
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

January 2015

Rationality of the spectral action for Robertson-
Walker metrics and the geometry of the
determinant line bundle for the noncommutative
two torus
Asghar Ghorbanpour
The University of Western Ontario

Supervisor
Professor Masoud Khalkhali
The University of Western Ontario

Graduate Program in Mathematics

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Asghar Ghorbanpour 2015

Follow this and additional works at: http://ir.lib.uwo.ca/etd

Part of the Analysis Commons, Cosmology, Relativity, and Gravity Commons, and the
Geometry and Topology Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact jpater22@uwo.ca.

Recommended Citation
Ghorbanpour, Asghar, "Rationality of the spectral action for Robertson-Walker metrics and the geometry of the determinant line
bundle for the noncommutative two torus" (2015). Electronic Thesis and Dissertation Repository. Paper 2653.

http://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/129?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd/2653?utm_source=ir.lib.uwo.ca%2Fetd%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jpater22@uwo.ca


Rationality of the spectral action for
Robertson-Walker metrics and the geometry of the
determinant line bundle for the noncommutative

two torus

(Thesis format: Integrated-Article)

by

Asghar Ghorbanpour

Department of Mathematics

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

January 2015



Abstract

In noncommutative geometry, the geometry of a space is given via a spectral triple

(A,H, D). Geometric information, in this approach, is encoded in the spectrum of D

and to extract them, one should study spectral functions such as the heat trace Tr(e−tD
2
),

the spectral zeta function Tr(|D|−s) and the spectral action functional, Trf(D/Λ).

The main focus of this thesis is on the methods and tools that can be used to extract

the spectral information. Applying the pseudodifferential calculus and the heat trace

techniques, in addition to computing the newer terms, we prove the rationality of the

spectral action of the Robertson-Walker metrics, which was conjectured by Chamseddine

and Connes. In the second part, we define the canonical trace for Connes’ pseudodiffer-

ential calculus on the noncommutative torus and use it to compute the curvature of the

determinant line bundle for the noncommutative torus. In the last chapter, the Euler-

Maclaurin summation formula is used to compute the spectral action of a Dirac operator

(with torsion) on the Berger spheres S3(T ).

Keywords: Robertson-Walker metrics, Dirac operator, Spectral action, Heat kernel,

Local invariants, Pseudodifferential calculus, Determinant line bundle, Spectral triple,

Euler-Maclaurin summation formula
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Preface

Noncommutative geometry is a rapidly developing field with extensive applications in

other fields of modern mathematics as well as physics. In this new paradigm of geometry,

proposed by the great Fields Medalist Alain Connes, the metric gµν is exchanged for the

Dirac operator D. Geometric information, in this approach, is encoded in the spectrum

of D. To extract this information one should study a spectral function like the spectral

action

Trf(D/Λ),

where f is an even positive real-valued function and Λ > 0 is the mass scale. An

outstanding feature of the spectral action defined for noncommutative geometries is that

it derives the Lagrangian of the physical models from simple noncommutative geometric

data (see section 1.5.1). Moreover, its asymptotic expansion as Λ → ∞ is very related

to the asymptotic expansion of the heat trace of D2 which, in the classical case, has the

following form:

Tr(e−tD
2
) ∼ t−dim(M)/2

∑
n≥0

a2n(D2)tn (t→ 0).

The constants a2n(D2) can be written as a2n(D2) =
∫
M an(x, P )dvolg, where a2n(x,D2)

are local invariants of the jets of the total symbol of D2. Universal local formulas for

heat trace asymptotics of a Laplace type operator are a robust tool to compute these

local invariants. However, these formulas are available only up to a10, so developing more

tools and methods is necessarily. The main focus of this thesis is on the study of the

spectral invariants of spaces, either commutative or noncommutative, and the related

tools and methods.

While full of fresh ideas and new paradigms, noncommutative geometry is rooted in

the heart of modern mathematics of the 20th century such as index theory, spectral ge-

ometry and spin geometry. In the first half of the first chapter, we explore the main ideas

from the classical theories and their related tools which play a role in the developments

of noncommutative geometry, especially the spectral aspects. This part includes a quick

review of pseudodifferential operators, spin geometry and spectral geometry. The second

half of this chapter is devoted to the basics of the theory of spectral triples and axioms

of noncommutative geometry, as well as the developments of the notions of action and

symmetries in noncommutative geometry.

1



Preface 2

In chapter 2, we use pseudodifferential calculus and heat kernel techniques to prove a

conjecture by Chamseddine and Connes on rationality of the coefficients of the terms a2n

in the expansion of the spectral action of Robertson-Walker metrics. The (Euclidean)

Robertson-Walker metric with the cosmic scale factor a(t) is given by

ds2 = dt2 + a2 (t) dσ2,

where dσ2 is the round metric on the 3-sphere S3. A detailed study of the spectral action

for the Robertson-Walker metrics was initiated by Chamseddine and Connes, where

by devising a direct method based on the Euler-Maclaurin formula and the Feynman-

Kac formula, the terms up to a10 in the expansion are computed. Here, a2n denotes∫
S3
a(t)

a2n(x,D2)dvol and depends only on a(t) and its derivatives. They conjectured

that a2n are rational polynomials in a(t) and its derivatives divided by some power of

a(t). We used pseudodifferential calculus and heat kernel techniques to prove that the

term a2n in the expansion of the spectral action for the Robertson-Walker metric is of

the form
1

a(t)2n−3
Q2n

(
a(t), a′(t), . . . , a(2n)(t)

)
,

where Q2n is a polynomial with rational coefficients.

Two chief players in the proof of this theorem are the recursive formula of an(x,D2),

which we derived from the recursive formula for the symbol of the parametrix, and the

symmetries of the metric, which were employed in terms of the Killing vector fields. We

also compute the terms up to a12 in the expansion of the spectral action by our method

and find a formula for the coefficient of the term with the highest derivative of a(t) in

a2n.

In the third chapter, the curvature of the determinant line bundle on a family of

Dirac operators for a noncommutative two torus is computed. Quillen introduced the

determinant line bundle on the space of Fredholm operators and showed that it is a

holomorphic line bundle. He endows the determinant line bundle L, pulled back on

the space of all Cauchy-Riemann operators on a smooth vector bundle over a Riemann

surface, by a Hermitian metric using the zeta regularized determinant of Laplacians. On

the open set of invertible operators, each fiber of L is canonically isomorphic to C and

the nonzero holomorphic section σ = 1 gives a trivialization. The norm of this section

on the fiber of the invertible Cauchy-Riemann operator D is given by

‖σ(D)‖2 = e−ζ
′
∆(0),
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where ζ∆ is the spectral zeta function of the Laplacian ∆ = D∗D. Quillen studies the

geometry of the line bundle L and he computes the curvature of the metric.

The noncommutative torus is an example of a noncommutative Riemann surface.

We investigated the curvature of the determinant line bundle over a family of Cauchy-

Riemann operators on the noncommutative two torus Aθ with a fixed complex structure.

To study the geometry of the determinant line bundle on this family, we had to inevitably

develop new tools and use new techniques that are applicable in the noncommutative

setting. To this end a version of the canonical trace of Kontsevich-Vishik is developed for

the algebra of pseudodifferential operators on the noncommutative two torus. Using the

calculus of symbols and the canonical trace we computed the curvature of the determinant

line bundle, which is the second variation of log det(∆) and is given by

δw̄δwζ
′(0) =

1

4π=(τ)
ϕ0 (δwD(δwD)∗) .

The calculus of symbols and the canonical trace allow us to bypass local calculations

involving Green functions in Quillen’s work, which are not applicable in the noncommu-

tative case.

Unlike the previous chapters, in which local computations are used to compute the

spectral invariants, in the last chapter, which is an ongoing project, we use the Euler-

Maclaurin summation formula to compute the asymptotic expansion of the spectral ac-

tion of the operator D′ = D + T/2, where D is the Dirac operator on the Berger sphere

S3(T ). This method is useful when the full spectrum of the operator is known. By the

Euler-MacLaurin formula the full asymptotic expansions of the spectral action f(D′2/Λ2)

and its heat trace Tr(e−tD
′2

) are derived.



Chapter 1

A Prelude to Noncommutative

Geometry

Noncommutative geometry is a rapidly developing field with extensive applications in

other fields of modern mathematics as well as physics. While full of fresh ideas and new

paradigms, it is rooted in the heart of modern mathematics of the 20th century such as

index theory, spectral geometry and spin geometry.

Our aim in this chapter will be to explore the main ideas from the classical theories

and their related tools which play a role in developments of noncommutative geometry,

especially the spectral aspects. The first half of this chapter includes a very quick review

of such classical topics and consists of three sections: Pseudodifferential Operators, Spin

Geometry and Spectral Geometry. The main focus will be on the tools and results which

will lead to new concept in the second half of the chapter.

In the second half we will recall the notions of noncommutative spaces and their

application to physics. Section 1.4 includes the basics of the theory of spectral triples

and axioms of noncommutative spin geometry. The last section is devoted to the devel-

opments of the notions of action and symmetries in noncommutative geometry and how

unified theories like Einstein-Yang-Mills theory can be produced through noncommuta-

tive spaces.
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A Prelude to Noncommutative Geometry 5

1.1 Pseudodifferential Operators

With all its great features, the algebra of differential operators fails to deliver important

concepts like negative or non-integer order differentiation, which if existed would be

very useful in solving partial differential equations. This shortfall can be remedied by

introducing pseudodifferential operators and the calculus of their symbols. However,

while one loses the local property, the symbol calculus survives and the theory works

very well especially with the spectral theory of operators.

In this section we will review the theory of pseudodifferential operators . The main

references for this section are [18, 27, 34].

1.1.1 Basics of the Theory

The concept of pseudodifferential operators emerges out of the following property of the

Fourier transformation:

F(f ′)(ξ) = iξF(f)(ξ).

This leads to a new way to differentiate functions using the Fourier transform, given by

f ′(x) = F−1
(
iξF(f)(ξ)

)
(x). (1.1)

If we replace ξ by a polynomial, p(x, ξ) =
∑
aα(x)ξα, in ξ with coefficients depending

on x, then (1.1) will define the following differential operator.

p(x,D) = F−1
(
p(x, ξ)F(f)(ξ)

)
(x),

where D = 1
i
d
dx . Now one can exchange the polynomial p(x, ξ) with a general function

in (x, ξ) with the right growth rate. This is how a general pseudodifferential operator is

constructed.

Definition 1.1. Let U be an open subset of Rm with compact closure. A smooth

function σ : Rm ×Rm → C is called a symbol of order d on U , denoted by σ ∈ Sd(U), if

its x-support is inside U , and for any non-negative integer multi-indices α, β there exists

Cα,β > 0 such that

|∂αxD
β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)d−|β|.

Here ∂αx = ∂α1

x1 · · · ∂αmxm , Dβ
ξ = 1

i|β|
∂β1

ξ1 · · · ∂βmξm and |β| = β1 + · · ·+ βm.
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For any symbol σ we assign an operator Pσ : C∞0 (U)→ C∞0 (U) given by

Pσ(f)(x) = F−1
(
σ(x, ξ)F(f)(ξ)

)
(x) =

∫
Rn
eix·ξσ(x, ξ)F(f)(ξ)dξ.

Here dξ = 1
(2π)mdLξ, where dLξ is the Lebesgue measure on Rm.

Multiplication of two pseudodifferential operators P,Q gives another pseudodifferen-

tial operator whose symbol is given by

σ(PQ) ∼
∑
α

∂αxσ(P )Dα
ξ σ(Q)/α!,

where the symbol of a pseudodifferential operator P is denoted by σ(P ). The equivalence

relation ∼ on the symbols is defined as

σ ∼ σ′ ⇔ σ − σ′ ∈ S−∞.

Here S−∞ = ∩kSk.

For a symbol σ ∈ Sd we define the principal symbol σL to be the class of σ in

the quotient space Sd/Sd−1. The symbol multiplication for the principal symbol is the

function multiplication

σL(PQ) = σL(P )σL(Q).

The theory of pseudodifferential operators acting on vector valued functions f ∈
C∞(U,Cm) can now be developed. Symbols in this case are matrix-valued symbols

σ(x, ξ) ∈Mn(C). Pseudodifferential operators on a vector bundle V over a manifold M

is defined as below.

Definition 1.2. A linear operator P : C∞(V ) → C∞(V ) is a pseudodifferential opera-

tor of order d, denoted by P ∈ Ψd(M,V ), if for any chart of M which is a trivialization

for V as well, i.e. V |U ' U × Cn, and for any ψ,ϕ ∈ C∞0 (M), the localized operator

ϕPψ : C∞(U,Cn)→ C∞(U,Cn) (1.2)

is a pseudodifferential operator of order d on U acting on C∞(U,Cn).

In any coordinate chart, we define σ(P ) to be the symbol of the operator ϕPϕ on

ϕ = 1. The leading symbol is invariantly defined on T ∗M , but the total symbol changes

with the change of coordinates.
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Let us equip V with a Hermitian product (·, ·) and fix a Riemannian metric g on M .

Then we can define an inner product on C∞(V ) by

〈ξ, η〉 :=

∫
M

(ξ, η)dvolg. (1.3)

Pseudodifferential operators are densely defined unbounded operators on H = L2(M,V ).

The following theorem determines when a pseudodifferential operator is in the important

classes of the operators on H. For a proof see e.g. [18]

Theorem 1.3. Suppose (M, g) is a closed manifold and V a Hermitian vector bundle

over M . Let P ∈ Ψd(M,V ); then

1. If d ≤ 0, then P is a bounded operator, i.e., Ψ≤0(M,V ) ⊂ B(H).

2. If d < 0, then P is a compact operator, i.e., Ψ<0(M,V ) ⊂ K(H).

3. If d ≤ −m, then P is a Dixmier class operator, i.e., Ψ≤−m(M,V ) ⊂ L1,∞(H).

4. If d < −m, then P is a trace class operator, i.e., Ψ<−m(M,V ) ⊂ L1(H).

Another important class of operators is the class of Fredholm operators, which are

the topic of study in index theory. The pseudodifferential operators that give rise to

Fredholm operators are called elliptic operators.

Definition 1.4. A symbol σ ∈ Sd(U) is called elliptic on U1 ⊂ U1 ⊂ U if there is an

open subset U2 with U1 ⊂ U2 ⊂ U2 ⊂ U such that there exists a σ′ ∈ S−d such that

σσ′ − I ∈ S−∞(U2) and σ′σ − I ∈ S−∞(U2).

An operator P ∈ Ψd(M,V ) is called elliptic if the symbol of localized operators (1.2) are

elliptic in ϕψ(x) 6= 0.

If P ∈ Ψd(M,V ) is an elliptic operator, then there exists Q ∈ Ψ−d(M,V ) so that

PQ− I and QP − I ∈ Ψ−∞(M,V ).

The operator Q is called a parametrix of P . Note that by Theorem 1.3 the operator

QP − I is compact, so P is invertible in the Calkin algebra and therefore a Fredholm

operator.
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Remark 1.5. The spectrum of a positive order elliptic operator P is a set of discrete

eigenvalues tending to infinity. This is a consequence of the spectral theorem of compact

operators applied to the resolvent of P , which by Theorem 1.3, is compact.

1.1.2 Traces on Pseudodifferential Algebra

As we mentioned in the previous section, if the order of a pseudodifferential operator P

is less than −dimM , then P is of trace class. The value of its trace can be computed by

expressing the operator as an integral operator with the kernel written in terms of the

symbol. By integrating the kernel along the diagonal, one gets

Tr(P ) =

∫
M

∫
T ∗xM

tr(σ(x, ξ))dξdvolg. (1.4)

Here tr inside the integral denotes the usual matrix trace. To study other traces on

pseudodifferential operators we have to introduce a new class of symbols.

Definition 1.6. Let σ : U × Rm → C be a smooth map such that for any N and

each 0 ≤ j ≤ N, there exists σα−j positive homogeneous of degree α − j, and a symbol

σN ∈ S<(d)−N−1(M,V ) such that

σ(ξ) =

N∑
j=0

χ(ξ)σα−j(ξ) + σN (ξ) ξ ∈ Rm. (1.5)

Here, χ is a smooth cut-off function on Rm which is zero on a small ball around the origin

and one outside the unit ball. The map σ is called a classical symbol of order α ∈ C and

the set of all classical symbols is denoted by Ψα
cl(M,V ).

Note that a classical symbol of order α is obviously a symbol of order <(α). There

is a more general class of symbols called log–polyhomogenous symbols in which terms

of the form ξk logl |ξ| are also present. Most of the theory that will be reviewed in the

next section is true for their case but we won’t dwell on it here. For a detailed discussion

of traces on classical pseudodifferential operators on manifolds we refer the reader to

[28, 29, 31] and the references therein.
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1.1.2.1 Wodzicki Residue

M.Wodzicki in [37] defined a trace functional on the algebra of classical pseudodifferential

operators on M , and proved that it is the only non-trivial trace. This functional on

pseudodifferential operators of order −m was discovered independently by Guillemin.

[21] In the following we will review this trace and Connes’ trace formula, which establishes

a deep relationship between the Wodzicki residue and the Dixmier trace.

For a classical pseudodifferential operator P with symbol σ on a vector bundle V , we

define the density

resx(P ) =

∫
S∗xM

tr(σ−m(x, ξ))dSξ.

Here, dSξ denotes the normalized Lebesgue measure dξ restricted on the unit sphere

S∗xM = {|ξ| = 1; ξ ∈ T ∗xM}. Though the symbol σ(x, ξ) of P depends on the choice of

local coordinates, resx(P ) is a well-defined density.

Definition 1.7. The Wodzicki residue of P , denoted by Res(P ), is given by

Res(P ) =

∫
M

resx(P )(x)dx.

A trace formula similar to (1.4) was proven by Connes, in which the left hand side is

replaced by the Dixmier trace. This trace is defined on the Dixmier ideal

L(1,∞) =
{
T ∈ K(H);

N∑
n=1

µn(T ) = O(logN)
}
,

where µn(T ), called characteristic values of T , are the eigenvalues of |T | = (T ∗T )1/2

listed in decreasing order. For any positive scale invariant generalized limit limω on

the space `∞(N), there is a positive functional Trω whose value on a positive operator

T ∈ L(1,∞)(H) is given by

Trω(T ) = lim ω
1

logN

N∑
n=1

µn(T ).

The positive functional Trω extends to L(1,∞)(H) by linearity. For detailed discussion

see e.g. [9].

Theorem 1.8. [8] Let M be a compact m-dimensional manifold, V a complex vector

bundle on M , and P a pseudodifferential operator of order −m acting on sections of
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V . Then the corresponding operator P in H = L2(M,V ) belongs to the Dixmier ideal

L1,∞(H). Moreover, the Dixmier trace of P is independent of ω and

Trω(P ) =
1

m
Res(P ).

1.1.2.2 The Canonical Trace

The integral on the right hand side of equation (1.4) diverges if the order of the operator

P is not less than −m. This phenomenon is known as ultraviolet divergence in physics.

Kontsevich and Vishik used Hadamard regularization, based on the concept of the finite

part of the integral, to regularize this divergent integral [25].

Given a classical symbol σ, with the expansion given by (3.2), for any fixed x ∈ M
the map R 7→

∫
B(0,R) σ(x, ξ)dξ has an asymptotic expansion as R→∞ of the following

form: ∫
B0(R)

tr(σ(x, ξ))dξ ∼R→∞c(σx) + resx(σ) logR+
∞∑
j = 0

j 6= α +m

Rα+m−jcj(σx),

where c(σx) and cj(σx) are constants that are determined by the symbol at x

Definition 1.9. For a classical operator with symbol σ ∈ Ψα(M,V ), the constant c(σx)

is called the finite part of the integral at x and we denote it by∫
− (σ(x, ξ))dξ.

The canonical trace of σ is then defined as

TR(P ) :=

∫
M

∫
−σ(x, ξ)dξdvol. (1.6)

It is evident that if <(α) < −m then∫
−σ(x, ξ)dξ =

∫
T ∗xM

σ(x, ξ)dξ ∀x ∈M.

Hence, TR(P ) = Tr(P ). Upon further investigation of the properties of TR one obtains

the following fundamental theorem.
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Theorem 1.10. [25] The linear functional TR(P ) on classical pseudodifferential oper-

ators of orders from α0 + Z, α0 ∈ C\Z, in the case of a closed M has the following

properties.

1. It coincides with the usual trace Tr(A) in L2(M,V ) for <(ordA) < −m.

2. It is a trace type functional, i.e., TR([B,C]) = 0 for ordB + ordC ∈ α0 + Z.

3. For any holomorphic family A(z) of classical pseudodifferential operators where

z ∈ U ⊂ C, and non–constant affine order ordA(z) = α(z), the function TR(A(z))

is meromorphic with no more than simple poles at z = n ∈ U ∩ Z ∩ [−m,∞) and

with residues

Resz=nTR(A(z)) = − 1

α′(n)
Res(A(n)). (1.7)

For more general holomorphic families of operators the higher order terms of the

Laurent expansion of TR(A(z)) around any pole are computed in [32].

1.2 Spin Geometry

Spin geometry plays an increasingly important role in different areas of modern math-

ematics and physics. On spin manifolds we can produce a globally defined first order

elliptic operator, called the Dirac operator, canonically associated to its underlying ge-

ometry. The study of Dirac operators was initiated by Paul Dirac in physics in the late

1920s. Later, Sir Michael Francis Atiyah and Isadore Singer established a strong mathe-

matical foundation for the theory of Dirac operators and used it in index theory. In this

section we will review the basics of spin manifolds and the Dirac operator. References

for this section are [17, 26].

1.2.1 Clifford Algebras and Spin Groups

To define a spin manifold, we first recall spin groups and their representations.

Definition 1.11. The universal covering group of the special orthogonal group SO(m),

m > 2, is called the spin group and we denote it by Spin(m).
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For example, Spin(3) = SU(2). The covering homomorphism, ρ : SU(2) → SO(3) is

given by the adjoint representation of SU(2) on its Lie algebra su(2).

Since for m > 2, π1(SO(m)) = Z2, the covering group Spin(m) is a double cover of

SO(m) and we have the following exact sequence of multiplicative groups:

1→ {±1} → Spin(m)
ρ−→SO(m)→ 1.

Any representation of the special orthogonal group π : SO(m) → Aut(W ) lifts to a

representation of the spin group given by π ◦ ρ : Spin(m) → Aut(W ). However, there

are representations of Spin(m) that are not constructed this way. These representations,

unlike the lifted representations from SO(m), have different values for 1,−1 ∈ Spin(m).

One way to construct such representations is to consider the Clifford algebras.

Definition 1.12. Let W be a vector space over K = R or C and B be a nondegenerate

symmetric bilinear form on W . The Clifford algebra Cl(W,B) is the quotient K-algebra

defined by

Cl(W, g) = T (W )/IB(W ),

where T (W ) =
∑∞

r=0W
⊗r is the tensor algebra and IB(W ) is the ideal generated by

elements of the form v ⊗ w + w ⊗ v + 2B(v, w).

The Clifford algebra is a finite dimensional unital Z2-graded algebra containing W

with the multiplicative property

v · w + w · v = −2B(v, w).

The even part of Clifford algebra, denoted by Cl0(W,B), is the subspace formed by

the even number of elements of w, and a similar definition holds for the the odd part

Cl1(V,B).

We denote the Clifford algebra for Rm and Cm with the standard positive definite

form respectively by Clm and Clm. The real and complex Clifford algebras are related

to each other by the fact that Cl and ⊗C (as functors) commute. In other words,

Clm ⊗ C = Clm. (1.8)
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Moreover, Clifford algebras for different dimensions are related by the following period-

icities in the real and complex cases,

Clm+8 = Clm ⊗M16(R) and Clm+2 = Clm ⊗M2(C).

Hence, by knowing only the first eight real Clifford algebras and two complex ones, which

are given in the following tables, we can construct all Clifford algebras of all dimensions.

Cl1,0 C
Cl2,0 H
Cl3,0 H⊕H
Cl4,0 M2(H)

Cl5,0 M4(C)

Cl6,0 M8(R)

Cl7,0 M8(R)⊕M8(R)

Cl8,0 M16(R)

Cl1 C⊕ C
Cl2 M2(C)

The representation of the spin group is related to the Clifford algebra because the

group Spin(m) can be realized as a subgroup of invertible elements of the Clifford algebra

Clm as follows:

Spin(m) =
{
x1.x2. · · · .x2k|xl ∈ Sm−1

}
⊂ Cl0m ⊂ Clm.

Since Clm ⊂ Clm, Spin(m) is also a subgroup of invertible elements of Clm. This inclusion

induces new representations of Spin(m) by restricting any algebra representation of Clm

or Clm to Spin(m).

Definition 1.13. The real spinor representation of Spin(m) is

∆m : Spin(m)→ GL(Sm),

given by restricting an irreducible real representation Clm → HomR(Sm, Sm) to Spin(m)→
Clm. Moreover, the complex spinor representation of Spin(m) is the the homomorphism

∆C
m : Spin(m)→ GLC(Sm),

given by restricting an irreducible complex representation Clm → HomC(Sm, Sm) to

Spin(m) ⊂ Clm ⊂ Clm.
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In the cases where there is more than one irreducible representation for the Clifford

algebras, i.e. m = 4k + 3 for Clm and m = 2k + 1 for Clm, the spinor representation

is independent of the irreducible representation used. However, the real or complex

spinor representation is not necessarily an irreducible representation of the spin group.

Indeed, the complex spinor decomposes into two inequivalent irreducible representations

of Spin(m) if m is even. This decomposition is given by multiplication by the complex

volume element

ω = i[
m+1

2 ]e1 · e2 · · · · · em,

where {ej} is an oriented orthonormal basis for Rm. It is easy to check that this is not the

identity map but it is an idempotent , i.e. ω2 = 1. Since ω commutes with the elements of

Spin(m) ⊂ Cl0m, the representation decomposes into irreducible representations denoted

by ∆C±
m .

1.2.2 Spin Manifolds

Any Riemannian metric g on a closed oriented manifold M of dimension m defines a

principal SO(m) bundle PSO(M, g), the bundle of oriented orthonormal frames, such

that TM can be constructed as its associated vector bundle, i.e.

TM = PSO(M, g)×π Rm.

Here, π is the standard representation of SO(m) on Rm. Now, one can wonder if we can

find a principal spin bundle such TM is its associated vector bundle. It turns out that

this is not possible for every manifold, and we have the following definition.

Definition 1.14. An oriented manifold M is a spin manifold if there exists a principal

Spin(m) bundle PSpin such that

TM = PSpin ×π Rm, (1.9)

where π is the standard representation of SO(m) on Rm lifted to a representation of

Spin(m).
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If M is a spin manifold for any Riemannian metric g on M , there exists a compatible

spin structure PSpin(M, g) and a map p : PSpin(M, g)→ PSO(M, g) such that1

p(a g) = π(a) ρ(g) a ∈ PSpin(M, g), g ∈ Spin(m).

One geometric importance of spin manifolds is that we can construct a new (complex)

vector bundle on M which is completely determined by the geometry of the manifold.

The (complex) spinor bundle is the associated vector bundle defined by the complex

spinor representation,

S = PSpin(M, g)×∆C
m
Sm.

One can use the real spinor representation to produce the real spinor bundle. Since we

are interested in working with complex Hilbert spaces we will only consider the complex

case.

At each point x ∈ M , Cl(TxM, gx) is represented on Sx. This module structure is

a smooth global structure. In other words, the space of sections of the spinor bundle,

C∞(M,S), is a C∞(Cl(TM, g))-module. Note that there is a canonical isomorphism

TM ' T ∗M for Riemannian manifolds. This isomorphism induces a canonical isomor-

phism on the Clifford algebras Cl(TM, g) and Cl(T ∗M). We will frequently use this

isomorphism and we will denote Cl(T ∗M, g−1) by Cl(M). A consequence of considering

this isomorphism is that 1-forms α ∈ Ω1(M) = C∞(T ∗M) ⊂ Cl(M) can act on spinors

by the Clifford action.

1.2.3 The Dirac Operator

The derivative of the covering homomorphism ρ at the identity of Spin(m) defines a Lie

algebra isomorphism ρ′ : so(m)→ spin(m) which is explicitly given by

ρ′(A) =
1

4

∑
i,j

〈Aej , ek〉ej · ek, (1.10)

where {ej} is an oriented orthonormal basis of Rm. Here the Lie algebra spin(m) is

identified by (Λ2Rm, [ , ]) as a sub Lie algebra of (Clm, [, ]) with Lie bracket given by
1One can compare this with the orientability of a manifold which is a topological property. If a

manifold is orientable, for any metric g one can find a compatible orientation given by the volume form
dvolg.
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[x, y] = x ·y−y ·x. Such an identification is possible due to the inclusion Spin(m) ⊂ Cl×m

and the fact that (Clm, [ , ]) is the Lie algebra of Cl×m.

Using this isomorphism, any connection on PSO(M, g)(equivalently any metric con-

nection on TM), lifts to a connection on PSpin(M, g). In particular, the Levi-Civita

connection, the unique torsion-free metric connection, lifts to the spinor bundle. This is

called the spin connection and we denote it by ∇S .

Finally, we can define the Dirac operator on spinors by

D(ψ)(x) = c(dxj)∇∂jψ(x), ψ ∈ C∞(S).

The above definition is independent of the choice of coordinate chart. Indeed, it can be

defined using any frame {ej} with coframe {ej} as c(ej)∇Sej .

The Dirac operator is an elliptic differential operator with symbol σ(x, ξ) = c(iξ).

1.2.4 Spinc Manifolds

While having a real spinor bundle on M is equivalent to M be a spin manifold, having a

complex spinor bundle is a weaker condition. In other words, there are non spin manifolds

which admit complex spinor bundles. This is a consequence of a fact that the complex

spinor representation ∆C
m is a representation of a larger subgroup of Cl×m, denoted by

SpinC(m) than Spin(m). This group is generated by Spin(m) and U(1) as subgroups of

Clm and it is of the form

SpinC(m) = Spin(m)×Z2 U(1).

We have the following exact sequence

1→ U(1)→ SpinC(m)
ρC−→SO(m)→ 1.

A manifold M is called a spinc manifold if

TM = PSpinC ×π Rn.



A Prelude to Noncommutative Geometry 17

The representation π is the standard representation of SO(m) lifted to SpinC(m) by ρC.

The compatible SpinC(m) structure on (M, g) is defined similarly to the compatible spin

structure.

In spite of the historical development of spin geometry, in which the notion of spin

structure appeared before the spinc structure, the algebraic formulation of these struc-

tures started with spinc manifolds. Plymen in [33] showed that an oriented manifold is

spinc if C∞(M) and Cl(M) are Morita equivalent with a Morita equivalence bimodule S.

In this picture a spin manifold is a spinc manifold with a real or quaternionic structure

(depending on the dimension of the manifold) on S with a specific commutation relation

which comes from the following theorem.

Theorem 1.15. (see e.g. [36]) There is an antilinear map Jm on Sm, called charge

conjugate, with the following properties:

• Jm is either real or complex structure, i.e. J2
m = 1 or J2

m = −1 respectively.

• Jm(x · ψ) = ±x · Jm(ψ), x ∈ Rm, ψ ∈ Sm.

• Cl0m =

{ {
x ∈ Cl0m | [Jm, π(x)] = 0

}
m = 2k + 1{

x ∈ Cl0n | [Jm, π(x)] = 0, [ω, π(x)] = 0
}
, m = 2k

The exact signs are given in the following table.

Jm

real structure quaternionic structure

commutes with Clifford
multiplication

m = 0, 6, 7 mod 8 m = 2, 3, 4 mod 8

anti-commutes with
Clifford multiplication

m = 1 mod 8 m = 5 mod 8

Note that the map Jm commutes with the even part of Clm and thus with the elements

of Spin(m).

An important point is that although there is a complex spinor bundle on spinc mani-

folds, we cannot always construct a geometric Dirac operator on S. The reason is hidden

in the fact that

spinC(m) = so(m)⊕ iC.
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This means that the metric connections on TM cannot completely determine a connec-

tion on the spinor bundle. To do so, one needs a connection on the canonical line bundle,

which is a line bundle that can be assigned to each spinc structure. Since the canonical

line bundle usually doesn’t admit a geometric connection we need to add an extra piece

of information by fixing a connection on this line bundle. In some cases, e.g. Kähler

manifolds, there is a geometric connection on the canonical line bundle. Hence we can

construct a connection on the spinor bundle, and as such, a geometric Dirac operator

exists in this case.

1.3 Spectral Geometry

The main goal of spectral geometry is to study the spectrum of natural operators that

can be constructed on a Riemannian manifold (M, g). The topic originated by studying

the spectrum of the scalar Laplace operator on a bounded domain Ω ⊂ Rm. The earliest
result in this regard was what we now refer to as “Weyl’s law".

Theorem 1.16. (Weyl’s law)

For a bounded domain Ω ⊂ Rm, the Dirichlet eigenvalue counting function N(λ), which

counts the number of Dirichlet eigenvalues (counting their multiplicities) less than or

equal to λ, satisfies

lim
λ→∞

N(λ)

λm/2
= (2π)−mBmvol(Ω)

where Bm is the volume of the unit ball in Rm.

The eigenvalue counting function N(λ) is an example of a spectral function. That

is a function that depend only on the spectrum of the operator under investigation. In

this section we shall discuss two other important spectral functions – namely the trace

of heat kernel and the spectral zeta function.

In addition, the scalar Laplacian is not the only natural differential operator with

interesting spectrum. The natural differential operators in which we are interested are the

positive Laplace type operators. This class includes the square of Dirac type operators,

which play a very important role in noncommutative geometry.

As we will see in this section, many geometrical properties and quantities, like di-

mension, volume and scalar curvature, are reflected in the spectrum of these operators.

These quantities are so fundamental to the geometry ofM that it is natural to investigate
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whether or not the geometry of M can be completely determined by spectrum of such

operators. This question was rephrased by Kac in the following clever form

Can one hear the shape of a drum?

Although many counterexamples for this question are discovered, starting with an ex-

ample by Milnor [30], spectral geometry is still a fast growing field of research, especially

in its applications in physics.

1.3.1 Laplace Type and Dirac Type Operators

Suppose that (M, g) is a closed Riemannian manifold2 with dimM = m and V is a

smooth Hermitian vector bundle on M .

Definition 1.17. A second order differential operator P : C∞(V )→ C∞(V ) is called a

Laplace type operator if the leading symbol is given by the metric tensor.

A Laplace type operator, in a coordinate chart, can be written as

P = −
(
gij

∂2

∂xi∂xj
+Ak

∂

∂xk
+B

)
, (1.11)

where the Ak, B are endomorphisms of the bundle V . Scalar Laplacian and Laplacians

on forms are examples of Laplace type operators. However, the interesting cases are

Laplace type operators which are the square of a first order operator. In what follows

we briefly cover the theory of such operators. For an extensive treatment of the subject

we refer the reader to [3].

Definition 1.18. A differential operator D : C∞(V ) → C∞(V ) is called a Dirac type

operator if D2 is a Laplace type operator.

One can easily see that a Dirac type operator has to be a first order operator and in

a trivialization it is of the form ak∂k + b where ak(x) and b(x) ∈ End(Vx) for any x ∈M .

Symbol calculation shows that {ak(x)} implies the Clifford commutation relation, i.e.,

ak(x)al(x) + al(x)ak(x) = −2gkl(x).

2The closedness condition can be omitted for most of the results.
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From this one deduces that Cl(T ∗xM, g−1) ⊂ End(Vx) and hence C∞(V ) is a Cl(M) =

C∞(Cl(T ∗M))-module. Such a vector bundle V is called a Clifford module.

The first example of a Clifford module which exists on any manifold is the exterior

algebra bundle Λ•(M) with Clifford module structure given by

c(e)(ξ) = e ∧ (ξ)− ι(e)(ξ), ξ ∈ Λ•T ∗xM.

The spinor bundle on a spin manifold is another important example of a Clifford module,

which was discussed in the previous section. In general, any associated vector bundle of

the form

Pspin(M, g)×κW, (1.12)

with the representation κ : Spin(m)→ Aut(W ) induced from a representation (not nec-

essarily an irreducible one) of the Clifford algebra Cl(m), is a Clifford module.

While we can construct Dirac type operators on any Clifford module using a partition

of unity, we are interested in a construction which uses connections on V to construct a

Dirac type operator.

Definition 1.19. A connection ∇V on V is called a Clifford connection if it fulfills the

following Leibniz rule with respect to Clifford multiplication:

[∇VX , c(θ)] = c(∇Xθ), θ ∈ Ω(M), X ∈ C∞(TM).

Here, ∇ is the Levi-Civita connection on the cotangent bundle.

To any Clifford connection ∇V , we can assign a Dirac operator that at each point

x ∈M , is defined as

D = c(dxj)∇V∂j , (1.13)

where {ei} a basis for TxM and {ei} its dual basis. The formula is independent of the

choice of the basis {ei} and D is a globally well-defined operator. The spin connection is

an example of Clifford connection and the Dirac operator D is the Dirac type operator

defined by ∇S .

We want to study Dirac type operators as unbounded operators. To this end we

require the Clifford modules to be equipped with an inner product compatible with the
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Clifford action

〈e · v, e · w〉x = 〈v, w〉, v, w ∈ Vx, e ∈ S∗xM, (1.14)

and the Clifford connection to be compatible with this inner product. Such a Clifford

module is called Dirac bundle. The Dirac operator defined on a Dirac bundle V is

formally self-adjoint on L2(M,V ). The spin bundle with the spin connection and the

inner product coming from the spinor representation is an example of a Dirac bundle.

There is a procedure to produce new Dirac bundles out of the spin bundle, (or in general

from any other Dirac bundle). Let V be a Hermitian vector bundle with a Hermitian

connection ∇. Then S ⊗ V is a Clifford module. One can define the twisted connection

∇S ⊗ 1 + 1⊗∇. (1.15)

We denote the corresponding Dirac operator byD∇ and call it the twisted Dirac operator.

1.3.2 Spectral Functions and Spectral Invariants

The study of the spectrum of a Laplace type operator P is usually done via functions

defined from the spectrum of the operator. Two important spectral functions which have

a central role in this dissertation are the heat kernel trace and the zeta function. Both

of these functions are the generating functions of the spectrum, so by considering them,

we don’t lose any spectral information. Unlike the eigenvalue counting function, these

functions can be expressed in terms of the trace of a function of P , an idea that will

appear again in the next section in terms of the spectral action functional.

For any positive elliptic (differential) operator P , the heat flow operator e−tP , for

any t > 0, is an infinitely smoothing pseudodifferential operator , and therefore a trace

class operator on L2(M,V ). The heat kernel trace in terms of the eigenvalues {λi} of

the operator is given by

Tr(e−tP ) =
∑
i

e−tλi .

This function has a singularity at t = 0 and its asymptotic expansion as t→ 0+ is of the

form [18]

Tr(e−tP ) ∼t→0+

∑
an(P )t

n−m
d , (1.16)
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where d is the order of the operator and the constants an(P ) can be written as follows:

an(P ) =

∫
M
an(x, P )dvol. (1.17)

Here, an(x, P ) are local invariants of the jets of the total symbol of P and vanish if

n is odd. If P is a Laplace type operator, then the local terms contain geometrical

information about M . To extract this information, we first need a lemma, which is the

analogue of the basic algebraic operation of completing square of a quadratic polynomial.

Lemma 1.20. [18] Let P be a Laplace type operator. Then there exists a unique con-

nection ∇ on the vector bundle V and an endomorphism E ∈ End(V ) such that

P = ∇∗∇− E. (1.18)

Here ∇∗∇ is the connection Laplacian which is locally given by −gij∇∂i∇∂j .

The endomorphism E for the square of the Dirac type operator of a Clifford connec-

tion∇ on a Clifford module V is given by the generalized Lichnerowicz formula. First, one

can prove, see e.g. [3, Proposition 3.43], that the curvature ∇2 ∈ Ω2(M,End(V )) of the

Clifford connection ∇ decomposes under the isomorphism End(V ) ' Cl(M)⊗EndCl(M)

as

RV + F V/S . (1.19)

Here, RV ∈ Ω2(M,Cl(M)) ⊂ Ω2(M,End(V )) is the action of the Riemann curvature

acting on V by

RV (ei, ej) =
1

4

∑
k,l

〈R(ei, ej)ek, el〉c(ek)c(el).

The endomorphism F V/S ∈ Ω2(M,EndCl(M)(V )) is called the twisting curvature of the

Clifford module V .

Theorem 1.21. [3, Theorem 3.53] Let ∇ be a Clifford connection on the Clifford module

V . Then

D2 = ∇∗∇+ c(F V/S)− R

4
.

For a twisted connection given in (1.15) the twisting curvature is equal to

c(F V/S) =
1

2
c(ek)c(el)⊗ Fkl (1.20)
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where F is the curvature two form of ∇. Thus, the twisting curvature of the spin

connection vanishes and we have the Lichnerowicz formula

D2 =
(
∇S
)∗∇S − 1

4
R. (1.21)

The local formulas for a Laplace type operator are given by the following theorem.

Theorem 1.22. [18] For a Laplace type operator P in (1.18), the invariants of the heat

equation an(x, P ) is given by3

a0(x, P ) = (4π)−m/2 tr(Id).

a2(x, P ) = (4π)−m/2 tr
(
E − 1

6
RId

)
.

a4(x, P ) =
(4π)−m/2

360
tr
((
− 12R;kk + 5R2 − 2RjkRjk + 2RijklRijkl

)
Id− 60RE

+180E2 + 60E;kk + 30ΩijΩij

)
.

a6(x, P ) = (4π)−
m
2 tr
{ 1

7!

(
− 18R;kkll + 17R;kR;k − 2Rjk;lRjk;l − 4Rjk;lRjl;k

+ 9Rijku;lRijku;l + 28RR;ll − 8RjkRjk;ll + 24RjkRjl;kl

+ 12RijklRijkl;uu

)
Id

+
1

9 · 7!

(
− 35R3 + 42RRlpRlp − 42RRklpqRklpq + 208RjkRjlRkl

− 192RjkRulRjukl + 48RjkRjulpRkulp − 44RijkuRijlpRkulp

− 80RijkuRilkpRjlup

)
Id

+
1

360

(
8Ωij;kΩij;k + 2Ωij;jΩik;k + 12ΩijΩij;kk − 12ΩijΩjkΩki

− 6RijklΩijΩkl + 4RjkΩjlΩkl − 5RΩklΩkl

)
+

1

360

(
6E;iijj + 60EE;ii + 30E;iE;i + 60E3 + 30EΩijΩij − 10RE;kk

− 4RjkE;jk − 12R;kE;k − 30RE2 − 12R;kkE + 5R2E

− 2RjkRjkE + 2RijklRijklE
)}
.

3 We use the convention [
∇∂/∂xi ,∇∂/∂xj

]
∂/∂xk = Rijk

l∂/∂xl,

for the Riemann curvature tensor and its components. Moreover, Rijkl = glnRijk
n and the Ricci and

scalar curvatures are given by
Rjk = Riji

k and R = giiRii.
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Here, all the tensors are written in a normal coordinates passing through the base point

x. Also, Ω is the curvature two form of the connection given in (1.18).

The higher order coefficients are more complicated and cumbersome. They are only

available up to a10 and usually their computations requires newer techniques. Avramidi

computed a8 using covariant techniques [2] and van de Ven [35] gives formulas up to

a10 applying various differential techniques. van de Ven employs a new notation, free of

space-time indices notation, which makes the format of his formulas different than the

one presented here.

By the local formula given in the above theorem, it is easy to see that

a0(P ) =
rank(V )vol(M)

(4π)m/2
.

Using Karamata’s theorem, the Weyl’s law for general closed manifolds can be proven

using the heat kernel asymptotic expansion.

Corollary 1.23. [3, Corollary 2.43] The eigenvalue counting function N(λ) of P satisfies

the following

N(λ) ∼ rank(V )vol(M)

(4π)m/2Γ(m/2 + 1)
λm/2 λ→∞.

Remark 1.24. The integral of the divergence terms in the spectral invariants, e.g. R;kk or

E;kk, vanishes when M is a closed manifold. However, keeping them is important when

we want to localize the heat kernel Tr(Fe−tP ) by an endomorphism F ∈ C∞(End(V )).

The endomorphism F , called the smearing endomorphism, does not change the form of

the heat kernel asymptotic expansion, i.e. similar to (1.16) we have

Tr(Fe−tP ) ∼t→0

∑
an(F, P )t

n−m
d . (1.22)

The coefficients are given by

a(x, F, P ) = tr(Fen(x, P )). (1.23)

The endomorphism valued functions en(x, P ) are those function whose trace give the

spectral invariants, i.e. an(x, P ) = tr(en(x, P )).
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The other spectral function assigned to a positive elliptic operator P is the spectral

zeta function defined by

ζ(s, P ) = Tr(P−s), <(s) >> 0, (1.24)

whose smeared version is ζ(s, F, P ) = Tr(FP−s). Knowing the format of the heat kernel

and using the Mellin transform

ζ(s, P ) =
1

Γ(s)

∫ ∞
0

ts−1
(
Tr(e−tP )− dim ker(P )

)
dt,

it can be shown that the zeta function extends to a meromorphic function with simple

poles. Its values, residues and derivatives have important applications in theoretical and

mathematical physics. These values are related to the coefficients of the asymptotic

expansion (1.22) by the following proposition.

Proposition 1.25. (cf. [19]) Let P be an elliptic dth order positive partial differential

operator. Then the zeta function ζ(s, F, P ) has a meromorphic extension to C with

possible simple poles at s = (m− n)/d for n = 0, 1, 2, · · · . Furthermore,

a′n(F, P ) = Ress=m−n
d

(
Γ(s)ζ(s, F, P )

)
, (1.25)

where

a′n(F, P ) =

am(F, P )− dim ker(P ) if n = m

an(F, P ) if n 6= m
.

By (1.23) and (1.25), for a Laplace type positive operator P and a smearing endo-

morphism F , we have∫
M

tr(F )dvolg = (4π)m/2Γ(m/2)Ress=m/2ζ(s, F, P ). (1.26)

All the residues of the zeta function can be expressed as the Wodzicki residue of some

power of P , and this justifies the use of the word residue in the Wodzicki residue. To

see this, we note that the family {FP−s} is a holomorphic family of classical pseudodif-

ferential operators . By Theorem 1.10 and the uniqueness of analytic continuation, the

following equality holds:

ζ(s, F, P ) = TR(FP−s).
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Substituting the order function α(z) = −z of this family into equation (1.7) gives us

Res(FP (n−m)/2) = Ress=m−n
2
ζ(s, F, P ), n < m. (1.27)

As a result, by Connes’ trace formula, the residue of the highest pole s = m/2 is given

by the Dixmier trace and we can rewrite (1.26) as follows:∫
tr(F )dvolg = m(4π)m/2Γ(m/2)Trω(FP−m/2). (1.28)

1.4 Noncommutative Riemannian Geometry

Inspired by the spectral properties of Dirac type operators on closed manifolds and their

geometric implications, Alain Connes defines elements of his noncommutative Rieman-

nian geometry in [11, 12]. In his completely new approach, the role of metric gµν , which

defines the geometry of the space, is played by a Dirac operator. In this approach, the

geometry is given by a positive operator D with a discrete spectrum and a ∗-algebra A
represented on a Hilbert space H. The triple (A,H, D), which is called a spectral triple,

encodes the spectral information of an abstract Dirac type operator D on a manifold

with function algebra A. While we can construct a spectral triple for any spin manifold

which recovers the geometry of the manifold completely, nothing prevents us from as-

signing a spectral triple to a noncommutative algebra. In this regard, one can consider

this approach as an extension of geometry to noncommutative spaces.

We shall review the elements of noncommutative Riemannian geometry in this section

and main references for this section are [16, 20].

1.4.1 Spectral Triples

Definition 1.26. A spectral triple (A,H, D) is given by a unital ∗-algebra A which

is represented as bounded operators of the Hilbert space H and a self-adjoint operator

D : H → H with compact resolvent and bounded commutators [D, a] ∈ B(H) for any

a ∈ A.
A spectral triple is called even if there is a Z2-grading γ such that aγ = γa for any a ∈ A
and γD = −Dγ.
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Let M be a closed oriented Riemannian manifold, V a Clifford module and D a

self-adjoint Dirac type operator on V . Since D is an elliptic operator, it has compact

resolvent as a densely defined (unbounded) operator on H = L2(M,V ). On the other

hand, [D, f ] is a differential operator of order zero, so it is a bounded operator on H
and is given by the endomorphism c(df). If the Clliford module is the spinor bundle S

on a spin manifold and D is the Dirac operator on the spinor bundle, then the spectral

triple (C∞(M), L2(M,S), D) is called the canonical spectral triple. One can recover the

geodesic distance on the spin manifold in the following algebraic way (see e.g. [11]):

d(x, y) = sup{|f(x)− f(y)| : ‖[D, f ]‖ ≤ 1}. (1.29)

This, in fact, guarantees that by considering the canonical spectral triple, no geometric

information of M is lost.

If the dimension of M is even, the map defined by complex volume element on the

spin bundle is the Z2-grading of the canonical spectral triple which makes it an even

spectral triple.

1.4.2 Spectral Dimension and Integral

The condition that the operator D of a spectral triple has compact resolvent implies

that its spectrum consists of a discrete set of eigenvalues 1.5, and if the Hilbert space is

infinite dimensional, µn(D)→∞. The form in which this sequence tends to infinity has

several geometric implications.

Definition 1.27. A spectral triple is finitely summable when the resolvent of D has

characteristic values µn = O(n−α) for some α > 0. Moreover, a finitely summable

spectral triple is of metric dimension m if µn(D) is of order n1/m.

By Weyl’s law, Corollary 1.23, any spectral triple defined by a Dirac type operator on

a manifold M is finitely summable and its spectral dimension is equal to the dimension

of M .

Spectral dimension can be a non-integer number. By this possibility, noncommutative

geometry can give a geometric interpretation to dimensional regularisation, which is used

in modern quantum field theory. In [16, 1.19.2], Connes and Marcolli constructed spectral

triples with spectral dimension for any z ∈ (0,∞).
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For a finitely summable spectral triple, with α given in the definition, the operator

|D|−s is trace class for all <(s) > 1
α . Therefore, ζ(s, |D|) = Tr(|D|−s) is a well defined

holomorphic function on the right half plane <(s) > 1
α . Moreover, if it has spectral

dimension equal to m, then the first pole of the function will be at s = m and the residue

at this point is given by [10, Proposition IV.2.β.2]

Ress=mζ(s, |D|) = lim
N→∞

N−1∑
n=0

(µn(D))−m

log(N)
= Trω(|D|−m). (1.30)

The above equality is the counterpart of the classical one (1.28). It suggests that on a

spectral triple with spectral dimension m we can define a noncommutative integral by

the trace on A defined by

a→ Trω(a|D|−m), a ∈ A. (1.31)

Note that equation (1.28) is true for a more general smearing endomorphism F ∈
C∞(End(V )). Inspired by the fact that [D, f ] = c(df) ∈ Cl(M) ⊂ C∞(End(V )), we

can define the algebra of endomorphisms that can smear out the zeta function to be the

algebra B generated by A and [D, a] for all a ∈ A. The problem is that the functional

(1.31) is not in general a trace on B. A sufficient condition is that any b ∈ B be in the

domain of the derivation δ = [|D|, ·], that is,

δ(b) = [|D|, b] ∈ B(H), b ∈ B.

Definition 1.28. A spectral triple (A,H, D) is called regular if

B ⊂ Dom∞δ =
⋂
k

Dom δk.

The spectral triple coming from a Dirac type operator on a manifold is regular. This

result follows from pseudodifferential theory on M . Note that σL(|D|) commutes with

σL([D, a]), which implies that δ([D, a]) is a zero order pseudodifferential operator and

thus is bounded. A similar argument works for δk([D, a]).

For regular and finitely summable spectral triples all the spectral zeta functions

ζ(s, b, |D|) := Tr(b|D|−s), b ∈ B, (1.32)



A Prelude to Noncommutative Geometry 29

are holomorphic on <(s) > 1/m. As we saw before in classical cases, the poles of the

zeta functions Tr(FP−s) contain important geometrical information. Another notion of

dimension in noncommutative geometry emerges out of this concept. Instead of taking

into account only the top pole, which gives the spectral dimension, this new notion is

defined to be a subset of the complex plane consisting of all singularities of the zeta

functions (1.32).

Definition 1.29. [16] Let (A,H, D) be a finitely summable regular spectral triple. The

dimension spectrum is the subset Π = {z ∈ C,<(z) ≥ 0} of singularities of the analytic

function ζ(z, b, |D|) for all b ∈ B. We say that the dimension spectrum is simple when

these spectral functions have at most simple poles.

Based on (1.27), then one can define the Wodzicki residue on the algebra generated

by B and all powers of |D| by the following equality which defines a trace [16, Theorem

1.134] ∫
−T := Ress=0Tr(T |D|−s).

1.4.3 Real Structure

A real structure for spectral triples, introduced in [11], has three different origins. On

one hand, it is motivated by the modular conjugate in the Tomita-Takasaki theory. On

the other hand, it is a way to formulate a spin structure on manifolds. Finally, a real

spectral triple on A determines a class in the KO-homology of A.

Definition 1.30. A real structure of KO-dimension m mod 8 on a spectral triple

(A,H, D) is an anti-linear isometry J such that

J2 = ε and JD = ε′DJ,

where ε, ε′ ∈ {±1} are given by Table 1.1. Moreover, for any a, b ∈ A we have

• Order zero condition [a, Jb∗J−1] = 0,

• Order one condition [[D, a], Jb∗J−1] = 0.

A spectral triple with a real structure is called a real spectral triple.
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n mod 8 0 1 2 3 4 5 6 7
J2 = ε 1 1 -1 -1 -1 -1 1 1
JD = ε′DJ 1 -1 1 1 1 -1 1 1
Jγ = ε′′γJ 1 -1 1 -1

Table 1.1: KO-dimension of a real structure

The charge conjugate on spinors is the real structure on the canonical spectral triples.

In this case the second and third rows of Table 1.1 result from Theorem 1.15. Moreover,

Jm commutes with any function f ∈ C∞(M) ⊂ Cl(m), hence Jf∗J−1 = f . Thus, by

commutativity of C∞(M), we have both the order zero and the order one conditions for

free.

The key role of a real structure is in defining a right A-module structure for H by

ξb := Jb∗J−1ξ.

The order zero condition specifies that left and right multiplication commute, hence H
is an A-bimodule. In addition, the order one condition (together with the order zero

condition) makes H an Ω1
D − A bimodule. For a real spectral triple one can define the

adjoint action of the unitary group of the algebra A on the Hilbert space as

Ad(u)(ξ) = uξu∗ = JuJ−1uξ, ξ ∈ H, u ∈ U(A).

1.4.4 Reconstruction Theorem

The spectral characterization of manifolds, as a more elaborated version of its topolog-

ical counterpart, i.e. Gelfand-Naimark theorem, was discussed in [12], and axioms for

noncommutative spin geometry were also introduced. It was claimed that a commutative

spectral triple satisfying these axioms is (equivalent to) the canonical spectral triple of

a spin manifold. The complete proof of this claim was given recently by Connes [14].

The axioms for commutative spin geometry are as follows (for the general version see

[12]).

1. Dimension: the spectral dimension is a non-negative integer m.
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2. First order condition: For the commutative case this property can be considered

without having a real structure and it reads as follows:

[[D, f ], h] = 0, f, h ∈ A.

3. Regularity: B ⊂ Dom∞δ.

4. Orientability: There exists a Hochschild cycle c = a0 ⊗ a1 ⊗ · · · am ∈ Zm(A,A)

such that

πD(c) := [D, a0][D, a1] · · · [D, am] =

γ if m = 2k,

I if m = 2k + 1.

5. Finiteness and absolute continuity: Viewed as an A-module the space H∞ =⋂
k DomDk is finite and projective. Moreover, the following equality defines a

Hermitian structure ( , ) on this module:

〈ξ, aη〉 =

∫
− a(ξ, η)|D|−m ∀a ∈ A, ξ, η ∈ H∞.

6. Poincaré duality: The intersection form K∗(A)×K∗(A)→ Z is invertible.

7. Reality: There is a real structure on the spectral triple.

In [12], Connes proves that these axioms on a spectral triple whose algebra is the space

of smooth functions of a smooth manifold M defines a Riemannian metric g such that

the distance formula (1.29) gives the geodesic distance of (M, g). Moreover, the unique

minimizer of the functional
∫
−D2−m on the space of all such spectral triples fixes a

compatible spin structure on (M, g). The canonical spectral triple associated to this spin

structure is unitary equivalent to the original spectral triple.

The remaining part of the proof was to show how a smooth structure on M can be

defined using these axioms. To construct only the smooth structure a fewer number of

axioms is needed as shown in the following theorem.

Theorem 1.31. [14] Let (A,H, D) be a spectral triple, with A commutative, fulfilling

the first five conditions in a slightly stronger form, i.e. we assume that

• The regularity holds for all A-endomorphisms of DomDk,
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• The Hochschild cycle c is antisymmetric.

Then there exists a compact oriented smooth manifold M such that A = C∞(M) is the

algebra of smooth functions on M .

A variant of this theorem is also proved for spinc manifolds [14, Theorem 11.5]. In

the characterizing theorem of spinc manifolds, a weaker form of the Poincaré duality

condition is assumed, in addition to the assumptions of the above theorem.

1.5 Action Functional in Noncommutative Geometry

From the beginning, noncommutative geometry was believed to have deep applications

in physics. Searching for the right formulation of action, as the innermost notion of

modern physics, in noncommutative geometry started from the very early stages [8] and

later evolved to what now is called the spectral action functional. In this section we will

discuss the three main milestones achieved toward the final formulation of the spectral

principal and spectral action introduced in [5]. There is a huge list of references for this

topic, among which we suggest [16] and [36].

1.5.1 Action Functional in Noncommutative Geometry

The first formulation of the action for noncommutative geometry was a spectral formu-

lation of the Yang-Mills action [8]. By (1.28) we know that for a Hermitian connection

∇ on a Hermitian vector bundle V over a spin manifold M we have

YM(∇) = cTrω(F ijFij |D|−m).

Here F is the curvature 2-form of ∇. To generalize this formula for any spectral triple

(A,H, D), we have to make sense of forms (at least up to 2-forms) as operators on the

Hilbert space and the associated inner product.

Let (A,H, D) be a spectral triple. The reduced universal differential graded algebra

Ω∗A over A is
⊕

ΩkA where ΩkA = {
∑
a0da1 . . . dak; aj ∈ A}. The differential map

d : ΩkA → Ωk+1A is defined on monomials by d(a0da1 . . . dak) = da0da1 . . . dak and
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extends uniquely on Ω∗A via the following properties

d2 = 0,

d(ω1ω2) = d(ω1)ω2 + (−1)degω1ω1(dω2),

(da)∗ = −da∗.

The map

π(a0da1 . . . dak) = a0[D, a1] . . . [D, ak]

represents this algebra on H. However, there is an ambiguity if we define da = [D, a]

which can be solved by considering the quotient algebra

Ω∗DA = Ω∗A/(kerπ + d kerπ).

Note that π defines an isomorphism between Ωk
D and the subalgebra

π(ΩkA)/π
(
d(kerπ ∩ ΩkA)

)
.

For the canonical spectral triple, Ω∗D is isomorphic to de Rham algebra of forms on

the manifold by the isomorphism

f0df1 . . . dfk 7→ f0df1 · df2 · · · · · dfk,

where dfk is considered as a section of the Clifford bundle. Moreover, the inner product

〈T1, T2〉 = Trω(T ∗2 T1|D|−m), T1, T2 ∈ π(ΩkA),

on ΩkA, induces an inner product on Ωk
D as a quotient space. This inner product,

under the above isomorphism, is equal to a constant multiple of the inner product on

the k-forms, defined by 〈ω1, ω2〉k =
∫
M ω1 ∧ ∗ω2. In other words,

‖ω‖2k = inf{Trω(α∗α|D|−m); πD(α) = ω}.

Theorem 1.32. [10] The functional YM(A) = Trω

(
(dA + A2)∗(dA + A2)|D|−m

)
is

positive, quartic and invariant under gauge transformations,i.e.,

γu(A) = udu∗ + uAu∗ ∀u ∈ U(A). (1.33)
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The functional

I(α) = Trω(θ2|D|−m), (1.34)

with θ = π(dα + α2), is positive, quartic and gauge invariant on {α ∈ Ω1A; α = α∗}.
Moreover, one has4

YM(A) = inf
α
{I(α); π(α) = A}. (1.35)

This formulation of the Yang-Mills action applied to canonical spectral triples gives

the the classical Yang-Mills action. On the other hand, on a toy model,

A =

{(
a 0

0 b

)
; a, b ∈ C

}
, H = C2, D =

(
0 µ

µ 0

)
,

produces a typical expression of the Higgs potential given by (|ϕ|2+1)2 [10]. The following

quotation from D. Kastler best explains how this can improve our understanding about

the puzzling piece, i.e. the Higgs boson, of the standard model.

This at once enlightens our physical picture: the world is two-sheeted, the

mysterious Higgs is nothing but a gauge boson, however needing noncommu-

tative geometry to be recognized as such because the corresponding potential

is not a connection within the realm of classical differential geometry, but

a discrete connection (so-to-speak with parallel transport jumping from one

world-sheet to the other). [24, pp. 3869]

By constructing a spectral triple on C∞(M)⊗AF , where Af is a finite dimensional

algebra, and using (1.35), Connes and Lott [15] were able to produce the bosonic elec-

troweak sector of the standard model.

The action of general relativity was not included in the Connes-Lott model. The first

step to include gravity sector in the spectral theory, is to reproduce the Einstein-Hilbert

action from the spectrum of the Dirac operator. It was proposed by Connes and shown

in detail by Kastler in [23] for dimension m = 4 and for the more general case m ≥ 4

by Kalau and Walze in [22] that the Einstein-Hilbert action is given by a multiple of the

Wodzicki residue of D−m+2. Unlike [22, 23] in which the Wodzicki residue is computed
4Originally [8], the map da 7→ i[D|D|−1, a] was used to quantize one forms. In this approach one

forms were presented by elements of the ideal Lm+ and the Yang-Mills action on dimension m = 4
was given by inf Trω(θ

2) = YM(α). On the higher dimensions, it changes to Trω(θ
m/2) which is not

quadratic in θ anymore.
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by explicitly computing σ−4(D−m+2), we will use the local invariant formula and prove

the theorem. A similar proof can be found in [1].

Theorem 1.33. Let (M, g) be a Riemannian manifold of dimension m > 2 and D be a

Dirac type operator defined by a Clifford connection ∇ on a Clifford module V . Then

Res(D−m+2) =
rank(V )

6(4π)m/2Γ(m−2
2 )

IEH(g), (1.36)

where IEH(g) =
∫
M Rgdvolg is the Einstein-Hilbert action on the metric g.

Proof. By the generalized Lichnerowicz formula given by Theorem 1.21 we have

D2 = ∇∗∇+ c(F V/S)− R

4
,

where F V/S ∈ Ω2(M,EndCl(M)(V )). That is, any element of the Clifford algebra, in

particular, any one form, commutes with F V/S . This implies that for any i 6= j, we have

tr(c(ei)c(ej)F
V/S
ij ) = tr(c(ej)F

V/S
ij c(ei)) = −tr(c(ei)c(ej)F

V/S
ij ).

Hence c(F V/S) is traceless and the second heat invariant a2(x,D2) is given by

a2(x,D2) = (4π)m/2tr
(
−R/6− 1

2
c(F V/S) +

R

4

)
=

rank(V )

12(4π)m/2
R. (1.37)

Therefore, a2(D2) = rank(V )

12(4π)m/2
IEH(g). On the other hand, by (1.25) and (1.27) we have

Res(D−(m−2)) = 2Ress=m−2
2
ζ(s,D2)

=
2

Γ(m−2
2 )

a2(D2)

=
rank(V )

6(4π)m/2Γ(m−2
2 )

IEH(g).

Note that (1.36) is true for any Dirac operator defined by a Clifford connection.
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1.5.2 Spectral Action and Einstein-Yang-Mills System

Despite the fact that both the Yang-Mills (1.34) and Einstein-Hilbert (1.36) actions are

formulated spectrally, they are of a different computational nature. In (1.34) we are

computing the first coefficient of the smeared heat kernel Tr(θ2e−tD
2
), in which, other

than the Dirac operator D, we computed θ2 by hand and plugged it into the formula.

In turn, equation (1.36), for which we computed the second heat kernel coefficient, only

needs a Dirac operator. The next coefficient of the heat kernel of D2 have terms like

ΩklΩkl, which are similar to the Yang-Mills Lagrangian. Indeed, in addition to a2(D2
∇)

producing the Einstein-Hilbert action of the metric g, we will show that a4(D2
∇) contains

the Yang-Mills action of ∇.

First, Note that the endomorphism E of D2
∇ and the curvature Ω of twisted connec-

tion is given by

E =
1

4
R− 1

2
c(ek)c(el)⊗ Fkl, (1.38)

Ωij =
1

4
Rijklc(e

k)c(el)⊗ IdS + IdV ⊗ Fij . (1.39)

To rewrite a4(x,D2
∇) in terms of the Riemann curvature tensor and the curvature F

of ∇, we need the following computations:

tr(RE) = rank(V )2[m/2]−2R2,

tr(E2) = rank(V )2[m/2]−4R2 − 2[m/2]−1tr(FklF kl),

tr(ΩijΩij) = rank(V )2[m/2]−2RijklRijkl − 2[m/2]tr(FijF ij).

Note that 2[m/2] is the dimension of the spinor bundle and we have used the property

F ij = Fji = −Fij . By substituting these into the formula of a4(x,D2) at dimension

m = 4 we find that

a4(x,D2) =
rank(V )

16π2

(
− 1

20
CijklCijkl +

11

360
E4

)
+

1

24
tr(FijF ij) (1.40)

+
rank(V )

360(16π2)

(
− 48R;kk + 60tr(E;kk)

)
.
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Here, Cijkl is the Weyl curvature and E4dvolg = 1
2(R2 − 4RijRij + RijklRijkl)dvolg is

the Pfaffian (or Euler) form. By the Chern-Gauss-Bonnet theorem we have

χ(M) =
1

16π2

∫
M
E4dvolg.

Now, both actions are presented spectrally, and unlike the first formulation of the

Yang-Mills action, we can have them simultaneously by considering the asymptotic ex-

pansion of a function such as Tr(e−D
2/Λ2

). This guides us toward a very strong hypothesis

called the spectral action principle introduced by Connes and Chamseddine [5]:

The physical action only depends on the spectrum of the Dirac operator of the spectral

triple that models the theory.

Imposing the condition that the action has to add up when evaluated on the direct sum

of the geometric spaces, one can see that the fundamental action functional has to be of

the form

Tr(f(D/Λ)), (1.41)

where f is a positive function of real variable and Λ is the mass scale. As the following

Theorem shows, f plays a small role in this action.

Theorem 1.34. [16] Let (A,H, D) be a spectral triple with kerD = {0}, fulfilling

Tr(e−tD
2
) ∼

∑
α

aαt
α.

Then the spectral action (1.41) can be expanded in powers of the scale Λ in the form

Tr(f(D/Λ)) ∼
∑
β∈Π

fβΛβ
∫
− |D|−β + f(0)ζ(0, D) + . . . , (1.42)

with the summation over the dimension spectrum Π. Here the function f only appears

through the scalars fβ =
∫∞

0 f(v)vβ−1dv. The terms involving negative powers of Λ in-

volve the full Taylor expansion of f at 0.

If the spectral triple is given by a twisted Dirac type operator on a 4 dimensional

manifold, formula (1.42) can be rewritten as

Tr(f(D/Λ)) ∼ 2Λ4f4a0(D2)+2Λ2f2a2(D2)+f0a4(D2)+ · · ·+Λ−2kf−2ka4+2k(D
2)+ . . . .

(1.43)
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This, together with (1.40) and (1.36), gives rise to the following spectral formula for the

Einstein-Yang-Mills action [16, Theorem 1.158]:

Tr(f(D∇/Λ)) ∼ 1

4π2

∫
M
L(gµν , A)dvolg, (1.44)

where L(gµν , A) is the Lagrangian given by

L(gµν , A) = (1.45)

2rank(V )Λ4f4 +
rank(V )

6
Λ2f2R+

f(0)

6
tr(FijF ij)−

rank(V )f(0)

80
CijklC

ijkl

modulo topological, i.e. χ(M), and boundary, e.g.
∫
M R;kkdvolg, terms.

This procedure enables us to create a Lagrangian on geometries defined by spectral

triples. The missing point, however, is how to twist an abstract Dirac operator with a

connection in this new setting.

Let (A,H, D) be a spectral triple and A be Morita equivalent to B, i.e. there is

a finite projective (right) module E such that B = EndA(E). If we fix a Hermitian

connection, ∇ : E → E ⊗A Ω1
D on E , we can define a spectral triple on B with Hilbert

space H′ = E ⊗H and its Dirac operator, D′, is given by

D′(ξ ⊗ η) = ξ ⊗Dη +∇(ξ)η.

Any algebra is Morita self-equivalent with E = A and a connection on A is determined

by its value at the identity, i.e. ω = ∇(1). We call ω an inner fluctuation. The Dirac

operator D′, which is called fluctuated Dirac operator, is given by Dω = D + ω. In the

case of real spectral triples, the above construction produces fluctuated Dirac operators

of the form

Dω = D + ω + ε′JωJ−1.

More details of this construction and also all the entries of the following table can be

found in [36]. Note that the last row implies that the spectral action is invariant under

the local gauge transformations
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Gauge fields Vector potential A Inner fluctuations ω
Twisted Dirac operator D∇ Dω = D + ω
Local gauge group G = C∞(M,G) U(A)
Action on fields A′µ = gAµg

−1 + (∂µg)g−1 ωu = uωu∗ + u[D,u∗]

Action on Dirac opera-
tors

g−1D∇g Dωu = UDU∗

U = π(u)Jπ(u)J−1

1.5.3 Symmetries and Standard Model Through Noncommutative Ge-
ometry

The action of the standard model ISM together with the Einstein-Hilbert action IEH

encodes the physics of the low energy. The main difference of these two actions, besides

the difference of the fields involved in each one, is the symmetries that each one is

required to satisfy. The symmetries of Einstein-Hilbert action is the diffeomorphism

group Diff(M), which is exactly the group Aut(C∞(M)). The group of symmetries of

ISM is the local gauge group U = C∞(M,U(1) × SU(2) × SU(3)). Hence, a unified

theory should have a symmetry group G which is the semidirect product of Diff(M) and

U coming from the following exact sequence of groups

1→ U → G→ Diff(M)→ 1. (1.46)

To have a geometric theory that contains both general relativity and standard model,

beside Diff(M), one needs to deal with U as geometric symmetries as well. In other words,

we want to have an algebra of fields A such that G = Aut(A). Note that Aut(A), similar

to G, is a semidirect product of the inner and outer automorphisms of A and is given by

the following exact sequence:

1→ Inn(A)→ Aut(A)→ Out(A)→ 1. (1.47)

If A is commutative then Inn(A) is trivial. Hence, an algebra A with symmetry group

equal to G cannot be commutative. Connes and Chamseddine [4, 6, 7, 13] were able to

find a finite dimensional algebra AF such that A = C∞(M)×AF has symmetry group

equal to G. Moreover, with the tools of noncommutative geometry one can define a

geometry on A by considering a spectral triple of the following form:

(A, L2(M,S)⊗HF , D = D ⊗ 1 + γ5 ⊗DF ).
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Here γ5 = γ1γ2γ3γ4, where γj are 4× 4 gamma matrices. The finite dimensional Dirac

operator DF contains all coupling constants of the standard model and the spectral

action on a fluctuated Dirac operator, Tr
(
f(Dω/Λ)

)
, produces the bosonic part of the

action functional IEH + ISM and the complete action is given by

Tr
(
f(Dω/Λ)

)
+

1

2
〈Dωψ, Jψ〉.
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Chapter 2

Rationality of Spectral Action for

Robertson-Walker Metrics

2.1 Introduction

Noncommutative geometry in the sense of Alain Connes [11] has provided a paradigm for

geometry in the noncommutative setting based on spectral data. This generalizes Rie-

mannian geometry [14] and incorporates physical models of elementary particle physics

[5, 7, 10, 12, 13, 15, 19, 32–34]. An outstanding feature of the spectral action defined

for noncommutative geometries is that it derives the Lagrangian of the physical models

from simple noncommutative geometric data [4, 10, 13]. Thus, various methods have

been developed for computing the terms in the expansion in the energy scale Λ of the

spectral action [3, 6, 8, 9, 20, 21]. Potential applications of noncommutative geometry

in cosmology have recently been carried out in [16, 22, 25–31].

Noncommutative geometric spaces are described by spectral triples (A,H, D), where

A is an involutive algebra represented by bounded operators on a Hilbert space H,
and D is an unbounded self-adjoint operator acting in H [11]. The operator D, which

plays the role of the Dirac operator, encodes the metric information and it is further

assumed that it has bounded commutators with elements of A. It has been shown

that if A is commutative and the triple satisfies suitable regularity conditions then A
is the algebra of smooth functions on a spinc manifold M and D is the Dirac operator

acting in the Hilbert space of L2-spinors [14]. In this case, the Seeley-de Witt coefficients

an(D2) =
∫
M an(x,D2) dv(x), which vanish for odd n, appear in a small time asymptotic

44
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expansion of the form

Tr(e−sD
2
) ∼ s−dim(M)/2

∑
n≥0

a2n(D2)sn (s→ 0).

As noted in (1.17), coefficients a2n(D2) are of the form
∫
M a2n(x,D2)dvolg. These coef-

ficients determine the terms in the expansion of the spectral action. That is, there is an

expansion of the form

Trf(D2/Λ2) ∼
∑
n≥0

f2n a2n(D2/Λ2),

where f is a positive even function defined on the real line, and f2n are the moments

of the function f [3, 4]. See Theorem 1.145 in [15] for details in a more general setup,

namely for spectral triples with simple dimension spectrum.

By devising a direct method based on the Euler-Maclaurin formula and the Feynman-

Kac formula, Chamseddine and Connes have initiated in [9] a detailed study of the

spectral action for the Robertson-Walker metric with a general cosmic scale factor a(t).

They calculated the terms up to a10 in the expansion and checked the agreement of the

terms up to a6 against Gilkey’s universal formulas [17, 18].

The present paper is intended to compute the term a12 in the spectral action for

general Robertson-Walker metrics, and to prove the conjecture of Chamseddine and

Connes [9] on rationality of the coefficients of the polynomials in a(t) and its derivatives

that describe the general terms a2n in the expansion. In passing, we compare the outcome

of our computations up to the term a10 with the expressions obtained in [9], and confirm

their agreement.

In terms of the above aims, explicit formulas for the Dirac operator of the Robertson-

Walker metric and its pseudodifferential symbol in Hopf coordinates are derived in §2.2.

Following a brief review of the heat kernel method for computing local invariants of

elliptic differential operators using pseudodifferential calculus [17], we compute in §2.3

the terms up to a10 in the expansion of the spectral action for Robertson-Walker metrics.

The outcome of our calculations confirms the expressions obtained in [9]. This forms a

check in particular on the validity of a8 and a10, which as suggested in [9] also, seems

necessary due to the high complexity of the formulas. In §2.4, we record the expression for

the term a12 achieved by a significantly heavier computation, compared to the previous

terms. It is checked that the reduction of a12 to the round case a(t) = sin t conforms to
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the full expansion obtained in [9] for the round metric by remarkable calculations that

are based on the Euler-Maclaurin formula. In order to validate our expression for a12,

parallel but completely different computations are performed in spherical coordinates

and the final results are confirmed to match precisely with our calculations in Hopf

coordinates.

In §2.5, we prove the conjecture made in [9] on rationality of the coefficients appearing

in the expressions for the terms of the spectral action for Robertson-Walker metrics. That

is, we show that the term a2n is of the form Q2n

(
a(t), a′(t), . . . , a(2n)(t)

)
/a(t)2n−3, where

Q2n is a polynomial with rational coefficients. Note that, a2n =
∫
S3
a(t)

a2n(x,D2)dvol,

and it is indeed t-dependent. We also find a formula for the coefficient of the term with

the highest derivate of a(t) in a2n. It is known that values of Feynman integrals for

quantum gauge theories are closely related to multiple zeta values and periods in general

and hence tend to be transcendental numbers [24]. In sharp distinction, the rationality

result proved in this paper is valid for all scale factors a(t) in Robertson-Walker metrics.

Although it might be exceedingly difficult, it is certainly desirable to find all the terms

a2n in the spectral action. The rationality result is a consequence of a certain symmetry

in the heat kernel and it is plausible that this symmetry would eventually reveal the full

structure of the coefficients a2n. This is a task for a future work. Our main conclusions

are summarized in §2.6.

2.2 The Dirac Operator for Robertson-Walker Metrics

According to the spectral action principle [4, 12], the spectral action of any geometry

depends on its Dirac operator since the terms in the expansion are determined by the high

frequency behavior of the eigenvalues of this operator. For spin manifolds, the explicit

computation of the Dirac operator in a coordinate system is most efficiently achieved by

writing its formula after lifting the Levi-Civita connection on the cotangent bundle to

the spin connection on the spin bundle. In this section, we summarize this formalism

and compute the Dirac operator of the Robertson-Walker metric in Hopf coordinates.

Throughout this paper we use Einstein’s summation convention without any further

notice.
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2.2.1 Levi-Civita connection.

The spin connection of any spin manifold M is the lift of the Levi-Civita connection for

the cotangent bundle T ∗M to the spin bundle. Let us, therefore, recall the following

recipe for computing the Levi-Civita connection and thereby the spin connection of M .

Given an orthonormal frame {θα} for the tangent bundle TM and its dual coframe {θα},
the connection 1-forms ωαβ of any connection ∇ on T ∗M are defined by

∇θα = ωαβ θ
β.

Since the Levi-Civita connection is the unique torsion free connection which is com-

patible with the metric, its 1-forms are uniquely determined by

dθβ = ωβα ∧ θα.

This is justified by the fact that the compatibility with metric enforces the relations

ωαβ = −ωβα,

while, taking advantage of the first Cartan structure equation, the torsion-freeness amounts

to the vanishing of

Tα = dθα − ωαβ ∧ θβ.

2.2.2 The spin connection of Robertson-Walker metrics in Hopf coor-
dinates.

The (Euclidean) Robertson-Walker metric with the cosmic scale factor a(t) is given by

ds2 = dt2 + a2 (t) dσ2,

where dσ2 is the round metric on the 3-sphere S3. It is customary to write this metric

in spherical coordinates, however, for our purposes which will be explained below, it is

more convenient to use the Hopf coordinates, which parametrize the 3-sphere S3 ⊂ C2

by

z1 = eiφ1 sin(η), z2 = eiφ2 cos(η),
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with η ranging in [0, π/2) and φ1, φ2 ranging in [0, 2π). The Robertson-Walker metric in

the coordinate system x = (t, η, φ1, φ2) is thus given by

ds2 = dt2 + a2 (t)
(
dη2 + sin2(η)dφ2

1 + cos2(η)dφ2
2

)
.

An orthonormal coframe for ds2 is then provided by

θ1 = dt, θ2 = a(t) dη, θ3 = a(t) sin η dφ1, θ4 = a(t) cos η dφ2.

Applying the exterior derivative to these forms, one can easily show that they satisfy the

following equations, which determine the connection 1-forms of the Levi-Civita connec-

tion:

dθ1 = 0,

dθ2 =
a′(t)

a(t)
θ1 ∧ θ2,

dθ3 =
a′(t)

a(t)
θ1 ∧ θ3 +

cot η

a(t)
θ2 ∧ θ3,

dθ4 =
a′(t)

a(t)
θ1 ∧ θ4 − tan η

a(t)
θ2 ∧ θ4.

We recast the above equations into the matrix of connection 1-forms

ω =
1

a(t)


0 −a′(t) θ2 −a′(t) θ3 −a′(t) θ4

a′(t) θ2 0 − cot η θ3 tan η θ4

a′(t) θ3 cot η θ3 0 0

a′(t) θ4 − tan η θ4 0 0

 ∈ so(4),

which lifts to the spin bundle using the Lie algebra isomorphism µ : so(4) → spin(4)

given by (see [23])

µ(A) =
1

4

∑
α,β

〈Aθα, θβ〉c(θα)c(θβ), A ∈ so(4).

Since 〈ωθα, θβ〉 = ωαβ , the lifted connection ω̃ is written as

ω̃ =
1

4

∑
α,β

ωαβ c(θ
α)c(θβ).
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In the case of the Robertson-Walker metric we find that

ω̃ =
1

2a(t)

(
a′(t)θ2γ12 + a′(t)θ3γ13 + a′(t)θ4γ14 + cot(η)θ3γ23 − tan(η)θ4γ24

)
, (2.1)

where we use the notation γij = γiγj for products of pairs of the gamma matrices
γ1, γ2, γ3, γ4, which are respectively written as

0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

 ,


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 ,


0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

 ,


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 .

2.2.3 The Dirac Operator of Robertson-Walker metrics in Hopf coor-
dinates.

Using the expression (2.1) obtained for the spin connection and considering the predual

of the orthonormal coframe {θα},

θ1 =
∂

∂t
, θ2 =

1

a(t)

∂

∂η
, θ3 =

1

a(t) sin η

∂

∂φ1
, θ4 =

1

a(t) cos η

∂

∂φ2
,

we compute the Dirac operator for the Robertson-Walker metric explicitly:

D = c(θα)∇θα
= γα (θα + ω̃(θα))

= γ1

(
∂

∂t

)
+ γ2

(
1

a

∂

∂η
+
a′

2a
γ12

)
+ γ3

(
1

a sin(η)

∂

∂φ1
+
a′

2a
γ13 +

cot(η)

2a
γ23

)
+ γ4

(
1

a cos(η)

∂

∂φ2
+
a′

2a
γ14 − tan(η)

2a
γ24

)
= γ1 ∂

∂t
+ γ2 1

a

∂

∂η
+ γ3 1

a sin η

∂

∂φ1
+ γ4 1

a cos η

∂

∂φ2
+

3a′

2a
γ1 +

cot(2η)

a
γ2.

Thus the pseudodifferential symbol of D is given by

σD(x, ξ) = iξ1γ
1 +

iξ2

a
γ2 +

iξ3

a sin η
γ3 +

iξ4

a cos η
γ4 +

3a′

2a
γ1 +

cot(2η)

a
γ2.

For the purpose of employing pseudodifferential calculus in the sequel to compute the

heat coefficients, we record in the following proposition the pseudodifferential symbol of
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D2. This can be achieved by a straightforward computation to find an explicit expression

for D2, or alternatively, one can apply the composition rule for symbols, σP1P2(x, ξ) =∑
α

(−i)|α|
α! ∂αξ σP1∂

α
xσP2 , to the symbol of D.

Proposition 2.1. The pseudodifferential symbol of D2, where D is the Dirac operator

for the Robertson-Walker metric, is given by

σ(D2) = p2 + p1 + p0,

where the homogeneous components pi of order i are written as

p2 = ξ2
1 +

1

a2
ξ2

2 +
1

a2 sin2(η)
ξ2

3 +
1

a2 cos2(η)
ξ2

4 ,

p1 =
−3iaa′

a2
ξ1 +

−ia′γ12 − 2i cot(2η)

a2
ξ2 −

ia′ csc(η)γ13 + i cot(η) csc(η)γ23

a2
ξ3

+
i tan(η) sec(η)γ24 − ia′ sec(η)γ14

a2
ξ4,

p0 =
1

4a(t)2

(
− 6a(t)a′′(t)− 3a′(t)2 + csc2(η) + sec2(η)

+4 + 2a′(t)(cot(η)− tan(η))γ12
)
. (2.2)

2.3 Terms up to a10 and their Agreement with Chamseddine-

Connes’ Result

The computation of the terms in the expansion of the spectral action for a spin manifold,

or equivalently the calculation of the heat coefficients, can be achieved by recursive

formulas while working in the heat kernel scheme of local invariants of elliptic differential

operators and index theory [17]. Pseudodifferential calculus is an effective tool for dealing

with the necessary approximations for deriving the small time asymptotic expansions in

which the heat coefficients appear. Universal formulas in terms of the Riemann curvature

operator and its contractions and covariant derivatives are written in the literature only

for the terms up to a10, namely Gilkey’s formulas up to a6 [17, 18] and the formulas in

[1, 2, 35] for a8 and a10.
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2.3.1 Small time heat kernel expansions using pseudodifferential cal-
culus.

In [17], by appealing to the Cauchy integral formula and using pseudodifferential calculus,

recursive formulas for the heat coefficients of elliptic differential operators are derived.

That is, one writes

e−sD
2

= − 1

2πi

∫
γ
e−sλ(D2 − λ)−1dλ,

where the contour γ goes around the non-negative real axis in the counterclockwise di-

rection, and one uses pseudodifferential calculus to approximate (D2 − λ)−1 via the

homogeneous terms appearing in the expansion of the symbol of the parametrix of

D2 − λ. Although left and right parametrices have the same homogeneous components,

for the purpose of finding recursive formulas for the coefficients appearing in each com-

ponent, which will be explained shortly, it is more convenient for us to consider the right

parametrix R̃(λ). Therefore, the next task is to compute recursively the homogeneous

pseudodifferential symbols rj of order −2 − j in the expansion of σ(R̃(λ)). Using the

calculus of symbols, with the crucial nuance that λ is considered to be of order 2, one

finds that

r0 = (p2 − λ)−1,

and for any n > 1

rn = −r0

∑
|α|+ j + 2− k = n

j < n

(−i)|α|

α!
dαξ pk d

α
xrj . (2.3)

We summarize the process of obtaining the heat coefficients by explaining that one

then uses these homogeneous terms in the Cauchy integral formula to approximate the

integral kernel of e−sD2
. Integration of the kernel of this operator on the diagonal yields

a small time asymptotic expansion of the form

Tr(e−sD
2
) ∼

∞∑
n=0

s(n−4)/2

16π4

∫
tr(en(x)) dvolg (t→ 0),

where

en(x)
√

det g =
−1

2πi

∫ ∫
γ
e−λrn(x, ξ, λ) dλ dξ. (2.4)

For detailed discussions, we refer the reader to [17].
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It is clear from (2.2) that cross derivatives of p2 vanish and dαξ pk = 0 if |α| > k.

Furthermore, ∂
∂φk

rn = 0 for n ≥ 0, and the summation (2.3) is written as

rn = −r0 p0 rn−2 − r0 p1 rn−1 + ir0
∂

∂ξ1
p1
∂

∂t
rn−2 + ir0

∂

∂ξ2
p1

∂

∂η
rn−2

+ir0
∂

∂ξ1
p2
∂

∂t
rn−1 + ir0

∂

∂ξ2
p2

∂

∂η
rn−1 +

1

2
r0
∂2

∂ξ2
1

p2
∂2

∂t2
rn−2

+
1

2
r0
∂2

∂ξ2
2

p2
∂2

∂η2
rn−2. (2.5)

Using induction, we find that

rn =
∑

2j − 2− |α| = n

n/2 + 1 ≤ j ≤ 2n+ 1

rn,j,α(x) rj0 ξ
α. (2.6)

For example, one can see that for n = 0 the only non-zero r0,j,α is r0,1,0 = 1, and for

n = 1 the non-vanishing terms are

r1,2,ek =
∂p1

∂ξk
, r1,3,2el+ek = −2igkk

∂gll

∂xk
,

where ej denotes the j-th standard unit vector in R4.

It then follows from the equations (2.4), (2.5) and (2.6) that

en(x) a(t)3 sin(η) cos(η) =
−1

2πi

∫
R4

∫
γ
e−sλrn(x, ξ, λ) dλ dξ

=
∑

rn,j,α(x)

∫
R4

ξα
−1

2πi

∫
γ
e−sλrj0 dλ dξ (2.7)

=
∑ cα

(j − 1)!
rn,j,α a(t)α2+α3+α4+3 sin(η)α3+1 cos(η)α4+1,

where

cα =
∏
k

Γ

(
αk + 1

2

)
(−1)αk + 1

2
.

It is straightforward to justify the latter using these identities:

1

2πi

∫
γ
e−λrj0dλ = (−1)j

(−1)j−1

(j − 1)!
e−||ξ||

2
=

−1

(j − 1)!

4∏
k=1

e−g
kkξ2

k ,∫
R
xne−bx

2
dx =

1

2
((−1)n + 1) b−

n
2
− 1

2 Γ

(
n+ 1

2

)
.
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A key point that facilitates our calculations and the proof of our main theorem

presented in §2.5.1 is the derivation of recursive formulas for the coefficients rn,j,α as

follows. By substitution of (2.6) into (2.5) we find a recursive formula of the form

rn,j,α = −p0rn−2,j−1,α −
∑
k

∂p1

∂ξk
rn−1,j−1,α−ek

+ i
∑
k

∂p1

∂ξk

∂

∂xk
rn−2,j−1,α + i(2− j)

∑
k,l

∂gll

∂xk

∂p1

∂ξk
rn−2,j−2,α−2el

+ 2i
∑
k

gkk
∂

∂xk
rn−1,j−1,α−ek + i(4− 2j)

∑
k,l

gkk
∂gll

∂xk
rn−1,j−2,α−2el−ek (2.8)

+
∑
k

gkk
∂2

∂x2
k

rn−2,j−1,α + (4− 2j)
∑
k,l

gkk
∂gll

∂xk

∂

∂xk
rn−2,j−2,α−2el

+ (2− j)
∑
k,l

gkk
∂2gll

∂x2
k

rn−2,j−2,α−2el

+ (3− j)(2− j)
∑
k,l,l′

gkk
∂gll

∂xk

∂gl
′l′

∂xk
rn−2,j−3,α−2el−2el′ .

It is undeniable that the mechanism described above for computing the heat coeffi-

cients involves heavy computations which need to be overcome by computer program-

ming. Calculating explicitly the functions en(x), n = 0, 2, . . . , 12, and computing their

integrals over S3
a with computer assistance, we find the explicit polynomials in a(t) and

its derivatives recorded in the sequel, which describe the corresponding terms in the ex-

pansion of the spectral action for the Robertson-Walker metric. That is, each function

an recorded below is the outcome of

an =
1

16π4

∫
S3
a

tr(en) dvolg

=
1

16π4

∫ 2π

0

∫ 2π

0

∫ π/2

0
tr(en) a(t)3 sin(η) cos(η) dη dφ1 dφ2.

2.3.2 The terms up to a6

These terms were computed in [9] by their direct method, which is based on the Euler-

Maclaurin summation formula and the Feynman-Kac formula, and they were checked by

Gilkey’s universal formulas. Our computations based on the method explained in the

previous subsection also gives the same result.
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The first term, whose integral up to a universal factor gives the volume, is given by

a0 =
a(t)3

2
.

Since the latter appears as the leading term in the small time asymptotic expansion of

the heat kernel it is related to Weyl’s law, which reads the volume from the asymptotic

distribution of the eigenvalues of D2. The next term, which is related to the scalar

curvature, has the expression

a2 =
1

4
a(t)

(
a(t)a′′(t) + a′(t)2 − 1

)
.

The term after, whose integral is topological, is related to the Gauss-Bonnet term (cf.

[9]) and is written as

a4 =
1

120

(
3a(4)(t)a(t)2 + 3a(t)a′′(t)2 − 5a′′(t) + 9a(3)(t)a(t)a′(t)− 4a′(t)2a′′(t)

)
.

The term a6, which is the last term for which Gilkey’s universal formulas are written, is

given by

a6 = 1
5040a(t)2

(
9a(6)(t)a(t)4 − 21a(4)(t)a(t)2 − 3a(3)(t)2a(t)3 − 56a(t)2a′′(t)3 +

42a(t)a′′(t)2 + 36a(5)(t)a(t)3a′(t) + 6a(4)(t)a(t)3a′′(t)− 42a(4)(t)a(t)2a′(t)2 +

60a(3)(t)a(t)a′(t)3 + 21a(3)(t)a(t)a′(t) + 240a(t)a′(t)2a′′(t)2 − 60a′(t)4a′′(t)−
21a′(t)2a′′(t)− 252a(3)(t)a(t)2a′(t)a′′(t)

)
.

2.3.3 The terms a8 and a10

These terms were computed by Chamseddine and Connes in [9] using their direct method.

In order to form a check on the final formulas, they have suggested to use the universal

formulas of [1, 2, 35] to calculate these terms and compare the results. As mentioned

earlier, Gilkey’s universal formulas were used in [9] to check the terms up to a6, however,

they are written in the literature only up to a6 and become rather complicated even for

this term.

In this subsection, we pursue the computation of the terms a8 and a10 in the expansion

of the spectral action for Robertson-Walker metrics by continuing to employ pseudod-

ifferential calculus, as presented in §2.3.1, and check that the final formulas agree with

the result in [9]. The final formulas for a8 and a10 are the following expressions:
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a8 =

− 1
10080a(t)4

(
− a(8)(t)a(t)6 + 3a(6)(t)a(t)4 + 13a(4)(t)2a(t)5 − 24a(3)(t)2a(t)3 − 114a(t)3a′′(t)4 +

43a(t)2a′′(t)3 − 5a(7)(t)a(t)5a′(t) + 2a(6)(t)a(t)5a′′(t) + 9a(6)(t)a(t)4a′(t)2 +

16a(3)(t)a(5)(t)a(t)5 − 24a(5)(t)a(t)3a′(t)3 − 6a(5)(t)a(t)3a′(t) + 69a(4)(t)a(t)4a′′(t)2 −

36a(4)(t)a(t)3a′′(t) + 60a(4)(t)a(t)2a′(t)4 + 15a(4)(t)a(t)2a′(t)2 + 90a(3)(t)2a(t)4a′′(t)−

216a(3)(t)2a(t)3a′(t)2 − 108a(3)(t)a(t)a′(t)5 − 27a(3)(t)a(t)a′(t)3 + 801a(t)2a′(t)2a′′(t)3 −

588a(t)a′(t)4a′′(t)2 − 87a(t)a′(t)2a′′(t)2 + 108a′(t)6a′′(t) + 27a′(t)4a′′(t) +

78a(5)(t)a(t)4a′(t)a′′(t) + 132a(3)(t)a(4)(t)a(t)4a′(t)− 312a(4)(t)a(t)3a′(t)2a′′(t)−

819a(3)(t)a(t)3a′(t)a′′(t)2 + 768a(3)(t)a(t)2a′(t)3a′′(t) + 102a(3)(t)a(t)2a′(t)a′′(t)
)
,

and

a10 =

1
665280a(t)6

(
3a(10)(t)a(t)8 − 222a(5)(t)2a(t)7 − 348a(4)(t)a(6)(t)a(t)7 − 147a(3)(t)a(7)(t)a(t)7 −

18a′′(t)a(8)(t)a(t)7 + 18a′(t)a(9)(t)a(t)7 − 482a′′(t)a(4)(t)2a(t)6 − 331a(3)(t)2a(4)(t)a(t)6 −

1110a′′(t)a(3)(t)a(5)(t)a(t)6 − 1556a′(t)a(4)(t)a(5)(t)a(t)6 − 448a′′(t)2a(6)(t)a(t)6 −

1074a′(t)a(3)(t)a(6)(t)a(t)6 − 476a′(t)a′′(t)a(7)(t)a(t)6 − 43a′(t)2a(8)(t)a(t)6 − 11a(8)(t)a(t)6 +

8943a′(t)a(3)(t)3a(t)5 + 21846a′′(t)2a(3)(t)2a(t)5 + 4092a′(t)2a(4)(t)2a(t)5 + 396a(4)(t)2a(t)5 +

10560a′′(t)3a(4)(t)a(t)5 + 39402a′(t)a′′(t)a(3)(t)a(4)(t)a(t)5 + 11352a′(t)a′′(t)2a(5)(t)a(t)5 +

6336a′(t)2a(3)(t)a(5)(t)a(t)5 + 594a(3)(t)a(5)(t)a(t)5 + 2904a′(t)2a′′(t)a(6)(t)a(t)5 +

264a′′(t)a(6)(t)a(t)5 + 165a′(t)3a(7)(t)a(t)5 + 33a′(t)a(7)(t)a(t)5 − 10338a′′(t)5a(t)4 −

95919a′(t)2a′′(t)a(3)(t)2a(t)4 − 3729a′′(t)a(3)(t)2a(t)4 − 117600a′(t)a′′(t)3a(3)(t)a(t)4 −

68664a′(t)2a′′(t)2a(4)(t)a(t)4 − 2772a′′(t)2a(4)(t)a(t)4 − 23976a′(t)3a(3)(t)a(4)(t)a(t)4 −

2640a′(t)a(3)(t)a(4)(t)a(t)4 − 12762a′(t)3a′′(t)a(5)(t)a(t)4 − 1386a′(t)a′′(t)a(5)(t)a(t)4 −

651a′(t)4a(6)(t)a(t)4 − 132a′(t)2a(6)(t)a(t)4 + 111378a′(t)2a′′(t)4a(t)3 + 2354a′′(t)4a(t)3 +

31344a′(t)4a(3)(t)2a(t)3 + 3729a′(t)2a(3)(t)2a(t)3 + 236706a′(t)3a′′(t)2a(3)(t)a(t)3 +

13926a′(t)a′′(t)2a(3)(t)a(t)3 + 43320a′(t)4a′′(t)a(4)(t)a(t)3 + 5214a′(t)2a′′(t)a(4)(t)a(t)3 +

2238a′(t)5a(5)(t)a(t)3 + 462a′(t)3a(5)(t)a(t)3 − 162162a′(t)4a′′(t)3a(t)2 −

11880a′(t)2a′′(t)3a(t)2 − 103884a′(t)5a′′(t)a(3)(t)a(t)2 − 13332a′(t)3a′′(t)a(3)(t)a(t)2 −

6138a′(t)6a(4)(t)a(t)2 − 1287a′(t)4a(4)(t)a(t)2 + 76440a′(t)6a′′(t)2a(t) + 10428a′(t)4a′′(t)2a(t) +

11700a′(t)7a(3)(t)a(t) + 2475a′(t)5a(3)(t)a(t)− 11700a′(t)8a′′(t)− 2475a′(t)6a′′(t)
)
.
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2.4 Computation of the Term a12 in the Expansion of the

Spectral Action

We pursue the computation of the term a12 in the expansion of the spectral action for

Robertson-Walker metrics by employing pseudodifferential calculus to find the term r12

for the parametrix of λ − D2, which is homogeneous of order −14, and by performing

the appropriate integrations. Since there is no universal formula in the literature for

this term, we have performed two heavy computations, one in Hopf coordinates and

the other in spherical coordinates, to form a check on the validity of the outcome of our

calculations. Another efficient way of computing the term a12 is to use the direct method

of [9].

2.4.1 The result of the computation in Hopf coordinates.

Continuing the recursive procedure commenced in the previous section and exploiting

computer assistance, while the calculation becomes significantly heavier for the term a12,

we find the following expression:

a12 =

1
17297280a(t)8

(
3a(12)(t)a(t)10−1057a(6)(t)2a(t)9−1747a(5)(t)a(7)(t)a(t)9−970a(4)(t)a(8)(t)a(t)9−

317a(3)(t)a(9)(t)a(t)9 − 34a′′(t)a(10)(t)a(t)9 + 21a′(t)a(11)(t)a(t)9 + 5001a(4)(t)3a(t)8 +

2419a′′(t)a(5)(t)2a(t)8 + 19174a(3)(t)a(4)(t)a(5)(t)a(t)8 + 4086a(3)(t)2a(6)(t)a(t)8 +

2970a′′(t)a(4)(t)a(6)(t)a(t)8 − 5520a′(t)a(5)(t)a(6)(t)a(t)8 − 511a′′(t)a(3)(t)a(7)(t)a(t)8 −

4175a′(t)a(4)(t)a(7)(t)a(t)8 − 745a′′(t)2a(8)(t)a(t)8 − 2289a′(t)a(3)(t)a(8)(t)a(t)8 −

828a′(t)a′′(t)a(9)(t)a(t)8 − 62a′(t)2a(10)(t)a(t)8 − 13a(10)(t)a(t)8 + 45480a(3)(t)4a(t)7 +

152962a′′(t)2a(4)(t)2a(t)7 + 203971a′(t)a(3)(t)a(4)(t)2a(t)7 + 21369a′(t)2a(5)(t)2a(t)7 +

1885a(5)(t)2a(t)7 + 410230a′′(t)a(3)(t)2a(4)(t)a(t)7 + 163832a′(t)a(3)(t)2a(5)(t)a(t)7 +

250584a′′(t)2a(3)(t)a(5)(t)a(t)7 + 244006a′(t)a′′(t)a(4)(t)a(5)(t)a(t)7 + 42440a′′(t)3a(6)(t)a(t)7 +

163390a′(t)a′′(t)a(3)(t)a(6)(t)a(t)7 + 35550a′(t)2a(4)(t)a(6)(t)a(t)7 + 3094a(4)(t)a(6)(t)a(t)7 +

34351a′(t)a′′(t)2a(7)(t)a(t)7 + 19733a′(t)2a(3)(t)a(7)(t)a(t)7 + 1625a(3)(t)a(7)(t)a(t)7 +

6784a′(t)2a′′(t)a(8)(t)a(t)7 + 520a′′(t)a(8)(t)a(t)7 + 308a′(t)3a(9)(t)a(t)7 + 52a′(t)a(9)(t)a(t)7 −

2056720a′(t)a′′(t)a(3)(t)3a(t)6 − 1790580a′′(t)3a(3)(t)2a(t)6 − 900272a′(t)2a′′(t)a(4)(t)2a(t)6 −

31889a′′(t)a(4)(t)2a(t)6 − 643407a′′(t)4a(4)(t)a(t)6 − 1251548a′(t)2a(3)(t)2a(4)(t)a(t)6 −

43758a(3)(t)2a(4)(t)a(t)6 − 4452042a′(t)a′′(t)2a(3)(t)a(4)(t)a(t)6 −

836214a′(t)a′′(t)3a(5)(t)a(t)6 − 1400104a′(t)2a′′(t)a(3)(t)a(5)(t)a(t)6 −
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48620a′′(t)a(3)(t)a(5)(t)a(t)6 − 181966a′(t)3a(4)(t)a(5)(t)a(t)6 − 18018a′(t)a(4)(t)a(5)(t)a(t)6 −

319996a′(t)2a′′(t)2a(6)(t)a(t)6 − 11011a′′(t)2a(6)(t)a(t)6 − 115062a′(t)3a(3)(t)a(6)(t)a(t)6 −

11154a′(t)a(3)(t)a(6)(t)a(t)6 − 42764a′(t)3a′′(t)a(7)(t)a(t)6 − 4004a′(t)a′′(t)a(7)(t)a(t)6 −

1649a′(t)4a(8)(t)a(t)6 − 286a′(t)2a(8)(t)a(t)6 + 460769a′′(t)6a(t)5 + 1661518a′(t)3a(3)(t)3a(t)5 +

83486a′(t)a(3)(t)3a(t)5 + 13383328a′(t)2a′′(t)2a(3)(t)2a(t)5 + 222092a′′(t)2a(3)(t)2a(t)5 +

342883a′(t)4a(4)(t)2a(t)5 + 36218a′(t)2a(4)(t)2a(t)5 + 7922361a′(t)a′′(t)4a(3)(t)a(t)5 +

6367314a′(t)2a′′(t)3a(4)(t)a(t)5 + 109330a′′(t)3a(4)(t)a(t)5 +

7065862a′(t)3a′′(t)a(3)(t)a(4)(t)a(t)5 + 360386a′(t)a′′(t)a(3)(t)a(4)(t)a(t)5 +

1918386a′(t)3a′′(t)2a(5)(t)a(t)5 + 98592a′(t)a′′(t)2a(5)(t)a(t)5 + 524802a′(t)4a(3)(t)a(5)(t)a(t)5 +

55146a′(t)2a(3)(t)a(5)(t)a(t)5 + 226014a′(t)4a′′(t)a(6)(t)a(t)5 + 23712a′(t)2a′′(t)a(6)(t)a(t)5 +

8283a′(t)5a(7)(t)a(t)5 + 1482a′(t)3a(7)(t)a(t)5 − 7346958a′(t)2a′′(t)5a(t)4 − 72761a′′(t)5a(t)4 −

11745252a′(t)4a′′(t)a(3)(t)2a(t)4 − 725712a′(t)2a′′(t)a(3)(t)2a(t)4 −

27707028a′(t)3a′′(t)3a(3)(t)a(t)4 − 819520a′(t)a′′(t)3a(3)(t)a(t)4 −

8247105a′(t)4a′′(t)2a(4)(t)a(t)4 − 520260a′(t)2a′′(t)2a(4)(t)a(t)4 −

1848228a′(t)5a(3)(t)a(4)(t)a(t)4−205296a′(t)3a(3)(t)a(4)(t)a(t)4−973482a′(t)5a′′(t)a(5)(t)a(t)4−

110136a′(t)3a′′(t)a(5)(t)a(t)4 − 36723a′(t)6a(6)(t)a(t)4 − 6747a′(t)4a(6)(t)a(t)4 +

17816751a′(t)4a′′(t)4a(t)3 + 721058a′(t)2a′′(t)4a(t)3 + 2352624a′(t)6a(3)(t)2a(t)3 +

274170a′(t)4a(3)(t)2a(t)3 + 24583191a′(t)5a′′(t)2a(3)(t)a(t)3 + 1771146a′(t)3a′′(t)2a(3)(t)a(t)3 +

3256248a′(t)6a′′(t)a(4)(t)a(t)3 + 389376a′(t)4a′′(t)a(4)(t)a(t)3 + 135300a′(t)7a(5)(t)a(t)3 +

25350a′(t)5a(5)(t)a(t)3 − 15430357a′(t)6a′′(t)3a(t)2 − 1252745a′(t)4a′′(t)3a(t)2 −

7747848a′(t)7a′′(t)a(3)(t)a(t)2 − 967590a′(t)5a′′(t)a(3)(t)a(t)2 − 385200a′(t)8a(4)(t)a(t)2 −

73125a′(t)6a(4)(t)a(t)2 + 5645124a′(t)8a′′(t)2a(t) + 741195a′(t)6a′′(t)2a(t) +

749700a′(t)9a(3)(t)a(t) + 143325a′(t)7a(3)(t)a(t)− 749700a′(t)10a′′(t)− 143325a′(t)8a′′(t))
)
.

2.4.2 Agreement of the result with computations in spherical coordi-
nates.

Taking a similar route as in §2.2, we explicitly write the Dirac operator for the Roberson-

Walker metric in spherical coordinates

ds2 = dt2 + a2 (t)
(
dχ2 + sin2(χ)

(
dθ2 + sin2(θ) dϕ2

) )
.

Using the computations carried out in [9] with the orthonormal coframe

dt, a(t) dχ, a(t) sinχdθ, a(t) sinχ sin θ dϕ,
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the corresponding matrix of connection 1-forms for the Levi-Civita connection is written
as 

0 −a′(t)dχ −a′(t) sin(χ)dθ −a′(t) sin(χ) sin(θ)dϕ

a′(t)dχ 0 − cos(χ)dθ − cos(χ) sin(θ)dϕ

a′(t) sin(χ)dθ cos(χ)dθ 0 − cos(θ)dϕ

a′(t) sin(χ) sin(θ)dϕ cos(χ) sin(θ)dϕ cos(θ)dϕ 0

 .

Lifting to the spin bundle by means of the Lie algebra isomorphism µ : so(4) →
spin(4) and writing the formula for the Dirac operator yield the following expression for

this operator expressed in spherical coordiantes:

D = γ1 ∂

∂t
+ γ2 1

a

∂

∂χ
+ γ3 1

a sinχ

∂

∂θ
+ γ4 1

a sinχ sin θ

∂

∂ϕ

+
3a′

2a
γ1 +

cot(χ)

a
γ2 +

cot(θ)

2a sin(χ)
γ3.

Thus the pseudodifferential symbol of D is given by

σD(x, ξ) = iγ1ξ1 +
i

a
γ2ξ2 +

i

a sin(χ)
γ3ξ3 +

i

a sin(χ) sin(θ)
γ4ξ4

+
3a′

2a
γ1 +

cot(χ)

a
γ2 +

cot(θ)

2a sin(χ)
γ3.

Accordingly, the symbol of D2 is the sum p′2 +p′1 +p′0 of three homogeneous components

p′2 = ξ2
1 +

1

a(t)2
ξ2

2 +
1

a(t)2 sin2(χ)
ξ2

3 +
1

a(t)2 sin2(θ) sin2(χ)
ξ2

4 ,

p′1 = −3ia′(t)

a(t)
ξ1 −

i

a(t)2

(
γ12a′(t) + 2 cot(χ)

)
ξ2

− i

a(t)2

(
γ13 csc(χ)a′(t) + cot(θ) csc2(χ) + γ23 cot(χ) csc(χ)

)
ξ3

− i

a(t)2
(csc(θ) csc(χ)a′(t)γ14 + cot(θ) csc(θ) csc2(χ)γ34

+ csc(θ) cot(χ) csc(χ)γ24)ξ4,

p′0 =
1

8a(t)2

(
−12a(t)a′′(t)− 6a′(t)2 + 3 csc2(θ) csc2(χ)− cot2(θ) csc2(χ)+

4i cot(θ) cot(χ) csc(χ)− 4i cot(θ) cot(χ) csc(χ)− 4 cot2(χ) + 5 csc2(χ) + 4
)

−(cot(θ) csc(χ)a′(t))

2a(t)2
γ13 − (cot(χ)a′(t))

a(t)2
γ12 − (cot(θ) cot(χ) csc(χ))

2a(t)2
γ23.

We have performed the computation of the heat coefficients up to the term a12 using
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the latter symbols and have checked the agreement of the result with the computations

in Hopf coordinates, presented in the previous subsections. This is in particular of great

importance for the term a12, since it ensures the validity of our computations performed

in two different coordinates.

2.4.3 Agreement with the full expansion for the round metric.

We first recall the full expansion for the spectral action for the round metric, namely the

case a(t) = sin(t), worked out in [9]. Then we show that the term a12 presented in §2.4.1

reduces correctly to the round case.

The method devised in [9] has wide applicability in the spectral action computations

since it can be used for the cases when the eigenvalues of the square of the Dirac operator

have a polynomial expression while their multiplicities are also given by polynomials. In

the case of the round metric on S4, after remarkable computations based on the Euler-

Maclaurin formula, this method leads to the following expression with control over the

remainder term [9]:

3

4
Trace(f(tD2)) =

∫ ∞
0

f(tx2)(x3 − x)dx+
11f(0)

120
− 31f ′(0)t

2520
+

41f ′′(0)t2

10080

−31f (3)(0)t3

15840
+

10331f (4)(0)t4

8648640
− 3421f (5)(0)t5

3931200
+ · · ·+Rm.

This implies that the term a12 in the expansion of the spectral action for the round

metric is equal to 10331
6486480 . To check our calculations against this result, we find that for

a(t) = sin(t) the expression for a12(t) reduces to 10331 sin3(t)
8648640 , and hence

a12 =

∫ π

0
a12(S4) dt =

4

3

10331

8648640
=

10331

6486480
,

which is in complete agreement with the result in [9], mentioned above.

2.5 Chameseddine-Connes’ Conjecture

In this section we prove a conjecture of Chamseddine and Connes from [9]. More

precisely, we show that the term a2n in the asymptotic expansion of the spectral ac-

tion for Robertson-Walker metrics is, up to multiplication by a(t)3−2n, of the form

Q2n(a, a′, . . . , a(2n)), where Q2n is a polynomial with rational coefficients.
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2.5.1 Proof of rationality of the coefficients in the expressions for a2n

A crucial point that enables us to furnish the proof of our main theorem, namely the

proof of the conjecture mentioned above, is the independence of the integral kernel of the

heat operator of the Dirac operator of the Robertson-Walker metric from the variables

φ1, φ2, η. Note that since the symbol and the metric are independent of φ1, φ2, the

computations involved in the symbol calculus clearly imply the independence of the

terms en from these variables. However, the independence of en from η is not evident,

which is proved as follows.

Lemma 2.2. The heat kernel k(s, x, x) for the Robertson-Walker metric is independent

of φ1, φ2, η.

Proof. The round metric on S3 is the bi-invariant metric on SU(2) induced from the

Killing form of its Lie algebra su(2). The corresponding Levi-Civita connection restricted

to the left invariant vector fields is given by 1
2 [X,Y ], and to the right invariant vector

fields by −1
2 [X,Y ]. Since the Killing form is ad-invariant, we have

〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 0, X, Y, Z ∈ su(2),

which implies that in terms of the connection on left (right) invariant vector fieldsX,Y, Z,

it can be written as

〈∇YX,Z〉+ 〈Y,∇ZX〉 = 0. (2.9)

Considering the fact that ∇X : X(M) → X(M) is an endomorphism of the tangent

bundle, the latter identity holds for any Y, Z ∈ X(M). Therefore, the equation (2.9) is

the Killing equation and shows that any left and right invariant vector field on SU(2) is

a Killing vector field.
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By direct computation in Hopf coordinates, we find the following vector fields which

respectively form bases for left and right invariant vector fields on SU(2):

XL
1 =

∂

∂φ1
+

∂

∂φ2
,

XL
2 = sin(φ1 + φ2)

∂

∂η
+ cot(η) cos(φ1 + φ2)

∂

∂φ1
− tan(η) cos(φ1 + φ2)

∂

∂φ2
,

XL
3 = cos(φ1 + φ2)

∂

∂η
− cot(η) sin(φ1 + φ2)

∂

∂φ1
+ tan(η) sin(φ1 + φ2)

∂

∂φ2
,

XR
1 = − ∂

∂φ1
+

∂

∂φ2
,

XR
2 = − sin(φ1 − φ2)

∂

∂η
− cot(η) cos(φ1 − φ2)

∂

∂φ1
− tan(η) cos(φ1 − φ2)

∂

∂φ2
,

XR
3 = cos(φ1 − φ2)

∂

∂η
− cot(η) sin(φ1 − φ2)

∂

∂φ1
− tan(η) sin(φ1 − φ2)

∂

∂φ2
.

One can check that these vector fields are indeed Killing vector fields for the Robertson-

Walker metrics on the four dimensional space. Thus, for any isometry invariant function

f we have:

∂

∂φ1
f =

1

2
(XL

1 −XR
1 )f = 0,

∂

∂φ2
f =

1

2
(XL

1 +XR
1 )f = 0,

∂

∂η
f = (sin(φ1 + φ2)XL

2 + cos(φ1 + φ2)XL
3 )f = 0.

In particular, the heat kernel restricted to the diagonal, k(s, x, x), is independent of

φ1, φ2, η, and so are the coefficient functions en in its asymptotic expansion.

We stress that although en(x) is independent of η, φ1, φ2, its components denoted

by en,j,α in the proof of the following theorem are not necessarily independent of these

variables.

Theorem 2.3. The term a2n in the expansion of the spectral action for the Robertson-

Walker metric with cosmic scale factor a(t) is of the form

1

a(t)2n−3
Q2n

(
a(t), a′(t), . . . , a(2n)(t)

)
,

where Q2n is a polynomial with rational coefficients.
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Proof. Using (2.7) we can write

en =
∑

2j − 2− |α| = n

n/2 + 1 ≤ j ≤ 2n+ 1

cα en,j,α, (2.10)

where

en,j,α =
1

(j − 1)!
rn,j,α a(t)α2+α3+α4 sin(η)α3 cos(η)α4 .

The recursive equation (2.8) implies that

en,j,α = (2.11)

1
(j−1)a(t)

(
(γ14a′(t)− tan(η)γ24)en−1,j−1,α−e4

+ (γ13a′(t) + cot(η)γ23)en−1,j−1,α−e3
+ (γ12a′(t) +

1((2α4 − 1) tan(η) + (1− 2α3) cot(η)))en−1,j−1,α−e2 + 4a′(t)en−1,j−2,α−e1−2e2 +

4a′(t)en−1,j−2,α−e1−2e3
+ 4a′(t)en−1,j−2,α−e1−2e4

+ (−2α2 − 2α3 − 2α4 + 3)a′(t)en−1,j−1,α−e1
+

2a(t) ∂∂ten−1,j−1,α−e1
−4 tan(η)en−1,j−2,α−e2−2e4

+4 cot(η)en−1,j−2,α−e2−2e3
+2 ∂

∂η en−1,j−1,α−e2

)
+ 1

(j−1)a(t)2

(
a(t)2 ∂

2

∂t2 en−2,j−1,α + 4a′(t)a(t) ∂∂ten−2,j−2,α−2e2
+ 4a′(t)a(t) ∂∂ten−2,j−2,α−2e3

+

4a′(t)a(t) ∂∂ten−2,j−2,α−2e4
+ (−2α2 − 2α3 − 2α4 + 3)a′(t)a(t) ∂∂ten−2,j−1,α +

4a′(t)2en−2,j−3,α−4e2 + 8a′(t)2en−2,j−3,α−2e2−2e3 + 8a′(t)2en−2,j−3,α−2e2−2e4 +

4 cot(η) ∂∂η en−2,j−2,α−2e3 − 4 tan(η) ∂∂η en−2,j−2,α−2e4 + ∂2

∂η2 en−2,j−1,α +
(
2 cot(η)γ12a′(t) +

(−4(α2 +α3 +α4 − 2)a′(t)2 + 4(−(α3 − 1) csc2(η) +α3 +α4 − 2) + 2a(t)a′′(t))
)
en−2,j−2,α−2e3

+(
(cot(η)(1− 2α3) + (2α4 − 1) tan(η)) + γ12a′(t)

)
∂
∂η en−2,j−1,α +

(
(−4(α2 + α3 + α4 − 2)a′(t)2 +

4(−(α4 − 1) sec2(η) + α3 + α4 − 2) + 2a(t)a′′(t))− 2γ12 tan(η)a′(t)
)
en−2,j−2,α−2e4 + 8(a′(t)2 −

1)en−2,j−3,α−2e4 + 4(cot2(η) + a′(t)2)en−2,j−3,α−4e3 + 4(tan2(η) + a′(t)2)en−2,j−3,α−4e4 +

(2a(t)a′′(t)− 4(α2 + α3 + α4 − 2)a′(t)2)en−2,j−2,α−2e2
+
(
1
2 (cot(η)(1− 2α3) + (2α4 −

1) tan(η))γ12a′(t) + 1
4 ((4α2

3 − 1) csc2(η)− 4(α3 + α4 − 1)2 + (2α2 + 2α3 + 2α4 − 3)(2α2 + 2α3 +

2α4 − 1)a′(t)2 + sec2(η)(4α2
4 − 1)− 2(2α2 + 2α3 + 2α4 − 3)a(t)a′′(t))

)
en−2,j−1,α

)
.

The functions associated with the initial indices are:

e0,1,0,0,0,0 = 1, e1,2,1,0,0,0 =
3ia′(t)

a(t)
, e1,3,1,2,0,0 =

2ia′(t)

a(t)
,

e1,3,1,0,2,0 =
2ia′(t)

a(t)
, e1,3,1,0,0,2 =

2ia′(t)

a(t)
, e1,3,0,1,0,2 = −(2i) tan(η)

a(t)
,

e1,3,0,1,2,0 =
(2i) cot(η)

a(t)
, e1,2,0,0,1,0 =

iγ13a′(t)

a(t)
+
iγ23 cot(η)

a(t)
,

e1,2,0,0,0,1 =
iγ14a′(t)

a(t)
− iγ24 tan(η)

a(t)
, e1,2,0,1,0,0 =

2i cot(2η)

a(t)
+
iγ12a′(t)

a(t)
.



Rationality of Spectral Action for Robertson-Walker Metrics 63

It is then apparent that e0 and e1 are, respectively, a polynomial in a(t), and a

polynomial in a(t) and a′(t), divided by some powers of a(t). Thus, it follows from the

above recursive formula that all en,j,α are of this form. Accordingly, we have

en =
Pn

a(t)dn
,

where Pn is a polynomial in a(t) and its derivatives with matrix coefficients. Writing

en,j,α = Pn,j,α/a(t)dn , we obtain dn = max{dn−1 + 1, dn−2 + 2}. Starting with d0 = 0,

d1 = −1, and following to obtain dn = n, we conclude that

en,j,α =
1

an(t)
Pn,j,α(a(t), . . . , a(n)(t)),

where Pn,j,α is a polynomial whose coefficients are matrices with entries in the algebra

generated by sin(η), csc(η), cos(η), sec(η) and rational numbers.

In the calculation of the even terms a2n, only even αk have contributions in the

summation (2.10). This implies that the corresponding cα is a rational multiple of π2 and

P2n is a polynomial with rational matrix coefficients, which is independent of variables

η, φ1, φ2 by Lemma 2.2. Hence

a2n =
1

16π4

∫
S3
a

tr(e2n) dvolg =
2π2a(t)3

16π4
tr
( P2n

a(t)2n

)
=

Q2n

a(t)n−3
,

where Q2n is a polynomial in a(t), a′(t), . . . , a(2n)(t) with rational coefficients.

The polynomials Pn,j,α also satisfy recursive relations that illuminate interesting fea-

tures about their structure.

Proposition 2.4. Each Pn,j,α is a finite sum of the form

∑
ck a(t)k0a′(t)k1 · · · a(n)(t)kn ,

where each ck is a matrix of functions that are independent from the variable t, and∑n
j=0 kj =

∑n
j=0 jkj = l, for some 0 ≤ l ≤ n.

Proof. This follows from an algebraically lengthy recursive formula for Pn,j,α which stems

from the equation (2.8), similar to the recursive formula for en,j,α in the proof of Theorem

2.3. In addition, one needs to find the following initial cases:



Rationality of Spectral Action for Robertson-Walker Metrics 64

P0,1,0,0,0,0 = I, P1,2,1,0,0,0 = 3ia′(t), P1,2,0,0,1,0 = iγ13a′(t) + iγ23 cot(η),

P1,2,0,0,0,1 = iγ14a′(t)− iγ24 tan(η), P1,2,0,1,0,0 = 2i cot(2η) + iγ12a′(t),

P1,3,0,1,0,2 = −2i tan(η), P1,3,0,1,2,0 = 2i cot(η), P1,3,1,2,0,0 = 2ia′(t),

P1,3,1,0,2,0 = 2ia′(t), P1,3,1,0,0,2 = 2ia′(t).

2.5.2 A recursive formula for the coefficient of the highest order term
in a2n

The highest derivative of the cosmic scale factor a(t) in the expression for an is seen in

the term a(t)n−1a(n)(t), which has a rational coefficient based on Theorem 2.3. Let us

denote the coefficient of a(t)n−1a(n)(t) in an by hn. Since the coefficients hn are limited

to satisfy the recursive relations derived in the proof of the following proposition, one

can find the following closed formula for these coefficients.

Proposition 2.5. The coefficient hn of a(t)n−1a(n)(t) in an is equal to

∑
[n/2] + 1 ≤ j ≤ 2n+ 1

0 ≤ k ≤ j − n/2− 1

Γ

(
2k + 1

2

)
Hn,j,2k,

where, starting from

H1,2,1 = H1,3,1 =
3i

2
√
π
, H2,4,2 = − 1√

π
,

H2,3,0 = H2,2,0 =
3

4
√
π
, H2,3,2 = − 3

2
√
π
,

the quantities Hn,j,α are computed recursively by

Hn,j,α =
1

j − 1
(Hn−2,j−1,α + 2iHn−1,j−1,α−1).

Proof. It follows from Proposition 2.4 that the highest derivative of a(t) in an appears

in the term a(t)n−1a(n)(t). By a careful analysis of the equation (2.11) we find that only
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the terms
1

j − 1

(
a(t)2 ∂

2

∂t2
Pn−2,j−1,α + 2ia(t)

∂

∂t
Pn−1,j−1,α−e1

)
contribute to its recursive formula. Denoting the corresponding monomial in Pn,j,α by

Hn,j,αa(t)n−1a(n)(t) and substituting it into the above formula we obtain the equation

Hn,j,α =
1

j − 1
(Hn−2,j−1,α + 2iHn−1,j−1,α−e1),

for any n > 2. Denoting

Hn,j,α1 =
∑ 4∏

k=2

Γ

(
αk + 1

2

)
(−1)αk + 1

2
tr

(
1

(2π)2

∫ π/2

0
Hn,j,α1,α2,α3,α4dη

)
,

the recursive formula converts to

Hn,j,α =
1

j − 1
(Hn−2,j−1,α + 2iHn−1,j−1,α−1).

Thus, the coefficient of a(t)n−1a(n)(t) in an is given by the above expression.

Using the above proposition we find that:

h2 =
1

4
, h4 =

1

40
, h6 =

1

560
, h8 =

1

10080
, h10 =

1

221760
,

h12 =
1

5765760
, h14 =

1

172972800
, h16 =

1

5881075200
,

h18 =
1

223480857600
, h20 =

1

9386196019200
.

2.6 Conclusions

Pseudodifferential calculus is an effective tool for applying heat kernel methods to com-

pute the terms in the expansion of a spectral action. We have used this technique to de-

rive the terms up to a12 in the expansion of the spectral action for the Robertson-Walker

metric on a 4-dimensional geometry with a general cosmic scale factor a(t). Performing

the computations in Hopf coordinates, which reflects the symmetry of the space more

conveniently at least from a technical point of view, we proved the independence of the

integral kernel of the corresponding heat operator from three coordiantes of the space.

This allowed us to furnish the proof of the conjecture of Chamseddine and Connes on



Rationality of Spectral Action for Robertson-Walker Metrics 66

rationality of the coefficients of the polynomials in a(t) and its derivatives that describe

the general terms a2n in the expansion.

The terms up to a10 were previously computed in [9] using their direct method, where

the terms up to a6 were checked against Gilkey’s universal formulas [17, 18]. The outcome

of our computations confirms the previously computed terms. Thus, we have formed a

check on the terms a8 and a10. In order to confirm our calculation for the term a12, we

have performed a completely different computation in spherical coordinates and checked

its agreement with our calculation in Hopf coordinates. It is worth emphasizing that the

high complexity of the computations, which is overcome by computer assistance, raises

the need to derive the expressions at least in two different ways to ensure their validity.

We have found a formula for the coefficient of the term with the highest derivative

of a(t) in a2n for all n and make the following observation. The polynomials Q2n in

a2n = Q2n

(
a(t), a′(t), . . . , a(2n)(t)

)
/a(t)2n−3 are of the following form up to Q12:

Q2n(x0, x1, . . . , x2n) =
∑

ck x
k0
0 x

k1
1 · · ·x

k2n
2n , ck 6= 0,

where the summation is over all tuples of non-negative integers k = (k0, k1, . . . , k2n) such

that either
∑
kj = 2n while

∑
jkj = 2n, or

∑
kj = 2n− 2 while

∑
jkj = 2n− 2. This

provides enough evidence and hope to shed more light on general structure of the terms

a2n by further investigations, which are under way.
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Chapter 3

The Curvature of the Determinant

Line Bundle on the

Noncommutative Two Torus

3.1 Introduction

In this paper we compute the curvature of the determinant line bundle associated to a

family of Dirac operators on the noncommutative two torus. Following Quillen’s pioneer-

ing work [23], and using zeta regularized determinants, one can endow the determinant

line bundle over the space of Dirac operators on the noncommutative two torus with a

natural Hermitian metric. Our result computes the curvature of the associated Chern

connection on this holomorphic line bundle. In the noncommutative case the method of

proof applied in [23] does not work and we had to use a different strategy. To this end

we found it very useful to extend the canonical trace of Kontsevich-Vishik [16] to the

algebra of pseudodifferential operators on the noncommutative two torus.

This paper is organized as follows. In Section 2 we review some standard facts about

Quillen’s determinant line bundle on the space of Fredholm operators from [23], and

about noncommutative two torus that we need in this paper. In Section 3 we develop

the tools that are needed in our computation of the curvature of the determinant line

bundle in the noncommutative case. We recall Connes’ pseudodifferential calculus and

define an analogue of the Kontsevich-Vishik trace for classical pseudodifferential symbols

70
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on the noncommutative torus. A similar construction of the canonical trace can be found

in [20], where one works with the algebra of toroidal symbols. Section 4 is devoted to

Cauchy-Riemann operators on Aθ with a fixed complex structure. This is the family of

elliptic operators that we want to study its determinant line bundle. In Section 5 using the

calculus of symbols and the canonical trace we compute the curvature of determinant line

bundle. Calculus of symbols and the canonical trace allow us to bypass local calculations

involving Green functions in [23], which is not applicable in our noncommutative case.

The study of the conformal and complex geometry of the noncommutative two torus

started with the seminal work [7] (cf. also [5] for a preliminary version) where a Gauss-

Bonnet theorem is proved for a noncommutative two torus equipped with a conformally

perturbed metric. This result was refined and extended in [10] where the Gauss-Bonnet

theorem was proved for metrics in all translation invariant conformal structures. The

problem of computing the scalar curvature of the curved noncommutative two torus was

fully settled in [6], and, independently, in [11], and in [12] for the four dimensional case.

Other related works include [1, 8, 9, 15, 18, 24].

3.2 Preliminaries

In this section we recall the definition of Quillen’s determinant line bundle over the space

of Fredholm operators. We also recall some basic notions about noncommutative torus

that we need in this paper.

3.2.1 The determinant line bundle

Unless otherwise stated, in this paper by a Hilbert space we mean a separable infinite

dimensional Hilbert space over the field of complex numbers. Let F = Fred(H0,H1)

denote the set of Fredholm operators between Hilbert spaces H0 and H1. It is an open

subset, with respect to norm topology, in the complex Banach space of all bounded linear

operators between H0 and H1. The index map index : F → Z is a homotopy invariant

and in fact defines a bijection between connected components of F and the set of integers

Z.
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It is well known that F is a classifying space for K-theory: for any compact space X

we have a natural ring isomorphism

K0(X) = [X,F ]

between the K-theory of X and the set of homotopy classes of continuous maps from

X to F . In other words, homotopy classes of continuous families of Fredholm operators

parametrized by X determine the K-theory of X. It thus follows that F is homotopy

equivalent to Z × BU , the latter being also a classifying space for K-theory. Let F0

denote the set of Fredholm operators with index zero. By Bott periodicity, π2j(F) ∼= Z
and π2j+1(F) = {0} for j ≥ 0. So by Hurewicz’s theorem, H2(F0, Z) ∼= Z. Now the

determinant line bundle DET defined below has the property that its first Chern class,

c1(DET), is a generator of H2(F0,Z) ∼= Z. We refer to [2, 25] and references therein for

details.

In [23] Quillen defines a line bundle DET→ F such that for any T ∈ F

DETT = Λmax(ker(T ))∗ ⊗ Λmax(coker(T )).

This is remarkable if we notice that ker(T ) and coker(T ) are not vector bundles due

to discontinuities in their dimensions as T varies within F . Let us briefly recall the

construction of this determinant line bundle DET. For each finite dimensional subspace

F of H1 let UF = {T ∈ F1 : Im(T ) + F = H1} denote the set of Fredholm operators

whose range is transversal to F . It is an open subset of F and we have an open cover

F =
⋃
UF .

For T ∈ UF , the exact sequence

0→ ker(T )→ T−1F
T→ F → coker(T )→ 0 (3.1)

shows that the rank of T−1F is constant when T varies within a continuous family in

UF . Thus we can define a vector bundle EF → UF by setting EFT = T−1F. We can then

define a line bundle DETF → UF by setting

DETF
T = Λmax(T−1F )∗ ⊗ ΛmaxF.
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We can use the inner products on H0 and H1 to split the above exact sequence (3.1)

canonically and get a canonical isomorphism ker(T )⊕F ∼= T−1F ⊕ coker(T ). Therefore

Λmax(ker(T ))∗ ⊗ Λmax(coker(T )) ∼= Λmax(T−1F )∗ ⊗ ΛmaxF.

Now over each member of the cover UF a line bundle DETF → UF is defined. Next

one shows that over intersections UF1 ∩ UF2 there is an isomorphism DETF1 → DETF2

and moreover the isomorphisms satisfy a cocycle condition over triple intersections UF1 ∩
UF2 ∩ UF3 . This shows that the line bundles DETF → UF glue together to define a line

bundle over F . It is further shown in [23] that this line bundle is holomorphic as a bundle

over an open subset of a complex Banach space.

It is tempting to think that since c1(DET) is the generator of H2(F0,Z) ∼= Z, there
might exits a natural Hermitian metric on DET whose curvature 2-form would be a

representative of this generator. One problem is that the induced metric from ker(T )

and ker(T ∗) on DET is not even continuous. In [23] Quillen shows that for families

of Cauchy-Riemann operators on a Riemann surface one can correct the Hilbert space

metric by multiplying it by zeta regularized determinant and in this way one obtains

a smooth Hermitian metric on the induced determinant line bundle. In Section 5 we

describe a similar construction for noncommutative two torus.

3.2.2 Noncommutative two torus

For θ ∈ R, the noncommutative two torus Aθ is by definition the universal unital C∗-

algebra generated by two unitaries U, V satisfying

V U = e2πiθUV.

There is a continuous action of T2, T = R/2πZ, on Aθ by C∗-algebra automorphisms

{αs}, s ∈ R2, defined by

αs(U
mV n) = eis.(m,n)UmV n.

The space of smooth elements for this action will be denoted by A∞θ . It is a dense

subalgebra of Aθ which can be alternatively described as the algebra of elements in Aθ
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whose (noncommutative) Fourier expansion has rapidly decreasing coefficients:

A∞θ =

 ∑
m,n∈Z

am,nU
mV n : am,n ∈ S(Z2)

 .

There is a normalized, faithful and positive, trace ϕ0 on Aθ whose restriction on smooth

elements is given by

ϕ0(
∑
m,n∈Z

am,nU
mV n) = a0,0.

The algebra A∞θ is equipped with the derivations δ1, δ2 : A∞θ → A∞θ , uniquely defined

by the relations

δ1(U) = U, δ1(V ) = 0, δ2(U) = 0, δ2(V ) = V.

We have δj(a∗) = −δj(a)∗ for j = 1, 2 and all a ∈ A∞θ . Moreover, the analogue of the

integration by parts formula in this setting is given by:

ϕ0(aδj(b)) = −ϕ0(δj(a)b), ∀a, b ∈ A∞θ .

We apply the GNS construction to Aθ. The state ϕ0 defines an inner product

〈a, b〉 = ϕ0(b∗a), a, b ∈ Aθ,

and a pre-Hilbert structure on Aθ. After completion we obtain a Hilbert space denoted

H0. The derivations δ1, δ2, as densely defined unbounded operators on H0, are formally

selfadjoint and have unique extensions to selfadjoint operators.

We introduce a complex structure associated with a complex number τ = τ1 +

iτ2, τ2 > 0, by defining

∂̄ = δ1 + τδ2, ∂̄
∗ = δ1 + τδ2.

Note that ∂̄ is an unbounded operator on H0 and ∂̄∗ is its formal adjoint. The

analogue of the space of anti-holomorphic 1-forms on the ordinary two torus is defined

to be

Ω0,1
θ =

{∑
a∂̄b , a, b ∈ A∞θ

}
.
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Using the induced inner product from ψ, one can turn Ω0,1
θ into a Hilbert space which

we denote by H0,1.

3.3 The canonical trace and noncommutative residue

In this section we define an analogue of the canonical trace of Kontsevich and Vishik

[16] for the noncommutative torus. Let us first recall the algebra of pseudodifferential

symbols on the noncommutative torus [3, 7].

3.3.1 Pseudodifferential calculus on Aθ

Using operator valued symbols, one can define an algebra of pseudodifferential operators

on A∞θ . We shall use the notation ∂α = ∂α1

∂ξ
α1
1

∂α2

∂ξ
α2
2

, and δα = δα1
1 δα2

2 , for a multi-index

α = (α1, α2).

Definition 3.1. For a real number m, a smooth map σ : R2 → A∞θ is said to be a

symbol of order m, if for all non-negative integers i1, i2, j1, j2,

||δ(i1,i2)∂(j1,j2)σ(ξ)|| ≤ c(1 + |ξ|)m−j1−j2 ,

where c is a constant, and if there exists a smooth map k : R2 → A∞θ such that

lim
λ→∞

λ−mσ(λξ1, λξ2) = k(ξ1, ξ2).

The space of symbols of order m is denoted by Sm(Aθ).

Definition 3.2. To a symbol σ of orderm, one can associate an operator on A∞θ , denoted

by Pσ, given by

Pσ(a) =

∫ ∫
e−is·ξσ(ξ)αs(a) ds dξ.

Here, dξ = (2π)−2dLξ where dLξ is the Lebesgue measure on R2. The operator Pσ is

said to be a pseudodifferential operator of order m.

For example, the differential operator
∑

j1+j2≤m aj1,j2δ
(j1,j2) is associated with the

symbol
∑

j1+j2≤m aj1,j2ξ
j1
1 ξ

j2
2 via the above formula.

Two symbols σ, σ′ ∈ Sm(Aθ) are said to be equivalent if and only if σ−σ′ ∈ Sn(Aθ)
for all integers n. The equivalence of the symbols will be denoted by σ ∼ σ′.
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Let P and Q be pseudodifferential operators with the symbols σ and σ′ respectively.

Then the adjoint P ∗ and the product PQ are pseudodifferential operators with the

following symbols

σ(P ∗) ∼
∑

`=(`1,`2)≥0

1

`!
∂`δ`(σ(ξ))∗,

σ(PQ) ∼
∑

`=(`1,`2)≥0

1

`!
∂`(σ(ξ))δ`(σ′(ξ)).

Definition 3.3. A symbol σ ∈ Sm(Aθ) is called elliptic if σ(ξ) is invertible for ξ 6= 0,

and for some c

||σ(ξ)−1|| ≤ c(1 + |ξ|)−m,

for large enough |ξ|.

A smooth map σ : R2 → Aθ is called a classical symbol of order α ∈ C if for any N

and each 0 ≤ j ≤ N there exist σα−j : R2\{0} → Aθ positive homogeneous of degree

α− j, and a symbol σN ∈ S<(α)−N−1(Aθ), such that

σ(ξ) =

N∑
j=0

χ(ξ)σα−j(ξ) + σN (ξ) ξ ∈ R2. (3.2)

Here χ is a smooth cut off function on R2 which is equal to zero on a small ball around the

origin, and is equal to one outside the unit ball. It can be shown that the homogeneous

terms in the expansion are uniquely determined by σ. We denote the set of classical

symbols of order α by Sαcl(Aθ) and the associated classical pseudodifferential operators

by Ψα
cl(Aθ).

The space of classical symbols Scl(Aθ) is equipped with a Fréchet topology induced

by the semi-norms

pα,β(σ) = sup
ξ∈R2

(1 + |ξ|)−m+|β|||δα∂βσ(ξ)||. (3.3)

The analogue of the Wodzicki residue for classical pseudodifferential operators on the

noncommutative torus is defined in [13].

Definition 3.4. The Wodzicki residue of a classical pseudodifferential operator Pσ is

defined as

Res(Pσ) = ϕ0 (res(Pσ)) ,

where res(Pσ) :=
∫
|ξ|=1 σ−2(ξ)dξ.
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It is evident from its definition that Wodzicki residue vanishes on differential operators

and on non-integer order classical pseudodifferential operators.

3.3.2 The canonical trace

In what follows, we define the analogue of Kontsevich-Vishik trace [16] on non-integer

order pseudodifferential operators on the noncommutative torus. For an alternative

approach based on toroidal noncommutative symbols see [20]. For a thorough review of

the theory in the classical case we refer to [19, 22]. First we show the existence of the so

called cut-off integral for classical symbols.

Proposition 3.5. Let σ ∈ Sαcl(Aθ) and B(R) be the ball of radius R around the origin.

One has the following asymptotic expansion

∫
B(R)

σ(ξ)dξ ∼R→∞
∞∑

j=0,α−j+26=0

αj(σ)Rα−j+2 + β(σ) logR+ c(σ),

where β(σ) =
∫
|ξ|=1 σ−2(ξ)dξ and the constant term in the expansion, c(σ), is given by

∫
Rn
σN +

N∑
j=0

∫
B(1)

χ(ξ)σα−j(ξ)dξ −
N∑

j=0,α−j+26=0

1

α− j + 2

∫
|ξ|=1

σα−j(ω)dω. (3.4)

Here we have used the notation of (3.2).

Proof. First, we write σ(ξ) =
∑N

j=0 χ(ξ)σα−j(ξ) + σN (ξ) with large enough N , so that

σN is integrable. Then we have,

∫
B(R)

σ(ξ)dξ =

N∑
j=0

∫
B(R)

χ(ξ)σα−j(ξ)dξ +

∫
B(R)

σN (ξ)dξ. (3.5)

For N > α+ 1, σN ∈ L1(R2,Aθ), so∫
B(R)

σN (ξ)dξ →
∫
R2

σN (ξ)dξ, R→∞.

Now for each j ≤ N we have∫
B(R)

χ(ξ)σα−j(ξ)dξ =

∫
B(1)

χ(ξ)σα−j(ξ)dξ +

∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ.
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Obviously
∫
B(1) χ(ξ)σα−j(ξ)dξ < ∞ and by using polar coordinates ξ = rω, and homo-

geneity of σα−j , we have

∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ =

∫ R

1
rα−j+2−1dr

∫
|ξ|=1

σα−j(ξ)dξ. (3.6)

Note that the cut-off function is equal to one on the set R2\B(1). For the term with

α− j = −2 one has∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ = logR

∫
|ξ|=1

σα−j(ξ)dξ.

The terms with α− j 6= −2 will give us the following:∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ = (3.7)

Rα−j+2

m− j + 2

∫
|ξ|=1

σα−j(ξ)dξ −
1

α− j + 2

∫
|ξ|=1

σα−j(ξ)dξ.

Adding all the constant terms in (3.5)-(3.7), we get the constant term given in (3.4).

Definition 3.6. The cut-off integral of a symbol σ ∈ Sαcl(Aθ) is defined to be the constant

term in the above asymptotic expansion, and we denote it by
∫
−σ(ξ)dξ.

Remark 3.7. Two remarks are in order here. First note that the cut-off integral of a

symbol is independent of the choice of N . Second, it is also independent of the choice of

the cut-off function χ.

We now give the definition of the canonical trace for classical pseudodifferential op-

erators on Aθ.

Definition 3.8. The canonical trace of a classical pseudodifferential operator P ∈
Ψα
cl(Aθ) of non-integral order α is defined as

TR(P ) := ϕ0

(∫
−σP (ξ)dξ

)
.

In the following, we establish the relation between the TR-functional and the usual

trace on trace-class pseudodifferential operators. Note that any pseudodifferential op-

erator P of order less that −2, is a trace-class operator on H0 and its trace is given

by

Tr(P ) = ϕ0

(∫
R2

σP (ξ)dξ

)
.
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On the other hand, for such operator the symbol is integrable and we have∫
−σP (ξ) =

∫
R2

σP (ξ)dξ. (3.8)

Therefore, the TR-functional and operator trace coincide on classical pseudodifferential

operators of order less than −2.

Next, we show that the TR-functional is in fact an analytic continuation of the

operator trace and using this fact we can prove that it is actually a trace.

Definition 3.9. A family of symbols σ(z) ∈ Sα(z)
cl (Aθ), parametrized by z ∈W ⊂ C, is

called a holomorphic family if

i) The map z 7→ α(z) is holomorphic.

ii) The map z 7→ σ(z) ∈ Sα(z)
cl (Aθ) is a holomorphic map fromW to the Fréchet space

Scl(Anθ ).

iii) The map z 7→ σ(z)α(z)−j is holomorphic for any j, where

σ(z)(ξ) ∼
∑
j

χ(ξ)σ(z)α(z)−j(ξ) ∈ S
α(z)
cl (Aθ). (3.9)

iv) The bounds of the asymptotic expansion of σ(z) are locally uniform with respect to

z, i.e, for any N ≥ 1 and compact subset K ⊂W , there exists a constant CN,K,α,β
such that for all multi-indices α, β we have∣∣∣∣∣∣

∣∣∣∣∣∣δα∂β
σ(z)−

∑
j<N

χσ(z)α(z)−j

 (ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣ < CN,K,α,β |ξ|<(α(z))−N−|β|.

A family {Pz} ∈ Ψcl(Aθ) is called holomorphic if Pz = Pσ(z) for a holomorphic family

of symbols {σ(z)}.

The following Proposition is an analogue of a result of Kontsevich and Vishik[16], for

pseudodifferential calculus on noncommutative tori.

Proposition 3.10. Given a holomorphic family σ(z) ∈ Sα(z)
cl (Aθ), z ∈W ⊂ C, the map

z 7→
∫
−σ(z)(ξ)dξ,
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is meromorphic with at most simple poles located in

P = {z0 ∈W ; α(z0) ∈ Z ∩ [−2,+∞]} .

The residues at poles are given by

Resz=z0

∫
−σ(z)(ξ)dξ = − 1

α′(z0)

∫
|ξ|=1

σ(z0)−2dξ.

Proof. By definition, one can write σ(z) =
∑N

j=0 χ(ξ)σ(z)α(z)−i(ξ) + σ(z)N (ξ), and by

Proposition 3.5 we have,

∫
−σ(z)(ξ)dξ =

∫
R2

σ(z)N (ξ)dξ +

N∑
j=0

∫
B(1)

χ(ξ)σ(z)α(z)−j(ξ)

−
N∑
j=0

1

α(z) + 2− j

∫
|ξ|=1

σ(z)α(z)−j(ξ)dξ.

Now suppose α(z0) + 2 − j0 = 0. By holomorphicity of σ(z), we have α(z) − α(z0) =

α′(z0)(z − z0) + o(z − z0). Hence

Resz=z0

∫
−σ(z) =

−1

α′(z0)

∫
|ξ|=1

σ(z0)−2(ξ)dξ.

Corollary 3.11. The functional TR is the analytic continuation of the ordinary trace

on trace-class pseudodifferential operators.

Proof. First observe that, by the above result, for a non-integer order holomorphic

family of symbols σ(z), the map z 7→
∫
−σ(z)(ξ)dξ is holomorphic. Hence, the map

σ 7→
∫
−σ(ξ)dξ is the unique analytic continuation of the map σ 7→

∫
R2 σ(ξ)dξ from

S<−2
cl (Aθ) to S /∈Zcl (Aθ). By (3.8) we have the result.

Let Q ∈ Ψq
cl(Aθ) be a positive elliptic pseudodifferential operator of order q > 0. The

complex power of such an operator, Qzφ, for <(z) < 0 can be defined by the following

Cauchy integral formula.

Qzφ =
i

2π

∫
Cφ

λzφ(Q− λ)−1dλ. (3.10)
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Here λzφ is the complex power with branch cut Lφ = {reiφ, r ≥ 0} and Cφ is a contour

around the spectrum of Q such that

Cφ ∩ spec(Q)\{0} = ∅, Lφ ∩ Cφ = ∅,

Cφ ∩ {spec(σ(Q)L(ξ)), ξ 6= 0} = ∅.

In general an operator for which one can find a ray Lφ with the above property, is called

an admissible operator with the spectral cut Lφ. Positive elliptic operators are admissible

and we take the ray Lπ as the spectral cut, and in this case we drop the index φ and

write Qz.

To extend (3.10) to <(z) > 0 we choose a positive integer such that <(z) < k and

define

Qzφ := QkQz−kφ .

It can be proved that this definition is independent of the choice of k.

Corollary 3.12. Let A ∈ Ψα
cl(Aθ) be of order α ∈ Z and let Q be a positive elliptic

classical pseudodifferential operator of positive order q. We have

Resz=0TR(AQ−z) =
1

q
Res(A).

Proof. For the holomorphic family σ(z) = σ(AQ−z), z = 0 is a pole for the map z 7→∫
−σ(z)(ξ)dξ whose residue is given by

Resz=0

(
z 7→

∫
−σ(z)(ξ)dξ

)
= − 1

α′(0)

∫
|ξ|=1

σ−2(0)dξ = − 1

α′(0)
res(A).

Taking trace on both sides gives the result.

Now we can prove the trace property of TR-functional.

Proposition 3.13. We have TR(AB) = TR(BA) for any A,B ∈ Ψcl(Aθ), provided that

ord(A) + ord(B) /∈ Z.

Proof. Consider the families Az = AQz and Bz = BQz where Q is an injective positive

elliptic classical operator of order q > 0. For <(z) << 0, the two families are trace class

and Tr(AzBz) = Tr(BzAz). By the uniqueness of the analytic continuation, we have

TR(AzBz) = TR(BzAz),
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for those z for which 2qz + ord(A) + ord(B) 6∈ Z. At z = 0, we obtain Tr(AB) =

TR(BA).

3.3.3 Log-polyhomogeneous symbols

Proposition 3.10 can be extended and one can explicitly write down the Laurent ex-

pansion of the cut-off integral around each of the poles. The terms of the Laurent

expansion involve residue densities of z-derivatives of the holomorphic family. In gen-

eral, z-derivatives of a classical holomorphic family of symbols is not classical anymore

and therefore we introduce log-polyhomogeneous symbols which include the z-derivatives

of the symbols of the holomorphic family σ(AQ−z).

Definition 3.14. A symbol σ is called a log-polyhomogeneous symbol if it has the

following form

σ(ξ) ∼
∑
j≥0

∞∑
l=0

σα−j,l(ξ) logl |ξ| |ξ| > 0, (3.11)

with σα−j,l positively homogeneous in ξ of degree α− j.

An important example of an operator with such a symbol is logQ where Q ∈ Ψq
cl(Aθ)

is a positive elliptic pseudodifferential operator of order q > 0. The logarithm of Q can

be defined by

logQ = Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C
λz−1(Q− λ)−1dλ.

It is a pseudodifferential operator with symbol

σ(logQ) ∼ σ(Q) ? σ
( d

dz

∣∣∣∣
z=0

Qz−1
)
, (3.12)

where ? denotes the products of the pseudodifferential symbols. Using symbol calculus

and homogeneity properties, we can show that (3.12) is a log-homogeneous symbol of

the form

σ(logQ)(ξ) = 2 log |ξ|I + σcl(logQ)(ξ),

where σcl(logQ) is a classical symbol of order zero. This symbol can be computed using

the homogeneous parts of the classical symbol σ(Qz) =
∑∞

j=0 b(z)2z−j(ξ) and it is given
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by the following formula (see e.g. [19]).

σcl(logQ)(ξ) = (3.13)
∞∑
k=0

∑
i+j+|α|=k

1

α!
∂ασ2−i(Q)δα

[
|ξ|−2−j d

dz

∣∣∣∣
z=0

b(z − 1)2z−2−j (ξ/|ξ|)
]
.

TheWodzicki residue can also be extended to this class of pseudodifferential operators

[17]. For an operator A with log-polyhomogeneous symbol as (3.11) it can be defined by

res(A) =

∫
|ξ|=1

σ−2,0(ξ)dξ.

By adapting the proof of Theorem 1.13 in [22] to the noncommutative case, we have

the following theorem which is written only for the families of the form σ(AQ−z) which

we will use in Section 3.5.

Proposition 3.15. Let A ∈ Ψα
cl(Aθ) and Q be a positive , in general an admissible,

elliptic pseudodifferential operator of positive order q. If α ∈ P then 0 is a possible simple

pole for the function z 7→ TR(AQ−z) with the following Laurent expansion around zero.

TR(AQ−z) =
1

q
Res(A)

1

z

+ ϕ0

(∫
−σ(A)− 1

q
res(A logQ)

)
− Tr(AΠQ)

+
K∑
k=1

(−1)k
(z)k

k!

×
(
ϕ0

(∫
−σ(A(logQ)k)dξ − 1

q(k + 1)
res(A(logQ)k+1)

)
− Tr(A logkQΠQ)

)
+ o(zK).

Where ΠQ is the projection on the kernel of Q.

For operators A and Q as in the previous Proposition, we define a zeta function by

ζ(A,Q, z) = TR(AQ−z). (3.14)

By Corollary 3.11, it is obvious that ζ(A,Q, z) is the analytic continuation of the zeta

function Tr(AQ−z) defined by the regular trace only for <(z) >> 0.
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Remark 3.16. If A is a differential operator, the zeta function (3.14) is holomorphic at

z = 0 with the value equal to

ϕ0

(∫
−σ(A)− 1

q
res(A logQ)

)
− Tr(AΠQ).

3.4 Cauchy-Riemann operators on noncommutative tori

In [23], Quillen studies the geometry of the determinant line bundle on the space of

all Cauchy-Riemann operators on a smooth vector bundle on a closed Riemann surface.

To investigate the same notion on noncommutative tori, we first briefly recall some

basic facts in the classical case on how Cauchy-Riemann operators are related to Dirac

operators and spectral triples. Then by analogy we define our Cauchy-Riemann operator

on Aθ, and consider the spectral triples defined by them.

Let M be a compact complex manifold and V be a smooth complex vector bundle

on M . Let Ωp,q(M,V ) denote the space of (p, q) forms on M with coefficients in V . A

∂̄-flat connection on V is a C-linear map D : Ω0,0(M,V ) → Ω0,1(M,V ), such that for

any f ∈ C∞(M) and u ∈ Ω0,0(M,V ),

D(fu) = (∂̄f)⊗ u+ fDu, (3.15)

and D2 = 0. Here to define D2, note that any ∂̄-connection as above has a unique

extension to an operator D : Ωp,q(M,V )→ Ωp,q+1(M,V ), defined by

D(α⊗ β) = ∂̄α⊗ u+ (−1)p+qα ∧Du, α ∈ Ωp,q(M), u ∈ C∞(V ).

We refer to ∂̄-flat connections as Cauchy-Riemann operators. A holomorphic vector

bundle V has a canonical Cauchy-Riemann operator ∂̄V : Ω0(M,V ) → Ω0,1(M,V ),

whose extension to Ω0,∗(M,V ) forms the Dolbeault complex of M with coefficients in V .

In fact there is a one-one correspondence between Cauchy-Riemann operators on V up

to (gauge) equivalence, and holomorphic structures on V . We denote by A the set of all

Cauchy-Riemann operators on V .

Any holomorphic structure on a Hermitian vector bundle V determines a unique

Hermitian connection, called the Chern connection, whose projection on (0, 1)-forms,

∇0,1(M,V ), is the Cauchy-Riemann operator coming from the holomorphic structure.
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Now, if M is a Kähler manifold, the tensor product of the Levi-Civita connection for

M with the Chern connection on V defines a Clifford connection on the Clifford module

(Λ0,+ ⊕Λ0,−)⊗ V and the operator D0 =
√

2(∂̄V + ∂̄∗V ) is the associated Dirac operator

(see e.g. [14]). Any other Dirac operator on the Clifford module (Λ0,+ ⊕ Λ0,−)⊗ V is of

the form D0 + A where A is the connection one form of a Hermitian connection. This

connection need not be a Chern connection. However, on a Riemann surface (with a

Riemannian metric compatible with its complex structure) any Hermitian connection on

a smooth Hermitian vector bundle is the Chern connection of a holomorphic structure

on V . Therefore, the positive part of any Dirac operator on (Λ0,0 ⊕ Λ0,1) ⊗ V is a

Cauchy-Riemann operator, and this gives a one to one correspondence between all Dirac

operators and the set of all Cauchy-Riemann operators.

Next we define the analogue of Cauchy-Riemann operators for the noncommutative

torus. First, following [7, 10], we fix a complex structure on Aθ by a complex number τ

in the upper half plane and construct the spectral triple

(Aθ,H0 ⊕H0,1, D0 =

(
0 ∂̄∗

∂̄ 0

)
), (3.16)

where ∂̄ : Aθ → Aθ is given by ∂̄ = δ1 + τδ2. The Hilbert space H0 is obtained by GNS

construction from Aθ using the trace ϕ0 and ∂̄∗ is the adjoint of the operator ∂̄.

As in the classical case, we define our Cauchy-Riemann operators onAθ as the positive
part of twisted Dirac operators. All such operators define spectral triples of the form

(Aθ,H0 ⊕H0,1, DA =

(
0 ∂̄∗ + α∗

∂̄ + α 0

)
),

where α ∈ Aθ is the positive part of a selfadjoint element

A =

(
0 α∗

α 0

)
∈ Ω1

D0
(Aθ).

We recall that Ω1
D0

(Aθ) is the space of quantized one forms consisting of the elements∑
ai[D0, bi] where ai, bi ∈ Aθ [4]. Note that the in this case, the space A of Cauchy-

Riemann operators is the space of (0, 1)-forms on Aθ.

We should mention that in the noncommutative case, in the work of Chakraborty and

Mathai [2] a general family of spectral triples is considered and, under suitable regularity
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conditions, a determinant line bundle is defined for such families. The curvature of the

determinant line bundle however is not computed and that is the main object of study

in the present paper, as well as in [23].

3.5 The curvature of the determinant line bundle for Aθ

For any α ∈ A, the Cauchy-Riemann operator

∂̄α = ∂̄ + α : H0 → H0,1

is a Fredholm operator. We pull back the determinant line bundle DET on the space

of Fredholm operators Fred(H0,H0,1), to get a line bundle L on A. Following Quillen

[23], we define a Hermitian metric on L and compute its curvature in this section. Let

us define a metric on the fiber

Lα = Λmax(ker ∂̄α)∗ ⊗ Λmax(ker ∂̄∗α).

as the product of the induced metrics on Λmax(ker ∂̄α)∗, Λmax(ker ∂̄∗α), with the zeta

regularized determinant e−ζ
′
∆α

(0). Here we define the Laplacian as ∆α = ∂̄∗α∂̄α : H0 →
H0, and its zeta function by

ζ(z) = TR(∆−zα ).

It is a meromorphic function and by Remark 3.16 it is regular at z = 0 . Similar proof

as in [23] shows that this defines a smooth Hermitian metric on L.

On the open set of invertible operators each fiber of L is canonically isomorphic to C
and the nonzero holomorphic section σ = 1 gives a trivialization. Also, according to the

definition of the Hermitian metric, the norm of this section is given by

‖σ‖2 = e−ζ
′
∆α

(0). (3.17)

3.5.1 Variations of LogDet and curvature form

We begin by explaining the motivation behind the computations of Quillen in [23]. Recall

that a holomorphic line bundle equipped with a Hermitian inner product has a canonical
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connection compatible with the two structures. This is also known as the Chern connec-

tion. The curvature form of this connection is computed by ∂̄∂ log ‖σ‖2, where σ is any

non-zero local holomorphic section.

In our case we will proceed by analogy and compute the second variation ∂̄∂ log ‖σ‖2

on the open set of invertible index zero Cauchy-Riemann operators. Let us consider a

holomorphic family of invertible index zero Cauchy-Riemann operators Dw = ∂̄ + αw,

where αw depends holomorphically on the complex variable w and compute

δw̄δwζ
′
∆(0).

One has the following first variational formula,

δwζ(z) = δwTR(∆−z) = TR(δw∆−z) = −zTR(δw∆∆−z−1),

where in the second equality we were able to change the order of δw and TR because of

the uniformity condition in the definition of holomorphic families (cf. [21]).

Note that, although TR(∆−z) is regular at z = 0, TR(δw∆∆−z−1) might have a pole

at z = 0 since δw∆∆−z−1|z=0 = δw∆∆−1 is not a differential operator any more and

may have non-zero residue. Around z = 0 one has the following Laurent expansion:

−zTR(δw∆∆−z−1) = −z(a−1

z
+ a0 + a1z + · · · ).

Hence,

δwζ(z)|z=0 = −a−1,
d

dz
δwζ(z)

∣∣∣∣
z=0

= −a0.

Using Proposition 3.15 we have

δwζ
′(0) =

d

dz
δwζ(z)

∣∣∣∣
z=0

= −ϕ0

(∫
−σ(δw∆∆−1)− 1

2
resx(δw∆∆−1 log ∆)

)
.

To compute the right hand side of the above equality, we need to note that since Dw

depends holomorphically on w, δwD∗ = 0 and hence

δw∆ = δwD
∗D +D∗δwD = D∗δwD.
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Since δwD is a zero order differential operator, we have

δwζ
′(0) = −ϕ0

(∫
−σ(D∗δwD∆−1)− 1

2
res(D∗δwD∆−1 log ∆)

)
= −ϕ0

(∫
−σ(δwD∆−1D∗)− 1

2
res(δwD log ∆ ∆−1D∗)

)
= −ϕ0

(
δwD

(∫
−σ(D−1)− 1

2
res(log ∆D−1)

))
= −ϕ0 (δwDJ) ,

where

J =

∫
−σ(D−1)− 1

2
res(log(∆)D−1).

The reader can compare this to the term J in Quillen’s computations [23].

Now we compute the second variation δw̄δwζ ′(0). Since Dw is holomorphic we have

δw̄δwζ
′(0) = −ϕ0 (δwDδw̄J) .

Next we compute the variation δw̄J . Note that since Dw is invertible, D−1
w is also

holomorphic and hence δw̄
∫
−σ(D−1) = 0. Therefore

δw̄J = δw̄

(∫
−σ(D−1)− 1

2
res(log ∆D−1)

)
= −1

2
δw̄res(log ∆D−1).

Thus, we have shown that

Lemma 3.17. For the holomorphic family of Cauchy-Riemann operators Dw, the second

variation of ζ ′(0) reads:

δw̄δwζ
′(0) =

1

2
ϕ0

(
δwDδw̄res(log ∆D−1)

)
.

Our next goal is to compute δw̄res(log ∆D−1). This combined with the above lemma

shows that the curvature form of the determinant line bundle equals the Kähler form on

the space of connections.
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Lemma 3.18. With above definitions and notations, we have

σ−2,0(log ∆D−1) =
(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2

(ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)(ξ1 + τξ2)

− log

(
ξ2

1 + 2<(τ)ξ1ξ2 + |τ |2ξ2
2

|ξ|2

)
α

ξ1 + τξ2
,

and

δw̄res(log(∆)D−1) =
1

2π=(τ)
(δwD)∗.

Proof. By writing down the homogeneous terms in the expansion of σ•,0(log ∆) and

σ(D−1) and using the product formula of the symbols we see that

σ−2,0(log ∆D−1) ∼ σ−1,0(log ∆)σ−1(D−1) + σ0,0(log ∆)σ−2(D−1).

Starting with the symbol of ∆, we have

σ(∆) = ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2 + (α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2 + ∂̄∗(α).

Then, the homogeneous parts of σ((λ − ∆)−1) =
∑

j b−2−j is given by the following

recursive formula

b−2 = (λ− σ2(∆))−1,

b−2−j = −b−2

∑
k+l+|γ|=j, l<j

∂γσ2−k(∆)δγb−2−l/γ!,

which gives us

b−2 =
1

λ− (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)
,

and

b−3 =
1

(λ− (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2))2
((α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2) .

Also, ∆z is a classical operator defined by

∆z =
1

2πi

∫
C
λz(λ−∆)−1dλ,



The Curvature of the Determinant Line Bundle on the Noncommutative Two Torus 90

with the homogeneous parts of the symbol given by

b(z)2z−j := σ2z−j(∆
z) =

1

2πi

∫
C
λzb−2−jdλ.

Hence we have

b(z)2z =
1

2πi

∫
C
λz

1

λ− (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)
dλ

= (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)z

b(z)2z−1 =
1

2πi

∫
C
λz

((α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2)

(λ− (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2))2
dλ

= z(ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2))z−1 ((α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2) .

Using (3.13) and what we have computed up to here, it is clear that

σ0,0(log ∆)(ξ) = σ2(∆)|ξ|−2 d

dz

∣∣∣∣
z=0

b(z − 1)2z−2 (ξ/|ξ|)

= σ2(∆)|ξ|−2 d

dz

∣∣∣∣
z=0

((ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)/|ξ|2)z−1

= log((ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)/|ξ|2).
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Note that the above term is homogeneous of order zero in ξ.

σ−1,0(log ∆)(ξ)

=
∑

i+j+|α|=1

1

α!
∂ασ2−i(∆)δα|ξ|−2−j d

dz

∣∣∣∣
z=0

b(z − 1)2z−2−j (ξ/|ξ|)

= σ2(∆)|ξ|−3 d

dz

∣∣∣∣
z=0

b(z − 1)2z−3 (ξ/|ξ|)

+ σ1(∆)|ξ|−2 d

dz

∣∣∣∣
z=0

b(z − 1)2z−2 (ξ/|ξ|)

=
1− log(ξ2

1 + 2<(τ)ξ1ξ2 + |τ |2ξ2
2)/|ξ|2)

(ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)
[(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2]

+
log(ξ2

1 + 2<(τ)ξ1ξ2 + |τ |2ξ2
2)/|ξ|2)

ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2

[(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2]

= (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)−1 [(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2] .

Next we compute the symbol of D−1. The symbol of D reads

σ(D) = ξ1 + τξ2 + α.

We need to compute the homogeneous parts of order -1 and -2 of D−1. By using recursive

formula for the symbol of the inverse we get:

σ−1(D−1) = σ1(D)−1 = (ξ1 + τξ2)−1

σ−2(D−1) = −σ−1(D−1)
∑

k+|γ|=1

∂γσ1−k(D)δγσ−1(D−1)/γ!

= −σ−1(D−1)2σ0(D)

= −(ξ1 + τξ2)−2α.
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Finally, we have

σ−2,0(log ∆D−1) = σ−1,0(log ∆)σ−1(D−1) + σ0,0(log ∆)σ−2(D−1)

= (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)−1(ξ1 + τξ2)−1 [(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2]

− log((ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)/|ξ|2)(ξ1 + τξ2)−2α.

Therefore, we compute the variation:

δw̄σ−2,0(log ∆D−1) = (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)−1 [(δw̄α
∗)ξ1 + (τδw̄α

∗)ξ2] (ξ1 + τξ2)−1

= (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)−1(δw̄α
∗)

= (ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)−1(δwD)∗. (3.18)

In order to compute the variation of the residue density, we need to integrate (3.18) with

respect to ξ variable:

δw̄res(log(∆)D−1) =

∫
|ξ|=1

(ξ2
1 + 2<(τ)ξ1ξ2 + |τ |2ξ2

2)−1(δwD)∗dξ =
1

2π=(τ)
(δwD)∗.

Note that we have used the normalized Lebesgue measure in the last integral (see (3.2)).

We record the main result of this paper in the following theorem. It computes the

curvature of the determinant line bundle in terms of the natural Kähler form on the

space of connections.

Theorem 3.19. The curvature of the determinant line bundle for the noncommutative

two torus is given by

δw̄δwζ
′(0) =

1

4π=(τ)
ϕ0 (δwD(δwD)∗) . (3.19)

Remark 3.20. In order to recover the classical result of Quillen for θ = 0, we have to take

into account the change of the volume form due to a change of the metric. This means

we have to multiply the above result by =(τ).
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Chapter 4

Spectral action of the Berger

spheres S3(T )

4.1 Introduction

The spectral action is a tool to extract geometric information of a spectral triple, which is

a generalization of space in the sense of noncommutative geometry. The spectral action

is an effective method to find spectral formulation of the action functional for physical

models through the geometry of a carefully chosen spectral triple [4, 7]. The spectral

action of a spectral triple (A,H, D) is defined by

Trf(D/Λ), (4.1)

where f is an even positive real valued function and Λ is a positive number which is called

the mass scale. The asymptotic expansion of the spectral action as Λ → ∞ is closely

related to the asymptotic expansion of the heat trace Tr(e−tD
2
) [8, Theorem 1.145].

There are different techniques to compute the asymptotic expansion of the spectral

action. The universal formula for the heat trace coefficients is an effective method.

However, the formulas are only for the Laplace type operators and computed up to

the tenth term [10, 11, 20]. The method of pseudodifferential operators, with all its

difficulties in the computations, is another method that can be applied for any positive

operator with positive principal symbol and also can compute higher asymptotic terms.

95
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Moreover, this method is effective when one wants to prove a general fact about the

terms (see e.g. [9]).

To apply the above methods there is no need to compute even a single eigenvalue of

D, knowing the symbol of the operator in local charts is enough. For the cases that the

explicit spectrum of the Dirac operator is available, one can apply numeric formulas to

approximate
∑

λ∈specD f(λ/Λ) in terms of powers of Λ. In [5], the Poisson summation

formula is used to compute the spectral action of the round 3-sphere. The spectral

action of the homogeneous space SU(2)/Γ, where Γ is a finite subgroup of SU(2), is also

computed by the Poisson summation formula in [19].

The Euler-Maclaurin summation is another important tool from numerical analysis

that can be used in spectral action computations. This formula was discovered indepen-

dently by Euler and Maclaurin in the eighteenth century. Further historical notes can

be find in [16, 17].

Let f ∈ C2m([a, b]); then

b∑
n=a

g(n) =

∫ b

a
g(x) dx+

1

2
(g(b) + g(a)) +

m∑
j=2

Bj
j!

(
g(j−1)(b)− g(j−1)(a)

)
− Rm(g, a, b), (4.2)

where the remainder is given by Rm(g, a, b) = (−1)m

m!

∫ b
a Bm({x})g(m)(x)dx and {x} de-

notes the fractional part of x, i.e., x − [x]. Here, Bm(x) are the Bernoulli polynomials

which are defined by the coefficients of the following power series:

zezx

ez − 1
=

∞∑
m=0

Bm(x)zn

m!
.

The Bernoulli number Bm is the value of the Bernoulli polynomial Bm(x) at x = 0. In

this notation, B1 = −1
2 and B2n+1 = 0 for any n ≥ 1 and

B2 =
1

6
, B4 =

1

30
, B6 =

1

42
, B8 = − 1

30
, · · · .

The spectral action of the 4-sphere and SU(3) are computed using the Euler-Maclaurin

summation formula in [6] and [15], respectively. Both the Poisson and Euler-Maclaurin

summation formulas are very effective methods in computing the non-perturbative ver-

sion of the spectral action, and the forms of the eigenvalues are important in determining
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which method can be used. For instance, if the eigenvalues of the Dirac operator, ±h(k),

and their multiplicities, P (k), are polynomials in k, then the Euler-Maclaurin formula

can be applied to the summation
∑

k P (k)f(h(k)2/Λ2) to compute the spectral action.

In this work we use the Euler-Maclaurin formula to compute the spectral action of a

Dirac operator D′ = D+T/2, where D is the Dirac operator of the Berger sphere S3(T ).

4.2 Berger Spheres S3(T )

For T > 0, the Berger 3-sphere S3(T ), introduced by Marcel Berger [3], is a homogeneous

Riemannian manifold which is homeomorphic to the 3-sphere S3 and equipped with a

homogeneous Riemannian metric, denoted by gT . To define the metric gT , let’s first

identify S3 and the Lie group SU(2) by the map

(z, w) ∈ S3 ⊂ C2 7→

(
z w

−w̄ z̄

)
.

Then, for a fix parameter T > 0, the Berger metric gT is the SU(2)-invariant metric

induced from the inner product on su(2) with respect to which the following basis is

orthonormal:

X1 =

(
0 i

i 0

)
, X2 =

(
0 −1

1 0

)
, X3 =

1

T

(
i 0

0 −i

)
. (4.3)

The Berger metric gT on S3 ⊂ R4 is given by

gT = θ1 ⊗ θ1 + θ2 ⊗ θ + T 2θ3 ⊗ θ3. (4.4)

Here θk = Y [
k , where [ is the musical isomorphism with respect to the standard round

metric on S3 and the vector fields {Yk} are given by

Y1 = −x3 ∂

∂x1
+ x4 ∂

∂x2
+ x1 ∂

∂x3
− x2 ∂

∂x4

Y2 = x4 ∂

∂x1
+ x3 ∂

∂x2
− x2 ∂

∂x3
− x1 ∂

∂x4

Y3 = −x2 ∂

∂x1
+ x1 ∂

∂x2
− x4 ∂

∂x3
+ x3 ∂

∂x4
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In the Hopf coordinates, i.e.

x1 = cosϕ1 sin(η), x2 = sinϕ1 sin η, x3 = cosϕ2 sin η, x4 = sinϕ2 sin η,

with η ranging in [0, π/2) and φ1, φ2 ranging in [0, 2π), the direct computation shows

that the Berger metric tensor is given by

gT = dη2 + sin2 η(cos2 η + T 2 sin2 η)dϕ2
1 + cos2 η(sin2 η + T 2 cos2 η)dϕ2

2

+ 2(T 2 − 1) sin2 η cos2 ηdϕ1dϕ2. (4.5)

It is easy to check that, for instance, the scalar curvature of S3(T ) is constant and equal

to R = 8 − 2T 2, or the volume form is dvolgT = T sin(η) cos(η)dηdϕ1dϕ2. Hence, the

volume of the Berger sphere S3(T ) is given by

∫ π/2

0

∫ 2π

0

∫ 2π

0
T sin(η) cos(η)dηdϕ1dϕ2 = 2π2T. (4.6)

The spin structures and the Dirac operators on the Berger spheres are studied in

[2]. The author uses the representation theory of SU(2) and explicitly computes the

eigenvalues of the Dirac operator and their multiplicities, which are given below.

Eigenvalue Multiplicity
−n+1

T −
T
2 2(n+ 1) n = 0, 1, 2, . . .

−T
2 ±

(
c(n− 2l − 1)2 + (n+ 1)2

)1/2
n+ 1

n = 1, 2, 3, · · ·
l = 0, 1, · · · , n− 1,

where c =
(

1
T 2 − 1

)
. We shall work with D′ = D + T/2 rather than D itself. The

eigenvalues of (D′)2 then are given by

Eigenvalue Multiplicity

c(n− 2l − 1)2 + (n+ 1)2 2(n+ 1)
n = 0, 1, 2, . . . ,
l = 0, 1, . . . , n.

4.3 Spectral action of D′

In this section we apply the Euler-Maclaurin summation formula to compute the asymp-

totic expansion of the spectral action Tr f
(
(D′/Λ)2

)
in powers of Λ. Let k be an even pos-

itive Schwartz class function on R. Moreover, let f be a function such that k(x) = f(x2).
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Then we have

Trk
(
D′/Λ

)
= Trf

(
(D′/Λ)2

)
=
∞∑
n=0

2(n+ 1)
n∑
l=0

f
((n+ 1)2 + c(n− 2l − 1)2

Λ2

)
=

∞∑
n=0

2n

n∑
l=0

f
(n2 + c(n− 2l)2

Λ2

)
−
∞∑
n=0

2nf
(c+ 1

Λ2
n2
)
.

Let us first define fn(x) := f
(
n2+c(n−2x)2

Λ2

)
; then we can approximate

∑n
l=0 fn(l),

which is the inner summation, by the Euler-Maclaurin formula as follows:

n∑
l=0

f

(
n2 + c(n− 2l)2

Λ2

)
=

∫ n

0
fn(x)dx+ fn(0) +

m∑
j=2

Bj
j!

(
f (j−1)
n (n)− f (j−1)

n (0)
)
−Rm(fn, 0, n).

Note that fn(x) is the translation of an even function by n
2 ; therefore, for any y we have

f (2j−1)
n (

n

2
− y) = −f (2j−1)

n (
n

2
+ y).

In particular, f (2j−1)
n (0) = −f (2j−1)

n (n). Therefore, Trf
(
(D′/Λ)2

)
is given by

Tr f
(
(D′/Λ)2

)
=

∞∑
n=0

2n

∫ n

0
fn(x)dx+

∞∑
n=0

2n

m∑
j=2

Bj
j!

f (j−1)
n (x)

∣∣∣
x=n
−
∞∑
n=0

2nRm(fn, 0, n).

To continue, we fix the following notations:

hj(y) =



2y
∫ y

0 fy(x)dx if j = 1,

2Bj
j! 2y dj−1

dxj−1 fy(x)|x=y if 2 ≤ j ≤ m,

2yRm(fy, 0, y) if j = m+ 1.

To compute the trace we shall apply the Euler-Maclaurin formula on summations of the

form
∑∞

n=0 hj(n).
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• Euler-Maclaurin on
∑∞

n=0 h1(n): The first summation can be approximated by

the Euler-Maclaurin formula as follows.

∞∑
n=0

h1(n) =

∫ ∞
0

h1(y)dy −
m∑
j=2

Bj
j!

dj−1

dxj−1
h1(y)|∞y=0 −Rm(h1, 0,∞).

Note that h1(y) is an even function and so its odd derivatives at x = 0 vanish. Moreover,

h1(0) = 0 and also

0 ≤ lim
y→∞

2y

∫ y

0
fy(x)dx ≤

∫ ∞
0

lim
y→∞

2yf((y2 + x2)/Λ2)dx = 0.

Finally, we have∫ ∞
0

h1(y)dy =

∫ ∞
0

∫ y

0
2yf((y2 + c(2x− y)2)/Λ2)dxdy

= Λ2

∫ ∞
0

∫ Λ√
c+1

w

0
2wf(w2/Λ2)dxdw

=
2Λ3

√
c+ 1

∫ ∞
0

w2f(w2)dw.

We now compute the order of Λ in Rm(h1, 0,∞).

Rm(h1, 0,∞) =
(−1)m

m!

∫ ∞
0

Bm({y}) d
m

dym
h1(y)dy

=
(−1)mΛ

m!

∫ ∞
0

Bm({y}) d
m

dym
2y

∫ y/Λ

0
f(
y2

Λ2
+ cu2)dudy (4.7)

=
(−1)m

m!Λm−3

∫ ∞
0

Bm({Λz}) d
m

dzm
2z

∫ z

0
f(z2 + cu2)dudy.

HenceRm(h1, 0,∞) = O(Λ−m+3) and we have the following approximation for
∑∞

n=0 h1(n):

∞∑
n=0

h−1(n) =
2Λ3

√
c+ 1

∫ ∞
0

w2f(w2)dw +O(Λ3−m). (4.8)

• Euler-Maclaurin on
∑∞

0 hj(n) for 2 ≤ j ≤ m: Since odd Bernoulli numbers

vanish, i.e. B2j+1 = 0, we only need to consider summations of the form
∑
h2j . Further-

more, functions h2j are even and so any odd derivatives of h2j vanish at z = 0. Hence,
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Euler-Maclaurin formula gives us the following.

∞∑
0

h2j(n) =

∫ ∞
0

h2j(y)dy +Rm(h2j , 0,∞).

The integral term can be computed in terms of derivatives of f at zero as follows:∫ ∞
0

h2j(y)dy =
B2j2

2j

(2j)!
Λ−2j+3

∫ ∞
0

2w
d2j−1

du2j−1
f
(
w2 + cu2

)∣∣∣∣
u=w

dw.

For example, for j = 1 we have

d

du
f
(
w2 + cu2

)∣∣∣∣
u=w

= 2cwf ′
(
(c+ 1)w2

)
=

c

c+ 1

d

dw
f
(
(c+ 1)w2

)
.

A computation similar to (4.7) shows that Rm(h2j , 0,∞) = O(Λ−2j−m+3). This,

together with the above computation, gives us the following approximation:

∞∑
0

h2j(n) =
B2j2

2j

(2j)!
Λ−2j+3

∫ ∞
0

2w
d2j−1

du2j−1
f
(
w2 + cu2

)∣∣∣∣
u=w

dw

+ O(Λ−2j−m+3). (4.9)

• Euler-Maclaurin formula on
∑∞

0 hm+1(n): Now, we apply the Euler-Maclaurin

formula to R2(hm+1, 0,∞). Via the substitutions u = 2x−y
Λ and w = y/Λ, the integral

term
∫∞

0 hm+1(y)dy gives us the following:

Λ−m+3 (−1)m2m−1

m!

∫ ∞
0

2w

∫ w

−w
Bm({Λ(x+ w)/2}) d

m

dum
f(w2 + cu2)dudw.

This shows that the order of the integral is O(Λ−m+3). Moreover, there exists ε > 0

such that R2(hm+1, 0,∞) = O
(
Λ−m+3−ε) . Combining the above, yields the following

approximation formula:
∞∑
0

hm+1(n) = O
(
Λ−m+3

)
. (4.10)

By equations (4.8), (4.9) and (4.10), for anym > 2, we have proven the following theorem.
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Theorem 4.1. The asymptotic expansion of the spectral action of the operator D′ =

D + T
2 on the Berger sphere S3(T ) as Λ→∞ is given by

Tr f
(
(D′/Λ)2

)
=

2Λ3

√
c+ 1

∫ ∞
0

w2f(w2)dw +
−4cB2

(c+ 1)3/2
Λ

∫ ∞
0

f
(
y2
)
dy (4.11)

+

m∑
j=2

B2j2
2j

(2j)!
Λ−2j+3

∫ ∞
0

2w
d2j−1

du2j−1
f
(
w2 + cu2

)∣∣∣∣
u=w

dw,

where c = 1
T 2 − 1.

The case c = 0, i.e. T = 1, gives the round sphere and all the terms of order less that

Λ3 will have zero coefficient. The spectral action is given by

Tr f
(
(D′/Λ)2

)
= 2Λ3f2 +O(Λ−∞).

Formula (4.11) is given for more general functions and if we consider f(x) = e−x and

set t = 1/Λ2, then we can compute the asymptotic expansion of the heat trace of D′2.

Corollary 4.2. The asymptotic expansion of the heat trace of the operator D′2 on the

Berger sphere S3(T ) as t→ 0+ is given by

t−3/2

√
π

2
√
c+ 1

− t−1/2 c
√
π

3(1 + c)3/2
+

∞∑
j=2

tj−3/2

(
24j−1B2j

√
π

2j!
cj
dj

dcj
1

(1 + c)1/2

)
, (4.12)

where c = 1
T 2 − 1.

Proof. The coefficient of t−3/2 is given by

2√
c+ 1

∫ ∞
0

w2e−w
2
dw =

√
π

2
√
c+ 1

.

Moreover, the coefficient of t−1/2 is also given by

−4cB2

(c+ 1)3/2
Λ

∫ ∞
0

e−y
2
dy =

−c
√
π

3(c+ 1)3/2
.
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For the positive powers of t we can compute all the coefficients as follows. For any j ≥ 2,

we have∫ ∞
0

2w
d2j−1

du2j−1
e−(w2+cu2)

∣∣∣∣
u=w

dw =

∫ ∞
0

2w e−w
2 d2j−1

du2j−1
e−cu

2

∣∣∣∣
u=w

dw

=

∫ ∞
0

e−w
2 d2j

dw2j
e−cw

2
dw

=

∞∑
n=j

(−c)n

n!

(2n)!

(2n− 2j)!

∫ ∞
0

e−w
2
w2n−2jdw,

Integrating by parts n− j-times, we get

∫ ∞
0

2we−w
2 d2j−1

dw2j−1
e−w

2
dw =

√
π22j−1cj

∞∑
n=j

(−1)n

22n

(2n)!

n!(n− j)!
cn−j

=
√
π22j−1cj

dj

dcj

(
1

(1 + c)1/2

)
.

4.4 The Heat Trace Coefficients Using the Universal For-

mulas

In this section, we produce few first coefficients of the heat trace for D′2 using the uni-

versal local formulas. We first show that D′ is the Dirac operator of a metric connection

with torsion. Then using the the Schrödinger-Lichnerowicz formula given in [18], we find

the endomorphism E in the decomposition of D′2 and plug it in the local formulas.

The theory of G-invariant connections on an induced vector bundle over a homoge-

neous space is studied in [13, 14]. Also, spin structured and the Dirac operators of such

spaces are investigated in [2, 12]. Here, we briefly review the theory for a Lie group G.

The set of all G-invariant connections on a vector bundle of the form G× V is in one to

one correspondence with all R-linear maps Λ : g → gl(V ). The correspondence is given

by [12]

∇ϕ = Xi ⊗Xiϕ+Xi ⊗ Λ(Xi)ϕ, (4.13)

where {Xi} is a basis for g and {Xi} is its dual basis. Moreover, Xiϕ is the Lie derivative

of ϕ with respect to the G-invariant vector field defined by Xi ∈ g, and Λ(Xi)ϕ is a

smooth function from G to g defined by (Λ(Xi)ϕ)(g) = Λ(Xi)ϕ(g) for g ∈ G. For
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instance, the Levi-Civita connection on TG ' G × g equipped with the left invariant

Riemannian metric g produced by an inner product 〈·, ·〉 on g is given by (see e.g. [13,

Theorem X.3.3])

Λ(X)Y := (1/2)[X,Y ] + U(X,Y ) X,Y ∈ g,

where U(X,Y ) : g× g→ g is the bilinear map defined by

2〈U(X,Y ), Z〉 = 〈X, [Z, Y ]〉+ 〈[Z,X], Y 〉, X, Y, Z ∈ g. (4.14)

In general, any R-linear map Λ with the property that Λ(X) ∈ so(g, 〈·, ·〉) for any

X ∈ g, induces a metric connection on TG. The torsion tensor for such a connection at

the origin is given by

T (X,Y ) = Λ(X)(Y )− Λ(Y )(X)− [X,Y ], X, Y ∈ g.

Such a metric connection lifts to a G-invariant connection on the spinor bundle S =

G× Sm induced by

Λ̃(X) 7→ 1

4

∑
i,j

〈Λ(X)(Xi), Xj〉c(Xi)c(Xj), X ∈ g,

where {Xi} is any orthonormal basis for g and c denotes the Clifford multiplication. The

induced connection ∇̃, similar to (4.13), acts on spinor fields ψ : G→ Sm as follows,

(∇̃ψ)(g) =
∑

Xi ⊗
(
Xiψ(g) + Λ̃(Xi)ψ(g)

)
.

The Dirac operator defined by ∇̃ is given by

Dϕ =
∑
i

c(Xi)Xiψ +
1

4

∑
i,j,k

〈Λ(Xi)Xj , Xk〉c(Xi)c(Xj)c(Xk)ψ. (4.15)

The Dirac operatorD is a formally self-adjoint operator if and only if for any orthonormal

basis {Xi} for g, we have (cf. [12])

∑
i

Λ(Xi)Xi = 0. (4.16)
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On the Berger sphere S3(T ) = (SU(2), gT ), direct computations show that the map

given by (4.14), vanishes and thus the Levi-Civita connection is induced by the map

Λ(X) =
1

2
[X, ·], X ∈ g.

Then the following maps define a family of metric connections:

Λt(X) = t[X, ·], X ∈ g, t ∈ R.

The torsion tensor of these connections, ∇t, is equal to T t(X,Y ) = (2t − 1)[X,Y ] and

Λt satisfies the condition (4.16). Moreover, they lift to a family of connections ∇̃t on the

spinor bundle induced by

Λ̃t(X) =
t

2

∑
i,j

〈Λ(X)Xi, Xj〉c(Xi)c(Xj) = 2tΛ̃(X), X ∈ g.

Lemma 4.3. The operator D′ is the Dirac operator defined by the connection ∇̃
1

2+T2 .

Proof. Equation (4.15) applied on ∇̃t gives us the formula for the Dirac operator

Dtψ =
∑
i

c(Xi)Xi(ψ) + 2tc(Xi)Λ̃(Xi)ψ.

By the direct computation we have

2tc(Xi)
1

4

∑
i,j,k

〈Λ(Xi)Xj , Xk〉c(Xi)c(Xj)c(Xk) = − t
4

(
8

T
+ 4T

)
.

Hence,

Dtψ =
∑
i

c(Xi)Xi(ψ)− t

4

(
8

T
+ 4T

)
ψ,

which clearly shows that

D′ = D + T/2 = D
1

2+T2 .

The Schrödinger-Lichnerowicz formula for Dt is given by (see [1, 18])

(Dt/3)2 = (∇̃t)∗∇̃t + tdT +
1

4
R− 2t2T 2

0 ,
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where R is the scalar curvature of the metric and T 2
0 = 1

6

∑n
i,j=1 ||T (Xi, Xj)||2.

In the case of Berger spheres we have ‖T‖2 = (2t−1
6 )26

(
2T + 4

T

)2
= 2

3T
2, dT vanishes

and R = 8− 2T 2. Hence, the endomorphism is given by

E =
(
−T 2 + 2

)
I2.

Using the local formula now we have

a0 =

∫
S3

a0(x,D′2)dvolgT =
2

(4π)3/2
vol(S3(T )) =

√
π

2
T,

a2 =

∫
S3

a2(x,D′2)dvolgT =
2

(4π)3/2

(
2− 2T 2

3

)
vol(S3(T )) =

−
√
π

3
(T 2 − 1)T,

which are equal to the results given by Corollary 4.2.
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