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Abstract

In noncommutative geometry, the geometry of a space is given via a spectral triple
(A, H, D). Geometric information, in this approach, is encoded in the spectrum of D
and to extract them, one should study spectral functions such as the heat trace Tr(e=*" 2)

the spectral zeta function Tr(]D|™*) and the spectral action functional, Trf(D/A).

)

The main focus of this thesis is on the methods and tools that can be used to extract
the spectral information. Applying the pseudodifferential calculus and the heat trace
techniques, in addition to computing the newer terms, we prove the rationality of the
spectral action of the Robertson-Walker metrics, which was conjectured by Chamseddine
and Connes. In the second part, we define the canonical trace for Connes’ pseudodiffer-
ential calculus on the noncommutative torus and use it to compute the curvature of the
determinant line bundle for the noncommutative torus. In the last chapter, the Euler-
Maclaurin summation formula is used to compute the spectral action of a Dirac operator

(with torsion) on the Berger spheres S3(T).

Keywords: Robertson-Walker metrics, Dirac operator, Spectral action, Heat kernel,
Local invariants, Pseudodifferential calculus, Determinant line bundle, Spectral triple,

Euler-Maclaurin summation formula

i



Co-Authorship

This thesis incorporates material that is result of joint research, as follows:

e Chapter 2 is based on the paper
Rationality of Spectral Action for Robertson-Walker Metrics, JHEP 12 (2014) 064,
arXiv:1407.5972.
which is the outcome of a joint research undertaken in collaboration with Dr.

Farzad Fathizadeh under the supervision of Professor Masoud Khalkhali.

e Chapter 3 is also based on the paper
The Curvature of the Determinant Line Bundle on the Noncommutative Two Torus,
arXiv:1410.0475 [math.QAJ, Oct 2014.
which is the outcome of a joint research undertaken in collaboration with Ali Fathi

under the supervision of Professor Masoud Khalkhali.

iii






Acknowledgements

I would like to thank my adviser Professor Masoud Khalkhali for his advice and
insightful comments and guidance during the conception and execution of this research

project.

I also want to thank my examiners Dr. Walter van Suijlekom and Professor Alex
Buchel and my committee members, Professor Lex Renner and Professor Jan Mina¢ for

carefully reading my thesis and for valuable suggestions and discussions.

Last but not least, a heartfelt thanks to my wife Akram, whose constant love, support
and understanding have helped me through the hardest times and I cannot express what

I owe her.



Contents

Abstract

Co-Authorship

Acknowledgements

Contents

Preface

1 A Prelude to Noncommutative Geometry

1.1

1.2

1.3

1.4

1.5

Pseudodifferential Operators . . . . . . . . .. .. .. ... ... ......
1.1.1 Basics of the Theory . . . . . . . . ... ... ... ... ... ...
1.1.2  Traces on Pseudodifferential Algebra . . . . . . .. ... ... ...

1.1.2.1  Wodzicki Residue . . . . . ... ... . ... ... ....

1.1.2.2  The Canonical Trace . . . . . . . . ... ... ... ....
Spin Geometry . . . . ...
1.2.1  Clifford Algebras and Spin Groups . . . . . . . .. .. .. .. ...
1.2.2  Spin Manifolds . . . . . . . . ... o
1.2.3 The Dirac Operator . . . . . . . . . . .. ... ... ... .....
1.2.4  Spin® Manifolds . . . . . . . . ...
Spectral Geometry . . . . . ... oL
1.3.1 Laplace Type and Dirac Type Operators . . . . . . .. .. .. ...
1.3.2  Spectral Functions and Spectral Invariants . . . . . . . . . ... ..
Noncommutative Riemannian Geometry . . . . . . . . .. ... ... ...
1.4.1 Spectral Triples . . . . . . . . ...
1.4.2  Spectral Dimension and Integral . . . . .. .. ... ... .. ...
1.4.3 Real Structure . . . . . . . ...
1.4.4 Reconstruction Theorem . . . . . . . . ... .. ... ... ...,
Action Functional in Noncommutative Geometry . . . . ... ... .. ..
1.5.1  Action Functional in Noncommutative Geometry . . . . . ... ..
1.5.2  Spectral Action and Einstein-Yang-Mills System . . . . . . .. ..

vi

ii

iii

vi



1.5.3 Symmetries and Standard Model Through Noncommutative Ge-

OmMetTY . . . . . L e 39
Bibliography . . . . . . . 40
Rationality of Spectral Action for Robertson-Walker Metrics 44
2.1 Imtroduction . . . . . . . . .. 44
2.2 The Dirac Operator for Robertson-Walker Metrics . . . . . ... .. ... 46

2.2.1 Levi-Civita connection. . . . . . . .. . ... ... ... ...... 47

2.2.2  The spin connection of Robertson-Walker metrics in Hopf coordi-
nates. . ... e 47

2.2.3 The Dirac Operator of Robertson-Walker metrics in Hopf coordi-
nates. . . ... 49

2.3 Terms up to a1 and their Agreement with Chamseddine-Connes’ Result . 50
2.3.1 Small time heat kernel expansions using pseudodifferential calculus. 51

2.3.2 Thetermsuptoag . . . . . . . . . . . 53
2.3.3 Thetermsagand ajg . . . . . . . . 54
2.4  Computation of the Term a9 in the Expansion of the Spectral Action . . 56
2.4.1 The result of the computation in Hopf coordinates. . . . . . . . .. 56
2.4.2  Agreement of the result with computations in spherical coordinates. 57
2.4.3 Agreement with the full expansion for the round metric. . . . . . . 59
2.5 Chameseddine-Connes’ Conjecture . . . . . . . . . ... ... ... .... 59
2.5.1 Proof of rationality of the coefficients in the expressions for ag, . . 60
2.5.2 A recursive formula for the coefficient of the highest order term in
A2+ o o e e e e e e e e e e e e 64
2.6 Conclusions . . . . . . . . . .. 65
Bibliography . . . . . . .. 66
The Curvature of the Determinant Line Bundle on the Noncommuta-
tive Two Torus 70
3.1 Imtroduction . . . . . . . . ... 70
3.2 Preliminaries . . . . . . . . .. e 71
3.2.1 The determinant line bundle . . . . .. ... ... ... ...... 71
3.2.2 Noncommutative two torus . . . . . . . . ... ... ... ... 73
3.3 The canonical trace and noncommutative residue . . . . . . . .. ... .. 75
3.3.1 Pseudodifferential calculuson Ag . . . . . . .. ... ... ... .. 75
3.3.2 The canonical trace. . . . . . . . ... ... Lo 77
3.3.3 Log-polyhomogeneous symbols . . . . ... ... ... ... ..., 82
3.4 Cauchy-Riemann operators on noncommutative tori . . . . . . ... ... 84
3.5 The curvature of the determinant line bundle for 49 . . . . . .. ... .. 86
3.5.1 Variations of LogDet and curvature form . . . . . . .. . ... ... 86
Bibliography . . . . . . . 92
Spectral action of the Berger spheres S?(7) 95
4.1 Introduction . . . . . . ... 95

vii



4.2 Berger Spheres S3(T) . . . . . . .. 97

4.3 Spectral action of D' . . . . . ... 98
4.4 The Heat Trace Coeflicients Using the Universal Formulas . . . . . . . .. 103
Bibliography . . . . . . L 106
Appendix 107
A Curriculum Vitae 108

viii



Preface

Noncommutative geometry is a rapidly developing field with extensive applications in
other fields of modern mathematics as well as physics. In this new paradigm of geometry,
proposed by the great Fields Medalist Alain Connes, the metric g, is exchanged for the
Dirac operator D. Geometric information, in this approach, is encoded in the spectrum
of D. To extract this information one should study a spectral function like the spectral

action

Trf(D/A),

where f is an even positive real-valued function and A > 0 is the mass scale. An
outstanding feature of the spectral action defined for noncommutative geometries is that
it derives the Lagrangian of the physical models from simple noncommutative geometric
data (see section 1.5.1). Moreover, its asymptotic expansion as A — oo is very related
to the asymptotic expansion of the heat trace of D? which, in the classical case, has the

following form:

Te(e %) ~ 47D g (D2 (£ 0).
n>0

The constants ag,(D?) can be written as ag,(D?) = [}, an(z, P)dvoly, where agy(z, D?)
are local invariants of the jets of the total symbol of D?. Universal local formulas for
heat trace asymptotics of a Laplace type operator are a robust tool to compute these
local invariants. However, these formulas are available only up to a9, so developing more
tools and methods is necessarily. The main focus of this thesis is on the study of the
spectral invariants of spaces, either commutative or noncommutative, and the related

tools and methods.

While full of fresh ideas and new paradigms, noncommutative geometry is rooted in
the heart of modern mathematics of the 20" century such as index theory, spectral ge-
ometry and spin geometry. In the first half of the first chapter, we explore the main ideas
from the classical theories and their related tools which play a role in the developments
of noncommutative geometry, especially the spectral aspects. This part includes a quick
review of pseudodifferential operators, spin geometry and spectral geometry. The second
half of this chapter is devoted to the basics of the theory of spectral triples and axioms
of noncommutative geometry, as well as the developments of the notions of action and

symmetries in noncommutative geometry.
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In chapter 2, we use pseudodifferential calculus and heat kernel techniques to prove a
conjecture by Chamseddine and Connes on rationality of the coefficients of the terms aoy,
in the expansion of the spectral action of Robertson-Walker metrics. The (Euclidean)

Robertson-Walker metric with the cosmic scale factor a(t) is given by
ds* = dt* + a* (t) do?,

where do? is the round metric on the 3-sphere S3. A detailed study of the spectral action
for the Robertson-Walker metrics was initiated by Chamseddine and Connes, where
by devising a direct method based on the Euler-Maclaurin formula and the Feynman-
Kac formula, the terms up to ajg in the expansion are computed. Here, a9, denotes
fSi’m asn(x, D?)dvol and depends only on a(t) and its derivatives. They conjectured
that ag, are rational polynomials in a(t) and its derivatives divided by some power of
a(t). We used pseudodifferential calculus and heat kernel techniques to prove that the
term ao, in the expansion of the spectral action for the Robertson-Walker metric is of

the form 1
W Q2n (a(t),a’(t)’ o ’a(Qn)(t)) ’

where @2, is a polynomial with rational coefficients.

Two chief players in the proof of this theorem are the recursive formula of a,,(x, D?),
which we derived from the recursive formula for the symbol of the parametrix, and the
symmetries of the metric, which were employed in terms of the Killing vector fields. We
also compute the terms up to a2 in the expansion of the spectral action by our method

and find a formula for the coefficient of the term with the highest derivative of a(t) in

a2, .

In the third chapter, the curvature of the determinant line bundle on a family of
Dirac operators for a noncommutative two torus is computed. Quillen introduced the
determinant line bundle on the space of Fredholm operators and showed that it is a
holomorphic line bundle. He endows the determinant line bundle £, pulled back on
the space of all Cauchy-Riemann operators on a smooth vector bundle over a Riemann
surface, by a Hermitian metric using the zeta regularized determinant of Laplacians. On
the open set of invertible operators, each fiber of £ is canonically isomorphic to C and
the nonzero holomorphic section o = 1 gives a trivialization. The norm of this section

on the fiber of the invertible Cauchy-Riemann operator D is given by

lo(D)||? = e,
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where (A is the spectral zeta function of the Laplacian A = D*D. Quillen studies the

geometry of the line bundle £ and he computes the curvature of the metric.

The noncommutative torus is an example of a noncommutative Riemann surface.
We investigated the curvature of the determinant line bundle over a family of Cauchy-
Riemann operators on the noncommutative two torus Ay with a fixed complex structure.
To study the geometry of the determinant line bundle on this family, we had to inevitably
develop new tools and use new techniques that are applicable in the noncommutative
setting. To this end a version of the canonical trace of Kontsevich-Vishik is developed for
the algebra of pseudodifferential operators on the noncommutative two torus. Using the
calculus of symbols and the canonical trace we computed the curvature of the determinant

line bundle, which is the second variation of log det(A) and is given by

3 (0) = g0 (BuD(6.D)').

The calculus of symbols and the canonical trace allow us to bypass local calculations
involving Green functions in Quillen’s work, which are not applicable in the noncommu-

tative case.

Unlike the previous chapters, in which local computations are used to compute the
spectral invariants, in the last chapter, which is an ongoing project, we use the Euler-
Maclaurin summation formula to compute the asymptotic expansion of the spectral ac-
tion of the operator D’ = D + T'/2, where D is the Dirac operator on the Berger sphere
S3(T). This method is useful when the full spectrum of the operator is known. By the
Euler-MacLaurin formula the full asymptotic expansions of the spectral action f(D"?/A?)

12
tD)

and its heat trace Tr(e are derived.



Chapter 1

A Prelude to Noncommutative

Geometry

Noncommutative geometry is a rapidly developing field with extensive applications in
other fields of modern mathematics as well as physics. While full of fresh ideas and new
paradigms, it is rooted in the heart of modern mathematics of the 20*" century such as

index theory, spectral geometry and spin geometry.

Our aim in this chapter will be to explore the main ideas from the classical theories
and their related tools which play a role in developments of noncommutative geometry,
especially the spectral aspects. The first half of this chapter includes a very quick review
of such classical topics and consists of three sections: Pseudodifferential Operators, Spin
Geometry and Spectral Geometry. The main focus will be on the tools and results which

will lead to new concept in the second half of the chapter.

In the second half we will recall the notions of noncommutative spaces and their
application to physics. Section 1.4 includes the basics of the theory of spectral triples
and axioms of noncommutative spin geometry. The last section is devoted to the devel-
opments of the notions of action and symmetries in noncommutative geometry and how
unified theories like Einstein-Yang-Mills theory can be produced through noncommuta-

tive spaces.
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1.1 Pseudodifferential Operators

With all its great features, the algebra of differential operators fails to deliver important
concepts like negative or non-integer order differentiation, which if existed would be
very useful in solving partial differential equations. This shortfall can be remedied by
introducing pseudodifferential operators and the calculus of their symbols. However,
while one loses the local property, the symbol calculus survives and the theory works

very well especially with the spectral theory of operators.

In this section we will review the theory of pseudodifferential operators . The main

references for this section are [18, 27, 34].

1.1.1 Basics of the Theory

The concept of pseudodifferential operators emerges out of the following property of the

Fourier transformation:

F(f)(€) = i€F(f)(&)-

This leads to a new way to differentiate functions using the Fourier transform, given by

f'@) = F (€7 (1)) @), (L.1)

If we replace £ by a polynomial, p(z,£) = > aq(x)£?, in £ with coefficients depending

on x, then (1.1) will define the following differential operator.

p(, D) = F~ (p(@, ) F())(©) ) (),
where D = %%. Now one can exchange the polynomial p(x, &) with a general function
in (z,&) with the right growth rate. This is how a general pseudodifferential operator is

constructed.

Definition 1.1. Let U be an open subset of R™ with compact closure. A smooth
function o : R™ x R™ — C is called a symbol of order d on U, denoted by o € S4(U), if
its x-support is inside U, and for any non-negative integer multi-indices «, 8 there exists
Ca,s > 0 such that

98 D{o(x,6)| < Cap(1+ )17,

Hereaﬁzaﬁfmﬁﬁlﬂ,D?Zi\%,affwafx and |8] = B1 4+ + Bm.
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For any symbol o we assign an operator P, : Cg°(U) — C§°(U) given by

PA(H@) = F (0@ O F(NEO) @) = [ eae 9 F (D).

n

Here d¢ = Wd &, where dr€ is the Lebesgue measure on R™.

Multiplication of two pseudodifferential operators P, () gives another pseudodifferen-

tial operator whose symbol is given by
o(PQ) ~ ) 070(P)Dgo(Q)/al,
(63

where the symbol of a pseudodifferential operator P is denoted by o(P). The equivalence

relation ~ on the symbols is defined as
o~d so—-0 €8 ™.

Here S~ = NSk,

For a symbol ¢ € S% we define the principal symbol oy to be the class of o in
the quotient space S¢/S%1. The symbol multiplication for the principal symbol is the

function multiplication

on(PQ) =or(P)oL(Q).

The theory of pseudodifferential operators acting on vector valued functions f €
C>(U,C™) can now be developed. Symbols in this case are matrix-valued symbols
o(x,€&) € Mp(C). Pseudodifferential operators on a vector bundle V' over a manifold M

is defined as below.

Definition 1.2. A linear operator P : C*°(V) — C*°(V) is a pseudodifferential opera-
tor of order d, denoted by P € W¥(M, V), if for any chart of M which is a trivialization
for V as well, i.e. V|y ~ U x C", and for any v, p € C5°(M), the localized operator

Py : C(U,C") — C*°(U,C") (1.2)
is a pseudodifferential operator of order d on U acting on C*°(U,C").

In any coordinate chart, we define o(P) to be the symbol of the operator ¢ Py on
@ = 1. The leading symbol is invariantly defined on 7% M, but the total symbol changes

with the change of coordinates.
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Let us equip V' with a Hermitian product (-,-) and fix a Riemannian metric g on M.

Then we can define an inner product on C*°(V') by

€)= /M(fm)dvolg- (1.3)

Pseudodifferential operators are densely defined unbounded operators on H = L?(M, V).
The following theorem determines when a pseudodifferential operator is in the important

classes of the operators on H. For a proof see e.g. [18]
Theorem 1.3. Suppose (M, g) is a closed manifold and V a Hermitian vector bundle
over M. Let P € W4(M,V); then

1. If d <0, then P is a bounded operator, i.c., WSO(M,V) C B(H).

2. Ifd <0, then P is a compact operator, i.e., V<O(M,V) C K(H).

3. If d < —m, then P is a Dizmier class operator, i.e., WS~ (M, V) C LY®(H).

4. If d < —m, then P is a trace class operator, i.e., W<~ (M, V) C L(H).

Another important class of operators is the class of Fredholm operators, which are

the topic of study in index theory. The pseudodifferential operators that give rise to

Fredholm operators are called elliptic operators.

Definition 1.4. A symbol ¢ € S4(U) is called elliptic on Uy C U; C U if there is an
open subset Us with U; C Uy C Uy C U such that there exists a o’ € S~ such that

oo’ — 1€ 8 °Us) and o'c — I € S~°(Us).

An operator P € W4(M, V) is called elliptic if the symbol of localized operators (1.2) are
elliptic in @i (x) # 0.

If P € W4(M,V) is an elliptic operator, then there exists Q € W=¢(M, V) so that
PQ—1Tand QP — 1€ U~(M,V).

The operator @) is called a parametrix of P. Note that by Theorem 1.3 the operator
QP — I is compact, so P is invertible in the Calkin algebra and therefore a Fredholm

operator.
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Remark 1.5. The spectrum of a positive order elliptic operator P is a set of discrete
eigenvalues tending to infinity. This is a consequence of the spectral theorem of compact

operators applied to the resolvent of P, which by Theorem 1.3, is compact.

1.1.2 Traces on Pseudodifferential Algebra

As we mentioned in the previous section, if the order of a pseudodifferential operator P
is less than — dim M, then P is of trace class. The value of its trace can be computed by
expressing the operator as an integral operator with the kernel written in terms of the

symbol. By integrating the kernel along the diagonal, one gets
Tr(P) = / / tr(o(x,&))dédvoly,. (1.4)
M JTiM

Here tr inside the integral denotes the usual matrix trace. To study other traces on

pseudodifferential operators we have to introduce a new class of symbols.

Definition 1.6. Let 0 : U x R™ — C be a smooth map such that for any N and
each 0 < j < N, there exists 0,—; positive homogeneous of degree a — j, and a symbol
oN € SMO-N=1() V) such that

N
0(§) = Y _x()ga—j(€) + V() E€R™ (1.5)

j=0
Here, x is a smooth cut-off function on R™ which is zero on a small ball around the origin
and one outside the unit ball. The map o is called a classical symbol of order o« € C and

the set of all classical symbols is denoted by W& (M, V).

Note that a classical symbol of order « is obviously a symbol of order R(«). There
is a more general class of symbols called log—polyhomogenous symbols in which terms
of the form &* log! |€| are also present. Most of the theory that will be reviewed in the
next section is true for their case but we won’t dwell on it here. For a detailed discussion
of traces on classical pseudodifferential operators on manifolds we refer the reader to

[28, 29, 31| and the references therein.
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1.1.2.1 Wodzicki Residue

M. Wodzicki in [37] defined a trace functional on the algebra of classical pseudodifferential
operators on M, and proved that it is the only non-trivial trace. This functional on
pseudodifferential operators of order —m was discovered independently by Guillemin.
[21] In the following we will review this trace and Connes’ trace formula, which establishes

a deep relationship between the Wodzicki residue and the Dixmier trace.

For a classical pseudodifferential operator P with symbol ¢ on a vector bundle V', we

define the density
tes,(P) = [ trlo (o, )dst.
SxM

Here, dg& denotes the normalized Lebesgue measure d¢ restricted on the unit sphere
SiM = {|¢| = 1;¢ € TyM}. Though the symbol o(z,£) of P depends on the choice of

local coordinates, res,(P) is a well-defined density.

Definition 1.7. The Wodzicki residue of P, denoted by Res(P), is given by

Res(P) = /M res,; (P)(z)dz.

A trace formula similar to (1.4) was proven by Connes, in which the left hand side is

replaced by the Dixmier trace. This trace is defined on the Dixmier ideal
N
£02) = {T & K(#H); Y pn(T) = Ollog N) },
n=1

where p,(T), called characteristic values of T', are the eigenvalues of |T| = (T*T)'/?
listed in decreasing order. For any positive scale invariant generalized limit lim,, on
the space ¢>°(N), there is a positive functional Tr,, whose value on a positive operator
T € LL®)(H) is given by

The positive functional Tr,, extends to £(1:%)(#) by linearity. For detailed discussion

see e.g. [9].

Theorem 1.8. [8] Let M be a compact m-dimensional manifold, V' a complex vector

bundle on M, and P a pseudodifferential operator of order —m acting on sections of
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V. Then the corresponding operator P in H = L*(M,V) belongs to the Dizmier ideal

L1%°(H). Moreover, the Dizmier trace of P is independent of w and

T, (P) = %Res(P).

1.1.2.2 The Canonical Trace

The integral on the right hand side of equation (1.4) diverges if the order of the operator
P is not less than —m. This phenomenon is known as ultraviolet divergence in physics.
Kontsevich and Vishik used Hadamard regularization, based on the concept of the finite

part of the integral, to regularize this divergent integral [25].

Given a classical symbol o, with the expansion given by (3.2), for any fixed x € M
the map R — | B(0,R) o(x,£)d¢ has an asymptotic expansion as R — oo of the following

form:

/ tr(o(z,§))dé ~Rroooc(0g) + resy(0)log R + Z ROt Ici(oy),
Bo(R) i—o
J ;Z a+m

where ¢(o;) and ¢j(o,) are constants that are determined by the symbol at

Definition 1.9. For a classical operator with symbol o € W (M, V'), the constant ¢(o)
is called the finite part of the integral at z and we denote it by

ot enae.

The canonical trace of o is then defined as

TR(P) = /M ][a(:v,ﬁ)dfdvol. (1.6)

It is evident that if R(«) < —m then

][U(x,ﬁ)dg = o(x,§)d¢ Vxr e M.

T M

Hence, TR(P) = Tr(P). Upon further investigation of the properties of TR one obtains

the following fundamental theorem.
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Theorem 1.10. [25] The linear functional TR(P) on classical pseudodifferential oper-
ators of orders from ag + Z, ag € C\Z, in the case of a closed M has the following

properties.

1. It coincides with the usual trace Tr(A) in L*(M,V) for R(ordA) < —m.
2. It is a trace type functional, i.e., TR([B,C]) =0 for ordB + ordC € o + Z.

3. For any holomorphic family A(z) of classical pseudodifferential operators where
z € U C C, and non—constant affine order ordA(z) = a(z), the function TR(A(z))
is meromorphic with no more than simple poles at z =n € UNZN[—m,00) and

with residues
1
Res,—, TR(A(2)) = —WReS(A(n)). (1.7)
For more general holomorphic families of operators the higher order terms of the

Laurent expansion of TR(A(z)) around any pole are computed in [32].

1.2 Spin Geometry

Spin geometry plays an increasingly important role in different areas of modern math-
ematics and physics. On spin manifolds we can produce a globally defined first order
elliptic operator, called the Dirac operator, canonically associated to its underlying ge-
ometry. The study of Dirac operators was initiated by Paul Dirac in physics in the late
1920s. Later, Sir Michael Francis Atiyah and Isadore Singer established a strong mathe-
matical foundation for the theory of Dirac operators and used it in index theory. In this
section we will review the basics of spin manifolds and the Dirac operator. References

for this section are |17, 26].

1.2.1 Clifford Algebras and Spin Groups

To define a spin manifold, we first recall spin groups and their representations.

Definition 1.11. The universal covering group of the special orthogonal group SO(m),

m > 2, is called the spin group and we denote it by Spin(m).
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For example, Spin(3) = SU(2). The covering homomorphism, p : SU(2) — SO(3) is
given by the adjoint representation of SU(2) on its Lie algebra su(2).

Since for m > 2, m1(SO(m)) = Za, the covering group Spin(m) is a double cover of

SO(m) and we have the following exact sequence of multiplicative groups:
1 — {£1} — Spin(m)-2+SO(m) — 1.

Any representation of the special orthogonal group 7 : SO(m) — Aut(W) lifts to a
representation of the spin group given by 7 o p : Spin(m) — Aut(W). However, there
are representations of Spin(m) that are not constructed this way. These representations,
unlike the lifted representations from SO(m), have different values for 1, —1 € Spin(m).

One way to construct such representations is to consider the Clifford algebras.

Definition 1.12. Let W be a vector space over K = R or C and B be a nondegenerate
symmetric bilinear form on W. The Clifford algebra C1(W, B) is the quotient K-algebra
defined by

Cl(W,g) = T(W)/Ip(W),

where T(W) = 322 W% is the tensor algebra and Zg(W) is the ideal generated by
elements of the form v ® w + w ® v + 2B(v, w).

The Clifford algebra is a finite dimensional unital Zs-graded algebra containing W

with the multiplicative property
veow+w-v=—-2B(v,w).

The even part of Clifford algebra, denoted by CI°(W, B), is the subspace formed by
the even number of elements of w, and a similar definition holds for the the odd part
C1lY(V, B).

We denote the Clifford algebra for R™ and C™ with the standard positive definite
form respectively by Cl,,, and Cl,,. The real and complex Clifford algebras are related
to each other by the fact that Cl and ®C (as functors) commute. In other words,

Cly ® C = Cly. (1.8)
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Moreover, Clifford algebras for different dimensions are related by the following period-

icities in the real and complex cases,
Clpts =Clp ® Mlﬁ(R) and Cl,42 = Cl, ® MQ((C)

Hence, by knowing only the first eight real Clifford algebras and two complex ones, which

are given in the following tables, we can construct all Clifford algebras of all dimensions.

CLo [ C

Clho | H

Clso |HG H

Clyo | M2(H) Cl; |CaC
Clso | Ma(C) Cl, | Mz(C)
C1670 Mg(R)

Clzp | Ms(R) ® Ms(R)

Clgo | M16(R)

The representation of the spin group is related to the Clifford algebra because the
group Spin(m) can be realized as a subgroup of invertible elements of the Clifford algebra

Cl,, as follows:
Spin(m) = {xl.xg. e XoglT € Smfl} C CIY, C Clyy,.

Since Cl,,, C Cl,,, Spin(m) is also a subgroup of invertible elements of Cl,,,. This inclusion
induces new representations of Spin(m) by restricting any algebra representation of Cl,,
or Cl,, to Spin(m).

Definition 1.13. The real spinor representation of Spin(m) is
Ay, @ Spin(m) — GL(Sy,),

given by restricting an irreducible real representation Cl,,, — Hompg(S,,, Sm) to Spin(m) —

Cl,,,. Moreover, the complex spinor representation of Spin(m) is the the homomorphism
AC - Spin(m) — GL¢(Sp),

given by restricting an irreducible complex representation Cl,, — Homg(S,,,Sy,) to

Spin(m) C Cl,,, C Cly,.
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In the cases where there is more than one irreducible representation for the Clifford
algebras, i.e. m = 4k + 3 for Cl,, and m = 2k + 1 for Cl,,, the spinor representation
is independent of the irreducible representation used. However, the real or complex
spinor representation is not necessarily an irreducible representation of the spin group.
Indeed, the complex spinor decomposes into two inequivalent irreducible representations
of Spin(m) if m is even. This decomposition is given by multiplication by the complex
volume element

w:z[ 2 ]61'62""'6m,

where {e;} is an oriented orthonormal basis for R™. It is easy to check that this is not the
identity map but it is an idempotent , i.e. w? = 1. Since w commutes with the elements of
Spin(m) C (Cl?n, the representation decomposes into irreducible representations denoted
by ASE,

1.2.2 Spin Manifolds

Any Riemannian metric g on a closed oriented manifold M of dimension m defines a
principal SO(m) bundle Pgo(M,g), the bundle of oriented orthonormal frames, such

that T'M can be constructed as its associated vector bundle, i.e.
TM = PSQ(M, g) X R™,

Here, 7 is the standard representation of SO(m) on R™. Now, one can wonder if we can
find a principal spin bundle such T'M is its associated vector bundle. It turns out that

this is not possible for every manifold, and we have the following definition.

Definition 1.14. An oriented manifold M is a spin manifold if there exists a principal

Spin(m) bundle Pspy, such that
TM = Pspin xx R™, (1.9)

where 7 is the standard representation of SO(m) on R™ lifted to a representation of

Spin(m).
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If M is a spin manifold for any Riemannian metric g on M, there exists a compatible

spin structure Pepin(M, g) and a map p : Pspin(M, g) = Pso(M, g) such that!

pla g) =m(a) p(9) a € Pspin(M,g), g € Spin(m).

One geometric importance of spin manifolds is that we can construct a new (complex)
vector bundle on M which is completely determined by the geometry of the manifold.
The (complex) spinor bundle is the associated vector bundle defined by the complex
spinor representation,

S = PSpin(Ma g) XA‘En Si-

One can use the real spinor representation to produce the real spinor bundle. Since we
are interested in working with complex Hilbert spaces we will only consider the complex

case.

At each point z € M, CI(T, M, g,) is represented on S,. This module structure is
a smooth global structure. In other words, the space of sections of the spinor bundle,
C>*(M,S), is a C*°(CI(T'M, g))-module. Note that there is a canonical isomorphism
TM ~ T*M for Riemannian manifolds. This isomorphism induces a canonical isomor-
phism on the Clifford algebras CI(T'M,g) and CI(T*M). We will frequently use this
isomorphism and we will denote C1(T*M, g~!) by CI(M). A consequence of considering
this isomorphism is that 1-forms o € Q'(M) = C>®(T*M) C CI(M) can act on spinors
by the Clifford action.

1.2.3 The Dirac Operator

The derivative of the covering homomorphism p at the identity of Spin(m) defines a Lie

algebra isomorphism p’ : s0(m) — spin(m) which is explicitly given by

1
P(A) = Z<A€j»€k>€j ek, (1.10)
17]
where {e;} is an oriented orthonormal basis of R™. Here the Lie algebra spin(m) is
identified by (A%2R™,[, ]) as a sub Lie algebra of (Cl,,[,]) with Lie bracket given by

1One can compare this with the orientability of a manifold which is a topological property. If a
manifold is orientable, for any metric g one can find a compatible orientation given by the volume form
dvol,.
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[z,y] = -y —y-z. Such an identification is possible due to the inclusion Spin(m) C CL,
and the fact that (Cl,,, [, ]) is the Lie algebra of CL.

Using this isomorphism, any connection on Pso(M, g)(equivalently any metric con-
nection on T'M), lifts to a connection on Pspin(M, g). In particular, the Levi-Civita
connection, the unique torsion-free metric connection, lifts to the spinor bundle. This is

called the spin connection and we denote it by V.

Finally, we can define the Dirac operator on spinors by

D) (x) = c(dxj)Vaj¢(x), e C(9).

The above definition is independent of the choice of coordinate chart. Indeed, it can be

defined using any frame {e;} with coframe {e’} as c(e )VfJ

The Dirac operator is an elliptic differential operator with symbol o(x, &) = c(i&).

1.2.4 Spin® Manifolds

While having a real spinor bundle on M is equivalent to M be a spin manifold, having a
complex spinor bundle is a weaker condition. In other words, there are non spin manifolds
which admit complex spinor bundles. This is a consequence of a fact that the complex
spinor representation ASL is a representation of a larger subgroup of Cl,, denoted by
Spin®(m) than Spin(m). This group is generated by Spin(m) and U(1) as subgroups of
Cl,,, and it is of the form

Spin®(m) = Spin(m) xz, U(1).
We have the following exact sequence
1 U(1) — Spin€(m) 2580 (m) — 1.
A manifold M is called a spin® manifold if

TM = Py c Xz R,
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The representation 7 is the standard representation of SO(m) lifted to Spin®(m) by pC.
The compatible Spin®(m) structure on (M, g) is defined similarly to the compatible spin

structure.

In spite of the historical development of spin geometry, in which the notion of spin
structure appeared before the spin® structure, the algebraic formulation of these struc-
tures started with spin® manifolds. Plymen in [33] showed that an oriented manifold is
spin€ if C*°(M) and CI(M) are Morita equivalent with a Morita equivalence bimodule S.
In this picture a spin manifold is a spin® manifold with a real or quaternionic structure
(depending on the dimension of the manifold) on S with a specific commutation relation

which comes from the following theorem.
Theorem 1.15. (see e.g. [36]) There is an antilinear map Jn, on Sy, called charge
conjugate, with the following properties:

e J,, is either real or complex structure, i.e. J2, =1 or J2, = —1 respectively.

o Jp(z-v) =2z Jn[), ze€R™ peS,.

e :{ {2 €CIO, | [Jm,m(z)] =0} m— %k 41
" {z € Cl | [Jm,7(2)] =0, [w,7(z)] =0}, m=2k

The exact signs are given in the following table.

real structure quaternionic structure

Im

m = 0,6,7 mod 8 m =2,3,4 mod 8

commutes with Clifford
multiplication

m =1 mod & m =5 mod 8

anti-commutes with
Clifford multiplication

Note that the map J,, commutes with the even part of Cl,, and thus with the elements
of Spin(m).

An important point is that although there is a complex spinor bundle on spin® mani-
folds, we cannot always construct a geometric Dirac operator on S. The reason is hidden
in the fact that

spin®(m) = so(m) @ iC.
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This means that the metric connections on T'M cannot completely determine a connec-
tion on the spinor bundle. To do so, one needs a connection on the canonical line bundle,
which is a line bundle that can be assigned to each spin® structure. Since the canonical
line bundle usually doesn’t admit a geometric connection we need to add an extra piece
of information by fixing a connection on this line bundle. In some cases, e.g. Kéhler
manifolds, there is a geometric connection on the canonical line bundle. Hence we can
construct a connection on the spinor bundle, and as such, a geometric Dirac operator

exists in this case.

1.3 Spectral Geometry

The main goal of spectral geometry is to study the spectrum of natural operators that
can be constructed on a Riemannian manifold (M, g). The topic originated by studying
the spectrum of the scalar Laplace operator on a bounded domain €2 C R™. The earliest

result in this regard was what we now refer to as “Weyl’s law".

Theorem 1.16. (Weyl’s law)
For a bounded domain Q@ C R™, the Dirichlet eigenvalue counting function N(N), which
counts the number of Dirichlet eigenvalues (counting their multiplicities) less than or

equal to A, satisfies
i Y
Aroo \™M/2

= (2m) " By vol(Q?)

where By, is the volume of the unit ball in R™.

The eigenvalue counting function N()) is an example of a spectral function. That
is a function that depend only on the spectrum of the operator under investigation. In
this section we shall discuss two other important spectral functions — namely the trace

of heat kernel and the spectral zeta function.

In addition, the scalar Laplacian is not the only natural differential operator with
interesting spectrum. The natural differential operators in which we are interested are the
positive Laplace type operators. This class includes the square of Dirac type operators,

which play a very important role in noncommutative geometry.

As we will see in this section, many geometrical properties and quantities, like di-
mension, volume and scalar curvature, are reflected in the spectrum of these operators.

These quantities are so fundamental to the geometry of M that it is natural to investigate
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whether or not the geometry of M can be completely determined by spectrum of such

operators. This question was rephrased by Kac in the following clever form
Can one hear the shape of a drum?

Although many counterexamples for this question are discovered, starting with an ex-
ample by Milnor [30], spectral geometry is still a fast growing field of research, especially

in its applications in physics.

1.3.1 Laplace Type and Dirac Type Operators

Suppose that (M, g) is a closed Riemannian manifold? with dimM = m and V is a

smooth Hermitian vector bundle on M.

Definition 1.17. A second order differential operator P : C*®°(V) — C*°(V) is called a

Laplace type operator if the leading symbol is given by the metric tensor.

A Laplace type operator, in a coordinate chart, can be written as

P=— (g”’ o 4+ 4k 2 +B> : (1.11)
O0x;0x; oxp

where the A¥, B are endomorphisms of the bundle V. Scalar Laplacian and Laplacians

on forms are examples of Laplace type operators. However, the interesting cases are

Laplace type operators which are the square of a first order operator. In what follows

we briefly cover the theory of such operators. For an extensive treatment of the subject

we refer the reader to [3].

Definition 1.18. A differential operator D : C®(V) — C*°(V) is called a Dirac type

operator if D? is a Laplace type operator.

One can easily see that a Dirac type operator has to be a first order operator and in
a trivialization it is of the form a*dj, +b where a*(z) and b(z) € End(V,,) for any = € M.

Symbol calculation shows that {a*(x)} implies the Clifford commutation relation, i.e.,

aF(z)al (z) + d(z)ak (z) = —2¢" ().

2The closedness condition can be omitted for most of the results.
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From this one deduces that CI(T}M, g~1) C End(V,) and hence C°°(V) is a CI(M) =
C>(CI(T*M))-module. Such a vector bundle V is called a Clifford module.

The first example of a Clifford module which exists on any manifold is the exterior

algebra bundle A®*(M) with Clifford module structure given by

c(e)(§) = en(§) —ue)E), &eAT; M.

The spinor bundle on a spin manifold is another important example of a Clifford module,
which was discussed in the previous section. In general, any associated vector bundle of
the form

Pepin (M, g) X W, (1.12)

with the representation x : Spin(m) — Aut(W) induced from a representation (not nec-

essarily an irreducible one) of the Clifford algebra Cl(m), is a Clifford module.

While we can construct Dirac type operators on any Clifford module using a partition
of unity, we are interested in a construction which uses connections on V to construct a

Dirac type operator.

Definition 1.19. A connection VY on V is called a Clifford connection if it fulfills the

following Leibniz rule with respect to Clifford multiplication:
V%, c0)] =c(Vx0), 0e€QM), X cC®(TM).

Here, V is the Levi-Civita connection on the cotangent bundle.

To any Clifford connection VY, we can assign a Dirac operator that at each point
x € M, is defined as
D = ¢(da?) V., (1.13)

where {e;} a basis for T, M and {e'} its dual basis. The formula is independent of the
choice of the basis {e;} and D is a globally well-defined operator. The spin connection is

an example of Clifford connection and the Dirac operator D is the Dirac type operator

defined by V*.

We want to study Dirac type operators as unbounded operators. To this end we

require the Clifford modules to be equipped with an inner product compatible with the
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Clifford action
(e -vye-w), = (v,w), v,wée VyeecS;M, (1.14)

and the Clifford connection to be compatible with this inner product. Such a Clifford
module is called Dirac bundle. The Dirac operator defined on a Dirac bundle V is
formally self-adjoint on L?(M, V). The spin bundle with the spin connection and the
inner product coming from the spinor representation is an example of a Dirac bundle.
There is a procedure to produce new Dirac bundles out of the spin bundle, (or in general
from any other Dirac bundle). Let V' be a Hermitian vector bundle with a Hermitian

connection V. Then S ® V is a Clifford module. One can define the twisted connection
Vi@1l+10V. (1.15)

We denote the corresponding Dirac operator by Dy and call it the twisted Dirac operator.

1.3.2 Spectral Functions and Spectral Invariants

The study of the spectrum of a Laplace type operator P is usually done via functions
defined from the spectrum of the operator. Two important spectral functions which have
a central role in this dissertation are the heat kernel trace and the zeta function. Both
of these functions are the generating functions of the spectrum, so by considering them,
we don’t lose any spectral information. Unlike the eigenvalue counting function, these
functions can be expressed in terms of the trace of a function of P, an idea that will

appear again in the next section in terms of the spectral action functional.

For any positive elliptic (differential) operator P, the heat flow operator e~* for
any t > 0, is an infinitely smoothing pseudodifferential operator , and therefore a trace
class operator on L?(M, V). The heat kernel trace in terms of the eigenvalues {\;} of
the operator is given by

Tr(e_tp) = Z et
i
This function has a singularity at t = 0 and its asymptotic expansion as t — 0% is of the

form [18]

Tr(e ) o 3 an(P)ET, (1.16)
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where d is the order of the operator and the constants a, (P) can be written as follows:
an(P) = / an(x, P)dvol. (1.17)
M

Here, a,(z, P) are local invariants of the jets of the total symbol of P and vanish if
n is odd. If P is a Laplace type operator, then the local terms contain geometrical
information about M. To extract this information, we first need a lemma, which is the

analogue of the basic algebraic operation of completing square of a quadratic polynomial.

Lemma 1.20. [18] Let P be a Laplace type operator. Then there exists a unique con-
nection V on the vector bundle V and an endomorphism E € End(V') such that

P=V'V-E. (1.18)

Here V*V s the connection Laplacian which is locally given by —gijVaiVaj.

The endomorphism F for the square of the Dirac type operator of a Clifford connec-
tion V on a Clifford module V is given by the generalized Lichnerowicz formula. First, one
can prove, see e.g. [3, Proposition 3.43|, that the curvature V2 € Q2(M, End(V)) of the
Clifford connection V decomposes under the isomorphism End(V') ~ CI(M) ® Endgy(ap
as

RV + FV/5. (1.19)

Here, RV € Q*(M,CI(M)) c Q*(M,End(V)) is the action of the Riemann curvature

acting on V' by
1 kY o
RY (eirej) = 5 ;(R(ei,eg‘)emezﬁ(@ Je(€).
The endomorphism FY/5 € Q2(M, Endgyapy(V)) is called the twisting curvature of the

Clifford module V.

Theorem 1.21. /3, Theorem 3.53] Let V be a Clifford connection on the Clifford module
V. Then
D2 _ v*v +C<FV/S) o

N

For a twisted connection given in (1.15) the twisting curvature is equal to

o(FV/S) = %c(ek)c(el) @ Fiy (1.20)
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where F' is the curvature two form of V. Thus, the twisting curvature of the spin

connection vanishes and we have the Lichnerowicz formula

D? = (V9) V¥ %R. (1.21)

The local formulas for a Laplace type operator are given by the following theorem.

Theorem 1.22. [18] For a Laplace type operator P in (1.18), the invariants of the heat

equation an(x, P) is given by

ap(z, P) = (4m)” m/%r( Id).
as(z,P) = (4m)"™ *tr(E ERId)'

(47‘() m/2
ae,P) = o tr(( = 12Ryg + 5R? = 2Rje Ry + 2Rijpa Rijra) 1d — 60RE

H180E? + 60,4, + 309ijﬂij).

ag(z, P) = (47)~% u{%( — 18Ry + 1TRy Ry — 2Ripu Ry — AR Ry
+ OR4jut Rijhast + 28R Ry — SRRy + 24R ;1 Rt
+ 12RijklRijkl;uu>Id
+ L( — 35R3 + 42R Ry, Ry — 42R Rigpg Ritpq + 208 R Rit Ry

9.7
—192Rp Ry Rjurt + 48 Rji Rjuip Riutp — 44 R jku Rijip Riulp

- 80RijkuRilkpRﬂup)Id
36130 <8Q” ik + 205 Qe + 12905 Qs — 120450 Qe
— 65182 Qe + 4R 505 — 5Rlele)
+ 265 = (6Bij; + 60E B + 0B, B, + 60E® + 30EQ;;Q; — 10REy

— 4R, E.jx — 12RxE.y, — 30RE* — 12R 4 E + 5R’E
— 2RijjkE + 2RijklRijklE> }

3 We use the convention
(Vosou;s Voso, | 0/0xy = Rijx'd)0x1,

for the Riemann curvature tensor and its components. Moreover, R;ix; = ginRiix" and the Ricci and
’ J J

scalar curvatures are given by
k ii
Rjx = Riji and R =g Ri;.
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Here, all the tensors are written in a normal coordinates passing through the base point

x. Also, Q is the curvature two form of the connection given in (1.18).

The higher order coefficients are more complicated and cumbersome. They are only
available up to ajp and usually their computations requires newer techniques. Avramidi
computed ag using covariant techniques [2| and van de Ven [35] gives formulas up to
a1 applying various differential techniques. van de Ven employs a new notation, free of
space-time indices notation, which makes the format of his formulas different than the

one presented here.

By the local formula given in the above theorem, it is easy to see that

rank(V')vol(M)
(47r)m/2

ap(P) =

Using Karamata’s theorem, the Weyl’s law for general closed manifolds can be proven

using the heat kernel asymptotic expansion.

Corollary 1.23. /3, Corollary 2.43] The eigenvalue counting function N(X) of P satisfies

the following
rank (V' )vol(M)

A2\ .
(4m)™/20(m /2 + 1) oo

N\ ~

Remark 1.24. The integral of the divergence terms in the spectral invariants, e.g. R.jj or
E.pj, vanishes when M is a closed manifold. However, keeping them is important when
we want to localize the heat kernel Tr(Fe~"") by an endomorphism F € C*(End(V)).
The endomorphism F', called the smearing endomorphism, does not change the form of

the heat kernel asymptotic expansion, i.e. similar to (1.16) we have

n—m

Tr(Fe ™) ~i0 Y an(F,P)t 4 (1.22)
The coefficients are given by

a(z, F, P) = tr(Fen(z, P)). (1.23)

The endomorphism valued functions e,(x, P) are those function whose trace give the

spectral invariants, i.e. ap(z, P) = tr(e,(x, P)).
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The other spectral function assigned to a positive elliptic operator P is the spectral

zeta function defined by
((s,P)=Tr(P™%), R(s)>>0, (1.24)

whose smeared version is ((s, F, P) = Tr(FP~*). Knowing the format of the heat kernel

and using the Mellin transform

((s,P) = ! ] /000 51 (Tr(eftp) — dimker(P)) dt,

(s

it can be shown that the zeta function extends to a meromorphic function with simple
poles. Its values, residues and derivatives have important applications in theoretical and
mathematical physics. These values are related to the coefficients of the asymptotic

expansion (1.22) by the following proposition.

Proposition 1.25. (c¢f. [19]) Let P be an elliptic d™ order positive partial differential
operator. Then the zeta function ((s,F,P) has a meromorphic extension to C with
possible simple poles at s = (m —n)/d forn =0,1,2,---. Furthermore,

a,,(F,P) = Res,_m-n (r(s)g(s, F, P)), (1.25)

d

where
am (F, P) — dim ker(P ifn=m
PP Yy (P) yn=m
By (1.23) and (1.25), for a Laplace type positive operator P and a smearing endo-

morphism F', we have

/ tr(F)dvoly = (47)™/*T (m/2)Res,—p,2((s, F, P). (1.26)
M

All the residues of the zeta function can be expressed as the Wodzicki residue of some
power of P, and this justifies the use of the word residue in the Wodzicki residue. To
see this, we note that the family { FP~*} is a holomorphic family of classical pseudodif-
ferential operators . By Theorem 1.10 and the uniqueness of analytic continuation, the
following equality holds:

((s,F,P) =TR(FP?).
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Substituting the order function «(z) = —z of this family into equation (1.7) gives us
Res(FPM—™/2) = Res,_m-n((s,F,P), n<m. (1.27)
2

As a result, by Connes’ trace formula, the residue of the highest pole s = m/2 is given

by the Dixmier trace and we can rewrite (1.26) as follows:

/ tr(F)dvol, = m(47)™/*T (m/2) Tr,(FP~™/?). (1.28)

1.4 Noncommutative Riemannian Geometry

Inspired by the spectral properties of Dirac type operators on closed manifolds and their
geometric implications, Alain Connes defines elements of his noncommutative Rieman-
nian geometry in [11, 12]. In his completely new approach, the role of metric g,,,, which
defines the geometry of the space, is played by a Dirac operator. In this approach, the
geometry is given by a positive operator D with a discrete spectrum and a x-algebra A
represented on a Hilbert space H. The triple (A, H, D), which is called a spectral triple,
encodes the spectral information of an abstract Dirac type operator D on a manifold
with function algebra A. While we can construct a spectral triple for any spin manifold
which recovers the geometry of the manifold completely, nothing prevents us from as-
signing a spectral triple to a noncommutative algebra. In this regard, one can consider

this approach as an extension of geometry to noncommutative spaces.

We shall review the elements of noncommutative Riemannian geometry in this section

and main references for this section are |16, 20)].

1.4.1 Spectral Triples

Definition 1.26. A spectral triple (A, #H, D) is given by a unital *-algebra A which
is represented as bounded operators of the Hilbert space H and a self-adjoint operator
D : H — H with compact resolvent and bounded commutators [D,a] € B(H) for any
a€A

A spectral triple is called even if there is a Zs-grading « such that ay = ya for any a € A
and yD = —D~.
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Let M be a closed oriented Riemannian manifold, V' a Clifford module and D a
self-adjoint Dirac type operator on V. Since D is an elliptic operator, it has compact
resolvent as a densely defined (unbounded) operator on H = L*(M,V). On the other
hand, [D, f] is a differential operator of order zero, so it is a bounded operator on H
and is given by the endomorphism c¢(df). If the Clliford module is the spinor bundle S
on a spin manifold and D is the Dirac operator on the spinor bundle, then the spectral
triple (C*°(M), L?>(M, S), D) is called the canonical spectral triple. One can recover the

geodesic distance on the spin manifold in the following algebraic way (see e.g. [11]):

d(z,y) = sup{|f(z) = f(y)] : |[D, fIll < 1}. (1.29)

This, in fact, guarantees that by considering the canonical spectral triple, no geometric

information of M is lost.

If the dimension of M is even, the map defined by complex volume element on the
spin bundle is the Zs-grading of the canonical spectral triple which makes it an even

spectral triple.

1.4.2 Spectral Dimension and Integral

The condition that the operator D of a spectral triple has compact resolvent implies
that its spectrum consists of a discrete set of eigenvalues 1.5, and if the Hilbert space is
infinite dimensional, p, (D) — co. The form in which this sequence tends to infinity has

several geometric implications.

Definition 1.27. A spectral triple is finitely summable when the resolvent of D has
characteristic values pu, = O(n~%) for some « > 0. Moreover, a finitely summable

spectral triple is of metric dimension m if p,, (D) is of order n!/™.

By Weyl’s law, Corollary 1.23, any spectral triple defined by a Dirac type operator on
a manifold M is finitely summable and its spectral dimension is equal to the dimension
of M.

Spectral dimension can be a non-integer number. By this possibility, noncommutative
geometry can give a geometric interpretation to dimensional regularisation, which is used
in modern quantum field theory. In [16, 1.19.2], Connes and Marcolli constructed spectral

triples with spectral dimension for any z € (0, 00).
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For a finitely summable spectral triple, with « given in the definition, the operator

|D|~* is trace class for all R(s) > L. Therefore, ((s,|D|) = Tr(|D|~*) is a well defined

holomorphic function on the right half plane R(s) > é Moreover, if it has spectral
dimension equal to m, then the first pole of the function will be at s = m and the residue

at this point is given by [10, Proposition IV.2.3.2]

N-1

> (un(D))™™

— lim =0 — Tr,(|D|~™). 1.
S Y] (D7) (1.30)

Ress=m( (s, |D])

The above equality is the counterpart of the classical one (1.28). It suggests that on a
spectral triple with spectral dimension m we can define a noncommutative integral by

the trace on A defined by
a — Try,(a|D|™™), a€ A. (1.31)

Note that equation (1.28) is true for a more general smearing endomorphism F €
C*°(End(V)). Inspired by the fact that [D, f] = c¢(df) € CI(M) C C*°(End(V)), we
can define the algebra of endomorphisms that can smear out the zeta function to be the
algebra B generated by A and [D,a] for all a € A. The problem is that the functional
(1.31) is not in general a trace on B. A sufficient condition is that any b € B be in the
domain of the derivation 6 = [|D|, -], that is,

5(b) =[|D|,b] € B(H), beB.
Definition 1.28. A spectral triple (A, H, D) is called regular if

B C Dom™§ = ﬂDom 5",
k

The spectral triple coming from a Dirac type operator on a manifold is regular. This
result follows from pseudodifferential theory on M. Note that or(|D]) commutes with
or([D,a]), which implies that §([D,a]) is a zero order pseudodifferential operator and

thus is bounded. A similar argument works for §%([D, a).

For regular and finitely summable spectral triples all the spectral zeta functions

C(s,b,|D|) := Te(b|D[™%), be B, (1.32)
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are holomorphic on R(s) > 1/m. As we saw before in classical cases, the poles of the
zeta functions Tr(F P~*) contain important geometrical information. Another notion of
dimension in noncommutative geometry emerges out of this concept. Instead of taking
into account only the top pole, which gives the spectral dimension, this new notion is
defined to be a subset of the complex plane consisting of all singularities of the zeta

functions (1.32).

Definition 1.29. [16] Let (A, H, D) be a finitely summable regular spectral triple. The
dimension spectrum is the subset II = {z € C, R(z) > 0} of singularities of the analytic
function ((z,b,|D|) for all b € B. We say that the dimension spectrum is simple when

these spectral functions have at most simple poles.

Based on (1.27), then one can define the Wodzicki residue on the algebra generated
by B and all powers of |D| by the following equality which defines a trace [16, Theorem
1.134]

][T = Ress—oTr(T'|D|™%).

1.4.3 Real Structure

A real structure for spectral triples, introduced in [11], has three different origins. On
one hand, it is motivated by the modular conjugate in the Tomita-Takasaki theory. On
the other hand, it is a way to formulate a spin structure on manifolds. Finally, a real

spectral triple on A determines a class in the KO-homology of A.

Definition 1.30. A real structure of KO-dimension m mod 8 on a spectral triple

(A, H, D) is an anti-linear isometry J such that
J?=cand JD =€ DJ,

where €, ¢’ € {£1} are given by Table 1.1. Moreover, for any a,b € A we have

e Order zero condition [a, Jb*J 1] = 0,

e Order one condition [[D,a], Jb*J 1] = 0.

A spectral triple with a real structure is called a real spectral triple.
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n mod 8 0 1 2 3 4 5 6
J? =€ 1 1 -1 -1 -1 -1 1 1
JD=¢DJ 1 -1 1 1 1 -1 1 1
Jy=ée~J 1 -1 1 -1

TABLE 1.1: KO-dimension of a real structure

The charge conjugate on spinors is the real structure on the canonical spectral triples.
In this case the second and third rows of Table 1.1 result from Theorem 1.15. Moreover,
Jm commutes with any function f € C°°(M) C Cl(m), hence Jf*J~! = f. Thus, by
commutativity of C°°(M), we have both the order zero and the order one conditions for

free.

The key role of a real structure is in defining a right A-module structure for H by
b == Jb*J ¢,

The order zero condition specifies that left and right multiplication commute, hence H
is an A-bimodule. In addition, the order one condition (together with the order zero
condition) makes H an Q}j — A bimodule. For a real spectral triple one can define the

adjoint action of the unitary group of the algebra A on the Hilbert space as

Ad(u)(€) = uéu* = JuJ tug, € H,uclU(A).

1.4.4 Reconstruction Theorem

The spectral characterization of manifolds, as a more elaborated version of its topolog-
ical counterpart, i.e. Gelfand-Naimark theorem, was discussed in [12]|, and axioms for
noncommutative spin geometry were also introduced. It was claimed that a commutative
spectral triple satisfying these axioms is (equivalent to) the canonical spectral triple of

a spin manifold. The complete proof of this claim was given recently by Connes [14].

The axioms for commutative spin geometry are as follows (for the general version see

12)).

1. Dimension: the spectral dimension is a non-negative integer m.
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2. First order condition: For the commutative case this property can be considered

without having a real structure and it reads as follows:

[[va]vh]zoa f,hE.A.

3. Regularity: B C Dom®}.

4. Orientability: There exists a Hochschild cycle ¢ = a° ® a' ® ---a™ € Z,,(A, A)
such that
v if m = 2k,

mp(c) := [D,d°||D,d']---[D,a™ = '
I ifm=2k+1.

5. Finiteness and absolute continuity: Viewed as an A-module the space H® =
Nk DomDF¥ is finite and projective. Moreover, the following equality defines a

Hermitian structure (, ) on this module:
€.an) = falemDl ™ Vaed&nen™.

6. Poincaré duality: The intersection form K,(A) x K,(A) — Z is invertible.

7. Reality: There is a real structure on the spectral triple.

In [12], Connes proves that these axioms on a spectral triple whose algebra is the space
of smooth functions of a smooth manifold M defines a Riemannian metric ¢ such that
the distance formula (1.29) gives the geodesic distance of (M, g). Moreover, the unique
minimizer of the functional fDQ*m on the space of all such spectral triples fixes a
compatible spin structure on (M, g). The canonical spectral triple associated to this spin

structure is unitary equivalent to the original spectral triple.

The remaining part of the proof was to show how a smooth structure on M can be
defined using these axioms. To construct only the smooth structure a fewer number of

axioms is needed as shown in the following theorem.

Theorem 1.31. [14] Let (A, H, D) be a spectral triple, with A commutative, fulfilling

the first five conditions in a slightly stronger form, i.e. we assume that

o The reqularity holds for all A-endomorphisms of DomDF,



A Prelude to Noncommutative Geometry 32

e The Hochschild cycle c is antisymmetric.

Then there exists a compact oriented smooth manifold M such that A = C*°(M) is the

algebra of smooth functions on M.

A variant of this theorem is also proved for spin® manifolds |14, Theorem 11.5|. In
the characterizing theorem of spin® manifolds, a weaker form of the Poincaré duality

condition is assumed, in addition to the assumptions of the above theorem.

1.5 Action Functional in Noncommutative Geometry

From the beginning, noncommutative geometry was believed to have deep applications
in physics. Searching for the right formulation of action, as the innermost notion of
modern physics, in noncommutative geometry started from the very early stages 8] and
later evolved to what now is called the spectral action functional. In this section we will
discuss the three main milestones achieved toward the final formulation of the spectral
principal and spectral action introduced in [5]. There is a huge list of references for this

topic, among which we suggest [16] and [36].

1.5.1 Action Functional in Noncommutative Geometry

The first formulation of the action for noncommutative geometry was a spectral formu-
lation of the Yang-Mills action [8]. By (1.28) we know that for a Hermitian connection

V on a Hermitian vector bundle V' over a spin manifold M we have
YM(V) = cTrw(FijFl-j|D|_m).

Here F' is the curvature 2-form of V. To generalize this formula for any spectral triple
(A, H, D), we have to make sense of forms (at least up to 2-forms) as operators on the

Hilbert space and the associated inner product.

Let (A, H, D) be a spectral triple. The reduced universal differential graded algebra
Q* A over A is @ QFA where QA = {>"a’da' ... da"; o/ € A}. The differential map
d: QA — QFF1A is defined on monomials by d(a’da'...da*) = da’da'...da"* and
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extends uniquely on Q*A via the following properties

& = 0,
d(wle) = d(wl)wg—I—(—l)degwlwl(dwg),
(da)* = —da*.
The map
m(a’da’ . ..da") = a°[D,a']...[D,a"]

represents this algebra on . However, there is an ambiguity if we define da = [D, d]

which can be solved by considering the quotient algebra
A =Q"A/(kerm + dker ).
Note that 7 defines an isomorphism between Q’B and the subalgebra

m(QFA) /7 (d(ker m N QFA)).

For the canonical spectral triple, 7, is isomorphic to de Rham algebra of forms on

the manifold by the isomorphism
odrt . dff s fOdrt - df?. - df*,
where df* is considered as a section of the Clifford bundle. Moreover, the inner product
(T1,To) = Tro, (T3 Ty [DI™™),  Th, Tz € 7(QFA),

on QFA, induces an inner product on Q'B as a quotient space. This inner product,
under the above isomorphism, is equal to a constant multiple of the inner product on

the k-forms, defined by (w1,wa)r = f 1 W1 A *wz. In other words,
w7 = inf{Tr,(a*a|D|~™); 7p(a) = w}.

Theorem 1.32. [10] The functional Y M(A) = Tr,, ((dA + A2)*(dA + A2)|D|—m) is

positive, quartic and invariant under gauge transformations,i.e.,

Yu(A) = udu® + vAu* Yu € U(A). (1.33)
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The functional
I(a) = Tr,(0*|D|™™), (1.34)

with = w(da + o?), is positive, quartic and gauge invariant on {a € Q' A; a = o*}.
Moreover, one has*

YM(A) = igf{[(a); m(a) = A}. (1.35)

This formulation of the Yang-Mills action applied to canonical spectral triples gives

the the classical Yang-Mills action. On the other hand, on a toy model,

0 0
A= CabeCy, H=C2 D= m,
0 b w0

produces a typical expression of the Higgs potential given by (|¢|?+1)? [10]. The following
quotation from D. Kastler best explains how this can improve our understanding about

the puzzling piece, i.e. the Higgs boson, of the standard model.

This at once enlightens our physical picture: the world is two-sheeted, the
mysterious Higgs is nothing but a gauge boson, however needing noncommu-
tative geometry to be recognized as such because the corresponding potential
is not a connection within the realm of classical differential geometry, but
a discrete connection (so-to-speak with parallel transport jumping from one
world-sheet to the other). [24, pp. 3869

By constructing a spectral triple on C*°(M) ® Af, where Ay is a finite dimensional
algebra, and using (1.35), Connes and Lott [15] were able to produce the bosonic elec-

troweak sector of the standard model.

The action of general relativity was not included in the Connes-Lott model. The first
step to include gravity sector in the spectral theory, is to reproduce the Einstein-Hilbert
action from the spectrum of the Dirac operator. It was proposed by Connes and shown
in detail by Kastler in [23] for dimension m = 4 and for the more general case m > 4
by Kalau and Walze in [22] that the Einstein-Hilbert action is given by a multiple of the
Wodzicki residue of D=2, Unlike [22, 23] in which the Wodzicki residue is computed

“Originally [8], the map da + i[D|D|™!, a] was used to quantize one forms. In this approach one
forms were presented by elements of the ideal £™" and the Yang-Mills action on dimension m = 4
was given by inf Tr,(6%) = Y M (). On the higher dimensions, it changes to Tr,(§™/2) which is not
quadratic in # anymore.
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by explicitly computing o_4(D~™%2), we will use the local invariant formula and prove

the theorem. A similar proof can be found in [1].

Theorem 1.33. Let (M, g) be a Riemannian manifold of dimension m > 2 and D be a
Dirac type operator defined by a Clifford connection V on a Clifford module V'. Then

rank(V

ReS(Dim+2) = 6(47T)m/21_‘(

Zn)IEH( ), (1.36)
where Igp(g) = [,y Rydvoly is the Einstein-Hilbert action on the metric g.

Proof. By the generalized Lichnerowicz formula given by Theorem 1.21 we have

D? = V*V + ¢(FV/5) - %

where FV/5 ¢ Q*(M, Endeyary(V)). That is, any element of the Clifford algebra, in

particular, any one form, commutes with F¥/5. This implies that for any i # j, we have

tr(c(e’)e(e) iy %) = tr(e(e? ) Fy Se(el)) = —tr(c(el)e(e!) F¥),

ij ij ij
Hence ¢(FVY/9) is traceless and the second heat invariant ay(x, D?) is given by

f) _ rank(V) o (1.37)

as(x, D?) = (47r)m/2tr< R/6 — (FV/S)+ TPk

Therefore, az(D?) = %IEH( ). On the other hand, by (1.25) and (1.27) we have

Res(D~(m72)) = 2Ress:m772C(s, D?)

= az(D?)

_ V)
= (4W)m/2F(L>IEH( 9)-

Note that (1.36) is true for any Dirac operator defined by a Clifford connection.
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1.5.2 Spectral Action and Einstein-Yang-Mills System

Despite the fact that both the Yang-Mills (1.34) and Einstein-Hilbert (1.36) actions are
formulated spectrally, they are of a different computational nature. In (1.34) we are
computing the first coefficient of the smeared heat kernel Tr(02e*tD2), in which, other
than the Dirac operator D, we computed #? by hand and plugged it into the formula.
In turn, equation (1.36), for which we computed the second heat kernel coefficient, only
needs a Dirac operator. The next coefficient of the heat kernel of D? have terms like
Qr1Qk, which are similar to the Yang-Mills Lagrangian. Indeed, in addition to aQ(D%)
producing the Einstein-Hilbert action of the metric g, we will show that a4(D%) contains

the Yang-Mills action of V.

First, Note that the endomorphism FE of D2v and the curvature Q of twisted connec-

tion is given by

1 1
E = JR- gc(ek)c(el) ® F, (1.38)
1
Qij = ZRijklc(ek)c(eZ) ® Idg + Idy ® Fj;. (1.39)

To rewrite as(z, D%) in terms of the Riemann curvature tensor and the curvature F

of V, we need the following computations:

tr(RE) = rank(V)2m/2-2R2,
tr(E?) = rank(V)20/2=4R2 — om/2-lg (R Fr),
tI‘(QijQij) = I‘ank(V)Q[m/2]_2RijklRijkl - Q[m/Q}tl‘(EjFZ‘j).

Note that 2[™/2 is the dimension of the spinor bundle and we have used the property

F;; = Fj; = —Fj;. By substituting these into the formula of a4(:E,D2) at dimension
m = 4 we find that

rank(V 1 11 1 —
a4(:1c, DQ) = 167'((2)( — %CUMCZ-W + %E4> + ﬂtr(FijFij) (1.40)
rank(V)

) — 48Ry + 60tr(E. )
360(167r2)( ok 60tr(Eope)
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Here, Cjjr is the Weyl curvature and Eydvoly = %(R2 — 4R R;j + RijriRijr)dvoly is
the Pfaffian (or Euler) form. By the Chern-Gauss-Bonnet theorem we have

1
X(M) = @ /M E4dVOlg.

Now, both actions are presented spectrally, and unlike the first formulation of the
Yang-Mills action, we can have them simultaneously by considering the asymptotic ex-
pansion of a function such as Tr(e™" ?/A? ). This guides us toward a very strong hypothesis

called the spectral action principle introduced by Connes and Chamseddine [5]:

The physical action only depends on the spectrum of the Dirac operator of the spectral

triple that models the theory.

Imposing the condition that the action has to add up when evaluated on the direct sum
of the geometric spaces, one can see that the fundamental action functional has to be of

the form

Te(f(D/A)), (1.41)

where f is a positive function of real variable and A is the mass scale. As the following

Theorem shows, f plays a small role in this action.

Theorem 1.34. [16] Let (A, H, D) be a spectral triple with ker D = {0}, fulfilling

_ 2
tD § aat()é

Then the spectral action (1.41) can be expanded in powers of the scale A in the form

FD/A) ~ X £ D12+ 1(0)¢(0.D) + .. (1.42)

Bell
with the summation over the dimension spectrum 11. Here the function f only appears
through the scalars fg = fo WP dv. The terms involving negative powers of A in-

volve the full Taylor expansion off at 0.

If the spectral triple is given by a twisted Dirac type operator on a 4 dimensional

manifold, formula (1.42) can be rewritten as

Tr(f(D/A)) ~ 2A4f4a0(D2) + 2A2f2a2 (D2) + f0a4(D2) +---+ AiQkf_gkaZH_gk(DQ) +....
(1.43)
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This, together with (1.40) and (1.36), gives rise to the following spectral formula for the
Finstein- Yang-Mills action [16, Theorem 1.158|:

Tr(f(Dy/A)) ~ 4%2 /M L(gy, A)dvol, (1.44)

where £(gu, A) is the Lagrangian given by

L(gpv, A) = (1.45)

@tr - rank(V)f(0)
6

A?foR + (Fi;Fij) <

2rank(V)AYf, + mnlg(V)

Cz]klcl]kl
modulo topological, i.e. x(M), and boundary, e.g. fM R.rdvoly, terms.

This procedure enables us to create a Lagrangian on geometries defined by spectral
triples. The missing point, however, is how to twist an abstract Dirac operator with a

connection in this new setting.

Let (A, H,D) be a spectral triple and A be Morita equivalent to B, i.e. there is
a finite projective (right) module £ such that B = End4(€). If we fix a Hermitian
connection, V : £ = £ ®4 Q}j on &£, we can define a spectral triple on B with Hilbert
space H' = £ ® H and its Dirac operator, D', is given by

D'(¢®n)=£@Dn+V(&)n.

Any algebra is Morita self-equivalent with £ = A and a connection on A is determined
by its value at the identity, i.e. w = V(1). We call w an inner fluctuation. The Dirac
operator D', which is called fluctuated Dirac operator, is given by D, = D + w. In the
case of real spectral triples, the above construction produces fluctuated Dirac operators
of the form

Dy=D+w+eJwJ "

More details of this construction and also all the entries of the following table can be
found in [36]. Note that the last row implies that the spectral action is invariant under

the local gauge transformations
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Gauge fields Vector potential A Inner fluctuations w
Twisted Dirac operator Dy D,=D+w
Local gauge group G =C>M,G) U(A)

Action on fields A, = gALg 4 (0,9)97 " w" = uwwu* + u[D, u*]
Action on Dirac opera- g 'Dvyg Dy =UDU*
tors

U=n(u)Jr(u)J !

1.5.3 Symmetries and Standard Model Through Noncommutative Ge-

ometry

The action of the standard model Igp; together with the Einstein-Hilbert action Iggy
encodes the physics of the low energy. The main difference of these two actions, besides
the difference of the fields involved in each one, is the symmetries that each one is
required to satisfy. The symmetries of Einstein-Hilbert action is the diffeomorphism
group Diff (M), which is exactly the group Aut(C°°(M)). The group of symmetries of
Isyr is the local gauge group U = C*°(M,U(1) x SU(2) x SU(3)). Hence, a unified
theory should have a symmetry group G which is the semidirect product of Diff (M) and

U coming from the following exact sequence of groups

1—-U— G— Diff(M) — 1. (1.46)

To have a geometric theory that contains both general relativity and standard model,
beside Diff (M), one needs to deal with U as geometric symmetries as well. In other words,
we want to have an algebra of fields A such that G = Aut(A). Note that Aut(A), similar
to G, is a semidirect product of the inner and outer automorphisms of A and is given by

the following exact sequence:
1 — Inn(A) — Aut(A) — Out(A) — 1. (1.47)

If A is commutative then Inn(A) is trivial. Hence, an algebra 4 with symmetry group
equal to G cannot be commutative. Connes and Chamseddine [4, 6, 7, 13| were able to
find a finite dimensional algebra Ap such that A = C*°(M) x Ap has symmetry group
equal to G. Moreover, with the tools of noncommutative geometry one can define a

geometry on A by considering a spectral triple of the following form:

(A, L*(M,S)® Hp,D =D ®1+7"® Dp).
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2~344 where 47 are 4 x 4 gamma matrices. The finite dimensional Dirac

Here 75 = vy
operator D contains all coupling constants of the standard model and the spectral
action on a fluctuated Dirac operator, Tr( f(D, /A)), produces the bosonic part of the

action functional Igpg + Igps and the complete action is given by

Tr(f(Du/A)) + (Dt ).

Bibliography

[1] T. Ackermann. A note on the Wodzicki residue. J. Geom. Phys., 20(4):404-406,
1996.

[2] I. G. Avramidi. The covariant technique for the calculation of the heat kernel asymp-
totic expansion. Phys. Lett. B, 238(1):92-97, 1990.

[3] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators.
Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the
1992 original.

[4] A. H. Chamseddine and A. Connes. Universal formula for noncommutative ge-
ometry actions: unification of gravity and the standard model. Phys. Rev. Lett.,
77(24):4868-4871, 1996.

[5] A. H. Chamseddine and A. Connes. The spectral action principle. Comm. Math.
Phys., 186(3):731-750, 1997.

[6] A. H. Chamseddine and A. Connes. Conceptual explanation for the algebra in the
noncommutative approach to the standard model. Phys. Rev. Lett., 99(19):191601,
4, 2007.

[7] A. H. Chamseddine, A. Connes, and M. Marcolli. Gravity and the standard model
with neutrino mixing. Adv. Theor. Math. Phys., 11(6):991-1089, 2007.

[8] A. Connes. The action functional in noncommutative geometry. Comm. Math.
Phys., 117(4):673-683, 1988.

[9] A. Connes. Géométrie non commutative. InterEditions, Paris, 1990.

[10] A. Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.



A Prelude to Noncommutative Geometry 41

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

A. Connes. Noncommutative geometry and reality. J. Math. Phys., 36(11):6194—
6231, 1995.

A. Connes. Gravity coupled with matter and the foundation of non-commutative

geometry. Comm. Math. Phys., 182(1):155-176, 1996.

A. Connes. Noncommutative geometry and the standard model with neutrino mix-

ing. J. High Energy Phys., (11):081, 19 pp. (electronic), 2006.

A. Connes. On the spectral characterization of manifolds. J. Noncommut. Geom.,
7(1):1-82, 2013.

A. Connes and J. Lott. Particle models and noncommutative geometry. Nuclear
Phys. B Proc. Suppl., 18B:29-47 (1991), 1990. Recent advances in field theory
(Annecy-le-Vieux, 1990).

A. Connes and M. Marcolli. Noncommutative geometry, quantum fields and motives,
volume 55 of American Mathematical Society Colloquium Publications. American

Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008.

T. Friedrich. Dirac operators in Riemannian geometry, volume 25 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2000.
Translated from the 1997 German original by Andreas Nestke.

P. B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theo-
rem, volume 11 of Mathematics Lecture Series. Publish or Perish Inc., Wilmington,
DE, 1984.

P. B. Gilkey. Asymptotic formulae in spectral geometry. Studies in Advanced Math-
ematics. Chapman & Hall/CRC, Boca Raton, FL, 2004.

J. M. Gracia-Bondia, J. C. Varilly, and H. Figueroa. Elements of noncommutative
geometry. Birkhduser Advanced Texts: Basler Lehrbiicher. [Birkh&user Advanced
Texts: Basel Textbooks|. Birkhauser Boston, Inc., Boston, MA, 2001.

V. Guillemin. A new proof of Weyl’s formula on the asymptotic distribution of
eigenvalues. Adv. in Math., 55(2):131-160, 1985.

W. Kalau and M. Walze. Gravity, non-commutative geometry and the Wodzicki
residue. J. Geom. Phys., 16(4):327-344, 1995.



A Prelude to Noncommutative Geometry 42

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Kastler. The Dirac operator and gravitation. Comm. Math. Phys., 166(3):633—
643, 1995.

D. Kastler. Noncommutative geometry and fundamental physical interactions: the
Lagrangian level—historical sketch and description of the present situation. J. Math.
Phys., 41(6):3867-3891, 2000.

M. Kontsevich and S. Vishik. Geometry of determinants of elliptic operators. In
Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ,
1993), volume 131 of Progr. Math., pages 173-197. Birkhaduser Boston, Boston, MA,
1995.

H. B. Lawson, Jr. and M.-L. Michelsohn. Spin geometry, volume 38 of Princeton

Mathematical Series. Princeton University Press, Princeton, NJ, 1989.

M. Lesch. On the noncommutative residue for pseudodifferential operators with

log-polyhomogeneous symbols. Ann. Global Anal. Geom., 17(2):151-187, 1999.

M. Lesch. Pseudodifferential operators and regularized traces. In Motives, quantum
field theory, and pseudodifferential operators, volume 12 of Clay Math. Proc., pages
37-72. Amer. Math. Soc., Providence, RI, 2010.

M. Lesch and C. Neira Jiménez. Classification of traces and hypertraces on spaces

of classical pseudodifferential operators. J. Noncommut. Geom., 7(2):457-498, 2013.

J. Milnor. Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat.
Acad. Sci. U.S.A., 51:542, 1964.

S. Paycha. Regularised integrals, sums and traces, volume 59 of University Lecture
Series. American Mathematical Society, Providence, RI, 2012. An analytic point of

view.

S. Paycha and S. Scott. A Laurent expansion for regularized integrals of holomorphic

symbols. Geom. Funct. Anal., 17(2):491-536, 2007.

R. J. Plymen. Strong Morita equivalence, spinors and symplectic spinors. J. Oper-
ator Theory, 16(2):305-324, 1986.

M. A. Shubin. Pseudodifferential operators and spectral theory. Springer Series in
Soviet Mathematics. Springer-Verlag, Berlin, 1987. Translated from the Russian by
Stig I. Andersson.



Rationality of Spectral Action for Robertson- Walker Metrics 43

[35] A. E. M. van de Ven. Index-free heat kernel coefficients. Classical Quantum Gravity,
15(8):2311-2344, 1998.

[36] W. D. van Suijlekom. Noncommutative Geometry and Particle Physics. Mathemat-
ical Physics Studies. Springer Dordrecht Heidelberg New York London, 2013.

[37] M. Wodzicki. Noncommutative residue. I. Fundamentals. In K-theory, arithmetic
and geometry (Moscow, 1984—1986), volume 1289 of Lecture Notes in Math., pages
320-399. Springer, Berlin, 1987.



Chapter 2

Rationality of Spectral Action for
Robertson-Walker Metrics

2.1 Introduction

Noncommutative geometry in the sense of Alain Connes [11] has provided a paradigm for
geometry in the noncommutative setting based on spectral data. This generalizes Rie-
mannian geometry [14] and incorporates physical models of elementary particle physics
[5, 7, 10, 12, 13, 15, 19, 32-34|. An outstanding feature of the spectral action defined
for noncommutative geometries is that it derives the Lagrangian of the physical models
from simple noncommutative geometric data [4, 10, 13|. Thus, various methods have
been developed for computing the terms in the expansion in the energy scale A of the
spectral action [3, 6, 8, 9, 20, 21]. Potential applications of noncommutative geometry

in cosmology have recently been carried out in [16, 22, 25-31].

Noncommutative geometric spaces are described by spectral triples (A, H, D), where
A is an involutive algebra represented by bounded operators on a Hilbert space H,
and D is an unbounded self-adjoint operator acting in H [11]. The operator D, which
plays the role of the Dirac operator, encodes the metric information and it is further
assumed that it has bounded commutators with elements of A. It has been shown
that if A is commutative and the triple satisfies suitable regularity conditions then A
is the algebra of smooth functions on a spin® manifold M and D is the Dirac operator
acting in the Hilbert space of L2-spinors [14]. In this case, the Seeley-de Witt coefficients

an(D?) = [, an(z, D?) dv(z), which vanish for odd n, appear in a small time asymptotic

44
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expansion of the form

Tr(efsm) g~ dim(M)/2 Z agn(D?)s" (s = 0).
n>0

As noted in (1.17), coefficients ag,(D?) are of the form [, ag,(x, D*)dvoly. These coef-
ficients determine the terms in the expansion of the spectral action. That is, there is an

expansion of the form

Trf(D*/A%) ~ ) fon azn(D?/A?),
n>0
where f is a positive even function defined on the real line, and fo, are the moments
of the function f [3, 4]. See Theorem 1.145 in [15] for details in a more general setup,

namely for spectral triples with simple dimension spectrum.

By devising a direct method based on the Euler-Maclaurin formula and the Feynman-
Kac formula, Chamseddine and Connes have initiated in [9] a detailed study of the
spectral action for the Robertson-Walker metric with a general cosmic scale factor a(t).
They calculated the terms up to ajg in the expansion and checked the agreement of the

terms up to ag against Gilkey’s universal formulas [17, 18].

The present paper is intended to compute the term ajo in the spectral action for
general Robertson-Walker metrics, and to prove the conjecture of Chamseddine and
Connes [9] on rationality of the coefficients of the polynomials in a(t) and its derivatives
that describe the general terms as,, in the expansion. In passing, we compare the outcome
of our computations up to the term ajg with the expressions obtained in [9], and confirm

their agreement.

In terms of the above aims, explicit formulas for the Dirac operator of the Robertson-
Walker metric and its pseudodifferential symbol in Hopf coordinates are derived in §2.2.
Following a brief review of the heat kernel method for computing local invariants of
elliptic differential operators using pseudodifferential calculus [17], we compute in §2.3
the terms up to ayp in the expansion of the spectral action for Robertson-Walker metrics.
The outcome of our calculations confirms the expressions obtained in [9]. This forms a
check in particular on the validity of ag and ajg, which as suggested in [9] also, seems
necessary due to the high complexity of the formulas. In §2.4, we record the expression for
the term ajs achieved by a significantly heavier computation, compared to the previous

terms. It is checked that the reduction of ajs to the round case a(t) = sint conforms to
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the full expansion obtained in [9] for the round metric by remarkable calculations that
are based on the Euler-Maclaurin formula. In order to validate our expression for a9,
parallel but completely different computations are performed in spherical coordinates
and the final results are confirmed to match precisely with our calculations in Hopf

coordinates.

In §2.5, we prove the conjecture made in [9] on rationality of the coefficients appearing
in the expressions for the terms of the spectral action for Robertson-Walker metrics. That
is, we show that the term ag, is of the form Qan (a(t),d'(?),. .. ,a(?") (t))/a(t)*=3, where
2, is a polynomial with rational coefficients. Note that, ao, = sz(t) azn (z, D?)dvol,
and it is indeed t-dependent. We also find a formula for the coefficient of the term with
the highest derivate of a(t) in ag,. It is known that values of Feynman integrals for
quantum gauge theories are closely related to multiple zeta values and periods in general
and hence tend to be transcendental numbers [24]. In sharp distinction, the rationality
result proved in this paper is valid for all scale factors a(t) in Robertson-Walker metrics.
Although it might be exceedingly difficult, it is certainly desirable to find all the terms
asy, in the spectral action. The rationality result is a consequence of a certain symmetry
in the heat kernel and it is plausible that this symmetry would eventually reveal the full
structure of the coefficients ag,,. This is a task for a future work. Our main conclusions

are summarized in §2.6.

2.2 The Dirac Operator for Robertson-Walker Metrics

According to the spectral action principle [4, 12], the spectral action of any geometry
depends on its Dirac operator since the terms in the expansion are determined by the high
frequency behavior of the eigenvalues of this operator. For spin manifolds, the explicit
computation of the Dirac operator in a coordinate system is most efficiently achieved by
writing its formula after lifting the Levi-Civita connection on the cotangent bundle to
the spin connection on the spin bundle. In this section, we summarize this formalism
and compute the Dirac operator of the Robertson-Walker metric in Hopf coordinates.
Throughout this paper we use Einstein’s summation convention without any further

notice.
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2.2.1 Levi-Civita connection.

The spin connection of any spin manifold M is the lift of the Levi-Civita connection for
the cotangent bundle T*M to the spin bundle. Let us, therefore, recall the following
recipe for computing the Levi-Civita connection and thereby the spin connection of M.
Given an orthonormal frame {6, } for the tangent bundle 7'M and its dual coframe {6},

the connection 1-forms wg of any connection V on T*M are defined by

a _ ,app
V6 =wy 6’

Since the Levi-Civita connection is the unique torsion free connection which is com-

patible with the metric, its 1-forms are uniquely determined by
do® = WP A 6.
This is justified by the fact that the compatibility with metric enforces the relations

B

(S
(A.)ﬁ = —Wq,

while, taking advantage of the first Cartan structure equation, the torsion-freeness amounts

to the vanishing of
T =do™ — wj N 6°.

2.2.2 The spin connection of Robertson-Walker metrics in Hopf coor-

dinates.

The (Euclidean) Robertson-Walker metric with the cosmic scale factor a(t) is given by
ds* = dt* + a* (t) do?,

where do? is the round metric on the 3-sphere S3. It is customary to write this metric
in spherical coordinates, however, for our purposes which will be explained below, it is
more convenient to use the Hopf coordinates, which parametrize the 3-sphere S% C C?
by

2 = €' sin(n), 29 = €92 cos(n),
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with 7 ranging in [0, 7/2) and ¢1, ¢2 ranging in [0, 27). The Robertson-Walker metric in
the coordinate system x = (t,1, ¢1, ¢2) is thus given by

ds® = dt* + a® () (dn* + sin®(n)d¢? + cos®(n)d¢3) .
An orthonormal coframe for ds? is then provided by
o' = dt, 62 = a(t) dn, 03 = a(t) sinnde,, 0% = a(t) cosndeps.

Applying the exterior derivative to these forms, one can easily show that they satisfy the
following equations, which determine the connection 1-forms of the Levi-Civita connec-

tion:

do' =0,
!

ae> = g1 g2
a(t)
"(t) cotn

d93 — a ( 91 03 92 93
OO
!

gt = “D grpgr 1A g2 e
a(t) a(t)

We recast the above equations into the matrix of connection 1-forms

0 —d(t)6? —d ()03 —ad'(t)0*
1 '(t) 62 0 —cotn 6 tannf*
_ a'(t) cotn anmn € so(4),
at) | o'(t)6® cotne? 0 0
a'(t)0* —tannot 0 0

which lifts to the spin bundle using the Lie algebra isomorphism u : so(4) — spin(4)
given by (see [23])

J(A) = i (A%, 0%)e(0%)c(67), A € so(4).
a,p

Since (wf?*, 0°) = wg, the lifted connection w is written as

1
~ o o B
W= Eﬁwﬁc(ﬁ )e(67).
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In the case of the Robertson-Walker metric we find that

=3 o (@ (1022 + ' (1033 + o (£)0* ™ + cot(n)63423 — tan(n)0*42Y),  (2.1)
a

where we use the notation ¥¥ = ~%~J for products of pairs of the gamma matrices

vt 42, 43, 44, which are respectively written as

00 i 0 0 0 0 1 0 0 0 —i 0 01 0
000 0 0 1 0 0 0 i 0 0 0 0 —1
i 00 " 0o -1 00 |’] O o [’ =100 o0
0 i 0 -1 0 0 0 —i 0 0 0 10 0

2.2.3 The Dirac Operator of Robertson-Walker metrics in Hopf coor-

dinates.

Using the expression (2.1) obtained for the spin connection and considering the predual

of the orthonormal coframe {“},

9 19 19 19

“=a0 2 umar BT a@esmnoer T al) cosn dgs

we compute the Dirac operator for the Robertson-Walker metric explicitly:

D

c(0“)Vy

7" (ba +w( )

_ 19 d i 3 1 9 a' 13, cot(n) o3
- (a) aon 2" )” asin(y) 961 | 2a) T 20

0 d 14 tan(n) o
(acos 87 27 T 2a 7

1 8 1 0 1 0 3a’ cot(2n
N2 o N B A AT B ( )72.
n a sinn 0y a cosnOpy  2a

=7 8t+

Thus the pseudodifferential symbol of D is given by

1&- 1 3a’
52 2 55 3+ 54 4+7

op(w,§) =iy + > : '+
a sinn a cosn 2a

cot(2n) 4
a

For the purpose of employing pseudodifferential calculus in the sequel to compute the

heat coefficients, we record in the following proposition the pseudodifferential symbol of
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D?. This can be achieved by a straightforward computation to find an explicit expression

for D2, or alternatively, one can apply the composition rule for symbols, op, p,(z,£) =
—i)lel

Y a (=9) d¢'op,030p,, to the symbol of D.

al

Proposition 2.1. The pseudodifferential symbol of D?, where D is the Dirac operator

for the Robertson-Walker metric, is given by

o(D?) = pa + p1 + po,

where the homogeneous components p; of order i are written as

1 1

1
_ o2, Lo 2 2
pz o= Gt a? & a2 sin?(n) &+ a? cos2(n) &,
—3iaa’ —ia'y'? — 2icot(2n ia’ csc(n)y'3 + i cot(n) csc(n)y?3
po= 5 &1+ 3 ()52— () 2() () €3
a a a
itan(n) sec(n)y** — ia’ sec(n)y*
+ P) 547
a
o= g~ 6al0)a (1) — 305 + esc(n) + sec?(n)
4a(t)?
4+ 24/ (1) (cot () — tan(n))712>. (2.2)

2.3 Terms up to a;p and their Agreement with Chamseddine-

Connes’ Result

The computation of the terms in the expansion of the spectral action for a spin manifold,
or equivalently the calculation of the heat coefficients, can be achieved by recursive
formulas while working in the heat kernel scheme of local invariants of elliptic differential
operators and index theory [17]. Pseudodifferential calculus is an effective tool for dealing
with the necessary approximations for deriving the small time asymptotic expansions in
which the heat coefficients appear. Universal formulas in terms of the Riemann curvature
operator and its contractions and covariant derivatives are written in the literature only
for the terms up to ajp, namely Gilkey’s formulas up to ag [17, 18] and the formulas in

[1, 2, 35| for ag and ajp.
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2.3.1 Small time heat kernel expansions using pseudodifferential cal-

culus.

In [17], by appealing to the Cauchy integral formula and using pseudodifferential calculus,
recursive formulas for the heat coefficients of elliptic differential operators are derived.

That is, one writes
1
e = / e ND? — A)7ldA,
¥

21

where the contour v goes around the non-negative real axis in the counterclockwise di-
rection, and one uses pseudodifferential calculus to approximate (D? — \)~! via the
homogeneous terms appearing in the expansion of the symbol of the parametrix of
D? — \. Although left and right parametrices have the same homogeneous components,
for the purpose of finding recursive formulas for the coefficients appearing in each com-
ponent, which will be explained shortly, it is more convenient for us to consider the right
parametrix R(/\) Therefore, the next task is to compute recursively the homogeneous
pseudodifferential symbols r; of order —2 — j in the expansion of o(R()\)). Using the
calculus of symbols, with the crucial nuance that A is considered to be of order 2, one

finds that

o = (p2 - )\)_17
and for any n > 1
(_i)‘al « e}
o] +j+2—k=n
ji<n

We summarize the process of obtaining the heat coefficients by explaining that one
then uses these homogeneous terms in the Cauchy integral formula to approximate the
integral kernel of e 5" . Integration of the kernel of this operator on the diagonal yields
a small time asymptotic expansion of the form

n—4)/2

<
Ty~ 30 / tr(en(z))dvoly, (¢ 0),
n=0

where

en(z)/det g = 2_731,//76_/\7‘”(:&5,)\) d\ d€. (2.4)

For detailed discussions, we refer the reader to [17].
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It is clear from (2.2) that cross derivatives of py vanish and d¢py = 0 if |a| > k.

Furthermore, a%krn =0 for n > 0, and the summation (2.3) is written as

.0 0 .0 0
Tm = —T0P0Tn—-2 —T0P1Tn—-1+ 27“08751]91 arn72 + ZTO%M 87777“"72
) ) 9% 9?2
+Z7“067£1p2a7“n_1 + Zroai&pz on Tn—1+ 5 5 852172 o2 2
1 0% 9
+5 7“0852132(9 5 (2.5)

Using induction, we find that

Ty = Z Tn.j,a(T) rg £~ (2.6)
2j—2—la|=n
n/2+1<j<2n+1

For example, one can see that for n = 0 the only non-zero rg ;. is 79,1,0 = 1, and for

n = 1 the non-vanishing terms are

op1 09"
87&{:7 r1,3,291+ek = _Qngki

T1,2,e, =
where e; denotes the j-th standard unit vector in R4,

It then follows from the equations (2.4), (2.5) and (2.6) that

en(x) a(t)? sin(n) cos(n) 27”/ / (2,6, N) dN dE
R4
_ ) a_]' fs)\
= E rn%a(x)/wg o L I d\de (2.7)

™

_ Z 7"n i a(t)a2+a3+a4+3 sin(n)a3+1 COS(?])(M—H,

where

B ap+ 1Y\ (=1)* +1
Ca = HF < 5 ) 2 .
k
It is straightforward to justify the latter using these identities:

1

; 4
Y .(_1)3 2 —1 _kke2
ol rd\ = _1)J7 =€l e 9k,

— — 1)!
: ] il
1 n 1
/ e dr = Z((=1)"+1)b 52T <n + ) :
i 2 2

—~

N
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A key point that facilitates our calculations and the proof of our main theorem

presented in §2.5.1 is the derivation of recursive formulas for the coefficients 7, ;. as

follows. By substitution of (2.6) into (2.5) we find a recursive formula of the form

Tn7j7

apl
—PoTn—-2,j—1,a — 5 Tn—1,j—1,a—ey

apl . . ag” 8p1
+1 Z agk 817 n—2,]'—1,04 + Z(2 - .]) Z 777’-77/_27]'—2706—261

0 dg'
+2zzgkk877"n Li-La—e, *i(4 = 2j) ngkairn Lj—2.0—2e1—ey

k,l
aglt o
kk kk
+ Z g Tn 2,7—1,c - 2 Z afL‘k 8:1) Tn—2,j—2,0—2¢;
2 ll

7’n—2,j—2,a—2el

DI

k,l

i a, 'l
Z kkag dg .
+( _j _] ) ) Tn—2,j—3,a—2el—2el/~
kLl Tk OTk

It is undeniable that the mechanism described above for computing the heat coeffi-

cients involves heavy computations which need to be overcome by computer program-

ming. Calculating explicitly the functions e, (z), n = 0,2, ...

,12, and computing their

integrals over S3 with computer assistance, we find the explicit polynomials in a(t) and

its derivatives recorded in the sequel, which describe the corresponding terms in the ex-

pansion of the spectral action for the Robertson-Walker metric. That is, each function

a,, recorded below is the outcome of

1

anp = 167r4/§«3 tr(ey,) dvolg

1 2n 2w pm/2
B 167r4/o /0 /0 tr(en) a(t)* sin(n) cos(n) dy dey dos.

2.3.2 The terms up to ag

These terms were computed in [9] by their direct method, which is based on the Euler-

Maclaurin summation formula and the Feynman-Kac formula, and they were checked by

Gilkey’s universal formulas.

previous subsection also gives the same result.

Our computations based on the method explained in the
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The first term, whose integral up to a universal factor gives the volume, is given by

a(t)’

apg = 9

Since the latter appears as the leading term in the small time asymptotic expansion of
the heat kernel it is related to Weyl’s law, which reads the volume from the asymptotic
distribution of the eigenvalues of D?. The next term, which is related to the scalar

curvature, has the expression

1
as = Za(t) (a(®)a”(t) +d'(t)* = 1).
The term after, whose integral is topological, is related to the Gauss-Bonnet term (cf.

[9]) and is written as

1

as = 25 (30 (Da(t)? + 3a(t)a” (1)? = 5" (t) + 90 (Da(t)a () — 4a'(1)%a" (1))

The term ag, which is the last term for which Gilkey’s universal formulas are written, is

given by

S0M0a(E? (96‘(6) Ja(t)* — 21 (¢ ) (£)* = 3a® (t)%a(t ) — 56a(t)%a"(t)* +
42a(t)a" (t)? + 36a®) (H)a(t)®a'(t) + 6alV) (t)a(t)®a” (t) — 420 (t)a(t)?d ()* +
60a® (t)a(t)a (1) + 21a® (t)a(t)d (t) + 240a(t)d’ (t)%a” (t)? — 60a’ (t)*a” (t) —
21/ ()%a" (1) — 2520 (t)a(t)a (Ha" (1))

ag —

2.3.3 The terms ag and ag

These terms were computed by Chamseddine and Connes in [9] using their direct method.
In order to form a check on the final formulas, they have suggested to use the universal
formulas of [1, 2, 35] to calculate these terms and compare the results. As mentioned
earlier, Gilkey’s universal formulas were used in 9] to check the terms up to ag, however,
they are written in the literature only up to ag and become rather complicated even for

this term.

In this subsection, we pursue the computation of the terms ag and a1 in the expansion
of the spectral action for Robertson-Walker metrics by continuing to employ pseudod-
ifferential calculus, as presented in §2.3.1, and check that the final formulas agree with

the result in [9]. The final formulas for ag and ajo are the following expressions:
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ag —

10080&@)4(7 a® (£)a(t)® + 3a© (H)a(t)* + 13a® (£)2a(t)® — 24a® (t)2a(t)? — 114a(t)?a" ()* +
43a(t)?a"(t)* — 5a(7>() () '(t) + 209 (t)a(t)>a” (t) + 9a® (t)a(t)*a’ (t)* +

16a®) (t)a® (t)a(t)® — 240 (t)a(t)?a’ (t)* — 6a (t)a(t)*d’ (t) + 69a') (t)a(t)*a" (1)* —

36a) (t)a(t)®a” (t) + 60a) (t)a(t)?a’ (t)* + 15 (t)a(t)?d’ (t)* 4 90a) (t)%a(t)*a" (t) —

21643 (t)2a(t)3a’ (t)? — 108a® (t)a(t)d' (t)° — 27a®) (t)a(t)a’ (t)* + 801a(t)?a’ (t)%a” (1) —
588a(t)a’ (t)4a” ()2 — 8Ta(t)a/ (t)2a” (t) + 108a’ (t)Sa” (t) + 27a’ (t)4a” (t) +

78a) (t)a(t)*a’ (t)a" (t) + 13243 (t)a® (t)a(t)*a’ (t) — 312a (t)a(t)3a’ (t)%a” (t) —

819aB) (t)a(t)3a’ (t)a” (t)? + 768a) (t)a(t)?a’ (t)3a” (t) + 102a(3) (t)a(t)Qa’(t)a”(t)),

and

aio =

W( O (t)a(t)® - 222a)(1)%a(t)" — 3484 (£)a® (t)a(t)” — 147a® (£)aD (t)a(t)” —
180" (1)a® (t)a(t)” + 184’ (t)al (t)a(t)” — 482" (1)a™ (t)?a(t)® — 331a®)(t)?alV (t)a(1)® —
1110a” (t)a® (£)a® (t)a(t)8 — 15564’ (t)a™ (t)a® (t)a(t)® — 448a” (t)?a %) (t)a(t)® —

10744’ (t)a® (t)a'® (t)a(t)® — 476a’ (t)a” (t)a'D (t)a(t)® — 43a’ (t)2a® (t)a(t)® — 11a® (t)a(t)® +
8943a’ (t)a® (t)3a(t)® + 21846a" (t)%a'® (t)2a(t)® 4 40924/ (t)2a® (t)2a(t)® + 396a™ (t)%a(t) +
10560a” (t)2a™® (t)a(t)® + 394024/ (t)a” (t)a® (t)a® (t)a(t)® + 113524/ (t)a" (t)2a®) (t)a(t)® +
63360’ (t)2a® (t)a® (t)a(t)® + 594a® (£)a® (t)a(t)® + 2904d’ (t)2a” (t)a'® (t)a(t)® +

264a" (t)a'® (t)a(t)® 4 1654’ (t)3a (t)a(t)® + 33a’ (t)a ") (t)a(t)® —10338a”( Va(t)* —

959194’ (t)2a” (£)a® (¢)2a(t)* — 3729a” (t)a® (¢)2a(t)* — 117600a’ (t)a” (t)3a® (t)a(t)* —

68664a’ (t)%a” (t)2a™ (t)a(t)* — 2772a" (t)2a™® (t)a(t)* — 239764’ (t)3a® (t)a™® (t)a(t)* —

2640’ (t)a® (t)a™ (t)a(t)* —12762a’ (t)*a” (t)a® (t)a(t)* — 1386d’ (t)a" ()a® (t)a(t)* —
651a’(t)2a'®) (t)a(t)* — 132a’(t)%a(® (t)a(t)* + 1113784’ (t)%a” (t)*a(t)® + 2354a" (t)*a(t)® +
31344a’ (t)*a® (t)2a(t)® + 37294’ (t)%a®) (t)2a(t)® + 2367064’ (t)3a” (t)2a® (t)a(t)® +

139264/ (1)a” (t)*a® (t)a(t)® + 43320d’ (t)*a" (t)al®) (t)a(t)® + 5214a’ (t)%a” ()™ (t)a(t)® +
2238a’ (t)°a®) (t)a(t)? 4 4624’ (t)a® (t)a(t)® — 1621624’ (t)*a” (t)3a(t)? —

11880a’ (t)%a” (t)3a(t)? —103884a() a” (t)a® (t)a(t)? — 133324a/ (t)%a” (t)a® (t)a(t)? —
6138a’()5a™ (t)a(t)? — 1287d’ (t)*a™ (t)a(t)? + 76440a’ (t)Sa” (t)2a(t) + 104284/ (t)*a” (t)%a(t) +
11700a’ (t)7a® (t)a(t) 4 24754 (t)°a'®) (t)a(t) — 11700a’ (t)3a” (t) — 24754’ (t)%a" (1) ).

3)(
RIG )
3a( (

4
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2.4 Computation of the Term a;» in the Expansion of the

Spectral Action

We pursue the computation of the term ai5 in the expansion of the spectral action for
Robertson-Walker metrics by employing pseudodifferential calculus to find the term rqo
for the parametrix of A\ — D?, which is homogeneous of order —14, and by performing
the appropriate integrations. Since there is no universal formula in the literature for
this term, we have performed two heavy computations, one in Hopf coordinates and
the other in spherical coordinates, to form a check on the validity of the outcome of our
calculations. Another efficient way of computing the term a9 is to use the direct method
of [9].

2.4.1 The result of the computation in Hopf coordinates.

Continuing the recursive procedure commenced in the previous section and exploiting
computer assistance, while the calculation becomes significantly heavier for the term a9,
we find the following expression:

a12 =

17297280a(t) (3“(12) (H)a(t)'* —1057a(0) (t)?a(t)? —1747a®) (t)a' V) (t)a(t)? —970a') (1)a'® (t)a(t)® —
317a® (£)a® (t)a(t)? — 34a"( a9 ()a(t)® + 21a’ (t)aV (t)a(t)? + 5001a™ (t)3a(t)® +
2419a” (t)a® (t)2a(t)® + 19174a® (t)a™® (£)a® (t)a(t)® + 408643 (t)2a(® (t)a(t)® +
2070a" (t)a™ ()al® (t)a(t)® —5520a()a(5)( )a® (t)a(t)® - 511a" (t)a!® (t)a (t)a(t)® —
41750’ ()a™® (£)a' D (t)a(t)® — 7450" ()%a®) (t)a(t)® — 22894’ (t)a'® ()a® (t)a(t)® —
828a’ (t)a" (t)a® (t)a(t)® — 62a’(t)2a10) (t)a(t)® — 13019 (t)a(t)® + 454800 (t)*a(t)” +
152962a" (t)2a™ (t)2a(t)7 + 203971a’ (t)a®) (t)a® (t)2a(t)” + 213694’ (t) a(5 (t)%a(t)” +
18850 (t)2a(t)” + 410230a” (t)a® (t)2a™ (t)a(t)T 4 1638324’ (t)a'®) (t)2a® (t)a(t)” +
250584a” (t)2a®) (t)a®) (t)a(t)7 4 244006a’ (t)a” (t)a™ (t)a® (t)a(t)” + 42440a” (t)3a'® (t)a(t)” +
163390a’ (t)a" (t)a'® (t)a'® (t)a(t)” + 35550a'( )2 (£)a® (t)a(t)” + 3094a™ (t)a'® (t)a(t)" +
34351a’ (t)a” ()% (t)a(t)” + 19733a’ (t)2a® (t)a ") (t)a(t)” + 162503 (t)a ) (t)a(t)” +
6784a’(t)%a" (t)a® (t)a(t)” + 520a” (t)a® (t)a(t)” + 308a’ ()%™ (t)a(t)” + 524’ (t)a™ (t)a(t)" —
20567200’ (t)a” (t)a® (t)%a(t)® — 1790580a” (t)3a ™) (t)2a(t)® — 900272d’ (t)%a” (t)a™ (t)%a(t)® —
318894 (t)a™ (t)%a(t)® — 643407a" (t)*a™ (t)a(t)® — 12515484’ (t)%a®) (t)2a D (t)a(t)® —
437580 (1)2a™ (t)a(t)® — 44520424’ (t)a" (t)%a®) (t)a™® (t)a(t)® —

836214a’ (t)a” (t)%a® (t)a(t)® — 1400104a’ (t)%a” (t)a® (t)a'® (t)a(t)® —
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48620a" (t)a'® (£)a® (t)a(t)5 — 1819664’ (t)3a™® (t)a®) (t)a(t)® — 18018a/( Ya® (£)a® (t)a(t)® —
319996a’ (t)%a” (t)%a'® (t)a(t)® — 11011a" (t)2a(® (t)a(t)® — 1150624’ (t)3a® (t)a®) (t)a(t)® —

11154a’ (t)a® (£)a® (t)a(t)® — 427644’ (t)3a” (t)a' ") (t)a(t)® — 4004d’ (t)a” (t)a ) (t)a(t)® —

16494’ (t)*a®) (t)a(t)® — 286a’ (t)2a'® (t)a(t)® + 460769a” (t)%a(t)® + 16615184’ (t)>a'® (t)3a(t)® +
834864’ (t)a(® (t)3a(t)® + 13383328a’ (t)%a” (t)2a®) (t)2a(t)® + 2220924 (t)2a® (t)a(t)® +
342883a’ (t)*a® (t)%a(t)® + 36218a’ (t)2a™ (t)2a(t)® + 7922361d’ (t)a” (t)*a® (t)a(t)® +
6367314a’ (t)%a” (t)3a™ (t)a(t)® + 109330a” (t)3a™® (t)a(t)® +

70658624’ (t)3a" (t)a® (t)a™ (t)a(t)® + 360386’ (t)a” (t)a® (t)a™ (t)a(t)® +

19183864’ (t)2a” (t)2a® (t)a(t)® + 985924’ (t)a” (t)2a® (t)a(t)® + 524802a’ (t)*a® (t)a® (t)a(t)® +
551460’ (t)2a® (t)a®) (t)a(t)® + 226014a’ (t)*a” (t)a(® (t)a(t)® + 23712a/ (t)%a” (t)a'® (t)a(t)® +
82830’ (t)°a ™ (t)a(t)® + 1482a’(t)3a (t)a(t)® — 73469584’ (t)%a” (t)°a(t)* — 72761a” (t)°a(t)* —
117452524’ (t)*a” (t)a® (t)2a(t)* — 7257124/ (t)%a" (t)a® (t)?a(t)* —
277070284’ (t)%a” (t)3a® (t)a(t)* — 819520a’ (t)a" (t)3a® (t)a(t)* —
8247105a’ (t)*a" (t)%a® (t)a(t)* — 5202604’ (t)%a” (t)?a™ (t)a(t)* —

18482284’ (t)°a® (t)a® (t)a(t)* — 2052964’ (t)3a'® (t)a™ (t)a(t)* — 9734824/
110136a’ (t)3a” (t)a® (t)a(t)* — 36723a’ (t)%a %) (t)a(t)* — 6747a’ (t)4a<6>( )a
17816751a’ (t)*a" (t)*a(t)® + 7210584’ (t)%a” (t)*a(t)® + 23526244’ (t)5a® (¢
274170a’ (t)*a® (t)%a(t)® 4 24583191a’ (t)°a” (t)%a'® (t)a(t)® + 17711464’ (t
32562484’ (t)5a" (t)a™® (t)a(t)? + 3893764’ (t)*a” (t)a™ (t)a(t)® + 135300a’ (t)"a® (t)a(t)? +
253500’ (t)°a® (t)a(t)® — 154303574’ (t)8a” (t)3a(t)? — 12527454 (t)*a” (t)3a(t)? —

77478484/ (t)7a" (t)a® (t)a(t)? — 967590a’ (t)°a” (t)a® (t)a(t)? — 385200d’ (t)%a' P (t)a(t)? —
731254 (t)%a™ (t)a(t)? + 56451244’ ( )¥a’ (t)%a(t) + 7411954’ ()%a" (t)%a(t) +

749700a’ (t)°a®) (t)a(t) 4 1433254’ (t)7a'® (t)a(t) — 749700a’ (t)'0a” (t) — 143325a’(t)8a”(t))).

t)°a” (t)a® (t)a(t)* —
)+
)2a(t)® +
)2a’ (t)2a® (t)a(t)® +

2.4.2 Agreement of the result with computations in spherical coordi-

nates.

Taking a similar route as in §2.2, we explicitly write the Dirac operator for the Roberson-

Walker metric in spherical coordinates
ds® = dt* + a* (1) (dx2 + sin?(y) (d92 + sin’(6) d<p2) ).
Using the computations carried out in [9] with the orthonormal coframe

dt, a(t) dx, a(t) sin x df, a(t) sin x sin 0 dyp,
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the corresponding matrix of connection 1-forms for the Levi-Civita connection is written

as
0 —a’(t)dx —a'(t)sin(x)df —a’(t)sin(x) sin(0)de
a’(t)dx 0 — cos(x)db — cos(x) sin(0)dp
a'(t) sin(x)dé cos(x)dbd 0 —cos(8)dy
a’'(t) sin(x) sin(f)dy  cos(x) sin(8)dy cos(8)dyp 0

Lifting to the spin bundle by means of the Lie algebra isomorphism u : so(4) —
spin(4) and writing the formula for the Dirac operator yield the following expression for

this operator expressed in spherical coordiantes:

T ot 7 ady T sin x 00 T sin x sin @ Jp
3a’ 1 cot(x) o cot(d) 4

2 - a 2asin(x)

D =

_l’_

Thus the pseudodifferential symbol of D is given by

.1 T 9 ¢ 3 vt
O'D(,’L‘76) = 61 + a’Y 62 + CLSin(X>7 53 + asin(X) Sln(e)fy ‘54
3a’ | cot(x) o cot(d) 5
2 T T T s

Accordingly, the symbol of D? is the sum p}, +p} + py of three homogeneous components

L 1 1 2 1 2
BT S a0 T st @) s (0
p;:-ﬁﬂﬁa—aé<¢wu+mmw»&

- a(’i)g (7' esc(x)d (t) + cot(8) esc®(x) + v cot(x) cse(x)) &3

csc(0) esc(x)a’ (1) vy + cot(6) csc(f) esc? (x)y3

(
4 esc() cot(x) esc(x)7*)és,
(—12a(t)a"(t) — 6a’(t)? + 3 csc?(0) csc?(x) — cot?(0) esc®(x)+

4i cot(8) cot(x) csc(x) — 4i cot () cot(x) csc(x) — 4ot (x) + 5 esc?(x) +4)

_ (cot(d )223(0() 0T ®) 13 (Cot%))c; (8) 12 _ (cot(6 )(;Ot((t ))CSG( X)) 25

We have performed the computation of the heat coefficients up to the term a2 using
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the latter symbols and have checked the agreement of the result with the computations
in Hopf coordinates, presented in the previous subsections. This is in particular of great
importance for the term a2, since it ensures the validity of our computations performed

in two different coordinates.

2.4.3 Agreement with the full expansion for the round metric.

We first recall the full expansion for the spectral action for the round metric, namely the
case a(t) = sin(t), worked out in [9]. Then we show that the term a2 presented in §2.4.1

reduces correctly to the round case.

The method devised in [9] has wide applicability in the spectral action computations
since it can be used for the cases when the eigenvalues of the square of the Dirac operator
have a polynomial expression while their multiplicities are also given by polynomials. In
the case of the round metric on S?*, after remarkable computations based on the Euler-
Maclaurin formula, this method leads to the following expression with control over the
remainder term [9):

o / " 2
ZTraceWD?)) = /0 f<w2><x3—f'f>dw+nééo)—Slgﬁég)t+4lfoé§3t

C31@0)8 10331 (0)t 3421 £5)(0)¢
15840 8648640 3931200

4+t Ry

This implies that the term a1 in the expansion of the spectral action for the round

10331 T check our calculations against this result, we find that for

6486480 " ;
. . 10331 sin®(t)
a(t) = sin(t) the expression for aja(t) reduces to —ggzea > and hence

metric is equal to

4 10331 10331

= SHdt = - =
2 /0 012(87) dt = 3 2215640 — 6486430"

which is in complete agreement with the result in [9], mentioned above.

2.5 Chameseddine-Connes’ Conjecture

In this section we prove a conjecture of Chamseddine and Connes from [9]. More
precisely, we show that the term as, in the asymptotic expansion of the spectral ac-
tion for Robertson-Walker metrics is, up to multiplication by a(t)372", of the form

Q2n(a,d, ... ,a(zn)), where @2, is a polynomial with rational coefficients.
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2.5.1 Proof of rationality of the coefficients in the expressions for as,

A crucial point that enables us to furnish the proof of our main theorem, namely the
proof of the conjecture mentioned above, is the independence of the integral kernel of the
heat operator of the Dirac operator of the Robertson-Walker metric from the variables
¢1,¢92,m. Note that since the symbol and the metric are independent of ¢1, ¢2, the
computations involved in the symbol calculus clearly imply the independence of the
terms e, from these variables. However, the independence of e, from 7 is not evident,

which is proved as follows.

Lemma 2.2. The heat kernel k(s,z,x) for the Robertson-Walker metric is independent

Of ¢1a ¢27T]'

Proof. The round metric on S? is the bi-invariant metric on SU(2) induced from the
Killing form of its Lie algebra su(2). The corresponding Levi-Civita connection restricted
to the left invariant vector fields is given by %[X , Y], and to the right invariant vector

fields by S'[X,Y]. Since the Killing form is ad-invariant, we have
(XY, 2)+ (V,[X,Z2) =0, X,Y,Z€su2),

which implies that in terms of the connection on left (right) invariant vector fields X, Y, Z,
it can be written as

<VyX, Z> + <Y, VzX> =0. (2.9)

Considering the fact that VX : X(M) — X(M) is an endomorphism of the tangent
bundle, the latter identity holds for any Y, Z € X(M). Therefore, the equation (2.9) is
the Killing equation and shows that any left and right invariant vector field on SU(2) is
a Killing vector field.
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By direct computation in Hopf coordinates, we find the following vector fields which

respectively form bases for left and right invariant vector fields on SU(2):

r_ 90 , 9
A= 60 T gy
X} = sin(1 + da) -+ cot(n) cos(n + ) -~ tan)cos(n + ) 5
X3 = cos(¢1 + ¢2)§n — cot(n) sin(¢1 + ¢>2)821 + tan(n) sin(¢y + ¢2)8§52’
R__ 9 0
M= 00 T oy
R ) 0 0 0
X5 = —sin(¢g — qbg)a—n — cot(n) cos(p1 — gbg)aim — tan(n) cos(¢1 — gbg)%,
0 0 0
X5 = cos(¢1 — ¢2)877 — cot(n) sin(¢1 — ¢2)6751 — tan(n) sin(¢y — ¢2)8752'

One can check that these vector fields are indeed Killing vector fields for the Robertson-

Walker metrics on the four dimensional space. Thus, for any isometry invariant function

J/ we have:
0 1
90, :§(X1L—Xf%)f:07
0 1
Ers :§(X1L+Xf%)f:07
55 = (sin(61+ 62)XF + cos(n + 20 XE)] =0,

In particular, the heat kernel restricted to the diagonal, k(s,z,x), is independent of

¢1, 92,1, and so are the coefficient functions e, in its asymptotic expansion. O

We stress that although e, (z) is independent of 7, ¢1, 2, its components denoted
by €« in the proof of the following theorem are not necessarily independent of these

variables.

Theorem 2.3. The term agy, in the expansion of the spectral action for the Robertson-

Walker metric with cosmic scale factor a(t) is of the form

a(t)l2n§3 Q2n (a(t),a/(t)’ o 7a(2n)(t)> |

where Qayn is a polynomial with rational coefficients.
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Proof. Using (2.7) we can write

€n = Z Ca €n j,a; (210)
2j—2—la|=n

nf241<j<2n+1

where
1

_ +as+
en,j,a - (‘7 o 1)!Tn7j7a a(t)az o

sin(n)*® cos(n)*.

The recursive equation (2.8) implies that
enja = (2.11)

iy (1400 = a2 e 151 e+ (3 0) + Ot e 1510 + (7120 (0) +
1((204 — 1) tan(n) + (1 — 2a3) cot(n)))en—1,j—1,a0—e, + 40’ (t)en—1,j-2,0-e,~2e, +
4a’(t)en—1,j—2,0—e1—2e5 + 40" (t)en—1;-2,0—e,—204 + (=202 — 203 — 2a4 + 3)d/ (t)en—1,j-1,0—e, +

) )
2a(t) gren—1,j—1,a—e; —4tan(n)en—1,j—2,a—e;—2e, +4c0H(N)€n—1,j-2,0—es—2es + 25, €n—1,j-1,0—e;
2

+ m(a(tv%en_zj_m 4 ()a(t) Zen 29020, + 40/ (D)a(t) Zen 25 2.0 20 +
4a’(t)a(t)%(3n_27j_27,1_264 + (209 — 203 — 204 + 3)a’(t)a(t)%en_27j_1,a +

4a/ (t)%en—2,j—3,0—1es + 80 (t)?€n—2—3 0—2es—205 + 84’ (t)%€n_2j_3.0—20,—2es +
400‘5(77)8%6”,2)%2@,%3 — 4taﬂ(n>%€n72)j72,a72e4 + 887772267172)j,1’a + (2 cot(n)y'2a’(t) +
(—4(o2 + ag + oy — 2)a/ (t)? + 4(— (a3 — 1) csc?(n) + az + as — 2) + 2a(t)a” (t))) en—2,j—2,0—2e5 +
((cot(n)(1 = 2as) + (204 — 1) tan(n)) + y*2d’(t)) 8%6"_273»_170‘ + ((—4(az + az + ag — 2)d/()* +
4(—(oq — 1) sec®(n) + az + g — 2) + 2a(t)a” (t)) — 272 tan(n)a’(t)) en—2,j—2,a—2e4 + 8(a’(t)* —
Den—2,j-3,a-2e; +4(cot?(n) + ' (t)*)en—2,j-3,a-de;s + 4(tan®(n) +a'(t)*)en—2,j-3,a-es +
(2a(t)a” (t) — 4(az + a3 + g — 2)a’ (t)?)en—2,j—2,0—2e;, + (5(cot(n)(1 — 2a3) + (204 —

1) tan(n))y'2a’(t) + (40 — 1) esc?(n) — 4(as + au — 1)% + (2as + 203 + 204 — 3) (202 + 203 +
20 — 1)a’ ()% + sec?(n) (4o — 1) — 2(2az + 2a3 + 204 — 3)a(t)a”(t)))en,g,j,l,a).

The functions associated with the initial indices are:

3ia'(t 2ia’(t)
€0,1,0,0,00 = 1, €1,2,1,0,0,0 = OB €1,3,1,2,0,0 = OB
2ia’(t) 2ia’(t) (27) tan(n)
€1,3,1,0,2,0 = ) €1,3,1,0,02 = ) €1,3,0,1,02 = O
(2i) cot(n) HBa() | iy cot(n)
€1,3,0,1,2,0 = W7 €1,2,0,0,1,0 = a(t) a(t) )
ivt4a(t)  iy** tan(n) 2icot(2n)  iyt2d(t)

61’2’0’070,1 = a(t) a(t) b 6172)071,070 = a(t) a(t)
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It is then apparent that ey and e; are, respectively, a polynomial in a(t), and a
polynomial in a(t) and a'(t), divided by some powers of a(t). Thus, it follows from the

above recursive formula that all e, ; are of this form. Accordingly, we have

where P, is a polynomial in a(t) and its derivatives with matrix coefficients. Writing
enja = Pnja/at)®™, we obtain d, = max{d,—1 + 1,d,—2 + 2}. Starting with dy = 0,

d; = —1, and following to obtain d,, = n, we conclude that

1
€n7j7a - an(t)

Pojalat),...,a™ ),

where P, ;. is a polynomial whose coefficients are matrices with entries in the algebra

generated by sin(n), csc(n), cos(n), sec(n) and rational numbers.

In the calculation of the even terms aoy,, only even «j have contributions in the
summation (2.10). This implies that the corresponding ¢, is a rational multiple of 72 and
P, is a polynomial with rational matrix coefficients, which is independent of variables

1, ¢1, $2 by Lemma 2.2. Hence

1 2m2a(t)? Py, Qon
n=—— | tr(ean) dvoly = tr( ) = :
420 = 160 /st H(ezn) dvoly = ==\ oy ) = ans

where Qq,, is a polynomial in a(t),d'(t),...,a®™ (t) with rational coefficients. O

The polynomials P, ;, also satisfy recursive relations that illuminate interesting fea-

tures about their structure.

Proposition 2.4. Fach P, ;. is a finite sum of the form

Z Ck a(t)koa/(t)kl D) (t)kn7

where each ¢ is a matriz of functions that are independent from the variable t, and
Z?:o kj = Z?:ojkj =1, for some 0 <1 < n.

Proof. This follows from an algebraically lengthy recursive formula for P, ; , which stems
from the equation (2.8), similar to the recursive formula for e, ; o in the proof of Theorem

2.3. In addition, one needs to find the following initial cases:
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Po10000 =1, Pio1000 = 3id (t), Piaooi0=iv>d (t)+iv* cot(n),
P00, =iy d (t) — iv** tan(n), Pi 501,00 = 2icot(2n) + iy 2d (t),
P1 30,102 = —2itan(n), Py 30,1,2,0 = 2icot(n), Pi 31200 = 2id (t),

Pi31020 = 2id'(t),  Pi3i1002 = 2id (t).

2.5.2 A recursive formula for the coefficient of the highest order term

in Ao,

The highest derivative of the cosmic scale factor a(t) in the expression for a,, is seen in
the term a(t)" 'a(™(t), which has a rational coefficient based on Theorem 2.3. Let us
denote the coefficient of a(t)" 'a(™(t) in a, by h,. Since the coefficients h,, are limited
to satisfy the recursive relations derived in the proof of the following proposition, one

can find the following closed formula for these coefficients.
Proposition 2.5. The coefficient h,, of a(t)” 'a™ (t) in a, is equal to
2k +1
Z r < 5 ) Hy, j ok,

n/2)+1<j<2n+1
0<k<j—n/2-1

where, starting from

31 1
Higy=Hisi=—— Hyyo=———
1,2,1 1,3,1 zﬁa 2,4,2 \/771"
3 3

H = H e a— H e ,
2,3,0 2,2,0 W 2,3,2 W
the quantities Hy, j o are computed recursively by

1 .
Hnjia = 577 (Hn-2j-1.0 + 2iHn-15-1,0-1)-
Proof. 1t follows from Proposition 2.4 that the highest derivative of a(t) in a,, appears

in the term a(t)” 'a(™(t). By a careful analysis of the equation (2.11) we find that only
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the terms

1 2 0° . 0
-1 (“(t) gz in-2i-1at QZa(t)aPnfl,jfl,a—e;l)

contribute to its recursive formula. Denoting the corresponding monomial in P, ;. by

H, joa(t)" 'a™(t) and substituting it into the above formula we obtain the equation

1

ﬁ(Hn—Q,j—l,a + 2iHn—1,j—1,a—e1)a

Hpja =

for any n > 2. Denoting

4 2
o+ 1Y (=1)* +1 1
s = ST (5 7) 05 (g [ st
k=2

the recursive formula converts to

1

Hpjo = ——
n,J,o j_l

(Hp—2j-1,0 +2iHp_1j-1,0-1)

Thus, the coefficient of a(t)*'a™(t) in a, is given by the above expression. O

Using the above proposition we find that:

1 1 1 1 1
2Ty Tk 6~ 560 8~ 10080 107 991760
1 1 1
127 5765760 4 172972800 167 5881075200’
hg =+ hop = L
18 ™ 993480857600’ 207 9386196019200

2.6 Conclusions

Pseudodifferential calculus is an effective tool for applying heat kernel methods to com-
pute the terms in the expansion of a spectral action. We have used this technique to de-
rive the terms up to a2 in the expansion of the spectral action for the Robertson-Walker
metric on a 4-dimensional geometry with a general cosmic scale factor a(t). Performing
the computations in Hopf coordinates, which reflects the symmetry of the space more
conveniently at least from a technical point of view, we proved the independence of the
integral kernel of the corresponding heat operator from three coordiantes of the space.

This allowed us to furnish the proof of the conjecture of Chamseddine and Connes on
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rationality of the coefficients of the polynomials in a(t) and its derivatives that describe

the general terms ao, in the expansion.

The terms up to ajg were previously computed in [9] using their direct method, where
the terms up to ag were checked against Gilkey’s universal formulas [17, 18|. The outcome
of our computations confirms the previously computed terms. Thus, we have formed a
check on the terms ag and aqg. In order to confirm our calculation for the term a9, we
have performed a completely different computation in spherical coordinates and checked
its agreement with our calculation in Hopf coordinates. It is worth emphasizing that the
high complexity of the computations, which is overcome by computer assistance, raises

the need to derive the expressions at least in two different ways to ensure their validity.

We have found a formula for the coefficient of the term with the highest derivative

of a(t) in ag, for all n and make the following observation. The polynomials Q2 in

am = Qan (alt),d'(t), ... ,a®™ (1)) /a(t)?3 are of the following form up to Q1a:
Qon(T0, 71, .., 02n) = Y cpaglal -l p #0,
where the summation is over all tuples of non-negative integers k = (ko, k1, - . ., k2,,) such

that either ) k; = 2n while > jk;j = 2n, or > k; = 2n — 2 while ) jk; = 2n — 2. This
provides enough evidence and hope to shed more light on general structure of the terms

asn by further investigations, which are under way.
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Chapter 3

The Curvature of the Determinant
Line Bundle on the

Noncommutative Two Torus

3.1 Introduction

In this paper we compute the curvature of the determinant line bundle associated to a
family of Dirac operators on the noncommutative two torus. Following Quillen’s pioneer-
ing work [23], and using zeta regularized determinants, one can endow the determinant
line bundle over the space of Dirac operators on the noncommutative two torus with a
natural Hermitian metric. Our result computes the curvature of the associated Chern
connection on this holomorphic line bundle. In the noncommutative case the method of
proof applied in [23] does not work and we had to use a different strategy. To this end
we found it very useful to extend the canonical trace of Kontsevich-Vishik [16] to the

algebra of pseudodifferential operators on the noncommutative two torus.

This paper is organized as follows. In Section 2 we review some standard facts about
Quillen’s determinant line bundle on the space of Fredholm operators from [23|, and
about noncommutative two torus that we need in this paper. In Section 3 we develop
the tools that are needed in our computation of the curvature of the determinant line
bundle in the noncommutative case. We recall Connes’ pseudodifferential calculus and

define an analogue of the Kontsevich-Vishik trace for classical pseudodifferential symbols

70
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on the noncommutative torus. A similar construction of the canonical trace can be found
in [20]|, where one works with the algebra of toroidal symbols. Section 4 is devoted to
Cauchy-Riemann operators on Ay with a fixed complex structure. This is the family of
elliptic operators that we want to study its determinant line bundle. In Section 5 using the
calculus of symbols and the canonical trace we compute the curvature of determinant line
bundle. Calculus of symbols and the canonical trace allow us to bypass local calculations

involving Green functions in [23|, which is not applicable in our noncommutative case.

The study of the conformal and complex geometry of the noncommutative two torus
started with the seminal work [7] (cf. also [5] for a preliminary version) where a Gauss-
Bonnet theorem is proved for a noncommutative two torus equipped with a conformally
perturbed metric. This result was refined and extended in [10] where the Gauss-Bonnet
theorem was proved for metrics in all translation invariant conformal structures. The
problem of computing the scalar curvature of the curved noncommutative two torus was
fully settled in [6], and, independently, in [11], and in [12] for the four dimensional case.
Other related works include [1, 8, 9, 15, 18, 24].

3.2 Preliminaries

In this section we recall the definition of Quillen’s determinant line bundle over the space
of Fredholm operators. We also recall some basic notions about noncommutative torus

that we need in this paper.

3.2.1 The determinant line bundle

Unless otherwise stated, in this paper by a Hilbert space we mean a separable infinite
dimensional Hilbert space over the field of complex numbers. Let F = Fred(Ho, H1)
denote the set of Fredholm operators between Hilbert spaces Hg and H;. It is an open
subset, with respect to norm topology, in the complex Banach space of all bounded linear
operators between Hg and H;. The index map index : F — Z is a homotopy invariant
and in fact defines a bijection between connected components of F and the set of integers
7.
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It is well known that F is a classifying space for K-theory: for any compact space X

we have a natural ring isomorphism
K°(X) = [X, F]

between the K-theory of X and the set of homotopy classes of continuous maps from
X to F. In other words, homotopy classes of continuous families of Fredholm operators
parametrized by X determine the K-theory of X. It thus follows that F is homotopy
equivalent to Z x BU, the latter being also a classifying space for K-theory. Let Fy
denote the set of Fredholm operators with index zero. By Bott periodicity, mo;(F) = Z
and maj11(F) = {0} for j > 0. So by Hurewicz’s theorem, H?(Fy,Z) = Z. Now the
determinant line bundle DET defined below has the property that its first Chern class,
c1(DET), is a generator of H?(Fy,Z) = Z. We refer to [2, 25] and references therein for
details.

In [23] Quillen defines a line bundle DET — F such that for any 7' € F
DET7 = A" (ker(T))* © A" (coker(T)).

This is remarkable if we notice that ker(7") and coker(7') are not vector bundles due
to discontinuities in their dimensions as T varies within F. Let us briefly recall the
construction of this determinant line bundle DET. For each finite dimensional subspace
Fof Hylet Up = {T € Fi : Im(T) + F = H;} denote the set of Fredholm operators
whose range is transversal to F. It is an open subset of F and we have an open cover
F=UUr.

For T € Up, the exact sequence
0 — ker(T) - T7'F Lro coker(T) — 0 (3.1)

shows that the rank of T-'F is constant when T varies within a continuous family in
Up. Thus we can define a vector bundle £ — Up by setting SZE = T—'F. We can then
define a line bundle DETY — Up by setting

DETE = A™a®(T71F)* @ AMeTF,
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We can use the inner products on Hy and H; to split the above exact sequence (3.1)

canonically and get a canonical isomorphism ker(T) & F = T~ F & coker(T). Therefore
A" (ker(T))* @ A™% (coker(T)) = A™*(T~1F)* @ A™F.

Now over each member of the cover Ur a line bundle DETY — Up is defined. Next
one shows that over intersections Up, N Ug, there is an isomorphism DET? — DET!?
and moreover the isomorphisms satisfy a cocycle condition over triple intersections U, N
Ur, N Up,. This shows that the line bundles DETY = Up glue together to define a line
bundle over F. It is further shown in 23| that this line bundle is holomorphic as a bundle

over an open subset of a complex Banach space.

It is tempting to think that since c;(DET) is the generator of H?(Fy,Z) = Z, there
might exits a natural Hermitian metric on DET whose curvature 2-form would be a
representative of this generator. One problem is that the induced metric from ker(7")
and ker(7T™) on DET is not even continuous. In [23] Quillen shows that for families
of Cauchy-Riemann operators on a Riemann surface one can correct the Hilbert space
metric by multiplying it by zeta regularized determinant and in this way one obtains
a smooth Hermitian metric on the induced determinant line bundle. In Section 5 we

describe a similar construction for noncommutative two torus.

3.2.2 Noncommutative two torus

For 6 € R, the noncommutative two torus Ay is by definition the universal unital C*-

algebra generated by two unitaries U, V satisfying

VU =™ UV,

There is a continuous action of T2, T = R/27Z, on Ag by C*-algebra automorphisms
{as}, s € R%, defined by
CMS(UmVn) _ eis.(m,n)UmVn.

The space of smooth elements for this action will be denoted by Ag°. It is a dense

subalgebra of Ay which can be alternatively described as the algebra of elements in Ay
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whose (noncommutative) Fourier expansion has rapidly decreasing coefficients:
Ag° = Z A UV amy € S(ZQ)
m,nel

There is a normalized, faithful and positive, trace g on Ay whose restriction on smooth

elements is given by

QO()( Z am,nUmVn) = CL070.
m,ne’

The algebra Ag° is equipped with the derivations 01, d2 : Ag° — A, uniquely defined
by the relations

51 (U) =U, 5,(V) =0, 6(U) =0, (V) =V.

We have d;(a*) = —d;(a)* for j = 1,2 and all a € Aj°. Moreover, the analogue of the

integration by parts formula in this setting is given by:

po(ad;(b)) = —po(d;(a)b), Va,be Ag°.

We apply the GNS construction to Ag. The state g defines an inner product
(a,b) = po(b*a), a,be Ay,

and a pre-Hilbert structure on Ay. After completion we obtain a Hilbert space denoted
Ho. The derivations 91, d2, as densely defined unbounded operators on Hj, are formally

selfadjoint and have unique extensions to selfadjoint operators.

We introduce a complex structure associated with a complex number 7 = 7 +
iT9, o > 0, by defining
5:(51 + 709, o~ =01 + To9.

Note that O is an unbounded operator on Hg and 0* is its formal adjoint. The

analogue of the space of anti-holomorphic 1-forms on the ordinary two torus is defined

to be
Q%! = {Zaéb Ja,be AgO}.
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Using the induced inner product from 1), one can turn Qg’l into a Hilbert space which

we denote by H!L.

3.3 The canonical trace and noncommutative residue

In this section we define an analogue of the canonical trace of Kontsevich and Vishik
[16] for the noncommutative torus. Let us first recall the algebra of pseudodifferential

symbols on the noncommutative torus [3, 7].

3.3.1 Pseudodifferential calculus on Ay

Using operator valued symbols, one can define an algebra of pseudodifferential operators

on A3°. We shall use the notation 0% = 8850;11 86232, and 0% = 61" 6572, for a multi-index
1 2

a= (a1, a).

Definition 3.1. For a real number m, a smooth map o : R?> — Ag° is said to be a
symbol of order m, if for all non-negative integers 41, io, j1, j2,
15200 o (€)[] < o1+ [,

where ¢ is a constant, and if there exists a smooth map k : R? — Ag° such that

/\li{{.lo A_mg(/\gla )\62) = k(gla 52)

The space of symbols of order m is denoted by S"(Ay).

Definition 3.2. To a symbol ¢ of order m, one can associate an operator on A%°, denoted
by P, given by

Py(a) = / / i€ (€) s (a) ds dE.

Here, d¢ = (27)2d ¢ where dr¢ is the Lebesgue measure on R%2. The operator P, is

said to be a pseudodifferential operator of order m.

For example, the differential operator ajl,ﬁé(jl’j?) is associated with the
symbol > . . o, ajm{{lf%é via the above formula.

Jitjz<m

Two symbols o, o/ € §™(Ay) are said to be equivalent if and only if o — o’ € 8" (Ap)

for all integers n. The equivalence of the symbols will be denoted by o ~ ¢”.
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Let P and Q be pseudodifferential operators with the symbols o and ¢’ respectively.
Then the adjoint P* and the product PQ are pseudodifferential operators with the
following symbols

d(P)~ S ),

0=(£1,02)>0

AP~ Y IO )

0=(01,62)>0
Definition 3.3. A symbol o € §™(A4y) is called elliptic if o(&) is invertible for & # 0,

and for some ¢

o (€)7Y| < e(1 + (€)™,

for large enough [¢].

A smooth map o : R? — Ay is called a classical symbol of order a € C if for any N
and each 0 < j < N there exist o4—; : R?2\{0} — Ay positive homogeneous of degree
o — j, and a symbol oV € SMO=N=1( 44), such that

N
o(§) = Z X(§)oaj(€) +aN(&) ¢ eR. (3.2)

Jj=0

Here y is a smooth cut off function on R? which is equal to zero on a small ball around the
origin, and is equal to one outside the unit ball. It can be shown that the homogeneous
terms in the expansion are uniquely determined by o. We denote the set of classical
symbols of order o by S5(Ap) and the associated classical pseudodifferential operators
by W% (Ap).

The space of classical symbols S.;(Ap) is equipped with a Fréchet topology induced

by the semi-norms
Pap(0) = sup (1+[¢) " l|50% ()] (3.3)
£€R?

The analogue of the Wodzicki residue for classical pseudodifferential operators on the

noncommutative torus is defined in [13].

Definition 3.4. The Wodzicki residue of a classical pseudodifferential operator P, is
defined as
Res(Py) = ¢o (res(Py)) ,

where res(P,) := flf\=1 o_o(&)dE.
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It is evident from its definition that Wodzicki residue vanishes on differential operators

and on non-integer order classical pseudodifferential operators.

3.3.2 The canonical trace

In what follows, we define the analogue of Kontsevich-Vishik trace [16] on non-integer
order pseudodifferential operators on the noncommutative torus. For an alternative
approach based on toroidal noncommutative symbols see [20]. For a thorough review of
the theory in the classical case we refer to [19, 22]. First we show the existence of the so

called cut-off integral for classical symbols.

Proposition 3.5. Let 0 € S§(Ag) and B(R) be the ball of radius R around the origin.

One has the following asymptotic expansion

[ ot mn Y @R B g Rt o),
BB j=0,0—j+270
where B(o) = f\§|=1 o_9(§)d¢ and the constant term in the expansion, c(o), is given by
al 1
/ o —i—Z/ §)oa—;(&)dE — Z —j—i—2/§|:1 Oa—j(w)dw.  (3.4)

. - «
J=0,a—j+27#0

Here we have used the notation of (3.2).

Proof. First, we write o(§) = Z;V:o X(€)0a—j (&) + o™ (&) with large enough N, so that

o™ is integrable. Then we have,

/B( §)de = Z / (€)oa—;(€)de + / o (€)de. (3.5)

B(R)
For N > a+1, oV € L1(R?, Ag), so
[ et | oMo mo
B(R) R2

Now for each j < N we have

oa— d a— d a—17 d¢€.
/B() (E)Tarj(€)de = / Jooi >£+/B(R)\B(l)x(s>a S(©)de
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Obviously | B(1) X(§)oa—;(£)dé < oo and by using polar coordinates { = rw, and homo-

geneity of o,_;, we have

R B
/ N (€)0ary(€)dE = / pemit2 g, / Caji(€)dE. (3.6)
B(R)\B(1) 1 le|=1

Note that the cut-off function is equal to one on the set R*\ B(1). For the term with

a — j = —2 one has

/ (€)0aj(€)dE = log R / Oaj(€)dE.
B(R)\B(1) |€]=1

The terms with o — j # —2 will give us the following:

/ X(©)Tarj(©)dE = (3.7)
B(R\B(1)

Rafj+2 1

m—j—i—2/|§|1 Oa—j(§)dE — Oé—j+2/|g|10aj(£)d£'

Adding all the constant terms in (3.5)-(3.7), we get the constant term given in (3.4). [

Definition 3.6. The cut-off integral of a symbol o € S(.Ap) is defined to be the constant

term in the above asymptotic expansion, and we denote it by f o(&)dE.

Remark 3.7. Two remarks are in order here. First note that the cut-off integral of a
symbol is independent of the choice of N. Second, it is also independent of the choice of

the cut-off function y.

We now give the definition of the canonical trace for classical pseudodifferential op-

erators on Ay.

Definition 3.8. The canonical trace of a classical pseudodifferential operator P €

0% (Ag) of non-integral order « is defined as
TR(P) := ¢o <][ 0p(§)d§> .

In the following, we establish the relation between the TR-functional and the usual
trace on trace-class pseudodifferential operators. Note that any pseudodifferential op-

erator P of order less that —2, is a trace-class operator on Hg and its trace is given

by
Tr(P) = ¢o (/RQ UP(S)dﬁ) :
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On the other hand, for such operator the symbol is integrable and we have

][o¢<s>—-j£20}4£>d£. (3.8)

Therefore, the TR-functional and operator trace coincide on classical pseudodifferential

operators of order less than —2.

Next, we show that the TR-functional is in fact an analytic continuation of the

operator trace and using this fact we can prove that it is actually a trace.

Definition 3.9. A family of symbols o(z) € Sg(z) (Ap), parametrized by z € W C C, is

called a holomorphic family if

i) The map z — «(z) is holomorphic.

ii) The map z — o(z) € Sg(z) (Ap) is a holomorphic map from W to the Fréchet space
Se(Ap).

iii) The map 2 + 0(2)q(z)—; is holomorphic for any j, where

7(2)(€) ~ Do x(€)0(2)ae)-i(6) € 557 (Ag). (3.9)

iv) The bounds of the asymptotic expansion of o(z) are locally uniform with respect to
z, i.e, for any N > 1 and compact subset K C W, there exists a constant Cn .3

such that for all multi-indices «, 8 we have

%07 [ 0(2) = Y X0(2)ae)—j | (©)|| < On.ka,slFE NI
J<N

A family {P,} € W.(Ap) is called holomorphic if P, = P,;) for a holomorphic family
of symbols {o(2)}.

The following Proposition is an analogue of a result of Kontsevich and Vishik|[16], for

pseudodifferential calculus on noncommutative tori.

Proposition 3.10. Given a holomorphic family o(z) € Sz(z) (Ag), z € W C C, the map

2 fols,
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1s meromorphic with at most simple poles located in
P={zeW; a(z) € ZN[-2,+00]}.

The residues at poles are given by

ResZ:ZOJ[U(z)(f)dﬁz _ )/§|1 o(z0)—2dE.

o (2o

Proof. By definition, one can write o(z) = Zé\;o X(€)o(2)a(z)-i(§) + a(2)N(€), and by

Proposition 3.5 we have,

Fotred= [ o df+2/ o3 (6)

R? (1)

a )+ a(z)+2—7 j /5|:1 U(Z)a(z)—j(f)d§~

Now suppose a(zp) + 2 — jo = 0. By holomorphicity of o(z), we have a(z) — a(zy) =

QMZ

o/ (20)(z — 20) + o(z — z0). Hence

1
Reszzz()][a(z) = 04/(£’0)/|§1 o(z0)—2(&)d¢E.

O

Corollary 3.11. The functional TR is the analytic continuation of the ordinary trace

on trace-class pseudodifferential operators.

Proof. First observe that, by the above result, for a non-integer order holomorphic
family of symbols o(z), the map z +— f o(z)(£)d¢ is holomorphic. Hence, the map
o — fo(§)d¢ is the unique analytic continuation of the map o — [p. 0(§)d¢ from
S57%(Ap) to SSZ(AQ). By (3.8) we have the result. O

Let @ € WY (Ap) be a positive elliptic pseudodifferential operator of order ¢ > 0. The
complex power of such an operator, Qé, for R(z) < 0 can be defined by the following
Cauchy integral formula.

i

z _ 7 z _ -1
Q= /% M(Q — N) A (3.10)
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Here A7 is the complex power with branch cut Ly = {re?,r > 0} and Cj is a contour

around the spectrum of @) such that
Cy Nspec(Q)\{0} =0, LynNCy =10,

Cy N {spec(a(Q)"(€)), & # 0} = 0.

In general an operator for which one can find a ray Ly with the above property, is called
an admissible operator with the spectral cut Ly. Positive elliptic operators are admissible
and we take the ray L, as the spectral cut, and in this case we drop the index ¢ and

write Q7.

To extend (3.10) to R(z) > 0 we choose a positive integer such that R(z) < k and
define

Q; = Q"Q; "
It can be proved that this definition is independent of the choice of k.

Corollary 3.12. Let A € VW (Ag) be of order a € Z and let Q be a positive elliptic

classical pseudodifferential operator of positive order q. We have

1
Res,—oTR(AQ™?) = 6ReS(A).

Proof. For the holomorphic family o(z) = 0(AQ™%), z = 0 is a pole for the map z —
+ o(2)(€)d¢ whose residue is given by

Res.—g (z - fa(z)(é)d&) - —a,to) L _ o-al0)iE = —a,io)res(m-

Taking trace on both sides gives the result. O

Now we can prove the trace property of TR-functional.

Proposition 3.13. We have TR(AB) = TR(BA) for any A, B € V(Ayp), provided that
ord(A) + ord(B) ¢ Z.

Proof. Consider the families A, = AQ? and B, = BQ* where @ is an injective positive
elliptic classical operator of order ¢ > 0. For R(z) << 0, the two families are trace class

and Tr(A,B,) = Tr(B,A.). By the uniqueness of the analytic continuation, we have

TR(A.B.) = TR(B.A,),
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for those z for which 2¢z + ord(A) + ord(B) ¢ Z. At z = 0, we obtain Tr(AB) =
TR(BA). 0

3.3.3 Log-polyhomogeneous symbols

Proposition 3.10 can be extended and one can explicitly write down the Laurent ex-
pansion of the cut-off integral around each of the poles. The terms of the Laurent
expansion involve residue densities of z-derivatives of the holomorphic family. In gen-
eral, z-derivatives of a classical holomorphic family of symbols is not classical anymore
and therefore we introduce log-polyhomogeneous symbols which include the z-derivatives

of the symbols of the holomorphic family o(AQ ™).

Definition 3.14. A symbol o is called a log-polyhomogeneous symbol if it has the
following form
[ee]
() ~ DD oa—jul€)log' €] €] >0, (3.11)
§>0 1=0

with o,_;; positively homogeneous in { of degree a — j.

An important example of an operator with such a symbol is log @ where @ € WY (Ap)
is a positive elliptic pseudodifferential operator of order ¢ > 0. The logarithm of ) can
be defined by

d

d _
1OgQ:Q£ QZ1:Q%
z=0

1

/ NHQ = M)A
C

L0 2T

It is a pseudodifferential operator with symbol

7(log Q) ~ o(Q) xo(

0 Q"‘1>, (3.12)

z=

where x denotes the products of the pseudodifferential symbols. Using symbol calculus
and homogeneity properties, we can show that (3.12) is a log-homogeneous symbol of

the form

o(log Q)(&) = 2log €| + o (log Q)(§),

where o (log @) is a classical symbol of order zero. This symbol can be computed using

the homogeneous parts of the classical symbol 0(Q?) = >-°2 b(2)2:—;(&) and it is given
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by the following formula (see e.g. [19]).

oa(log Q)(€) = .
Z Z éaaUZ—i(Q)éa |:‘£|2] % b(z — 1)2z—2—j (&/1€D | -

k=0 i+j+|a|=k z=0

The Wodzicki residue can also be extended to this class of pseudodifferential operators

[17]. For an operator A with log-polyhomogeneous symbol as (3.11) it can be defined by

res(A) = /|£ IRSYCIE

By adapting the proof of Theorem 1.13 in [22] to the noncommutative case, we have
the following theorem which is written only for the families of the form o(AQ~*) which

we will use in Section 3.5.

Proposition 3.15. Let A € ¥ (Ag) and Q be a positive , in general an admissible,
elliptic pseudodifferential operator of positive order q. If o € P then 0 is a possible simple

pole for the function z — TR(AQ™?) with the following Laurent expansion around zero.
s 1 1
1
+ @0 <][ o(A) — gres(A log Q)> — Tr(Allg)
K k
K (2)
+2 U
k=1
1
X (cpo (1[ o(A(log Q)F)de — Wres(/l(log Q)k+1)> — Tr(Alog” QHQ)>
+ o(25).
Where Il is the projection on the kernel of Q.
For operators A and @ as in the previous Proposition, we define a zeta function by
((4,Q,z) = TR(AQ™). (3.14)

By Corollary 3.11, it is obvious that ((A, @, z) is the analytic continuation of the zeta
function Tr(AQ~?) defined by the regular trace only for £(z) >> 0.
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Remark 3.16. If A is a differential operator, the zeta function (3.14) is holomorphic at

z = 0 with the value equal to

20 ( Fota- ;reswogcz)) — Te(ATlg).

3.4 Cauchy-Riemann operators on noncommutative tori

In [23], Quillen studies the geometry of the determinant line bundle on the space of
all Cauchy-Riemann operators on a smooth vector bundle on a closed Riemann surface.
To investigate the same notion on noncommutative tori, we first briefly recall some
basic facts in the classical case on how Cauchy-Riemann operators are related to Dirac
operators and spectral triples. Then by analogy we define our Cauchy-Riemann operator

on Ay, and consider the spectral triples defined by them.

Let M be a compact complex manifold and V be a smooth complex vector bundle
on M. Let QP2(M, V) denote the space of (p,q) forms on M with coefficients in V. A
O-flat connection on V' is a C-linear map D : Q%0(M, V) — Q%1 (M, V), such that for
any f € C®(M) and u € Q*O(M, V),

D(fu) = (3f) @ u+ fDu, (3.15)

and D? = 0. Here to define D?, note that any O-connection as above has a unique
extension to an operator D : QP4(M, V) — QP9+ (M, V), defined by

Da®p)=0a@u+ (—=1)PTa A Du, acQPYM), uecC®V).

We refer to O-flat connections as Cauchy-Riemann operators. A holomorphic vector
bundle V has a canonical Cauchy-Riemann operator dy : QY(M,V) — Q%'(M,V),
whose extension to Q¥*(M, V') forms the Dolbeault complex of M with coefficients in V.
In fact there is a one-one correspondence between Cauchy-Riemann operators on V up
to (gauge) equivalence, and holomorphic structures on V. We denote by A the set of all

Cauchy-Riemann operators on V.

Any holomorphic structure on a Hermitian vector bundle V' determines a unique
Hermitian connection, called the Chern connection, whose projection on (0, 1)-forms,

Vo1 (M, V), is the Cauchy-Riemann operator coming from the holomorphic structure.
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Now, if M is a Kahler manifold, the tensor product of the Levi-Civita connection for
M with the Chern connection on V' defines a Clifford connection on the Clifford module
(A%T @ A%7) ® V and the operator Dy = v/2(0y + ;) is the associated Dirac operator
(see e.g. [14]). Any other Dirac operator on the Clifford module (A%* @ A%~) ® V is of
the form Dy + A where A is the connection one form of a Hermitian connection. This
connection need not be a Chern connection. However, on a Riemann surface (with a
Riemannian metric compatible with its complex structure) any Hermitian connection on
a smooth Hermitian vector bundle is the Chern connection of a holomorphic structure
on V. Therefore, the positive part of any Dirac operator on (A% @ A%) @ V is a
Cauchy-Riemann operator, and this gives a one to one correspondence between all Dirac

operators and the set of all Cauchy-Riemann operators.

Next we define the analogue of Cauchy-Riemann operators for the noncommutative
torus. First, following [7, 10|, we fix a complex structure on Ay by a complex number 7

in the upper half plane and construct the spectral triple

0 o
(Ag,Ho@HO’lyDO: ( 5 0 )), (3.16)

where 0 : Ay — Ay is given by 0 = §; + 762. The Hilbert space H is obtained by GNS

construction from Ag using the trace g and 0* is the adjoint of the operator 0.

As in the classical case, we define our Cauchy-Riemann operators on Ay as the positive

part of twisted Dirac operators. All such operators define spectral triples of the form

0 5* + *
(Aayﬁﬂ@HOJ)DA: — “ ))
d+a 0

where a € Ay is the positive part of a selfadjoint element
0 o
A= < . ) € Qp, (Ag).

We recall that Q}:)O (Ap) is the space of quantized one forms consisting of the elements
> ai[Do, b;] where a;,b; € Ay [4]. Note that the in this case, the space A of Cauchy-

Riemann operators is the space of (0, 1)-forms on Ay.

We should mention that in the noncommutative case, in the work of Chakraborty and

Mathai 2] a general family of spectral triples is considered and, under suitable regularity
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conditions, a determinant line bundle is defined for such families. The curvature of the
determinant line bundle however is not computed and that is the main object of study

in the present paper, as well as in |23].

3.5 The curvature of the determinant line bundle for Ay

For any o € A, the Cauchy-Riemann operator

0o =0+ a:Ho— H!

is a Fredholm operator. We pull back the determinant line bundle DET on the space
of Fredholm operators Fred(Ho, H"!), to get a line bundle £ on A. Following Quillen
[23], we define a Hermitian metric on £ and compute its curvature in this section. Let

us define a metric on the fiber
Lo = A" (ker 0,)* @ A™* (ker 9)5).

as the product of the induced metrics on A™ (ker d,)*, A™ (ker 0}, with the zeta

0)

regularized determinant e 20 Here we define the Laplacian as A, = 0%0, : Ho —

Ho, and its zeta function by
((2) = TR(AL").

It is a meromorphic function and by Remark 3.16 it is regular at z = 0 . Similar proof

as in [23] shows that this defines a smooth Hermitian metric on L.

On the open set of invertible operators each fiber of £ is canonically isomorphic to C
and the nonzero holomorphic section o = 1 gives a trivialization. Also, according to the

definition of the Hermitian metric, the norm of this section is given by

lo]]” = e¢4a (@ (3.17)

3.5.1 Variations of LogDet and curvature form

We begin by explaining the motivation behind the computations of Quillen in [23|. Recall

that a holomorphic line bundle equipped with a Hermitian inner product has a canonical
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connection compatible with the two structures. This is also known as the Chern connec-
tion. The curvature form of this connection is computed by 99 log ||o||?, where o is any

non-zero local holomorphic section.

In our case we will proceed by analogy and compute the second variation 9 log ||o||?
on the open set of invertible index zero Cauchy-Riemann operators. Let us consider a
holomorphic family of invertible index zero Cauchy-Riemann operators D,, = 0 + oy,

where «,, depends holomorphically on the complex variable w and compute

d350wCA (0)-
One has the following first variational formula,
6wC(2) = 6, TR(A™?) = TR(6, A7) = —2TR(6,AA™*71),
where in the second equality we were able to change the order of §,, and TR because of

the uniformity condition in the definition of holomorphic families (cf. [21]).

Note that, although TR(A™?) is regular at z = 0, TR(6, AA~*~1) might have a pole
at z = 0 since 5, AA™*"!,_g = §,AA™! is not a differential operator any more and

may have non-zero residue. Around z = 0 one has the following Laurent expansion:
—2TR(§,AAT*71) = —Z(E +ag+ajz+---).
z

Hence,

d

Bul(Mamg = —am1,  4-0uC(2)

Using Proposition 3.15 we have

5uC'(0) = L 6uC(2)

= —p <]L o (6, AAT) — %resx(éwAA_l log A)) .
z=0

To compute the right hand side of the above equality, we need to note that since D,,

depends holomorphically on w, d,,D* = 0 and hence

A = 64y D*D + D*6,yD = D*0,,D.
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Since d,, D is a zero order differential operator, we have

5¢'(0) = —¢o <][ o(D*6,DA™Y) — %res(D*(SwDA_1 log A)>

= —¢o <][ o(6,DATID*) — %res(éleogA AlD*)>

= —o ((5wD <][ o(D7") - ;reS(logAD‘l)»

= —po0 (6wD J),

where

1
J = ][a(Dl) — §res(log(A)D*1).
The reader can compare this to the term J in Quillen’s computations [23].
Now we compute the second variation d50,,¢’(0). Since D,, is holomorphic we have

(Su—](SwC/(O) = —©0 (de(Su—]J) .

Next we compute the variation d3J. Note that since D, is invertible, D! is also
holomorphic and hence 65 f o(D~1) = 0. Therefore

0w = by (][ o(D7Y) — ;res(logAD_1)> = —%&Dres(logAD_l).

Thus, we have shown that

Lemma 3.17. For the holomorphic family of Cauchy-Riemann operators D,,, the second

variation of ¢'(0) reads:
1
8w0uC’(0) = 590 (6wDégres(log AD™H)).

O]

Our next goal is to compute dgres(log A D~1). This combined with the above lemma
shows that the curvature form of the determinant line bundle equals the Kéhler form on

the space of connections.
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Lemma 3.18. With above definitions and notations, we have

L (a+a*)é + (Fa+ Ta*)é
720008 A D) = e a6 T TP + 6

o <§% +2R(1)& & + \T|2f§> o
® GE 6178

and
Spres(log(A)D™1) = (0wD)*.

Proof. By writing down the homogeneous terms in the expansion of o, (log A) and

o(D~1) and using the product formula of the symbols we see that

0'72,0(10g AD_I) ~ a,l,g(log A)O',l(D_l) + 0'070(10g A)O',Q(D_l).

Starting with the symbol of A, we have
o(A) = & + 2R(1)61& + |T1E + (a + a)é + (Fa + Ta*)é + 0% (a).

Then, the homogeneous parts of o((A — A)™1) = >_jb_2—; is given by the following

recursive formula

bos = (A —0a(A)) 7},

boj=-bay > Foa ,(A)Fb_y /7,
kHl+|y|=5,1<j

which gives us
1

b o =
PN (24 2R(DEE + |T2ER)

and
1

b o=
T = (& 1 2M(r)ak + |726))2

((a+ a6 + (Ta+ 7a%)82) -

Also, A? is a classical operator defined by

1
A= — [ A= A)"tax
27Ti C ( ) ’
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with the homogeneous parts of the symbol given by

1
b(z)gz_j = ng_j<AZ) = / )\Zb_g_jd/\.
C

211
Hence we have

1 1

b(2)g, = 5~ /C AT (& +2R(1)&1& + !T|2€§)d)\
= (& +2R(N&& + 7€)
by, = L [y (@it Fatrans)

2mi Jo o (A — (€2 + 2R(7)&16a + |7]2€2))2

= z(&f + 2R(1)&1&e + |7763))° 7! (o + @& + (Fa+ Ta")&).

Using (3.13) and what we have computed up to here, it is clear that

0010 A)(E) = (&)1 2| bl — s €/
= | (€ + 2R + P

= log((&f + 2R(1)&1& + |7°63)/[¢€]%).-
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Note that the above term is homogeneous of order zero in &.
o-1,0(log A)(€)

d

_ le "o QT ) bz = Dy (€ 1ED
i+j+|al=1 .
d
= UQ(A)M’*S a L b(Z - 1)2,2—3 (§/|§|)
d
+ o1(A)[¢] ? 1z » b(z = 1)y, (£/1€])

_ 1= log(&§ + 2R(1)&1& + |7263) /1€1%)
(& + 2R(1)&1& + |T[283)
log (€7 + 2R(7)€1&2 + |7[763)/1€1%)
£+ 2R(1)&16 + | 71263

[(a+ a6 + (Fa + 7a%)&]

[(a+ a®)é + (Ta+ Ta™)&s]

= (& +2R(1)&& + 1726) " (e + o) + (Ta+ Ta’)&] .

Next we compute the symbol of D~!. The symbol of D reads
o(D)=¢& +1& + a.

We need to compute the homogeneous parts of order -1 and -2 of D~!. By using recursive

formula for the symbol of the inverse we get:

o 1(D7Y =o1(D)" = (& +7&)

o oD =—01(D7) Y 9o1_y(D)5o_1(D7)/y!
k+lyl=1

= —a_1(D")?00(D)

= —(& + 7)) 2
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Finally, we have

o_20(log A Dil) =o0_10(log A)a_l(Dfl) + 0p,0(log A)O'_Q(Dil)
= (G +2R(1)&& + [T178) 16 + &) (a+ ") + (Fa + Ta™)E)]
—log((&F + 2R(1)&1&2 + | 7[65) /1€1°) (61 + 762) .

Therefore, we compute the variation:

550 -2,0(log AD™Y) = (& + 2R(7)&1& + [T165) 7 [(60a™)&1 + (Top0™)Ea] (&1 + 7&2) 7
= (& + 2R(1)&1& + |71263) (™)
= (& + 2R(7)&1& + | 77€3) (6w D)*. (3.18)

In order to compute the variation of the residue density, we need to integrate (3.18) with

respect to £ variable:

dares(log(A) D) = / (€8 + 2R(1)&182 + [71°€3) 7 (0w D) d€ = o~ (6w D)".
lgl=1 2m3(7)
Note that we have used the normalized Lebesgue measure in the last integral (see (3.2)).

O

We record the main result of this paper in the following theorem. It computes the
curvature of the determinant line bundle in terms of the natural Kahler form on the

space of connections.

Theorem 3.19. The curvature of the determinant line bundle for the noncommutative

two torus is given by

550wC’(0) = ——— 0 (6 D(8wD)") . (3.19)

A3 (T)
O

Remark 3.20. In order to recover the classical result of Quillen for § = 0, we have to take
into account the change of the volume form due to a change of the metric. This means

we have to multiply the above result by (7).
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Chapter 4

Spectral action of the Berger
spheres S3(T)

4.1 Introduction

The spectral action is a tool to extract geometric information of a spectral triple, which is
a generalization of space in the sense of noncommutative geometry. The spectral action
is an effective method to find spectral formulation of the action functional for physical
models through the geometry of a carefully chosen spectral triple [4, 7]. The spectral
action of a spectral triple (A, #H, D) is defined by

Trf(D/A), (4.1)

where f is an even positive real valued function and A is a positive number which is called
the mass scale. The asymptotic expansion of the spectral action as A — oo is closely

related to the asymptotic expansion of the heat trace Tr(e*P*) [8, Theorem 1.145].

There are different techniques to compute the asymptotic expansion of the spectral
action. The universal formula for the heat trace coefficients is an effective method.
However, the formulas are only for the Laplace type operators and computed up to
the tenth term [10, 11, 20]. The method of pseudodifferential operators, with all its
difficulties in the computations, is another method that can be applied for any positive

operator with positive principal symbol and also can compute higher asymptotic terms.

95
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Moreover, this method is effective when one wants to prove a general fact about the

terms (see e.g. [9]).

To apply the above methods there is no need to compute even a single eigenvalue of
D, knowing the symbol of the operator in local charts is enough. For the cases that the
explicit spectrum of the Dirac operator is available, one can apply numeric formulas to
approximate »yc o o.p f(A/A) in terms of powers of A. In [5], the Poisson summation
formula is used to compute the spectral action of the round 3-sphere. The spectral
action of the homogeneous space SU(2)/T, where I' is a finite subgroup of SU(2), is also

computed by the Poisson summation formula in [19].

The Euler-Maclaurin summation is another important tool from numerical analysis
that can be used in spectral action computations. This formula was discovered indepen-
dently by Euler and Maclaurin in the eighteenth century. Further historical notes can
be find in 16, 17].

Let f € C?*™([a,b]); then

b
> gn) = [ glw)de+ 5 a0)+g@) + 2 (s0700) 9 (@)
a j .

— Rn(g,a,b), (4.2)

NE

[|
N

where the remainder is given by R,,(g,a,b) = o™ f: B ({z})g" (z)dz and {z} de-

m!

notes the fractional part of z, i.e., x — [z]. Here, B,,(x) are the Bernoulli polynomials

which are defined by the coefficients of the following power series:

The Bernoulli number By, is the value of the Bernoulli polynomial B, (z) at z = 0. In

this notation, By = —% and Bo,4+1 = 0 for any n > 1 and
1 1 1 1
By=-By=—,Bg=—,Bg=——,---
2 67 4 307 6 427 8 307

The spectral action of the 4-sphere and SU(3) are computed using the Euler-Maclaurin
summation formula in [6] and [15], respectively. Both the Poisson and Euler-Maclaurin
summation formulas are very effective methods in computing the non-perturbative ver-

sion of the spectral action, and the forms of the eigenvalues are important in determining
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which method can be used. For instance, if the eigenvalues of the Dirac operator, +h(k),
and their multiplicities, P(k), are polynomials in k, then the Euler-Maclaurin formula

can be applied to the summation Y, P(k)f(h(k)?/A?) to compute the spectral action.

In this work we use the Euler-Maclaurin formula to compute the spectral action of a

Dirac operator D' = D +T/2, where D is the Dirac operator of the Berger sphere S3(T).

4.2 Berger Spheres S3(T)

For T > 0, the Berger 3-sphere S?(T), introduced by Marcel Berger [3], is a homogeneous
Riemannian manifold which is homeomorphic to the 3-sphere S? and equipped with a
homogeneous Riemannian metric, denoted by gr. To define the metric gp, let’s first

identify S* and the Lie group SU(2) by the map
(z,w)ES?’C(CQ»—>< Zi w).
—w Z

Then, for a fix parameter T' > 0, the Berger metric gr is the SU(2)-invariant metric
induced from the inner product on su(2) with respect to which the following basis is

orthonormal:
X1=<Qi>7 2=<0_1>, X3=1<i 0,)- (4.3)
i 0 1 0 T\o —i
The Berger metric gr on S ¢ R* is given by
gr=0' 0 + 0?20 +1T20° 2 63. (4.4)

Here 0% = ka , where b is the musical isomorphism with respect to the standard round

metric on S* and the vector fields {Y}} are given by

0 0 0 0
_ .30 4 0 19 5 0
n orxl Tt Ox2 Tt ox3 v ozt
0 0 0 0
v, — 4.2 30 20 10
270 Gt o 0z2 ox3 oz
0 0 0 0
_ .29 1.0 4 0 3 0
Y5 x8x1+$82 x8x3+x ozt
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In the Hopf coordinates, i.e.

z! = cos oy sin(n), z? =sinpysing, 2° = cosyasing, z* =sin (o sin 7,
with 7 ranging in [0,7/2) and ¢1, ¢2 ranging in [0,27), the direct computation shows

that the Berger metric tensor is given by

gr = dn? +sin?n(cos® n + T?sin®n)dy? 4 cos® n(sin? n + T2 cos® n)dp3
+ 2(T? — 1) sin® 5 cos? ndp1deps. (4.5)

It is easy to check that, for instance, the scalar curvature of S3(T') is constant and equal
to R = 8 — 272, or the volume form is dvoly, = T sin(n) cos(n)dndpidps. Hence, the
volume of the Berger sphere S*(T') is given by

w/2 2w 2w
/ / / T sin(n) cos(n)dndpidps = 2m*T. (4.6)
0 o Jo

The spin structures and the Dirac operators on the Berger spheres are studied in
[2]. The author uses the representation theory of SU(2) and explicitly computes the

eigenvalues of the Dirac operator and their multiplicities, which are given below.

Eigenvalue Multiplicity
—ntl T 2(n+1) n=0,1,2,...
1/2 n=123,--

—Tx(en—20-1)2+ (n+1)? n+1

1=0,1,,n—1,

where ¢ = (% — 1). We shall work with D" = D + T'/2 rather than D itself. The

eigenvalues of (D’)? then are given by

Eigenvalue Multiplicity

cn—20—12+m+12  2m+1) PTOLZ

[1=0,1,...,n.

4.3 Spectral action of D’

In this section we apply the Euler-Maclaurin summation formula to compute the asymp-
totic expansion of the spectral action Tr f((D’/A)2) in powers of A. Let k be an even pos-

itive Schwartz class function on R. Moreover, let f be a function such that k(z) = f(x2).
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Then we have
Trk (D'/A) = Trf((D'/A)?)

:i2(n+1z n+1) +j\(g_2l_1)2)

_Z2an+ c(n —21)? i2fc+12'

Let us first define f,(z) := f (M) then we can approximate >, fn(),

which is the inner summation, by the Euler-Maclaurin formula as follows:

- n? + c(n — 20)?
D)=
=0
! -~ Bi (461 (-1)
[ a4 fuf0) S (K70 0) = £70(0) = Bnlf 0,1)
i=2 7
Note that f,(z) is the translation of an even function by §; therefore, for any y we have

—y) = —fEDE 4y

(2j—1) ("
7 -

2

In particular, f,gzj_l)(O) = —féQj_l)(n). Therefore, Trf ((D'/A)?) is given by

Tr f ((D'/A)?) =
Z2n/ fn(z da;+z2nz ]f(J b ZQnR (fn,0,n).
— .7 =) ’
To continue, we fix the following notations:
2 [ f,(2)do it =1,
hj(y) = QB yddx]j 11 fy(z )|z:y if2<j<m,
QyRm(fyaan) ifj=m+1

To compute the trace we shall apply the Euler-Maclaurin formula on summations of the

form >">° ( hj(n).
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e Euler-Maclaurin on )7 ;hi(n): The first summation can be approximated by

the Euler-Maclaurin formula as follows.

- > B /! oo
Z hl(n) = /0 hl (y)dy - Z T'delfj_l hl(y)‘yzo - Rm(h17 07 OO)
n=0 j ’

Jj=2

Note that hj(y) is an even function and so its odd derivatives at = 0 vanish. Moreover,
h1(0) = 0 and also

y )
0 < lim 2y/ fy(z)dx < / le 2uf ((y* 4 %) /A*)dz = 0.
0 0o Y—oee

Y—00

Finally, we have

/0 T ha(y)dy = /O h /0 "2 (W + o2z — 4)?)/A2)dudy

o0 Lu)
:A2/ /\/CTI 2w f(w?/A?)dzdw
o Jo
B 2A3 0o
ve+1 Jo

w? f (w?)dw.

We now compute the order of A in R, (h1,0,00).

(i, 0,06) = S [ () )

_1\ym m y/A 2
_ =D A/O Bm({y})TQy 0 Py + eu)dudy  (4.7)

m!

- CUT /0 Ba({Az)) o /0 F(22 + eu?)dudy,

Hence R,(h1,0,00) = O(A~™%3) and we have the following approximation for >, hy(n):

2)dw + O(A3™). (4.8)

2l = ﬁ

e Euler-Maclaurin on ) ;° h;(n) for 2 < j < m: Since odd Bernoulli numbers
vanish, i.e. Byjy1 = 0, we only need to consider summations of the form ) hgj. Further-

more, functions hg; are even and so any odd derivatives of ho; vanish at z = 0. Hence,
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Euler-Maclaurin formula gives us the following.

o0 S
Z haj(n) = / haj(y)dy + Ry (ha;,0,00).
0 0
The integral term can be computed in terms of derivatives of f at zero as follows:

[e%s) B2.22j ) o0 d2] 1
ho;i(y)d :JA—2J+3/ 2 2 ¢ eu? dw.
/0 2 (y)dy 2))] 2 [ (0 + cu?) w

u=w

For example, for j = 1 we have

d
duf (w* + cu?)

=2cwf’ ((c+1)w?) =

u=w

ct+1 dwf ((e+1yw?).

A computation similar to (4.7) shows that R, (haj,0,00) = O(A=%~"3) This,
together with the above computation, gives us the following approximation:

00 sz22j 9j43 o] 27—1 5 )

u=w

b O(ATHTmSy, (4.9)

¢ Euler-Maclaurin formula on Y (° by 41(n): Now, we apply the Euler-Maclaurin
formula to Ro(hm+1,0,00). Via the substitutions u = ij\;y and w = y/A, the integral
term [ hig1(y)dy gives us the following:

A~ me3 m2m 1/ 2w/ m ({A( x+w)/2}) " (w2+cu2)dudw.

This shows that the order of the integral is O(A~™%3). Moreover, there exists ¢ > 0
such that Ry(hm+1,0,00) = O (A~™137¢) . Combining the above, yields the following

approximation formula:
> hmia(n) =0 (A3 (4.10)
0

By equations (4.8), (4.9) and (4.10), for any m > 2, we have proven the following theorem.
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Theorem 4.1. The asymptotic expansion of the spectral action of the operator D' =

D+ % on the Berger sphere S3(T) as A — oo is given by

2A3 o0 —4cB >
Tr £ ((D'/A)?) = 2f(w?)d 2A/ 2) d 4.11
(D)) oy R e AL
B2 ) o0 d?j—l
Z; J 23+3/0 2w du2j*1f (w2 + cu2) . dw,
where ¢ = ﬁ — 1. OJ

The case ¢ = 0, i.e. T' =1, gives the round sphere and all the terms of order less that

A3 will have zero coefficient. The spectral action is given by

Tr f ((D'/A)?) = 2A% f5 + O(A™™).

—X

Formula (4.11) is given for more general functions and if we consider f(z) = e * and

set t = 1/A?, then we can compute the asymptotic expansion of the heat trace of D’ 2,

Corollary 4.2. The asymptotic expansion of the heat trace of the operator D" on the
Berger sphere S}(T) as t — 07 is given by

-1B \f dl 1
+3/2 VT _pl2 VT e/ j—3/2 2j 4192
2ve+1 3(1 + ¢)3/2 Zt 231 ch( +o)l/z)’ (4.12)

wherec-%—l

Proof. The coefficient of t=3/2 is given by

W N ES
Moreover, the coefficient of t~1/2 is also given by
—4¢By /°° 2 —cy/T
———A eVdy=—"—=
(c+ 12" Jo RETEESEE
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For the positive powers of t we can compute all the coefficients as follows. For any j > 2,

we have

| Zgw T )
0

JuZi 1 dw

u=w

du2]fl

00 27
_2d a2
= e v 57 € W dw
0 d'UJJ

_ 2 : )' /OO e—w2w2n—2jdw
n! 2n —2j)! ’
n=j

e} 25—1
2 d 2
dw:/ 2we W ———e
u=w 0

Integrating by parts n — j-times, we get

> —w? d2j_ 7w 275—1 n (2n) n—j
/0 2we W dw = f2 J— C] Z C J

22” n!(n — j)!

)

dcﬂ (14 c)l/2

4.4 The Heat Trace Coefficients Using the Universal For-

mulas

In this section, we produce few first coefficients of the heat trace for D'? using the uni-
versal local formulas. We first show that D’ is the Dirac operator of a metric connection
with torsion. Then using the the Schrodinger-Lichnerowicz formula given in [18|, we find

the endomorphism F in the decomposition of D2 and plug it in the local formulas.

The theory of G-invariant connections on an induced vector bundle over a homoge-
neous space is studied in [13, 14]. Also, spin structured and the Dirac operators of such
spaces are investigated in |2, 12]|. Here, we briefly review the theory for a Lie group G.
The set of all G-invariant connections on a vector bundle of the form G x V' is in one to
one correspondence with all R-linear maps A : g — gl(V). The correspondence is given
by [12]

Vo=X"®X;p+ X' @ AX))ep, (4.13)

where {X;} is a basis for g and {X*} is its dual basis. Moreover, X;¢ is the Lie derivative
of ¢ with respect to the G-invariant vector field defined by X; € g, and A(X;)p is a
smooth function from G to g defined by (A(X;)p)(9) = A(X;)p(g) for ¢ € G. For
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instance, the Levi-Civita connection on TG ~ G x g equipped with the left invariant
Riemannian metric g produced by an inner product (-,-) on g is given by (see e.g. [13,
Theorem X.3.3|)

AX)Y =(1/2)[X,)Y]+U(X,Y) X, Yeg,

where U(X,Y) : g x g — g is the bilinear map defined by

2U(X,Y),Z)=(X,[Z2,Y])+([Z,X],Y), X)Y,Zeg. (4.14)

In general, any R-linear map A with the property that A(X) € so(g, (-,-)) for any
X € g, induces a metric connection on T'G. The torsion tensor for such a connection at

the origin is given by

Such a metric connection lifts to a G-invariant connection on the spinor bundle S =
G x S, induced by

AX) = — Z<A(X)(Xi)7Xj>c(Xi>C(Xj)> X ey,

where {X;} is any orthonormal basis for g and ¢ denotes the Clifford multiplication. The

induced connection %, similar to (4.13), acts on spinor fields ¥ : G — S,, as follows,
(V9)o) = 3 X' @ (Xulg) + A(X)u(g) ) .
The Dirac operator defined by V is given by

Dy = Z o(Xi) Xip + i%(A(Xi)va Xi)e(Xi)e(X;)e(Xp). (4.15)

The Dirac operator D is a formally self-adjoint operator if and only if for any orthonormal
basis {X;} for g, we have (cf. [12])

AX;)X; = 0. (4.16)
>

i
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On the Berger sphere S3(T) = (SU(2), gr), direct computations show that the map

given by (4.14), vanishes and thus the Levi-Civita connection is induced by the map
AX)==[X,], Xeg.
Then the following maps define a family of metric connections:
A(X)=t[X,], Xe€g, teR

The torsion tensor of these connections, V¢, is equal to TH(X,Y) = (2t — 1)[X,Y] and
A satisfies the condition (4.16). Moreover, they lift to a family of connections V! on the

spinor bundle induced by

At(x) = %Z(A(X)Xi,Xj>c(Xi)c(Xj) _ 2%A(X), Xeg
i,J

~ 1
Lemma 4.3. The operator D' is the Dirac operator defined by the connection V 2+7%,

Proof. Equation (4.15) applied on v gives us the formula for the Dirac operator
Dy =Y e(Xi) Xi(¢) + 2te(X;)A(Xi)p.
i
By the direct computation we have

21e(X0) 7 S (AKX, Xee Xo)e(X; el Xe) = — (; i 4T> |
0,4,k

Hence,

Dl = Z (X)) X5 () — % <§ + 4T> 0,

which clearly shows that
1
D'=D+T/2= D212,

The Schrodinger-Lichnerowicz formula for D! is given by (see [1, 18])

S 1
(D'%)? = (V!)*V' +tdT + - R — 26T,
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where R is the scalar curvature of the metric and T = ¢ >t =1 T (X, X2

In the case of Berger spheres we have ||T||? = (2:1)%6 (27 + %)2 = 272, dT vanishes
and R = 8 — 272, Hence, the endomorphism is given by

E=(-T"+2)I.

Using the local formula now we have

2 JT
ag = /§3 ao(z, D*)dvol,, = (im)7 /2 vol(S*(T)) = TT’
B 2 2 2 — 277 3y VT
ag = /SS az(z, D*)dvoly, = TR 3 vol(S*(T)) = ?(T - 1T,

which are equal to the results given by Corollary 4.2.
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