegung der Merkur aus der allgemeinen Relativitätstheorie. *Sitzungsber. preuss. Akad. Wiss.*, vol. 47, No.2, pp. 831-839, 1915, 47:831–839, 1915.
- [3] Albert Einstein. Relativitätstheorie. (German) [Theory of Relativity]. *Die Kultur der Gegenwart. Ihre Entwicklung und ihre Ziele. Paul Hinneberg, ed. Part 3, Mathematik, Naturwissenschaften, Medizin. Section 3, Anorganischen Naturwissenschaften*, pages 703–713. pub-TEUBNER, pub-TEUBNER:adr, 1915. See Schilpp number 192 for a revised edition.
- [4] F. W. Dyson, A. S. Eddington, C. Davidson. A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. *Royal Society of London Philosophical Transactions Series A*, 220:291–333, 1920. doi:10.1098/rsta.1920.0009.
- [5] Albert Einstein. Approximative Integration of the Field Equations of Gravitation. *Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)*, 1916:688–696, 1916.
- [6] A. Einstein. Die Grundlage der allgemeinen Relativitätstheorie. *Annalen der Physik*, 354:769–822, 1916. doi:10.1002/andp.19163540702.
- [7] A. Einstein. Über Gravitationswellen. *Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin)*, Seite 154-167., pages 154–167, 1918.
- [8] R.A. Hulse, J.H. Taylor. Discovery of a Pulsar in a Binary System. *Astrophys.J.*, 195:L51–L53, 1975. doi:10.1086/181708.
- [9] J.H. Taylor, J.M. Weisberg. A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar PS R 1913+16. *Astrophys.J.*, 253:908–920, 1982. doi:10.1086/159690.
- [10] Adhikari, Rana, *et al.* LSC Gravitational Wave Instrument Science White Paper. Available at http://www.ligo.org/about/white_paper.php, 2012.
- [11] Cadonati, Laura, *et al.* LSC Gravitational Wave Data Analysis White Paper. Available at http://www.ligo.org/about/white_paper.php, 2012.
- [12] R.N. Manchester. The International Pulsar Timing Array. 2013. arXiv:1309.7392.

- [13] Michael Kramer, David J. Champion. The European Pulsar Timing Array and the Large European Array for Pulsars. *Class.Quant.Grav.*, 30:224009, 2013. [doi:10.1088/0264-9381/30/22/224009](https://doi.org/10.1088/0264-9381/30/22/224009).
- [14] Maura A. McLaughlin. The North American Nanohertz Observatory for Gravitational Waves. *Class.Quant.Grav.*, 30:224008, 2013. [arXiv:1310.0758](https://arxiv.org/abs/1310.0758), [doi:10.1088/0264-9381/30/22/224008](https://doi.org/10.1088/0264-9381/30/22/224008).
- [15] G. Hobbs. The Parkes Pulsar Timing Array. *Class.Quant.Grav.*, 30:224007, 2013. [arXiv:1307.2629](https://arxiv.org/abs/1307.2629), [doi:10.1088/0264-9381/30/22/224007](https://doi.org/10.1088/0264-9381/30/22/224007).
- [16] Pau Amaro-Seoane, Sofiane Aoudia, Stanislav Babak, Pierre Binetruy, Emanuele Berti, *et al.* eLISA/NGO: Astrophysics and Cosmology in the Gravitational-wave Millihertz Regime. *GW Notes*, 6:4–110, 2013. [arXiv:1201.3621](https://arxiv.org/abs/1201.3621).
- [17] Stebbins, R., *et al.* Laser Interferometer Space Antenna (LISA) A Response to the Astro2010 RFI for the Particle Astrophysics and Gravitation Panel. Available at <http://lisa.nasa.gov/documentation.html>, 2009.
- [18] E. Komatsu, *et al.* Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. *Astrophys.J.Suppl.*, 180:330–376, 2009. [arXiv:0803.0547](https://arxiv.org/abs/0803.0547), [doi:10.1088/0067-0049/180/2/330](https://doi.org/10.1088/0067-0049/180/2/330).
- [19] C.L. Bennett, A. Banday, K.M. Gorski, G. Hinshaw, P. Jackson, *et al.* Four year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results. *Astrophys.J.*, 464:L1–L4, 1996. [arXiv:astro-ph/9601067](https://arxiv.org/abs/astro-ph/9601067), [doi:10.1086/310075](https://doi.org/10.1086/310075).
- [20] G. Hinshaw, *et al.* Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. *Astrophys.J.Suppl.*, 208:19, 2013. [arXiv:1212.5226](https://arxiv.org/abs/1212.5226), [doi:10.1088/0067-0049/208/2/19](https://doi.org/10.1088/0067-0049/208/2/19).
- [21] P.A.R. Ade, *et al.* Planck 2013 Results. XVI. Cosmological Parameters. 2013. [arXiv:1303.5076](https://arxiv.org/abs/1303.5076).
- [22] P.A.R. Ade, *et al.* BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales. 2014. [arXiv:1403.3985](https://arxiv.org/abs/1403.3985).
- [23] P. A. R Ade, *et al.* BICEP2 II: Experiment and Three-Year Data Set. 2014. [arXiv:1403.4302](https://arxiv.org/abs/1403.4302).
- [24] Raphael Flauger, J. Colin Hill, David N. Spergel. Toward an Understanding of Foreground Emission in the BICEP2 Region. 2014. [arXiv:1405.7351](https://arxiv.org/abs/1405.7351).
- [25] Michael J. Mortonson, Uro Seljak. A Joint Analysis of Planck and BICEP2 B Modes Including Dust Polarization Uncertainty. 2014. [arXiv:1405.5857](https://arxiv.org/abs/1405.5857).

- [26] Alan H. Guth. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. *Phys.Rev.*, D23:347–356, 1981. [doi:10.1103/PhysRevD.23.347](https://doi.org/10.1103/PhysRevD.23.347).
- [27] Craig J. Hogan. Cosmological Gravitational Wave Backgrounds. 1998. [arXiv:astro-ph/9809364](https://arxiv.org/abs/astro-ph/9809364).
- [28] Michele Maggiore. Gravitational Wave Experiments and Early Universe Cosmology. *Phys.Rept.*, 331:283–367, 2000. [arXiv:gr-qc/9909001](https://arxiv.org/abs/gr-qc/9909001), [doi:10.1016/S0370-1573\(99\)00102-7](https://doi.org/10.1016/S0370-1573(99)00102-7).
- [29] Curt Cutler, Kip S. Thorne. An Overview of Gravitational Wave Sources. pages 72–111, 2013. [arXiv:gr-qc/0204090](https://arxiv.org/abs/gr-qc/0204090), [doi:10.1142/9789812776556_0004](https://doi.org/10.1142/9789812776556_0004).
- [30] Scott A. Hughes. Listening to the Universe with Gravitational-wave Astronomy. *Annals Phys.*, 303:142–178, 2003. [arXiv:astro-ph/0210481](https://arxiv.org/abs/astro-ph/0210481), [doi:10.1016/S0003-4916\(02\)00025-8](https://doi.org/10.1016/S0003-4916(02)00025-8).
- [31] Alessandra Buonanno. TASI Lectures on Gravitational Waves from the Early Universe. pages 855–892, 2003. [arXiv:gr-qc/0303085](https://arxiv.org/abs/gr-qc/0303085).
- [32] Sirichai Chongchitnan, George Efstathiou. Prospects for Direct Detection of Primordial Gravitational Waves. *Phys.Rev.*, D73:083511, 2006. [arXiv:astro-ph/0602594](https://arxiv.org/abs/astro-ph/0602594), [doi:10.1103/PhysRevD.73.083511](https://doi.org/10.1103/PhysRevD.73.083511).
- [33] J. Abadie, *et al.* Upper Limits on a Stochastic Gravitational-wave Background using LIGO and Virgo Interferometers at 600–1000 Hz. *Phys.Rev.*, D85:122001, 2012. [arXiv:1112.5004](https://arxiv.org/abs/1112.5004), [doi:10.1103/PhysRevD.85.122001](https://doi.org/10.1103/PhysRevD.85.122001).
- [34] Frederick A. Jenet, G.B. Hobbs, W. van Straten, R.N. Manchester, M. Bailes, *et al.* Upper Bounds on the Low-frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects. *Astrophys.J.*, 653:1571–1576, 2006. [arXiv:astro-ph/0609013](https://arxiv.org/abs/astro-ph/0609013), [doi:10.1086/508702](https://doi.org/10.1086/508702).
- [35] N. Christensen. Measuring the Stochastic Gravitational Radiation Background with Laser Interferometric Antennas. *Phys.Rev.*, D46:5250–5266, 1992. [doi:10.1103/PhysRevD.46.5250](https://doi.org/10.1103/PhysRevD.46.5250).
- [36] Eanna E. Flanagan. The Sensitivity of the Laser Interferometer Gravitational Wave Observatory (LIGO) to a Stochastic Background, and its Dependence on the Detector Orientations. *Phys.Rev.*, D48:2389–2407, 1993. [arXiv:astro-ph/9305029](https://arxiv.org/abs/astro-ph/9305029), [doi:10.1103/PhysRevD.48.2389](https://doi.org/10.1103/PhysRevD.48.2389).
- [37] Neil J. Cornish, Shane L. Larson. Space Missions to Detect the Cosmic Gravitational Wave Background. *Class.Quant.Grav.*, 18:3473–3496, 2001. [arXiv:gr-qc/0103075](https://arxiv.org/abs/gr-qc/0103075), [doi:10.1088/0264-9381/18/17/308](https://doi.org/10.1088/0264-9381/18/17/308).

- [38] B.P. Abbott, *et al.* An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin. *Nature*, 460:990, 2009. [arXiv:0910.5772](https://arxiv.org/abs/0910.5772), doi:10.1038/nature08278.
- [39] Allen, Bruce. The Stochastic Gravity Wave Background: Sources and Detection. 1996. [arXiv:gr-qc/9604033](https://arxiv.org/abs/gr-qc/9604033).
- [40] Matthew R. Adams, Neil J. Cornish. Discriminating Between a Stochastic Gravitational Wave Background and Instrument Noise. *Phys.Rev.*, D82:022002, 2010. [arXiv:1002.1291](https://arxiv.org/abs/1002.1291), doi:10.1103/PhysRevD.82.022002.
- [41] Matthew R. Adams, Neil J. Cornish. Detecting a Stochastic Gravitational Wave Background in the Presence of a Galactic Foreground and Instrument Noise. *Phys.Rev.*, D89:022001, 2014. [arXiv:1307.4116](https://arxiv.org/abs/1307.4116), doi:10.1103/PhysRevD.89.022001.
- [42] R. H. Dicke, P. J. E. Peebles, P. G. Roll, D. T. Wilkinson. Cosmic Black-Body Radiation. *The Astrophysical Journal*, 142:414–419, July 1965. doi:10.1086/148306.
- [43] A. A. Penzias, R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. *The Astrophysical Journal*, 142:419–421, July 1965. doi:10.1086/148307.
- [44] Andrew H. Jaffe, Donald C. Backer. Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries. *Astrophys.J.*, 583:616–631, 2003. [arXiv:astro-ph/0210148](https://arxiv.org/abs/astro-ph/0210148), doi:10.1086/345443.
- [45] J. Stuart B. Wyithe, Abraham Loeb. Low-frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays. *Astrophys.J.*, 590:691–706, 2003. [arXiv:astro-ph/0211556](https://arxiv.org/abs/astro-ph/0211556), doi:10.1086/375187.
- [46] Motohiro Enoki, Kaiki Taro Inoue, Masahiro Nagashima, Naoshi Sugiyama. Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model. *Astrophys.J.*, 615:19, 2004. [arXiv:astro-ph/0404389](https://arxiv.org/abs/astro-ph/0404389), doi:10.1086/424475.
- [47] L.P. Grishchuk. Relic Gravitational Waves and Cosmology. *Phys.Usp.*, 48:1235–1247, 2005. [arXiv:gr-qc/0504018](https://arxiv.org/abs/gr-qc/0504018), doi:10.1070/PU2005v048n12ABEH005795.
- [48] T. Regimbau, Jose A. de Freitas Pacheco. Cosmic Background of Gravitational Waves from Rotating Neutron Stars. 2001. [arXiv:astro-ph/0105260](https://arxiv.org/abs/astro-ph/0105260).
- [49] Tania Regimbau, Jose Antonio de Freitas Pacheco. Gravitational Wave Background from Magnetars. *Astron.Astrophys.*, 447:1, 2006. [arXiv:astro-ph/0509880](https://arxiv.org/abs/astro-ph/0509880), doi:10.1051/0004-6361:20053702.

- [50] P.L. Bender, D. Hils. Confusion Noise Level Due to Galactic and Extragalactic Binaries. *Class.Quant.Grav.*, 14:1439–1444, 1997. doi:10.1088/0264-9381/14/6/008.
- [51] Charles R. Evans, Icko Iben, Larry Smarr. Degenerate Dwarf Binaries as Promising, Detectable Sources of Gravitational Radiation. *Astrophys.J.*, 323:129–139, 1987. doi:10.1086/165812.
- [52] Bernard F. Schutz. Low Frequency Sources of Gravitational Waves: A Tutorial. 1997. arXiv:gr-qc/9710079.
- [53] Mukremin Kilic, Warren R. Brown, J.J. Hermes, Carlos Allende Prieto, S.J. Kenyon, *et al.* SDSS J163030.58+423305.8: A 40 minute Orbital Period Detached White Dwarf Binary. 2011. arXiv:1109.6339.
- [54] Warren R. Brown, Mukremin Kilic, J.J. Hermes, Carlos Allende Prieto, Scott J. Kenyon, *et al.* A 12 Minute Orbital Period Detached White Dwarf Eclipsing Binary. 2011. arXiv:1107.2389.
- [55] Neil J. Cornish, Tyson B. Littenberg. Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy. *Phys.Rev.*, D76:083006, 2007. arXiv:0704.1808, doi:10.1103/PhysRevD.76.083006.
- [56] Leor Barack, Curt Cutler. Confusion Noise from Extreme-Mass-Ratio Inspirals. 2005. arXiv:gr-qc/0502052.
- [57] A. Sesana, F. Haardt, P. Madau, M. Volonteri. The Gravitational Wave Signal from Massive Black Hole Binaries and its Contribution to the LISA Data Stream. *Astrophys.J.*, 623:23–30, 2005. arXiv:astro-ph/0409255, doi:10.1086/428492.
- [58] R. T. Stebbins. Rightsizing LISA. *Classical and Quantum Gravity*, 26(9):094014, May 2009. arXiv:0904.1029, doi:10.1088/0264-9381/26/9/094014.
- [59] Jonathan R. Gair, Christopher Tang, Marta Volonteri. LISA Extreme-Mass-Ratio Inspiral Events as Probes of the Black Hole Mass Function. *Phys.Rev.*, D81:104014, 2010. arXiv:1004.1921, doi:10.1103/PhysRevD.81.104014.
- [60] Jonathan R. Gair, Alberto Sesana, Emanuele Berti, Marta Volonteri. Constraining Properties of the Black Hole Population Using LISA. *Class.Quant.Grav.*, 28:094018, 2011. arXiv:1009.6172, doi:10.1088/0264-9381/28/9/094018.
- [61] Alberto Sesana, Jonathan Gair, Emanuele Berti, Marta Volonteri. Reconstructing the Massive Black Hole Cosmic History Through Gravitational Waves. *Phys.Rev.*, D83:044036, 2011. arXiv:1011.5893, doi:10.1103/PhysRevD.83.044036.

- [62] Pau Amaro-Seoane, Sofiane Aoudia, Stanislav Babak, Pierre Binetruy, Emanuele Berti, *et al.* Low-frequency Gravitational-wave Science with eLISA/NGO. *Class.Quant.Grav.*, 29:124016, 2012. [arXiv:1202.0839](https://arxiv.org/abs/1202.0839), doi:10.1088/0264-9381/29/12/124016.
- [63] Joseph E. Plowman, Daniel C. Jacobs, Ronald W. Hellings, Shane L. Larson, Sachiko Tsuruta. Constraining the Black Hole Mass Spectrum with Gravitational Wave Observations I: The Error Kernel. 2009. [arXiv:0903.2059](https://arxiv.org/abs/0903.2059).
- [64] Joseph E. Plowman, Ronald W. Hellings, Sachiko Tsuruta. Constraining the Black Hole Mass Spectrum with LISA Observations II: Direct Comparison of Detailed Models. 2010. [arXiv:1009.0765](https://arxiv.org/abs/1009.0765).
- [65] Ilya Mandel. Parameter Estimation on Gravitational Waves from Multiple Coalescing Binaries. *Phys.Rev.*, D81:084029, 2010. [arXiv:0912.5531](https://arxiv.org/abs/0912.5531), doi:10.1103/PhysRevD.81.084029.
- [66] R. O'Shaughnessy. Comparing Compact Binary Parameter Distributions I: Methods. 2012. [arXiv:1204.3117](https://arxiv.org/abs/1204.3117).
- [67] Bender, P.L., *et al.* LISA. Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves. An International Project in the Field of Fundamental Physics in Space. Pre-Phase A report. Available at <http://relativity.livingreviews.org/refdb/record/8064>, 1998.
- [68] Jonathan P. Gardner, John C. Mather, Mark Clampin, Rene Doyon, Matthew A. Greenhouse, *et al.* The James Webb Space Telescope. *Space Sci.Rev.*, 123:485, 2006. [arXiv:astro-ph/0606175](https://arxiv.org/abs/astro-ph/0606175), doi:10.1007/s11214-006-8315-7.
- [69] K. Danzmann, A. Rudiger. LISA Technology - Concept, Status, Prospects. *Class.Quant.Grav.*, 20:S1–S9, 2003.
- [70] Patricia Purdue, Shane L. Larson. Spurious Acceleration Noise in Spaceborne Gravitational Wave Interferometers. *Class.Quant.Grav.*, 24:5869–5887, 2007. doi:10.1088/0264-9381/24/23/010.
- [71] Massimo Tinto, J.W. Armstrong. Cancellation of Laser Noise in an Unequal-arm Interferometer Detector of Gravitational Radiation. *Phys.Rev.*, D59:102003, 1999. doi:10.1103/PhysRevD.59.102003.
- [72] F. B. Estabrook, Massimo Tinto, J. W. Armstrong. Time Delay Analysis of LISA Gravitational Wave Data: Elimination of Spacecraft Motion Effects. *Phys.Rev.*, D62:042002, 2000. doi:10.1103/PhysRevD.62.042002.

- [73] Michele Vallisneri. Geometric Time Delay Interferometry. *Phys.Rev.*, D72:042003, 2005. [arXiv:gr-qc/0504145](https://arxiv.org/abs/gr-qc/0504145), doi:10.1103/PhysRevD.76.109903, 10.1103/PhysRevD.72.042003.
- [74] Thomas A. Prince, Massimo Tinto, Shane L. Larson, J.W. Armstrong. The LISA Optimal Sensitivity. *Phys.Rev.*, D66:122002, 2002. [arXiv:gr-qc/0209039](https://arxiv.org/abs/gr-qc/0209039), doi:10.1103/PhysRevD.66.122002.
- [75] Julien Sylvestre, Massimo Tinto. Noise Characterization for LISA. *Phys.Rev.*, D68:102002, 2003. [arXiv:gr-qc/0308085](https://arxiv.org/abs/gr-qc/0308085), doi:10.1103/PhysRevD.68.102002.
- [76] Craig J. Hogan, Peter L. Bender. Estimating Stochastic Gravitational Wave Backgrounds with Sagnac Calibration. *Phys.Rev.*, D64:062002, 2001. [arXiv:astro-ph/0104266](https://arxiv.org/abs/astro-ph/0104266), doi:10.1103/PhysRevD.64.062002.
- [77] Stanislav Babak, John G. Baker, Matthew J. Benacquista, Neil J. Cornish, Jeff Crowder, *et al.* The Mock LISA Data Challenges: From Challenge 1B to Challenge 3. *Class.Quant.Grav.*, 25:184026, 2008. [arXiv:0806.2110](https://arxiv.org/abs/0806.2110), doi:10.1088/0264-9381/25/18/184026.
- [78] Cornish, Neil J. and Rubbo, Louis J. LISA Simulator v. 2.0. Available at www.physics.montana.edu/LISA/, 2003.
- [79] Neil J. Cornish, Louis J. Rubbo. The LISA Response Function. *Phys.Rev.*, D67:022001, 2003. [arXiv:gr-qc/0209011](https://arxiv.org/abs/gr-qc/0209011), doi:10.1103/PhysRevD.67.022001, 10.1103/PhysRevD.67.022001.
- [80] Michele Maggiore. *Gravitational Waves. Vol. 1.* Oxford University Press, Oxford; New York, 2008.
- [81] Craig J. Copi, David N. Schramm, Michael S. Turner. The Big Bang Nucleosynthesis Limit to the Number of Neutrino Species. *Phys.Rev.*, D55:3389–3393, 1997. [arXiv:astro-ph/9606059](https://arxiv.org/abs/astro-ph/9606059), doi:10.1103/PhysRevD.55.3389.
- [82] L.P. Grishchuk. Amplification of Gravitational Waves in an Isotropic Universe. *Sov.Phys.JETP*, 40:409–415, 1975.
- [83] Alexei A. Starobinsky. Spectrum of Relict Gravitational Radiation and the Early State of the Universe. *JETP Lett.*, 30:682–685, 1979.
- [84] S. Kawamura, T. Nakamura, M. Ando, N. Seto, K. Tsubono, *et al.* The Japanese Space Gravitational Wave Antenna DECIGO. *Class.Quant.Grav.*, 23:S125–S132, 2006. doi:10.1088/0264-9381/23/8/S17.
- [85] E.S. Phinney, *et al.* NASA Mission Concept Study. 2003.

- [86] Scott Dodelson. *Modern Cosmology*. Academic Press, San Diego, Calif, edition 1 edition, March 2003.
- [87] Lev Kofman, Andrei D. Linde, Alexei A. Starobinsky. Reheating after Inflation. *Phys.Rev.Lett.*, 73:3195–3198, 1994. [arXiv:hep-th/9405187](https://arxiv.org/abs/hep-th/9405187), doi:10.1103/PhysRevLett.73.3195.
- [88] Lev Kofman, Andrei D. Linde, Alexei A. Starobinsky. Towards the Theory of Reheating after Inflation. *Phys.Rev.*, D56:3258–3295, 1997. [arXiv:hep-ph/9704452](https://arxiv.org/abs/hep-ph/9704452), doi:10.1103/PhysRevD.56.3258.
- [89] Juan Garcia-Bellido, Daniel G. Figueroa, Alfonso Sastre. A Gravitational Wave Background from Reheating after Hybrid Inflation. *Phys.Rev.*, D77:043517, 2008. [arXiv:0707.0839](https://arxiv.org/abs/0707.0839), doi:10.1103/PhysRevD.77.043517.
- [90] S.Y. Khlebnikov, I.I. Tkachev. Relic Gravitational Waves Produced after Preheating. *Phys.Rev.*, D56:653–660, 1997. [arXiv:hep-ph/9701423](https://arxiv.org/abs/hep-ph/9701423), doi:10.1103/PhysRevD.56.653.
- [91] Richard Easther, Eugene A. Lim. Stochastic Gravitational Wave Production after Inflation. *JCAP*, 0604:010, 2006. [arXiv:astro-ph/0601617](https://arxiv.org/abs/astro-ph/0601617), doi:10.1088/1475-7516/2006/04/010.
- [92] Richard Easther, Jr. Giblin, John T., Eugene A. Lim. Gravitational Wave Production at the End of Inflation. *Phys.Rev.Lett.*, 99:221301, 2007. [arXiv:astro-ph/0612294](https://arxiv.org/abs/astro-ph/0612294), doi:10.1103/PhysRevLett.99.221301.
- [93] Juan Garcia-Bellido, Daniel G. Figueroa. A Stochastic Background of Gravitational Waves from Hybrid Preheating. *Phys.Rev.Lett.*, 98:061302, 2007. [arXiv:astro-ph/0701014](https://arxiv.org/abs/astro-ph/0701014), doi:10.1103/PhysRevLett.98.061302.
- [94] Jean Francois Dufaux, Amanda Bergman, Gary N. Felder, Lev Kofman, Jean-Philippe Uzan. Theory and Numerics of Gravitational Waves from Preheating after Inflation. *Phys.Rev.*, D76:123517, 2007. [arXiv:0707.0875](https://arxiv.org/abs/0707.0875), doi:10.1103/PhysRevD.76.123517.
- [95] Jean-Francois Dufaux, Gary Felder, Lev Kofman, Olga Navros. Gravity Waves from Tachyonic Preheating after Hybrid Inflation. *JCAP*, 0903:001, 2009. [arXiv:0812.2917](https://arxiv.org/abs/0812.2917), doi:10.1088/1475-7516/2009/03/001.
- [96] Jean-Francois Dufaux, Daniel G. Figueroa, Juan Garcia-Bellido. Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating. *Phys.Rev.*, D82:083518, 2010. [arXiv:1006.0217](https://arxiv.org/abs/1006.0217), doi:10.1103/PhysRevD.82.083518.
- [97] Zhiqi Huang. The Art of Lattice and Gravity Waves from Preheating. *Phys.Rev.*, D83:123509, 2011. [arXiv:1102.0227](https://arxiv.org/abs/1102.0227), doi:10.1103/PhysRevD.83.123509.

- [98] Daniel G. Figueroa, Juan Garcia-Bellido, Arttu Rajantie. On the Transverse-Traceless Projection in Lattice Simulations of Gravitational Wave Production. *JCAP*, 1111:015, 2011. [arXiv:1110.0337](https://arxiv.org/abs/1110.0337), doi:10.1088/1475-7516/2011/11/015.
- [99] Chiara Caprini, Ruth Durrer, Thomas Konstandin, Geraldine Servant. General Properties of the Gravitational Wave Spectrum from Phase Transitions. *Phys.Rev.*, D79:083519, 2009. [arXiv:0901.1661](https://arxiv.org/abs/0901.1661), doi:10.1103/PhysRevD.79.083519.
- [100] Leonardo Leitao, Ariel Megevand, Alejandro D. Sanchez. Gravitational Waves from the Electroweak Phase Transition. *JCAP*, 1210:024, 2012. [arXiv:1205.3070](https://arxiv.org/abs/1205.3070), doi:10.1088/1475-7516/2012/10/024.
- [101] Jr. Giblin, John T., Larry R. Price, Xavier Siemens, Brian Vlcek. Gravitational Waves from Global Second Order Phase Transitions. *JCAP*, 1211:006, 2012. [arXiv:1111.4014](https://arxiv.org/abs/1111.4014), doi:10.1088/1475-7516/2012/11/006.
- [102] T.W.B. Kibble. Topology of Cosmic Domains and Strings. *J.Phys.*, A9:1387–1398, 1976. doi:10.1088/0305-4470/9/8/029.
- [103] Joey Shapiro Key, Neil J. Cornish. Characterizing the Gravitational Wave Signature from Cosmic String Cusps. *Phys.Rev.*, D79:043014, 2009. [arXiv:0812.1590](https://arxiv.org/abs/0812.1590), doi:10.1103/PhysRevD.79.043014.
- [104] K.M. Gorski, Eric Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, *et al.* HEALPix - A Framework for High Resolution Discretization, and Fast Analysis of Data Distributed on the Sphere. *Astrophys.J.*, 622:759–771, 2005. [arXiv:astro-ph/0409513](https://arxiv.org/abs/astro-ph/0409513), doi:10.1086/427976.
- [105] Alison J. Farmer, E. Sterl Phinney. The Gravitational Wave Background from Cosmological Compact Binaries. *Mon.Not.Roy.Astron.Soc.*, 346:1197, 2003. [arXiv:astro-ph/0304393](https://arxiv.org/abs/astro-ph/0304393), doi:10.1111/j.1365-2966.2003.07176.x.
- [106] Seth E. Timpano, Louis J. Rubbo, Neil J. Cornish. Characterizing the Galactic Gravitational Wave Background with LISA. *Phys.Rev.*, D73:122001, 2006. [arXiv:gr-qc/0504071](https://arxiv.org/abs/gr-qc/0504071), doi:10.1103/PhysRevD.73.122001.
- [107] Jeff Crowder, Neil Cornish. A Solution to the Galactic Foreground Problem for LISA. *Phys.Rev.*, D75:043008, 2007. [arXiv:astro-ph/0611546](https://arxiv.org/abs/astro-ph/0611546), doi:10.1103/PhysRevD.75.043008.
- [108] Gijs Nelemans, L.R. Yungelson, S.F. Portegies Zwart. Short-period AM CVn Systems as Optical, X-ray and Gravitational Wave Sources. *Mon.Not.Roy.Astron.Soc.*, 349:181, 2004. [arXiv:astro-ph/0312193](https://arxiv.org/abs/astro-ph/0312193), doi:10.1111/j.1365-2966.2004.07479.x.

- [109] Gijs Nelemans, Lev R. Yungelson, Simon F. Portegies Zwart, Frank Verbunt. Population Synthesis for Double White Dwarfs I. Close Detached Systems. *Astron. Astrophys.*, 365:491–507, 2001. [arXiv:astro-ph/0010457](https://arxiv.org/abs/astro-ph/0010457), doi:10.1051/0004-6361:20000147.
- [110] G. Nelemans, Simon F. Portegies Zwart, F. Verbunt, L.R. Yungelson. Population Synthesis for Double White Dwarfs. 2. Semi-detached Systems: AM CVn Stars. *Astron. Astrophys.*, 368:939–949, 2001. [arXiv:astro-ph/0101123](https://arxiv.org/abs/astro-ph/0101123), doi:10.1051/0004-6361:20010049.
- [111] G. Nelemans, L.R. Yungelson, Simon F. Portegies Zwart. The Gravitational Wave Signal from the Galactic Disk Population of Binaries Containing Two Compact Objects. *Astron. Astrophys.*, 375:890–898, 2001. [arXiv:astro-ph/0105221](https://arxiv.org/abs/astro-ph/0105221), doi:10.1051/0004-6361:20010683.
- [112] Jean-Francois Dufaux. Cosmological Backgrounds of Gravitational Waves and eLISA. 2012. [arXiv:1209.4024](https://arxiv.org/abs/1209.4024).
- [113] Pierre Binetruy, Alejandro Bohe, Chiara Caprini, Jean-Francois Dufaux. Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources. *JCAP*, 1206:027, 2012. [arXiv:1201.0983](https://arxiv.org/abs/1201.0983), doi:10.1088/1475-7516/2012/06/027.
- [114] N.J. Cornish. Making Maps with LISA. *Class. Quant. Grav.*, 19:1279–1283, 2002. doi:10.1088/0264-9381/19/7/306.
- [115] Neil J. Cornish. Mapping the Gravitational Wave Background. *Class. Quant. Grav.*, 18:4277–4292, 2001. [arXiv:astro-ph/0105374](https://arxiv.org/abs/astro-ph/0105374), doi:10.1088/0264-9381/18/20/307.
- [116] K.A. Arnaud, S. Babak, J. Baker, M.J. Benacquista, N.J. Cornish, *et al.* An Overview of the Second Round of the Mock LISA Data Challenges. *Class. Quant. Grav.*, 24:S551–S564, 2007. [arXiv:gr-qc/0701170](https://arxiv.org/abs/gr-qc/0701170), doi:10.1088/0264-9381/24/19/S18.
- [117] P. C Gregory. *Bayesian Logical Data Analysis for the Physical Sciences: A Comparative approach with Mathematica Support*. Cambridge University Press, Cambridge; New York, 2010.
- [118] Robert E Kass, Adrian E Raftery. Bayes factors. *Journal of the American Statistical Association*, 90(430):773–795, 1995.
- [119] P.C. Peters, J. Mathews. Gravitational Radiation from Point Masses in a Keplerian Orbit. *Phys. Rev.*, 131:435–439, 1963. doi:10.1103/PhysRev.131.435.

- [120] Tyson B. Littenberg, Neil J. Cornish. A Bayesian Approach to the Detection Problem in Gravitational Wave Astronomy. *Phys.Rev.*, D80:063007, 2009. [arXiv:0902.0368](https://arxiv.org/abs/0902.0368), doi:10.1103/PhysRevD.80.063007.
- [121] Neil Cornish, Laura Sampson, Nicolas Yunes, Frans Pretorius. Gravitational Wave Tests of General Relativity with the Parameterized Post-Einsteinian Framework. *Phys.Rev.*, D84:062003, 2011. [arXiv:1105.2088](https://arxiv.org/abs/1105.2088), doi:10.1103/PhysRevD.84.062003.
- [122] Robert H Swendsen, Jian-Sheng Wang. Replica Monte Carlo Simulation of Spin Glasses. *Physical Review Letters*, 57(21):2607–2609, 1986.
- [123] Andrew Gelman, Xiao-Li Meng. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling. *Statistical Science*, pages 163–185, 1998.
- [124] Nicolas Lartillot, Hervé Philippe. Computing Bayes Factors Using Thermodynamic Integration. *Systematic Biology*, 55(2):195–207, 2006.
- [125] Paul M Goggans, Ying Chi. Using Thermodynamic Integration to Calculate the Posterior Probability in Bayesian Model Selection Problems. *AIP Conference Proceedings*, Volume 707, pages 59–66. IOP INSTITUTE OF PHYSICS PUBLISHING LTD, 2004.
- [126] Kaisey S. Mandel, W. Michael Wood-Vasey, Andrew S. Friedman, Robert P. Kirshner. Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared. *Astrophys.J.*, 704:629–651, 2009. [arXiv:0908.0536](https://arxiv.org/abs/0908.0536), doi:10.1088/0004-637X/704/1/629.
- [127] Thomas J. Loredo. Bayesian Astrostatistics: a Backward Look to the Future. 2012. [arXiv:1208.3036](https://arxiv.org/abs/1208.3036).
- [128] Kunlaya Soiaporn, David Chernoff, Thomas Loredo, David Ruppert, Ira Wasserman. Guilt by Association: Finding Cosmic Ray Sources Using Hierarchical Bayesian Clustering. 2012. [arXiv:1206.3540](https://arxiv.org/abs/1206.3540).
- [129] C. Messenger, J. Veitch. Avoiding Selection Bias : A Unified Treatment of Thresholded Data. 2012. [arXiv:1206.3461](https://arxiv.org/abs/1206.3461).
- [130] Bernard F. Schutz. Networks of Gravitational Wave Detectors and Three Figures of Merit. *Class.Quant.Grav.*, 28:125023, 2011. [arXiv:1102.5421](https://arxiv.org/abs/1102.5421), doi:10.1088/0264-9381/28/12/125023.
- [131] Samaya Nissanke, Michele Vallisneri, Gijs Nelemans, Thomas A. Prince. Gravitational-wave Emission from Compact Galactic Binaries. *Astrophys.J.*, 758:131, 2012. [arXiv:1201.4613](https://arxiv.org/abs/1201.4613).

- [132] Tyson B. Littenberg. A Detection Pipeline for Galactic Binaries in LISA Data. *Phys.Rev.*, D84:063009, 2011. [arXiv:1106.6355](https://arxiv.org/abs/1106.6355), doi:10.1103/PhysRevD.84.063009.
- [133] I. J. Good. *The Estimation of Probabilities: An Essay on Modern Bayesian Methods*. MIT Press, Cambridge, Mass., 1965.
- [134] D. V. Lindley, A. F. M. Smith. Bayes Estimates for the Linear Model. *Journal of the Royal Statistical Society. Series B (Methodological)*, 34(1):1–41, 1972. doi:10.2307/2985048.
- [135] C. N. Morris, S. L. Normand. Hierarchical Models for Combining Information and for Meta-Analysis. A. P. Dawid J. M. Bernardo, J. O. Berger, A. F. M. Smith, editors, *Bayesian Statistics 4*, pages 321–344. Oxford University Press, Oxford, 1992.
- [136] D. J. C. MacKay. Comparison of Approximate Methods for Handling Hyperparameters. *Neural Computation*, 11(5):1035–1068, 1999.
- [137] George Casella. An Introduction to Empirical Bayes Data Analysis. *The American Statistician*, 39(1):83–87, 1985. doi:10.2307/2682801.
- [138] Thomas A. Carlin, Bradley P.; Louis. *Bayes and Empirical Bayes Methods for Data Analysis*. Chapman & Hall/CRC., edition second, 2000.
- [139] Tyson B. Littenberg, Neil J. Cornish. Separating Gravitational Wave Signals from Instrument Artifacts. *Phys.Rev.*, D82:103007, 2010. [arXiv:1008.1577](https://arxiv.org/abs/1008.1577), doi:10.1103/PhysRevD.82.103007.
- [140] Peter J. Green, Nils Lid Hjort, Sylvia Richardson. *Highly Structured Stochastic Systems*. Oxford University Press, July 2003.
- [141] Neil J. Cornish, Shane L. Larson. LISA Data Analysis: Source Identification and Subtraction. *Phys.Rev.*, D67:103001, 2003. [arXiv:astro-ph/0301548](https://arxiv.org/abs/astro-ph/0301548), doi:10.1103/PhysRevD.67.103001.
- [142] Alberto Vecchio, Elizabeth D.L. Wickham. The Effect of the LISA Response Function on Observations of Monochromatic Sources. *Phys.Rev.*, D70:082002, 2004. [arXiv:gr-qc/0406039](https://arxiv.org/abs/gr-qc/0406039), doi:10.1103/PhysRevD.70.082002.
- [143] Arkadiusz Błaut, Stanislav Babak, Andrzej Królak. Mock LISA Data Challenge for the Galactic White Dwarf Binaries. *Phys. Rev. D*, 81:063008, Mar 2010. doi:10.1103/PhysRevD.81.063008.
- [144] Bernard F. Schutz. Determining the Hubble Constant from Gravitational Wave Observations. *Nature*, 323:310–311, 1986. doi:10.1038/323310a0.

- [145] Ryuichi Takahashi, Naoki Seto. Parameter Estimation for Galactic Binaries by LISA. *Astrophys.J.*, 575:1030–1036, 2002. [arXiv:astro-ph/0204487](https://arxiv.org/abs/astro-ph/0204487), doi:10.1086/341483.
- [146] Alexander Stroeer, Gijs Nelemans. The Influence of Short Term Variations in AM CVn Systems on LISA Measurements. *Mon.Not.Roy.Astron.Soc.Lett.*, 2009. [arXiv:0909.1796](https://arxiv.org/abs/0909.1796).
- [147] B. Willems, C.J. Deloye, V. Kalogera. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries. *Astrophys.J.*, 713:239–256, 2010. [arXiv:0904.1953](https://arxiv.org/abs/0904.1953), doi:10.1088/0004-637X/713/1/239.
- [148] Paul J. McMillan, James J. Binney. The Uncertainty in Galactic Parameters. 2009. [arXiv:0907.4685](https://arxiv.org/abs/0907.4685).
- [149] Mario Juric, *et al.* The Milky Way Tomography with SDSS. 1. Stellar Number Density Distribution. *Astrophys.J.*, 673:864–914, 2008. [arXiv:astro-ph/0510520](https://arxiv.org/abs/astro-ph/0510520), doi:10.1086/523619.
- [150] Shourov Chatterji, Albert Lazzarini, Leo Stein, Patrick J. Sutton, Antony Searle, *et al.* Coherent Network Analysis Technique for Discriminating Gravitational-wave Bursts from Instrumental Noise. *Phys.Rev.*, D74:082005, 2006. [arXiv:gr-qc/0605002](https://arxiv.org/abs/gr-qc/0605002), doi:10.1103/PhysRevD.74.082005.

APPENDIX A

NOISE CROSS-SPECTRA

$$\begin{aligned}
AA_p^* = & \frac{4}{9} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \cos \left(\frac{f}{f_*} \right) \left[4(S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p) - 2(S_{23}^p + S_{32}^p) \right] \right. \\
& \left. + 5(S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p) + 2(S_{23}^p + S_{32}^p) \right\} \tag{A.1}
\end{aligned}$$

$$\begin{aligned}
AA_a^* = & \frac{16}{9} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \cos \left(\frac{f}{f_*} \right) \left[4(S_{12}^a + S_{13}^a + S_{31}^a + S_{21}^a) - 2(S_{23}^a + S_{32}^a) \right] \right. \\
& + \cos(2u) \left[\frac{3}{2}(S_{12}^a + S_{13}^a + S_{23}^a + S_{32}^a) + 2(S_{31}^a + S_{21}^a) \right] \\
& \left. + \frac{9}{2}(S_{12}^a + S_{13}^a) + 3(S_{31}^a + S_{21}^a) + \frac{3}{2}(S_{23}^a + S_{32}^a) \right\} \tag{A.2}
\end{aligned}$$

$$\begin{aligned}
EE_p^* = & \frac{4}{3} \sin^2 \left(\frac{f}{f_*} \right) \left\{ S_{21}^p + S_{12}^p + S_{13}^p + S_{31}^p \right. \\
& \left. + (S_{23}^p + S_{32}^p)(2 + 2 \cos \left(\frac{f}{f_*} \right)) \right\} \tag{A.3}
\end{aligned}$$

$$\begin{aligned}
EE_a^* = & \frac{16}{3} \sin^2 \left(\frac{f}{f_*} \right) \left\{ S_{23}^a + S_{32}^a + S_{21}^a + S_{31}^a + 2 \cos \left(\frac{f}{f_*} \right) (S_{23}^a + S_{32}^a) \right. \\
& \left. + \cos^2 \left(\frac{f}{f_*} \right) (S_{23}^a + S_{32}^a + S_{12}^a + S_{13}^a) \right\} \tag{A.4}
\end{aligned}$$

$$\begin{aligned}
TT_p^* &= \frac{4}{9} \sin^2 \left(\frac{f}{f_*} \right) \left(2 - 2 \cos \left(\frac{f}{f_*} \right) \right) \\
&\quad \left(S_{13}^p + S_{32}^p + S_{21}^p + S_{12}^p + S_{31}^p + S_{23}^p \right)
\end{aligned} \tag{A.5}$$

$$\begin{aligned}
TT_a^* &= \frac{16}{9} \sin^2 \left(\frac{f}{f_*} \right) \left(1 - 2 \cos \left(\frac{f}{f_*} \right) \right. \\
&\quad \left. + \cos^2 \left(\frac{f}{f_*} \right) \right) \left(S_{12}^a + S_{13}^a + S_{31}^a + S_{32}^a + S_{23}^a + S_{21}^a \right)
\end{aligned} \tag{A.6}$$

$$AE_p^* = -\frac{4}{3\sqrt{3}} \sin^2 \left(\frac{f}{f_*} \right) \left(2 \cos \left(\frac{f}{f_*} \right) + 1 \right) \left(S_{13}^p - S_{12}^p + S_{31}^p - S_{21}^p \right) \tag{A.7}$$

$$\begin{aligned}
AE_a^* &= \frac{16}{3\sqrt{3}} \sin^2 \left(\frac{f}{f_*} \right) \left\{ 2 \cos \left(\frac{f}{f_*} \right) \left(S_{13}^a - S_{12}^a + S_{31}^a - S_{21}^a \right) \right. \\
&\quad \left. + \cos^2 \left(\frac{f}{f_*} \right) \left(S_{13}^a - S_{12}^a + S_{23}^a - S_{32}^a \right) + S_{31}^a - S_{21}^a - S_{23}^a + S_{32}^a \right\}
\end{aligned} \tag{A.8}$$

$$\begin{aligned}
AT_p^* &= \frac{4}{9} \sin^2 \left(\frac{f}{f_*} \right) \left(1 - \cos \left(\frac{f}{f_*} \right) \right) \\
&\quad \left(S_{12}^p + S_{13}^p + S_{21}^p + S_{31}^p - 2(S_{32}^p + S_{23}^p) \right)
\end{aligned} \tag{A.9}$$

$$\begin{aligned}
AT_a^* = & \frac{16}{9} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \frac{3}{2} \left(S_{12}^a + S_{13}^a - S_{23}^a - S_{32}^a \right) \right. \\
& + \cos \left(\frac{f}{f_*} \right) \left[2 \left(S_{23}^a + S_{32}^a \right) - \left(S_{12}^a + S_{13}^a \right) - \left(S_{31}^a + S_{21}^a \right) \right] \\
& \left. + \cos(2u) \left[\left(S_{31}^a + S_{21}^a \right) - \frac{3}{2} \left(S_{12}^a + S_{13}^a \right) - \frac{3}{2} \left(S_{23}^a + S_{32}^a \right) \right] \right\} \quad (\text{A.10})
\end{aligned}$$

$$ET_p^* = \frac{4}{3\sqrt{3}} \sin^2 \left(\frac{f}{f_*} \right) \left(\cos \left(\frac{f}{f_*} \right) - 1 \right) \left(S_{21}^p - S_{31}^p + S_{12}^p - S_{13}^p \right) \quad (\text{A.11})$$

$$\begin{aligned}
ET_a^* = & \frac{16}{3\sqrt{3}} \sin^2 \left(\frac{f}{f_*} \right) \left\{ \cos^2 \left(\frac{f}{f_*} \right) \left(S_{32}^a - S_{23}^a + S_{12}^a - S_{13}^a \right) \right. \\
& + \cos \left(\frac{f}{f_*} \right) \left(S_{31}^a - S_{21}^a + S_{13}^a - S_{12}^a \right) \\
& \left. + S_{23}^a - S_{32}^a + S_{21}^a - S_{31}^a \right\} \quad (\text{A.12})
\end{aligned}$$