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ABSTRACT

The detection of a stochastic background of gravitational waves could significantly
impact our understanding of the physical processes that shaped the early Universe.
The challenge lies in separating the cosmological signal from other stochastic processes
such as instrument noise and astrophysical foregrounds. One approach is to build two
or more detectors and cross correlate their output, thereby enhancing the common
gravitational wave signal relative to the uncorrelated instrument noise. When only
one detector is available, as will likely be the case with space based gravitational wave
astronomy, alternative analysis techniques must be developed. Here we develop an
end to end Bayesian analysis technique for detecting a stochastic background with
a gigameter Laser Interferometer Space Antenna (LISA) operating with both 6- and
4-links. Our technique requires a detailed understanding of the instrument noise
and astrophysical foregrounds. In the millihertz frequency band, the predominate
foreground signal will be unresolved white dwarf binaries in the galaxy. We consider
how the information from multiple detections can be used to constrain astrophysical
population models, and present a method for constraining population models using
a Hierarchical Bayesian modeling approach which simultaneously infers the source
parameters and population model and provides the joint probability distributions for
both. We find that a mission that is able to resolve ∼ 5000 of the shortest period bi-
naries will be able to constrain the population model parameters, including the chirp
mass distribution and a characteristic galaxy disk radius to within a few percent.
This compares favorably to existing bounds, where electromagnetic observations of
stars in the galaxy constrain disk radii to within 20%. Having constrained the galaxy
shape parameters, we obtain posterior distribution functions for the instrument noise
parameters, the galaxy level and modulation parameters, and the stochastic back-
ground energy density. We find that we are able to detect a scale-invariant stochastic
background with energy density as low as Ωgw = 2× 10−13 for a 6-link interferometer
and Ωgw = 5× 10−13 for a 4-link interferometer with one year of data.
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CHAPTER 1

INTRODUCTION

Einstein’s theory of general relativity, published in 1915 [1], is currently our best

and most complete theory of the gravitational interaction. General relativity accounts

for several problems that arose in Newtonian gravity, including the perihelion preces-

sion of Mercury [2, 3]. General relativity also correctly predicts the bending of light

by massive objects [3], which was experimentally verified in 1919 [4], and predicts the

existence of gravitational waves [5, 6, 7]. To date, gravitational waves have not been

directly detected.

Hulse and Taylor discovered the binary pulsar, PSR1913+16, in 1974 [8] which led

to indirect evidence for gravitational wave radiation. General relativity predicts that

the orbit of a binary system will gradually decay due to energy loss from departing

gravitational waves. Hulse and Taylor’s measurements of the binary pulsar show that

the decay of the orbit agrees exquisitely with Einstein’s predictions [9]. They were

awarded the Nobel Prize in 1993 for their work.

The first direct detections of gravitational waves are expected to be made within

a few years by either the Laser Interferometer Gravitational Wave Observatory

(LIGO) [10, 11] or by a collaboration of pulsar timing arrays (PTAs) known as the

International Pulsar Timing Array (IPTA) [12]. The members of IPTA are the Euro-

pean Pulsar Timing Array (EPTA) [13], the North American Nanohertz Observatory

for Gravitational Waves (NANOGrav) [14], and the Parkes Pulsar Timing Array

(PPTA) [15]. Later detections could be made by space-based gravitational wave

detectors such as the European mission, the New Gravitational Wave Observatory

(NGO), which is nicknamed evolved LISA (eLISA) [16] since it was derived from



2

the joint NASA-ESA mission, the Laser Interferometer Space Antenna (LISA) [17].

We expect these missions to detect gravitational waves from binary systems, merg-

ers of compact objects, and burst sources such as supernovae, but one of the most

exciting potential discoveries for gravitational wave observatories is the detection of

a stochastic gravitational wave background. Just as studies of the cosmic microwave

background (CMB) have revolutionized our understanding of cosmology, the detection

of a gravitational wave background would provide unique insight into the processes

that shaped the early Universe.

Most of our current knowledge about the early Universe comes from measurements

of the CMB. Before the detection of the CMB, we were limited in our ability to test

and constrain models of the early history of the Universe. The detection of the CMB

opened the field of cosmology as a full fledged observational science [18]. Using data

from first the Cosmic Background Explorer (COBE) [19], then the Wilkinson Mi-

crowave Anisotropy Probe (WMAP) [20], and most recently the Planck mission [21],

we are able to test, constrain, and rule out various theories of the origins of our

Universe. Most notably, the CMB observations provided evidence for the Big Bang

and ruled out steady state models of the Universe. Recently, the Background Imag-

ing of Cosmic Extragalactic Polarization (BICEP2) experiment reported detection

of B-mode polarization in the CMB and attributed it to primordial gravitational

waves [22, 23]. This would be the first direct measurements supporting inflation and

primordial gravitational waves, but others have put forth an alternative explanation

and find the BICEP2 measurements to be consistent with dust polarization [24, 25].

Further measurements are needed to confirm the results.

Despite the success of CMB science, there is a limit to how far back we can look

in time with electromagnetic radiation. At what is known as the surface of last

scattering, the Universe was so dense and energetic, that photons were not able to
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propagate freely. When atoms formed, light and matter decoupled and the Universe

became transparent. When we observe the CMB, we are observing the Universe at

the time of this decoupling, approximately 400,000 years after the Big Bang.

Inflation is one of the most successful models of the early Universe. It is hypothe-

sized to have occurred within a fraction of the first second of the Universe, long before

the time of the surface of last scattering. Inflation was proposed by Alan Guth in

1981 [26] as a possible solution to the horizon and flatness problems in cosmology.

Inflation suggests that the Universe underwent a period of exponential expansion

that can account for the large scale smoothness we observe today. Because inflation

happened so early in the history of the Universe, we only indirectly observe its affects

in the CMB. We are currently unable to directly probe back in time to the era of

inflation.

However, Big Bang and inflationary models also predict residual gravitational

wave radiation. Gravitational waves couple very weakly to matter and we do not

expect that they will be appreciably dampened or scattered as they propagate across

the Universe. We could potentially detect gravitational waves from the inflationary

epoch and see back in time farther than we’ve ever been able to see, opening a new

window to the early Universe [27, 28, 29, 30, 31, 32].

Primordial gravitational waves from the early Universe may be detectable by cur-

rent and future gravitational wave observatories. LIGO [33] and PTAs [34] have al-

ready set bounds on the energy density in a stochastic gravitational wave background

in their respective wavebands. In this dissertation we show that complementary

bounds can be set in the millihertz waveband with a space-based interferometer.

The challenge in detecting a primordial stochastic gravitational wave background

is that we expect other stochastic signals to compete with and possibly overwhelm

any primordial signals. Even if there is a primordial signal of sufficient strength to be
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detected, it must be modeled and distinguished from the other stochastic signals. In

this dissertation, we develop several techniques for modeling and separating the vari-

ous stochastic signals that could appear in a space-based gravitational wave detector’s

data.

There are two types of stochastic signals that we must contend with: instru-

ment noise and astrophysical foregrounds. When multiple independent detectors are

available, as is the case with the ground based interferometers, the signal from one

interferometer can be used as a (noise corrupted) template for a second interfer-

ometer. The common gravitational wave signal will combine coherently, while the

contributions from instrument noise will average to zero [35, 36, 37]. Terrestrial

detectors such as LIGO and PTAs use this technique to separate stochastic signals

from stochastic instrument noise [38, 36, 39]. The LSC for example, has detectors in

Italy; Hanford, Washington; and Livingston, Louisiana. The noise at one site, will

be uncorrelated from the noises at the other two sites. Likewise, PTAs can correlate

data from multiple pulsars.

With prospects for only one space-based detector in the foreseeable future, we

will not be able to cross correlate between detectors. For space-based gravitational

wave interferometry, we need to develop other techniques for separating instrument

noise and stochastic signals. In this dissertation, we develop a technique that can

successfully distinguish between instrument noise and stochastic signals with only one

space-based detector [40, 41]. The key to our technique is that the noise and stochastic

signals manifest differently in the detector. The transfer functions have different

spectral shapes, which gives sufficient leverage to separate the various components.

The original measurement of the CMB by Penzias and Wilson did not use cross

correlation either. Penzias and Wilson made their measurements with the Horn an-

tenna in Holmdel, New Jersey. They were actually not even looking for the CMB, but
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were interested in detecting radio waves reflected from echo balloon satellites. These

faint signals required a very sensitive instrument.

The Horn antenna, designed to detect these faint radio signals, was cooled to 4

degrees Kelvin. Penzias and Wilson accounted for all known noise sources includ-

ing radar and radio broadcasting interference. However, their measurements still

contained an extra white noise. They dutifully cleaned the instrument by removing

some nesting pigeons and their droppings, but the extra signal remained. It was

isotropic and present day and night. Finally, because they were confident that they

understood the noise in their detector, Penzias and Wilson were convinced that the

signal was not an instrument artifact. Because of its isotropy, they deduced that it

did not come from the Earth, solar system, or even our own galaxy.

Dicke, Peebles, and Wilkinson (DPW) at Princeton University were looking for

the CMB at the same time Penzias and Wilson made their discovery. Penzias and

Wilson were alerted to the work by Dicke, Peebles, and Wilkinson and contacted

them with their results. DPW realized they had been scooped, but the two groups

released publications together in 1965 with their findings and interpretation [42, 43].

The relevant, key point to our study is that Penzias and Wilson understood their

instrument noise well enough that they were able to confidently say that the extra

signal was not instrument noise. We follow a similar approach in this dissertation and

show that a detailed understanding of the instrument noise allows us to distinguish

it from stochastic signals.

This approach is more difficult in ground based interferometry. The LSC deals

with terrestial noise sources that require more complex noise models. In space, we

expect the noise to be linear and more easily modeled. With an adequate noise model,

spectral templates provide a very powerful method for seperating the components that

allows us to detect stochastic signals to levels that put them below the instrument
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noise. While it is in principle possible for the various contributions to the instrument

noise to have spectra that mimic the geometrical transfer funtions of the signal, or

vice-versa, in practice the signal and noise transfer functions are so complex and

distinct that this situation should never arise.

Not only do we need to account for instrument noise, but there will likely be

astrophysical stochastic foregrounds that may mask an underlying primordial back-

ground. The sources that we need to be aware of depend on the frequency band of

interest. In the very low frequency PTA band, supermassive black hole binaries are

expected to overwhelm any primordial stochastic signal [44, 45, 46, 47, 34], and in the

LIGO band, neutron star binaries could be a limiting factor [48, 49, 38]. Proposed

spaced based gravitational wave detectors will operate in the milliHertz frequency

range. Of the three frequency regimes, the most certain foreground source will be

white dwarf binaries in the Milky Way in the milliHertz band [50, 51, 52]. Several

bright white dwarf binaries have already been optically detected. The brightest of

these would be easily detectable with proposed space-based detectors [53, 54]. In

total, several thousands of white dwarf binaries will be individually resolvable [55].

The rest will form a confusion foreground that could overwhelm any extragalactic

stochastic signals if not properly modeled. It is also possible that extreme-mass-ratio

inspirals (EMRIs) [56] of compact objects or binary black hole systems [57] could

form stochastic foregrounds in the milliHertz band.

There is an old joke in astrophysics that with one source you have a discovery,

and with two you have a population. This joke will be all too true in gravitational

wave astronomy as we are seeking our first discovery and subsequently will have only

a very small sample of sources. However, as we discover more and more sources it

becomes possible to constrain astrophysical population models.



7

Inferring the underlying population model, and the attendant astrophysical pro-

cesses responsible for the observed source distribution, from the time series of a grav-

itational wave detector is the central science challenge for a future space mission. It

folds together the difficult task of identifying and disentangling the multiple over-

lapping signals that are in the data, inferring the individual source parameters, and

reconstructing the true population distributions from incomplete and imperfect infor-

mation. Until recently, studies of milli-Hertz gravitational wave science have either

focused on making predictions about the source populations, or have looked at de-

tection and parameter estimation for individual sources. These types of studies have

featured heavily in the science assessment of alternative space-based gravitational

wave mission concepts, where metrics such as detection numbers and histograms of

the parameter resolution capabilities for fiducial population models were used to rate

science performance (see eg. Ref. [58]). These are certainly useful metrics, but they

only tell part of the story. A more powerful and informative measure of the science

capabilities is the ability to discriminate between alternative population models.

The past few years have seen the first studies of the astrophysical model selection

problem in the context of space-based gravitational astronomy. Gair and collabo-

rators [59, 60, 61, 62] have looked at how EMRI formation scenarios and massive

black hole binary assembly scenarios can be constrained by GW observations using

Bayesian model selection with a Poisson likelihood function. Plowman and collabo-

rators [63, 64] have performed similar studies of black hole population models using

a frequentist approach based on error kernels and the Kolmogorov-Smirnov test. Re-

lated work on astrophysical model selection for ground based detectors can be found

in Refs. [65, 66].

In this dissertation, we show how observations of individual white dwarf binaries

can be used to simultaneously infer the parameters of individual binaries and to
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model the population of binaries throughout the galaxy. The constraints placed on

the shape of the galaxy from the bright binaries can then be used to model the leftover,

confusion foreground of unresolved binaries. We fold the model of the galaxy into our

analysis of stochastic signals and show that we are able to detect a relatively very

weak, underlying stochastic background, even in the presence of the strong galactic

foreground.

The remainder of the dissertation is organized as follows. In Chapter 2, we discuss

two current proposals for space-based gravitational wave detectors, LISA and eLISA.

We derive the detector noise functions and the signal transfer functions. We also

discuss the sensitivity for the missions. In Chapter 3, we discuss various sources and

formation mechanisms for gravitational waves in the early Universe. We show how to

model a stochastic gravitational wave background and show how one manifests in a

detector. We derive expressions used for simulating stochastic background data. In

Chapter 4, we discuss astrophysical foregrounds in the millihertz frequency band. We

show how to model individual white dwarf binaries, the galaxy population distribu-

tion, and a confusion foreground of sources. We also discuss how we simulated white

dwarf data for our studies. Chapter 5 gives a brief primer on Bayesian data analysis

and details the specific techniques we use. In particular we develop a Hierarchical

Bayesian algorithm for simultaneously doing parameter estimation of white dwarf

binaries and population model studies. In Chapter 6, we present our results and

show that we are able to detect a stochastic gravitational wave background that is

much weaker than the instrument noise or galactic foreground. We discuss these

results and mention future lines of work in Chapter 7.
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CHAPTER 2

SPACE-BASED GRAVITATIONAL WAVE DETECTORS

The only space-based mission currently under active development is the Euro-

pean Space Agency (ESA) mission, evolved LISA (eLISA), which is derived from the

NASA-ESA mission, the Laser Interferometer Space Antenna (LISA). The first NASA

white paper on LISA was published in 1998 [67] and research on the mission progressed

over the next 15 years [17]. After the James Webb Space Telescope [68] took most of

the funding at NASA, the original LISA partnership was dissolved. However, ESA

began development of eLISA, which has now moved into mission phase. Since the

missions are so similar, we present results for both types of instruments throughout

this dissertation. The basic detector theory presented here also applies to any other

space-based interferometer.

The LISA mission concept is a constellation composed of three satellites in an

approximately equilateral triangle configuration (Fig. 2.1). Laser beams are trans-

mitted between each pair of satellites, and interferometry signals are formed using

these beams. Each of the three satellites has two proof masses, one for each of the

two incoming laser beams. Laser beams are transmitted in both directions between

adjacent satellite pairs. This gives six laser links between the satellites and we refer

to LISA as a 6-link configuration. Gravitational waves are detected as variations in

the light travel time, or equivalently, the distance, between the proof masses along

each arm of the interferometer.

The eLISA mission also has 3 satellites, but there are active laser links along only

two arms, making eLISA a 4-link mission. This, along with lower mass satellites

and drift away orbits, creates a savings in mission cost, making eLISA a much more
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Figure 2.1: Schematic of the proposed LISA satellites. Each of the three satellites
has two proof masses, shown as boxes.

practical mission financially. Additionally, eLISA will have shorter armlengths, which

will shift its sensitivity curve to higher frequencies.

The derivations and equations below are correct for both a LISA mission and an

eLISA mission. We need only plugin in the appropriate arm length and nominal noise

levels to switch between the missions. Much of this work was done in support of the

LISA mission, and we use the values appropriate for LISA in our analysis. LISA,

being a 6-link mission has the benefit of redundancy. If one link were to fail, LISA

could still operate as a 4-link mission like eLISA. As one would expect, the extra

links also make LISA a more sensitive instrument. We do analysis for both 6-link and

4-link LISA configurations to show the effectiveness of the extra arm link in detecting

a stochastic gravitational wave background.
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These differences in arm length and noise levels affect the sensitivity of the two

missions and the number of sources that can be detected. The two missions have

different peak frequencies, with eLISA’s being five times higher than LISA’s. The

shift in frequency will slightly affect which sources are available to each misssion as

well. For example, both missions will detect at least some of the galactic white dwarf

binaries in our galaxy. However, most of these binaries will be at lower frequency,

and eLISA will miss out on these lower frequency sources.

With only a single detector planned for the foreseeable future, the key to detecting

a stochastic background will be a detailed understanding of the instrument noise and

instrument response to gravitational wave signals. Luckily, in space-based interfer-

ometry, the noise is more manageable than for a terrestial detector like LIGO. We can

reasonably expect through a combination of preflight testing, on-orbit commissioning

studies, and theoretical modeling to have a solid understanding of the instrument

noise. We rely on knowing the spectral shape of the noise and that it is different than

any expected stochastic signals. While the instrument noise spectra could in principle

conspire to mimic the geometrical transfer functions of the signal, or vice-versa, this

is unlikely to occur in practice as the signal and noise models have very distinct and

complicated transfer functions. In the rest of this chapter we develop the formalism

for a LISA detector and derive the instrument noise and detector response functions.

2.1 Noise

Noise enters a LISA measurement when the proof masses move in response to local

disturbances, and in the process of measuring the phase of the laser light. The various

LISA noise sources are discussed in several references [17, 69, 70]. As is commonly

done, we group all the noise sources into two categories, position and acceleration.
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Each proof mass will have a position and an acceleration noise associated with it,

making a total of six position and six acceleration noise levels for a 6-link mission, or

four of each for a 4-link mission.

We start by writing down the phase output Φij(t), for the link connecting space-

craft i and j:

Φij(t) = Ci(t− Lij)− Cj(t) + ψij(t) + npij − x̂ij · (~naij(t)− ~naji(t− Lij)) (2.1)

Here the Ci are the laser phase noises, ψij is the gravitational wave strain, and npij

and ~naij denote the position and acceleration noise. A Michelson signal can be formed

at any of the three vertices by combining the phase at that detector with the time

delayed signal from the two detectors at the ends of the two adjacent arms. For

example, if we label the spacecraft 1, 2, and 3, the Michelson signal at spacecraft 1

is given by:

M1(t) = Φ12(t− L12) + Φ21(t)− Φ13(t− L13)− Φ31(t). (2.2)

The laser phase noise would easily overwhelm any gravitational wave signals if

left unchecked. However, the phase noise is canceled using clever combinations of the

three Michaelson interferometry channels. This technique, developed by Armstrong,

Estabrook, and Tinto, is known as Time Delay Interferometry (TDI) [71, 72].

Fig. 2.2, adapted from Ref. [73], shows how the laser phase noise is canceled. The

key is to combine two time delayed signals at each vertex such that the time delays

are equal for each signal. Eq. 2.1 shows the two laser phase terms that need to be

canceled. Eq. 2.2 shows how the terms are canceled in the equal arm case. Since

all the Lij are equal, the same phase noise terms enter into the Φ21(t) and Φ31(t)
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Figure 2.2: Depiction of light travel times for two signals that can be combined to
create a TDI channel. For the general case of an unequal arm interferometer, the
delay corresponds to the light travel time to go up and down each of two adjacent
arms.

terms, but with different signs. The same is true of the time delayed terms in Eq. 2.2.

The unequal arm case is only slightly trickier. Each beam must travel down each

of the adjacent arms such that the light travel time is equal for the two beams. For

simplicity, we show here the equal arm case, but comment later on how to adapt some

of our results to the unequal arm case.

The TDI channels which cancel laser phase noise for an equal arm LISA (Lij =

L = 5 · 106 km) are formed by subtracting a time delayed Michelson signal as follows:

X(t) = M1(t)−M1(t− 2L). (2.3)
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The three TDI channels are commonly referred to as X, Y , and Z corresponding to

the signals extracted from spacecrafts 1, 2, and 3 respectively. The Y and Z channels

are given by permuting indices in the X channel expression. Moving to the frequency

domain, the signal at vertex 1 can be written as

X(f) = 2i sin

(
f

f∗

)
ef/f∗

[
ef/f∗(np13 − n

p
12) + np31 − n

p
21

]
+4i sin

(
2f

f∗

)
e2f/f∗

[
(na12 + na13)− (na21 + na31) cos

(
f

f∗

)]
. (2.4)

Here f/f∗ = c/(2πL), npij is the position noise for the link between spacecraft i and

j, and naij is the acceleration noise level.

We form cross spectral densities between TDI channel pairs. For the X-channel,

we get

〈XX∗p 〉 = 4 sin2

(
f

f∗

)
(S p

12 + S p
21 + S p

13 + S p
31 ) (2.5)

and

〈XX∗a〉 = 16 sin2

(
f

f∗

)(
S a
12 + S a

13 + (S a
21 + S a

31 ) cos2

(
f

f∗

))
(2.6)

where Sij(f) = 〈nij(f)n∗ij(f)〉. In forming the spectral density, we separated out

the position and acceleration noise contributions of Eq. 2.4 into 〈XX∗p 〉 and 〈XX∗a〉

respectively. The gravitational wave strain has disappeared from our equations as it

is assumed to be uncorrelated with the noise and will have an expectation value of

zero when multiplied by anything other than itself.

The six cross spectral densities that can be formed for a 6-link mission, or the single

cross spectra for a 4-link mission are our model templates for the noise. The model

parameters are the twelve (6-link) or eight (4-link) noise spectral density levels, Sij,

which we assume fully describe the instrument noise. In reality, it may be necessary
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to include additional parameters in the noise model to account for uncertainties in

the spectral shape of the individual noise spectra. However, if the a priori known

distributions on these additional parameters are narrowly peaked, there will be little

impact on our ability to detect a stochastic background signal.

Alternative combinations of the phase measurements can be used to derive noise

orthogonal TDI variables [74]. We use a different set of TDI variables formed from

combinations of the X, Y , and Z channels:

A =
1

3

(
2X − Y − Z

)
E =

1√
3

(
Z − Y

)
T =

1

3

(
X + Y + Z

)
. (2.7)

We calculate the six cross-spectral densities for these channels in the appendix. As an

example, we quote here the position and acceleration noise contributions to 〈AA∗〉:

〈
AA∗p

〉
=

4

9
sin2

(
f

f∗

){
cos

(
f

f∗

)[
4(Sp21 + Sp12 + Sp13 + Sp31)− 2(Sp23 + Sp32)

]
+5(Sp21 + Sp12 + Sp13 + Sp31) + 2(Sp23 + Sp32)

}
(2.8)

and

〈AA∗a〉 =
16

9
sin2

(
f

f∗

){
(cos

(
f

f∗

)[
4(Sa12 + Sa13 + Sa31 + Sa21)− 2(Sa23 + Sa32)

]
+ cos

(
f

f∗

)[
3

2
(Sa12 + Sa13 + Sa23 + Sa32) + 2(Sa31 + Sa21)

]
+

9

2
(Sa12 + Sa13) + 3(Sa31 + Sa21) +

3

2
(Sa23 + Sa32)

}
. (2.9)

.
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Models for the TDI cross-spectra have previously been considered in the context

of LISA instrument noise determination [75], and the insensitivity of certain TDI

variables to gravitational wave signals have been put forward as a technique for

discriminating between a stochastic background and instrument noise [71, 72, 75].

Our approach extends the noise characterization study of Sylvestre and Tinto [75]

to include the signal cross-spectra, and improves upon the simple estimator used by

Hogan and Bender [76] by using an optimal combination of all six cross-spectra. Our

approach is able to detect stochastic signals buried well below the instrument noise.

For this study we adopted the model used for the Mock LISA Data Challenges

(MLDC) [77]. The position noise affecting each proof mass is assumed to be white,

with a nominal spectral density of

Sp(f) = 4× 10−42 Hz−1. (2.10)

The acceleration noise is taken as white above 0.1 mHz, with a red component be-

low this frequency. Integrated to give an effective position noise, the proof mass

disturbances on each test mass have a nominal spectral density of

Sa(f) = 9× 10−50

(
1 +

(
10−4 Hz

f

)2
)(

mHz

2πf

)4

Hz−1. (2.11)

The precise level of each contribution is to be determined from the data. A more

realistic model for the noise contributions would include a parameterized model for

the frequency dependence, with the model parameters to be inferred from the data.

Allowing for this additional freedom would weaken the bounds that can be placed on

the contribution from the stochastic background.
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2.2 Simulated Data

In this study, we use both our own simulated data as well as data provided as part

of the MLDC. We simulated our data using a combination of LISA Simulator [78, 79]

and our own codes. We create a 1-year long data set sampled every 10 seconds. We

chose the low sampling rate for computational expediency. The galaxy signal, which

we describe in Chapter 4, only extends to 3 mHz and a stochastic gravitational wave

background falls well below the noise shortly thereafter. With a faster sampling rate,

we could extend to higher frequencies. We would better constrain the position noise,

but our results would be otherwise unaffected.

In comparison, in the third round of the MLDC, Challenge 3.5 provides an ap-

proximately 3-week long data set of 221 samples with 1 second sampling. A scale

invariant isotropic background was simulated with a frequency spectrum of f−3. The

background was injected with a level that is ∼ 10 times the nominal noise levels at

1 mHz, giving a range of Ωgw = 8.95 × 10−12 − 1.66 × 10−11 for the energy density

in gravitational waves relative to the closure density per logarithmic frequency in-

terval [77]. The MLDC noise levels were randomly chosen for each component with

power levels that range within ±20% of their nominal values, given in Eqs. 2.10

and 2.11. We use the same noise model to create our noise realizations. The noise

amplitudes are randomly drawn from strain spectral densities.

nBij =

√
Sij

2
δ (2.12)

where δ is a unit standard deviate and B signifies either the real or imaginary part.

As the LISA spacecraft orbit, the distance between them fluctuates by approxi-

mately 3%. To simplify our analysis we assume an equal arm rigid LISA constellation.
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This is not a bad approximation over short periods of time compared to the yearly

orbit of the constellation. The MLDC data was less than a month long. We look

at year long observation times when including the galactic foreground signal, but we

break the year up into 50 segments in our model. Each segment is approximately

one week in length. The arm lengths will not change appreciably over that amount

of time. Additionally, the galactic foreground signal is also approximately constant

over a one week period.

Fig. 2.3 compares our model spectra to simulated LISA noise spectra from the

MLDC training data. We show the strain spectral density in the TDI A and T

channels. The E channel is almost identical to the A channel.

Figure 2.3: Our model for the noise in the A and T channels compared to smoothed
spectra formed from the MLDC training data.
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2.3 Detector Response to a Gravitational Wave Signal

In this section we re-derive the LISA response to a stochastic gravitational wave

background. The details for how to calculate the detector response are given in

Ref. [79]. We include here the main results needed to simulate our data. We later

extend this calculation to take into account the effect of unequal arm-lengths. We

begin by expanding the gravitational wave background in plane waves:

hij(t, ~x) =
∑
P

∫ ∞
−∞

df

∫
dΩh̃(f, Ω̂)e−2πf(t−Ω̂·~x)εPij(Ω̂). (2.13)

Here the εij are the components of the polarization tensor and P sums over the two

polarizations. The polarization tensors are formed by using the basis vectors û and

v̂ and the sky location vector Ω̂,

û = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ

v̂ = sinφx̂− cosφŷ

Ω̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ. (2.14)

The polarization tensors are formed as

ε+(Ω̂, ψ) = e+(Ω̂) cos(2ψ)− e×(Ω̂) sin(2ψ) (2.15)

and

ε×(Ω̂, ψ) = e+(Ω̂) sin(2ψ) + e×(Ω̂) cos(2ψ) (2.16)
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where ψ is the polarization angle and e+ and e× are given by:

e+ = û⊗ û− v̂ ⊗ v̂ (2.17)

and

e× = û⊗ v̂ + v̂ ⊗ û . (2.18)

The single arm detector tensor is given by:

D(Ω̂, f) =
1

2
(r̂ij ⊗ r̂ij)T (r̂ij · Ω̂, f) (2.19)

where r̂ij is an arm vector and T is the single arm transfer function given by

T = sinc

(
f

2f∗

(
1− Ω̂ · r̂ij(ti)

))
exp

(
i
f

2f∗
(1− Ω̂ · r̂ij)

)
. (2.20)

The signal is a convolution of the detector tensor with the gravitational waveform,

s(t) = D(Ω̂, f) : h(f, t). (2.21)

In general, the gravitational waveform is given by a combination of the two po-

larizations:

h = h+ε
+ + h×ε

× (2.22)

where ε+,× are the basis tensors for the wave’s orientation with respect to the detector.

We can absorb the basis tensors into the detector tensor function to get the beam

pattern functions:

F P (Ω̂, f) = D(Ω̂, f) : eP (Ω̂) . (2.23)
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We then rewrite the signal as

s(t) = h+F
+ + h×F

×. (2.24)

Now h+ and h× depend only on the source parameters and we can plug in different

wave templates. We show in later chapaters how h+ and h× are generated for the

galaxy and stochastic background.

The detector response functions are

Rij(f) =
∑
P

∫
dΩ

4π
F P
i (Ω̂, f)F P ∗

j (Ω̂, f). (2.25)

In general, the integral in Eq. 2.25 must be performed numerically, though we can

develop analytic expressions in the low frequency limit using the Taylor expansion:

RAA = REE = 4 sin2

(
f

f∗

)[
3

10
− 169

1680

(
f

f∗

)2

+
85

6048

(
f

f∗

)4

(2.26)

− 178273

159667200

(
f

f∗

)6

+
19121

24766560000

(
f

f∗

)8

+ ...

]

and

RTT = 4 sin2

(
f

f∗

)[
1

12096

(
f

f∗

)6

− 61

4354560

(
f

f∗

)8

+ ...

]
. (2.27)

The A, E, and T channels were created to be noise orthogonal, but they also happen

to be signal orthogonal in the equal arm case. All of the cross terms in the response

function RAE, RAT , etc. are zero in the equal arm-length limit. Sensitivity curves for

the various channels are generated by plotting

hK =

√
SKK(f)

RKK(f)
(2.28)
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where SKK and RKK are the noise and signal spectral densities in the K channel.

Fig. 2.4 shows the sensitivity curves for the A,E, and T channels along with a scale

invariant gravitational wave background with Ωgw = 10−10. We see that the T channel

is insensitive to the gravitational wave background for f < f∗.

Figure 2.4: The sensitivity curve for the A, E, and T channels, showing the insensi-
tivity of the T channel to a gravitational wave signal.

2.4 Null Channel for Unequal Arm LISA

The various null channels that have been identified for LISA - the symmetric

Sagnac channel, the Sagnac T channel, and the Michelson T channel - are null only

if the arm-lengths of the detector are equal. The orbits of the LISA spacecraft cause

the arm-lengths to vary by a few percent over the course of a year. In practice the
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Figure 2.5: Sensitivity curve for unequal arm LISA. Our new T channel restores the
usual low-frequency insensitivity to a stochastic gravitational wave background.

arm-lengths will never be equal. For unequal arm-lengths we find that the Michelson

T channel has exactly the same sensitivity curve as the A or E channels, at least for

low frequencies. We found that it is possible to restore the relative insensitivity of the

T channel by forming a new, time delayed combination of the X, Y , and Z channels.

Since the arm-lengths will be approximately equal, we write

La = L(1 + εa)

Lb = L(1 + εb)

Lc = L(1 + εc) , (2.29)
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with |εi| � 1. Here an “a” subscript denotes the “12” arm, “b” the “23” arm, and

“c” the “13” arm. In the frequency domain we define a modified T channel:

T =
1

3
(X + αY + βZ) , (2.30)

where α and β are factors that will restore the signal insensitivity of the T channel.

Working to leading order in εi and expanding α and β in a Taylor series in f/f∗, we

are able to set the response function RTT to zero out to order f 8 (the same as in the

equal arm-length limit) with the coefficients

α = 1 + ε

[
j0 + ij1

(
f

f∗

)
+ j2

(
f

f∗

)2

+ j4

(
f

f∗

)4
]

β = 1 + ε

[
k0 + k2

(
f

f∗

)2
]

(2.31)

where j0, j1, j2, j4, k0, and k2 are given by:

j0 = εa − εb

j1 =

√
1

2
(εa − εb)2 +

1

2
(εb − εc)2 +

1

2
(εa − εc)2

j2 =
1

3
(εb − εa)

j4 =
17

3780
(εb + εc − 2εa)

k0 = εc − εb

k2 =
1

3
(εb − εc) . (2.32)

The α and β coefficients define delay operators in the time domain.

Fig. 2.5 shows the sensitivity curves for unequal arm LISA. We see that at low

frequencies, the original T channel has identical sensitivity to the A and E channels,
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while the new T channel restores the usual low-frequency insensitivity to a stochastic

gravitational wave background.
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CHAPTER 3

COSMOLOGICAL SOURCES OF GRAVITATIONAL WAVES

The detection of the cosmic microwave background (CMB) revolutionized the field

of cosmology. We expect the detection of a primordial stochastic gravitational wave

background to similarly open a window of exploration and provide new information

about the early Universe and inflation. Because the Universe was opaque to elec-

tromagnetic radiation before the surface of last scattering, there is large uncertainty

in the processes that ocurred during early epochs. This uncertainty leads to mul-

tiple viable models of early Universe processes that are not yet well constrained by

data. Different models lead to different amounts of gravitational wave production

and potentially different spectra. Just as detecting the CMB supported Big Bang

cosmology over a steady state model, detecting a primordial stochastic gravitational

wave background will allow us to constrain and estimate early Universe parameters

and rule out models inconsistent with the data.

Despite this current uncertainty, there are features of a stochastic background that

would be common to all models. We can reasonably expect that the background will

be stationary, isotropic, and Gaussian. We can infer the isotropy of the background

from measurements of the CMB. WMAP data shows that the CMB is isotropic to

within approximately 1 part in 105. Stationarity is implied because the time scales

on which a stochastic background could change are much longer than the time scales

on which we might observe the background. Gaussianity is implied largely by the

central limit theorem. A detailed discussion of these assumptions is given in [39, 80].

As discussed in [28], a stochastic background from the early Universe is expected to

extend over a very large waveband. LIGO, PTAs, and space-based missions can offer
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complementary observations of the background at different frequencies. Detecting

a primordial background across a wide band would help pin down a model for the

production of gravitational waves in the early Universe. While the background may

be too low to detect with first generation detectors, upper bounds can be set that

will potentially rule out some models. In the remainder of this chapter, we discuss

how to characterize a background, existing bounds on the strength of a stochastic

background, several production mechanisms, and show how we model and simulate

data for our studies.

3.1 Characterizing a Gravitational Wave Background.

We will discuss several production mechanisms below, but regardless, we can use

the plane wave approximation to characterize the incoming radiation at our detector.

The radiation is typically characterized by its energy density, ρgw. However, we will

be comparing a stochastic signal to instrument noise, and the instrument noise is not

characterized by its energy density, but rather by the strain spectral noise density, Sn.

We need to compute the strain spectral density of the background Sh for comparison

to Sn.

We briefly summarize how to derive the relationship between Sh and ρgw following

the treatment given in [80]. Working in the transverse traceless (TT) gauge, the plane

wave expansion for gravitational waves is given by Eq. 2.13. Under the assumptions

listed above, and the further assumption that the background is unpolarized, Sh is

defined as

〈h̃∗A(f, Ω̂)h̃∗A′(f
′, Ω̂′)〉 = δ(f − f ′)δ

2(Ω̂, Ω̂′)

4π
δAA′

1

2
Sh(f). (3.1)
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We normalize such that when we integrate over dΩ, we get

∫
dΩdΩ′〈h̃∗A(f, Ω̂)h̃∗A′(f

′, Ω̂′)〉 = δ(f − f ′)δAA′
1

2
Sh(f) (3.2)

where dΩ = d cos θdφ. Taking the ensemble average of Eq. 2.13 gives

〈hij(t)hij(t)〉 = 4

∫ ∞
0

dfSh(f). (3.3)

We also compute the time derivative of Eq. 2.13

ḣij(t, ~x) =
∑
P

∫ ∞
−∞

df

∫
dΩ(−2πif)h̃(f, Ω̂)e−2πf(t−Ω̂·~x)εPij(Ω̂) (3.4)

since the energy density is given in terms of ḣij,

ρgw =
c2

32πG
〈ḣijḣij〉. (3.5)

Combining Eqs. 3.3 and 3.5 gives

ρgw =
c2

8πG

∫ f=∞

f=0

df(2πf)2Sh(f), (3.6)

which successfully relates the energy density in gravitational waves to the strain

spectral density. However, in cosmology, energy densities are typically expressed as

fractions of the critical closure density ρc,

Ωgw ≡
ρgw
ρc
. (3.7)
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The dimensionless energy density Ωgw is defined as

Ωgw(f) ≡ 1

ρc

dρgw
d log f

(3.8)

where dρgw/d log f is the energy density per logarithmic frequency interval. This

means that Ωgw will be given by

ρgw =

∫ f=∞

f=0

d(log f)
dρgw
d log f

. (3.9)

To relate Ωgw to Sh we change Eq. 3.6 to an integral over log f , noting that d log f =

df/f .

ρgw =
c2

8πG

∫ f=∞

f=0

d(log f)f(2πf)2Sh(f). (3.10)

Comparing the integrands of Eqs. 3.9 and 3.10, we see that

Ωgw(f) =
πc2

2G
f 3Sh(f) =

4π2

3H2
0

f 3Sh(f). (3.11)

Throughout the remainder of this dissertation, the energy density in a stochastic

gravitational wave background is characterized by Ωgw(f), with the strain spectral

density given by

Sh(f) =
3H2

0

4π2

Ωgw(f)

f 3
. (3.12)

3.2 Bounds

Even though we have not yet detected any gravitational waves, let alone a pri-

mordial stochastic background, we already have upper bounds on a potential back-

ground set by Big-Bang Nucleosynthesis, COBE and WMAP data, and by existing

gravitational wave missions. The bounds allow us to do gravitational wave science
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even without detections. As the bounds improve, we will be able to rule out models

inconsistent with the data.

3.2.1 BBN

The theory of Big Bang nucleosynthesis successfully predicts the abundances of

lighter elements in the Universe like deuterium, 3He, 4He, and 7Li. Deuterium and

4He are particularly important because there doesn’t seem to be any other major

formation mechanisms for them. Stars do produce both deuterium and 4He, but in

extremely small amounts. Therefore, the amount of present day 4He gives information

about the abundance of its constituent particles, protons and neutrons, in the early

Universe.

The basic idea is that when the temperature of the Universe was approximately

T ≈ 1 MeV, there was a particle zoo in thermal equilibrium. Thermal equilibrium

here means that particle reaction rates were in equilibrium, progressing forward as

often as backward. For protons and neutrons, the reaction is

p+ e↔ n+ νe (3.13)

with reaction rate Γpe→nν . The reaction rate is given by

Γ = nσ|v| (3.14)

where n is the particle number density, σ is the cross section of the process, and

|v| is a typical velocity. Thermal equilibrium is maintained as long as Γpe→nν > H,

meaning the reaction occurs many times in one Hubble time. Once the rate falls

below the Hubble constant, the reaction is “frozen-out”. The ratio of neutrons to

protons nn/np remains constant after this point. Almost all of the neutrons present
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at the time of freeze-out will eventually form 4He, so the present day abundance of

4He is very sensitive to the neutron to proton ratio at the time of freeze-out.

The neutron to proton ratio is related to temperature by

nn/np = eQ/T , (3.15)

where Q = mn −mp ≈ 1.3 MeV. When the Universe reaches the freeze-out tempera-

ture, Tf , the ratio is fixed and most of the neutrons later become Helium.

Gravitational waves contribute to the overall energy density of the Universe. The

freeze-out temperature depends on the energy density, and consequently the frozen-

out neutron to proton ratio is affected by the energy density in gravitational waves.

We briefly sketch out the effect of gravitational waves on nucleosynthesis here. See

[31, 28] and references therein for a fuller treatment.

The energy density of weakly-interacting gas particles is given by

ρ =
g

(2π)3

∫
|~p|2

3E
f(~p)d3p, (3.16)

where g is the number of internal degrees of freedom. In thermal equilibrium and in

the relativistic limit, we obtain

ρ =
π2

30
gT 4. (3.17)

For gravitational waves, ρgw = 2π2

30
T 4.

Based on dimensional grounds, we can take

Γne−>pe = G2
FT

5. (3.18)
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At the freeze-out temperature, Γne−>pe ≈ H, where H is given by T 2
f /MPl. The

relationship also depends on the particle abundances and it can be shown that

G2
FT

5
F ≈

(
8π3g∗

90

)1/2 T 2
f

MPl

. (3.19)

The freeze-out temperature Tf is sensitive to g∗ which contains contributions from

gravitational waves. Detailed calculations give the bound on the energy density in

gravitational waves as

∫ f=∞

f=0

d log fh2
0Ωgw(f) ≤ 5.6× 10−6(Nν − 3). (3.20)

where Nν is the effective number of neutrino species. The integral is positive definite,

which means we can also state bounds on the integrand. If the gravitational wave

background were to be narrowly peaked around a single frequency, we’d have

h2
0Ωgw ≤ 5.6× 10−6 (3.21)

where we have taken Nν = 4 [81].

3.2.2 COBE and WMAP

Constraints placed on the gravitational wave background from observations of the

CMB are due to what is known as the Sachs-Wolfe effect. Long wavelength gravita-

tional waves in the early Universe induced stochastic variations in the photons that

today make up the CMB. These fluctuations appear in the COBE and WMAP tem-

perature maps of the CMB. Typically, we expand the CMB temperature fluctuations

in spherical harmonics:
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δT (Ω̂)

T
=
∞∑
l=2

l∑
m=−l

alm(~r)Ylm(Ω̂). (3.22)

The gravitational wave background Ωgw is related to the temperature fluctuations

by

Ωgw(f) <

(
H0

f

)2(
δT

T

)
. (3.23)

The range over which this is valid is

3× 10−18 Hz < f < 1× 10−16 Hz, (3.24)

with the upper end coming from the requirement that waves are outside the Hubble

radius at the time of last scattering and the lower limit from the requirement that

they be inside the Hubble radius today. The bound from COBE data is given by

Ωgw(f)h2
100 < 7× 10−11

(
H0

f

)2

(3.25)

and the bound from WMAP is

Ωgw(f)h2
100 < 1.6× 10−9

(
H0

f

)2

, (3.26)

which are both valid inside the range given by Eq. 3.24.

3.2.3 LIGO and PTA Bounds

Existing gravitational wave detectors are not expected to be sensitive enough

to detect a primordial stochastic gravitational wave background. Regardless, LIGO

and PTAs can still place upper limits on the level of a stochastic gravitational wave
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background. As the sensitivity of the instruments improves, the bound will become

lower and may help rule out certain models, even if a detection is not made. The

current bounds set by the LSC [33] are

Ωgw(f) = 0.33

(
f

900 Hz

)3

(3.27)

with h100 = 0.72. The PTA bounds [34] are

Ωgw(1/8 yr)h2 ≤ 2.0× 10−8. (3.28)

In this dissertation we will show that a 4-link space-based interferometer is capable

of placing constraints on a background with a flat spectrum of order

Ωgw ≤ 5× 10−13. (3.29)

As mentioned before, these bounds are complementary and cover different wavebands.

3.3 Sources of Gravitational Waves

3.3.1 Amplification of Quantum Fluctuations

The amplification of quantum fluctuations is a general mechanism across different

models that can lead to gravitational wave production [82, 83]. The CMB spectrum

agrees with predictions of quantum fluctuations during inflation. These waves would

extend over a large frequency band starting at the energy scale when the fluctuation

occurred and being stretched out up to the length of the horizon during inflation.

Different models predict different amplitudes for tensor fluctuations, but the most

optimistic models give an energy density level of 10−17. This is too low for current
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detectors to detect. Proposed future space-based missions, the Big Bang Observor

and the Deci-Hertz Interferometer Gravitational wave Observatory are specifically

designed to detect this spectrum [84, 85].

The perturbations can either be scalar perturbations, which lead to structure

formation in the Universe, or tensor perturbations, which lead to the production of

gravitational waves. The perturbations become amplified during inflation and lead

to excess particle production as inflation gives way to later phases in the history of

the Universe.

To see how gravitational waves arise from early Universe quantum fluctuations,

we start with a perturbed metric in Friedmann-Robertson-Walker (FRW) cosmology,

gµν = a2(η)(ηµν + hµν), (3.30)

where ν is conformal time and hµν is the metric perturbation. We can write the

perturbation as a mode expansion of the wavenumbers,

hab(η, ~x) =
√

8πGN

∑
A=+,×

∑
~k

φA~k (η)ei
~k·~xeAab(Ω̂), (3.31)

where the indices ab indicate that we are in the transverse traceless (TT) gauge.

We can linearize the Einstein equations to get a differential equation for φ [86, 28,

31],

φ′′k + 2
a′

a
φ′k + k2φk = 0. (3.32)

The prime denotes a derivative with respect to conformal time. If we make the

substitution

ψk(η) =
1

a
φk(η), (3.33)



36

Eq. 3.32 can be rearranged to give

ψ′′k +

(
k2 − a′′

a

)
ψk = 0, (3.34)

which we recognize as the equation for a harmonic oscillator. We can use the for-

malism of the simple harmonic oscillator to get an intuitive feel for how quantum

fluctuations become amplified. A more detailed derivation of the amplification is

given in [28, 31].

First, imagine that there are two phases in the early Universe and the the tran-

sition from phase I to phase II occurs over some time interval ∆T at time t∗. The

Hubble time is of order the time it takes for the Universe to expand appreciably, so

we can take ∆T ≈ H−1. This gives a relation between the different fluctuation modes

and the Hubble distance. If the wavelength of a mode is large, we have

2πf∗H
−1
∗ � 1, (3.35)

where f∗ and H∗ are the frequency of the mode and the Hubble parameter at time t∗

respectively. The modes are said to be outside the horizon since their wavelength is

larger than the horizon. The evolution of the wave happens on timescales larger than

the Hubble time and the wave doesn’t have time to adjust to the changing vacuum

state. For modes whose wavelengths are smaller than the Hubble length, we have

2πf∗H
−1
∗ � 1. (3.36)

For these modes, the evolution of the wave happens much faster than the phase

transition and they adiabatically change with the vacuum.
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Now consider again that each mode fluctuates like a harmonic oscillator. The

creation and annihilation operators for a harmonic oscillator are defined such that

the annihilation operator acting on the ground state gives zero. If we denote the

vacuum state in phase I as |0〉I , we get

a+(k)|0〉I = a×(k)|0〉I = 0. (3.37)

The new vacuum state in phase two is |0〉II , and we need to define new creation and

annihilation operators AA(k) and A†A(k),

A+(k)|0〉II = A×(k)|0〉II = 0. (3.38)

The occupation numbers in each state must be expressed in terms of the occupation

number operator, which is in turn defined by the creation and annihilation operators

in each phase,

NI = a†a NII = A†A. (3.39)

States that change rapidly with respect to the Hubble time have time to evolve

adiabatically with the vacuum state and there is no new particle production. However,

the change for states outside the horizon is abrupt. The quantum state in phase I can’t

evolve with the vacuum state and the occupation numbers in phase II are evaluated

with the new operators, which leads to particle production. These gravitons would

lead to a stochastic gravitational wave background which is in principle observable

today.
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3.3.2 Reheating

After inflation, all the energy density in the Universe is stored in the scalar inflaton

field. Somehow the energy needs to be removed from the inflaton field to create

the radiation and matter dominated phases of the Universe. This process is called

reheating [87, 88, 89]. In the basic reheating scenario, the inflaton decays into other

particles, including the familiar particles that will initiate nucleosynthesis. In a more

complicated scenario known as preheating [90, 91, 92, 93, 94, 95, 96, 97, 98], the

inflationary field may decay much more rapidly through parametric resonance with a

bosonic field. The decay of the inflaton field leads to the thermal bath of the Hot Big

Bang. This thermalization is non-linear. The matter and energy fluctuations during

this period create a stochastic gravitational wave background that may contribute a

signficant portion of the total primordial background.

3.3.3 Phase Transitions

Another possible source of gravitational waves is from early Universe phase tran-

sitions. A phase transition occurs when there is a symmetry breaking, such as the

electroweak symmetry. First order phase transitions offer several methods for pro-

ducing gravitational waves [99, 100], but second order phase transitions may also be

able to produce gravitational radiation [101]. Whether a transition is first order or

second order can be model dependent. Consequently, gravitational wave observations

could help differentiate amongst some of these models.

During these phase transitions, bubbles can nucleate, and then expand and collide

with one another. These collisions can be highly energetic and produce gravitational

waves. The bubbles can also interact with the surrounding plasma. As bubbles release

energy into the plasma, they cause turbulence if the plasma Reynold’s number is high

enough. If there are seed magnetic fields present in the plasma, MHD effects may
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also come into play. As with reheating, the dynamics and turbulence leads to the

production of gravitational waves.

3.3.4 Cosmic Strings

The last potential source of early Universe gravitational waves is from cosmic

strings [102, 96, 103]. Cosmic strings are topological defects that may be formed

during phase transitions. Cosmic strings also emerge in string theory, in which case

they are referred to as cosmic super-strings.

Cosmic strings carry very high energy densities. Strings themselves will not pro-

duce gravitational waves, but they can form loops and collide with each other. During

these high energy interactions gravitational waves will be produced. The frequency

of the wave produced depends on the length of the string, so we expect that cosmic

strings would form a background over a large frequency band corresponding to a wide

variety of string lengths.

3.4 Model

We adopt here a simple model for a stochastic gravitational wave background.

More complicated models can be incorporated for the analysis, but for our present

purposes we only show that as long as the background spectrum is different than the

instrument noise and any foregrounds signals, we can differentiate it from the other

signals.

For an isotropic background, the signal cross spectra of the interferometer channels

are given by the detector response function (Eq. 2.25) and the strain spectral density

for the background,

〈Si(f), Sj(f)〉 = Sh(f)Rij(f). (3.40)
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We only need supply Sh(f), which is dependent on the formation mechanisms. We

consider two cases, a flat spectrum where Ωgw does not depend on the frequency, and

a spectrum that allows for a power law dependence on frequency. Since we won’t

know the slope of a stochastic gravitational wave background a priori, we want the

flexibility in our model to fit for different slopes,

Ωslope
gw (f) = Ωgw

(
f

1mHz

)m
(3.41)

In the latter case, Eq. 3.12 becomes

Sh(f) =
3H2

0

4π2

Ωgw

f 3

(
f

1mHz

)m
. (3.42)

3.5 Simulated Data

Later, we show two studies involving simulated stochastic gravitational wave back-

ground data. In the first study, we used simulated data from the MLDC to search for

a stochastic gravitational wave background amidst instrument noise. For the second

study, we simulated our own data for the stochastic background.

The stochastic gravitational wave background is generated using Eq. 2.23. To

simulate an isotropic background, we create equal area sky pixels using the HEALpix

routines [104]. We generate N = 192 sky pixels, the same number used in the MLDC.

In each sky pixel we randomly draw plus and cross polarization amplitudes for the

stochastic background,

hBA =

√
Ωgw/N

2
δ, (3.43)

where A signifies the polarization plus or cross, B is the real or imaginary part, δ

is a unit standard deviate, and Ωgw is the energy density in gravitational waves per
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logarithmic frequency interval defined above. We then fold the background into the

full data stream using Eq. 2.24.
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CHAPTER 4

ASTROPHYSICAL GRAVITATIONAL WAVE FOREGROUNDS

In the last chapter, we discussed how to model a primordial gravitational wave

background. We also expect there to be many unresolved astrophysical foreground

sources across the wavebands spanned by current and planned gravitational wave

detectors. A superposition of many astrophysical sources forms a stochastic sig-

nal that could compete with a stochastic background. Since most models predict a

weak stochastic background, astrophysical stochastic signals will likely overwhelm a

primordial background, and must be properly modeled if we hope to separate the

astrophysical foreground from a stochastic background. Unlike a stochastic back-

ground, we do not necessarily expect astrophysical foreground signals to be isotropic,

nor do we expect them to have the same spectrum as a primordial background. The

features of the foreground signals will depend entirely on the type of source and the

population of the sources. Therefore, modeling a foreground folds together the tasks

of modeling individual sources and their population.

4.1 Sources of Astrophysical Stochastic Signals

There are several candidates for astrophysical foreground signals in the millihertz

waveband. There will almost certainly be a foreground signal from the white dwarf

binaries in our own galaxy. Many of these white dwarf binaries will be individually

resolvable [55]. The rest will form a confusion foreground that could overwhelm

any extragalactic stochastic signals if not properly modeled. We show later that

our ability to detect an isotropic stochastic gravitational wave background is not

significantly reduced when the galactic foreground is properly modeled.
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There may also be a foreground signal from extragalactic white dwarf bina-

ries [105]. We would expect the extragalactic white dwarf signal to be fairly isotropic,

but it may be possible to see some hint of anisotropy due to the stronger signal from

nearby galaxies. Other compact objects may form confusion foregrounds including

extreme-mass-ratio inspirals (EMRIs) [56] and less certain, but still an interesting

possibility is an astrophysical foreground from inspirals of massive black hole bina-

ries [57].

In this work we will focus on the galactic white dwarf foreground only. The

analysis can easily be extended by including other foreground signals. As long as each

foreground is adequately modeled, and the spectrum is unique from other stochastic

components of the data, the addition of more foregrounds will not significantly reduce

the effectiveness of our analysis to follow.

4.2 White Dwarf Population Model

We start by modeling white dwarf binaries and their population in the galaxy.

Some of the binaries will be bright enough to be individually resolvable. Assuming

that the bright binaries have the same distribution as the dimmer binaries, we can use

the bright binaries to constrain the parameters in our population distribution model.

We show how we constrain the distribution parameters and then how we use them to

model the confusion foreground.
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4.2.1 Modeling Individual White Dwarf Binaries

The first step is to model and regress individually resolvable binaries. The white

dwarf waveforms [106] to be used in Eq. 2.24 are:

h+(t) = A+ cos(2ψ) cos(Φ(t)) + A× sin(2ψ) sin(Φ(t))

h×(t) = −A+ sin(2ψ) cos(Φ(t)) + A× cos(2ψ) sin(Φ(t)) (4.1)

where ψ is the polarization angle and the amplitudes are given by

A+ =
2G2M1M2

c4r

(
(πfo)

2

G(M1 +M2)

)1/3

(1 + cos2 ι)

A× =
4G2M1M2

c4r

(
(πfo)

2

G(M1 +M2)

)1/3

cos2 ι. (4.2)

Here M1 and M2 are the white dwarf masses and ι is the inclination angle. The phase

is given by:

Φ(t) = 2πfot+ πḟot
2 + φo − ΦD(t) (4.3)

where fo is the instantaneous frequency, φo is the phase angle, and the modulation

frequency ΦD is:

ΦD(t) ≡ 2πfo
c

k̂ · ~xi(t). (4.4)

To leading order, the frequency evolves as

ḟo =
96π

5
(πM)5/3f 11/3

o , (4.5)

where M is the chirp mass. Later, we describe Bayesian inference techniques that

can be used to generate distribution functions for each of the parameters in Eq. 4.1,

indicating our confidence in the values of those parameters. The brightest sources
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will be individually regressed from the data [107], and we will use the information

gained about their sky locations to constrain the shape of the galaxy distribution.

4.2.2 Modeling the Galactic Distribution

We can draw on current electromagnetic observations to choose a reasonable model

for the galaxy shape distribution. The model will be refined by the added data

obtained from gravitational wave observations. There is currently no reason to believe

that white dwarfs will have a significantly different population than other stars, but

having the flexibility to model the white dwarf distribution is wise.

We adopt a bulge plus disk model for the galaxy shape [108, 109, 110, 111].

Choosing the x-y plane as the plane of the galaxy, the density of stars in the galaxy

is given by

ρ(x, y, z) = ρ0

(
A

(
√
πRb)3

e−r
2/R2

b +
1− A

4πR2
dZd

e−u/Rdsech2(z/Zd)

)
. (4.6)

Here, r2 = x2 + y2 + z2, u2 = x2 + y2, Rb is the characteristic radius for the bulge,

and Rd and Zd are a characteristic radius and height for the disk respectively. The

quantity ρ0 is a reference density of stars and the coefficient A, which ranges between

0 and 1, weights the number of stars in the bulge versus the number in the disk.

Using the best fit sky location parameters for the bright binaries, we will map out

and constrain the white dwarf distribution throughout the galaxy. We assume the

same distribution for the unresolved sources. The more bright sources we detect, the

better contrained will be the distribution for the unresolved sources.
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4.3 Confusion Foreground Model

Once the resolvable binaries are removed, a stochastic, confusion foreground made

from the superposition of all other binaries remains. There are two key factors in-

volved in modeling the galactic foreground. The first is the same idea alluded to

earlier. The galactic foreground has a spectral shape that is distinct from the instru-

ment noise and typical stochastic gravitational wave background models [99, 112, 113]

(it would take an extremely fine tuned and bizarre primordial signal to match the

spectral shape of the unresolved galactic foreground). The differences in spectral

shapes provide the main discriminating power amongst the three components. In ad-

dition, most of the higher frequency white dwarf binaries will be individually resolved

and regressed, meaning that the higher frequency data can be used to pin down

parameters for the noise and the stochastic background with little or no galactic

contamination.

Secondly, the galactic foreground signal is modulated with a 1-year period due to

the motion of the LISA constellation around the Sun. As LISA cartwheels around

the Sun, the beam pattern will sweep across the sky. The sweet spot of the beam

pattern will hit different parts of the galaxy at different times throughout the year.

The variation in the detector response to the galaxy throughout the year creates the

modulation in the signal. Fig. 4.1 shows the full galaxy signal for 1 year of data. The

sweet spot of the beam pattern hits near the center of the galaxy twice throughout

the year, giving the two peaks. Fig. 4.1 also shows the confusion foreground signal

after the bright binaries have been removed and the instrument noise. At certain

times throughout the year, the galactic foreground will be much stronger than the

instrument noise and a stochastic background. It may seem that the galaxy could

overwhelm any underlying signals, but as we show later, we can detect a background



47

well below the instrument noise. We will show that after properly modeling the

galactic foreground, we are able to detect a background with energy density as small

as 5× 10−13 with a 4-link interferometer, as shown in Fig. 4.1.
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Figure 4.1: The time domain noise, galaxy, and stochastic background signal compo-
nents for the X-channel. They have been bandpass filtered between 0.1 and 4 mHz.
We show that we are able to detect a scale invariant background with Ωgw = 5 ·10−13,
which is well below the instrument noise and galaxy levels.

The amount of modulation in the signal depends on the shape of the galaxy and the

distribution of white dwarf binaries throughout the galaxy. Therefore, to accurately

model the galaxy modulation, we need accurate measurements of the spatial distri-

bution of white dwarf binaries in the galaxy. One way to do this is to parameterize

the galaxy shape distribution and simultaneously fit those parameters along with the
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noise and stochastic background parameters. In principle this works, but we find that

the confusion foreground signal can only provide very weak constraints on population

model parameters. Instead, we use the constraints placed on the galaxy distribution

model from the individually resolvable bright sources. We show later that the bright

sources constrain the shape of the galaxy to levels better than current electromagnetic

constraints. Including information from the confusion foreground does not tighten

these constraints, so we fix the distribution parameters at the maximum a posteriori

values obtained from the bright source analysis, which is described in detail in the

next chapter.

We obtain the spectral shape by generating many different galaxies using LISA

Simulator [78]. We then smooth the spectrum in the frequency domain and aver-

age the spectra from each of the different realizations. In practice, with a single

galaxy observation, we could use the residual from the bright source removal and the

information they give about the galactic model to better constrain the spectrum.

The modulation can be modeled by finding an average strain spectral density for

each segment of the year. For our approximately week long segments, the amplitude

does not change appreciably and averaging the strain in each segment gives a good

approximation to the modulation level for each week. Fig. 4.2 is made by plotting the

average amplitude of each segment versus the central time for each weekly segment.

The two peaks correspond to the peaks shown in the time domain plot, Fig. 4.1.

We see that the beam pattern slightly misses the center of the galaxy for the first

peak, but hits it almost dead on for the second peak. The amount of modulation, or

difference between the peaks and troughs, depends on the shape of the galaxy.

Even for the same galaxy parameters, different realizations of the galaxy will have

significant variation due to the placement of a finite number of stars, as shown in

Fig. 4.2. We need to account for the amount of variation that can occur from one
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Figure 4.2: Several galaxy realizations showing the scatter in the modulation levels
throughout the year compared to the galaxy used in our simulations. The points are
scaled by the first Fourier coefficient, C0.

realization to the next. If we fixed the model curve at the average value for the curves

shown in Fig. 4.2, fitting for our particular galaxy could take some power away from

a stochastic background to try to adjust for the variation from the average.

To account for the variation from one simulation to the next, we simulate many

galaxies with the same parameters. To fit the variation, we could use the 50 ampli-

tudes in the modulation curve as parameters in our model, but that is a large increase

in our parameter space. We instead use the Fourier coefficients as our model param-

eters. The modulation curve in Fig. 4.2 can be uniquely characterized by 17 Fourier

coefficients [114, 115]. Fig. 4.3 shows the Fourier coefficients for several galaxy realiza-

tions using the same shape parameters. We average the Fourier coefficients from the
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different runs and set the prior range to be ±3σ around the average. Fig. 4.3 shows

the average coefficients, the prior range, and the coefficients from several generated

galaxies. Using the Fourier coefficients reduces the number of galaxy parameters by

more than a factor of two. In practice, the savings are even better because only the

first 5 or 6 coefficients are well constrained.
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Figure 4.3: Several galaxy realizations showing the scatter in the Fourier coefficients
for different galaxy realizations. The ±3σ upper and lower bounds are used as the
prior range on the Fourier coefficients in our analysis.

Fig. 4.4 shows smoothed data and our model for the various components. The

galaxy is shown during the first week of the year, when the signal is at a minimum,

and at a later time of year when the signal is near the second peak shown in Fig. 4.2.
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As mentioned earlier, we see the difference in the spectral shapes and that the galaxy

extends over a shorter band.
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Figure 4.4: Our smoothed, simulated data with the model overlaid in black (solid).

4.4 Simulated Data

We produce synthetic galaxies using the catalog of binaries provided by Gijs Nele-

mans for the Mock LISA Data Challenges (MLDC), which contains approximately

29 million binaries [116, 109, 110]. We give each binary a sky location drawn from

the population distribution, Eq. 4.6. We chose A = 0.25, Rb = 500, Rd = 2500,

and Zd = 200 as done in [111]. We calculate the SNR for each binary and designate
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sources with an SNR > 7 as bright [55]. The bright sources are used in our population

study and the remaining sources are used in the confusion foreground.
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CHAPTER 5

ANALYSIS TECHNIQUES

The goal of our analysis is to take the models described in previous chapters and

evaluate their goodness given some data. Bayesian inference is a powerful tool for

comparing models and finding probability distributions for model parameters. Al-

though frequentist statistics are also widely used, Bayesian data analysis is becoming

more prevalent. In frequentist statistics, an experiment is repeated multiple times and

a resulting frequency distribution of outcomes for some event is constructed. Model

parameters are considered fixed, meaning we focus on the probability of the data

given those parameters. Bayesian inference reflects our belief in some model, rather

than a frequency distribution for some event. The data is considered fixed, meaning

we focus on the probability of some hypothesis or set of model parameters given the

data, and the model parameters are allowed to vary to find a best match between our

model and the data.

Bayesian inference is particularly useful in gravitational wave astronomy (and

astronomy in general). We are not able to repeat our experiments. We must take

what the Universe gives us. We do not, as of this writing, have a single direct detection

of gravitational waves. As the field matures and we make the first and then a handful

of detections, we seek to make inferences from the data with our limited information.

This is the strength of Bayesian analysis. In this chapter, we develop an end-to-end

Bayesian analysis pipeline that is able to search for, characterize and assign confidence

levels for the detection of a stochastic gravitational wave background.
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5.1 Bayesian Basics

Bayes’ theorem can be derived from the product rule of conditional probability.

In conditional probability, for two events A and B, we may write:

p(A|B) (5.1)

which we would read as the probability of A given that B is true. Anything to the

right of the vertical bar is given as true. If we add in event C, we can write the

conditional probability of both A and B given that C is true as

p(A,B|C), (5.2)

where the comma denotes “and”. The product rule of conditional probability is

p(A,B) = p(B)p(A|B), (5.3)

which reads as the probability of A and B is the probability of B times the probability

of A given that B is true. The product is commutative and we could just as easily

have written

p(A,B) = p(A)p(B|A). (5.4)

If we add in event C as before, we can write

p(A,B|C) = p(A|C)p(B|A,C) = p(B|C)p(A|B,C). (5.5)
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Bayes’ Theorem is a simple rearrangemenet of the product rule (Eq. 5.5).

p(B|A,C) =
p(B|C)p(A|B,C)

p(A|C)
(5.6)

Our goal in science is to make inferences about some hypothesis based on informa-

tion we already have and any new data we measure or observe. Let C be our existing

information, B be some hypothesis of interest, and A be our measured or observed

data. Following the treatment in [117], we can then write Bayes’ Theorem as

p(H|d, I) =
p(H|I)p(d|H, I)

p(d|I)
(5.7)

In words, the term on the left is the probability of our hypothesis H given our existing

information and our new data. It is called the a posteriori distribution or the posterior

probability distribution. The first term on the right, P (H|I) is the a priori or prior

probability distribution of H. It is the probability of hypothesis H based on all the

information we have available prior to collecting our new data. The term P (d|H, I) is

called the likelihood. It is the probability, or likelihood, that we would have obtained

data d given that our hypothesis H and prior information I are true. The term in

the denominator, P (d, I), is sometimes called the marginal likelihood. It serves as

a normalizing factor to ensure that the posterior distribution is a proper probability

distribution. It is the sum of all possible outcomes of the numerator.

If we consider a case with only two valid hypotheses, the marginal likelihood is

given by the law of total probability

p(d|I) = p(d|H1, I)p(H1) + p(d|H2, I)p(H2|I), (5.8)
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which for a discrete number of hypotheses generalizes to

p(d|I) =
N∑
i=1

p(d|Hi, I)p(Hi, I). (5.9)

Often we will only be interested in comparing two hypotheses. In that case, we

can avoid calculating the marginal likelihood since Bayes’ theorem for two different

hypotheses and the same data will have the same marginal likelihood. Instead we

look at what is called an odds ratio between the two models. The odds ratio gives the

odds that one model is preferred above another. We take the ratio of the posterior

distributions and the marginal likelihood cancels out giving:

p(H2|d, I)

p(H1|d, I)
=
p(d|H2, I)

p(d|H1, I)

p(H2|I)

p(H1|I)
(5.10)

The term involving the likelihoods is known as the Bayes’ factor. As discussed in

[118], the equation can be expressed in words as:

posterior odds = Bayes Factor× prior odds (5.11)

The Bayes’ factor transforms the prior odds ratio to the posterior odds ratio. For

uniform priors, the Bayes’ factor is equal to the posterior odds ratio.

5.1.1 Gravitational Wave Applications

In gravitational wave astronomy, the hypotheses we test are various models that

describe the data. Typically, a model will be a waveform that describes how the

gravitational radiation from some system depends on the parameters of that system.

For example, using general relativity we can derive the expected gravitational radia-
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tion from a white dwarf binary system [119], and we get the equations shown earlier,

Eqs. 4.1.

5.1.1.1 Parameter Estimation and Model Selection Given some waveform, we

can use Bayes’ theorem to test which waveform parameters give the best fit to our

data. We denote all the parameters of a system with a parameter vector, ~λ. We

rewrite Bayes’ theorem using d for our data again, and our hypothesis is some model

for the gravitational waveform, which we denote as M . We have dropped all the |I)

terms and implicitly assume them for the remainder of the paper.

p(~λ|d,M) =
p(d|~λ,M)p(~λ|M)

p(d|M)
(5.12)

The posterior distribution gives what is called the posterior distribution function

(PDF) for each parameter. It is a distribution of the expected values for a given

parameter. The highest mode of a PDF is called the maximum a posteriori (MAP)

estimate for that parameter [55], and the width of the PDF gives the uncertainty for

the parameter. The distributions reflect our degree of belief in the set of parameters.

Generally, the model parameters can take on any values over some range. We

obtain the marginal likelihood by integrating over all possible values of ~λ,

p(d|M) =

∫
d~λp(d|~λ,M)p(~λ|M). (5.13)

Notice that the marginalization over ~λ gives us the likelihood function for model M ,

p(d|M). We then use Eq. 5.10 to compare two models and evaluate which is better

supported by the data. We form the posterior odds ratio which we denote as O.

O ≡ p(M1|d)

p(M0|d)
=
p(d|M1)p(M1)

p(d|M0)p(M0)
(5.14)
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where we have used the indices 0 and 1 to denote the two different models M1 and

M0. The two different models may be a waveform with different numbers of pa-

rameters. For example, consider a white dwarf binary system. Most binary systems

will not have a rapidly evolving frequency. The data for some binary may be better

fit by a 7-dimensional model that excludes the frequency derivative than by the 8-

dimensional model [120]. Other examples include comparing the waveform for a black

hole system given by general relativity to the waveform from an alternative theory

of gravity [121]. Later we will compare various models for stochastic gravitational

wave data. One model contains instrument noise and a stochastic gravitational wave

background, another is instrument noise only, and a third contains the galactic con-

fusion foreground signal. Comparing two models using a Bayes’ factor is called model

selection. If model 1 has a higher posterior value, the ratio above will be greater

than one. A ratio of 1 means neither model is preferred over the other. To make a

confident detection we say that we need a Bayes’ factor of 30 or greater. Given the

example above of a model with noise only versus a model with noise and a stochastic

background, we are asking whether there is enough information in the data to state

that our signal model provides a better fit to the data than does the noise model

alone.

5.2 MCMC Techniques

In principle, all of our work is done at this point. We turn the Bayes’ theorem

crank and it returns a posterior distribution. In practice, there are often difficulties

in applying Bayes’ theorem to real world problems. As mentioned above, often the

marginal likelihood cannot be calculated analytically and can be computationally
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expensive to calculate numerically. Instead, we use Markhov chain Monte Carlo

(MCMC) techniques to sample the posterior distribution.

5.2.1 Metropolis Hastings

The term MCMC can refer to a large range of stochastic data analaysis techniques.

In our work we use a Metropolis Hastings MCMC algorithm to explore the parameter

space of our model. We keep a sequential history of locations visited in parameter

space, which is referred to as a chain. A chain is started at some particular location in

parameter space, and the algorithm then proposes to move to a different location. We

evaluate the un-normalized posterior (likelihood × prior density) at the new location

and compare it to the un-normalized posterior at the old location using a Hastings

ratio.

Hx→y =
L(~y)p(~y)q(~x|~y)

L(~x)p(~x)q(~y|~x)
(5.15)

where p and q are the priors and distributions from which we draw to make our jumps

to go from position x to position y respectively. Note that the Hastings ratio is very

similar to the posterior odds ratio. The only difference is the inclusion of the jump

distributions to maintain what is called detailed balance. By forming the ratio we

are again able to avoid calculating the marginal likelihood. In the case of uniform

priors and if we draw from the same distribution, a gaussian, in both directions, our

Hastings ratio is simply the ratio of the likelihoods,

Hx→y =
L(~y)

L(~x))
. (5.16)

We then compare the Hastings ratio to a randomly drawn number between 0 and 1.

If the new location has a higher likelihood, the Hastings ratio will be greater than one,
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and hence greater than the random number drawn, and the jump will be accepted.

If the new position is worse, the jump may or may not be accepted depending on

whether or not the Hastings ratio is greater than or less than the random number.

Allowing jumps to poorer likelihood values gives the algorithm a chance to explore

the whole parameter space and not get stuck on a local maximum. The time the chain

spends at each location in parameter space is the posterior weight for that location.

By histogramming the MCMC chain after it is done running, we map out the PDF

for each parameter.

5.2.2 Parallel Tempering

Given enough time, our algorithm will find the MAP values for the model param-

eters. However, the MCMC algorithm only guarantees convergence after an infinite

time. To expedite the process we use a Parallel Tempered Markhov chain Monte

Carlo (PTMCMC) [122] search. PTMCMC searches the data with multiple chains,

each at a different “heat”. The unnormalized posterior becomes

p(~λ|d) = p(d|~λ)βp(~λ) (5.17)

where β is the heat for some chain. The heats are calculated by

βi =
1

(Tmax)i/NC
(5.18)

where i labels the chains and NC is the total number of chains. The effect of the

heat is to “melt” or smooth the likelihood surface. The peaks in the likelihood surface

become smooth and the hotter chains don’t stick on local maxima. Chains are allowed

to propose parameter swaps, such that if a cold chain is stuck on some local maximum,

it has a chance to get moved off that local maximum by exchanging parameters with



61

a hotter chain. The maximum temperature, Tmax, is chosen such that the surface will

be smooth enough for the hottest chain to freely explore the entire prior volume.

5.2.3 Thermodynamic Integration

The Metropolis Hastings algorithm allows us to do parameter estimation with-

out having to calculate the marginal likelihood. However, as mentioned earlier, the

likelihood for a model is given by marginalizing over all model parameters ~λ. If we

want to do model selection, we need a way to calculate the marginal likelihood of

the waveforms. Luckily, not only does a PTMCMC algorithm allow us to explore the

parameter space more efficiently, it also enables us to calculate the marginal likeli-

hood so that we can do model selection. This technique is known as thermodynamic

integration [123, 124, 117, 125], which parallels techniques used in thermodynamics

as the name suggests.

Thermodynamic integration uses the chains of different heats used in parallel

tempering to calculate the marginal likelihood, which we need for the Bayes’ factor

calculation between models. To help clean up the algebra in what follows, we gen-

eralize the method with an unnormalized probability distribution q(~λ), and a true

probability distribution p(~λ) given by the normalization factor Z. This corresponds

to making the following substitions:

q(~λ) = p(d|~λ,M)p(~λ|M)

q(~λ, β) = p(d|~λ,M)βp(~λ|M)

p(~λ) = p(~λ|d,M)

Z = p(d|M) =

∫
p(d|~λ,M)p(~λ|M)d~λ. (5.19)
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Near the end of the derivation we will substitute back in the more specific distributions

to make the application to gravitational wave astronomy more clear.

It may not be possible to calculate Z directly, but we can calculate it by defining

a partition function:

Z(β) ≡
∫
q(~λ, β)d~λ (5.20)

where β ranges from 0 to 1. We then take the natural log of Z and differentiate with

respect to β.

∂lnZ(β)

∂β
=

1

Z

∂

∂β
Z =

1

Z

∂

∂β

∫
q(~λ, β)d~λ (5.21)

Assuming the interchangebility of integration and differentiation, and following the

steps in [124], we get:

∂lnZ(β)

∂β
=

1

Z

∂

∂β

∫
q(~λ, β)d~λ

=

∫
d~λ

∂

∂β
q(~λ, β)

1

Z

=

∫
d~λ

1

q(~λ, β)

∂

∂β
q(~λ, β)

q(~λ, β)

Z

=

∫
d~λ
∂ ln q(~λ, β)

∂β

q(~λ, β)

Z

=

∫
d~λ
∂ ln q(~λ, β)

∂β
p(~λ, β) (5.22)

where p(~λ, β) is the properly normalized posterior distribution. The last line is simply

the expectation value of the log term.

∂lnZ(β)

∂β
= E

[
∂ ln q(~λ, β)

∂β

]
(5.23)
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From parallel tempering, we already have a good parameterizing factor β which

ranges from 0 to 1. Using Eqs. 5.19, Eq. 5.23 becomes

∂lnZ(β)

∂β
=

〈
∂ ln

(
p(d|~λ,M)βp(~λ,M)

)
∂β

〉

=

〈
∂

∂β

(
ln p(d|~λ,M)β + ln p(~λ,M)

)〉
=

〈
∂

∂β

(
β ln p(d|~λ,M)

)〉
=

〈
ln p(d|~λ,M)

〉
. (5.24)

Now we can integrate over β,

lnZ1 − lnZ0 =

∫ 1

0

dβ〈ln p(d|~λ,M)〉β. (5.25)

But from Eq. 5.19, we have

Zβ = pβ(d|M) =

∫
(p(d|~λ,M)βp(~λ|M)). (5.26)

For β = 1, this gives Z = p(d|M), and for β = 0, lnZ0 = 0. We are left with

ln p(d|M) =

∫ 1

0

〈
ln p(d|~λ,M)

〉
dβ (5.27)

which is what we were looking for. The Bayes’ Factor is given by:

lnB10 =
ln p(d|M1)

ln p(d|M0)
(5.28)

The integral in Eq. 5.27 can be approximated using the chains from our parallel

tempering. We can approximate the expectation value by taking the average of
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all likelihood values visited by each chain, and we can then perform the integral

numerically.

The above formalism gives an end-to-end algorithm for finding posterior distribu-

tions for all model parameters and for performing model selection between pairs of

models [120]. In the rest of the chapter, we develop a Hierarchical Bayesian algorithm

that also folds in the task of modeling a source population distribution.

5.3 Hierarchical Bayes

In the case of our population study, we can do parameter estimation and model

selection simulataneously using a technique known as Hierarchical Bayes. We de-

velop here a simple yet comprehensive Hierarchical Bayesian modeling approach that

uses the full multi-dimensional and highly correlated parameter uncertainties of a

collection of signals to constrain the joint parameter distributions of the underlying

astrophysical models. The method is general and can be applied to any number of

astrophysical model selection problems [126, 127, 128].

A remarkable feature of the Hierarchical Bayesian method is that in its purest form

it is completely free of selection effects such as Malmquist bias. By “purest form”

we mean where the signal model extends over the entire source population, including

those with vanishingly small signal-to-noise ratio [129]. In practice it is unclear how

to include arbitrarily weak sources in the analysis, and in any case the computational

cost would be prohibitive, so we are forced to make some kind of selection cuts on

the signals, and this will introduce a bias if left uncorrected [130].

To illustrate the Hierarchical Bayesian approach and to investigate where bias

can arise, we look at the problem of determining the population model for white

dwarf binaries in the Milky Way. Future space-based missions are expected to detect
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thousands to tens of thousands of white dwarf binaries [62, 107, 131, 106, 132]. Here

we focus on determining the spatial distribution and the chirp mass distribution, but

in future work we plan to extend our study to include a wider class of population

characteristics such as those described in Ref. [131]. Determining the galaxy shape

using gravitational wave observations of white dwarf binaries will be an independent

measure on the shape of the galaxy to complement electromagnetic observations.

Additionally, the white dwarf binaries that are not detectable form a very bright

stochastic foreground. Accurately modeling the confusion foreground level is crucial

for the detection of extragalactic stochastic gravitational wave signals [40].

Hierarchical Bayesian modeling has been around since at least the 1950’s [133,

134, 135, 136], but it is only now becoming widely known and used. The term

“hierarchical” arises because the analysis has two levels. At the highest level are the

space of models being considered, and at the lower level are the parameters of the

models themselves. Hierarchical Bayes provides a method to simultaneously perform

model selection and parameter estimation. In this work we will consider models

of fixed dimension that can be parameterized by smooth functions of one or more

hyperparameters. The joint posterior distribution for the model parameters ~λ and

the hyperparameters ~α given data d follows from Bayes’ theorem:

p(~λ, ~α|d) =
p(d|~λ, ~α)p(~λ|~α)p(~α)

p(d)
, (5.29)

where p(d|~λ, ~α) is the likelihood, p(~λ|~α) is the prior on the model parameters for a

model described by hyperparameters ~α, p(~α) is the hyperprior and p(d) is a normal-

izing factor

p(d) =

∫
p(d, ~α)d~α =

∫
p(d|~λ, ~α)p(~λ|~α)p(~α)d~λd~α . (5.30)



66

The quantity p(d, ~α) can be interpreted as the “density of evidence” for a model with

hyperparameters ~α.

As was the case when calculating the marginal likelihood, the integral marginal-

izing over the hyperparameters is often only tractable numerically, and this can be

computationally expensive. Empirical Bayes is a collection of methods that seek to

estimate the hyperparameters in various ways from the data [137, 138]. The MCMC

techniques developed above allow us to implement Hierarchical Bayesian modeling

without approximation by producing samples from the joint posterior distributions,

which simultaneously informs us about the model parameters ~λ and the hyperpa-

rameters ~α. This approach helps reduce systematic errors due to mis-modeling, as

the data helps select the appropriate model. An example of this is the use of hy-

perparameters in the instrument noise model, such that the noise spectral density is

treated as an unknown to be determined from the data [55, 139, 40]. Hierarchical

Bayesian modeling can be extended to discrete and even disjoint model spaces using

the Reverse Jump Markov chain Monte Carlo (RJMCMC) [140] algorithm. Each

discrete model can be assigned its own set of continuous hyperparameters.

5.3.1 Toy Model I

As a simple illustration of Hierarchical Bayesian modeling, consider some pop-

ulation of N signals, each described by a single parameter xi that is drawn from

a normal distribution with standard deviation α0. The measured values of these

parameters are affected by instrument noise that is drawn from a normal distribution

with standard deviation β. The maximum likelihood value for the parameters is then

x̄i = α0δ1 + βδ2 where the δ’s are i.i.d. unit standard deviates. Now suppose that

we employ a population model where the parameters are distributed according to a
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normal distribution with standard deviation α. Each choice of α corresponds to a

particular model with posterior distribution

p(xi|s, α) =
1

p(s, α)

N∏
i=1

1

(2παβ)
e−(x̄i−xi)2/2β2

e−x
2
i /2α

2

, (5.31)

and model evidence

p(s, α) =
1

(
√

2π
√
α2 + β2)N

∏
i

e−x̄
2
i /2(α2+β2) . (5.32)

To arrive at a Hierarchical Bayesian model we elevate α to a hyperparameter and

introduce a hyperprior p(α) which yields the joint posterior distribution

p(xi, α|s) =
p(xi|s, α)p(α)

p(s)
. (5.33)

Rather than selecting a single “best fit” model, Hierarchical Bayesian methods reveal

the range of models that are consistent with the data. In the more familiar, non-

hierarchical approach we would maximize the model evidence (Eq. 5.32) to find the

model that best describes the data, which is here given by

α2
ME =

1

N

N∑
i=1

x̄2
i − β2. (5.34)

Since Var(x̄i) = α2
0 + β2, we have

α2
ME = α2

0 ±O(
√

2(α2
0 + β2)/

√
N) . (5.35)

The error estimate comes from the sample variance of the variance estimate. In the

limit that the experimental errors β are small compared to the width of the prior α0,
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the error in α scales uniformly as 1/
√
N . The scaling is more complicated when we

have a collection of observations with a range of measurement errors. Suppose that

the measurement errors are large compared to the width of the prior, and that we

have N1 observations with standard error β1, N2 observations with standard error β2,

etc., then the error in the estimate for α is

∆α2 =

(∑
i

Ni

β4
i

)−1/2

. (5.36)

Recalling that 1/βi scales with the signal-to-noise ratio of the observation, we see that

a few high SNR observations constrain α far more effectively than a large number of

low SNR observations.

The above calculation shows that the maximum evidence criteria provides an

unbiased estimator for the model parameter α0, but only if the measurement noise is

consistently included in both the likelihood and the simulation of the x̄i. Using the

likelihood from (Eq. 5.31) but failing to include the noise in the simulations leads to

the biased estimate α2
ME = α2

0−β2. Conversely, including noise in the simulation and

failing to account for it in the likelihood leads to the biased estimate α2
ME = α2

0 + β2.

These same conclusions apply to the Hierarchical Bayesian approach, as we shall see

shortly.

5.3.1.1 Numerical Simulation The joint posterior distribution (Eq. 5.33) can

be explored using MCMC techniques. To do this we produced simulated data with

N = 1000, α0 = 2, and β = 0.4 and adopted a flat hyperprior for α. The posterior

distribution function for α, marginalized over the xi, is shown in Fig. 5.1. The

distribution includes the injected value, and has a spread consistent with the error
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estimate of (Eq. 5.35). The Maximum-a-Posteriori (MAP) estimate for α has been

displaced from the injected value of α0 = 2 by the simulated noise.
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Figure 5.1: The marginalized PDF for α. The injected value is indicated by the
vertical black line.

To test that there is no bias in the recovery of the model hyperparameter α, we

produced 30 different realizations of the data and computed the average MAP value.

Fig. 5.2 shows the MAP value for each of these realizations and the corresponding

average. We see that as we average over multiple realizations α does indeed converge

to the injected value. The blue line in Fig. 5.2 shows a biased recovery for α when

noise is not included in the data. We instead recover α =
√
α2

0 − β2 ≈ 1.96.
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Figure 5.2: MAP values for 30 different simulations of the toy model. The red curve
includes noise in the simulated signal and converges to α0 as expected. The blue
curves does not include noise in the simulation and converges to α2

0 − β2.

5.3.2 Toy Model II

The Hierarchical Bayesian approach produces un-biased estimates for the model

parameters if the signal and the noise (and hence the likelihood) are correctly modeled.

However, in some situations the cost of computing the likelihood can be prohibitive,

and it becomes desirable to use approximations to the likelihood, such as the Fisher

Information Matrix. For example, to investigate how the design of a detector influ-

ences its ability to discriminate between different astrophysical models, it is necessary

to Monte Carlo the analysis over many realizations of the source population for many

different instrument designs, which can be very costly using the full likelihood.
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To explore these issues we introduce a new toy model that more closely resembles

the likelihood functions encountered in gravitational wave data analysis. Consider

a waveform h0 that represents a single data point (e.g. the amplitude of a wavelet

or a Fourier component), which can be parameterized in terms of the distance to

the source d0. The instrument noise n is assumed to be Gaussian with variance β2.

Here we will treat the noise level β as a hyperparameter to be determined from the

observations. Adopting a fiducial noise level β0 allows us to define a reference signal-

to-noise ratio SNR2
0 = h2

0/β
2
0 . The likelihood of observing data s = h0 +n for a source

at distance d with noise level β is then

p(s|d, β) =
1√
2πβ

e−(s−h)2/(2β2), (5.37)

where h = (d0/d)h0. The likelihood is normally distrubuted in the inverse distance

1/d, with a maximum that depends on the particular noise realization n,

1

dML

=
1 + n/(β0SNR0)

d0

. (5.38)

Now suppose that the distances follow a one-sided normal distribution p(d ≥ 0) =

2√
2πβ

exp(−d2/2α2
0), and that we adopt a corresponding model for the distance distri-

bution with hyperparameter α and a flat hyperprior.

We simulate the data with N = 1000 sources with α0 = 2 and β = 0.05. The

values of α0 and β were chosen to give a fiducial SNR = 5 for d = 2α0. In the first of

our simulations the value of β was assumed to be known and we computed the MAP

estimates of α for 30 different simulated data sets. As shown in Fig. 5.3, the average

MAP estimate for α converges to the injected value.
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Figure 5.3: MAP values for 30 different realizations of the toy model II. Using the full
likelihood (red) the MAP values converge to the injected value, but with the Fisher
Matrix approximation to the likelihood (blue) there is a bias.

In contrast to the first toy model where only the combination α2+β2 is constrained

by the data, in this more realistic toy model both the noise level β and the model

hyperparameter α are separately constrained. Fig. 5.4 shows the marginalized PDFs

for both β and α. Tests using multiple realizations of the data show that the MAP

values of α and β are un-biased estimators of the injected parameter values.

5.3.2.1 Approximating the Likelihood For stationary and Gaussian instrument

noise the log likelihood for a signal described by parameters ~λ is given by

L(~λ) = −1

2
(s− h(~λ)|s− h(~λ)), (5.39)
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Figure 5.4: PDFs for the prior hyperparameter α and the noise level β for toy model
II. Both are individually constrained in this model. The injected values are shown by
the black lines.

where (a|b) denotes the standard noise-weighted inner product, and we have supressed

terms that depend on the noise hyperparameters. We expand the waveform h(~λ)

about the injected source parameters ~λ0 and get

h(~λ) = h(~λ0) + ∆λih̄,i + ∆λi∆λjh̄,ij +O(∆λ3) (5.40)

where ∆~λ = ~λ − ~λ0, and it is understood that the derivatives are evaluated at ~λ0.

Expanding the log likelihood we find:

L(∆~λ) = − 1

2
(n|n) + ∆λi(n|h,i)

− 1

2
∆λi∆λj(h,i|h,j) +O(∆λ3) . (5.41)
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The maximum likelihood solution is found from ∂L/∂∆λi = 0, which yields ∆λiML =

(n|hj)Γij, where Γij is the inverse of the Fisher Information Matrix Γij = (h,i|h,j).

Using this solution to eliminate (n|h,i) from (Eq. 5.41) yields the quadratic, Fisher

Information Matrix approximation to the likelihood:

L(~λ) = const.− 1

2
(λi − λiML)(λj − λjML)Γij . (5.42)

This form of the likelihood can be used in simulations by drawing the ∆λiML from a

multi-variate normal distribution with covariance matrix Γij.

In our toy model Γdd = SNR2
0β

2
0/(β

2d2
0), and L(d) = −SNR2

0β
2
0(d−dML)2/(2β2d2

0).

The approximate likelihood follows a normal distribution in d while the full likelihood

follows a normal distribution in 1/d. For signals with large SNR this makes little

difference, but at low SNR the difference becomes significant and results in a bias in

the recovery of the model hyperparameters, as shown in Fig. 5.3. In this instance there

is a simple remedy: using u = 1/d in place of d in the quadratic approximation to the

likelihood exactly reproduces the full likelihood in this simple toy model. However,

it is not always so easy to correct the deficiencies of the quadratic Fisher Information

Matrix approximation to the likelihood.
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CHAPTER 6

GRAVITATIONAL WAVE ASTRONOMY APPLICATIONS

In this chapter, we present several LISA and eLISA results using the Bayesian

formalism described in the previous chapter. We first show a Hierarchical Bayesian

analysis of the white dwarf binary population in the galaxy. We achieve constraints

that are applied in the subsequent analysis of stochastic signals. We then look at

the simplest case of searching for a stochastic background amidst instrument noise

only. Lastly, we fold in the added complexity of the white dwarf binary confusion

foreground signal.

6.1 Measurement of Galaxy Distribution Parameters

To illustrate how the Hierarchical Bayesian approach developed in the last chapter

can be applied to an astrophysically relevant problem, we investigate how population

models for the distribution of white dwarf binaries in the Milky Way galaxy can be

constrained by data from a space-based gravitational wave detector. Several studies

have looked at parameter estimation for individual white dwarf binaries in the Milky

Way [141, 142, 143]. We extend these studies to consider how the individual obser-

vations can be combined to infer the spatial and mass distributions of white dwarf

binaries in the Galaxy.

We present results for both LISA and eLISA missions. We focus this analysis on

short-period galactic binaries, with gravitational wave frequencies above 4 mHz. Our

conclusions for the two missions are very similar, as both are able to detect roughly

the same number of galactic binaries in the frequency bands considered here.
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The 4 mHz lower limit is chosen to simplify the analysis in two ways. Firstly, it

avoids the signal overlap and source confusion problems that become significant at

lower frequencies [107], and secondly, it circumvents the issue of sample completeness

and Malmquist selection bias since LISA’s coverage of the galaxy is complete at high

frequencies. This claim is substantiated in Fig. 6.1 showing the cumulative percentage

of binaries detected as a function of frequency for a 4 year LISA mission. A given

frequency bin represents the percentage of binaries of that frequency and higher that

are detected. All binaries above ∼ 4 mHz are detectable by LISA, of which there are

∼ 5000.

It would be possible to extend our analysis to include all detectable white dwarf

binaries if we were to properly account for the undetectable sources. One way to do

this is to convolve the astrophysical model priors by a function that accounts for the

selection effects [130] so that we are working with the predicted observed distribution

rather than the theoretical distribution. Another approach is to marginalize over the

un-detectable signals [129].

The high frequency signals are not only the simplest to analyze, but they also tend

to have the highest signal-to-noise ratios, the best sky localization, and the best mass

and distance determination due to their more pronounced evolution in frequency.

When simulating the population of detectable sources we will assume that binaries

of all frequencies above 4 mHz are homogeneously distributed throughout the galaxy

and share the same chirp mass distribution. In reality, the population is likely to be

more heterogenous, and more complicated population models will have to be used.

Analyzing simulated data with the full likelihood is computationally taxing and,

when performing a large suite of such studies, could prove to be prohibitive. To

mitigate the cost of such analyses, we test a much faster approach (approximately

50 times faster), using the Fisher matrix approximation to the likelihood that we
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Figure 6.1: The percentage of sources which are detectable as a function of frequency.
Virtually 100% of the white dwarf binaries in the Milky Way above 4 mHz would be
detected by LISA.

demonstrated with a toy model in Chapter 5. We find the results are significantly

less biased by the Fisher approximation when using 1/d as the parameter that encodes

the distance to the source. This simple adjustment gives adequately reliable results in

significantly less time than the brute-force calculation, and will provide an additional,

useful metric to gauge the relative merits of proposed space-based gravitational wave

missions.
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6.1.1 White Dwarf Likelihood

The likelihood for a single source is given by

p(s|~λ) = Ce−(s−h(~λ)|s−h(~λ))/2 . (6.1)

Here p(s|~λ) is the likelihood that the residual s− h(~x) is drawn from Gaussian noise,

where s is the data, and h(~λ) is the signal produced in the detector by a source

described by parameters ~λ. The simulated data s = h(~λ0) + n includes a waveform

h(~λ0) and a realization of the LISA instrument noise n. The normalization con-

stant C depends on the instrument noise levels, but is independent of the waveform

parameters.

The waveform for a white dwarf binary is well approximated by

h+(t) =
1

d

4GMΩ2

c4

(
1 + cos2 ι

2

)
cos(Ωt)

h×(t) =
1

d

4GMΩ2

c4
cos ι sin(Ωt), (6.2)

where Ω = 2πf . Eq. 6.2 is an abbreviated form of Eq. 4.1, where we have explicitly

separated out the distance dependence in Eq. 6.2 to emphasize its importance to the

analysis here. We have 8 parameters that describe a white dwarf binary signal, the

frequency f , the distance to the source d, the chirp mass M, the inclination angle ι,

a polarization angle ψ, a phase angle ϕ0, and sky location parameters θ and φ. The

frequency evolution is given by Eq. 4.5. Sources with ḟ T 2 SNR ∼ 1, where T is the

observation time, provide useful measurments of the chirp mass M and the distance

d [144, 145]. The strong f dependence in Eq. 4.5 is the reason why high frequency

binaries are the best candidates for placing strong constraints on the distance and

chirp mass.
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6.1.2 Prior and Hyperparameters

The spatial density ρ, Eq. 4.6, becomes our prior distribution for the spatial

distribution of galactic binaries. The parameters of the density distribution A, Rb,

Rd and Zd become hyperparameters in the Hierarchical Bayesian analysis. Each set

of values for the four parameters corresponds to a distinct model for the shape of

the galaxy. For our simulations, we chose a galaxy with A = 0.25, Rb = 500 pc,

Rd = 2500 pc, and Zd = 200 pc.

Our ability to measure the hyperparameters of the spatial distribution depends

on how well we measure the sky location and distance for each binary. For many

sources, the distance is poorly determined because it is highly correlated with the

chirp mass. However, there are enough binaries that have sufficiently high frequency,

chirp mass and/or SNR to provide tight constraints on the chirp mass distribution.

The empirically determined chirp mass distribution can then be used as a prior for

the lower SNR, less massive, or lower frequency sources to improve their distance

constraints.

Fig. 6.2 shows the chirp mass distribution for binaries in our simulated galaxy.

We use this distribution to construct a hyperprior on the chirp mass, approximated

by the following distribution:

ρMc =
C(

M
M0

)−a
+ a

b

(
M
M0

)b , (6.3)

where M0, a, and b are hyperparameters in our model. C is the normalization

constant which can be calculated analytically and is given by

C =M0π
b

a+1
a+b a−

a+1
a+b

(a+ b) sin π(b−1)
a+b

. (6.4)
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M0 is the mode of the distribution. The hyperparameters a and b determine the

width of the distribution, which can be seen by calculating the full width at half

maximum (FWHM). It is given by

FWHM =M0

(
[2(b/a+ 1)]1/b − [2(a/b+ 1)]−1/a

)
. (6.5)

We further assume that the orbital evolution is due only to the emission of gravi-

tational waves, and is thus adequately described by Eq. 4.5. In principle, one would

want to be more careful and consider tidal effects and mass transfer [146] as possible

contributions to ḟ . However, it is expected that the high frequency sources we are

focusing on will be mostly detached white dwarf binaries where tidal or mass transfer

effects are unlikely to be significant [147].

6.1.3 Results

We are able to efficiently calculate the full likelihood for each source (Eq. 6.1)

using the fast waveform generator developed by Cornish and Littenberg [55]. The

following results are all derived from simulations using the full likelihood. Using

the same MCMC approach from our toy models, we sample the posterior and get

PDFs for source and model parameters simultaneously. We check for convergence by

starting the chains at different locations in the prior volume and find that regardless

of starting location, the chains converge to the same PDFs.

Our procedure successfully recovers the correct chirp mass distribution, as shown

in Fig. 6.2 and is able to meaningfully constrain the parameters of the galaxy distri-

bution and chirp mass distribution models, with PDFs shown in Fig. 6.3 and Fig. 6.4

respectively.
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Figure 6.2: The chirp mass distribution of the 5000 binaries used in our simulations
is shown in red. The green distribution shows the MAP values of the recovered chirp
mass for each binary, and the blue shows the model (Eq. 6.3) using the MAP values
for the chirp mass prior hyperparameters. The brightest binaries accurately capture
the chirp mass distribution, which serves as a useful prior for sources whose chirp
masses are not so well determined.

We ran simulations with 100, 1000, and 5000 binaries to show how the constraints

on the galaxy hyperparameters improve as we include more sources (for comparison,

eLISA is expected to detect between 3500-4100 white dwarf binaries during a 2-year

mission lifetime [62]). The chains run for 1 million, 500k, and 100k iterations respec-

tively. Even for a relatively modest number of detections we begin to get meaningful

measurements on the population model of white dwarf binary systems. The more

binaries we use in our analysis the tighter our constraints on the hyperparameters

will be.
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Figure 6.3: PDFs for the four galaxy model hyperparameters. The red is for a
simulation using 100 binaries, the green 1000 binaries, and the blue 5000 binaries.
The black lines show the true values of the distribution from which the binaries were
drawn.

Table 1 lists the recovered MAP values and the variance of the marginalized poste-

rior distribution function for each hyperparameter. Gravitational wave observations

would be very competitive with existing electromagnetic observations in constraining

the shape of the galaxy [148, 149]. Making direct comparisons between our results

to those in the literature is complicated, as the actual values of the bulge and disk

radii are very model dependent. For example, Juric uses a model where the galaxy

is comprised of both a thin and thick disk. With GW data in hand, this comparison

could easily be made by trivially substituting the density profile used here.

What matters for this proof-of-principal study is how well the parameters can be

constrained. In the models of Juric et al., constraints for the disk radii are around
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Figure 6.4: PDFs for the three chirp mass model hyperparameters and the FWHM
of the distribution. The red is for a simulation using 100 binaries, the green 1000
binaries, and the blue 5000 binaries.

20%. We find similar accuracy when using a pessimistic population of 100 systems.

Adopting a source catalog that is more consistent with theoretical predictions, we

find constraints for the disk parameters as low as 1.5% – a substantial improvement

over the state-of-the-art.

6.1.4 Approximating the Likelihood

While in this case it is very efficient, the full likelihood is nonetheless expensive

to compute, posing problems if we wish to do extensive studies of many astrophysical

models or detector configurations. For such exploratory studies, it is preferable to use

the Fisher Information Matrix approximation to the likelihood of Eq. 5.42. However,

as we saw with the toy model in Chapter 5, this can lead to biases in the recovered
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Table 6.1: Galaxy Distribution Parameter MAP Values

100 1000 5000
Parameter MAP σ MAP σ MAP σ

A 0.262 0.047 0.226 0.0157 0.249 0.0074
Rb (pc) 440 58.9 490 17.1 480 8.38
Rd (pc) 2465 237.5 2584 70.2 2461 32.4
Zd (pc) 193 20.8 201 7.02 195 3.25

M0 0.226 0.0063 0.208 0.0018 0.205 0.00088
FWHM 0.07 0.0094 0.071 0.0026 0.076 0.0014

MAP values and variances for the galaxy hyperparameters when using 100,
1000 and 5000 galactic binaries in the analysis. The simulated values were A = 0.25,
Rb = 500pc, Rd = 2500pc, and Zd = 200pc.

parameters. The Fisher matrix Γij is not a coordinate invariant quantity, and we

can at least partially correct the bias by reparameterizing our likelihood. Just as

in Chapter 5, instead of using the distance d as a variable, we can instead use 1/d,

which provides a much better approximation to the full likelihood. We test these

short-cuts by redoing the analysis of the galactic population using the Fisher matrix

approximation to the likelihood (both with d and 1/d as parameters) and compare

it to the results from the previous analysis using the full likelihood. Fig. 6.5 shows

PDFs for the galaxy hyperparameters using the three different methods for computing

p(d|~λ) with the full sample of 5000 binaries.

We find that the approximation using 1/d matches the full likelihood better than

the likelihood parameterized with d, however there are additional discrepancies due

to non-quadratic terms in the sky location {θ, φ} that we have not accounted for. The

dependence of the waveform on {θ, φ} is more complicated than the distance, and is

not so easily corrected by a simple reparameterization. The approximation could be
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Figure 6.5: PDFs from a simulation using 5000 binaries for the four galaxy model
hyperparameters using the full likelihood (red), a Fisher approximation in d (green),
and a Fisher approximation in 1/d (blue).

improved by carrying the expansion of the likelihood beyond second order, however

this is computationally expensive and can be numerically unstable.

If we analyze several realizations of the galaxy using the three different likelihood

functions and average the results, we find the biases are persistent for the approximate

methods. Fig. 6.6 shows the MAP values and the average of the MAP values for 10

realizations of our fiducial galaxy model. The biases in the recovered disk radius and

disk height are particularly pronounced when using the Fisher Matrix approximation

to the likelihood parameterized with d.
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binaries for the four galaxy model hyperparameters using the full likelihood (red),
a Fisher Matrix approximation parameterized with d (green), and a Fisher Matrix
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6.1.5 Conclusion

In summary, when the data from a space-borne detector has been collected, the

resolvable white dwarf binaries will be regressed from the data, leaving behind a

confusion-limited foreground which will significantly contribute to the overall power

in the data around ∼ 1 mHz. The bright binaries will place tight constraints on the

distribution of white dwarf binaries throughout the galaxy. Measuring the overall

shape of the galaxy as demonstrated here will provide additional means to charac-

terize the level of the confusion noise. As we will show below, we can then use the

detailed understanding of the foreground signal to detect a stochastic gravitational

wave background at levels well below the confusion noise.
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6.2 Separating a Background from Instrument Noise

We first show the simple case of separating a stochastic background from instru-

ment noise by applying our approach to simulated data from the third round of the

MLDC, and show that we are able to accurately recover the stochastic signal and

independently measure the position and acceleration noise levels in each arm of the

interferometer. We carry out our analysis using a noise orthogonal A,E, T set of

TDI channels. In this basis, and for equal arm-lengths, the T channel is insensitive to

gravitational wave signals at low frequencies. We show how this gives an improvement

for a 6-link detector over a 4-link configuration.

6.2.1 Stochastic Likelihood

Unlike the likelihood for white dwarf binaries, our likelihood for stochastic signals

does not include a source template h. The signal s is equal to what we call the

noise n, but here the “noise” includes contributions from instrument noise as well

as stochastic signals. For Gaussian signals and noise, the likelihood of measuring

cross-spectra < XiX
∗
j > is given by:

p(X|~λ) = Π
1

(2π)N/2|C|
eXiC

−1
ij Xj (6.6)

where C is the noise correlation matrix, Xi = {A,E, T}, N is the number of samples

in each channel and ~λ → (Sai , S
p
j ,Ωgw, n) denotes the parameters in our model. The

noise correlation matrix is given by

Cij =


〈AA∗〉 〈AE∗〉 〈AT ∗〉

〈EA∗〉 〈EE∗〉 〈ET ∗〉

〈TA∗〉 〈TE∗〉 〈TT ∗〉

 . (6.7)
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For a 4-link detector, the matrix simplifies to

Cij = 〈XX∗〉 . (6.8)

In general, our model consists of the strain spectral densities for the confusion

foreground, the instrument noise, and a stochastic gravitational wave background

for each of the interferometer cross spectra (XX∗, AA∗, TT ∗, etc.). As mentioned

before, we use an equal arm, stationary approximation for the LISA arm lengths. For

a stochastic background and instrument noise only, the model is the sum of the two

individual pieces:

〈XX∗〉 = 〈XX∗noise〉+ 〈XX∗sgwb〉 . (6.9)

We compute the posterior distribution function p(Sai , S
p
j |xk) using the MCMC tech-

niques developed in Chapter 5.

Following the search phase, we employ the Bayesian analysis of Chapter 5 to

calculate posterior distributions for our model parameters. We also calculate a Bayes

ratio of the evidences for a model without a stochastic background and a model with

a stochastic background using thermodynamic integration. This Bayes factor for the

two models indicates our level of confidence in which model better describes the data.

For a Bayes factor of 30 or above, we can generally claim a confident detection. We

use several different stochastic background strengths to determine the lowest level

that we are confidently able to detect.

Combined with a prior for the model parameters, p(~λ), we are able to generate

samples from the posterior distributions function p(~λ|X) = p(X|~λ)p(~λ)/p(X) using

the PTMCMC algorithm from Chapter 5. Lacking a detailed instrument model or

relevant experimental data, we choose to use uniform priors for the 12 instrument
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Table 6.2: Prior Ranges for Model Parameters

Parameter Range

Position Noise 4 · 10−43 4 · 10−41

Acceleration Noise 9 · 10−51 9 · 10−49

ln Ωgw −30.0 −24.5
Ωgw 9.4 · 10−14 2.3 · 10−11

Slope -1 1

noise levels, allowing a factor of ten variation above and below the nominal levels.

Our prior ranges are given in Table 6.2. The energy density was taken to be uniform

in ln(Ωgw) across the range [−30,−24.5]. We considered two models for the spectral

slope, either assuming a scale invariant background and fixing m = 0, or allowing the

spectral index m to be uniform in the range [−1, 1].

For the proposal distribution we used a mixture of uniform draws from the full

prior range, and draws from a multivariate Gaussian distribution computed from

the Fisher Information Matrix [120]. Correlations between the parameters, and the

frequency dependence of the spectra complicate the computation of the Fisher Matrix,

but the basic idea can be understood by considering zero mean white noise with

variance σ. The relevant question is, how well can the noise level σ2 be determined

from N noise samples? The likelihood of observing the data {xi} is

L =
1

(2π)N/2σN
exp

(
−
∑N

i=1 x
2
i

2σ2

)
, (6.10)

which yields a maximum likelihood estimate for the noise level of σ̂2 =
∑

i x
2
i /N . The

Fisher Matrix has a single element:

Γσσ = −∂
2 lnL

∂σ2
|ML =

N

2σ̂2
. (6.11)
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Thus, the error in the estimated noise level is ∆σ2 = 2σ∆σ = σ2/
√
N/2. We see

that the fractional error in the noise level estimate scales as the square root of the

number of data points. The same is true for the more complicated colored spectra in

our LISA noise model. Noting that the acceleration noise dominates below ∼ 1 mHz,

while the position noise dominates above ∼ 3 mHz, it follows that the effective number

of samples available to constrain the acceleration noise is of order Na ∼ 1 mHz×Tobs.

The position noise is far better constrained, with order Np ∼ fN×Tobs samples, where

fN is the Nyquist frequency of the data. We show later that only the sums of the

instrument noise levels in each arm are strongly constrained, so the Fisher matrix

approach leads to very large jumps being proposed in the noise level differences in

each arm. To maintain a good acceptance rate, we capped the variance in the weakly

constrained directions to be ten times the variance in the well constrained directions.

6.2.1.1 Mock LISA Data Challenge Training Data Results We tested our anal-

ysis technique on simulated data from the third round of the Mock LISA Data Chal-

lenge. We ran our analysis on Challenge 3.5 which is described in Section 2. Note

that we used prior ranges far wider than those described in the MLDC as we wanted

to test our approach in a more realistic setting.

We found that the signal transfer functions in the training data did not match

our analytic model. We traced the problem to the time domain filters that were

used to generate the data sets, which introduced additional transfer functions in the

frequency domain. Since the analytic form for these transfer functions has not been

published, we used the training data to estimate the transfer functions and update

our signal model.

Using the analysis from Chapter 5, we recover the PDFs for the noise parameters

and stochastic background energy density as shown in Figs. 6.7-6.10.
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Figure 6.7: Histograms showing the PDFs for the position noise levels, scaled by the
nominal level, Eq. 2.10. On the left are the sums along each arm, and on the right
are the differences. The vertical lines denote the injected values.

We see that only the sums of the noise contributions in each arm are constrained

(the acceleration and position noise contributions can be separated though as they

have very different transfer functions). The detector is only sensitive to the change

in length for each arm, not to the movement of the individual test masses. Fig. 6.7

provides an example of this by showing that the sums Spji + Spij are well constrained,

while the differences Spji − Spij are poorly constrained. Also note that the position

noise levels are far better determined than the acceleration noise levels, as expected

from our Fisher Matrix analysis. The position noise extends over more frequency

bins, and this added information leads to tighter constraints on the uncertainty.
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Figure 6.8: Histograms showing the PDFs for the position noise levels, scaled by the
nominal level, Eq. 2.11. On the left are the sums along each arm, and on the right
are the differences. The vertical lines denote the injected values.

6.2.2 Detection Limits

Having established that our algorithm can faithfully recover a stochastic back-

ground level of Ωgw ∼ 10−11 with one month of data, we next turned to the problem of

determining the LISA detection limit for an approximately scale invariant stochastic

gravitational wave background. To do this we generated a new set of simulated data

sets by re-scaling the gravitational wave contribution to the MLDC training data,

and used Bayesian model selection to compared the evidence for two models, M0 -

the data is described by instrument noise alone, and M1 - the data is described by

instrument noise and a stochastic gravitational wave background. Plots of the Bayes

factor, or evidence ratio, as a function of Ωgw are shown in Fig. 6.11. We performed
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Figure 6.9: PDF for the gravitational wave background level (scaled up by 1013). The
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multiple runs with different random number seeds as a way to estimate the numerical

error in our Bayes factors. Our detection confidence becomes very strong (a Bayes

factor of 30) for a background level of Ωgw = 6 × 10−13 with one month of data.

With one year of data the limit improves to Ωgw = 1.7× 10−13, based on the scaling

argument described in Section 6.2.1.

It is interesting to note that the detection limit does not change if we include the

spectral slope of the background as a model parameter. At first this seems a little

surprising, as the simulated data has a spectral slope of m = 0, so we would expect

the simpler model with m = 0 to be favored over the more complicated model with

m as a free parameter. Further investigation revealed that the more complicated

model was able to provide a slightly better fit to the data, and that this was enough
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Figure 6.10: PDF for the gravitational wave background slope.

to compensate for the additional complexity of the model in the calculation of the

model evidence. Our hypothesis is that our signal model is imperfect because of

the need to use numerical fits to the transfer functions introduced by the simulation

software, and that the freedom to adjust the spectral slope of the background is able

to compensate for this imperfection.

6.2.3 The Role of Null Channels and 4-link Operation

Previous analyses of stochastic background detection with LISA have emphasized

the importance of the gravitational wave insensitive null channel that can be formed

from the Sagnac or Michelson interferometry channels (to be precise these channels

are only null in the zero frequency limit, at non-zero frequencies they do respond

weakly to gravitational signals because of finite arm-length effects). Hogan and Ben-
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Figure 6.11: Bayes factor showing the detectability versus background level. The
curve shows the average values of the scattered points.

der showed how this null channel could be used to construct a statistic that measures

the amplitude of the stochastic background [76]. The importance of null channels has

also been emphasized in the context of searches for un-modeled gravitational wave

signals in ground and space-based detectors. For example, in the LIGO-Virgo searches

for un-modeled gravitational wave bursts, it has been shown that the sensitivity can

be improved by using the sums and differences of the output from the two (H2) and

four (H1) kilometer detectors at the Hanford site. The null channel H− = H1−H2

is insensitive to gravitational waves, and has proven useful as a tool to distinguish

between instrumental artifacts and gravitational wave signals [38, 150].

It may therefore seem a little surprising that the null “T” channel plays no priv-

ileged role in the present analysis. The reason is simple: when using a Gaussian



96

likelihood function the coordinate transformation in signal space that produces the

null channel leaves the likelihood unchanged. For example, when we repeat our anal-

ysis using the cross spectra for the {X, Y, Z} channels we get results that are identical

to what we found with the {A,E, T} channels. It is only when the instrument noise

is not well understood, and there are significant departures from stationarity and

Gaussianity that null channels become important. It would be naive to assume that

the LISA data will be perfectly stationary and Gaussian, and we expect the T -channel

will play a key role in detector characterization studies. That is our motivation for

the calculation described in the next section, where we derive a new version of the

T -channel that is insensitive to gravitational waves for unequal arm-lengths.

Figure 6.12: Bayes factors for the X, Y, and Z channels.
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With the current baseline design for LISA, the failure of one proof mass leaves us

with a single interferometry channel. In most instances, it is then possible to configure

the array to produce a single X type TDI channel (alternatively we can work with

a single Beacon, Monitor or Relay channel). LISA has a built in redundancy that

eLISA lacks. With one channel the number of cross-spectra drops from 6 to 1, and

the null direction in signal space (the T channel) is lost. On the other hand, the

number of noise variables drops from 12 to 8 (the effective dimension of the noise

model drops from 6 to 4 since only the sums of noise contributions along each arm

can be inferred from the gravitational wave data). To study these competing effects

and to compare LISA and eLISA, we repeated our analysis using a single X type

TDI channel. We performed runs on each of the X, Y and Z channels to see how the

particular noise and signal realization in each channel impacted our ability to detect

a stochastic background signal. The results of this study are shown in Fig. 6.12.

We see that the detection threshold for a single channel is roughly a factor of two

worse than when all links are operational. This result appears to contradict the usual

statement that LISA can only detect stochastic backgrounds when the null channel is

available, but it should be remembered that we are using the very strong assumption

that the instrument noise is stationary and Gaussian, and the individual noise sources

have known spectral shape. With these assumptions we find that the high frequency

portion of the spectrum fixes the shot noise levels to very high precision, so any

deviations in the total spectrum in the 1→ 10 mHz range caused by a scale invariant

stochastic background stand out in stark relief.

In future studies it would be interesting to see how the detection limits are affected

by relaxing the assumptions in our noise model. It would also be interesting to have

a better sense of how well component level engineering models, ground testing and

in-flight commissioning studies can constrain the instrument noise model.
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6.3 Including the Galactic Foreground

Having shown that a single space-based detector is capable of separating a stochas-

tic gravitational wave background from instrument noise, we now turn to the problem

of including the galactic white dwarf foreground in our analysis. Using the constraints

on the galaxy distrubution parameters found at the beginning of this chapter, we can

proceed to the full analysis containing a galactic white dwarf foreground. Our model,

Eq. 6.9, becomes

〈XX∗〉 = 〈XX∗noise〉+ 〈XX∗sgwb〉+ 〈XX∗galaxy〉 . (6.12)

As before, our analysis provides uncertainties for the instrument noise levels, the

galaxy shape Fourier coefficients, and the stochastic background energy density and

spectral slope.

We use the same Bayesian analysis pipeline from Chapter 5 to calculate PDFs for

our model parameters and to do Bayesian model selection. The only difference in the

likelihood arises from our treatment of the modulation. We divide the year into 50

segments and calculate the likelihood for each segment. We then take the product of

the segments to get a total posterior distribution for all the data,

p(X|~λ) =
∏ 1

(2π)N/2|Cd|
eX

d
i C

d
ij
−1
Xd

j . (6.13)

Here, d labels the time segments.

We ran our analysis for both a full 6-link LISA as well as a 4-link version. For the

6-link configuration, we use the orthogonal A, E, and T channels.
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Figs. 6.13 and 6.14 show the posterior distributions for our noise model param-

eters. We see again that only the total noise (i.e. Sp12 + Sp21) in each interferometer

arm is well constrained.
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Figure 6.13: The PDFs for the six constrained noise parameter combinations for the
AET channels. The position noise parameters are on the left and the acceleration
noise parameters on the right. The black (solid) vertical lines show the injected values.
The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

For the 4-link configuration, the sum of all four noise levels is constrained. This

can be seen from Eqs. 2.5 and 2.6. The position noise extends over a larger frequency

band and is better constrained than the acceleration noise.

Figs. 6.15 and 6.16 show the posterior distributions for Ωgw for both the flat spec-

trum case and the frequency dependent case. In Fig. 6.15, the injected background

level is Ωgw = 2 · 10−13 and in Fig. 6.16 it is Ωgw = 5 · 10−13. We show later that



100

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

-0
.5

4

-0
.5

2

-0
.5

-0
.4

8

-0
.4

6

-0
.4

4

-0
.4

2

-0
.4

-0
.3

8

(S
p

12 + S
p

21 + S
p

13 + S
p

31 - 4)/ Sp

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

-2 -1
.5

-1 -0
.5

 0  0
.5

 1  1
.5

 2

(S
a

12 + S
a

21 + S
a

13 + S
a

31 - 4)/ Sa

Figure 6.14: The constrained position (left) and acceleration (right) noise parameters
for X. The black (solid) vertical lines show the injected values. The blue (dashed)
PDFs include slope fitting and the red (solid) PDFs do not.

these are the lowest background levels that could be confidently detected for the AET

channels and X channel respectively.

When the proposed slope of the stochastic background matches or nearly matches

the slope for either the instrument noise or the galactic foreground, there will be

some correlation between the model parameters. This leads to greater spreads in the

PDFs of the model parameters. Figs. 6.15 and 6.16 show that the PDFs from the

model with a spectral slope are indeed broader than the PDFs for the model with

m = 0. The effect is more pronounced for the X-channel case than for AET. For

the slope parameter in the X-channel case, we even see in Fig. 6.15 that there is a

peak for m = −1. The PDF is broad enough that we wouldn’t be able to confidently

distinguish between a slope of 0 and a slope of −1. In Figs. 6.19 - 6.21, we see that this
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Figure 6.15: The stochastic gravitational wave background level, Ωgw, and slope
parameter, m, for AET. The black (solid) vertical lines show the injected values. The
blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

increase in uncertainty leads to a higher upper bound on the stochastic background

level.

Figs. 6.17 and 6.18 show the PDFs for the galactic foreground model parameters.

We show the first three Fourier coefficients and the last three. The C0 coefficient sets

the DC amplitude level for the galaxy. The other Fourier coefficients determine the

shape. While there are 17 Fourier coefficients, the basic shape is determined by the

first 5 or 6 and the higher coefficients only add fine details that are not well resolved

in our analysis.
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Figure 6.16: The stochastic gravitational wave background level, Ωgw, and slope
parameter, m, for X. The black (solid) vertical lines show the injected values. The
blue (dashed) PDF includes slope fitting and the red (solid) PDF does not.

6.3.1 Bayesian Model Selection

In Section 6.2.2, we suggested that the model with a spectral slope parameter

should always perform worse than the model without a slope. The extra degree of

freedom will allow the model to fit the data better, however, it also comes with a

penalty. In Bayesian model selection, higher dimensional models have a larger prior

volume to explore. Since the injected data had a spectral slope of m = 0, we wouldn’t

expect the model that allows for spectral slope fitting to ever outperform the model

that assumes m = 0.

However, our results above showed that both models performed comparably well.

We postulated that this was due to our having to use a numerical model for the

stochastic background spectrum. With an imperfect model, there was a benefit to
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Figure 6.17: The first three (left) and last three (right) Fourier coefficients for the
A-channel. The first coefficients are well constrained while the later ones are not.
The blue (dashed) PDFs include slope fitting and the red (solid) PDFs do not.

having the extra slope parameter that outweighed the penalty of having to explore

a larger prior volume. The two effects essentially canceled out. With the analytic

model used here, we find that the extra slope parameter does make a difference. In

Figs. 6.19 - 6.21, the model with spectral slope fitting always performs worse than

the model with m = 0. The effect is not large and does not significantly inflate the

bounds that could be placed on a stochastic background, which makes sense because

the single additional parameter is not a large increase in our parameter space.

6.3.2 Comparison to MLDC

As a consistency check, we compare the analytic model used with our own data, to

the numerical model used with the MLDC data. We ran our analytic model on data
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Figure 6.18: The first three (left) and last three (right) Fourier coefficients for the
X-channel. The blue (dashed) PDFs include slope fitting and the red (solid) PDFs
do not.

containing instrument noise and a stochastic background, but no galaxy. We find

that our results are consistent with our work on the MLDC data. We would expect

that a 1-year data set, which is ∼ 15 times longer than the ∼ 3-week MLDC data set,

should perform approximately
√

15 better than the MLDC data. In Fig. 6.19, we see

that the new results agree very well with the MLDC results after taking into account

the different observation times.

6.3.3 Analysis with a Galactic Foreground

We now compare our results for the data set with no galaxy component versus

a data set that includes instrument noise, a stochastic background, and a galactic

confusion foreground. We find that our recovery of the stochastic background is not
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Figure 6.19: A comparison of the Bayes factors for the MLDC data and for our
simulated data without a galaxy. The lower panel includes slope fitting. A Bayes
factor of 30 is considered a strong detection.

significantly diminished when including the galactic foreground. Fig. 6.20 compares

the Bayes factors for the analysis without the confusion foreground to those that

contain the galaxy. The addition of the galaxy adds a small amount of uncertainty into

the posterior distributions of each parameter, and we see that the detection threshold

is slightly raised. This indicates that the correlation between the various model

components is not large and that the model is successfully distinguishing amongst

the three components.

We investigated the two effects that enable us to separate the galactic foreground

from the stochastic background, namely, the shape of the spectrum and the time

modulation of the signal throughout the year. Before, we relied solely on the discrim-
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Figure 6.20: A comparison of Bayes factors for data without the galaxy vs. data
with the galaxy included. Including the galaxy does not significantly decrease our
detection ability. The lower panel includes slope fitting.

inating power of the different spectral shapes for the noise and stochastic background.

Fig. 6.21 shows how both the modulation and spectral shape help. To show that our

method does not depend solely on the galaxy modulation, we ran our analysis on a

single week of data. We used the first week of the year when the foreground signal

is at a minimum, and the 37th week when the foreground is at a maximum. For

one week of observation time, the foreground signal is essentially constant, and we

won’t get any information from the modulation. With only one week of data, we have

fewer data points and would expect to perform worse by a factor of approximately
√

50 ' 7. The performance actually decreases by a factor of 15. Excluding the



107

modulation reduces the effectiveness of our analysis by about a factor of 2, but we

are still able to pick apart the various components in the data.

Next we showed what happens if we remove the spectral information and rely on

the time domain modulation alone. We created a stochastic background that had the

exact spectrum of the galaxy. We took the galaxy spectral shape and scaled it by the

gravitational wave energy density and the appropriate Hubble and numerical factors

from Eq. 3.12. The galaxy and artificial background spectrum are correlated to a

much greater degree in this case. We found for the X-channel that we were in general

no longer able to distinguish the galaxy from the stochastic background. However,

if the constraints on the galaxy parameters from the bright sources are sufficiently

stringent, we are still able to recover a stochastic background that has the same

spectrum as the galaxy since the galaxy distribution priors will tightly constrain the

galaxy confusion level. For the AET-channel case, the bound is weakened by almost

two orders of magnitude. However, the galaxy parameters and background are still

recovered at a level well below the instrument noise and galactic foreground. If we

are unlucky, the Universe may have produced a stochastic background with a spectral

slope that matches the galaxy or the acceleration noise. In that case, we see that we

would have much higher upper bounds for a stochastic gravitational wave background.

However, we are showing a worst case scenario where the galaxy had the exact same

spectral shape and extended over the exact same frequency band. It is very unlikely

that a stochastic background would match the galaxy or instrument noise that well.

Lastly, we ran on the low frequency end of the spectrum. The acceleration noise,

galaxy, and stochastic background dominate out to∼ 20 mHz, after which the position

noise dominates. Running on the low frequency end of the spectrum gives all of the

various signal components approximately equal weighting since they all extend over

approximately the same number of frequency bins. The background is recovered at a
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slightly higher level, showing that we do gain by using the high frequency information

to pin down the position noise levels.
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Figure 6.21: A comparison of Bayes Factors for the full AET vs. running on the low
frequency end of the spectrum, single weeks of data, and a stochastic background
with a spectral shape identical to the galaxy spectrum used in this paper. We see
that both the spectral shape and the galaxy signal modulation help separate the three
model components. The lower panel includes slope fitting.

6.3.4 Conclusion

We have shown that a single space-based detector such as LISA or eLISA is able to

detect a stochastic gravitational wave background in the presence of both instrument

noise and a strong astrophysical foreground signal. As we expect only one space

detector in the near future, this technique is important because it doesn’t rely on

cross correlation amongst multiple detectors. The levels achieved in the analysis here
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would be the most stringent bounds placed on the energy density of a stochastic

gravitataional wave background in the millihertz frequency regime.
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CHAPTER 7

CONCLUSIONS

This dissertation demonstrates two very promising results for space-based grav-

itational wave interferometers. We have shown that a single space-based detector

can be used to detect a stochastic gravitational wave background. Our analysis can

separate various stochastic signals and noise in the data from each other without

relying on cross correlation. The technique works for both 6-link and 4-link detector

configurations. We also develeped a general Hierarchical Bayesian method capable of

constraining the model parameters for a population of sources. In the particular case

of white dwarf binaries in the Milky Way, we can constrain the spatial distribution

of the galaxy to levels better than current electromagnetic observations using the

anticipated number of systems detectable by space-based gravitational wave detec-

tors. Even if the currently held event rates for white dwarf binaries turn out to

be optimistic by more than an order of magnitude, the constraints possible with a

gravitational wave detector are comparable to our current estimates of the Milky

Way’s shape.

We showed that after modeling the galactic foreground and instrument noise

we can detect a background of order Ωgw ∼ 10−13. This is a very optimistic

level for a gravitational wave background. Standard inflation models predict that

the background would be at a level of approximately Ωgw ∼ 10−17. However, a

LISA-like detector would set the best experimental bound in the milliHertz fre-

quency regime, and may potentially uncover phase transitions in the early Uni-

verse [28, 101, 100, 99, 112, 113], or astrophysical backgrounds from EMRIs [56],

extragalactic white dwarfs [105], or inspirals of massive black hole binaries [57]. Esti-
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mates of the extragalactic white dwarf confusion noise [105] predict Ωgw(f) ∼ 3×10−12

at f ∼ 2 − 3mHz, which should be detectable even with the galactic foreground to

contend with. The extragalactic astrophysical foreground will likely set the floor for

detecting stochastic backgrounds of cosmological origin, preventing us from reaching

the limits that the LISA observatory is theoretically capable of.

One line of future study is to investigate how the limits shown here are affected by

weakening the assumptions that went into the instrument noise model. Another line

of future study is to include some of the other potential astrophysical foregrounds

in our analysis. We could investigate our ability to detect any anisotropies in the

extragalactic background, but neither LISA nor eLISA will have very good spatial

sky resolution for a stochastic background. Later generation detectors such as BBO

and DECIGO could achieve much better sky resolution using radiometer techniques,

and it would be interesting to investigate the sky resolution of these later generation

missions.
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APPENDIX A

NOISE CROSS-SPECTRA
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