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Introduction

“Super mathematics” has quite a long history, starting from the pioneering papers by Berezin [10]
and [11], before the discovery of supersymmetry in physics1. After its appearance in physics in
the 70s, however, super mathematics, and in particular supergeometry, has caught more attention
in the mathematical community, and corresponding developments appeared not only in numerous
research papers but also in books devoted to the subject, see for example [4], [9], [19], [20], [38],
[63] and the recent [16].
In most of the concrete applications of supersymmetry, like in quantum field theory or in super-
gravity, algebraic properties play a key role, whereas geometry has almost always a marginal role:
as noted by Witten at the beginning of [68] “natural physics questions requires only the most basics
facts about supermanifolds”. This is perhaps the reason why some subtle questions in superge-
ometry (see [41] and [42] for a deep mathematical approach to supergeometry) have not attracted
much attention of physicists and, as a consequence, the necessity of further developments has not
been stimulated.
String theory makes exception, though.
The interest of pure mathematics in strings dates back to the early days of the theory, when, in
the mid 80s, it was realised that the right mathematical framework needed to provide a rigorous
description of bosonic string theory is the one of the algebraic geometry of Riemann surfaces. In
particular, in the context of perturbative bosonic string theory, it was realised that the structure
of the amplitudes is related to certain invariants on the moduli space of Riemann surfaces [8]. This
fact triggered the interest of several mathematicians in string theory, resulting in a first period of
fruitful mutual exchanges between the physics of strings and pure mathematics: in this context
the work of Beilinson and Manin [7] is a representative one.
Despite some appealing features though, bosonic string theory is plagued by a number of flaws
- e.g. divergencies and absence of matter in its spectrum - that caused it to be abandoned and
relegated to the status of a toy theory. Instead, it was observed that, once properly supplemented
with supersymmetry, string theory, or better, superstring theory, reveals a number of striking fea-
tures: it admits gauge groups large enough to include the Standard Model and it has the graviton
in its spectrum. From the theoretical physics side, these discoveries instantly made superstring
theory into the strongest candidate for a unified theory of matter and interactions and put it in
the spotlight of fundamental research. On the other hand, in mathematics, the quest for rigorous
foundations of the newborn superstring theory gave rise to new questions, attracting the atten-
tion of the mathematical community to the rigorous characterisation of supersymmetry and, in
particular, to supergeometry, the kind of geometry lying at the very basis of superstring theory.
Indeed, perturbative superstring theory is expected to be described in terms of the moduli space
of super Riemann surfaces, a sort of “supergeometric analog” of ordinary Riemann surfaces, which
results to be itself a supermanifold (actually a superstack). The interested reader might want to
look, for example, at [29], [47] for references on super Riemann surfaces and their supergeometry.
Of particular interest, in the opinion of the author, are the little known papers [53] and [54], that
attempted first an algebraic geometric approach to super Riemann surfaces. However, some ambi-
guities in defining superstring amplitudes at genus higher than one suggested, already in the 80s,
that the geometry of such a supermoduli space may not be trivially obtained from the geometry
of the bosonic underlying space [3]. More than twenty years of efforts have been necessary in
order to unambiguously compute genus two amplitudes: this has been achieved by D’Hoker and

1It is fair to say, though, that the introduction of anticommuting variables was proposed yet previously by
Schwinger and other physicists, see [35] for a more detailed historical account on the genesis of super-mathematics.
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Phong in a series of seven celebrated papers - see in particular the first three [21] [22] [23]. These
papers also include some - actually unsuccessful - attempts in defining genus three amplitudes,
that renewed the interest of the physical and mathematical community in looking for a solution to
the problem of constructing higher genus amplitudes. Through the years, various proposals have
been put forward, see e.g. [12], [13] and [31], [56].

However, most of such constructions were based on the assumption that the supermoduli space
is projected (see the first chapter of this thesis for an explanation) so that its supergeometry can be
reconstructed by the ordinary geometry of the underlying ordinary moduli space of genus g spin
curves. A careful analysis of perturbative superstring theory [66] [67] and of the corresponding role
of supergeometry [68] [69] suggested that this could not be the case. Indeed, it has been proved
by Donagi and Witten in the groundbreaking paper [25] (see also [26]) that the supermoduli space
is not projected at least for genus g ě 5. Obviously, this result gave rise to new interest in under-
standing the peculiarities of supergeometry with respect to the usual geometry, in particular from
the viewpoint of algebraic geometry: this is the main motivation at the origin of the present thesis.

Before we discuss the structure of the thesis, a brief general consideration. It is the opinion of
the author that part of the issues in understanding the geometry of supermanifolds and its dis-
tinctive features - such as for example the presence of the so-called non-projected supermanifolds -
is due in a certain amount to the absence of explicit constructions and examples in the literature.
We have taken a special care in this thesis to keep the exposition as neat and explicit as possible,
by providing every step in the proofs and computations and by supplementing every construction
and theorem with explicit realisations and examples, in order for every result to be immediately
comprehensible. This justifies, in particular, working over (complex) projective spaces - the ordi-
nary manifolds that will appear the most in this thesis -, since these varieties have an obvious open
cover that allows for a meaningful and instructive local realisation of the intrinsic constructions
that will be discussed.

More in detail, the thesis is structured as follows.

The first chapter is devoted to an introduction to algebraic supergeometry. It has to be stressed,
however, that this chapter contains original research as well (see in particular [14]).
In the first section the main definitions are given and the notation that will be used throughout the
thesis is laid down. In particular, we introduce the fundamental notions of superspace, local model
and, finally, we give the definition of supermanifold. We concentrate on complex supermanifolds,
providing the notions of projected and split complex supermanifolds, that play a central role in
the rest of the thesis. A supermanifold comes naturally endowed with a short exact sequence that
relates the structure sheaf of a supermanifold with its nilpotent sheaf and the structure sheaf of
the reduced manifold Mred underlying the supermanifold, we call it structural exact sequence. In
the case this short exact sequence splits we say that the associated supermanifold is projected,
otherwise we say that the supermanifold is non-projected. A split supermanifold, instead, is a
supermanifold that is globally isomorphic to its local model: a non trivial example of this class of
supermanifolds is provided by projective superspaces, Pn|m.
In the second section locally-free sheaves, in particular rank 1|0 locally-free sheaves - called even
invertible sheaves - and the related even Picard group, are introduced.
The third section is concerned with the tangent and cotangent sheaf of a supermanifold. We first
work in full generality showing some short exact sequences these sheaves fit into [14]. Then we
specialise to the case of projected supermanifolds, showing that in this case the sequences split
and there exists a relationship with the fermionic sheaf FM of the supermanifold introduced in the
first section [14].
In the third section, we introduce the Berezinian sheaf of a supermanifold. It plays a role similar
to the canonical sheaf of an ordinary complex manifold. The results obtained in the second section
are used to show that the Berezinian of a projected supermanifold can be entirely reconstructed
from two sheaves living on the reduced manifold: the canonical sheaf of reduced manifold and the
fermionic sheaf r14s. This result, in turn, allows the introduction of a notion of first Chern class for
projected supermanifolds, that coincides with the usual first Chern class of the reduced manifold
once the odd part of the geometry has been discarded r14s. Finally, we single out a special class

5



of supermanifolds having trivial Berezinian sheaf and we call them Calabi-Yau supermanifolds,
by analogy with the usual definition of Calabi-Yau manifolds in complex algebraic geometry [45],
[14]. All of the results, theorems and constructions of this section are supported by the explicit
example of projective superspaces. In particular, we compute the Berezinian sheaf of a projective
superspace and its first Chern class.

The second chapter of the thesis is entirely dedicated to the study of complex projective super-
spaces [14]. Projective superspaces are usually considered to be well-understood supermanifolds
(they are split supermanifolds, as shown in the first chapter, and various realisations are known).
They have also entered several formal constructions in theoretical physics. However, some of their
geometric structures and properties have never been investigated in detail, nor established on a
rigorous basis.
In particular, in the first section we compute in detail the Čech cohomology of the sheaves of the
form OPn|mp`q. These are the pull-back sheaves on Pn|m via the projection map π : Pn|m Ñ Pn of
the ordinary invertible sheaves OPnp`q on Pn [14].
Then, we study the even Picard group of projective superspaces, Pic0 pPn|mq, that classifies locally-
free sheaves of rank 1|0 over Pn|m. In particular, we show that in the case of the supercurves P1|m

the even Picard group has a continuous part and we give the explicit form of its generators, proving
that there exist genuinely supersymmetric invertible sheaves on Pn|m that do not come from any
ordinary invertible sheaves OPnp`q on Pn [14]. These prove to be non-trivial geometric objects,
indeed they have in general non-trivial cohomology, as we show by means of an example. In the
third section, using a supersymmetric generalisation of the Euler exact sequence, we study the
cohomology of the tangent sheaf of Pn|m, which is related to the infinitesimal automorphisms and
the first order deformations of Pn|m. In this context, we find that supercurves over P1 yield again
the richest scenario, allowing for many deformations as their odd dimension increases [14].
Finally, with special attention to applications in theoretical physics, the example of the Calabi-Yau
supermanifold P1|2 is examined. In particular, we show in full detail how to endow P1|2 with a
structure of N “ 2 super Riemann surface. In this context, we show how to recover from first
principles the N “ 2 SUSY-preserving automorphisms of P1|2 when structured as a N “ 2 super
Riemann surface [14]. These SUSY-preserving automorphisms prove to be isomorphic to the Lie
superalgebra ospp2|2q. We give a presentation of ospp2|2q relevant for applications of theoretical
physics, by exhibiting a particularly meaningful system of generators and displaying their structure
equations [14].
Further, following a formal construction based on the path-integral formalism due to Aganagic
and Vafa [2], we construct the “mirror supermanifold” (in the sense of Aganagic and Vafa) to P1|2

and we show, by some suitable changes of coordinates, that this supposed mirror supermanifold is
again P1|2, that is P1|2 is self-mirror in the sense of Vafa and Aganagic [45]. We stress that this
last section has a different flavour compared to the others, as it is based on a formal construction
(Aganagic and Vafa) that at present does not have a rigorous mathematical meaning.

In the second chapter of the thesis we studied the geometry of projected, actually split, su-
permanifolds such as Pn|m, whereas the third chapter is dedicated to the study of non-projected
supermanifolds instead [15]. We specialise to supermanifolds having odd dimension 2 and we
call these N “ 2 supermanifolds. Following Manin [41], we provide a detailed construction of
the cohomological invariant that obstructs the existence of a projection that splits the structural
exact sequence of a supermanifold. In particular, we prove that a supermanifold M of dimen-
sion n|2 is described up to isomorphism by the triple pMred,FM , ωM q, where FM is the fermionic
sheaf of M , actually a locally-free sheaf of OMred

-modules of rank 0|2, and where ωM is a class in
H1pMred, TMred

b Sym2FM q. The supermanifold is non-projected (and therefore split) if and only
if ωM is non-zero in H1pMred, TMred

b Sym2FM q.
In the second section we specialise to the case that the reduced manifold is a complex projective
space Pn and we prove that there exist non-projected supermanifolds of dimensions n|2 over Pn
only for n “ 1 and n “ 2.
In the third section, using Grothendieck’s splitting theorem for vector bundles over P1, we give a
complete classification of non-projected N “ 2 supermanifolds over P1, here called P1

ωpm,nq, by
also providing the explicit form of their transition functions. Also, we study the even Picard group
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of P1
ωpm,nq - which again has a continuous part - and we give the explicit form of its generators.

Finally, using these invertible sheaves, we realise an embedding of P1
ωp2, 2q into P2|2, proving that

the example given by Witten in [68] of a non-projected supermanifold as a complete intersection
into P2|2 is actually nothing but P1

ωp2, 2q itself. This is an original section that has not appeared
as a paper yet.
In the fourth section we study the non-projected structures for N “ 2 supermanifolds over P2,
that proves to be the most interesting case. Indeed, a non-projected structure over P2 exists if and
only if the fermionic sheaf is such that Sym2FM – OP2p´3q, the canonical sheaf of P2 [15]. We
denote these non-projected supermanifolds with P2

ωpFM q.
Remarkably, we prove that all of these non-projected supermanifolds are Calabi-Yau’s and, by
studying their even Picard group, we prove that they are non projective: they cannot be embed-
ded into any higher-dimensional projective superspace Pn|m [15]. Instead, we show that every
non-projected supermanifold N “ 2 over P2 can be embedded into a certain super Grassman-
nian: this is perhaps the main theorem of the chapter. [15]. As explicit examples, we carry out a
detailed study of two meaningful cases: when the fermionic sheaf FM is decomposable, given by
ΠOP2p´1q ‘ ΠOP2p´2q and when it is the cotangent sheaf ΠΩ1

P2 (with reversed parity) over P2

and we construct the embeddings explicitly.
In the last section of the chapter we study the split loci of the non-projected structures related
to the choices FM “ ΠOP2p´1q‘ΠOP2p´2q and FM “ ΠΩ1

P2 and we compute their cohomology [15].

The fourth chapter is devoted to the geometry of Π-projective spaces. These particular super-
manifolds were introduced by Manin in [42] as the suitable spaces on which one can define the
so-called Π-invertible sheaves, the candidates to take over the notion of invertible sheaf in super-
geometry.
In this chapter we provide a new construction of Π-projective spaces, in particular we prove that
they arise naturally in supergeometry upon considering a non-projected thickening of Pn related
to the cotangent sheaf Ω1

Pn . More precisely we prove that for n ě 2 the Π-projective space PnΠ
can be constructed as the non-projected supermanifold determined by three elements pPn,Ω1

Pn , λq,
where Pn is the ordinary complex projective space, Ω1

Pn is its cotangent sheaf and λ is a non-zero

complex number, that represents the fundamental obstruction class ωM P H1pTPn b
Ź2

Ω1
Pnq – C

r46s. Likewise, in the case n “ 1 the Π-projective line P1
Π is the split supermanifold determined

by the pair pP1,Ω1
P1 – OP1p´2qq.

Moreover we show that in any dimension Π-projective spaces are Calabi-Yau supermanifolds [46].
Also, we offer pieces of evidence that, more in general, also Π-Grassmannians can be constructed
the same way using the cotangent sheaf of their underlying reduced Grassmannians, provided that
also higher, possibly fermionic, obstruction classes can be defined and taken into account [46]. This
suggests that this unexpected connection with the cotangent sheaf is characteristic of Π-geometry.
Last we make the connection with the previous chapter, by discussing in more detail the possible
embeddings for P2

ωpFM q in relation to Π-projective spaces. In particular, we prove that if we choose
the fermionic sheaf to be decomposable, the supermanifold P2

ωpFM q is not only non projective, but
also non Π-projective: it cannot be embedded into any Π-projective space PnΠ [15]. However, if we
choose the fermionic sheaf of P2

ωpFM q to be the cotangent sheaf ΠΩ1
P2 , then P2

ωpFM q is actually
the Π-projective plane P2

Π and as such it has a minimal embedding into the super Grassmannian
Gp1|1;C3|3q [15].
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Chapter 1

Algebraic Supergeometry

This chapter is intended to give a short but self-contained introduction to algebraic supergeometry.
In the first section, following in particular the approach of [41], we present some basic material. We
give the main definitions and we establish the notations that will be kept throughout this thesis.
In particular, attention is paid to lay down the concepts of split, projected and non-projected
supermanifold.
In the second section locally-free sheaves on supermanifolds are introduced, with a particular focus
on the case of locally-free sheaves of rank 1|0, we call them even invertible sheaves. The classifying
space for even invertible sheaves, called even Picard group by similarity with the ordinary Picard
group, is then introduced and discussed.
The third section is dedicated to two meaningful examples of locally-free sheaves that can be
defined on a supermanifold: the tangent and cotangent sheaves. The short exact sequences these
sheaves fit into are introduced and studied, in particular in the case of a projected supermanifold.
In the fourth section the Berezinian sheaf of a supermanifold is defined and a notion of Calabi-Yau
supermanifold is introduced. Again, in the case of a projected supermanifold, using the results
of the previous section, the Berezinian sheaf is studied and a supersymmetric version of the first
Chern class is laid down.
The constructions are illustrated making use of the example of the complex projective superspace
Pn|m throughout the chapter.
The second, third and the fourth sections are modelled on the author’s paper r14s.

1.1 Main Definitions and Fundamental Constructions

The aim of this section is to introduce the notion of (complex) supermanifolds and to discuss some
of the fundamental constructions related to their geometry.
The first step in this direction, lying on the concept of locally-ringed space, is to introduce the
basic notion of superspace.

Definition 1.1 (Superspace). A superspace is a pair p|M |,OM q, where |M | is a topological space
and OM is a sheaf of Z2-graded rings defined over |M | and such that the stalks OM ,x at every point
of |M | are local rings.
In other words, a superspace is a locally ringed space having structure sheaf given by a sheaf of
Z2-graded rings.

For the sake of brevity we will call M the pair p|M |,OM q defining the superspace, that is we will
define M ..“ p|M |,OM q.
Once again, that the definition of superspace we have given follows Manin [41] and his algebraic
geometrically inclined treatment of supergeometry. It is fair to say, though, that there exists a
different, more analitically inclined, approach, which is the one given, for example, in [4], where
the structure sheaf gets structured as a sheaf of Fréchet algebras, so a further notion of semi-norm
should be given.
Before we go further we need to stress two facts. The first one is that in the case of superspace
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the requirement about the stalks being local rings reduces to ask that the even component of the
stalk is a usual commutative local ring, for in superalgebra one has the following lemma.

Lemma 1.1. Let A “ A0 ‘ A1 a Z2-graded ring. Then A is local if and only if its even part A0

is.

As one can easily realize, this is connected to the fact that the odd elements in A1 Ă A are
nilpotent, and therefore the whole A1 is contained in every prime and maximal ideal of the Z2-
graded ring A. This is a very basic but fundamental fact.
Secondly, in the definition above we understood that the restriction morphisms of the Z2-graded
sheaf OM are compatible with the grading, that is they never map local odd sections to local even
sections and vice-versa. This is actually a general feature of morphisms in supergeometry.
Having defined a superspace as a locally ringed space, one also defines morphisms of superspaces
as morphisms of locally ringed spaces.

Definition 1.2 (Morphisms of Superspaces). Given two superspaces M and N a morphism ϕ :
M Ñ N is a pair ϕ ..“ pφ, φ7q where

1. φ : |M | Ñ |N | is a continuous map of topological spaces;

2. φ7 : ON Ñ φ˚OM is a morphism of sheaves of Z2-graded rings, having the property that it
preserves the Z2-grading and that given any point x P |M |, the homomorphism

φ7x : ON ,φpxq ÝÑ OM ,x (1.1)

is local, that is it preserves the (unique) maximal ideal, φ7xpmφpxqq Ď mx.

This definition deserves to be commented a little bit further.
First, with an eye to the ordinary theory of schemes in algebraic geometry, we stress that the
request that the morphism φ7x : ON ,φpxq Ñ OM ,x preserves the maximal ideal in the second point
of the definition above is of particular significance in supergeometry. Indeed it is important to
notice that the structure sheaf OM of a superspace is in general not a sheaf of functions. As
long as the structure sheaf OM of a certain space or, more in general, of a scheme, is a sheaf
of functions, then a section s of OM takes values in the field of fractions kpxq “ OM ,x{mx that
depends on the point x P |M |, as a function x ÞÑ spxq P kpxq, and the maximal ideal mx contains
the germs of functions that vanish at x P |M |. In the case of superspaces, nilpotent sections -
and thus in particular all of the odd sections - would be identically equal to zero as functions on
points, and indeed the maximal ideal mx contains the germs of all the nilpotent sections in OM ,x.
In this context, the request that φ7x : ON ,φpxq Ñ OM ,x is local becomes crucial, while in the case of
a genuine sheaf of functions the locality is automatically achieved. In particular, locality implies
that a non unit element in the stalk ON ,φpxq, such as a germ of a nilpotent section, can only be
mapped to another non unit element in OM ,x, such as another germ of a nilpotent section. In
other words, nilpotent elements cannot be mapped to invertible elements.

Now a fundamental observation is in order. One can always construct a superspace out of two
data: a topological space, call it by abuse of notation |M |, and a vector bundle E over |M |, or,
analogously, a locally-free sheaf of O|M |-modules. Now, we denote O|M | the sheaf of continuous

functions (with respect to the given topology) on |M | and we put
Ź0 E˚ “ O|M |. The sheaf of

sections of the bundle of exterior algebras
Ź‚E˚ has an obvious Z2-grading (by taking its natural

Z-grading mod 2) and therefore in order to realise a superspace it is enough to take the structure
sheaf OM of the superspace to be the sheaf of sections valued in O|M | of the bundle of exterior
algebras. This construction is so important to bear its own name.

Definition 1.3 (Local Model Sp|M |, Eq). Given a pair p|M |, Eq, where |M | is a topological space
and E is a vector bundle over |M |, we call Sp|M |, Eq the superspace modelled on the pair p|M |, Eq,
where the structure sheaf is given by the O|M |-valued sections of the exterior algebra

Ź‚ E˚.

Note that we have given a somehow minimal definition of local model, indeed we have let |M | to
be no more than a topological space and as such we are only allowed to take O|M | to be the sheaf
of continuous functions on it. Clearly, we can also work in a richer and more structured category,
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such as the differentiable, complex analytic or algebraic category. Working in the complex analytic
category - the one we will be most concerned with -, for example, we take |M | to be a complex
manifold, O|M | to be the sheaf of holomorphic functions on it and E a holomorphic vector bundle.
There are some easy examples of local models that deserve to be mentioned.

Example 1.1 (Affine Superspaces Ap|q). These superspaces are constructed as the local models
SpAp,O‘qAp q, where Ap is the p-dimensional affine space over the ring (or field) A and OAp is the
sheaf of regular functions over it.
These are the most common superspaces one encounters in applications of supergeometry to physics.
In the differentiable category, modern supersymmetric theories are often formulated in the super-
space Rp|q, where ORp is the sheaf of C8-functions over Rp: this has the advantage to make
supersymmetry manifest, as it becomes a geometric symmetry of the theory.
In what follows we will mostly be concerned with the complex analytic category and with local models
of the form Cp|q, where OCp is the sheaf of holomorphic functions over Cp.

We are in the position to introduce the notion of supermanifold.

Definition 1.4 (Supermanifold). A supermanifold is a superspace M that is locally isomorphic to
some local model Sp|M |, Eq.
In other words, if the topological space |M | has a (countable) basis tUiuiPI , the structure sheaf OM
of the supermanifold M is described via a collection tψUiuiPI of local isomorphisms of sheaves

Ui ÞÝÑ ψUi
: OM tUi

–
ÝÑ

‚
ľ

E˚tUi
(1.2)

where we have denoted with
Ź‚ E˚ the sheaf of sections of the exterior algebra of E.

Let us make some observations before going on, to clarify further the given definition:

1. The definition depends on the category we are working into via the local model Sp|M |, Eq we
choose. In the differentiable and complex analytic category one can restrict the local models
to be of the form of Ap|q, defined as above (e.g. in the case of a differentiable supermanifold,
M is locally isomorphic to Rp|q), while in the algebraic category one should allows all local
models Sp|M |, Eq having affine |M |. Generalizing this notion, one is led to the concept of
superscheme.

2. It is worth stressing out that this point of view, that might appear at first rather abstract,
goes along well with the differential geometric intuition behind the concept of manifold:
indeed, again, if for example a complex analytic manifold will be a certain object that locally
resembles Cp, a complex analytic supermanifold will be an object that locally resemble Cp|q
for some p and q: in this case we say that the supermanifold has dimension p|q.

3. Finallly, we underline that, in general, the maps in the collection of local isomorphisms
tψUi

uiPI do not glue together to give an isomorphism of sheaves! That is, the local isomor-
phisms do not define in general an isomorphism of sheaves ψ : OM Ñ

Ź‚ E˚. If they do,
instead, the supermanifold is of a very special kind, as will be explained in the following.

As customary in algebraic geometry, when one is interested in understanding the geometry of a
certain geometric object, the reader needs to look at the ring of “functions” that live on it. In
our case, a very basic observation to be made is that, given a supermanifold M , because of the
Z2-grading of the structure sheaf OM there will exist a (actually unique) sheaf of ideals JM Ă OM
generated by all the nilpotents.

Definition 1.5 (Nilpotent Sheaf JM ). Given a supermanifold M we will call JM the sheaf of ideals
generated by all the (nilpotent) odd sections.

Notice that JM certainly contains the odd part OM ,1 of the structure sheaf OM “ OM ,0 ‘ OM ,1,
but in the case the supermanifold has more than one odd dimension, it also contains what are
called “bosonisations” in physics, which are nilpotent sections but in OM ,0. We make this clear by
mean of an example. Let us consider a supermanifold having the polynomial superalgebra given
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by Crx1, x2, θ1, θ2s as structure sheaf, we will then have elements of the form bos “ fpx1, x2q θ1 ¨θ2,
where fpx1, x2q is a polynomial in the even variables x1 and x2. These elements are clearly nilpotent
and therefore they are contained in JM , but they are even, fpx1, x2q θ1 ¨ θ2 P OM ,0, as the product
of two odd generators θ1 and θ2 is actually an even element.
If on the one hand the nilpotent sheaf JM is expression of the odd geometry of the supermanifold,
on the other hand one has also that to every supermanifold M is attached an ordinary “purely
even” manifold, call it Mred. This constitutes the spine of the supermanifold, that can be then
somehow visualised as an ordinary manifold surrounded by a cloud of nilpotent odd elements. This
underlying manifold can be traced back from the supermanifold M as follows: JM defines a sheaf
of ideals, therefore it always exists a closed immersion ι : Mred ãÑ M , with ι ..“ pi, i7q such that

1. i : |M | Ñ |M | is the identity map that maps |M | to itself.

2. i7 : OM Ñ OM {JM is the quotient morphism at the level of the sheaves and it is sometimes
called augmentation map.

Notice that looking at the level of the stalks, the morphism i7x : OM Ñ OM ,x

L

JM ,x is clearly
surjective for every x P OM ,x, hence it indeed defines a closed immersion. The existence of such a
construction allows us to give the following

Definition 1.6 (Reduced Manifold Mred). Given a supermanifold M “ p|M |,OM q, let JM Ă OM
be its nilpotent sheaf, then we call reduced manifold Mred the ordinary manifold given as a ringed
space by the pair p|M |,OMred

q, where OMred
is defined as OMred

..“ OM {JM .

Incidentally, one might observe that - forgetting the issues relating to the existence of a Z2-grading
- under some circumstances, when Zariski topology is employed, one could look at Mred as a reduced
scheme, while M defines a non reduced scheme, as its structure sheaf contains nilpotent elements;
anyway, without giving any further details we mention that the correct framework to work in would
that of superschemes.

So far we have thus seen that every supermanifold comes endowed with a surjective morphism
of sheaves i7 : OM � OMred

, whose kernel is, by construction, given by the nilpotent sheaf:
JM “ ker i7. Therefore, we have obtained a short exact sequence, actually the most important
exact sequence attached to any supermanifold.

Definition 1.7 (Structural Exact Sequence). Given a supermanifold M ..“ p|M |,OM q, let JM be
its nilpotent sheaf and let Mred

..“ p|M |,OMred
q be its reduced manifold. Then the structure sheaf

OM , the reduced structure sheaf OMred
and the nilpotent sheaf JM fit together in a short exact

sequence of OM -modules, given by

0 // JM // OM // OMred
// 0. (1.3)

We call this short exact sequence the structural exact sequence for the supermanifold M .

To put things in a different way, the structural exact sequence of a supermanifold says that the
structure sheaf OM is an extension of OMred

by JM .
A very natural question that arises looking at the structural exact sequence above is whether

it is split or not,

0 // JM // OM
ι7

// OMred

π7

xx
// 0. (1.4)

That is, one might wonder whether there exists a morphism of supermanifolds, we call it π : M Ñ

Mred, where π ..“ pπ, π7q are defined as

1. π : |M | Ñ |M | is again the identity map that maps the topological space |M | to itself;

2. π7 : OMred
Ñ OM is a morphism of sheaves of OM -modules (as we are looking at OMred

endowed by ι7 with the structure of OM -module),

11



having the property that π ˝ ι “ idMred
. At the level of the structure sheaves, this corresponds to

π7 ˝ ι7 “ idOM .
In particular, if the morphism π : M Ñ Mred does exist, then the structure sheaf OM is given by
the direct sum OM “ OMred

‘ JM and the structural exact sequence becomes

0 // JM // OMred
‘ JM // OMred

// 0. (1.5)

The supermanifolds that posses such a splitting morphism are given a special name.

Definition 1.8 (Projected Supermanifolds). Let M be a supermanifold, if there exists a morphism
π : M Ñ Mred, satisfying π ˝ ι “ idMred

, splitting the structural exact sequence of M as in (1.4),
then we say that the supermanifold M admits a projection on its underlying reduced manifold Mred.
For short, we say that M is projected.

The study of obstructions to splitting and the investigation of some examples of non-projected
complex supermanifolds will be one the main themes of the present thesis.
Remarkably, the existence of a projection π : M Ñ Mred has also another very important conse-
quence, namely the structure sheaf OM becomes a sheaf of OMred

-modules as well, for, given an
open set U Ă |M |, one can define a multiplication by:

pOMred
bOM OM q pUq // OM pUq

f b s � // π7U pfq ¨ s.

and this extends to the whole variety |M | by the properties of sheaves, actually defining a sheaf of
OMred

-modules, as claimed.
In general, if the supermanifold is non-projected, the structure sheaf OM is not a sheaf of OMred

-
modules. Likewise, on a non-projected supermanifold, a sheaf of OM -modules is not in general a
sheaf of OMred

-modules: this is a crucial issue in the general theory of supermanifolds.
Now that we know that the presence of a projection π : M Ñ Mred singles out a class of relatively

easier and more tractable supermanifolds, one might further wonder whether there exists any even
simpler sub-class of supermanifolds among the projected ones. To answer this question we introduce
the following construction: we consider a supermanifold M having a given odd dimension equal to
q, together with its nilpotent sheaf JM , then it is easily seen that we have a JM -adic filtration on
OM of length q, that is

J 0
M

..“ OM Ą JM Ą J 2
M Ą J 3

M Ą . . . Ą J qM Ą J q`1
M “ 0. (1.6)

This allows us to give the following definition.

Definition 1.9 (GrOM and Gr M ). Let M be a supermanifold having odd dimension q together

with the JM -adic filtration of its structure sheaf OM . Then we call GrpiqOM
..“ J iM

M

J i`1
M

the

J iM -adic component of OM and we define the following Z2-graded sheaf

GrOM
..“

q
à

i“0

GrpiqOM “ OMred
‘ JM

L

J 2
M ‘ . . .‘ J q´1

M

M

J qM ‘ J qM . (1.7)

where the Z2-grading is obtained by taking the obvious Z-grading mod 2. We call the superspace
Gr M ..“ p|M |,GrOM q the split supermanifold associated to M .

Clearly, by adding all the successive quotients J iM
M

J i`1
M

for i ą q, all yielding zeroes, GrOM can

be lifted to a complex Grp‚qOM (of sheaves of OMred
-modules). Once we have this construction,

we can make some observations.

• The pair p|M |,Grp0qOM q defines a supermanifold, or better an ordinary manifold: indeed it

is nothing but that the reduced manifold Mred underlying M , for one has that Grp0qOM
..“

OM {JM .
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• clearly, the split supermanifold Gr M associated to M is projected, as its structure sheaf
is given in the form OMred

‘ JM , where in particular the nilpotent sheaf JM has a global
decomposition in a direct sum of sheaf of OMred

-modules:

JM –

q
à

i“1

J iM
M

J i`1
M

. (1.8)

Notice though, that, conversely, a projected supermanifold might still not be isomorphic to
any Gr M !

• If we set OpiqM
..“ OM {J i`1 and we consider the pair p|M |,OpiqM q, then for

i “ 0: we recover again the reduced manifold Mred. The construction is the same as p|M |,Grp0qOM q;

0 ă i ă q: this construction does not yield any supermanifold, but just a locally ringed space or
maybe a supersymmetric analogue of a non-reduced scheme, since its structure sheaf is
not locally isomorphic to any exterior algebras.

i ą q: we recover the actual supermanifold M , since J q`1
M “ 0.

Having clarified that to any supermanifold M is associated its split supermanifold Gr M , we now
want to make contact between Gr M and the local model superspace Sp|M |, Eq based on the pair
p|M |, Eq. To this end we introduce the following definition.

Definition 1.10 (Fermionic Sheaf FM ). Let M be a supermanifold having odd dimension q and
let JM its nilpotent sheaf. We call the sheaf of locally free OMred

-modules given by the quotient

FM
..“ Grp1qOM “ JM

L

J 2
M , the fermionic sheaf of the supermanifold M .

The fermionic sheaf is a central object in the theory of supermanifolds, and indeed we will see
that it shows up also in the following section when discussing the tangent and cotangent sheaf
of a supermanifold. More important, we have that given the topological space |M | underlying a
supermanifold of odd dimension equal to q, it is its fermionic sheaf the object that completes the
correspondence with the pair p|M |, Eq, making up the local model Sp|M |, Eq. Indeed trough FM
one recovers the dual of the vector bundle E over |M |: in other words, given any open set of an
open cover of |M |, one has a correspondence

FM pUq “
@

Θ1, . . . ,Θq

D

OMred
pUq

ÐÑ
@

e˚1 , . . . e
˚
q

D

OMred
pUq

“ E˚pUq. (1.9)

where we have written tΘiui“1,...,q for a local basis of the fermionic sheaf FM - which is a locally-
free sheaf, as seen above - and te˚i ui“1,...,q for a local basis of the dual vector bundle E˚.

Now, as the symmetric powers of the fermionic sheaf SymiFM corresponds to GrpiqOM “ J iM
M

J i`1
M

for i ě 0, the correspondence above extends to the whole complexes Grp‚qOM and
Ź‚ E˚, so that

higher symmetric powers Symi FM correspond to higher exterior powers
Źi E˚.

This leads to the following lemma.

Lemma 1.2. Let M be a supermanifold locally modelled on the pair p|M |, Eq, where |M | is a
topological space and E is a vector bundle, then the associated split supermanifold Gr M to M is
uniquely determined by the pair p|M |, Eq and viceversa.
In particular, one has the isomorphism Sp|M |, Eq – Gr M .

Schematically, the relations between the original supermanifolds M , its split associated superman-
ifold Gr M and its local model Sp|M |, Eq goes as follows:

M ù Gr M ú Sp|M |, Eq. (1.10)

The previous lemma, or the above diagram, helps us to single out a class of projected super-
manifolds, answering the question posed early on in the section: these are the so called split
supermanifolds, that constitutes the easiest examples of supermanifolds.
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Definition 1.11 (Split Supermanifold). Let M be a supermanifold. We say that M is split if it
is globally isomorphic to its local model Sp|M |, Eq or analogously, if it is isomorphic to its split
associated supermanifold GrOM .

That is, in the case a supermanifold M is split, the schematic diagram above looks like this

M ú Gr M ú Sp|M |, Eq. (1.11)

and one gets to an easy but deep conclusion: the problem of classifying split supermanifolds having
a certain reduced space Mred translates into the classical problem of classifying vector bundles on
Mred, thus revealing a connection between the moduli theory of vector bundles and the study of
split supermanifolds.

In order to give some concrete realisation of the issues discussed above and to move toward a
generalisation of ordinary algebraic geometry to a supersymmetric context, we discuss the most
important (non-trivial) examples of complex split supermanifolds: complex projective superspaces.

Example 1.2 (Complex Projective Superspaces). The complex projective superspace of dimension
n|m, denoted by Pn|m, is the supermanifold defined by the pair pPn,OPn|mq “ SpPn,OPnp`1q‘mq,
so that Pn|m has the ordinary complex projective space Pn as reduced manifold - that completely
characterises the topological aspects -, while its structure sheaf OPn|m is given by

OPn|m “

tm{2u
à

k“0

OPnp´2kq‘p
m
2kq ‘Π

tm{2u´δ0,mmod2
à

k“0

OPnp´2k ´ 1q‘p
m

2k`1q (1.12)

“
à

k even

k
ľ

OPnp´1q‘m ‘
à

k odd

Π
k
ľ

OPnp´1q‘m, (1.13)

where we have inserted the symbol Π as a reminder for the parity reversing.
This expression for the structure sheaf makes completely clear that Pn|m is canonically isomorphic
to GrPn|m and the projection π : Pn|m Ñ Pn embeds, at the level of the structure sheaves, OPn

into OPn|m , as OPn is just a summand in the direct sum above.
The approach we have just presented has the advantage to make apparent the split nature of Pn|m,
which is what matters here. Though, it is fair to say that in the literature another approach is
more common: the one that looks at the complex projective superspace as a quotient by a certain
multiplicative group action.
In this perspective one starts considering the usual complex superspace Cn`1|m ..“ pCn`1,OCn`1 b
Ź

rξ1, . . . , ξmsq, whose underlying topological space is given by Cn`1 endowed with the complex
topology, then one can form the superspace pCn`1|mqˆ simply by considering the obvious restric-
tion of Cn`1|m to the open set Cˆ ..“ Cn`1 z t0u. The complex projective superspace Pn|m is the
supermanifold obtained as the quotient of the superspace pCn`1|mqˆ by the action C˚ ýpCn`1|mqˆ

defined as

λ ¨ px0, . . . , xn, ξ1, . . . , ξmq ..“ pλx0, . . . , λxn, λξ1, . . . , λξmq (1.14)

where λ is an element of the multiplicative group C˚ ..“ C z t0u.

We will see in the second chapter that even if projective superspaces are split supermanifolds, they
display some interesting unexpected geometric features.

1.2 Locally-Free Sheaves on a Supermanifold and Even Pi-
card Group

In the first section we have defined what is a supermanifold, so now we can start focusing on what
can be defined on a supermanifold. One of the most important and useful concept is the one of
locally-free sheaves.

Definition 1.12 (Locally-Free Sheaves on a Supermanifold). Let M ..“ p|M |,OM q be a superman-
ifold or, more in general, a superscheme. A locally-free sheaf G of rank p|q on M is a sheaf of
OM -modules which is locally isomorphic to O‘pM ‘ pΠOM q

‘q
.
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Notice that this will completely replace the idea of “vector superbundle”, that will never be men-
tioned in this thesis. Likewise, we will never talk about “line superbundle”: the supersymmetric
analog of a line bundle or an invertible sheaf is defined as follows.

Definition 1.13 (Even Invertible Sheaf). Let M be a supermanifold or, more in general, a super-
scheme. An even invertible sheaf L on M is a locally-free sheaf of rank 1|0 on M . That is, L is
locally isomorphic to OM .

Also, in the same fashion as in the ordinary theory, we define a supersymmetric analog of the
notion of Picard group for invertible sheaves.

Definition 1.14 (Even Picard Group). Given a supermanifold M , we call the even Picard group
Pic0pM q of M the group of isomorphism classes of even invertible sheaves on M ,

Pic0pM q ..“ teven invertible sheaves on M u {– (1.15)

where the group operations are given by the tensor product and the dual.

It can be checked that this definition is well-posed.
It is crucial to note that a useful cohomological interpretation, allowing for actual computations,
can be given for the even Picard group of a supermanifold. To this end, note that in general, such
as in the ordinary context, defining a locally-free sheaf G of a certain rank on a supermanifold
M , amounts to give an open covering of M , call it tUiuiPI , and the transition functions tgijui,jPI
between two local frames eUi

and eUj
in the intersections Ui X Uj for i, j P I, so that eUi

“ gijeUj
.

In this fashion, one has the usual correspondence G Ø ptUiuiPI , tgijui,jPIq , where we notice that if
G has rank p|q then gij is a GLpp|qq transformation taking values in OM pUi X Ujqq.
It follows that, in the case we are considering an even invertible sheaf, this corresponds to transition
functions gij taking values into

`

O˚M
˘

0
– O˚M ,0 as the transformation needs to be invertible and a

parity-preserving one. This has an important consequence, indeed O˚M ,0 is a sheaf of abelian groups,
so that we are allowed to consider its cohomology groups, without confronting the issues related
to the definition of non-abelian cohomology (notice that the full sheaf O˚M is indeed not a sheaf of
abelian groups). Clearly, in order to define an even invertible sheaf, the transition functions have
to be 1-cocycles valued in the sheaf O˚M ,0, so that we have the following easy lemma.

Lemma 1.3 (Pic0pM q – H1pO˚M ,0q). Let M be a supermanifold and let Pic0pM q be its even Picard
group. Then, the following isomorphism holds:

Pic0pM q – H1pO˚M ,0q. (1.16)

In what follows, just like Manin in [41] and [42], we will grant ourselves the liberty to call the
cohomology group H1pO˚M ,0q the even Picard group of the supermanifold, by implicitly referring
to the above isomorphism.
Note that Lemma 1.3 is nothing but the supersymmetric version of the usual isomorphism PicpXq –
H1pO˚Xq for ordinary complex manifolds X - and indeed its proof follows exactly the same lines.
Likewise, the sheaf O˚M ,0 fits into an exact sequence, we call it even exponential exact sequence, by
the obvious similarity with the ordinary exponential exact sequence:

0 // ZM // OM ,0
exp

// O˚M ,0
// 0. (1.17)

where, beside O˚M ,0, we recall that ZM is the ordinary sheaf of locally constant functions taking
values in Z and OM ,0 is the even part of the structure sheaf. Given an open set of M , the even
exponential map above is defined as follows:

U � // expU : OM ,0pUq // O˚M ,0pUq

s0
� // expU ps0q

..“ e2πis0 .

Actually, the only thing that we need to check in order to prove the exactness of the sequence
above is the surjectivity of the map exp : OM ,0 Ñ O˚M ,0. This is achieved in the following lemma.
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Lemma 1.4 (exp is surjective). The map exp defined above is surjective and kerpexpq “ ZM .

Proof. Surjectivity is to be proved locally, on the stalks. Choosing an open set U Q x, we can take
a representative of an element in O˚M ,0, x such that the corresponding element in O˚M ,0pUq has the
following expansion

f0px, θq “ fpxq `Npx, θq, fpxq ‰ 0. (1.18)

Notice that, for the sake of convenience, we have split the contribution on the reduced manifold,
fpzq - which is an ordinary non-zero holomorphic function since we are considering an invertible
element in O˚M ,0pUq - and we have gathered all the nilpotent contributions in the expansion in the

term Npx, θq P JM pUq, such that Nmpx, θq “ 0 and Nm´1px, θq ‰ 0 for some m ě 2, nilpotency
index.
Now, since fpxq ‰ 0, if one wish, it can be collected to give

f0px, θq “ fpxq

ˆ

1`
Npx, θq

fpxq

˙

. (1.19)

This might be useful in writing the logarithm, defined as to be the (local) inverse of the exponential,
that is U ÞÑ logU with logU ps0q “

1
2πi logps0q for s0 P O˚M ,0. In this way, using the expression above,

one finds:

logU pf0q “
1

2πi
log pfpxqq `

1

2πi
log

ˆ

1`
Npx, θq

fpxq

˙

(1.20)

“
1

2πi
log pfpxqq `

1

2πi

m´2
ÿ

k“0

p´1qk

k ` 1

ˆ

Npx, θq

fpxq

˙k`1

. (1.21)

This is well-defined for log pfpxqq is the logarithm of an ordinary holomorphic non-zero function
and it is locally single-valued and the remaining part is a finite sum of nilpotents. Therefore over
a generic small open set U Ă |M | containing x, f0 “ expU plogU pf0q, that is exp is surjective. We
can now evaluate the exponential of the above quantity to establish the kernel of the map:

expU pf0q “ e2πipfpxq`Npx,θqq “ e2πifpxqe2πiNpx,θq “ (1.22)

“ e2πifpxq

˜

1` 2πi
m´1
ÿ

k“1

Npx, θqk

k!

¸

“1U (1.23)

Now the exponential above, e2πifpxq, is the usual complex exponential map that has kernel given
by the sheaf of locally constant functions taking integral values Z. Let suppose that f0 P kerpexpq,

the only way for this to be true is that
řm´1
k“1

Npx,θqk

k! “ 0, which in turn implies that Npx, θq “ 0,
indeed, multiplying on the left and on the right side by Nm´2 one has

˜

m´1
ÿ

k“1

Npx, θqk

k!

¸

¨Nm´2px, θq “ Nm´1px, θq ‰ 0, (1.24)

thus concluding the proof.

The even exponential sequence first appeared (without a proof) in [42], which has been our main
reference. For a different construction the reader might also refer to [4].

1.3 Tangent and Cotangent Sheaf of a Supermanifold

In this section we introduce the tangent and cotangent sheaves of a supermanifold M and we
establish their connection with the fermionic sheaf FM , that we have discussed in the previous
section. We write down the short exact sequences the cotangent sheaf fits into, first by working
in a general framework, dealing with a generic, possibly non-projected, supermanifold. Then we
specialise to the case of projected supermanifolds. In this context, we study the Berezinian sheaf

16



- the supergeometric analog of the canonical sheaf - of a projected supermanifold proving that it
can be easily reconstructed via the canonical sheaf of the reduced manifold Mred and the fermionic
sheaf FM . Further, following this path, we generalise the notion of first Chern class to projected
supermanifolds. Throughout the section, we make our constructions explicit using the example
provided by the complex projective superspace Pn|m.
We start by introducing the following notion in supergeometry, generalising the ordinary one.

Definition 1.15 (Superderivation). Let A be a superalgebra over a field k, then a superderivation
D is a homogeneous a k-linear map D : AÑ A of parity |D| that satisfies

Dpa ¨ bq “ Dpaq ¨ b` p´1q|D||a|a ¨Dpbq, (1.25)

for any a P A homogeneous of parity |a| and any b P A.

Usually, depending on its parity |D| P t0, 1u, a superderivation D is said to be either even or odd.
In particular, on the complex superspace Cp|q having coordinates px1, . . . , xp|θ1, . . . , θqq, the su-
perderivations of the structure sheaf OCp|q are written as pBx1 , . . . , Bxp |Bθ1 , . . . , Bθq q, where the
tBxiui“1,...,p are the even superderivations and the tBθjuj“1,...q are the odd superderivations.
In order to define how these superderivations act, we let I ..“ pi1, . . . , iqq be a multi-index with
ij “ t0, 1u and |I| “

řq
`“1 i` (so that 0 ď |I| ď q) and we put θI ..“ pθ1qi1 . . . pθjq

ij . . . pθqqiq (where
we let pθjq0 ..“ 1C). Then, an element f P OCp|q can be written uniquely as

f “
ÿ

I

fIpxqθ
I , (1.26)

where fIpxq P OCp is an ordinary holomorphic function on Cp for any multi-index I.
The i-th even derivative of f is then defined as

B

Bxi
pfq ..“

ÿ

I

ˆ

BfI
Bxi

pxq

˙

θI . (1.27)

To define j-th odd derivative of f we want to isolate θj in the generic expression of f above. In order
to do so, for a multi-index I ..“ pi1, . . . , iqq, where ik P t0, 1u, we define Ij ..“ pi1, . . . , ij´1, 0, ij`1, . . . iqq,
so we put ij “ 0. Then, f can be rewritten as

f “

¨

˝

ÿ

Ij

fIj pxqθ
Ij `

ÿ

Ij

fIj ,jpxqθ
jθIj

˛

‚, (1.28)

where again fIj and fIj ,j are holomorphic functions on Cp for any multi-index Ij , having ij “ 0.
The j-th odd derivative is then defined as

B

Bθj
pfq ..“

ÿ

Ij

fIj ,jpxqθ
Ij . (1.29)

It is an early result of Leites, see [38], that the OCp|q -module of the C-linear superderivations is
free and has dimension p|q with basis given by tBx1 , . . . Bxp |Bθ1 , . . . , Bθqu. It follows that, since a
(complex) supermanifold M of dimension p|q is locally isomorphic to Cp|q, the OCp|q -module of
superderivations of the structure sheaf OM is actually a locally-free sheaf of OM -modules of rank
p|q and we denote if by SDerpOM q. In the rest of this thesis, though, this sheaf will be referred to
as the tangent sheaf of M , as in the following definition.

Definition 1.16 (Tangent Sheaf). Let M be a (complex) supermanifold. We denote TM the sheaf
of superderivations of OM , TM

..“ SDerpOM q.

As usual, local sections of TM (that is derivations of OM ) will be called local vector fields.
The cotangent sheaf or sheaf of 1-forms, is defined as usual starting from the tangent sheaf.

Definition 1.17 (Cotangent Sheaf). Let M be a (complex) supermanifold. We denote Ω1
M the

dual of the tangent sheaf TM of M , that is Ω1
M

..“ HomOM pTM ,OM q.
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Before we go on, we notice that, given the tangent sheaf TM , in [41] Manin distinguishes between
two possible choices for the cotangent sheaf. The first one is called pΩ1

M qev and it corresponds with
what has just been defined to be Ω1

M and it is the one that will be used throughout this thesis. The
second possibility is to consider odd homomorphisms, and defining pΩ1

M qodd
..“ HomOM pTM ,ΠOM q.

This is the parity changed version of Ω1
M and, as such, if Ω1

M has rank p|q, then pΩ1
M qodd has rank

q|p. This second choice for the cotangent sheaf, pΩ1
M qodd, is often preferred in some applications,

in particular when looking at the de Rham theory on supermanifolds [18] [68].
As TM , the cotangent sheaf Ω1

M is a locally-free sheaf of OM -modules. A local basis for Ω1
M is given

by tdz1, . . . , dzp, dθ1, . . . , dθqu, with a duality pairing with the tangent sheaf (locally) given by:

x¨, ¨yU : pΩ1
M bOM TM qpUq // OM pUq

ω bD
� // xω,DyU ..“ ωpDq

if D and ω are local sections of TM and Ω1
M respectively. Given two local sections of the structure

sheaf f, g P OM pUq, the duality paring reads

xfω, g DyU “ p´1q|ω|¨|g|fg xω,DyU . (1.30)

Along this line, one can define a differential d : OM Ñ Ω1
M , by f ÞÑ df , putting

xdf,DyU ..“ Dpfq. (1.31)

This enters the definition of the de Rham complex in the theory of supermanifolds, which is a
subtle topic we will not discuss any further.
Also, as in the ordinary case, given two supermanifolds M and N and morphism ϕ : M Ñ N ,
one can define a morphism of sheaves dϕ : TM Ñ ϕ˚TN . A (local) vector superfields X on the
supermanifold M - that is a section of the tangent sheaf, X P TM pUq for a certain open set
U Ă |M | -, when acting on functions lifted from N , defines a derivation on N valued in the ring of
functions on M . This gives a morphism of OM -modules, ϕ˚pΩ1

N q Ñ OM , or equivalently, a section
of the sheaf ϕ˚pTN q, which is said to be the image of X with respect to dϕ.
It is important to note that the restriction to the reduced manifold Mred splits into complementary
even and odd sub-sheaves, actually locally-free sheaves of OMred

-modules:

pTM qred
..“ TM bOM OMred

“ TM ,` ‘ TM ,´, (1.32)

pΩ1
M qred

..“ Ω1
M bOM OMred

“ Ω1
M ,` ‘ Ω1

M ,´, (1.33)

where, with reference to the first section, we have called TM ,`
..“ pGrp0qTM q0 and TM ,1

..“ pGrp0qTM q1
and likewise for the cotangent sheaf.
Clearly, the even parts TM ,` and Ω1

M ,` in the previous parity splitting are easily identified as TMred

and Ω1
Mred

respectively, that is the tangent and cotangent sheaf of the reduced manifold Mred.

In order to identify the odd parts TM ,´ and Ω1
M ,´, we need to disclose the relationship with the

fermionic sheaf we have already mentioned early on in the first section of this chapter. Recalling
that the fermionic sheaf has been defined as FM

..“ Grp1qOM , we have the following

Corollary 1.1. Let M be a (complex) supermanifold, then we have the isomorphism of OMred
-

modules

FM –

´

Grp0qΩ1
M

¯

1
F˚M –

´

Grp0qTM

¯

1
(1.34)

where the subscript 1 refers to the Z2-grading.

Proof. We start observing that, locally, a basis of FM “ JM
L

J 2
M

has the form θa modJ 2
M for

a “ 1, . . . ,m where m is the odd dimension of M . Moreover we have that

´

Grp0qΩ1
M

¯

1

..“
`

Ω1
M bOM

OM {JM

˘

1
–
`

Ω1
M
L

JM Ω1
M

˘

1
(1.35)
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so that, locally, a basis of
´

Grp0qΩ1
M

¯

1
read dθjmodJM Ω1

M , again for j “ 1, . . . ,m where m is the

odd dimension of M . The isomorphism reads

FM tU //

´

Grp0qΩ1
M

¯

1

Y

U

θj modJ 2
M

� // dθj modJM Ω1
M .

(1.36)

We prove that this is well-defined and independent of the chart: that is, if we let pyi|ηjq be
another local coordinates system, we need that the sections ηjmodJ 2

M go to dηjmodJM Ω1
M . The

transformation for the fermionic sheaf FM reads ηj ”
ř

b f
j
b pxqθ

b modJ 2
M , therefore one has

dηj “
ÿ

b

Bηj

Bxb
dxb `

ÿ

b

Bηj

Bθb
dθb

“
ÿ

b

B

Bxb

˜

ÿ

c

f jc pxqθ
c modJ 2

M

¸

dxb `
ÿ

b

B

Bθb

˜

ÿ

c

f jc pxqθ
c modJ 2

M

¸

dθb

“
ÿ

b,c

Bf jc pxq

Bxb
θc modJ 2

M dxb `
ÿ

b

f jb pxqmodJ 2
M dθb

”
ÿ

b

f jb pxqdθ
b mod

`

JM Ω1
M

˘

, (1.37)

since
ř

b,c
Bfj

c pxq
Bxb θc modJ 2

M dxb ” 0 modJM Ω1
M , concluding the proof. The other isomorphism,

involving the tangent sheaf, is proved in the same fashion.

Notice that the previous result originally appeared in [41]: here we have just made the maps and
computations explicit.
Using Corollary 1.1 we have that the parity splitting for the reduced tangent and cotangent sheaf
reads

pTM qred “ TMred
‘ F˚M , (1.38)

pΩ1
M qred “ Ω1

Mred
‘ FM . (1.39)

This is a very useful decomposition that has many applications in the theory of supermanifolds
and indeed it will be often used in this thesis.

We now study the cotangent sheaf further, showing which short exact sequences it fits into. It is
understood that the same might be done for the tangent sheaf, dualising the short exact sequence.
We put ourselves in the most general setting, considering a possibly non-projected supermanifold
M : this means that in principle we only have an embedding ι : Mred Ñ M , which allows us to have
an exact sequence of OM -modules as follows

0 // NOM
// Ω1

M

resOM // ι˚Ω1
Mred

// 0 (1.40)

where NOM is a suitable sheaf of OM -module, actually kernel of the map resOM : Ω1
M Ñ ι˚Ω1

Mred
,

where ι˚Ω1
Mred

is the push-forward of the sheaf of 1-forms over the reduced variety Mred, that is
indeed a sheaf of OM -modules.
Likewise, we can also consider the pull-back of the previous short exact sequence:

0 // NOMred

// ι˚Ω1
M

resOMred // Ω1
Mred

// 0 (1.41)

This gives a short exact sequence of OMred
-modules. Here, similarly as above NOMred

is the kernel.

Notice that the pull-back by ι makes the short exact sequence well-defined for we have ι˚Ω1
M “

i´1Ω1
M bi´1OM

OMred
.

We now wonder if there actually exists a projection π : M Ñ Mred splitting the exact sequence
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above. In presence of the projection, it makes sense to consider the following short exact sequence
of OM -modules:

0 // π˚Ω1
Mred

// Ω1
M

//// QOM
// 0 (1.42)

where now QOM is the quotient QOM
..“ Ω1

M
L

π˚Ω1
Mred

and π˚Ω1
Mred

“ OM bp´1OMred
p´1Ω1

Mred
.

This short exact sequence splits,

0 // π˚Ω1
Mred imm

// Ω1
M

proj

ww

// QOM
// 0. (1.43)

Notice that being QOM the quotient Ω1
M
L

π˚Ω1
Mred

, locally, we have that elements in QOM are of

the form OM ¨ tdz1, . . . , dzp, dθ1, . . . , dθqumodOM ¨ tdz1, . . . , dzpu.
Locally, over an open set U Ď |M | we have:

π˚Ω1
Mred

pUq immU // Ω1
M pUq

projU // π˚Ω1
Mred

pUq

OM ¨ tdz1, . . . , dzpu
� // OM ¨ tdz1, . . . , dzp, 0 . . . , 0u

� // OM ¨ tdz1, . . . , dzpu.

Therefore, when dealing with a projected or a split supermanifold that possess a morphism π :
M Ñ Mred, we can consider the sheaf of 1-form Ω1

M as given by a direct sum, as follows:

0 // π˚Ω1
Mred

// π˚Ω1
Mred

‘QOM
// QOM

// 0. (1.44)

Now we need the following

Corollary 1.2. Let M be a projected supermanifold, with projection given by π : M Ñ Mred. The
the following isomorphism holds

π˚FM – Ω1
M

M

π˚Ω1
Mred

. (1.45)

Proof. Locally elements in π˚FM can be written as θamodJ 2
M for a “ 1, . . . ,m where m is the odd

dimension of M (notice the abuse of notation with respect to the previous Corollary 1.1) while

elements in Ω1
M
L

π˚Ω1
Mred

have a local form given by dθa modπ˚Ω1
Mred

, again for a “ 1, . . . ,m where

m odd dimension of M . The isomorphism we are considering reads

π˚FM // Ω1
M
L

π˚Ω1
M

θj modJ 2
M

� // dθj modπ˚Ω1
Mred

.

(1.46)

We need this to hold true when passing from chart to chart, that is we need that ηj modJ 2
M go

to dηj modπ˚Ω1
Mred

, therefore we consider another local chart of M having local coordinates given

by pyi|θjq, and we consider the transformation of dxi and of dθj for

dyi “
ÿ

b

Byi

Bxb
dxb `

ÿ

b

Byi

Bθb
dθb “

ÿ

b

Byi

Bxb
dxb ” 0 modπ˚Ω1

Mred
, (1.47)

as Bθby
i “ 0 since M is projected and therefore y “ ypxq. Moreover, remembering that ηj ”

ř

b f
j
b pxqθ

b modJ 2
M , one has

dηj “
ÿ

b

Bηj

Bxb
dxb `

ÿ

b

Bηj

Bθb
dθb

“
ÿ

b

B

Bxb

˜

ÿ

c

f jc pxqθ
c modJ 2

M

¸

dxb `
ÿ

b

B

Bθb

˜

ÿ

c

f jc pxqθ
c modJ 2

M

¸

dθb

“
ÿ

b,c

Bf jc pxq

Bxb
θc modJ 2

M dxb `
ÿ

b

f jb pxqmodJ 2
M dθb

”
ÿ

b

f jb pxqdθ
b mod

`

π˚Ω1
Mred

˘

, (1.48)
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thus concluding the proof.

Then, the previous short exact sequence can be re-written in the more useful form

0 // π˚Ω1
Mred

// π˚Ω1
Mred

‘ π˚FM // π˚FM // 0.(1.49)

This can be used to express the Berezinian sheaf, that will be introduced in the next section, in a
convenient way.

1.4 Berezinian Sheaf, First Chern Class and Calabi-Yau
Condition

When passing from the ordinary algebraic geometric setting to an algebraic supergeometric setting,
there is one issue in particular that stands out for its peculiarity: the theory of differential forms
and integrations (see for example [18] [19] [41] [45] [68]).
The main problem can be sketched as follows: when one tries to generalise the complex of forms
to supergeometry using 1-forms tdθiuiPI , constructed out of the θi, then it comes natural to define
wedge products to be commutative in the dθ’s, as the θ’s are anticommutative elements. This
leads to the consequence that forms such as pdθiq^n ..“ dθi ^ . . .^ dθi do make sense and they are
non-zero for an arbitrary value of n, possibly exceeding the odd dimension of the supermanifold.
In other words, this says that in supergeometry the de Rham complex is not bounded from above:
there is no notion of top-form.
This obviously creates issues in the definition of a coherent notion of integration on supermanifolds.
There are actually two possible way out. One is to enlarge the de Rham complex, by supplementing
it with the so-called integral forms. Without going into details, this makes the de Rham complex
into a bi-complex, with a generalised notion of top-form that can be integrated over. The interested
reader can refer to the literature cited at the beginning of this section for further information and
discussions of integral forms and their properties on supermanifolds.
Another possibility is to look for a supergeometric analog of the canonical sheaf of an ordinary
manifold - whose sections are the elements that get integrated over. The key is to observe that the
sections of the canonical sheaf transform as densities under change of local coordinates, we thus
ask for a sheaf defined on the supermanifold M whose sections transform as densities as well. This
calls for finding a supergeometric analog of the notion of determinant (of an automorphism) that
enters the transformations of densities such as the sections of the canonical sheaf.
The supergeometric analog of the determinant is known as Berezianian. Briefly, given a free
Z2-graded module A ..“ Ap|q, the Berezianian is a supergroup homomorphisms

Ber : GLpp|q;Aq ÝÑ GLp1|0;A0q (1.50)

that agrees with the determinant when q “ 0 and it also proves to have similar properties (see [16]
[19] [41] [68]). Here GLpp|q;Aq are the invertible (even) automorphisms of A. We can thus give
the following

Definition 1.18 (Berezinian Sheaf / Berezinian of M ). Let M be a (complex) supermanifold and
let E be a locally-free sheaf of OM -modules of rank p|q. The Berezianian sheaf of E, we denote it
by BerpEq, is the sheaf whose sections transform with the Berezinian of the transition functions of
E.
In particular, we define the Berezinian of the supermanifold M to be the sheaf BerpΩ1

M q.

It turns out that the sections of the Berezianian of M are indeed the objects to call for when one
looks for a measure for integration involving nilpotent bits - the so-called Berezin integral (see for
example [63] and again [68] for details about integration on supermanifolds).
Note, by the way, that if on the one hand the definition of the Berezinian sheaf we have given
have the perk of being immediate and suitable for practical computations, on the other hand we
might be interested into having this sheaf intrinsically characterized. In this regard, the reader is
suggested to refer in particular to the very interesting paper by I.B. Penkov [51]. On the same line,
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in the context of differentiable supermanifolds, a nice intrinsic characterization of the Berezinian
sheaf a suitable quotient sheaf is provided in [32].

It is in general not obvious how to study the Berezinian of a generic supermanifold, though.
The theory we have developed in the previous section, in particular the short exact sequence (1.49),
allows for an easy result that simplifies the computation in the case of projected supermanifolds.
To the best knowledge of the author, this result has never appeared in the literature.

Theorem 1.1 (Berezinian of Projected Supermanifolds). Let M be a projected supermanifold,
with projection given by π : M Ñ Mred, then one has

Ber pΩ1
M q – π˚

´

detpΩ1
Mred

q bOMred
pdetFM q

b´1
¯

(1.51)

Proof. We have seen that in presence of a projection π : M Ñ Mred, one has that Ω1
M – π˚Ω1

Mred
‘

π˚FM , then it is enough to take the Berezinian of the both sides of the isomorphism. In particular,
the right-hand side reads

Ber pπ˚Ω1
Mred

‘ π˚FM q – Ber
`

π˚Ω1
Mred

˘

bOM Ber pπ˚FM q

– π˚
´

detpΩ1
Mred

q bOMred
pdetFM q

b´1
¯

, (1.52)

thus completing the proof.

Notice that this result allows us to evaluate the Berezinian of projected supermanifolds by means
of completely “classical” elements. Indeed, whenever there is a projection, what one needs is to
know the canonical sheaf KMred

..“ detpΩ1
Mred

q of the reduced manifold and the determinant sheaf
detFM of the fermionic sheaf, that we recall it is a (locally-free) sheaf of OMred

-modules, that is
an object living on the reduced manifold.
Using this result, for example, one can easily evaluate the Berezinian sheaf of a projective su-
perspace Pn|m. In order to do so, we first define the sheaves OPn|mp`q as the pull-back sheaves
π˚pOPnp`qq via the projection map π : Pn|m Ñ Pn of Pn|m on its reduced manifold Pn, where we
recall that π˚pOPnp`qq ..“ π´1pOPnp`qq bπ´1OPn OPn|m . Then, one has the following corollary.

Corollary 1.3 (Berezinian of Pn|m (Version 1)). Let Pn|m be the n|m-dimensional projective
superspace. Then

BerpΩ1
Pn|mq – OPn|mpm´ n´ 1q. (1.53)

Proof. In the case of Pn|m it boils down to consider the following split exact sequence

0 // π˚Ω1
Pn

// Ω1
Pn|m

// π˚pΠOPnp´1q‘mq // 0.(1.54)

Therefore, taking the Berezinian of the short exact sequence, one gets

BerpΩ1
Pn|mq – Ber

`

π˚Ω1
Pn ‘ π˚

`

ΠO‘mPn

˘˘

– Berpπ˚Ω1
Pnq bOPn|m

Ber
`

π˚
`

ΠOPnp´1q‘m
˘˘

– π˚
´

detpΩ1
Pnq bOPn

`

detpOPnp´1q‘mq
˘b´1

¯

– π˚ pOPnp´n´ 1q bOPn OPnpmqq

– π˚ pOPnpm´ n´ 1qq

– OPn|mpm´ n´ 1q, (1.55)

that yields the conclusion.

In the next chapter we will prove the same result in another way, using an interesting exact sequence
that can be defined for projective superspaces Pn|m.

Theorem 1.1 above allows also to define a supersymmetric analog for the first Chern class of an
ordinary supermanifold, at least in the case we are dealing with a projected supermanifold. Indeed,
we can define
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Definition 1.19 (First Chern Class of a Projected Supermanifold). Let M be a projected super-
manifold. Then we define the first Chern class cs1pΩ

1
M q P H

2pMred,Zq of the cotangent sheaf Ω1
M

of M as

cs1pΩ
1
M q

..“ c1pdet Ω1
Mred

q ´ c1pdetFM q, (1.56)

In particular, we define the first Chern class of M to be given by

cs1pM q ..“ ´cs1pΩ
1
M q. (1.57)

Notice that this reduces to the usual definition of the first Chern class of a variety in the case we set
the odd part to zero (recall that FM Ď JM ), that is we have cs1pMredq “ c1pMredq “ ´c1pdet Ω1

Mred
q.

This construction immediately gives the following corollary.

Corollary 1.4 (First Chern Class of Pn|m). Let Pn|m a projective superspace. Then we have

cs1pPn|mq “ n` 1´m. (1.58)

Proof. Since we have that FPn|m “ OPnp´1q‘m, we have that

cs1pPn|mq “ ´c1pdet Ω1
Pnq ` c1pOPnp´1q‘mq

“ ´c1pOPnp´1´ nqq `m ¨ c1pOPnp´1qq

“ n` 1´m, (1.59)

that proves the corollary.

There is, though, an important remark: when dealing with a non-projected supermanifold, no exact
sequence comes in our help to study the Berezinian sheaf, moreover it is not obvious how to define
a first Chern class. Actually, one then needs to carry out explicit computations, investigating the
Berezinian of the change of coordinates of the cotangent sheaf among charts, as we will see later
on in this thesis.
There is, however, a distinct class of supermanifolds that can be singled out when looking at the
Berezinian sheaf.

Definition 1.20 (Calabi-Yau Supermanifolds). Let M be a (complex) supermanifold and let
BerpM q be its Berezinian sheaf. We call M a Calabi-Yau supermanifold if it has a trivial Berezinian
sheaf, that is

BerpM q – OM . (1.60)

We will call the triviality condition on the Berezinian sheaf Calabi-Yau condition henceforth.

Again, notice that this definition is reasonable in view of the similarity between the canonical
sheaf in the context of ordinary algebraic geometry and the Berezianian in the context of algebraic
supergeometry: triviality of these two sheaves leads to the notion of Calabi-Yau manifold and
supermanifold respectively. There are two facts about Calabi-Yau supermanifolds that is worth
stressing out:

1. There is no analog of Yau’s Theorem for Calabi-Yau supermanifolds and the notion of Ricci-
flatness seems problematic in a supergeometric context (see [45] for details). In this regard,
it is the opinion of the author that a differential-geometric approach is in general not suitable
to tackle the questions of complex supergeometry.

2. the reduced manifold of a Calabi-Yau supermanifold is not in general a Calabi-Yau manifold.

We make this second point clear by using as usual complex projective spaces as example.

Example 1.3 (Pn|n`1 is a Calabi-Yau Supermanifold). A well-known fact that can be easily red
off the theory developed above is that in the case of a projective superspace Pn|m one satisfies the
Calabi-Yau condition given above choosing m “ n ` 1: in other words Pn|n`1 for any n ą 1 has
trivial Berezinian sheaf and vanishing super first Chern class.
Notice that the reduced space of Pn|n`1 for all n is given by Pn, which is a Fano - not a Calabi-Yau
manifold - as KPn – OPnp´n´ 1q.

Actually, Calabi-Yau supermanifolds enter many constructions in theoretical physics (see, in partic-
ular [2] [44] [57], [70], and the recent [6]), but they have never really undergone a deep mathematical
investigation though.

23



Chapter 2

Supergeometry of Projective
Superspaces

This chapter is entirely dedicated to the study of the geometry of complex projective superspaces,
that have been defined in the first chapter.
In the first section the cohomology of the invertible sheaves of the form OPn|mp`q is computed.
Then, in the second section, the even Picard group of Pn|m is studied and it is established that in
the case of supercurves P1|m it has a continuous part.
In the third section maps and embeddings to projective superspaces are discussed. In particular,
the notion of projective supermanifold is established.
The fourth section is dedicated to the study of infinitesimal automorphisms and first order defor-
mations of Pn|m. In this context, the supercurves P1|m prove again to be the most interesting case.
In the last sections contact with physics is made. The Calabi-Yau supermanifold P1|2 is given
the structure of a N “ 2 super Riemann surface and studied in detail. Last, following a formal
construction based on path-integral formalism due to Aganagic and Vafa [2], the “mirror super-
manifold” to P1|2 is constructed, showing that it is P1|2 again.

2.1 Cohomology of OPn|mp`q

We have seen in the first chapter that Pn|m “ SpPn,OPnp`1q‘mq is a split supermanifold and
as such one has that Pn|m – GrPn|m. In particular, the structure sheaf OPn|m is a sheaf of
OPn -modules given by

OPn|m “

tm{2u
à

k“0

OPnp´2kq‘p
m
2kq ‘Π

tm{2u´δ0,mmod2
à

k“0

OPnp´2k ´ 1q‘p
m

2k`1q, (2.1)

where we have inserted the symbol Π as a reminder for the parity reversing.
In the previous chapter we have defined the `-shifted sheaf OPn|mp`q as OPn|mp`q ..“ π˚pOPnp`qq
via the projection morphism π : Pn|m Ñ Pn, where we recall that in turn one has π˚pOPnp`qq ..“

π´1pOPnp`qq bπ´1OPn OPn|m . These are sheaves of OPn-modules of the following form

OPn|mp`q “
tm{2u
à

k“0

OPnp´2k ` `q‘p
m
2kq ‘Π

tm{2u´δ0,mmod2
à

k“0

OPnp´2k ´ 1` `q‘p
m

2k`1q. (2.2)

We shall then use the well-known result about the cohomology of the sheaves OPnp`q (see for
example [49]) in order to compute the cohomology of OPn|mp`q. We recall that

h0pOPnp`qq “

ˆ

`` n

`

˙

, hnpOPnp`qq “

ˆ

|`| ´ 1

|`| ´ n´ 1

˙

, (2.3)

where ` ě 0 in the first equality and ` ă 0 and |`| ě n` 1 in the second equality and all the other
cohomology groups are trivial.
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It is an easy consequence of the previous decomposition that when dealing with OPn|mp`q we shall
only have non-trivial 0-th and n-th cohomology groups for any m.
In order to make the combinatorics easier when computing the cohomologies, we will consider
together the even and odd dimensions of the cohomology groups, by looking at the sheaves of
OPn -modules above simply as

OPn|mp`q “
m
à

k“0

OPnp´k ` `q‘p
m
k q, (2.4)

It is fair to say anyway that it would be nice and useful to separate even and odd dimensions of
the cohomology group at some point to have a result that clearly takes into account the vector
superspace nature of the cohomology groups.

We start considering the 0-th cohomology of OPn|mp`q. We have to deal with two cases: when
m ă `, and therefore all the bits in the decomposition are contributing, and when m ě ` and
therefore just the first ` contribute.

• m ă ` : in this case we sum over all the contributions:

h0pOPn|mp`qq “
m
ÿ

k“0

ˆ

m

k

˙ˆ

`´ k ` n

`´ k

˙

“

m
ÿ

k“0

m!p`´ k ` nq!

pm´ kq!k!p`´ kq!n!

“
1

n!

m
ÿ

k“0

ˆ

m

k

˙

p`´ k ` nq!

p`´ kq!
“

1

n!

m
ÿ

k“0

ˆ

m

k

˙

p`´ k ` nq ¨ . . . ¨ p`´ k ` 1q

“
1

n!

m
ÿ

k“0

ˆ

m

k

˙„

dn

dxn
x`´k`n



x“1

“
1

n!

dn

dxn

„

x``n
ˆ

1`
1

x

˙m

x“1

“
1

n!

dn

dxn
“

px` 1q``n´mpx` 2qm
‰

x“0
. (2.5)

• m ě ` : in this case we only sum over the first ` contributions:

h0pOPn|mp`qq “
ÿ̀

k“0

ˆ

m

k

˙ˆ

`´ k ` n

`´ k

˙

“
ÿ̀

k“0

m!p`´ k ` nq!

pm´ kq!k!p`´ kq!n!

“
m!

n! `!

ÿ̀

k“0

ˆ

`

k

˙

p`´ k ` nq!

pm´ kq!
“

m!

n! `!

ÿ̀

k“0

ˆ

`

k

˙

p`´ k ` nq ¨ . . . ¨ pm´ k ` 1q

“
m!

n! `!

ÿ̀

k“0

ˆ

`

k

˙„

d``n´m

dx``n´m
x`´k`n



x“1

“
m!

n! `!

d``n´m

dx``n´m

«

x``n
ˆ

1`
1

x

˙`
ff

x“1

“
m!

n! `!

d``n´m

dx``n´m
“

px` 1qnpx` 2q`
‰

x“0
. (2.6)

We now keep our attention on the contribution given by the n-th cohomology. Again, one needs to
distinguish between two cases: namely, when ``n` 1 ď 0 all the summands in the decomposition
contribute to the cohomology, while if ``n` 1 ą 0 we find that the only bits contributing are the
ones having k ě `` n` 1.

• `` n` 1 ď 0 : in this case we sum over all the contributions:

hnpOPn|mp`qq “
m
ÿ

k“0

ˆ

m

k

˙ˆ

k ´ `´ 1

k ´ `´ n´ 1

˙

“

m
ÿ

k“0

m!pk ´ `´ 1q!

pm´ kq!k!n!pk ´ `´ n´ 1q!

“
1

n!

m
ÿ

k“0

ˆ

m

k

˙

pk ´ `´ 1q!

pk ´ `´ n´ 1q!
“

1

n!

m
ÿ

k“0

ˆ

m

k

˙

pk ´ `´ 1q ¨ . . . ¨ pk ´ `´ nq

“
1

n!

m
ÿ

k“0

ˆ

m

k

˙„

dn

dxn
xk`|`|´1



x“1

“
1

n!

„

dn

dxn
x|`|´1p1` xqm



x“1

“
1

n!

„

dn

dxn
px` 1q|`|´1px` 2qm



x“0

. (2.7)
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Actually, this holds in the case 1 ď |`| ď n. In the special sub-case ` “ ´1, one finds:

hnpOPn|mp´1qq “
1

n!

„

dn

dxn
px` 2qm



“
1

n!
m ¨ pm´ 1q ¨ . . . ¨ pm´ n` 1q ¨ 2m´n

“

ˆ

m

n

˙

¨ 2m´n (2.8)

• `` n` 1 ą 0 : in this case, the first contribution comes at k “ `` n` 1:

hnpOPn|mp`qq “
m
ÿ

k“``n`1

ˆ

m

k

˙ˆ

k ´ `´ 1

k ´ `´ n´ 1

˙

“
1

n!

m
ÿ

k“``1

ˆ

m

k

˙„

dn

dxn
xk´`´1



x“1

“
1

n!

«

dn

dxn
1

x``1

˜

px` 1qm ´
ÿ̀

k“0

ˆ

`

k

˙

xk

¸ff

x“1

“
1

n!

«

dn

dxn
1

px` 1q``1

˜

px` 2qm ´
ÿ̀

k“0

ˆ

`

k

˙

px` 1qk

¸ff

x“0

(2.9)

where we stress that we have changed the sum from ` ` n ` 1 to ` ` 1 since the derivative
kills the respective terms, which therefore do not give a contribution. This also holds for
k ě `` n` 1 ď m.

For the sake of notation we introduce the following definitions:

χmă`pn|m; `q ..“
1

n!

dn

dxn
“

px` 1q``n´mpx` 2qm
‰

x“0
(2.10)

χmě`pn|m; `q ..“
m!

n! `!

d``n´m

dx``n´m
“

px` 1qnpx` 2q`
‰

x“0
(2.11)

ζ``n`1ď0pn|m; `q ..“
1

n!

„

dn

dxn
px` 1q|`|´1px` 2qm



x“0

(2.12)

ζ``n`1ą0pn|m; `q ..“
1

n!

«

dn

dxn
1

px` 1q``1

˜

px` 2qm ´
ÿ̀

k“0

ˆ

`

k

˙

px` 1qk

¸ff

x“0

. (2.13)

In conclusion, we have thus proved the following theorem.

Theorem 2.1. Let OPn|mp`q be the sheaf of OPn|m-modules as above. Then one has the following
dimensions in cohomology:

hipOPn|mp`qq “

$

’

’

&

’

’

%

χmă`pn|m; `q i “ 0, m ă `
χmě`pn|m; `q i “ 0, m ě `
ζ``n`1ď0pn|m; `q i “ n, `` n` 1 ď 0
ζ``n`1ą0pn|m; `q i “ n, `` n` 1 ą 0.

(2.14)

All the other cohomologies are null.

2.2 Invertible Sheaves and Even Picard Group Pic0pPn|mq
We have explained in section 1.2 of the previous chapter that even invertible sheaves, that is locally-
free sheaves of OM -modules of rank 1|0 on a supermanifold, are classified (up to isomorphism) by
the so-called even Picard group, we denote it by Pic0pM q. This can be proved to be isomorphic
to the group H1pO˚M ,0q (notice that O˚M ,0 is a sheaf of abelian groups), as one might easily get by

similarity with the ordinary case [42].
In the following theorem we compute the even Picard group of Pn|m.
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Theorem 2.2 (Even Picard Group for Pn|m). The even Picard group of the projective superspace
Pn|m is given by

Pic0pPn|mq –
"

Z‘ Ct2m´2
pm´2q`1u n “ 1, m ě 2

Z else
(2.15)

Proof. The main tool to be used in order to compute the even Picard group is the even exponential
short exact sequence, introduced in section 1.2, that reads

0 // ZM // OM ,0
// O˚M ,0

// 0. (2.16)

where OM ,0 is the even part of structure sheaf of M , and likewise for O˚M ,0. We now consider
separately the case n ě 3, n “ 2 and n “ 1.

n ě 2 This is the easiest case, as one has HipOPn|m,0q “ 0 for i “ 1, 2. So the part of the long exact
cohomology sequence we are interested into reduces to

0 // Pic0pPn|mq // H2pZPnq – Z // 0,

so that one has Pic0pPn|mq – Z.

n “ 2 The long exact cohomology sequence reduces to

0 // Pic0pP2|mq // H2pZP2q – Z // H2pOP2|m,0q
// H2pO˚P2|m,0

q // 0,

this splits to give Pic0pP2|mq – Z and H2pOP2|m,0q – H2pO˚P2|m,0
q.

n “ 1 This is the richest case, as one finds

0 // H1pOP1|m,0q
// Pic0pP1|mq // H2pZP1q – Z // 0,

computing the dimension of H1pOP1|m,0q, one has

h1pOP1|m,0q “

tm{2u
ÿ

k“1

ˆ

m

2k

˙

p2k ´ 1q “ 2m´2pm´ 2q ` 1. (2.17)

Indeed, one can observe that

tm{2u
ÿ

k“1

ˆ

m

2k

˙

p2k ´ 1q “ ´

tm{2u
ÿ

k“1

ˆ

m

2k

˙

`

tm{2u
ÿ

k“1

2k

ˆ

m

2k

˙

and using that

p1` εxqm “
m
ÿ

k“0

εkxk
ˆ

m

k

˙

ù x
d

dx
p1` εxq

m
“

m
ÿ

k“0

kεkxk
ˆ

m

k

˙

so that for m ě 2 one might write

x
d

dx
rp1` xqm ` p1´ xqms “ 2 ¨

tm{2u
ÿ

k“1

2kxk
ˆ

m

2k

˙

.

At x “ 1, the sum yields

m2m´2 “

tm{2u
ÿ

k“1

2k

ˆ

m

2k

˙

.
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Putting the two bits together one finds

´

tm{2u
ÿ

k“1

ˆ

m

2k

˙

`

tm{2u
ÿ

k“1

2k

ˆ

m

2k

˙

“ p´2m´1 ` 1q ` pm2m´2q “ pm´ 2q2m´2 ` 1.

So that the conclusion follows,

Pic0pP1|mq – Z‘ Ct2
m´2

pm´2q`1u. (2.18)

These exhaust all the possible cases, concluding the theorem.

The previous theorem tells us that all of the invertible sheaves on Pn|m for n ą 1 are of the form
OPn|mp`q. In other words, we can say that all of the invertible sheaves on Pn|m for n ą 1 are the
pull-backs via the projection π : Pn|m Ñ Pn of the invertible sheaves OPnp`q on Pn, thus Theorem
2.1 exhausts the cohomology of all invertible sheaves of rank 1|0 over Pn|m for n ą 1.
This is no longer true in the one-dimensional case: indeed over P1|m, for m ě 2, there are invertible
sheaves that cannot the obtained by the pull-back of a certain invertible sheaf OP1p`q via π : P1|m Ñ

P1, i.e. there are genuinely supersymmetric invertible sheaves on P1|m. In view of this, it can be
seen that the even supergeometry of projected, actually split supermanifolds, could effectively
become a richer geometric setting compared to its ordinary counterpart.
Before we actually give the explicit form of the transition functions of the invertible sheaves on the
supercurves P1|m we fix the notation. We consider P1|m to be covered by two affine superspaces
pU ,Crz, θ1, . . . , θmsq and pV,Crw,ψ1 . . . , ψmsq, where U ..“ trX0 : X1s P P1 : X0 ‰ 0u and V ..“

trX0 : X1s P P1 : X1 ‰ 0u. The transition functions between the two affine superspaces are the
obvious ones and are given by w “ 1{z for the even part and θi “ ψi{z for the odd part.
We also set I “ pi1, . . . , imq to be a multi-index with ik “ t0, 1u such that |I| “

řm
k“1 ik ď m and

we put

ψI ..“ ψi11 . . . ψikk . . . ψimm , (2.19)

where, clearly, ψ0
k “ 1C. Using this notation, we have the following

Theorem 2.3 (Generators of H1pO˚P1|m,0
q). The cohomology group H1pO˚P1|m,0

q is generated by

the following Čech 1-cocycles:

H1pO˚P1|m,0q –

C

wk, 1`

tm{2u
ÿ

|I|“1

2|I|´1
ÿ

`“1

cI`
ψI

w`

G

. (2.20)

where k P Z and cI` P C for each |I| “ 1, . . . , tm{2u and ` “ 2|I| ´ 1.

Proof. One has to explicitly compute the representative of H1pO˚P1|m,0
q. In order to achieve this,

the usual covering of P1 given by the two open sets tU ,Vu can be used, so that one has

C0ptU ,Vu,O˚P1|m,0q “ O
˚

P1|m,0pUq ˆO
˚

P1|m,0pVq (2.21)

C1ptU ,Vu,O˚P1|m,0q “ O
˚

P1|m,0pU X Vq. (2.22)

The Čech 0-cochains are thus given by pairs of elements of the type pP pz, θ1, . . . , θmq, Qpw,ψ1, . . . , ψmqq.
Making use of the notation we set above, we can write the following expressions for the pair pP,Qq:

P pz, θ1, . . . , θmq “ a`

tm{2u
ÿ

k“1

ÿ

|I|“2k

P̃Ipzqθ
I

“ a`
m
ÿ

iăj

P̃ijpzqθ
iθj `

m
ÿ

iăjăkăl“1

P̃ijklpzqθ
iθjθkθl ` . . . (2.23)
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Qpw,ψ1, . . . , ψmq “ b`

tm{2u
ÿ

k“1

ÿ

|I|“2k

Q̃Ipwqψ
I “

“ b`
m
ÿ

iăj

Q̃ijpwqψ
iψj `

m
ÿ

iăjăkăl“1

Q̃ijklpwqψ
iψjψkψl ` . . . (2.24)

where a, b P C˚. The boundary map δ : C0ptU ,Vu,O˚P1|m,0
q Ñ C1ptU ,Vu,O˚P1|m,0

q acts as

δppP,Qqq “ Qpw,ψ1, . . . , ψmqP
´1pz, θ1, . . . , θmq

X

UXV . (2.25)

Explicitly, one finds

δppP,Qqq “
b

a
`

m
ÿ

iăj“1

˜

Q̃ijpwq

a
`

b

a2

P̃ijp1{wq

w2

¸

ψiψj`

`

m
ÿ

iăjăkăl“1

˜

Q̃ijklpwq

a
´

b

a3

P̃ijklp1{wq

w4
´

1

a2

Q̃ijpwqP̃klp1{wq

w2

¸

ψiψjψkψl ` . . . (2.26)

Clearly, one immediately sees that H0pO˚P1|m,0
q – C˚, as the group is represented by the constant

cocycles pa, aq with a ‰ 0.
On the other hand, the elements in O˚P1|m,0

pU X Vq are given by expressions having the following

form

W pw, 1{w,ψ1, . . . , ψmq “ cwk `

tm{2u
ÿ

k“1

ÿ

|I|“2k

W̃Ipw, 1{wqψ
I

“ cwk `
m
ÿ

iăj

W̃ijpw, 1{wqψ
iψj `

m
ÿ

iăjăkăl“1

W̃ijklpw, 1{wqψ
iψjψkψl ` . . .

(2.27)

where again, clearly c P C˚, k P Z and W̃I P Crw, 1{ws for all the multi-indices I. Confronting the
expressions in (2.26) and (2.27) one sees that b{a can be used to set the coefficient c of wk to 1.
Also, for every power in the θ’s, the polynomials Q̃Ipwq kill the regular part of the corresponding
W̃I and the mixed terms, such as for example Q̃ijpwqP̃klp1{wq{w

2, in (2.26), do not contribute
anyway, as they enter in lower-order powers in the theta’s, so that they are completely fixed.
We thus see that the non-exact 1-cocycles are given by transition functions having the following
form

H1pO˚P1|m,0q –

C

wk, 1`

tm{2u
ÿ

|I|“1

2|I|´1
ÿ

`“1

cI`
ψI

w`

G

(2.28)

where k P Z and each of the pm´ 2q2m´2 ` 1 coefficients cI` is a complex number.

Recalling that an even invertible sheaf on a supermanifold can be defined exactly as an ordinary
invertible sheaf in algebraic geometry, that is by giving an open covering and the transition func-
tions between the open sets of the covering, if we choose the open cover of Mred “ P1 to be given
by tU ,Vu as above, we can adopt the following notation for the even invertible sheaves of P1|m:

OP1|mpkq ÐÑ twku, (2.29)

LP1|mpc1, . . . , cfpmqq ÐÑ

$

&

%

1`

tm{2u
ÿ

|I|“1

2|I|´1
ÿ

`“1

cI`
ψI

w`

,

.

-

, (2.30)

for k P Z, cI` P C and fpmq “ pm´ 2q2m´2 ` 1. Note that OP1|mpkq ..“ π˚OP1pkq, where π : M Ñ

Mred is the projection map. Having set these conventions, we get the following theorem.
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Theorem 2.4 (Even Picard Group Pic0pP1|mq). The even Picard group of P1|m is generated by
the following even invertible sheaves

Pic0pP1|mq –
@

OP1|mpkq,LP1|mpc1, 0, . . . , 0q, . . . ,LP1|mp0, . . . , cfpmqq
D

, (2.31)

for k “ ˘1, c1, . . . cfpmq P C and where fpmq “ pm´ 2q2m´2 ` 1.

Proof. Taking into account the notation adopted above, this is a consequence of the previous
theorem and of the isomorphism Pic0pP1|mq – H1pO˚P1|m,0

q.

Before we go on, we stress that one can check that Pic0pP1|mq, as seen via the isomorphism with

Z‘ Cpm´2q2m´2
`1, has the structure of an abelian group with addition, that is

Z‘ pC‘ . . .‘ Cq ˆ Z‘ pC‘ . . .‘ Cq // Z‘ pC‘ . . .‘ Cq

ppk, c1, . . . , cfpmqq, pk̃, c̃1, . . . , c̃fpmqqq
� // pk ` k̃, c1 ` c̃1, . . . cfpmq ` c̃fpmqq.

(2.32)

where fpmq “ pm´ 2q2m´2 ` 1.
At this point, it is fair to say that whereas we have been able to compute the cohomology of the
invertible sheaves of the kind OPn|mp`q, it is instead not certainly a trivial task to deduce a general
formula for the cohomology of the most general invertible supersymmetric sheaf on P1|n for n ě 2,
originating by tensor product of the generators shown above.
At this stage, it would be easy to provide a general formula for the genuinely supersymmetric
generators of the even Picard group above, but this would not help to solve the general question.
We thus limit ourselves to provide the reader with an example, as to show that these invertible
sheaves have an interesting non-trivial cohomology.

Example 2.1 (The Cohomology of a Supersymmetric Invertible Sheaf). We consider the following
supersymmetric invertible sheaf on P1|3:

LP1|3
..“

#

tU ,Vu, eU “

˜

1`
3
ÿ

iăj;i,j“1

ψiψj
w

¸

eV

+

(2.33)

for eU and eV two local frames on the open sets U and V respectively. Notice this is a generator of
the even Picard group for P1|3. It is easy to actually compute Čech cohomology. We have that

C0ptU ,Vu,LP1|3q ..“ LP1|3pUq ˆ LP1|3pVq Q pP pz, θ1, θ2qeU , Qpw,ψ1, ψ2qeVq

C1ptU ,Vu,LP1|3q ..“ LP1|3pU X Vq QW pw, 1{w,ψ1, ψ2qeV (2.34)

where P P Crz, θ1, θ2s, Q P Crw,ψ1ψ2s and W P Crw, 1{w,ψ1, ψ2s.
By following the usual strategy, we change coordinates as to get

P pz, θ1, θ2qeU “

˜

Ap0qpzq `
3
ÿ

i“1

A
p1q
i pzqθi `

3
ÿ

iăj;i,j“1

A
p2q
ij pzqθiθj `A

p3qpzqθ1θ2θ3

¸

eU

“

˜

Ap0qp1{wq `
3
ÿ

i“1

A
p1q
i p1{wq

ψi
w
`

3
ÿ

iăj;i,j“1

˜

A
p2q
ij p1{wq

w2
`
Ap0qp1{wq

w

¸

ψiψj`

`

3
ÿ

iăj;i,j“1

˜

3
ÿ

i“1

p´1qi´1A
p1q
i p1{wq

w2
`
Ap3qp1{wq

w3

¸

ψ1ψ2ψ3

¸

eV . (2.35)

One can clearly see that there is no way to get a globally defined holomorphic section, that is to
extend P pz, θ1, θ2qeU to the whole P1|3 without hitting a singularity, and this tells that h0pLP1|3q “

0|0.
Instead, considering pQ´ P q tUXV , upon using the expression above for P in the chart V, one finds
that h1pLP1|3q “ 3|2, and in particular, it is generated by the following elements:

H1pLP1|3q “

C

ψ1ψ2

w
,
ψ1ψ3

w
,
ψ2ψ3

w

ˇ

ˇ

ˇ

ˇ

ˇ

ψ1ψ2ψ3

w
,
ψ1ψ2ψ3

w2

G

C

(2.36)
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where we have written the representative in the chart V: notice that all of these elements are
nilpotent, they live in JP1|3pU X Vq. The cohomology of LP1|3 is thus given by

hipLP1|3q “

"

0|0 i “ 0
3|2 i “ 1.

(2.37)

Similar computations can be easily done for any invertible sheaves of this kind: in general, one
would again find a vanishing zeroth cohomology group, while a non-vanishing - and possibly very
rich as the fermionic dimension of P1|m increases - first cohomology group.

2.3 Maps and Embeddings into Projective Superspaces

For future application in this thesis we now discuss how to set up a map, or better an embedding,
into a projective superspace. Indeed, in the next chapter, beside realising examples of non-projected
supermanifolds, we will be interested into understanding whether it is possible to realise an em-
bedding of these non-projected supermanifolds into some supermanifold with a universal property,
such as, for example, a projective superspace Pn|m.

We first review the general framework, referring mainly to [16] and [38] for further details.
As in the ordinary theory, a sub-supermanifold is defined in general as a pair pN , ιq, were N is a
supermanifold and ι ..“ pι, ι7q : pN ,ON q Ñ pM ,OM q is an injective morphism with some regularity
property. In particular, depending on these regularity properties, we can distinguish between two
kind of sub-supermanifolds. We start from the milder notion.

Definition 2.1 (Immersed Supermanifold). Let ι ..“ pi, i7q : p|N |,ON q Ñ p|M |,OM q be a morphism
of supermanifolds. We say that pN , ιq is an immersed supermanifold if i : |N | Ñ |M | is injective
and the differential pdιqx : TN pxq Ñ TM pipxqq is injective for all x P |N |.

Making stronger requests, we can give instead the following definition.

Definition 2.2 (Embedded Supermanifold). Let ι ..“ pi, i7q : p|N |,ON q Ñ p|M |,OM q be a mor-
phism of supermanifolds. We say that pN , ιq is an embedded supermanifold if it is an immersed
submanifold and i : |M | Ñ |N | is an homeomorphism onto its image.
In particular, if ιp|N |q Ă |M | is a closed subset of |M | we will say that pN , ιq is a closed embedded
supermanifold.

In this thesis, we will mostly deal with closed embedded supermanifolds. Remarkably, it is possible
to show that a morphism ι : N Ñ M is an embedding if and only if the corresponding morphism
ι7 : OM Ñ ON is a surjective morphism of sheaves (see [16]). Notice that, for example, given a
supermanifold M , one always has a natural closed embedding: the map ι : Mred Ñ M , that embeds
the reduced manifold underlying the supermanifold into the supermanifold itself.
It is anyway fair to say that these definitions apply only to honest non-singular supermanifolds,
and it is somehow tricky to generalise them, for example, to superschemes, as hinted in [16] and [38].

We now specialise to embedding into projective superspaces Pn|m. In a similar way as in
ordinary algebraic geometry, after Grothendieck, setting up such an embedding, calls for a search
for very ample locally-free sheaves of OM -modules of rank 1|0.
The first step into this direction is to bring to a supergeometric context the ordinary invertible
sheaves of OPn-modules OPnp`q classified by the Picard group Pic pPnq – H1pO˚Pnq – Z. As we
have seen in the first and in the second section of this chapter, this can be achieved using the
fact that projective superspaces are split supermanifold, that is we have a projection, we write
it π : Pn|m Ñ Pn as usual. We can thus pull-back the invertible sheaves OPnp`q to Pn|m by the
projection map and we define the sheaves OPn|mp`q as the pull-back sheaves π˚pOPnp`qq as above,
where we recall that π˚pOPnp`qq ..“ π´1pOPnp`qq bπ´1OPn OPn|m . Again, the most obvious way to
deal with OPn|mp`q is clearly to look at them as locally-free sheaves of OPn -modules: as such, they
amount to twist the structure sheaf OPn|m seen as a sheaf of OPn-modules (as displayed in (2.1))
by OPnp`q.
In particular it is important to focus on OPn|mp1q. Clearly, specifying a result obtained above by

31



discriminating even and odd dimension, its zeroth-cohomology is given, as a sheaf of OPn -modules,
by

H0pOPn|mp1qq “ H0pOPnp1qq ‘Π
m
à

i“1

H0pOPnq – Cn`1|m, (2.38)

and, with obvious notation, OPn|mp1q is globally-generated by the sections tX0, . . . , Xn|Θ1, . . . ,Θnu,
that is we have a surjection H0pOPn|mp1qq bOPn|m Ñ OPn|mp1q.
The sheaf OPn|mp1q plays an important role as one is to set up an embedding of a certain complex
supermanifold M into a projective superspace Pn|m. Indeed, as in ordinary algebraic geometry,
one has that if E is a certain globally-generated sheaf of OM -modules of rank 1|0, having n` 1|m
global sections ts0, . . . , sn|ξ1, . . . , ξmu, then there exists a morphism φE : M Ñ Pn|m such that
E “ φ˚EpOPn|mp1qq and such that si “ φ˚EpXiq and ξj “ φ˚EpΘjq for i “ 0, . . . , n and j “ 1, . . . ,m.
Notice that also the converse is true, that is given a morphism φ : M Ñ Pn|m, then there exists a
globally generated sheaf of OM -modules Eφ such that it is generated by the global sections φ˚pXiq

and φ˚pΘjq for i “ 0, . . . , n and j “ 1, . . . ,m. Relying on this result, we can give the following
definition.

Definition 2.3 (Projective Supermanifold). We say that a complex supermanifold M is projective
if there exists a morphism φ : M Ñ Pn|m such that φ is injective on Mred and its differential dφ is
injective everywhere on TM .

We have thus that setting up a morphism from a supermanifolds M to Pn|m calls for a search for a
suitable (very ample) locally-free sheaf of OM -modules of rank 1|0: this, in turn, leads to consider
the even Picard group of M , that classifies such locally-free sheaves.
Before we go on we stress that an empty even Picard group Pic0pM q it is enough to guarantee
the non-existence of the embedding into projective super space φ : M Ñ Pn|m as φ, as morphism
of supermanifolds, is a parity-preserving one. We anticipate that this observation will be crucial
when studying the existence of embeddings of non-projected N “ 2 supermanifold over P2 later
on in this thesis.

2.4 Infinitesimal Automorphisms and First Order Deforma-
tions

We are now interested into studying the infinitesimal automorphisms and first order deformations
for Pn|m by computing the cohomology of the tangent sheaf TPn|m of Pn|m.
The main tool that we will exploit is a generalisation to a supergeometric setting of the ordinary
Euler exact sequence [41] [42], that reads

0 // OPn|m
// OPn|mp1q b Cn`1|m // TPn|m

// 0. (2.39)

In the following we will write OPn|mp1q‘n`1|m “ OPn|mp1q b Cn`1|m.
In passing, we notice that this short exact sequence give another way to compute the Berezinian
of the projective superspaces, we have already computed in the first chapter. Indeed the following
theorem holds true.

Theorem 2.5 (Berezinian of Pn|m (Version 2)). Let Pn|m be the n|m-dimensional projective su-
perspace. Then

BerpΩ1
Pn|mq – OPn|mpm´ n´ 1q. (2.40)

Proof. We consider the dual of the supergeometric version of the Euler exact sequence in (2.39),
that is

0 // Ω1
Pn|m

// OPn|mp´1q‘n`1|m // OPn|m
// 0. (2.41)

32



Since BerpOPn|mq is trivial, taking into account the multiplicative behaviour of the Berezinian with
respect to exact sequence, one finds

BerpΩ1
Pn|mq – Ber pOPn|mp´1q‘n`1|mq – Ber

`

OPn|mp´1q‘n`1 ‘ΠOPn|mp´1q‘m
˘

OPn|mp´n´ 1q bOPn|m
OPn|mpmq – OPn|mpm´ n´ 1q, (2.42)

which concludes the proof.

We now look at the cohomology exact sequence associated to the Euler exact sequence:

0 // H0pOPn|mq
ẽ0 // H0pOPn|mp1q‘n`1|mq // H0pTPn|mq // H1pOPn|mq // . . .

. . . // Hn´1pTPn|mq // HnpOPn|mq
ẽn // HnpOPn|mp1q‘n`1|mq // HnpTPn|mq // 0.

These are the only relevant parts of the long exact sequence in cohomology associated to the Euler
sequence, since, considering the OPn -module structure of the sheaf of algebras OPn|m obtained by
the projection map π : Pn|m Ñ Pn, one has the factorisation in a direct sum as in (2.1) and
Theorem 2.1 holds true.
Actually, the map ẽn : HnpOPn|mq ÝÑ HnpOPn|mp1q b Cn`1|mq in cohomology deserves some
special attention. One has the following theorem.

Theorem 2.6. The map

ẽn : HnpOPn|mq ÝÑ HnpOPn|mp1q b Cn`1|mq. (2.43)

has maximal rank. In particular it is injective if m ‰ n` 1.

Proof. We use the Serre duality on a supermanifold (see [65], Proposition 3, for a thorough dis-
cussion). The dualising sheaf of Pn|m is given by BerpΩ1

Pn|mq, that is the so called Berezinian sheaf

of Pn|m, which has been shown to be isomorphic to OPn|mpm ´ n ´ 1q. Given a sheaf EPn|m of
OPn|m-module, Serre duality then reads

HipEPn|mq – Hn´ipE˚Pn|m bOPn|mpm´ n´ 1qq˚. (2.44)

By functoriality of Serre duality, we see therefore that the map ((2.43)) can be written as

ẽn : H0pOPn|mpm´ n´ 1qq˚ ÝÑ H0pOPn|mpm´ n´ 2q b Cn`1|mq˚, (2.45)

which is the dual to the map H0pOPn|mpm ´ n ´ 2q b Cn`1|mq
pX0,...,Θmq
ÝÑ H0pOPn|mpm ´ n ´ 1qq

defined by multiplication of matrices of global sections.
Setting X˚i and Θ˚j to be the dual base to xX0, . . . , Xn,Θ1, . . .Θmy, that generates the vector super-

spaceH0pOPn|mp1qq, we can consider the superspace Un`1|m, spanned by xX˚0 , . . . , X
˚
n ,Θ

˚
1 , . . . ,Θ

˚
my,

and we may write

H0pOPn|mpm´ n´ 1qq˚ “ Symm´n´1 pUn`1|mq

H0pOPn|mpm´ n´ 2qq˚ “ Symm´n´2 pUn`1|mq,
(2.46)

where Sym denotes the symmetric power functor in the supercommutative setting. In other words,
this actually means that we are writing these spaces as the superspace of the homogeneous forms
in X˚i ,Θ

˚
j of global degrees m´n´ 1 and m´n´ 2, respectively. As usual, the dual operation to

the multiplication by a variable X˚i or Θ˚j , is the derivation BX˚i
or BΘ˚j

, respectively. Therefore

the map (2.45) can be written as the super gradient map

ẽn : Symm´n´1pUn`1|mq

∇̃
pX˚

i
,Θ˚

j
q

// Symm´n´2pUn`1|m b Cn`1|mq. (2.47)
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where the super gradient map is given by

∇̃pX˚i ,Θ˚j q
..“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

BX˚0
...
BX˚n
´BΘ˚1

...
´BΘ˚m

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.48)

where the minus signs in front of the odd derivatives are due to the super transposition.
Now it is obvious by inspection that this map has non-zero kernel if and only if m “ n`1, in which
case the first space consists in the constant homogeneous forms, and the second space is zero.

The previous theorem together with the cohomology of the sheaves OPn|mp`q, allows us to compute
the cohomology of the tangent space of projective super spaces Pn|m. Notice that, surprisingly,
some attention must be paid in the case the projective superspace is Calabi-Yau in the sense
explained above (i.e. trivial Berezinian sheaf), corresponding to m “ n` 1.
In the case n ą 1 one finds:

Automorphisms: taking into account the even and odd dimensions, we have that of h0pTPn|mq

matches the dimension of slpn` 1|mq, the Lie superalgebra of the Lie supergroup PGLpn` 1|mq,
as somewhat expected by similarity with the ordinary case on Pn. In particular, we have

h0pTPn|mq “ n2 `m2 ` 2n|2nm` 2m n ą 1, @m, (2.49)

that indeed equals dim slpn` 1|mq.

Deformations: dimensional reasons assure that, in the case n ą 2, the supermanifold Pn|m is
rigid for all m. Moreover, in the case n “ 2, Theorem 2.6 guarantees that when m ‰ 3, we have

h1pTPn|mq “ 0, since ẽ2 : H2pOP2|mq Ñ H2pO‘3|m

P2|m p1qq is injective and therefore P2|m is rigid also
whenever m ‰ 3.
The only case that actually needs to be treated carefully is that of the Calabi-Yau supermanifold
P2|3: indeed, in this case Theorem 2.6 is not helping us, and further, since we are working over
the projective plane P2 the second cohomology groups could, in principle, be non-zero. We have,
thus, the following exact sequence:

0 ÝÑ H1pTP2|3q ÝÑ H2pOP2|3q ÝÑ H2pOP2|3p`1q‘3|3q ÝÑ H2pTP2|3q ÝÑ 0. (2.50)

A direct computation, or the use of the previous formulas, shows that H2pOP2|3q – C0|1 and
H2pOP2|3p`1q‘3|3q “ 0, so one has that h1pTP2|3q “ 0|1 and therefore P2|3 possess a single odd
deformation. This is the only projective superspace having a first order deformation whenever
n ě 2. We will see that the situation is much different over P1.

We summarise these results in the following

Theorem 2.7 (Infinitesimal Automorphisms and First-Order Deformations for Pn|m). Let Pn|m
be a projective superspace such that n ą 1. Then one has

h0pTPn|mq “ dim slpn` 1|mq “ n2 `m2 ` 2n|2nm` 2m

h1pTPn|mq “ 0|0, (2.51)

the only exception being the Calabi-Yau supermanifold P2|3 which is such that h1pTP2|3q “ 0|1.

In the next subsection we will focus our attention on the case of supercurves over P1.
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2.4.1 Supercurves over P1 and the Calabi-Yau Supermanifold P1|2

We now repeat what has been done in the previous section in the case of supercurves.
We start considering supercurves of the kind P1|m, where m ‰ 2. In this case, as seen above, the
map ẽ1 : H1pOP1|mq Ñ H1pOP1|mp1q‘2|mq is injective and the long exact sequence in cohomology
splits in two short exact sequences.
Using some tricks similar to those employed in the proof of Theorem 2.2 to solve the combinatorics,
it is possible to give the even and odd dimensions of the cohomology groups involved in long exact
sequence related to the Euler exact sequence. We get the following

$

’

’

&

’

’

%

h0pOP1|mq “ 1|0
h1pOP1|mq “ pm´ 2q2m´2 ` 1 | pm´ 2q2m´2

h0pOP1|mp`1q‘2|mq “ m2 ` 4 | 2m

h1pOP1|mp`1q‘2|mq “ pm2 ´ 2m´ 8q2m´2 `m2 ` 4 | pm2 ´ 2m´ 8q2m´2 ` 4m.

(2.52)

We can thus conclude that

h0pTP1|mq “ m2 ` 3 | 4m (2.53)

This is, again, what we expected, since this number corresponds to the dimension of the super Lie
algebra slp2|mq, connected to the super group PGLp2|mq, the “superisation” of PGLp2,Cq, the
group of automorphisms of P1.
As for the first-order deformations, we finds that

h1pTP1|mq “ pm2 ´ 3m´ 6q2m´2 `m2 ` 3 | pm2 ´ 3m´ 6q2m´2 ` 4m. (2.54)

We observe that we have no (first-order) deformations in the case of P1|1 and for P1|3. We anticipate
that we also have no deformations in the Calabi-Yau case P1|2, that will be discussed in the next
paragraph. We start having deformations from P1|4, where we find for example h1pTP1|4q “ 11|8.
Before we go on we notice that, of course, H2pTP1|mq “ 0, therefore following the supersymmetric
generalisation of a well-known result by Kodaira and Spencer ([58], page 21) due to A. Yu. Vain-
trob [61], we have that for any m ě 4, the complex supermanifold P1|m has no obstruction classes
and there exists a Kuranishi family whose base space is a complex supermanifold having indeed
dimension equal to h1pTP1|mq. It would be certainly interesting to study this family in detail to
get acquainted with the - still rather mysterious - odd deformations appearing in the theory of
supermanifolds.

We are left with the Calabi-Yau supermanifold P1|2: in this case, the map ẽ1 : H1pOP1|2q Ñ

H1pOP1|2p1q‘2|2q is not injective, the long exact sequence does not split into two short exact
sequence as for P1|m, for m ‰ 2, and something interesting happens.
The key is to observe that in the case m “ 2 we get h1pOP1|2p`1q‘2|2q “ 0|0, so we immediately
have that h1pTP1|2q “ 0|0, which tells us that P1|2 is rigid, as anticipated. We are left with the
following sequence:

0 ÝÑ H0pOP1|2qÝÑH0pOP1|2p`1q‘2|2q ÝÑ H0pTP1|2q ÝÑ H1pOP1|2q ÝÑ 0. (2.55)

Computing the dimensions we finds:

$

&

%

h0pOP1|2q “ 1|0
h1pOP1|2q “ 1|0

h0pOP1|2p`1q‘2|2q “ 8|8,
(2.56)

therefore (2.55) reads

0 Ñ C1|0ÝÑC8|8 ÝÑ H0pTP1|2q ÝÑ C1|0 Ñ 0, (2.57)

so as for the dimensions we have

h0pTP1|2q “ 8|8. (2.58)
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This is somehow surprising for this dimension does not correspond to the dimension of the super
Lie algebra slp2|2q, connected to PGLp2|2q: we would indeed find dim slp2|2q “ 7|8 ‰ 8|8!
The Calabi-Yau supermanifold P1|2 stands out as the unique exception among projective super
spaces having h0pTPn|mq ‰ dim slpn|mq (see [45]). There is indeed one more “infinitesimal au-
tomorphism” to be taken into account beside those coming from slp2|2q: it is given by the field
θ1θ2Bz P H

0pTP1|2q (here represented in one of the two chart covering P1|2), which is defined ev-
erywhere. Physically, we would say that this is the only existing bosonisation of the even (local)
coordinate z.
Notice that one might think that following the same line - that is considering bosonisations of the
even coordinates - one might discover many more everywhere-defined vector fields enlarging the
symmetry transformations of Pn|m: this is not the case as the previous results show. Indeed, such
supposedly everywhere defined vector fields are not allowed by the transformation properties of
the local coordinates Pn|m: the correct compensations that makes them into global vector fields
happen only in the case of one even and two odd coordinates, corresponding to P1|2. The reader
might convince himself by considering the θθ-bosonisation in the case of P1|3 or P2|2. Going up
in the order of bosonisation only makes the situation worse. We summarise the results for the
supercurves P1|m in the following

Theorem 2.8 (Infinitesimal Automorphisms and First Order Deformations for P1|m). Let P1|m

be a supercurve over P1. Then one has

h0pTP1|mq “ dim slp2|mq “ m2 ` 3 | 4m, (2.59)

the only exception being P1|2, that is such that h0pTP1|2q “ 8|8.
Moreover, if m ě 4 one finds

h1pTP1|mq “ pm2 ´ 3m´ 6q2m´2 `m2 ` 3 | pm2 ´ 3m´ 6q2m´2 ` 4m. (2.60)

If m ă 3 the supermanifold P1|m is rigid.

Getting back to the Calabi-Yau case P1|2, for future use we can be even more explicit and find a
basis of global sections generating H0pTP1|2q.
The most generic section, (in the local chart having coordinates z|θ1, θ2), has the form

spz, θ1, θ2q “ papzq ` b1pzqθ1 ` b2pzqθ2 ` cpzqθ1θ2q Bz

`

2
ÿ

i“1

pApiqpzq `B
piq
1 pzqθ1 `B

piq
2 pzqθ2 ` C

piqpzqθ1θ2qBθi . (2.61)

By passing to the chart w|φ1, φ2 one has the transformation

z “
1

w
, θi “

φi
w
, i “ 1, 2, (2.62)

so that the local generators tBz, Bθiu for i “ 1, 2 of TP1|2 , transform as

Bz “ ´pw
2Bw ` wφ1Bφ1 ` wφ2Bφ2q, Bθi “ wBφi , i “ 1, 2. (2.63)

Imposing the absence of singularities when changing local charts, from pz|θ1, θ2q to pw|φ1, φ2q -
that is computing explicitly H0pTP1|2q - we get the following

Theorem 2.9 (Global Sections of TP1|2). A basis of the vector superspace H0pTP1|2q is given by
the sections

V1 “ Bz, V2 “ zBz, V3 “ z2Bz ` zθ1Bθ1 ` zθ2Bθ2 , V4 “ θ1θ2Bz,

V5 “ θ1Bθ1 , V6 “ θ2Bθ1 , V7 “ θ1Bθ2 , V8 “ θ2Bθ2 , (2.64)

Ξ1 “ θ1Bz, Ξ2 “ zθ1Bz ` θ1θ2Bθ2 , Ξ3 “ θ2Bz, Ξ4 “ zθ2Bz ´ θ1θ2Bθ1 ,

Ξ5 “ Bθ1 , Ξ6 “ zBθ1 , Ξ7 “ Bθ2 , Ξ8 “ zBθ2 . (2.65)
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Notice that h0pTP1|2q “ 8|8, as expected upon using homological methods. Actually, the explicit
form of the sections could be found using the fact that P1|2 is split, and as such OP1|2 is a locally-
free sheaf of OP1-modules. In particular, also the tangent sheaf can be looked at as a locally-free
sheaf of OP1-modules and, by using one of the exact sequences introduced in section 1.3, one finds:

TP1|2 –
`

OP1p2q b
`

OP1 ‘OP1p´2q ‘Π
`

OP1p´1q‘2
˘˘˘

‘

‘Π
`

OP1p`1q‘2 b
`

OP1 ‘OP1p´2q ‘Π
`

OP1p´1q‘2
˘˘˘

(2.66)

– OP1p2q ‘O‘5
P1 ‘Π

`

OP1p`1q‘4 ‘OP1p´1q‘2
˘

. (2.67)

It is then easy to identify the global sections by the usual identifications.
In the next section we will start from the global sections (2.64) and (2.65) to study the N “ 2
super Riemann surface structure we can endow P1|2 with.

2.5 P1|2 as N “ 2 Super Riemann Surface

We now make explicit the N “ 2 super Riemann surface structure of P1|2. Relying on [42] and
[69], we can give the following definition.

Definition 2.4 (N “ 2 Super Riemann Surface). A N “ 2 super Riemann surface is a triple
pM ,D1,D2q where M is a complex supermanifold of dimension 1|2 and D1,D2 are two rank 0|1
locally-free sub-sheaves of the tangent sheaf TM , whose sum is direct in TM , which satisfy the
following conditions:

1. D1,D2 are integrable. That is, if we let Di, for i “ 1, 2, be the local generators of Di, then

D2
i

..“
1

2
tDi, Diu “ fDi, (2.68)

for some odd local section f P pOM q1.

2. The Frobenius form

F : D1 bD2
// pTM q0 – TM

L

D1 ‘D2

D1 bD2
� // tD1, D2umod pD1 ‘D2q

(2.69)

is an isomorphism.

We call the sub-sheaves D1,D2 Ă TM satisfying these conditions the structure distributions of the
N “ 2 super Riemann surface.

Note that, looking at integrability, the second condition in the definition above is equivalent to
say that the sheaf D1 ‘ D2 is non integrable, the obstruction to integrability being that the
anticommutator tD1, D2u is linearly independent of D1 and D2. In this way tD1, D2, tD1, D2uu

gives a local basis for the tangent sheaf TM at any point, which implies the existence of the following
exact sequence

0 // D1 ‘D2
// TM // D1 bD2

// 0. (2.70)

We discuss these feature in the following easy example.

Example 2.2 (C1|2 as N “ 2 super Riemann surface). In order to endow the complex superspace
M “ C1|2 with a N “ 2 super Riemann surface structure one takes the sub-bundles generated, for
example, by the global sections

D0,1 “ Bθ1 ` θ2Bz, D0,2 “ Bθ2 ` θ1Bz, (2.71)

which are integrable (indeed tD0,i, D0,iu “ 0 for i “ 1, 2 ) and have anticommutator given by

tD0,1, D0,2u “ 2Bz, (2.72)

so that D0,1, D0,2, tD0,1, D0,2u generate the whole TC1|2 , that is

TC1|2 – SpanOC1|2

 

D0,1, D0,2, tD0,1, D0,2u
(

. (2.73)

This is an example of non-compact N “ 2 super Riemann surface.

37



We note that in the previous example the sections D0,1, D0,2, tD0,1, D0,2u defines a global N “ 2
super Riemann surfaces structure on C1|2. The situation is different in the case of P1|2. Indeed,
the “defining sections” tD0,1, D0,2, tD0,1, D0,2uu for the N “ 2 super Riemann surface structure
of C1|2, remain global sections of tangent sheaf even for the supermanifold P1|2, since, looking at
the previous Theorem 2.9 one has

D0,1 “ Bθ1 ` θ2Bz “ Ξ3 ` Ξ5, D0,2 “ Bθ2 ` θ1Bz “ Ξ1 ` Ξ7, (2.74)

tD0,1, D0,2u “ 2Bz “ 2V1. (2.75)

The big difference resides in that such sections are not sufficient to generate the whole TP1|2 , since
Bz has a double zero in w “ 0. We say that these sections define a local N “ 2 super Riemann
surface structure on P1|2.
We can study this particular local N “ 2 super Riemann surface structure in some detail. We
choose the usual open cover of Mred “ P1 as above, given by two open sets U and V having local
coordinates given by z|θ1, θ2 and w|φ1, φ2 respectively and related by the transformations in (2.62).
We are interested into identifying the structure distributions singled out by the derivations (2.74).
To this end, we put

DU,1 ..“ Bθ1 ` θ2Bz, DU,2 ..“ Bθ2 ` θ1Bz. (2.76)

and we study their transformations on the intersection U X V.
In the intersection U X V, one has

DU,1 “ wBφ1 `
φ2

w

`

´w2Bw ´ wφ1Bφ1
´ wφ2Bφ2

˘

“ wBφ1
´ wφ2Bw ` φ1φ2Bφ1

“ pw ` φ1φ2q pBφ1
´ φ2B2q

“ pw ` φ1φ2qDV,1, (2.77)

where we have put DV,1 ..“ Bφ1
´ φ2B2. Similar transformation applies to DU,2.

We now recall that, in the notation of section 2.2, the even Picard group of P1|2 is given by
Pic0pP1|2q – Z‘ C, and generated by

Pic0pP1|2q – xOP1|2p˘1q,LP1|2pcqy (2.78)

for c P C, where LP1|2pcq Ø ttU ,Vu, p1` cφ1φ2{wqu . We thus observe that taking OP1|2p1q and
choosing c “ 1 in LP1|2pcq, we have that their tensor product yields

OP1|2p1q b LP1|2p1q ÐÑ ttU ,Vu, pw ` φ1φ2qu , (2.79)

which is exactly the invertible sheaf identified by the transformations of the derivations DU,1, DU,2,
up to a parity change.
We can thus conclude that

D1 – Π pOP1|2p1q b LP1|2p1qq , D2 – Π pOP1|2p1q b LP1|2p1qq . (2.80)

This is interesting, as it shows that the most natural N “ 2 super Riemann surfaces structure
that P1|2 can be endowed with is related to genuinely supersymmetric invertible sheaves - such as
LP1|2pcq -, that do not come from any pull-backs of invertible sheaves over P1 by the projection
π : P1|2 Ñ P1.

We have seen that DU,1 and DU,2 as above defined a local N “ 2 super Riemann surfaces
structure, as their commutator yields a vector field proportional to Bz, that has a zero of order
2 at w “ 0. Since P1|2 has a large vector superspace of global sections, h0pTP1|2q “ 8|8, one can
actually look for more general global odd sections satisfying the integrability condition.
The most general form that a global odd section can take is

Dodd “

8
ÿ

i“1

αiΞi, (2.81)
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where Ξ’s that appeared in (2.9) are such that SpanCtΞ1, . . . ,Ξ8u –
`

H0pTP1|2q
˘

1
and where αi

for i “ 1, . . . , 8 are complex numbers. We then impose the integrability condition in the form
D2
odd “ 0. This leads to the following conditions

$

&

%

α1α5 ` α7α3 “ 0,
α2α6 ` α8α4 “ 0,
α1α6 ` α2α5 ` α3α8 ` α4α7 “ 0.

(2.82)

Solving, we find, for example, the sections

D1 “α1pΞ3 ` Ξ5q ` α2pΞ4 ` Ξ6q, (2.83)

D2 “β1pΞ1 ` Ξ7q ` β2pΞ2 ` Ξ8q, (2.84)

again for α1, α2, β1, β2 P C. The anticommutator reads

tD1, D2u “ 2rα1β1V1 ` α2β1pV5 ` V2q ` α1β2pV8 ` V2q ` α2β2V3s,

or more explicitly

tD1, D2u “ 2rα1β1Bz ` α2β1pθ1Bθ1 ` zBzq ` α1β2pθ2Bθ2 ` zBzq ` α2β2pz
2Bz ` zθ1Bθ1 ` zθ2Bθ2qs.

Where we note that tD1, D2u is non-zero at w “ 0.
Also, notice that the sections D1 and D2 of equations (2.83), (2.84) can be re-written in the more
meaningful form

D1 “rα1 ` α2pz ´ θ1θ2qspΞ3 ` Ξ5q, (2.85)

D2 “rβ1 ` β2pz ` θ1θ2qspΞ1 ` Ξ7q. (2.86)

It can be checked that the map OP1|2 Ñ TP1|2 defined by f ÞÑ fDi is injective and therefore one has
that D1 and D2 generate two invertible sheaves of rank 0|1, we call them D1 and D2 respectively
as above. Also, as explained above, we see that now D1, D2 and D1bD2 generate the whole TP1|2 ,
since the triple tD1, D2, tD1, D2uu does.

The defining superderivations in the form D1 and D2 prove very useful when it comes to
investigate the automorphisms of the N “ 2 super Riemann surface structure. Indeed, the auto-
morphisms of P1|2 are generated by the vector superspace of all global sections of TP1|2 determined
above. We have to select the sub-algebra of global sections acting internally on the invertible
sheaves D1, D2, i.e. the sub-algebra of the global sections whose commutators or anticommutators
with the Di is proportional to the Di. By a direct inspection we see that the automorphisms of
the N “ 2 super structure are generated by a 4|4-dimensional linear superspace with basis given
by tU1, . . . U4,Σ1, . . . ,Σ4u, where

U1
..“ V1, U2

..“ V2 ` V5, U3
..“ V3, U4

..“ V2 ` V8,

Σ1
..“ Ξ1 ` Ξ7, Σ2

..“ Ξ2 ` Ξ8, Σ3
..“ Ξ3 ` Ξ5, Σ4

..“ Ξ4 ` Ξ6. (2.87)

These generators satisfy the super commutation relations

rU1, U2s “ U1, rU1, U3s “ U2 ` U4, rU1, U4s “ U1,

rU2, U3s “ U3, rU2, U4s “ 0, rU3, U4s “ ´U3;

tΣ1,Σ2u “ 0, tΣ1,Σ3u “ 2U1, tΣ1,Σ4u “ 2U2,

tΣ2,Σ3u “ 2U4, tΣ2,Σ4u “ 2U3, tΣ3,Σ4u “ 0;

rU1,Σ1s “ 0, rU1,Σ2s “ Σ1, rU1,Σ3s “ 0, rU1,Σ4s “ Σ3,

rU2,Σ1s “ 0, rU2,Σ2s “ Σ2, rU2,Σ3s “ ´Σ3, rU2,Σ4s “ 0,

rU3,Σ1s “ ´Σ2, rU3,Σ2s “ 0, rU3,Σ3s “ ´Σ4, rU3,Σ4s “ 0,

rU4,Σ1s “ ´Σ1, rU4,Σ2s “ 0, rU4,Σ3s “ 0, rU4,Σ4s “ Σ4.
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Something better can be done in order to write the resulting superalgebra in a more meaningful
and, in particular, physically relevant form. We define

H ..“ U1, K ..“ U3, D ..“
1

2
pU2 ` U4q , Y ..“

1

2
pU2 ´ U4q ,

Q1
..“

1
?

2
pΣ1 ´ iΣ3q , Q2

..“
1
?

2
pΣ3 ´ iΣ1q , S1 “ ´

1
?

2
pΣ2 ´ iΣ4q , S2

..“ ´
1
?

2
pΣ4 ´ iΣ2q .

(2.88)

For completeness, we write these elements in terms of the (local) basis of the tangent space:

Bosonic generators:

$

’

’

&

’

’

%

H ..“ Bz,
K ..“ z2Bz ` zθ1Bθ1 ,
D ..“ zBz `

1
2 pθ1Bθ1 ` θ2Bθ2q,

Y ..“ 1
2 pθ1Bθ1 ´ θ2Bθ2q ;

Fermionic generators:

$

’

’

&

’

’

%

Q1
..“ 1

2 pθ1Bz ` Bθ2 ´ ipBθ1 ` θ2Bzqq ,
Q2

..“ 1
2 pBθ1 ` θ2Bz ´ ipθ1Bz ` Bθ2qq ,

S1
..“ 1

2 pp´zθ1 ` izθ2qBz ` ipz ´ θ1θ2qBθ1 ` p´θ1θ2 ´ zqBθ2q ,
S2

..“ 1
2 pp´zθ2 ` izθ1qBz ` p´z ` θ1θ2qBθ1 ` ipz ` θ1θ2qBθ2q .

(2.89)

These definitions allow us to prove, by simply computing the supercommutators, the following

Theorem 2.10 (N “ 2 SUSY Algebra). Let pP1|2,D1,D2q be the N “ 2 super Riemann surfaces
constructed from P1|2. Then the algebra of the N “ 2 SUSY-preserving infinitesimal automor-

phisms is generated by
!

H,K,D, Y
ˇ

ˇQ1, Q2, S1, S2

)

and it corresponds to the Lie superalgebra

ospp2|2q of the orthosymplectic Lie supergroup OSpp2|2q, as it satisfies the following structure
equations:

tQi, Qju “ ´2iδijH, tSi, Sju “ ´2iδijK, tQi, Sju “ `2iδijD ´ 2εijY,

rH,Qis “ 0, rH,Sis “ ´Qi, rH,Qis “ Si, rH,Sis “ 0,

rD,Qis “ ´
1

2
Qi, rD,Sis “

1

2
Si, rY,Qis “

1

2
εijQj , rY, Sis “

1

2
εijSj ,

rY,Hs “ 0, rY,Ds “ 0, rY,Ks “ 0, (2.90)

together with the structure equations of the closed (bosonic) sub-algebra op2, 1q:

rH,Ds “ H, rH,Ks “ 2D, rD,Ks “ K. (2.91)

We stress that, as the reader with some expertise in supersymmetric QFT’s might have easily
noticed, the above form has the merit to make manifest all the physically relevant elements of the
superalgebra, such as the translations, rotations, supersymmetries, dilatations and so on. This
shows a direct connection with physical theories, which is sometimes left hidden in the more
mathematical oriented literature.

It is anyway fair to stress that some attention needs to to be paid here. Indeed, even if ospp2|2q
is actually the Lie superalgebra of automorphisms of P1|2 as N “ 2 super Riemann surface, the
related supergroup OSpp2|2q, defined as

OSpp2|2q ..“
 

A P GLp2|2q : AstI2|2A “ I2|2
(

where I2|2
..“

¨

˚

˚

˝

0 ´1 0 0
´1 0 0 0
0 0 0 1
0 0 ´1 0

˛

‹

‹

‚

, (2.92)

is not the supergroup of automorphisms of P1|2 as N “ 2 super Riemann surface. Instead, it turns
out (see [42]) that the supergroup of automorphisms of P1|2 as a N “ 2 super Riemann surfaces -

call it P1|2
N“2 is obtained as a suitable quotient of OSpp2|2q, indeed we have

1 // Z2
// OSpp2|2q // Aut pP1|2

N“2q
// 1. (2.93)
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where Z2 “ t˘1u. One can see that AutpP1|2
N“2q has two connected components as OSpp2|2q:

an automorphism that does not belong to the identity component interchanges the two structure
distributions, D1 Ø D2.

Before we conclude this section, though, it is fair to say that at, the present state, the study
of N “ 2 super Riemann surfaces structures is still at its beginning and, as such, it is yet to be
properly developed. For example, very little is known about the supermoduli space of (compact)
N “ 2 super Riemann surfaces. In particular, in genus 0 such a supermoduli space is expected
to be a point [27]. With explicit reference to the present section, this result would then call for a
deeper study even in the case of the relatively easy example of P1|2 we have been concerned here.
For instance, among other issues, it would be interesting to clarify the relationship between the
two N “ 2 super Riemann surfaces structures we have constructed.

2.6 Aganagic-Vafa’s Mirror Supermanifold for P1|2

In [2], Aganagic and Vafa gave some prescriptions based on path-integral formalism to construct the
“mirror” of a certain supermanifold. More precisely, they developed a path-integral computation
that relates a certain Landau-Ginzburg model associated to a complex projective superspace Pn|m,

to a σ-model on a supermanifold ĂM , embedded into a certain product of projective superspaces (we
refer directly to [2] for further details). In what follows, we employ the prescription of Aganagic
and Vafa and we construct the dual of the Landau-Ginzburg model associated to the Calabi-Yau
supermanifold P1|2. This turns out to be given by a σ-model on a Calabi-Yau supermanifold in
P1|1 ˆ P1|1, which - to a more careful analysis - is again P1|2. In other words, the construction of
Aganagic and Vafa, maps P1|2 to itself!
Before we go on to the actual computation, we stress that this section has a completely different
flavour compared to the others, as it is based on the formal construction of [2] that cannot be
given a rigorous mathematical meaning, mainly because of the issues related to the definition of
path-integrals and their measures.

In order to construct the Landau-Ginzburg model attached to P1|2, we focus on the holomorphic
part of the superpotential, where XI , YI for I “ 0, 1 are bosonic/even super fields and ηI , χI
for I “ 0, 1 are fermionic/odd super fields (i.e. the lowest component of their expansion is a
bosonic field and a fermionic field, respectively), while t is the so called Kähler parameter. This
superpontential is given by

WP1|2pX,Y, η, ξq “

ż 1
ź

I“0

DYIDXIDηIDχIδ

˜

1
ÿ

I“0

pYI ´XIq ´ t

¸

¨ exp

#

1
ÿ

I“0

e´YI ` e´XI ` e´XIηIχI

+

.

By a field redefinition,

X1 “ X̂1 ` Y0, Y1 “ Ŷ1 ` Y0, (2.94)

the path-integral above can be recast in the form:

ż

DY0DX0DŶ1DX̂1

1
ź

I“0

DηIDχIδ pY0 ´X0 ` Y1 ´X1 ´ tq

¨ exp
!

e´Y0 ` e´X0 ` e´Ŷ1´Y0 ` e´X̂1´Y0 ` e´X0η0χ0 ` η1χ1e
´X̂1´Y0

)

.

Integrating in X0, the delta imposes the following constraint on the bosonic fields:

X0 “ Y0 ` pY1 ´X1q ´ t. (2.95)
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Plugging this inside the previous path integral one gets

ż

DY0DŶ1DX̂1

1
ź

I“0

DηIDχI exp
!

e´Y0 ` e´Y0´pY1´X1q`t ` e´Ŷ1´Y0 ` e´X̂1´Y0

)

¨ exp
!

e´Y0´pY1´X1q`tη0χ0 ` η1χ1e
´X̂1´Y0

)

.

The fermionic Dη0Dχ0 integration reads
ż

Dη0Dχ0 exp
!

e´Y0´pY1´X1q`tη0χ0

)

“

“

ż

Dη0Dχ0e
´Y0´pY1´X1q`t p1` η0χ0q “ ´e

´Y0´pY1´X1q`t, (2.96)

and therefore one obtains that

´

ż

DY0DŶ1DX̂1Dη1Dχ1e
´Y0´pY1´X1q`t

¨ exp
!

e´Y0

´

1` e´pY1´X1q`t ` e´Ŷ1 ` e´X̂1 ` η1χ1e
´X̂1

¯)

.

Here, e´Y0 might be interpreted as a Lagrange multiplier and we perform the coordinate charge

e´Y0 “ Λ, DY0 “ ´Λ´1DΛ, (2.97)

such that the integral reads
ż

Λ´1DΛDŶ1DX̂1Dη1Dχ1Λe´pY1´X1q`t

¨ exp
!

Λ
´

1` e´pY1´X1q`t ` e´Ŷ1 ` e´X̂1 ` η1χ1e
´X̂1

¯)

.

Finally, by another field redefinition, namely

e´X̂1 “ x1, DX̂1 “ ´
Dx1

x1
, (2.98)

e´Ŷ1 “ x1y1, DŶ1 “ ´
Dy1

y1
, (2.99)

η1 “
η̃1

x1
, Dη “ x1Dη̃, (2.100)

we notice that the Berezinian enters the transformation of the measure. In fact, the path-integral
acquires the following form:

WP1|2 “

ż

DΛ
Dy1

y1

Dx1

x1
px1Dη̃1qDχ1

`

y1e
t
˘

exp
 

Λ
`

1` ety1 ` x1 ` x1y1 ` η̃1χ1

˘(

“

ż

DΛDy1Dx1Dη̃1Dχ1e
t exp

 

Λ
`

1` ety1 ` x1 ` x1y1 ` η̃1χ1

˘(

. (2.101)

By noticing that the factor et is not integrated over, and performing the integration over the
Lagrange multiplier Λ, one obtains that the theory is constrained on the super hypersurface

1` x1 ` x1y1 ` η̃χ` e
ty1 “ 0. (2.102)

By redefining the field ỹ1 “ 1` y1, a more symmetric form can be achieved:

1` x1ỹ1 ` η̃χ` e
tpỹ1 ´ 1q “ 0. (2.103)

Casting the equation in homogeneous form, we have

P1|1 ˆ P1|1 Ą X0Ỹ0 `X1Ỹ1 ` η̃χ` e
tpX0Ỹ1 ´X0Ỹ0q “ 0. (2.104)
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This is a superquadric, call it Q, in P1|1 ˆ P1|1, with homogeneous coordinates rX0 : X1 : η̃s and
rỸ0 : Ỹ1 : χs respectively, and it is a Calabi-Yau supermanifold. In the following treatment, we will
drop the tildes and we will just call the homogenous coordinates of the super projective spaces
rX0 : X1 : ηs ” rX0 : X1 : η̃s and rY0 : Y1 : ηs ” rỸ0 : Ỹ1 : χs. We now re-write the equation for Q
in the following form:

X0pp1´ e
tqY0 ` e

tY1q `X1Y1 ` ηχ “ 0. (2.105)

Setting

`pY0, Y1q
..“ p1´ etqY0 ` e

tY1, (2.106)

it is not hard to see that the reduced part Qred in P1 ˆ P1 is obtained just by setting the odd
coordinates to zero, as

P1 ˆ P1 Ą X0 `pY0, Y1q `X1Y1 “ 0, (2.107)

and one can realize that Qred – P1.
We are interested into fully identifying Q as a known variety; to this end, we observe that, as
embedded into P1|1 ˆ P1|1, it is covered by the Cartesian product of the usual four open sets:

U0 ˆ V0 “ trX0 : X1 : ηs : X0 ‰ 0u ˆ trY0 : Y1 : χs : Y0 ‰ 0u,

U0 ˆ V1 “ trX0 : X1 : ηs : X0 ‰ 0u ˆ trY0 : Y1 : χs : Y1 ‰ 0u,

U1 ˆ V0 “ trX0 : X1 : ηs : X1 ‰ 0u ˆ trY0 : Y1 : χs : Y0 ‰ 0u,

U1 ˆ V1 “ trX0 : X1 : ηs : X1 ‰ 0u ˆ trY0 : Y1 : χs : Y1 ‰ 0u. (2.108)

Moreover, one needs all the above four open sets to cover Q, because

Qred X tX0 “ 0u “ r0 : 1s ˆ r1 : 0s P U1 ˆ V0,

Qred X tX1 “ 0u “ r1 : 0s ˆ r1 : 1´ e´ts P U0 ˆ V0,

Qred X tY0 “ 0u “ r1 : ´ets ˆ r0 : 1s P U0 ˆ V1,

Qred X tX0 “ X1 “ 1u “ r1 : 1s ˆ ret ` 1 : et ´ 1s P U1 ˆ V1. (2.109)

Therefore, we would like to find a suitable change of coordinates allowing us to use fewer open
sets. It turns out that one can reduce to use only two open sets. Indeed, by switching coordinates
to

Y 10
..“ `pY0, Y1q, Y 11

..“ Y1, (2.110)

X 10
..“ X0, X 11

..“ X1, (2.111)

η1 ..“ η, χ1 ..“ χ, (2.112)

the equation for Q becomes

X 10Y
1
0 `X

1
1Y

1
1 ` η

1χ1 “ 0. (2.113)

Then, by exchanging Y 10 with Y 11 and dropping the primes for convenience, one obtains the following
equation for Q :

X0Y1 `X1Y0 ` ηχ “ 0. (2.114)

Since

Qred X tX0 “ 0u “ Qred X tY0 “ 0u “ r0 : 1s ˆ r0 : 1s P U1 ˆ V1, (2.115)

Qred X tX1 “ 0u “ Qred X tY1 “ 0u “ r1 : 0s ˆ r1 : 0s P U0 ˆ V0, (2.116)

this change of coordinates allows us to cover Q by just two open sets, namely by :

UQ ..“ QX pU0 ˆ V0q, (2.117)

VQ ..“ QX pU1 ˆ V1q. (2.118)
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Therefore, by choosing the (affine) coordinates

UQ : z ..“
X1

X0
, u ..“

Y1

Y0
, θ0

..“
η

X0
, θ1

..“
χ

Y0
, (2.119)

VQ : w ..“
X0

X1
, v ..“

Y0

Y1
, φ0

..“ ´
η

X1
, φ1

..“
χ

Y1
, (2.120)

we obtain the following affine equations for Q on UQ and VQ:

UQ : z ` u` θ0θ1 “ 0, (2.121)

VQ : w ` v ´ φ0φ1 “ 0, (2.122)

describing lines in C2|2. We notice that these two equations are glued together using the relations

w “
1

z
, v “

1

u
, (2.123)

φ0 “ ´wθ0, φ1 “ vθ1. (2.124)

Finally, we would like to characterise the variety Q by its transition functions, in order to identify
it with a known one. By the previous equation, we may take as proper bosonic coordinates u and
v, as

z “ ´u´ θ0θ1, (2.125)

w “ ´v ` φ0φ1. (2.126)

We already know that v “ 1
u and φ1 “

θ1
u , so we still have to deal with φ0 :

φ0 “ ´
θ0

z
“

θ0

u` θ0θ1
“

θ0pu´ θ0θ1q

pu` θ0θ1qpu´ θ0θ1q
“
θ0u

u2
“
θ0

u
, (2.127)

implying that the variety Q Ă P1 ˆ P1 is actually nothing but P1|2.
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Chapter 3

N “ 2 Non-Projected
Supermanifolds over Pn

This chapter is dedicated to the study of the geometry of non-projected supermanifolds having
odd dimension equal to 2 - we call them N “ 2 supermanifolds - over projective spaces.
In the first section we provide the construction of the cohomological invariant that obstructs the
existence of a projection that splits the structural exact sequence of a supermanifold.
Then, in the second section we specialise to the case the reduced manifold is a projective space Pn
and we prove that N “ 2 non-projected supermanifolds exist only over the projective line P1 and
the projective plane P2.
The third section section is dedicated to a classification of non-projected supermanifolds over P1 -
we call them P1

ωpm,nq. Also, we study the even invertible sheaves that can be defined over these
non-projected supermanifolds, by computing their even Picard group. We then use these even
invertible sheaves to explicitly realise an embedding of a particular non-projected supermanifold,
namely P2

ωp2, 2q, into P2|2, making contact with an example of non-projected supermanifold dis-
cussed by Witten in [68].
The fourth section is dedicated to the study of the geometry of non-projected supermanifolds over
P2 - we call them P2

ωpFM q. In particular, it is proved that all of these supermanifolds are Calabi-
Yau’s and they are all non-projective, i.e. they cannot be embedded into any projective superspace
Pn|m. Instead, we prove that all of these non-projected supermanifolds can always be embedded
into a certain super Grassmannian. Last, we realise explicitly these embeddings in two meaningful
cases and we study the cohomology at their split locus.

3.1 Obstruction to the Splitting of a N “ 2 Supermanifold

In this first section we start studying the event in which a (complex) supermanifold does not ad-
mit a projection on its reduced part. In particular, we will single out a cohomological invariant
that detects an obstruction to split the structural exact sequence (1.3) attached to a particular
supermanifold.

First of all, it is important to notice that in the case a supermanifold has odd dimension equal to
one there cannot be any obstruction, as the following obvious theorem establishes.

Theorem 3.1 (Supermanifolds of dimension n|1). Let M ..“ p|M |,OM q a (complex) supermanifold
of odd dimension 1. Then M is defined up to isomorphism by the pair pMred,FM q and in fact,
M “ SpM ,F˚M q

Proof. If the parity splitting reads OM “ OM ,0 ‘OM ,1 and the odd dimension of the supermanifold
is 1, then J 2

M “ 0 and one naturally has that OM ,1 – JM – FM , a (locally free) sheaf of OMred
-

modules of rank 1, having odd parity, and OM ,0 – OMred
, so there can’t be any bosonisation

extending OMred
.
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Obstruction to projectedness might appear in the case the odd dimension of the supermanifold M
is at least 2. Indeed, on the one hand, by looking again at the parity splitting of the structure
sheaf OM “ OM ,0 ‘ OM ,1, we still have that the odd part OM ,1 coincides with the fermionic sheaf
FM

..“ JM
L

J 2
M : this also tells us that OM ,1p– FM q is a sheaf of OMred

-modules and not only
a sheaf of OM ,0-modules (notice that this is in general no longer true in the case the fermionic
dimension of M is greater than 2). On the other hand, the even part of the structure sheaf OM ,0,
which is a sheaf of rings, is an extension of OMred

by Sym2FM :

0 // Sym2FM // OM ,0

ι70 // OMred
// 0, (3.1)

where Sym2FM “ Grp2qOM is a sheaf of OM ,0-ideals with square zero, that actually corresponds

to J 2
M as Grp2qOM

..“ J 2
M
L

J 3
M and J 3

M “ 0 as M has fermionic dimension 2. The map ι70 :
OM ,0 Ñ OMred

is a homomorphism of sheaves of rings, which is induced by the inclusion morphism
ι7 : OM Ñ OMred

, well defined in a general setting, not restricted to odd dimension 2.

We recall that, in general, there is no homomorphism of sheaves of rings π70 : OMred
Ñ OM ,0 Ă OM

splitting ι70 and OM ,0 is not a sheaf of OMred
-modules: that is, a supermanifold M having odd

dimension equal to 2 does not in general admit a projection π : M Ñ Mred.
Obstruction theory for complex supermanifolds has been first discussed in the seminal work of
Green [30]. Here we will show where the obstruction to splitting lies following [41]: due to the
difficulty of the cited reference, we will provide the reader with a complete proof. We start by
proving the following fundamental lemma.

Lemma 3.1. Let M ..“ p|M |,OM q be a (complex) supermanifold having odd dimension 2. Then
the even part of the structure sheaf OM ,0 uniquely defines a class ωM P H1pMred, TMred

bSym2FM q.

Proof. Let us consider an open cover U “ tUiuiPI of |M |, such that for every open set Ui we do
have homomorphisms of sheaves or rings

π7Ui
: OUi,red ÝÑ OUi,0 (3.2)

such that ι7Ui,0
˝π7Ui

“ idOUi,red
. This can be done if the open sets Ui are chosen so that on each Ui

some coordinate system z|θ is defined. We denote πi the map π7Ui
for the sake of brevity, and we

refer to the collection tπiuiPI as the local splittings for the short exact sequence (3.1). Let us now
define the following morphism

ωij ..“ pπi ´ πjq
Y

UiXUj

: OUiXUj ,red ÝÑ ker
´

ι7UiXUj ,0

¯

– Sym2FUiXUj
. (3.3)

This is well-defined, indeed the difference above takes vales in the kernel of ι7UiXUj ,0
, as

ι7UiXUi,0
˝ pπi ´ πjq

Y

UiXUj

“ ι7UiXUj ,0
˝ pπiq

X

UiXUj
´ ι7UiXUj ,0

˝ pπjq
X

UiXUj

“ idOUiXUj ,red
´ idOUiXUj ,red

“ 0 (3.4)

and by the short exact sequence (3.1) we see that this kernel is given by Sym2FUiXUj .
Now let f, g be local sections of OUiXUj ,red, then remembering that we write πipfq instead of
πi
X

UiXUj
pfq for the sake of brevity, we have

ωijpf ¨ gq “ πipf ¨ gq ´ πjpf ¨ gq

“ πipfqπipgq ´ πjpfqπjpgq

“ πipfqπipgq´πipfqπjpgq ` πipfqπjpgq
loooooooooooooooomoooooooooooooooon

“0

´πjpfqπjpgq

“ πipfq pπipgq ´ πjpgqq
loooooooomoooooooon

ωijpgq

`pπipfq ´ πjpfqq
loooooooomoooooooon

ωijpfq

πjpgq

“ πipfqωijpgq ` ωijpfqπjpgq, (3.5)
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where we have used the definition of ωij and the fact that the πi are homomorphisms of sheaves
of rings. Recall that the OUi,0-module structure of Sym2FUi

is the same as its OUi,red-module
structure, as Sym2FUi – J 2

M {J 3
M . By looking at the last map, this implies that

ωijpf ¨ gq “ πipfqωijpgq ` ωijpfqπjpgq “ f ¨ ωijpgq ` ωijpfq ¨ g, (3.6)

so that we have that the map ωij : OUiXUj ,red Ñ Sym2FUiXUj
satisfies the Leibniz rule and

therefore it is a derivation on OUiXUj ,red valued in the sheaf Sym2FUiXUj
.

So far we have proved that ωij P pTMred
b Sym2FM qpUi X Ujq, actually the choice of the local

splittings tπiuiPI define a Čech 1-cocycle, pωijqi,jPI P Z
1pU , TMred

b Sym2FM q, since by definition

pωij ` ωjk ` ωkiq
Y

UiXUjXUk

“ pπi ´ πj ` πj ´ πk ` πk ´ πiq
Y

UiXUjXUk

“ 0. (3.7)

This is clear once it is observed that pωijqi,jPI is defined as the application of the Čech coboundary
operator δ on the 0-cochain given by the collection of the local splitting tπiuiPI .
Now we want to prove that, by changing the local splitting, than the pωijqijPI only changes by a
coboundary term. To this end we let tπ1iuiPI be another choice of local splittings: if we require

ι7Ui
˝ π1i “ idOUi,red

to hold, then the only possibility is that

π1i “ πi ` ψi where ψi : OUi,red ÝÑ Sym2FUi
pĎ OUi,0q, (3.8)

otherwise the composition with ι7Ui
does not yield a local identity. Moreover, as π1i is a homomor-

phism of sheaves of rings, one has that π1ipf ¨ gq “ π1ipfqπ
1
ipgq. The left hand side reads

π1ipf ¨ gq “ pπi ` ψiqpf ¨ gq “ πipf ¨ gq ` ψipf ¨ gq,

while the right hand side reads

π1ipfqπ
1
ipgq “ pπi ` ψiqpfqpπi ` ψiqpgq “ πipfqπipgq ` πipfqψipgq ` ψipfqπipgq

remembering that ψipfqψipgq “ 0 as ψi is valued in Sym2FM . Then one has that

ψipf ¨ gq “ πipfqψipgq ` ψipfqπipgq. (3.9)

This proves that ψi is a derivation valued in Sym2FM , ψi P pTMred
b Sym2FM qpUiq, and therefore

tπ1iuiPI defines the Čech 1-cocycle ω1ij
..“ ωij ` ψi ´ ψj , so that the 1-cocycle pωijqi,jPI only

changes by a coboundary. Thus OM ,0 (and therefore OM ) uniquely defines a cohomology class
ωM P H1pM , TMred

b Sym2FM q. This completes the proof of the lemma.

With this at hand, we are now in the position to prove the main theorem, which is actually a
simple consequence of the above lemma.

Theorem 3.2 (Obstruction to Splitting). Let M be a (complex) supermanifold of odd dimen-
sion 2. Then M is projected (and hence split) if and only if the obstruction class ωM is zero in
H1pMred, TMred

b Sym2FM q.

Proof. Using the same notation as in the above lemma, assume that ωM is trivial. Then, there
exist local splittings tπiuiPI such that ωij ..“ pπi ´ πjq

X

UiXUj
is a coboundary, that is ωij “

pψi ´ ψjq
X

UiXUj
, for some tψiuiPI such that ψi : OUi,red Ñ OUi,0. Then we can define π1i “ πi´ψi

so that

ω1 “
`

π1i ´ π
1
j

˘ X

UiXUj
“ pψi ´ ψi ´ ψj ` ψjq

X

UiXUj
“ 0.

This implies that π1i “ π1j on the intersections Ui X Uj , therefore (restoring the original notation)

we have a global homomorphism of sheaves of rings π70 : OMred
Ñ OM ,0 such that π70tUi

“ πi and

such that ι70 ˝ π
7
0 “ idMred

.

Conversely, let M be projected, that is let π70 : OMred
Ñ OM ,0 be a global homomorphism splitting

(3.1), then it is enough to put πi ..“ pπ70q
X

Ui
to get a collection of local splittings defining a trivial

cocycle.
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The theorem above offers a simple way to detect when a complex supermanifold having odd
dimension equal 2 fails to be projected by means of a cohomological invariant that can be computed
by ordinary algebraic geometric methods. The knowledge of ωM for a supermanifold M of dimension
n|2 is a fundamental ingredient in the characterisation of the given supermanifold.

Theorem 3.3 (Supermanifolds of dimension n|2). Let M ..“ p|M |,OM q be a (complex) super-
manifold of dimension n|2. Then M is defined up to isomorphism by the triple pMred,FM , ωM q

where FM is a rank 0|2 sheaf of locally-free OMred
-modules, the so called fermionic sheaf, and

ωM P H1pMred, TMred
b Sym2FM q.

Proof. Clearly, the pair pMred,FM q is enough to completely characterise the underlying com-
plex manifold and the odd part OM ,1 of the structure sheaf OM of the supermanifold. The
even part of the structure sheaf is determined as an extension of OMred

by Sym2FM . Given
ωM P H1pMred, TMred

b Sym2FM q, this can be realised as follows. Let U “ tUiuiPI be an
open covering of |M | such that ωM tUi

is trivial and such that on the intersections Ui X Uj for
i ‰ j one has that ωM is represented by a cocycle pωijqi,jPI . Then, we construct the sheaves
OUi,0

..“ pOMred
‘ Sym2FM qtUi for Ui P U and we glue them on the intersections Ui X Uj using

pωijqijPI :

``

OMred
‘ Sym2FM

˘

tUi

˘ X

Uj

//
``

OMred
‘ Sym2FM

˘

tUj

˘ X

Ui

pfred, gθθq
� // pfred, gθθ ` ωijpfredqq.

This procedure gives the extension of OMred
by Sym2FM , that is the even part of the structure

sheaf OM ,0 (see [33], chapter III, section 6), thus concluding the proof.

Before going on, the following important observations are in order:

• The last part of the previous theorem can be spelled-out by saying that in presence of a non-
trivial extension, i.e. when we are dealing with a non-projected supermanifold, the transition
functions coming from the underlying manifold Mred get a correction coming from ωM as
they are lifted to M . More precisely, if tUiuiPI is an open covering of |M | such that in a
certain intersection Ui X Uj the transition functions of Mred are given by certain functions
z`i “ z`ipzjq for ` “ 1, . . . , n, then the even transition functions of a non-projected n|2-
dimensional supermanifold will be given explicitly by

z`ipzj , θjq “ z`ipzjq ` ωijpzj , θjqpz`iq ` “ 1, . . . , n, (3.10)

where the zetas and the thetas are respectively even and odd local coordinates for M and
we recall that ωij is actually a derivation acting on z`i. Notice also that the two thetas can
only appear in ωij through their product (thus respecting parity!), indeed ωij is a derivation
taking values in Sym2FM ;

• choosing ω1M “ λωM for λ P C˚ defines an isomorphic extension O1M ,0 of OMred
by Sym2FM ,

however the isomorphism with OM ,0 is not the identity on OMred
and Sym2FM .

The crucial issue of finding a set of invariants that completely characterises complex supermanifolds
having odd dimension greater than 2 (up to isomorphisms) and given reduced complex manifold
remains - to the best knowledge of the author - still completely open. This is because there are sharp
limitations to the definition of higher obstruction classes beyond ωM P H1pMred, TMred

bSym2FM q,
as discussed for example in the fourth chapter of [9], and recently in [25]. Remarkably, none of the
issues related to higher obstruction classes affects the first obstruction class ωM we have introduced,
which can therefore be legitimately called fundamental obstruction class: it is really an invariant
(this is not true for higher obstructions) for the supermanifold M and it obstructs the existence of
a projection.
In the next section we will start providing concrete examples of constructions of non-projected
supermanifolds having projective spaces as reduced manifolds.
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3.2 N “ 2 Non-Projected Supermanifolds over Projective
Spaces

In this section we apply Theorem 3.3 of the previous section to the case the underlying manifolds
are ordinary projective spaces Pn, our aim being to identify the obstructions to the existence of
a projection and therefore to single out all the non-projected supermanifolds of odd dimension 2
having Pn as reduced space.

Since we are working over Pn, if we take the fermionic sheaf FM to be a locally-free sheaf of OPn -
module having dimension 0|2, then it follows that there exists an isomorphism Sym2F – OPnpkq
for some k, since all of the invertible sheaves over Pn are of the form OPnpkq for some k (indeed
PicpPnq – Z).
The basic tool to be exploited here in association with Theorem 3.3 is the (twisted) Euler sequence
for the tangent space over Pn, that reads

0 // OPnpkq // OPnpk ` 1q‘n`1 // TPnpkq // 0. (3.11)

We now examine theN “ 2 supersymmetric extensions of projective space Pn for every n “ 1, 2, . . ..

n “ 1 : In the case of P1, one has to study whenever H1pTP1 b Sym2FM q “ H1pTP1pkqq is non-zero.
This is easily achieved, since recalling that over P1 one has TP1 – OP1p2q, it amounts to find
a k such that H1pOP1p2 ` kqq ‰ 0. This is realised in the cases k “ ´` ď ´4, and one
finds H1pOP1p2´ `qq – C`´3. These cohomology groups have a well-known description: they

are the C-vector spaces with bases given by
!

1
pX0qjpX1q`´2´j

)`´3

j“1
, where X0 and X1 are the

homogeneous coordinates of P1, see for example the proof of Theorem 5.1 Chapter III of
[33]. As a result, the non-projected supermanifolds over P1 are those such that Sym2FM –

OP1p´`q with ` ě 4.

n “ 2 : The case over P2 is by far the most interesting, and - surprisingly - it has been forgotten by
Manin, as he studies fermionic super-extensions over projective spaces in [41]. Since over P2

one has H1pOP2pkqq “ H1pOP2pk ` 1qq “ 0, the long exact sequence in cohomology induced
by the Euler short exact sequence splits in two exact sequences. The one we are concerned
with reads

0 // H1pTP2pkqq // H2pOP2pkqq // H2pOP2pk ` 1qq‘3 // H2pTP2pkqq // 0.

Now it is convenient to distinguish between three different sub-cases.

k ą ´3: This is the easiest one, since H2pOP2pkqq “ 0, which implies that H1pTP2pkqq is zero.

k “ ´3: In this case we have that H2pOP2p´2qq‘3 “ 0, so we get an isomorphism

H1pTP2p´3qq – H2pOP2p´3qq – C, (3.12)

and, again, this cohomology group is generated by the cohomology class r 1
X0X1X2

s in-

duced by the 2-cocycle defined by 1
X0X1X2

P ΓpU0 X U1 X U2,OP2p´3qq.

k ă ´3: In this case both H2pOP2pkqq and H2pOP2pk`1qq are non-zero. Therefore, this makes a
little bit harder to explicitly evaluate H1pTP2pkqq directly. Though, this can be achieved
upon using Bott formulas (see for example [49]) that give the dimension of cohomology
groups of the (twisted) cotangent bundles of projective spaces. First of all, we observe
that using Serre duality one gets H1pTP2pkqq – H1pT ˚P2p´k ´ 3qq˚. In general, Bott
formulas guarantee that Hqp

Źp
T˚Pnpkqq “ 0 if q ‰ n and q, k ‰ 0. In our specific case

we have q “ 1, n “ 2, p “ 1 and ´k ´ 3 ă ´6, therefore H1pTP2pkqq “ 0.

The above computation yields that the only non-projected supermanifold having underlying
manifold isomorphic to P2 will have a fermionic sheaf FM such that Sym2FM – OP2p´3q.

n ą 2 : In this case it is easy to conclude that H1pTPnpkqq “ 0 since in the long exact sequence in
cohomology this group sits between H1pOPnpk` 1qq‘n`1 and H2pOPnpkqq and both of these
groups are zero for every k if n ą 2.
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The above results allow us to classify the non-projected supermanifolds having P1 or P2 as reduced
space. In the next section we take on the case over P1 case.

3.3 Non-Projected Supermanifolds over P1

In this section we classify all of the non-projected supermanifolds having P1 as reduced manifold.
This classification is actually rather straightforward and it directly relies on the fact that vector
bundles over P1 have no continuous moduli. Indeed, one has the following

Theorem 3.4 (Non-projected N “ 2 Supermanifolds over P1). Every non-projected N “ 2
supermanifold over P1 is characterised up to isomorphism by a triple pP1,FM , ωq where FM is a
rank 0|2 sheaf of OP1-modules such that FM – ΠOP1pmq ‘ ΠOP1pnq with m ` n “ ´`, ` ě 4 and
ω is a non-zero cohomology class ω P H1pOP1p2´ `qq.

Proof. We know that the obstruction to splitting is obtained for a fermionic sheaf of rank 0|2
such that Sym2FM – OP1p´`q, ` ě 4: in this case one gets non-zero obstruction classes in
H1pTP1 bOP1p´`qq – H1pOP1p2´ `qq – C`´3.
It remains to show that the only sheaves that yield such an isomorphism are of the given form.
This is a consequence of the Grothendieck splitting theorem (see [33] or [49]), that states that every
locally-free sheaf of OP1-modules of arbitrary rank n is isomorphic to a direct sum of invertible
sheaves, that in turn are all of the form OP1pkq for some k P Z. In other words, if we let E be a
locally-free sheaf of rank n over P1, then we have

E –
n
à

i“1

OP1pkiq (3.13)

uniquely up to permutation of the terms at the right hand side. Since we have that FM is a locally-
free sheaf of rank 0|2 over P1, it will be of the form FM – ΠOP1pmq ‘ΠOP1pnq for some n,m P Z
as a consequence of Grothendieck theorem. The only way one can have Sym2FM – OP1p´`q is to
choose m and n such that m` n “ ´`, and this concludes the proof.

Adapting the notation, the previous theorem justifies the following definition.

Definition 3.1 (The Supermanifolds P1
ωpm,nq). We denote P1

ωpm,nq, with m ě n, an N “ 2
supermanifold arising from a triple pP1,FM , ωq, where the fermionic sheaf FM “ ΠOP1p´mq ‘
ΠOP1p´nq is such that m` n “ `, ` ě 4 and ω is a (possibly zero) class in H1pOP1p2´ `qq.

In view of Theorem 3.4, clearly, P1
ωpm,nq is a non-projected supermanifold if and only if ω is a

non-zero class in H1pOP1p2´ `qq.

We now look for the explicit form the of the transition functions of a non-projected supermanifold
P1
ωpm,nq, as to be able to construct the supermanifold also by the patching technique for future

simply physical applications.
Working over P1 leads to consider a set of homogeneous coordinates rX0 : X1s P P1 and a set of
affine coordinates and their algebras over the two open sets of the covering U ..“ tU ,Vu of P1. In
particular, working modulo JM we have:

U ..“ tX0 ‰ 0u ù zmodJ 2
M

..“
X1

X0
, (3.14)

V ..“ tX1 ‰ 0u ù wmodJ 2
M

..“
X0

X1
. (3.15)

The transition functions are given by:

U X V : zmodJ 2
M “

1

w
modJ 2

M , (3.16)

Remember that these expressions are given modJ 2
M instead of modJM since in N “ 2 one has

that pJM q0 “ J 2
M .
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Passing to the fermionic sheaf FM “ ΠOP1pmq ‘ ΠOP1pnq, we denote pθ1, θ2q a local basis of FM
on U and pψ1, ψ2q a local basis of FM on V respectively, so that one can write

U ..“ tX0 ‰ 0u ù θ1
..“ Π

ˆ

1

X´m0

˙

, θ2
..“ Π

ˆ

1

X´n0

˙

, (3.17)

V ..“ tX1 ‰ 0u ù ψ1
..“ Π

ˆ

1

X´m1

˙

, ψ2
..“ Π

ˆ

1

X´n1

˙

, (3.18)

where the Π’s are there to remember the odd parity. The transition functions therefore are given
by

U X V : θ1 “
ψ1

w´m
, θ2 “

ψ1

w´n
. (3.19)

Before we go on, a comment on the notation might be helpful. Usually the θ’s and the ψ’s are
looked at as sections of the odd part of structure sheaf, pOP1

ωpm,nq
q1. The identification above

makes sense recalling that when N “ 2 one has in general pOM q1 – FM , so that for P1
ωpm,nq the

odd sections θ’s and ψ’s can indeed be identified with local sections in ΠOP1pmq ‘ΠOP1pnq, once
the parity is taken into account. This identification is pretty useful, as the symmetric product in
Sym2FM can be represented as product of odd elements in pOM q1. In our case in particular one
gets

θ1θ2 “
1

X´m´n0

“
1

X`
0

P OP1p´`qpU0q, ψ1ψ2 “
1

X´m´n1

“
1

X`
1

P OP1p´`qpU1q. (3.20)

Before we go into to derivation of the explicit form of the transition functions for a supermanifold
of the family P1

ωpm,nq, we recall that under our assumptions

ω Q H1pTP1 b Sym2FM q – H1 pOP1p2´ `qq –

C

"„

1

pX0q
jpX1q

`´2´j

*`´3

j“1

G

C

. (3.21)

Therefore, as an element of the vector space H1pTP1 b Sym2FM q, the most general obstruction
class ω can be represented expanded over its base as

ω “ λ1

„

1

X0X
`´3
1



` . . .` λ`´3

„

1

X`´3
0 X1



, λi P C, i “ 1, . . . , `´ 3. (3.22)

This gives explicitly the isomorphism H1pTP1 bSym2FM q – C`´3 that is understood when we say
that a class ω is represented by a choice of tλ1, . . . , λ`´3u. In particular, we will call the choice
λi “ 0 for all i “ 1, . . . , `´ 3 the split locus of the family, as it leads to a split supermanifold.
We are now ready to give the explicit form of the transition functions of P1

ωpm,nq.

Theorem 3.5 (Transition Functions of P1
ωpm,nq). The transition functions of an element of the

family P1
ωpm,nq are given in U X V by

z “
1

w
`

`´3
ÿ

j“1

λj
ψ1ψ2

w2`j
, (3.23)

θ1 “
ψ1

w´m
, (3.24)

θ2 “
ψ1

w´n
, (3.25)

where λi P C for i “ 1, . . . , `´ 3.

Proof. The odd transition functions for θi i “ 1, 2 have already been found in (3.19). We are
thus left to find the even transition function. We first recall that a section of TP1 defined by Bz
satisfies the transformation law Bz “ ´w

2Bw, hence it has a double zero on r0 : 1s P P1 and it can
be identified with the section X2

0 P H
0pOP1p2qq, up to a non-zero scalar factor. Moreover, since
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ω P H1pOP1p2´ `qq one chooses, as above, ω “
A

 “

λj
L

pX0q
jpX1q

`´2´j
‰(`´3

j“1

E

. Therefore one gets

the following identifications:

«

"

λj
pX0q

jpX1q
`´2´j

*`´3

j“1

ff

“

«

"

λjX
2
0

pX0q
j`2pX1q

`´2´j

*`´3

j“1

ff

“

«

"

λj
pX0q

j`2pX1q
`´j´2

*`´3

j“1

Bz

ff

.

Now, using (3.20) above, one sees in particular that ψ1ψ2 “ 1
L

X´m´n1
“ 1

L

X`
1 . Under these

identifications one gets

ω “

«

"

λj
pX0q

j`2pX1q
`´j´2

*`´3

j“1

Bz

ff

“

»

–

#

λj

ˆ

X1

X0

˙j`2
+`´3

j“1

1

X`
1

Bz

fi

fl “

«

"

λj
wj`2

*`´3

j“1

ψ1ψ2Bz

ff

,

Remembering that zmodJ 2
M “ p1{wqmodJ 2

M , and plugging the previous result into (3.10), one
has the conclusion:

zpw,ψ1, ψ2q “
1

w
`

`´3
ÿ

j“1

λj
ψ1ψ2

w2`j
Bzz “

1

w
`

`´3
ÿ

j“1

λj
ψ1ψ2

w2`j
. (3.26)

The previous theorem exhaust all of the possible non-projected (non-singular) N “ 2 supermani-
folds over the projective line P1: they are abstractly classified by the Theorem 3.4 at the beginning
of this section and they can be constructed explicitly by patching charts via the transition functions
we have just given.

3.3.1 Even Picard Group of P1
ωpm,nq

In this section we start studying the even Picard group of an element of the family P1
ωpm,nq to see

what sort of even invertible sheaves can be defined on a supermanifold belonging to the family.
We first recall that in general the even part of the structure sheaf of a N “ 2 supermanifold fits
into the short exact sequence (3.1), that can be exponentiated to give

0 // Sym2FM
i // O˚M ,0

j
// O˚Mred

// 0, (3.27)

Where i : Sym2FM Ñ O˚M ,0 sends a section s P Sym2FM to 1 ` s P O˚M ,0 and j : O˚M ,0 Ñ OMred

is simply the restriction of invertible elements under the inclusion map (viewed as a morphism of
super ringed spaces) ι : Mred Ñ M , of the underlying reduced manifold in the supermanifold lying
above him (we recall that this map always exists).
The short exact sequence (3.78) enters the proof of the following theorem.

Theorem 3.6 (Even Picard Group of P1
ωpm,nq). The even Picard group of P1

ωpm,nq is given by

Pic0pP1
ωpm,nqq – Z‘ C`´1. (3.28)

Proof. We first recall that for the family P1
ωpm,nq we have that m ` n “ ´` and ` ě 4 and that

Sym2FM – OP1p´`q, so that (3.78) looks like

0 // OP1p´`q // O˚P1
ωpm,nq,0

// O˚P1
// 0. (3.29)

Taking the long exact sequence in cohomology one then finds the following:

0 H0pOP1p´`qq H0pO˚P1
ωpm,nq,0

q H0pO˚P1q

H1pOP1p´`qq H1pO˚P1
ωpm,nq,0

q H1pO˚P1q 0.
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Clearly, we have that H0pOP1p´`qq – 0 and H1pOP1p´`qq – C`´1, while as for the sheaf O˚P1

we have H0pOP1q – C˚ and Pic pP1q “ H1pO˚P1q – Z. Also, considering the boundary map,
δ : H0pO˚P1q Ñ H1pO1

Pp´`qq, we see that this can only be the zero map, as there are no ways one can
map a non-nilpotent non-zero element in H0pO˚P1q – C˚ to a nilpotent 1-cocycle. This implies that
the exact sequence splits into two exact sequence yielding the isomorphism H0pO˚P1

ωpm,nq,0
q – C˚

and the short exact sequence

0 // C`´1 // Pic0pP1
ωpm,nqq // Z // 0, (3.30)

that gives the result.

As we are working over P1, that is covered by just two sets tU ,Vu, it is actually possible to do more

and provide explicitly the free generators of the Picard group Pic0pP1|2
ω q, as we did for supercurves

over P1 in the first chapter.

Theorem 3.7 (Generators of H1pO˚P1
ωpm,nq

q). The cohomology group H1pO˚P1
ωpm,nq

q is generated

by the following Čech 1-cocycles

H1pO˚P1
ωpm,nq

q –

B

wk, 1` c1
ψ1ψ2

w1
, . . . , 1` c`´1

ψ1ψ2

w`´1

F

, (3.31)

where k P Z and c1, . . . , c`´1 are non-zero complex numbers.

Proof. We aim to compute the Čech cohomology valued in the sheaf O˚P1
ωpm,nq,0

explicitly. Given

the usual covering tU ,Vu of P1, we have

C0
´

tU ,Vu,O˚P1
ωpm,nq,0

¯

“ O˚P1
ωpm,nq,0

pUq ˆO˚P1
ωpm,nq,0

pVq (3.32)

C1
´

tU ,Vu,O˚P1
ωpm,nq,0

¯

“ O˚P1
ωpm,nq,0

pU X Vq (3.33)

where the elements of Čech 0-cochain O˚P1
ωpm,nq,0

pUqˆO˚P1
ωpm,nq,0

pVq are given by pairs of elements

of the kind pP pz, θ1θ2q, Qpw,ψ1ψ2qq such that

P pz, θ1θ2q “ a` P̃ pzqθ1θ2 a P C˚, P̃ P Crzs (3.34)

Qpw, θ1θ2q “ b` Q̃pwqψ1ψ2 b P C˚, Q̃ P Crws. (3.35)

Clearly, the boundary map δ : C0
´

tU ,Vu,O˚P1
ωpm,nq,0

¯

Ñ C1
´

tU ,Vu,O˚P1
ωpm,nq,0

¯

acts as follows

δ
`

pP pz, θ1θ2q, Qpw,ψ1ψ2qq
˘

“ Qpw,ψ1ψ2qP
´1pz, θ1θ2q

X

UXV (3.36)

so that, in full generality, the image of δ is given by

δ
`

pP,Qq
˘

“ pb` Q̃pwqψ1ψ2q

ˆ

1

a
´ P̃ p1{wq

ψ1ψ2

a2w`

˙

“
b

a
`

˜

Q̃pwq

a
´

b

a2

P̃ p1{wq

w`

¸

ψ1ψ2 (3.37)

Out of this expression, incidentally, one immediately see that H0
`

OP1
ωpm,nq

˘

– C˚ as it is given

by the constant elements pa, aq P Z1
`

OP1
ωpm,nq

˘

, where a ‰ 0.
On the other hand, one has that the elements in O˚P1

ωpm,nq,0
pU X Vq are given by expression of the

form

W pw, 1{w,ψ1ψ2q “ cwk ` W̃ pw, 1{wqψ1ψ2, (3.38)

where c P C˚, k P Z, W̃ P Crw, 1{ws. Now, confronting the previous expression with the image of
the map δ in the (3.37), one sees that b{a can be used to set the coefficient of c of wk to one and
thus the non-exact 1-cocycles are indeed given by transition functions of the form

"

wk, 1` c1
ψ1ψ2

wj
, . . . , 1` c`´1

ψ1ψ2

w`´1

*

, (3.39)

concluding the theorem.
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As already done in the previous chapter for the supercurves P1|m, we call the even invertible sheaves
on P1

ωpm,nq characterised by transition functions having the above form as follows:

OP1
ωpm,nq

pkq ÐÑ twku, (3.40)

LP1
ωpm,nq

pc1, . . . , c`´1q ÐÑ

#

1`
`´1
ÿ

j“1

cj
ψ1ψ2

wj

+

, (3.41)

for k P Z, m` n “ ´`, ` ě 4 and c1, . . . , c`´1 P C. We have the following theorem.

Theorem 3.8 (Even Picard Group Pic0pP1
ωpm,nqq). The even Picard group of P1

ωpm,nq is gen-
erated by the following even invertible sheaves

Pic0pP1
ωpm,nqq “

@

OP1
ωpm,nq

p˘kq,LP1
ωpm,nq

pc1, 0, . . . , 0q, . . . ,LP1
ωpm,nq

p0, . . . , 0, c`´1q
D

. (3.42)

for k “ ˘1, c1, . . . , c`´1 P C and m` n “ ´`, ` ě 4.

Proof. Taking into account the notation adopted above, this theorem is just a consequence of the
previous one by the isomorphism Pic0pM q – H1pO˚M ,0q.

3.3.2 Embedding of P1
ωp2, 2q: an Example by Witten

We now focus on a specific non-projected supermanifold in the family P1
ωpm,nq and we construct

the embedding of it into an ordinary projective superspace.
We choose to deal with probably the easiest example of a non-projected supermanifold belonging
to the family, which is given by P1

ωp2, 2q: this corresponds to the choice of a fermionic sheaf of the
form FM “ ΠOP1p´2q‘ΠOP1p´2q so that Sym2FM – OP1p´4q. This leads to an obstruction class
ω P H1pOp´2qq – C: since the obstruction cohomology group is one-dimensional, we represent ω
by a complex number λ (see (3.23)), which we choose to fix to be one, so that the even transition
function of our supermanifold P1

ωp2, 2q is given by

z “
1

w
`
ψ1ψ2

w3
. (3.43)

Notice that, choosing a different non-zero value for λ, we would have gotten an (non-canonically)
isomorphic non-projected supermanifold: indeed choosing ω or λω for λ P C˚ leads to isomorphic
supermanifolds, as stressed in the second observation following Theorem 3.3.

In the case of P1
ωp2, 2q, the even Picard group is given by Pic0pP1

ωp2, 2qq – Z‘C‘3, having, in
the isomorphisms Pic0pP1

ωp2, 2qq – H1pO˚P1
ωp2,2q

q generators given by

H1pO˚P1
ωp2,2q

q –

B

wk, 1` c1
ψ1ψ2

w
, 1` c2

ψ1ψ2

w2
, 1` c3

ψ1ψ2

w3

F

. (3.44)

with k P Z and c1, c2, c3 P C.
Now, in order to explicitly find an embedding we let eU and eV be two local frames in the open
sets of the covering of P1 and we let OP1

ωp2,2q
p2q Ø tpU ,Vq, eU “ w2eVu and LP1

ωp2,2q
p0,´1, 0q Ø

tpU ,Vq, eU “ p1´ψ1ψ2{w
2qeVu and we consider the invertible sheaf given by their tensor product:

pLP1
ωp2,2q

..“ OP1
ωp2,2q

p2q b LP1
ωp2,2q

p0,´1, 0q Ø tpU ,Vq, eU “ pw2 ´ ψ1ψ2qeVu. (3.45)

Then the following lemma holds true.

Lemma 3.2. Let pLP1
ωp2,2q

be the even invertible sheaf over P1
ωp2, 2q defined above. Then pLP1

ωp2,2q

admits the following global sections

1. Y0
..“ teU , pw

2 ´ ψ1ψ2qeVu

2. Y1
..“ tzeU , weVu

3. Y2
..“ tpz2 ´ θ1θ2qeU , eVu
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4. Ξ1
..“ tθ1eU , ψ1eVu

5. Ξ2
..“ tθ2eU , ψ2eVu,

it is ample and it allows for an embedding φ2 : P1
ωp2, 2q ãÝÑ P2|2 whose imagine is given by the

equation

Ξ1Ξ2 ´ Y
2
1 ` Y0Y2 “ 0. (3.46)

Proof. The proof that the five sections defined locally above are indeed global sections for pLP1
ωp2,2q

amounts to the direct check that the given local definitions agree on U X V. Let us check for
example that Y2 is a global section:

Y2 “
`

z2 ´ θ1θ2

˘

eU

“
`

z2 ´ θ1θ2

˘ `

w2 ´ ψ1ψ2

˘

eV

“

˜

„

1

w
`
ψ1ψ2

w3

2

`
ψ1ψ2

w4

¸

`

w2 ´ ψ1ψ2

˘

eV

“

ˆ

1

w2
` 2

ψ1ψ2

w4
`
ψ1ψ2

w4

˙

`

w2 ´ ψ1ψ2

˘

eV

“

ˆ

1

w2
`
ψ1ψ2

w4

˙

`

w2 ´ ψ1ψ2

˘

eV

“ eV (3.47)

It is immediate to get the equation satisfied by the global sections, by looking at their local
definition, for example on the open set U :

“

Ξ1Ξ2 ´ Y
2
1 ´ Y0Y2

‰

tU“ θ1θ2 ´ z
2 ` z2 ´ θ1θ2 “ 0. (3.48)

therefore one indeed gets Ξ1Ξ2 ´ Y
2
1 ` Y0Y2 “ 0.

To ensure that the corresponding map φ2 : P1
ωp2, 2q Ñ P2|2 is actually an embedding we need to

check that it is injective at the level of geometric points (i.e. between the reduced manifolds) and
that its super differential is injective on the super tangent space TP1

ωp2,2q
. To achieve this, one can

define the map φ2 : P1
ωp2, 2q Ñ P2|2 locally: on the open set U one has

φU,2 : pz, θ1, θ2q ÞÝÑ r1 : z : z2 ´ θ1θ2 : θ1 : θ2s, (3.49)

while on V one gets

φU,2 : pz, θ1, θ2q ÞÝÑ rw2 ´ ψ1ψ2 : w : 1 : ψ1 : ψ2s (3.50)

This map is seen to be injective over P1. The super differential reads

dφU,2 “

¨

˚

˚

˚

˚

˝

0 1 2zθ1θ2 0 0

0 0 ´θ2 1 0

0 0 θ1 0 1

˛

‹

‹

‹

‹

‚

dφV,m “

¨

˚

˚

˚

˚

˝

2w 1 0 0 0

´ψ2 0 0 1 0

`ψ1 0 0 0 1

˛

‹

‹

‹

‹

‚

,

so that it dφ2 is injective and this completes the proof.

Interestingly, the embedding we have realised is related with the example of non-projected super-
manifold given by Witten in [68], page 8, as explained in the following remark.

Remark 3.1 (An Example by Witten). In order to make the concept of non-projected superman-
ifold more accessible, Witten proposes the following supercurve in P2|2

Y 2
0 ` Y

2
1 ` Y

2
2 ` Ξ1Ξ2 “ 0. (3.51)
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as an example of non-projected supermanifold. Actually, even though he offers an explanation for
the non-projectedness of this supermanifold, that does not appear as completely straightforward to
the author of the present thesis.
In the opinion of the author, a framework that make clear that this supermanifold is actually non-
projected is the one developed above. Indeed, the example put forward by Witten is nothing but the
embedding of P1

ωp2, 2q in P2|2 we have constructed above.
We have shown in the previous theorem that the supermanifold Y0Y2´Y

2
1 `Ξ1Ξ2 “ 0 in P2|2 is the

image of P1
ωp2, 2q through the embedding φ2, one can then make use of a certain transformation

in PGLp3|2q - that is an automorphism supergroup of P2|2 - to bring the equation in the form
displayed by Witten. In particular, the transformation

PGLp3|2q Q rT s “

¨

˚

˚

˚

˚

˝

1 0 i 0 0
0 i 0 0 0
1 0 ´i 0 0
0 0 0 1 0
0 0 0 0 1

˛

‹

‹

‹

‹

‚

(3.52)

does the job. This shows that the non-projective supermanifold displayed by Witten is indeed
isomorphic to the non-projected supermanifold we have called P1

ωp2, 2q.

Incidentally, we stress the limits of the previous Lemma 3.2: indeed, it holds only for a single
element of the family, the supermanifold P1

ωp2, 2q.
Fixing the obstruction class to be one-dimensional - that amounts to fix Sym2FM – OP1p´4q or
in the notation adopted m ` n “ 4 - and considering a non-isomorphic element of the family,
which can be therefore represented as P1

ωpm, 4 ´ mq for m ‰ 2, one needs to choose a different
invertible sheaf, which is likely of the form OP1

ωpm,4´mq
pmq Ø ttU ,Vu, eU “ wmeVu tensored by

another one represented by a unipotent element of the even Picard group, in order to realise the
embedding. We will not go further this direction, but pass instead to the case of non-projected
N “ 2 supermanifolds of higher dimension and their embeddings, which proves to be much more
interesting.

3.4 Non-Projected Supermanifolds over P2

In this section we repeat what we have previously done over P1, now studying the non-projected
N “ 2 structures over P2. We recall that this exhausts the possibilities for non-projected N “ 2
structures over projective spaces, as there are no non-projected N “ 2 supermanifolds over Pn
whenever n ą 2.
In the same spirit as Theorem 3.4, we prove the following

Theorem 3.9 (Non-Projected N “ 2 Supermanifolds over P2). Every non-projected N “ 2
supermanifold over P2 is characterised up to isomorphism by a triple pP2,FM , ωq where FM is a
rank 0|2 sheaf of OP2-modules such that Sym2FM – OP2p´3q and ω is a non-zero cohomology class
ω P H1pTP2p´3qq.

Proof. It is enough to use the result of Theorem 3.3 together with the the computations of section
3.2, in particular equation (3.12), that tells that the obstruction to splitting can be obtained only
for sheaf FM such that their second symmetric power - in the supersymmetric sense - is isomorphic
to the canonical sheaf of P2.

Notice that the situation is rather more complicated over P2 compared to the case over P1 we have
discussed above. Indeed even if over P2 the obstruction can only be one-dimensional in contrast
with the case over P1, we have that locally-free sheaves of OP2 -modules do not in general split
as direct sums of invertible sheaves, and they might have a moduli space. The condition for a
supermanifold over P2 to be non-projected fixes the first Chern class of the fermionic sheaf FM ,
but this is not enough to uniquely fix a moduli space for these sheaves, as one would need to fix
their second Chern class as well. From this point of view, the previous theorem is not really a
classification result and in particular it is much less exhaustive compared with its analog over P1,
that exploits Grothendieck’s splitting theorem for vector bundles over P1 to provide a specific form
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for the fermonic sheaf of the supermanifold.
By the way, the previous theorem justifies the following definition.

Definition 3.2 (The Supermanifolds P2
ωpFM q). We denote P2

ωpFM q a supermanifold arising from
a triple pP2,FM , ωq where the fermionic sheaf FM is a locally-free sheaf of OP2-modules of rank
0|2 such that Sym2FM – OP2p´3q and such that ωM is a (possibly zero) cohomology class in
H1pTP2p´3qq – C.

Clearly, a supermanifold of the kind P2
ωpFM q is not projected if and only if ω is a non-zero class in

H1pTP2p´3qq.

We now look for the explicit form of the transition functions for a supermanifold in the family
P2
ωpFM q.

Working over P2 leads to consider a set of homogeneous coordinates rX0 : X1 : X2s on P2 and in
turn the set of the affine coordinates and their algebras over the three open sets of the covering
U ..“ tU0,U1,U2u of P2. In particular, working modulo JM , we will have the following

U0
..“ tX0 ‰ 0u ù z10 modJ 2

M
..“

X1

X0
, z20 modJ 2

M
..“

X2

X0
;

U1
..“ tX1 ‰ 0u ù z11 modJ 2

M
..“

X0

X1
, z21 modJ 2

M
..“

X2

X1
;

U2
..“ tX2 ‰ 0u ù z12 modJ 2

M
..“

X0

X2
, z22 modJ 2

M
..“

X1

X2
. (3.53)

The transition functions between these charts therefore look like

U0 X U1 : z10 modJ 2
M “

1

z11
modJ 2

M , z20 modJ 2
M “

z21

z11
modJ 2

M ;

U0 X U2 : z10 modJ 2
M “

z22

z12
modJ 2

M , z20 modJ 2
M “

1

z12
modJ 2

M ;

U1 X U2 : z11 modJ 2
M “

z12

z22
modJ 2

M , z21 modJ 2
M “

1

z22
modJ 2

M . (3.54)

Again, the reason why we give expressions for the local bosonic coordinates zij and their transfor-
mation functions mod J 2

M instead of mod JM is that, as N “ 2, one has pJM q0 “ J 2
M .

Moreover we will denote θ1i, θ2i a basis of the rank 0|2 sheaf FM on any of the open sets Ui,
for i “ 0, 1, 2, and, since J 3

M “ 0, the transition functions among these bases will have the form

Ui X Uj :

ˆ

θ1i

θ2i

˙

“Mij ¨

ˆ

θ1j

θ2j

˙

, (3.55)

with Mij a 2ˆ 2 matrix with coefficients in OP2pUi X Ujq. Note that in the transformation (3.55)
one can write Mij as a matrix with coefficients given by some even rational functions of z1j , z2j ,
because of the definitions (3.53) and the facts that θhj P JM and J 3

M “ 0.
Finally we note the transformation law for the products θ1iθ2i, which is given by

θ1iθ2i “ pdetMijqθ1jθ2j . (3.56)

Since detM is a transition function for the invertible sheaf Sym2FM – OP2p´3q over UiXUj , this
can be written, up to constant changes of bases in FtUi

and FtUj
, in the more precise form

θ1iθ2i “

ˆ

Xj

Xi

˙3

θ1jθ2j . (3.57)

This also means that we can identify the base θ1iθ2i of Sym2FM tUi with the standard base 1
X3

i
of

OP2p´3q over Ui.
The relations and transition functions given above are those that all the supermanifolds of

the kind P2
ωpFM q share, regardless the specific form of its fermionic sheaf FM . In the following

theorem, in particular, we give the explicit form of the even transition functions.
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Theorem 3.10 (Transition Functions for P2
ωpFM q). The transition functions for an element of

the family P2
ωpFM q from coordinates on U0 to coordinates on U1 are given by

¨

˚

˚

˝

z10

z20

θ10

θ20

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

1

z11
z21

z11
` λ

θ11θ21

pz11q
2

M

ˆ

θ11

θ21

˙

˛

‹

‹

‹

‹

‹

‚

(3.58)

where λ P C is a representative of the class ω P H1pTP2p´3qq – C and M is a 2 ˆ 2 matrix with
coefficients in Crz11, z

´1
11 , z21s such that detM “ 1

L

z3
11

. Similar transformations hold between the
other pairs of open sets.

Proof. The part of the transformation law (3.58) that relates the fermionic coordinates θ10, θ20

and θ11, θ21 has already been discussed above. We are therefore left to explain the part of the
transformation (3.58) that relates the bosonic coordinates z10, z20 and z11, z21. Writing the general
transformation (3.10) in this particular case, yields the following

z10 “
1

z01
` ωpz10q

z20 “
z21

z01
` ωpz20q,

with ω a derivation of OP2 with values in Sym2FM , which identifies an element ωM P H1pTP2 b

Sym2FM q. Recall that by Theorem 3.3 it is only the cohomology class ω that matters in defining
the structure of the supermanifold M . In particular M is non-projected if and only if ω P H1pTP2b

Sym2FM P2
q is non-zero. As we have seen, the only possibility for this space to be non-zero is

Sym2FM – OP2p´3q, so that ω lies in H1pTP2p´3qq. Indeed this space is non-null as can be seen
by the (twisted) Euler exact sequence for the tangent space, which reads

0 // OP2p´3q // OP2p´2q‘3 // TP2p´3q // 0. (3.59)

The long exact sequence in cohomology yields the following isomorphism:

δ : H1pTP2 bOP2p´3qq
–
ÝÑ H2pOP2p´3qq – C (3.60)

where δ is the connecting homomorphism. We now will make this isomorphism more explicit.
Recall that the untwisted Euler sequence is

0 // OP2
e // OP2p1q‘3

π˚
// TP2 // 0 (3.61)

where, if we write formally OP2p1q‘3 “ OP2p1qBX0
‘OP2p1qBX1

‘OP2p1qBX2
, we have

epfq “ fpX0BX0
`X1BX1

`X2BX2
q (3.62)

π˚pXiBXj
q “ BpXj{Xiq. (3.63)

The last relation takes place over the open set Ui, with affine coordinates Xj{Xi, for j ‰ i. This
holds because, fibrewise, the Euler sequence is provided by the differentials π˚ : TpC3q˚,v Ñ TP2,rvs

of the canonical projection π : pC3q˚ Ñ P2. In particular, over U0 we have the local splitting
of OM given by identifying z10 “ X1{X0, z20 “ X2{X0 and fermionic coordinates given by the
chosen local base θ10, θ20 of FM , and we get Bz20 “ π˚pX0BX2q. By similar reasons we can write
Bz11 “ π˚pX1BX0q over U1 and Bz22 “ π˚pX2BX1q over U2. Now consider the local section 1

X0X1X2
P

OP2p´3qpU0 X U1 X U2q, whose class r 1
X0X1X2

s is a basis of H2pOP2p´3qq. We make the following
calculation on local sections over U0 X U1 X U2 of the sequence (3.59)

e

ˆ

1

X0X1X2

˙

“
X0BX0

`X1BX1
`X2BX2

X0X1X2

“
1

X3
0

ˆ

X0

X1

˙

X0BX2 `
1

X3
1

ˆ

X1

X2

˙

X1BX0 `
1

X3
2

ˆ

X2

X0

˙

X2BX1

“ θ10θ20

ˆ

X0

X1

˙

X0BX2
` θ11θ21

ˆ

X1

X2

˙

X1BX0
` θ12θ22

ˆ

X2

X0

˙

X2BX1
. (3.64)
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By applying π˚ to both the first and the last expression above we obtain

0 “
θ10θ20

z10
Bz20 `

θ11θ21

z21
Bz11 `

θ12θ22

z12
Bz22

“
θ11θ21

z2
11

Bz20
`
θ12θ22

z2
22

Bz11
`
θ10θ20

z2
20

Bz22
(3.65)

where, for the last equality, we have used the transformations (3.54) and (3.57). The final result
is that the assignments of local sections of TP2 b Sym2F

ω01 “
θ11θ21

z2
11

Bz20
on U0 X U1,

ω12 “
θ12θ22

z2
22

Bz11
on U1 X U2,

ω20 “
θ10θ20

z2
20

Bz22
on U0 X U2 (3.66)

satisfy the cocycle condition

ω01tU0XU1XU2`ω12tU0XU1XU2`ω20tU0XU1XU2“ 0 (3.67)

and therefore define a cohomology class rωs P H1pTP2 b Sym2FM q. Moreover, by definition of the
connecting homomorphism δ, one has

δprωsq “

„

1

X0X1X2



P H2pOP2p´3qq. (3.68)

In particular, from the class rλωs P H1pTP2 b Sym2FM q, one obtains the claimed transformation

z10 “
1

z01
` λω01pz10q “

1

z01
, (3.69)

z20 “
z21

z01
` λω01pz20q “

z21

z01
` λ

θ11θ21

z2
11

. (3.70)

This theorem provides the general form of the even transition functions for supermanifolds in the
family P2

ωpFM q : in the following subsections we will use this result to study some more geometry
of these particular non-projected supermanfolds.

3.4.1 P2
ωpFM q is a Calabi-Yau Supermanifold

In the present subsection we prove that all all of the supermanifolds over P2 of the form P2
ωpFM q,

are Calabi-Yau supermanifolds in the sense of the Definition 1.20, regardless the choice made for
the fermionic sheaf FM .

Theorem 3.11 (P2
ωpFM q is Calabi-Yau). All of the supermanifolds of the form P2

ωpFM q are Calabi-
Yau supermanifolds. That is,

Ber
`

P2
ωpFM q

˘

– OP2
ωpFM q

. (3.71)

Proof. We can work locally, considering transformations between U0 and U1. Then, using the
results of the previous section, we can write the transition functions for an element of the family
P2
ωpFM q as in (3.58) where λ P C is a representative of the class ω P H1pTP2p´3qq – C. We can

now compute the (super) Jacobian of this transformation, obtaining:

Jac pΦq “

ˆ

A B
C D

˙

(3.72)
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where one has

A “

˜

´ 1
pz11q2

0

´ z21

pz11q2
´ 2λ θ11θ21

pz11q3
1
z11

¸

B “

ˆ

0 0

λ θ21

pz11q2
´λ θ11

pz11q2

˙

C “

ˆ

Bz11
M

ˆ

θ11

θ21

˙

Bz21
M

ˆ

θ11

θ21

˙˙

D “M. (3.73)

Then, we can compute the Berezinian of this Jacobian matrix using the well-known formula
Ber pJac pΦqq “ detpA´BD´1CqdetD´1. We have that

A´BD´1C “

ˆ

´ 1
z11

0

˚ 1
z11
´H

˙

where H “
λ

pz11q
2
pθ21,´θ11qM

´1Bz21
M

ˆ

θ11

θ21

˙

. (3.74)

Now, on the one hand we have that detM “ 1
pz11q3

and therefore Bz21 detM “ 0. On the other

hand, denoting δ ..“ Bz21
, we find by explicit computation that

H “
λ

pz11q
2
pθ21,´θ11q

1

detM

ˆ

d ´b
´c a

˙ˆ

δa δb
δc δd

˙ˆ

θ11

θ21

˙

“ λz11 TrpM´1δMq θ11θ21 (3.75)

and upon noticing that 0 “ δpdetMq “ TrpM´1δMq, we find that H “ 0. Therefore one has

Ber pJac pΦqq “ det

ˆ

´ 1
pz11q2

0

˚ 1
z11

˙

detM´1 “ ´1 (3.76)

which concludes the proof.

Before we pass to another peculiar property of the family of non-projected supermanifolds P2
ωpFM q,

we stress that in the previous theorem we have been forced to use a “brute force” computation
using the transition functions of the supermanifolds of the family. Indeed, to the best knowledge
of the author, there are no results such as Theorem 1.1 - that hold for projected supermanifolds -
in the case of non-projected supermanifolds and no exact sequences come in our help: this forces
us to carry out explicit computations and a direct evaluation of the Berezinian sheaf.

3.4.2 P2
ωpFM q is Non Projective

We continue studying the properties of the family P2
ωpFM q and we consider the locally-free sheaves

of rank 1|0, i.e. the even invertible sheaves, that can be defined over these non-projected super-
manifolds, by studying the even Picard group Pic0pP2

ωpFM qq. We have seen that in a previous
section that the even Picard group of the non-projected N “ 2 supermanifolds over P1 is actually
pretty rich, and in particular - even if we have explicitly considered just a single example - all of
these non-projected supermanifolds can be embedded into some projective superspace Pn|m. We
will see that this is not the case when dealing with non-projected N “ 2 supermanifolds over P2.

Theorem 3.12 (P2
ωpFM q is Non Projective). The even Picard group of the non-projected super-

manifolds of the family P2
ωpFM q is trivial, regardless how one chooses the fermionic sheaf FM :

Pic0pP2|2
ω q “ 0. (3.77)

In particular, the non-projected supermanifolds of the family P2
ωpFM q are non-projective, regardless

how one chooses the fermionic sheaf FM .

Proof. For the sake on notation we put M ..“ P2|2
ω pFM q and, remembering that Sym2FM –

OP2p´3q, we consider the short exact sequence

0 // OP2p´3q
exp

// O˚M ,0
// O˚P2

// 1. (3.78)

As already seen above, this is the multiplicative version of the structural exact sequence, with the
first map defined by expphq “ 1` h, as h P OP2p´3q “ pJM q0 and pJM q

2
0 “ 0. The exact sequence

above gives the following piece of long exact cohomology sequence

0 // H1pO˚M ,0q
// H1pO˚P2q

δ // H2pOP2p´3qq // ¨ ¨ ¨ . (3.79)
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Now, one has PicpP2q “ H1pO˚P2q – Z and H2pOP2p´3qq – C, so everything reduces to decide
whether the connecting homomorphism δ : PicpP2q Ñ H2pOP2p´3qq is the zero map or it is an
injective map ZÑ C. This can be checked directly, by a diagram-chasing computation, by looking
at the following diagram of cochain complexes,

C2pOP2p´3qq
i // C2pO˚M ,0q

C1pO˚M ,0q

OO

j
// // C1pO˚P2q,

(3.80)

that is obtained by considering the short exact sequence (3.78) and the Čech cochain complexes
of the sheaves involved in the sequence.
One then picks the generating line bundle xOP2p1qyOP2

– PicpP2q and, given the usual covering
U ..“ tUiu2i“0 of P2 as above, OP2p1q can be represented by the cocycle gij P Z

1pU ,O˚P2q given by
the transition functions of the line bundle itself. Explicitly, in homogeneous coordinates, these
cocycles are given by

OP2p1q ÐÑ

"

g01 “
X0

X1
, g12 “

X1

X2
, g20 “

X2

X0

*

. (3.81)

Since the map j : C1pO˚M ,0q Ñ C1pO˚P2q is surjective, these cocycles are, in particular, image of

elements in C1pO˚M ,0q. More precisely we have

jpz11q “ g01, jpz22q “ g12, jpz20q “ g20,

hence we can consider the lifting σ “ tz11, z22, z20u of tg01, g12, g20u to C1pO˚M ,0q. We stress that

this is not a cocycle in C1pO˚M ,0q. Now, by going up in the diagram to C2pO˚M ,0q by means of

the Čech boundary map δ : C1pO˚M ,0q Ñ C2pO˚M ,0q, and using the bosonic transformation laws

induced by the derivations (3.66), one finds the following element:

δpσq “ z11 ¨ z22 ¨ z20tU0XU1XU2

“

ˆ

z12

z22
` λ

θ12θ22

z2
22

˙

z22z20

“ 1` λ
θ12θ22

z22
z20 “ 1` λθ12θ22

ˆ

X2

X1

˙ˆ

X2

X0

˙

by p3.53q

“ 1` λ

ˆ

1

X3
2

˙ˆ

X2

X1

˙ˆ

X2

X0

˙

“ 1`
λ

X0X1X2
.

We have that the element 1` λ
X0X1X2

is the image of λ
X0X1X2

through the map i. Hence we find

that δ : PicpP2q ÝÑ H2pOP2p´3qq maps rOP2p1qs ÞÝÑ r λ
X0X1X2

s, which is non-zero for λ ‰ 0, i.e.

for M non-projected. This leads to the conclusion that Pic0pP2|2
ω pFM qq “ H1pO˚

P2|2
ω pFM q,0

q “ 0, i.e.

the only locally-free sheaf of rank 1|0 on M is OM .
In particular there are no locally-free sheaves of rank 1|0 to realise an embedding in a projective

superspace, that is the non-projected supermanifold P2
ωpFM q is non-projective.

The previous theorem leads to an interesting conclusion. Indeed it makes clear the substantial
difference between complex algebraic supergeometry and the usual complex algebraic geometry,
where projective spaces are the prominent ambient spaces. This fact was already known by Manin
(see, for example [41], [42]), who produced many examples of non-projective supermanifolds. How-
ever, we anticipate that later on in this chapter we will show that any supermanifold of the form
P2
ωpFM q can always be embedded in some super Grassmannian. In order to achieve this, in the

next section we will review the geometry of super Grassmannians.
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3.5 The Geometry of Super Grassmannians

In this section we introduce some elements of the geometry of super Grassmannians. All the results
we expose in this section are due to Y. Manin and his school [41], [42], [52]. For a thorough and
deep treatment of super Grassmannian and super flag varieties we suggest the interested reader to
refer to [41] and [42]. Here we intend to give a self contained and elementary exposition of Super
Grassmannians with emphasis on their general non-projectdness and their non-projectivity, i.e.
non-embeddability into projective superspaces.

Super Grassmannians are the supersymmetric generalisation of the ordinary Grassmannians.
Gpa|b;V n|mq is a universal parameter space for a|b-dimensional linear subspaces of a given n|m-
dimensional space V n|m. For the sake of clarity we will only work in the analytic category, always
choosing to deal with the simplest possible situation, that is choosing the n|m-dimensional space
V n|m to be a super vector space of the kind Cn|m. In what follows we briefly review how to
construct a super Grassmannian by patching together the “charts” covering it. This is a rather
straightforward generalisation of the usual construction of ordinary Grassmannians via their big
cells.

1. Let Cn|m be such that n|m “ c0|c1`d0|d1. We look at Cn|m as given by Cc0`d0‘pΠCqc1`d1 .
This is obviously freely-generated, and we will write its elements as row vectors with respect
to a certain basis, Cn|m “ Spante0

1, . . . , e
0
n|e

1
1, . . . , e

1
mu, where the upper indices refer to the

Z2-parity.

2. Consider a collection of indices I “ I0 Y I1 such that I0 is a collection of d0 out of the n
indices of Cn and I1 is a collection of d1 indices out of m indices of ΠCm. If I is the set of
such collections of indices I we have that

cardpIq “ cardpI0 ˆ I1q “

ˆ

n

d0

˙

¨

ˆ

m

d1

˙

. (3.82)

This will be the number of super big cells covering the super Grassmannian.

3. Choosing a certain element I P I we associate to it a set of even and odd (complex) variables

txαβI | ξαβI u. These are arranged as to fill in the places of a d0|d1ˆn|m “ a|bˆpc0`d0q|pc1`d1q

super matrix in a way such that the columns having indices in I P II forms a pd0 ` d1q ˆ

pd0 ` d1q unit matrix if brought together. For example a certain choice of I P I yields the
following

ZI ..“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

xI
. . . 0 ξI

1

1

ξI 0
. . . xI

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (3.83)

where we picked that particular I P I that underlines the presence of the pd0`d1qˆpd0`d1q

unit matrix.

4. We can now define the superspace UI Ñ SpecC – tptu to be the analytic superspace

tptu ˆ Cd0¨c0`d1¨c1|d0¨c1`d1¨c0 – Cd0¨c0`d1¨c1|d0¨c1`d1¨c0 , where txαβI | ξαβI u are the complex co-
ordinates over the point. When represented as above, the superspace UI is called a super big
cell of the Grassmannian.

5. We now aim to patch together two superspaces UI and UJ for two different I, J P I. Given
ZI the super big cell attached to UI we consider the super submatrix BIJ formed by the
columns having indices in J . Let UIJ “ UI XUJ be the (maximal) sub superspace of UI such
that on UIJ we have that BIJ is invertible. Clearly the odd coordinates do not affect the
invertibility, so that it is enough that the two determinants of the even parts of the matrix
BIJ that are respectively a d0 ˆ d0 and a d1 ˆ d1 matrix are different from zero. If this is
the case, on the superspace UIJ we have common coordinates txαβI | ξαβI u and txαβJ | ξαβJ u,
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and the rule to pass from one system of coordinates to the other one is provided on UIJ by
ZJ “ B´1

IJ ZI .
Let us make it clearer by means of the following explicit example. Consider the following
two super big cells:

ZI ..“

¨

˝

1 0 x1 0 ξ1
0 1 x2 0 ξ2

0 0 η 1 y

˛

‚, ZJ ..“

¨

˚

˝

1 x̃1 0 0 ξ̃1
0 x̃2 1 0 ξ̃2

0 η̃ 0 1 ỹ

˛

‹

‚

. (3.84)

Looking at ZI , we see that the columns belonging to J are the first, the third and the fourth,
so that

BIJ “

¨

˝

1 x1 0
0 x2 0
0 η 1

˛

‚. (3.85)

Computing the determinant of the upper-right 2 ˆ 2 matrix, we have invertibility of BIJ
corresponds to x2 ‰ 0 (as seen from the point of view of UI . Likewise we would have found
x̃2 ‰ 0 by looking at ZJ and UJ). The inverse of B´1

IJ reads

B´1
IJ “

¨

˝

1 ´x1{x2 0
0 1{x1 0
0 η{x2 1

˛

‚ (3.86)

so that we can compute the coordinates of UJ as functions of the ones of UI via ZJ “ B´1
IJ ZI :

¨

˚

˝

1 x̃1 0 0 ξ̃1
0 x̃2 1 0 ξ̃2

0 η̃ 0 1 ỹ

˛

‹

‚

“

¨

˝

1 ´x1{x2 0 0 ξ1 ´ ξ2x1{x2

0 1{x2 1 0 ξ2{x2

0 ´η{x2 0 1 y1 ´ ηξ2{x2

˛

‚. (3.87)

The change of coordinates can be read out of this. Observe that the denominator x2 is indeed
invertible on UIJ .

6. Patching together the superspaces UI we obtain the Grassmannian supermanifoldGpd0|d1;Cn|mq
as the quotient

Gpd0|d1;Cn|mq ..“
Ť

IPI
L

R, (3.88)

where we have written R for the equivalence relations generated by the change of coordinates
that have been described above. As a (complex) supermanifold a super Grassmannian has
dimension

dimCGpd0|d1;Cn|mq “ d0pn´ d0q ` d1pm´ d1q|d0pm´ d1q ` d1pn´ d0q. (3.89)

We stress that the maps ψUI
: UI Ñ Gpd0|d1;Cn|mq are isomorphisms onto (open) sub

superspaces of the super Grassmannian, so that the various super big cells offer a local
description of it, in the same way a usual (complex) supermanifold is locally isomorphic to a
superspace of the kind Cn|m.

The easiest possible example of super Grassmannians are projective superspaces, that are realised
as Pn|m “ Gp1|0;Cn`1|mq, exactly as in the ordinary case. These are split supermanifolds, a feature
that they do not in general share with a generic Grassmannian Gpd0|d1;Cn|mq, as we shall see in
a moment.
There are still some elements to introduce before we go on, though. For convenience, in what
follows we will call G a super Grassmannian of the kind Gpd0|d1;Cn|mq and we give the following
definition, see [41].

Definition 3.3 (Tautological Sheaf). Let G be a super Grassmannian and let it be covered by the
super big cells tUIuIPI . We call tautological sheaf SG of the super Grassmannian G the sheaf of
locally-free OG-modules of rank d0|d1 defined as

U X UI ÞÝÑ SGpU X UIq ..“
@

rows of the matrix ZI
D

OGpUXUIq
. (3.90)
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The reader can convince himself that this is a well-posed definition, since one has that SGpUIqtUIJ

and SGpUJqtUJI
get identified by means of the transition functions BIJ .

We now aim to have some insight about the geometry of a super Grassmannian by looking at its
reduced space - which encloses all the topological information -, at the filtration of its trivial sheaf
OG and its tautological sheaf SG. Even if they do miss some crucial information, they offer an
easy and useful approximation of the structure of these sheaves.
We start observing that given a super Grassmannian G, we automatically have two even sub
Grassmannians.

Definition 3.4 (G0 and G1). Let G “ Gpd0|d1;Cn|mq be a super Grassmannian. Then we call G0

and G1 the two purely even sub Grassmannians defined as

G0
..“ Gpd0|0;Cn|0q, G1

..“ Gp0|d1;C0|mq. (3.91)

Given a super big cell UI , these can be visualised as the upper-left and the lower-right part
respectively and they come endowed with their tautological sheaves, we call them S0 and S1.
Notice, though, that S1 defines a sheaf of locally-free OG1 -modules and, as such, it has rank 0|d1.
Given an ordinary complex Grassmannian G of the kind Gpd;Cnq and its tautological sheaf SG,

we can also define the sheaf orthogonal to the tautological sheaf, we call it rS, whose dual fits into
the short exact sequence

0 // SG // O‘nG // rS˚G // 0. (3.92)

Notice that in the case the Grassmannian corresponds to a certain projective space Gp1|0;Cn`1q “

Pn, the sheaf orthogonal to the tautological sheaf can be red off the Euler exact sequence twisted
by the tautological sheaf itself SPn “ OPnp´1q, and, indeed, we have that rS˚G – TPnp´1q, so that
rSG – Ω1

Pnp`1q.
Finally notice that in the case of a super Grassmannian Gpd0|d1;n|mq the sequence (3.92) gener-
alises to the canonical sequence

0 // SG // O‘n|mG
// rS˚G // 0. (3.93)

We now have all the ingredients to state the following theorem

Theorem 3.13. Let G “ Gpd0|d1;Cn|mq be a super Grassmannian and let G0 and G1 their even

sub Grassmannians together with the sheaves S0,S1 and rS0, rS1. Then the following (canonical)
isomorphisms hold true

1) Gred – G0 ˆG1;

2) GrOG – Sym pS0 b rS1 ‘ rS0 b S1q,

where by Sym we mean the super-symmetric algebra over OG0ˆG1
.

Proof. See [41].

As a fundamental and easiest example yet having all the features characterising the geometry of
super Grassmannians, we discuss the super Grassmannian Gp1|1,C2|2q. This super Grassmannian
is such that dimC Gp1|1;C2|2q “ 2|2, therefore the methods we have developed early on to study
supermanifolds having fermionic dimension 2 apply.

The Geometry of Gp1|1;CCC2|2
q: in studying the geometry of Gp1|1;C2|2q, we call it G for short,

we first wish to address to its reduced manifold. This is easily identified using the previous theorem.

Lemma 3.3 (Gp1|1;C2|2qred – P1
0 ˆ P1

1). Let G be the super Grassmannian as above, then

Gp1|1;C2|2qred – P1
0 ˆ P1

1. (3.94)

Proof. Keeping the same notation as above, we have that G0 “ Gp1|0;C2|0q and G1 “ Gp0|1;C0|2q,
and therefore, topologically, we have that G0 – P1

0 and G1 – P1
1, where the subscripts are there to

distinguish the two copies of projective lines. The conclusion follows by the first point of previous
theorem.
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Notice that we would have easily gotten to the same conclusion by looking at the big cells of this
super Grassmannian, after having set the nilpotents to zero.
We have therefore the following situation

P1
0 ˆ P1

1

π0

||

π1

##

P1
0 P1

1

(3.95)

that helps us to recover the geometric data of Gred and G out of those of the two copies of projective
lines.
Along this line, remembering that OP1ˆP1p`1, `2q is the external tensor product OP1

0
p`1qbOP1

1
p`2q ..“

π˚0OP1
0
p`1q bOP10ˆP11

π˚1OP1
1
p`2q, and since the tautological sheaf on P1 is OP1p´1q, we have that

S0 “ OP1
0
p´1qbOP1

1
“ OP1

0ˆP1
1
p´1, 0q, (3.96)

S1 “ ΠOP1
0

bOP1
1
p´1q “ ΠOP1

0ˆP1
1
p0,´1q. (3.97)

Similarly, observing that the sheaf dual to the tautological sheaf on P1 is given again by the sheaf
OP1p`1q, as the (twisted) Euler sequence reads

0 // OP1p´1q // O‘2
P1

// TP1p´1q // 0 , (3.98)

and therefore rSP1 – pTP1p´1qq˚ – Ω1
P1p`1q – OP1p´1q, one has the following results:

rS0 “ OP1
0
p´1qbOP1

1
“ OP1

0ˆP1
1
p´1, 0q, (3.99)

rS1 “ ΠOP1
0

bOP1
1
p´1q “ ΠOP1

0ˆP1
1
p0,´1q. (3.100)

This is enough to single out the fermionic sheaf of G, as FG “ Grp1qOG and therefore by virtue of
the second point of the previous theorem, we have that FG – S0 b rS1 ‘ rS0 b S1, thus

FG – Π
´

OP1
0ˆP1

1
p´1,´1q ‘OP1

0ˆP1
1
p´1,´1q

¯

. (3.101)

This in turns shows that

Sym2FG “ OP1
0ˆP1

1
p´2,´2q. (3.102)

We can now prove the following theorem.

Theorem 3.14 (Gp1|1;C2|2q is Non-Projected). The supermanifold G “ Gp1|1;C2|2q is in general
non-projected. In particular, one finds that H1pTP1

0ˆP1
1
b Sym2FGq – C‘ C.

Proof. In order to compute the cohomology group H1pTP1
0ˆP1

1
b Sym2FGq, we observe that in

general, on the product of two varieties, we have TXˆY – p˚1TX ‘ p˚2TY , where the pi are the
projections on the factors, so that, in particular, we find

TP1
0ˆP1

1
– π˚0 TP1

0
‘ π˚1 TP1

1
– π˚0OP1

0
p2q ‘ π˚1OP1

1
p2q “ OP1

0ˆP1
1
p2, 0q ‘OP1

0ˆP1
1
p0, 2q.

Taking the tensor product with Sym2FG as found above, we have

TP1
0ˆP1

1
b Sym2FG –

´

OP1
0ˆP1

1
p2, 0q ‘OP1

0ˆP1
1
p0, 2q

¯

bOP1
0ˆP1

1
p´2,´2q

– OP1
0ˆP1

1
p0,´2q ‘OP1

0ˆP1
1
p´2, 0q. (3.103)

Now, the Künneth formula reduces the computation of the cohomology sheaves on product varieties
to the cohomology of their constituent,

Hn
`

X ˆ Y, p˚1FX bOXˆY
p˚2GY

˘

–
à

i`j“n

Hi pX,FXq bHjpY,FY q, (3.104)
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so that we find

H1pTP1
0ˆP1

1
b Sym2FGq – H1pOP1

0ˆP1
1
p0,´2q ‘OP1

0ˆP1
1
p´2, 0qq

– H1pOP1
0ˆP1

1
p0,´2qq ‘H1pOP1

0ˆP1
1
p´2, 0qq

– H0pOP1
0
q bH1pOP1

1
qp´2q ‘H1pOP1

0
qp´2q bH0pOP1

1
q

– C‘ C, (3.105)

thus concluding the proof.

There are various ways to find the representatives in the obstruction cohomology group for this
non-projected supermanifold. We will now use the super big cells of Gp1|1;C2|2q to identifies these
representatives and to establish that in the isomorphisms H1pTP1

0ˆP1
1
b Sym2FGq – C ‘ C the

cohomology class corresponds to the choice ωG “ p1, 1q.
We start by observing that, since the reduced manifold underlying Gp1|1;C2|2q has the topology

of P1
0 ˆ P1

1, it is covered by four standard open sets. If we call U p0q “ tU p0q` u`“0,1 the usual open

sets covering P1
0 and likewise U p1q “ tU p1q` u`“0,1 the open sets covering P1

1, we then have a system
of open sets covering their product P1

0 ˆ P1
1 given by

U1
..“ U p0q0 ˆ U p1q0 “

 

prX0 : X1s, rY0 : Y1sq P P1
0 ˆ P1

1 : X0 ‰ 0, Y0 ‰ 0
(

,

U2
..“ U p0q1 ˆ U p1q0 “

 

prX0 : X1s, rY0 : Y1sq P P1
0 ˆ P1

1 : X1 ‰ 0, Y0 ‰ 0
(

,

U3
..“ U p0q0 ˆ U p1q1 “

 

prX0 : X1s, rY0 : Y1sq P P1
0 ˆ P1

1 : X0 ‰ 0, Y1 ‰ 0
(

,

U3
..“ U p0q1 ˆ U p1q1 “

 

prX0 : X1s, rY0 : Y1sq P P1
0 ˆ P1

1 : X1 ‰ 0, Y1 ‰ 0
(

. (3.106)

These correspond to the following matrices ZUi
, that easily allows us to read the coordinates on

the big cells:

ZU1
..“

ˆ

1 x1 0 ξ1

0 η1 1 y1

˙

, ZU2
..“

ˆ

x2 1 0 ξ2

η2 0 1 y2

˙

, (3.107)

ZU3
..“

ˆ

1 x3 ξ3 0

0 η3 y3 1

˙

, ZU4
..“

ˆ

x4 1 ξ4 0

η4 0 y4 1

˙

. (3.108)

By following the procedure illustrated above or by (allowed!) rows and columns operations on the
ZUi

we can find the transition rules of the coordinates between the various charts,

U1 X U2 ù

$

’

’

&

’

’

%

x1 “ x´1
2

ξ1 “ ξ2x
´1
2

η1 “ ´η2x
´1
2

y1 “ y2 ` ξ2η2x
´1
2

U1 X U3 ù

$

’

’

&

’

’

%

x1 “ x3 ´ ξ3η3y
´1
3

ξ1 “ ´ξ3y
´1
3

η1 “ η3y
´1
3

y1 “ y´1
3

U1 X U4 ù

$

’

’

&

’

’

%

x1 “ x´1
4 ` ξ4η4x

´2
4 y´1

4

ξ1 “ ´ξ4x
´1
4 y´1

4

η1 “ ´η4x
´1
4 y´1

4

y1 “ y´1
4 ´ ξ4η4x

´1
4 y´2

4

U2 X U3 ù

$

’

’

&

’

’

%

x2 “ x´1
3 ` ξ3η3x

´2
3 y´1

3

ξ2 “ ´ξ3x
´1
3 y´1

3

η2 “ ´η3x
´1
3 y´1

3

y2 “ y´1
3 ´ ξ3η3x

´1
3 y´2

3

U2 X U4 ù

$

’

’

&

’

’

%

x2 “ x4 ´ ξ4η4y
´1
4

ξ2 “ ´ξ4y
´1
4

η2 “ η4y
´1
4

y2 “ y´1
4

U3 X U4 ù

$

’

’

&

’

’

%

x3 “ x´1
4

ξ3 “ ξ4x
´1
4

η3 “ ´η4x
´1
4

y3 “ y4 ` ξ4η4x
´1
4

(3.109)

together with their inverses. By looking at these transformation rules, we therefore have that in
the isomorphism above the class is represented by p1, 1q P C ‘ C and the cocycles representing ω
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are thus given by ω “ pω12, ω13, ω14, ω23, ω24, ω34q, where the ωij are (in tensor notation)

ω12 “
ξ2η2

x2
b By1

, ω13 “ ´
ξ3η3

y3
b Bx1

,

ω14 “ `
ξ4η4

x2
4y4

b Bx1
´
ξ4η4

x4y2
4

b By1
, ω23 “ `

ξ3η3

x2
3y3

b Bx2
´
ξ3η3

x3y2
3

b By2
,

ω24 “ ´
ξ4η4

y4
b Bx2

, ω34 “ `
ξ1η4

x4
b By3

. (3.110)

One can get to the same result also by another kind of computation. First we observe that
H1pOP1

0ˆP1
1
p´2, 0qq ‘H1pOP1

0ˆP1
1
p0,´2qq is generated by two elements

H1pOP1
0ˆP1

1
p´2, 0qq ‘H1pOP1

0ˆP1
1
p0,´2qq –

B

1

X0X1
b 1, 1 b

1

Y0Y1

F

OP10bP11

, (3.111)

thus corresponding, in general, to a pair p`1, `2q P C ‘ C. We can look at these generators in the
intersections, keeping in mind that FG – ΠOP1

0ˆP1
1
p´1,´1q‘ΠOP1

0ˆP1
1
p´1,´1q, in order to identify

the cocycles that enter in the transition functions:

U1 X U2 : The following identifications can be made

ξ1 “ Π

ˆ

1

X0
b

1

Y0
, 0

˙

, η1 “ Π

ˆ

0,
1

X0
b

1

Y0

˙

,

ξ2 “ Π

ˆ

1

X1
b

1

Y0
, 0

˙

, η2 “ Π

ˆ

0,
1

X1
b

1

Y0

˙

. (3.112)

Notice these gives the transition functions above between ξ1 and ξ2 and between η1 and η2.
Now, in the intersection U1 X U2 only the bit H1pOP1

0ˆP1
1
p´2, 0qq gives contributions and we

have therefore

ω12 “ ˘`1

ˆ

1

X0X1
b 1

˙

“ ˘`1

ˆ

1

X0X1
b
Y 2

0

Y 2
0

˙

“ ˘`1

ˆ

1

X0X1
b

1

Y 2
0

˙

b By1

“ ˘`1

ˆ

X1

X0

˙ˆ

Π

ˆ

1

X1
b

1

Y0
, 0

˙

dΠ

ˆ

0,
1

X1
b

1

Y0

˙˙

b By1

“ ˘`1
ξ2η2

x2
b By1 (3.113)

where we have denoted by d the (super) symmetric product of the two local sections on FG,
as represented above.

U1 X U3 : This time we have a contribution from H1pOP1
0ˆP1

1
p0,´2qq and, therefore, we have to deal

with ω13 “ `2 p1 b 1{Y0Y1q. By a completely analogous treatment to the one above, we find
that

ω13 “ ˘`2

ˆ

1 b
1

Y0Y1

˙

“ ˘`2
ξ3η3

y3
b Bx1

. (3.114)

U1 X U4 : In this case we have both the contributions, therefore

ω14 “ ˘`1

ˆ

1

X0X1
b 1

˙

˘ `2

ˆ

1 b
1

Y0Y1

˙

, (3.115)

so that by analogous manipulations as the one above we find

ω14 “ ˘`1
ξ4η4

x4y2
4

b By1 ˘ `2
ξ4η4

x2
4y4

b Bx1 . (3.116)
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All the other ωij are identified in the same way and enter one of these categories.
To conclude, imposing the cocycle conditions we fix the various signs of the `1 and `2 above,
that agree with the one we found above by looking at the coordinates of the big cells: choosing
p`1 “ 1, `2 “ 1q - this can always be done up to a change of coordinates -, we regain the same even
transition functions as above.
In other words, using the theorem classifying the complex supermanifold of dimension n|2, we have
that Gp1|1;C2|2q can be defined up to isomorphism as follows

Definition 3.5 (Gp1|1;C2|2q as a Non-Projected Supermanifold). The super Grassmnannian
Gp1|1;C2|2q can be defined up to isomorphism as the 2|2 dimensional supermanifold characterised
by the triple pP1

0 ˆ P1
1,FG, ωGq where FG “ ΠOP1

0ˆP1
1
p´1,´1q ‘ ΠOP1

0ˆP1
1
p´1,´1q and where

ωG “ p`1, `2q, with `1 ‰ 0 and `2 ‰ 0, in the isomorphism ωG P H
1pTP1

0ˆP1
1
b Sym2FGq – C‘ C.

Actually, apart from projective superspaces, super Grassmannians are in general non-projected:
the case of Gp1|1;C2|2q we treated, being of odd dimension 2, allows a detailed study through its
obstruction class and it is the first non-trivial example of non-projected super Grassmannian.
Now, we add a bit of knowledge about the geometry of Gp1|1;C2|2q, showing also that it is not a
projective supermanifold.

Theorem 3.15 (Gp1|1;C2|2q is Non-Projective). Let Gp1|1;C2|2q be super Grassmannian defined
as above. Then Gp1|1;C2|2q is non-projective.

Proof. In order to prove the non-projectivity of G ..“ Gp1|1;C2|2q we consider the following short
exact sequence, modelled out of (3.78)

0 // OP1
0ˆP1

1
p´2,´2q // O˚G,0 // O˚P1

0ˆP1
1

// 0. (3.117)

Taking into account ordinary results in algebraic geometry, one has H0pOP1
0ˆP1

1
p´2,´2qq “ 0 “

H1pOP1
0ˆP1

1
p´2,´2qq, whereas H2pOP1

0ˆP1
1
p´2,´2qq – C. Likewise, one finds H0pO˚P1

0ˆP1
1
q – C˚

and PicpP1
0 ˆ P1

1q “ H1pO˚P1
0ˆP1

1
q – Z ‘ Z, using the ordinary exponential exact sequence. This

is enough to realise that the long exact sequence in cohomology induced by the sequence above
splits in two exact sequences. The first one gives an isormorphism H0pOG,0q – C˚. The second
one instead reads

0 // H1pO˚G,0q // PicpP1
0 ˆ P1

1q – Z‘ Z // H2pOP1
0ˆP1

1
p´2,´2qq – C // ¨ ¨ ¨ .(3.118)

This says that in order to establish the fate of the cohomology group H1pO˚G,0q we have to look

at the boundary map in cohomology δ : PicpP1
0 ˆ P1

1q Ñ H2pOP1
0ˆP1

1
p´2,´2qq. Let us consider the

following diagram of cochain complexes

C2pOP1
0ˆP1

1
p´2,´2qq // // C2pO˚G,0q

C1pO˚G,0q
_

OO

� // // C1pO˚P1
0ˆP1

1
q,

(3.119)

obtained by combining (3.78) with the Čech cochain complexes of the sheaves that appear.
Now, since xOP1

0ˆP1
1
p1, 0q,OP1

0ˆP1
1
p0, 1qyOP10ˆP11

– PicpP1
0 ˆ P1

1q, given the usual cover of P1
0 ˆ P1

1 by

the open sets Ui as above, O˚P1
0ˆP1

1
p1, 0q can be represented by six cocycles gij P Z

1pUiXUj ,O˚P1
0ˆP1

1
q.

Explicitly, these cocycles are the transition functions of the line bundle

O˚P1
0ˆP1

1
p1, 0q ÐÑ

"

g12 “
X1

X0
, g13 “ 1, g14 “

X1

X0
, g23 “

X0

X1
, g24 “ 1, g34 “

X1

X0

*

,

where, with an abuse of notation, we forget about the second bit of the external tensor product,
which is the identity. Since the map j : C1pO˚G,0q Ñ C1pO˚P1

0ˆP1
1
q is surjective, these cocycles are

images of elements in C1pO˚G,0q, but since j is induced by the inclusion of the reduced variety P1
0ˆP1

1
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into G, then the cochains in C1pO˚G,0q are exactly the tgijuijPI we have written above. Notice these

are no longer cocycles in O˚G,0. Now, using the Čech coboundary map δpj˚OP1
0ˆP1

1
p1, 0qq over G,

one finds, for example, the following relation:

g12 ¨ g23 ¨ g31tU1XU2XU3
“ 1 b 1`

1

X0X1
b

1

Y0Y1
. (3.120)

Indeed, by looking at the affine coordinates in the big cells, these reads x2x3 “ 1` ξ2η2

x2y2
and setting

as above

ξ2 “ Π

ˆ

1

X1
b

1

Y0
, 0

˙

, η2 “ Π

ˆ

0,
1

X1
b

1

Y0

˙

, (3.121)

and taking their (super) symmetric product we find that ξ2η2

x2y2
“ 1

X0X1
b 1

Y0Y1
. Now, by com-

mutativity, this element is in the kernel of the map j : C2pO˚G,0q Ñ C2pO˚P1
0ˆP1

1
q, that equals

the image of the map i : C2pOP1
0ˆP1

1
p´2,´2qq Ñ C2pO˚G,0q, therefore there exists an element

N P C2pOP1
0ˆP1

1
p´2,´2qq such that ipNq “ 1 b 1 ` 1

X0X1
b 1

Y0Y1
and it is a cocycle. Considering

that the map i is induced by the map OP1
0ˆP1

1
p´2,´2q Q ab b ÞÑ 1 b 1`ab b P O˚G,0, we have that

the element 1 b ` 1
X0X1

b 1
Y0Y1

is the image of 1 1
X0X1

b 1
Y0Y1

through the map i. By symmetry,

the same applies to the second generator of PicpP1
0 ˆ P1

1q, given by OP1
0ˆP1

1
p0, 1q, so that the map

δ : PicpP1
0ˆP1

1q – Z‘ZÑ H2pOP1
0ˆP1

1
p´2,´2qq – C reads Z‘Z Q pa, bq ÞÝÑ a` b P C. By exact-

ness, it is then clear that the only invertible sheaves on P1
0 ˆ P1

1 that lift to the whole G are those
of the kind OP1

0ˆP1
1
pa,´aq, as the composition of the maps gives pa,´aq ÞÑ pa,´aq ÞÑ a ´ a “ 0

as it should. As these invertible sheaves have no cohomology, they cannot give any embedding in
projective superspaces and this completes the proof.

Notice that the theorem above says that we have PicpP1
0ˆP1

1q ‰ 0 (actually PicpP1
0ˆP1

1q – Z), but
still there are no ample invertible sheaves that allow for an embedding of Gp1|1;C2|2q into some
projective superspaces.
This has a fundamental consequence, as non-projectivity is not confined to this particular super
Grassmannian only.

Theorem 3.16 (Super Grassmannians are Non-Projective). The super Grassmannian space Gpa|b;Cm|nq
for 0 ă a ă n and 0 ă b ă m is non-projective.

Proof. Following [41] it is enough to observe that the inclusion C2|2 Ă Ca`1|b`1 induces an inclusion
Gp1|1;C2|2q ãÑ Gp1|1;Ca`1|b`1q. This last super Grassmannian is isomorphic, as for the usual
Grassmannians, to Gpa|b; pCa`1|b`1q˚q, that in turn embeds into Gpa|b;Cn|mq. This leads to
Gp1|1;C2|2q ãÑ Gpa|b;Cn|mq : as Gp1|1;C2|2q is non-projective, so it is Gpa|b;Cn|mq.

This shows that, in the context of algebraic supergeometry, it is no longer true that projective
superspaces represent a privileged ambient and it is therefore a substantial departure from usual
complex algebraic geometry, as we have already mentioned above.

3.6 Embedding of P2
ωpFM q into Super Grassmannians

3.6.1 The universal property of super Grassmannians

The super Grassmannians have the following universal property.

Universal Property: for any superscheme M and any locally-free sheaf of OM -modules E of
rank a|b on M and any vector sub superspace V Ă H0pEq with V – Cn|m such that the evaluation
map V bOM Ñ E is surjective, then there exists a unique map Φ : M Ñ Gpa|b, V q such that the

inclusion E˚ Ñ V ˚bOM is the pull-back of the inclusion SG Ñ O‘n|mG from the sequence (3.93).

In this case, once a local basis te1, . . . , er|f1, . . . , fsu is fixed for E over some open set U , then, over
U , the evaluation map V bOM Ñ E is defined by a pr|sq ˆ pn|mq matrix MU with coefficients in
OM pUq, and any reduction of MU into a standard form of type (3.83) by means of elementary row
operations, is a local representation of the map Φ.
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3.6.2 The Embedding Theorem

In this subsection we will prove the following result.

Theorem 3.17. Let M “ P2
ωpFM q and TM its tangent sheaf. Let V “ H0pSymkTM q. Then, for

any k " 0 the evaluation map V bOM Ñ SymkTM induces an embedding Φk : M ÝÑ Gp2k|2k, V q.

This is the main result of this chapter, showing that any non-projected non-projective N “ 2
supermanifold of the family P2

ωpFM q embeds into some super Grassmannian.
For the sake of notation we put M “ P2

ωpFM q in what follows and likewise we will refer to the
structure sheaf of P2

ωpFM q simply as OM .
With reference to what we have explained in the first chapter, section 1.1, we first introduce the
following definition.

Definition 3.6 (The Superscheme M p2q). We call M p2q the sub superscheme of M given by the
pair pP2,OM p2qq, where we have posed OM p2q

..“ OM
L

J 2
M .

We stress that this is not actually a supermanifold: indeed it fails to be locally isomorphic to any
local model of the kind Cp|q, and, more generally, it is locally isomorphic to an affine superscheme
for some super ring. Anyway, incidentally, the reader can observe that the superscheme M p2q

behaves as an honest commutative scheme, since having modded out J 2
M there is no anticommu-

tativity left.
We characterise the geometry of M p2q in the following lemma.

Lemma 3.4 (The Geometry of M p2q). Let M p2q be the superscheme characterised by the pair
pP2,OM p2qq, where OM p2q “ OM

L

J 2
M . Then M p2q is projected and its structure sheaf, as a sheaf of

OP2-algebras, is OM p2q – OP2 ‘ FM .

Proof. It is enough to observe that the parity splitting of the structure sheaf reads OM p2q “

OM ,0

L

J 2
M ‘ OM ,1

L

J 2
M , hence the defining short exact sequence for the even part reduces to an

isomorphism Op2qM ,0 – OP2 . As the variety has odd dimension 2, we therefore must have that the
structure sheaf gets endowed with a structure of OP2 -module given by OP2 ‘ FM , that actually
coincides with the parity splitting. We observe that in the OP2-algebra OM p2q – OP2 ‘ FM the
product FM bOP2

FM Ñ OP2 is null.

We are now ready to move towards a proof of Theorem 3.17. The first requirement is that the
morphism Φk is well defined. This is a consequence of the following Lemma.

Lemma 3.5. Let M and M p2q be as above. The following facts hold.

1. The restriction maps V ÝÑ H0pSymkTM tM p2qq and V ÝÑ H0pSymkTM tP2q are surjective
for k " 0.

2. The locally-free sheaf of OM -modules SymkTM is generated by global sections, i.e. the evalu-
ation map V bOM Ñ SymkTM is surjective, for k " 0.

Proof. Let us consider the composition of linear maps

V ÝÑ H0pSymkTM tM p2qq ÝÑ H0pSymkTM tP2q ÝÑ SymkTM pxq, (3.122)

with SymkTM pxq the fibre at x. By the supercommutative version of the Nakayama Lemma - see
for example lemma 4.7.1 in [63] - to prove fact 2 one has to show that for any x P P2 the linear
map V Ñ SymkTM pxq is surjective. Therefore we can reduce ourselves to show the surjectivity
of all the linear maps in the composition, which will also include a proof of fact 1. For simplicity
of notation we set Ek ..“ SymkTM . To set the surjectivity of the last map, we observe that, since
TM tP2– TP2 ‘ F˚M , one has

EktP2 – SymkpTP2 ‘ F˚M q
“ pSymkTP2q ‘ pSymk´1TP2 b F˚M q ‘ pSym

k´2TP2 b Sym2F˚M q, (3.123)

all the other summands being 0, since FM “ ΠE for some vector bundle E of rank 2 and SymiFM “

Πi
Źi

E.
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Now one can use the well-known ampleness of the vector bundle TP2 (see [34] for the definition of
an ample vector bundle in algebraic geometry) to conclude that all the higher cohomology groups
HipSymkTP2p´iqq, HipSymk´1TP2 b F˚M p´iqq, H

ipSymk´2TP2 b Sym2F˚M p´iqq vanish for k " 0,
and hence all these vector bundles are generated by global sections, since they are 0-regular.

Alternatively, one can use the exact sequences

0 // pSymm´1O‘3
P2 qpm´ 1q // pSymmO‘3

P2 qpmq // SymmTP2 // 0, (3.124)

deduced from the Euler sequence, tensor them with SymjFM for j “ 0, 1, 2 and use the fact that
HipFM pmqq “ 0 for any i ą 0 and that FM pmq is generated by global sections, for any m " 0, to
deduce the same conclusions for SymmTP2 b SymjFM .

Recall the exact sequence

0 // Ek b JM // Ek // EktP2 // 0, (3.125)

and observe that, as J 3
M “ 0, one has that JM is a OM {J 2

M -module, i.e. a OM p2q -module. As such,
by Lemma 3.4 one also knows that JM , and hence also Ek bJM , has a structure of a OP2 -module,
given as

Ek b JM – pEktP2bSym2Fq ‘ pEktP2bFq – pEktP2p´3qq ‘ pEktP2bFq. (3.126)

Similarly, let us consider the exact sequence

0 // Ek b J 2
M

// Ek // EktM p2q
// 0, (3.127)

where EkbJ 2
M – EktP2p´3q is aOP2-module. Similarly as above, one can show that H1pEktP2bFq “

0 and H1pEktP2p´3qq “ 0 for k " 0, hence one has that H0pEkq Ñ H0pEktM p2qq and H0pEkq Ñ
H0pEtP2q are surjective for k " 0.

This Lemma allows us to prove our main theorem 3.17.

Proof of Theorem 3.17. The preliminary results above, show that for k " 0 the morphism Φk :
M Ñ Gpn|m,V q is globally defined, with n|m the rank of the sheaf SymkTM .
Note that n|m can be computed from the formula (3.123) for the restriction of SymkTM to P2, where
its even and odd summands are, respectively, pSymkTM q0 “ SymkTP2 ‘ pSymk´2TP2 b Sym2F˚M q
and pSymkTM q1 “ Symk´1TP2 b F˚M , from which we get n|m “ 2k|2k.

At the level of the reduced manifolds, Φk defines a morphism ΦktP2“ pφ0, φ1q : P2 ÝÑ G0ˆG1

which is associated to the surjections

V0 bOP2 // // H0ppEkq0tP2q bOP2 // // pEkq0tP2

V1 bOP2 // // H0ppEkq0tP2q bOP2 // // pEkq1tP2 .

They define embeddings of P2 into the ordinary GrassmanniansG0 “ Gp2k;V0q andG1 “ Gp2k;V1q

for k " 0 by well-known vanishing theorems in projective algebraic geometry.
Indeed, for any vector bundle E on P2 the evaluation map H0pEq Ñ E defines an embedding into
a Grassmannian if, when composed with the restriction E Ñ E{m2

xE, for any x P P2 and mx the
maximal ideal in the stalk OP2,x, one gets a surjection H0pEq Ñ H0pE{m2

xEq. This map is part
of the exact sequence of cohomology associated to

0 // m2
xE // E // E

L

m2
xE

// 0,

so the surjection above follows if H1pm2
xEq “ 0. In our case E is either E “ E0tP2“ SymkTP2 ‘

Symk´2TP2p´3q or E “ E1tP2“ Symk´1TP2 b FM , and the vanishing of H1pm2
xEq “ 0 can be

shown in both cases by means of the Euler sequence, by the same arguments as above.
In conclusion, we have shown that Φk : M Ñ Gp2k|2k, V q is injective at the level of geometrical
points.
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A similar criterion as in the ordinary algebraic geometry case applies to show the injectivity of
the tangent map dΦkpxq : TM pxq Ñ TGp2k|2k,V qpxq at any geometrical point x P P2. The maximal
ideal of x in OM ,x is Mx

..“ mx ` JM ,x where mx is the ordinary reduced part and JM ,x is the
nilpotent part (notice that Mx “ kerpOM ,x Ñ Cq), and one can define the sub superscheme Vx of
M with reduced manifold txu and structure sheaf OM ,x{M

2
x. Note that pM2

xq0 “ m2
x ` J 2

M ,x and
pMxq1 “ mxJM ,x, from which it follows

OM ,x

L

M2
x –
OP2

L

m2
x ‘

`

JM ,x

L

mxJM ,x

˘

“ OP2

L

m2
x ‘ FM pxq . (3.128)

Note also that the tangent space of the superscheme Vx “ px,OM ,x{M
2
xq is the same as the tangent

space TM pxq “ pMx{M
2
xq
˚. From these observations one gets the analogous result as in the classical

case that the surjectivity of the restriction map H0pEkq Ñ H0pEk b OM ,x{M
2
xq “ H0pEk{M2

xEkq
ensures the injectivity of the tangent map dΦk. Moreover observe that the superscheme embedding
Vx Ñ M factorises through M p2q, as OM ,x{M

2
x is also an OM {J 2

M -module. Then the restriction
map factorises as follows

H0pEkq // // H0pEktM p2qq // H0pEk{M2
xEkq,

and we will show that the second map is surjective as well, using the fact that EktM p2q is a OP2-
module and by applying similar arguments as above, based on the vanishing of the higher coho-
mology of HipP2,Gpkqq, with G any fixed coherent sheaf, for k " 0. Indeed in our case we have
EktM p2q– EktP2‘pEktP2bFM q as a OP2 - module, so the decomposition (3.123) still applies to give
the structure of EktM p2q as a OP2 - module. Setting M2

x the ideal sheaf of Vx in M p2q, one has the
exact sequence

0 //M2
xEktM p2q

// Ek|M p2q
// Ek{M2

xEk // 0,

so we are left to prove H1pM2
xEktM p2qq “ 0 for k " 0. Now M2

xEktM p2q“M2
xEktP2‘pM2

xEktP2bFM q

as a OP2-module, therefore the decomposition (3.123) and the Euler sequences (3.124) apply to our
case, showing that H1pM2

xEk|M p2qq “ 0 holds because of the vanishing of the higher cohomology
groups HipP2,Gpkqq for any G coherent sheaf and k " 0, as a consequence of Serre’s theorem (see
[33], Theorem 5.2, page 228).

In the following remarks we stress some limitations and possible generalisations of the previous
theorem. Here, with abuse of notation, we write FM for the parity changed version of the fermionic
sheaf ΠFM , which therefore becomes a locally-free sheaf of OMred

-modules of rank 2|0.

Remark 3.1. Theorem 3.17 is not effective, since it does not give any estimate on k and on the
super dimension of V “ H0pEkq and hence it does not identify the target super Grassmannian of
the embedding Φk. In fact k depends heavily on the choice of FM . However, it seems possible to
calculate a uniform k and dimV under some boundedness conditions on FM , such as F˚M globally-
generated, or FM semistable.

Remark 3.2. If one wants to generalise the result of Theorem 3.17 to other non-projected super-
manifolds, with reduced manifold Mred with dim Mred ě 2, then the tangent sheaf TMred

will not
in general be ample (this happens only for Mred a projective space, by a celebrated theorem of
S. Mori, [43]) and therefore one faces the problem of finding a suitable ample locally-free sheaf of
OMred

-modules E on Mred that can be extended to a locally-free sheaf E on M . This is a delicate
problem that is certainly worth to study.

Before we go on to the next section, in view of the first remark above, we propose the following

Problem. Find a fixed super Grassmannian G “ Gp2k|2k, V q, i.e. a uniform k and dimV , so

that M “ P2|2
ω pFM q can be embedded in G, in the case when F˚M is ample, or in the case when it

is stable, with given c1pFM q “ ´3 and c2pFM q “ n.

In the next section we will show that TM (i.e. k “ 1) already provides an explicit embedding into
a super Grassmannian, for two significant special choices of the fermionic sheaf FM .
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3.7 Two Homogenous P2
ωpFM q and Their Embeddings

With a slight abuse of notation we will give the following definition.

Definition 3.7 (Homogeneous P2
ωpFM q). We say that a supermanifold of the family M “ P2|2

ω pFM q

is homogeneous if its fermionic sheaf FM is homogeneous, i.e. φ˚FM “ FM for any φ P PGLp3q.

By a theorem of Van de Ven, the only homogeneous, rank 2 sheaves of OP2-modules on P2 are those
of type OP2paq ‘ OP2pbq or Ω1

P2pcq, with a, b, c P Z (see [62] or Theorem 2.2.2 in [49]). Since we
have to impose Sym2FM – OP2p´3q in order for the supermanifold to be of the kind P2

ωpFM q, we
will put a` b “ ´3 and c “ 0. We will also impose F˚M ample, in view of the Problem concluding
the previous section.
We will thus consider the following choices for a homogeneous fermionic sheaf FM :

• decomposable: FM
..“ ΠOP2p´1q ‘ΠOP2p´2q.

• non-decomposable: FM
..“ ΠΩ1

P2 .

Notice that taking into consideration the possibility of a non-decomposable locally-free sheaf does
represent a substantial novelty. Indeed, even if in the mathematical literature this possibility is
in principle taken into account, there are no actual realisations so far to the best knowledge of
the author. From the physical point of view, instead, dealing with supermanifolds boiled down
for long time to take care of a certain anti-commutating behaviour of some variables and the only
non-trivial supermanifold that theoretical physicists have been concerned with - ordinary split
projective superspaces - have indeed decomposable fermionic sheaves.

In the following subsections we deal in full detail with the two scenarios sketched above, namely
the one of a decomposable sheaf and the one of a non-decomposable sheaf.

3.7.1 Decomposable Sheaf: FM “ ΠOP2p´1q ‘ ΠOP2p´2q

We have the following theorem.

Theorem 3.18 (Transition functions (1)). Let P2|2
ω pFM q be the non-projected supermanifold with

FM “ ΠOP2p´1q ‘ΠOP2p´2q. Then, its transition functions take the following form:

U0 X U1 : z10 “
1

z11
, z20 “

z21

z11
` λ

θ11θ21

pz11q
2

; θ10 “
θ11

z11
, θ20 “

θ21

pz11q
2

;

U1 X U2 : z11 “
z12

z22
` λ

θ12θ22

pz22q
2
, z21 “

1

z22
; θ11 “

θ12

z22
, θ21 “

θ22

pz22q
2

;

U2 X U0 : z12 “
1

z20
, z22 “

z10

z20
` λ

θ10θ20

pz20q
2

; θ12 “
θ10

z10
, θ22 “

θ20

pz10q
2
. (3.129)

Proof. It follows immediately from Theorem 3.10, taking into account the transition matrix for

the given FM , that have the form M “

˜

1
z01

0

0 1
z2
01

¸

on U0 X U1 and similar form on the other two

intersections of the fundamental open sets.

We now consider the tangent sheaf TM and we aim to calculate its global sections, representing
them in a given chart, and we set up the embedding into the related super Grassmannian.

The transition functions of the tangent bundle TM can be determined by S3-symmetry once one is
known. Indeed if we denote by Ũi for i “ 0, 1, 2 the three affine supermanifolds given by the pairs
Ũi ..“ pUi,Crz1i, z2i, θ1i, θ2isq, then, for example we have

Jac10 : TŨ1
pU0 X U1q ÝÑ TŨ0

pU0 X U1q (3.130)

and the morphism Jac10 can be represented as a matrix with respect to the local basis given by
the derivations tBz10 , Bz20

, Bθ10
, Bθ20

u. Using the chain rule, from the transition functions of TM we
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get

Bz10
“ ´pz11q

2Bz11
` r´z11z21 ` θ11θ21sBz21

´ θ11z11Bθ11
´ 2θ21z11Bθ21

,

Bz20
“ z11Bz21

,

Bθ10
“ ´θ21Bz21

` z11Bθ11
,

Bθ20
“ z11θ11Bz21

` pz11q
2Bθ21

, (3.131)

therefore the map Jac10 has the following matrix representation

rJac10s “

¨

˚

˚

˝

´pz11q
2 ´z11z21 ` θ11θ21 ´θ11z11 ´2θ21z11

0 z11 0 0
0 ´θ21 z11 0
0 z11θ11 0 pz11q

2

˛

‹

‹

‚

(3.132)

that acts on the basis represented as a column vector. Now we look for the explicit form of the global
sections generating TM , as to explicitly set up the embedding in a super Grassmannian. We stress
that in order to keep the discussion the most general possibile (and for the sake of a future use)
we will keep explicit a parameter λ P C representing the cohomology class ωM P H1pTP2p´3qq – C,
which we recall to be the same λ appearing in the transition functions provided by (3.129).

Theorem 3.19 (Generators of H0pTM q). The tangent sheaf TM of M has 12|12 global sections. In
particular, in the local chart U0, a basis for H0pTM q is given by SpanCtV1, . . . ,V12|Ξ1, . . . ,Ξ12u,
where

V1 “ Bz10
, V2 “ Bz20

, V3 “ z20Bz10
, V4 “ z10Bz20

, V5 “ z10Bz10
´ z20Bz20

,

V6 “ θ10Bθ20
, V7 “ z10θ10Bθ20

, V8 “ z20θ10Bθ20
,

V9 “ θ10Bθ10
` z20Bz20

, V10 “ θ20Bθ20
` z20Bz20

,

V11 “ pz10q
2Bz10

` pz10z20 ` λθ10θ20qBz20
` z10θ10Bθ10

` 2z10θ20Bθ20
,

V12 “ pz10z20 ´ λθ10θ20qBz10 ` pz20q
2Bz20 ` z20θ10Bθ10 ` 2z20θ20Bθ20 ,

Ξ1 “ Bθ10 , Ξ2 “ Bθ20 , Ξ3 “ θ10Bz10 , Ξ4 “ θ10Bz20 , Ξ5 “ z10Bθ20 , Ξ6 “ z20Bθ20 ,

Ξ7 “ pz10q
2Bθ20

´ λz10θ10Bz20
, Ξ8 “ pz20q

2Bθ20
` λz20θ10Bz10

,

Ξ9 “ z10Bθ10
` λθ20Bz20

, Ξ10 “ ´z20Bθ10
` λθ20Bz10

,

Ξ11 “ z10θ10Bz10
` z20θ10Bz20

` 2θ10θ20Bθ20
,

Ξ12 “ pz10z20 ´ λθ10θ20qBθ20
´ λz20θ10Bz20

, (3.133)

where λ P C is a complex number representing the cohomology class H1pT 2
P p´3qq – C.

Proof. The theorem is proved by evaluating the zero-th Čech cohomology group of TM , by means
of a lengthy computation in charts.

The actual embedding is realised by the following construction.

Construction 3.1 (Embedding). The tangent sheaf TM of M allows for an embedding i : P2|2
ω Ñ

Gp2|2,C12|12q, constructed by means of the global sections of the tangent sheaf in the following way:

1. we represent the 12|12 global sections of TM in a local chart, say U0, as above, expanding
them onto a local basis of generators of TM , that has dimension 2|2;

2. the coefficients of the expansion are mapped into 12|12 columns, so that the resulting matrix
is a super Grassmannian of the kind Gp2|2,C12|12q represented in a certain super big-cell.

We notice that the functorial properties of the Grassmannian makes the map well-defined in case
it is in a super big-cell.
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In particular, the global sections we have found above lead to the following image intoGp2|2,C12|12q:

ipM q “

¨

˚

˚

˝

1 0 A1ˆ10 0 0 B1ˆ10

0 1 A2ˆ10 0 0 B2ˆ10

0 0 C1ˆ10 1 0 D1ˆ10

0 0 C2ˆ10 0 1 D2ˆ10

˛

‹

‹

‚

(3.134)

where we have highlighted the super big-cell singled out by the four global sections tV1 “ Bz1 ,V2 “

Bz2 ,Ξ1 “ Bθ1 ,Ξ2 “ Bθ2u in the chart U0 and the Aiˆ10, Biˆ10, Ciˆ10, Diˆ10 for i “ 1, 2, make up
four 2ˆ 10 matrices, as follows:

A ..“

ˆ

A1ˆ10

A2ˆ10

˙

“

ˆ

z2 0 z1 0 0 0 0 0 z2
1 z1z2 ´ λθ1θ2

0 z1 ´z2 0 0 0 z2 z2 z1z2 ` λθ1θ2 z2
2

˙

,

B ..“

ˆ

B1ˆ10

B2ˆ10

˙

“

ˆ

θ1 0 0 0 0 λz2θ1 0 λθ2 z1θ1 0
0 θ1 0 0 ´λz1θ1 0 λθ2 0 z2θ1 ´λz2

˙

,

C ..“

ˆ

C1ˆ10

C2ˆ10

˙

“

ˆ

0 0 0 0 0 0 θ1 0 z1θ1 z2θ1

0 0 0 θ1 z1θ1 z2θ1 0 θ2 2z1θ2 2z2θ2

˙

,

D ..“

ˆ

D1ˆ10

D2ˆ10

˙

“

ˆ

0 0 0 0 0 0 z1 ´z2 0 0
0 0 z1 z2 z2

1 z2
2 0 0 2θ1θ2 z1z2 ´ λθ1θ2

˙

, (3.135)

where the subscript referring to the chart U0 of M has been suppressed for readability purpose.
The following theorem confirms that the map i is indeed an embedding.

Theorem 3.20. Let P2
ωpFM q be the non-projected supermanifold endowed with a fermionic sheaf

FM
..“ ΠOP2p´1q ‘ ΠOP2p´2q. Then the map i : P2

ωpFM q Ñ Gp2|2,C12|12q is an embedding of
supermanifolds.

Proof. One can check from the expressions above that the map is injective on the geometric points,
that is on P2, and moreover its super differential is injective. This can be checked, for example,
by representing the super differential as a 4ˆ 80 matrix, where the four 1ˆ 80 rows are given by
the derivatives of a row vector pAiˆ10, Biˆ10, Ciˆ10, Diˆ10q with respect to Bz1 , Bz2 , Bθ1 , Bθ2 . The
resulting matrix has rank 4.

Actually, to simplify the proof and avoid cumbersome computation, one can consider just a subset of
the global sections found above in order to prove global generation and injectivity of the differential.
Namely, let us consider the global sections given by

S ..“ tV1,V2,V5,V9 ´ V10,Ξ1,Ξ2u Ă H0pTM q. (3.136)

These define a sub-matrix of the 12|12ˆ 4|4 matrix given, having columns given by coordinates of
the global sections with respect to the basis Bz1 , Bz2 , Bθ1 , Bθ2 in the chart U0. It has the following
form, writing the columns in a suitable order

ipSq “

¨

˚

˚

˚

˚

˝

V9 ´ V10 V5 V1 V2 Ξ1 Ξ2

Bz1 0 z1 1 0 0 0
Bz2 0 ´z2 0 1 0 0
Bθ1 θ1 0 0 0 1 0
Bθ2 ´θ2 0 0 0 0 1

˛

‹

‹

‹

‹

‚

. (3.137)

This gives a linear embedding of U0 into a super big-cell of the super Grassmannian, which proves
both global generation and injectivity of the differential over U0. By symmetry, or if one prefers,
by the homogeneity of M and TM with respect to the action of PGLp3q, the same result holds true
over U1 and U2 as well.
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3.7.2 Non-Decomposable Sheaf: FM “ ΠΩ1
P2

If we take ΠΩ1
P2 to be the fermionic sheaf of the supermanifold P2

ωpFM q, then we let θ10, θ20

transform as dz10 and dz20 respectively, obtaining the transformations

U0 X U1 : θ10 “ ´
θ11

pz11q
2
, θ20 “ ´

z21

pz11q
2
θ11 `

θ21

z11
;

U2 X U0 : θ12 “ ´
θ20

pz20q
2
, θ22 “

θ10

z10
´

z10

pz20q
2
θ20;

U1 X U2 : θ11 “ ´
z12

pz22q
2
θ22 `

θ12

z22
, θ21 “ ´

θ22

pz22q
2
. (3.138)

Just like above, we now look for the complete form of the transition functions. By Theorem 3.10,
we have the following result.

Theorem 3.21 (Transition functions (2)). Let P2
ωpFM q be the non-projected supermanifold with

FM “ ΠΩ1
P2 . Then, its transition functions take the following form:

U0 X U1 : z10 “
1

z11
, z20 “

z21

z11
` λ

θ11θ21

pz11q
2

; θ10 “ ´
θ11

pz11q
2
, θ20 “ ´

z21

pz11q
2
θ11 `

θ21

z11
;

U1 X U2 : z11 “
z12

z22
´ λ

θ12θ22

pz22q
2
, z21 “

1

z22
; θ12 “ ´

θ20

pz20q
2
, θ22 “

θ10

z10
´

z10

pz20q
2
θ20;

U2 X U0 : z12 “
1

z20
, z22 “

z10

z20
´ λ

θ10θ20

pz20q
2

; θ11 “ ´
z12

pz22q
2
θ22 `

θ12

z22
, θ21 “ ´

θ22

pz22q
2
.

(3.139)

Proof. Again, it follows immediately from Theorem 3.10, taking into account the transition matrix
for the given FM , that can be red from above.

We now repeat what done above in the case we choose FM “ ΠΩ1
P2 . We again consider the tangent

sheaf TM first. By looking at the transition functions we have found above in 3.139, by means of
the chain rule, we can find the full transition functions of the tangent sheaf between the charts
covering P2. For example, on U0 X U1, we find:

Bz10
“ ´pz11q

2Bz11
` p´z11z21 ` λθ11θ21q Bz21

´ 2z11θ11Bθ11
` p´z21θ11 ´ z11θ21q Bθ21

,

Bz20
“ z11Bz21

` θ11Bθ21
,

Bθ10
“ ´λ pz21θ11 ´ z11θ21q Bz21

´ pz11q
2Bθ11

` p´z11z21 ´ λθ11θ21q Bθ21
,

Bθ20
“ `λθ11Bz21

` z11Bθ21
, (3.140)

so that the map Jac10 has the following matrix representation

rJac10s “

¨

˚

˚

˝

´pz11q
2 ´z11z21 ` λθ11θ21 ´2z11θ11 ´z21θ11 ´ z11θ21

0 z11 0 θ11

0 ´λ pz21θ11 ´ z11θ21q ´pz11q
2 p´z11z21 ´ λθ11θ21q

0 λθ11 0 z11

˛

‹

‹

‚

As above, we now look for the explicit form of the global sections of the tangent sheaf to set up
the embedding into a certain Grassmannian. Just like above, we keep the parameter λ explicit.

Theorem 3.22 (Generators of H0pTM q). The tangent sheaf TM of M has 8|9 global sections. In
particular, in the local chart U0, one has that H0pTM q – SpanCtV1, . . . ,V8|Ξ1, . . . ,Ξ9u, where

V1 “ Bz1 , V2 “ Bz2 , V3 “ z1Bz1 ` θ1Bθ1 ,

V4 “ z2Bz1 ` θ2Bθ1 , V5 “ z2Bz2 ` θ2Bθ2 , V6 “ z1Bz2 ` θ1Bθ2 ,

V7 “ pz1q
2Bz1 ` pz1z2 ´ λθ1θ2qBz2 ` 2z1θ1Bθ1 ` pz2θ1 ` z1θ2qBθ2 ,

V8 “ pz1z2 ` λθ1θ2qBz1 ` pz2q
2Bz2 ` pz2θ1 ` z1θ2qBθ2 , (3.141)
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Ξ1 “ Bθ1 , Ξ2 “ Bθ2 , Ξ3 “ θ1Bz1 ` θ2Bz2 ,

Ξ4 “ z1Bθ1 ´ λθ2Bz2 , Ξ5 “ z2Bθ1 ` λθ2Bz1 ,

Ξ6 “ z2Bθ2 ` λθ2Bz2 , Ξ7 “ z1Bθ2 ` λθ1Bz2 ,

Ξ8 “ λpz2θ1 ´ z1θ2qBz2 ` pz1q
2Bθ1 ` pz1z2 ` λθ1θ2qBθ2 ,

Ξ9 “ λpz1θ2 ´ z2θ1qBz1 ` pz1z2 ´ λθ1θ2qBθ1 ` pz1q
2Bθ2 , (3.142)

where λ P C is a complex number representing the cohomology class ω P H1pT 2
P p´3qq – C.

Proof. As above, the theorem is proved evaluating the zero-th Čech cohomology group of the
tangent bundle TM , by means of a lengthy computation in charts.

We now follow the same construction as above in order to construct the explicit embedding into a
super Grassmannian. In particular, we get the following image into Gp2|2,C8|9q:

ipM q “

¨

˚

˚

˝

1 0 A1ˆ6 0 0 B1ˆ7

0 1 A2ˆ6 0 0 B2ˆ7

0 0 C1ˆ6 1 0 D1ˆ7

0 0 C2ˆ6 0 1 D2ˆ7

˛

‹

‹

‚

(3.143)

where we have employed the same representation as above, by highlighting the super big-cell singled
out by the four global sections tV1 “ Bz1 ,V2 “ Bz2 ,Ξ1 “ Bθ1 ,Ξ2 “ Bθ2u in the chart U0 and where
the Aiˆ6 and Ciˆ6 for i “ 1, 2 are made up by two 2ˆ6 matrices, while Biˆ7 and Diˆ10 for i “ 1, 2
are made up by two 2ˆ 7 matrices, as follows

A ..“

ˆ

A1ˆ6

A2ˆ6

˙

“

ˆ

z1 z2 0 0 pz1q
2 z1z2 ´ λθ1θ2

0 0 z2 z1 z1z2 ´ λθ1θ2 pz2q
2

˙

,

B ..“

ˆ

B1ˆ7

B2ˆ7

˙

“

ˆ

θ1 0 λθ2 0 0 0 λz1θ2 ´ z2θ1

θ2 ´λθ2 0 λθ2 λθ1 λz1θ2 ´ z2θ1 0

˙

,

C ..“

ˆ

C1ˆ6

C2ˆ6

˙

“

ˆ

θ1 θ2 0 0 2z1θ1 z2θ1 ` z1θ2

0 0 θ2 θ1 z2θ1 ` z1θ2 2z2θ2

˙

,

D ..“

ˆ

D1ˆ7

D2ˆ7

˙

“

ˆ

0 z1 z2 0 0 pz1q
2 z1z2 ´ λθ1θ2

0 0 0 z2 z1 z1z2 ` λθ1θ2 pz1q
2

˙

, (3.144)

where the superscript referring to the chart U0 of P2|2
ω has been suppressed. The following theorem

confirms that the map i is indeed an embedding.

Theorem 3.23. Let P2
ωpFM q be the non-projected supermanifold endowed with the fermionic sheaf

FM
..“ ΠΩ1

P2 . Then the map i : P2
ωpFM q Ñ Gp2|2,C8|9q is an embedding of supermanifolds.

Proof. One can check from the expressions above that the map is injective on the geometric points
and its super differential is injective. The explicit check can be carried out as explained above in
the decomposable case, yielding a rank 4 matrix.

As before, one can avoid cumbersome computation by considering only a certain subset of the
global sections to prove global generation and injectivity of the differential. Over U0, we consider
the following subset

S ..“ tV1,V2,V3,V5,Ξ1,Ξ2u, (3.145)

whose representative matrix is given by

ipSq “

¨

˚

˚

˚

˚

˝

V5 V3 V1 V2 Ξ1 Ξ2

Bz1 0 z1 1 0 0 0
Bz2 z2 0 0 1 0 0
Bθ1 0 θ1 0 0 1 0
Bθ2 θ2 0 0 0 0 1

˛

‹

‹

‹

‹

‚

. (3.146)
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This, again, provides a linear embedding of U0 into a super big-cell of the super Grassmannian
Gp2|2,C8|9q. By symmetry or homogeneity this results extends to the U1 and U2 as well.

3.7.3 The Split Locus and its Cohomology

Having let λ explicit in the transition functions of the homogeneous supermanifolds P2
ωpFM q in

(3.18) and (3.21), as to stress the dependence from the (obstruction) cohomology class H1pTP2 b

Sym2FM q – C, bears an advantage: indeed it can be seen that, keeping the fermionic sheaf FM
fixed, one can set up a (flat) family of compact complex supermanifolds X by letting λ vary. In
other words, we have a (flat) morphism

X

ϕ

��

SpecCrλs

(3.147)

such that its fibre Xλ̃ ..“ ϕ´1pλ̃q above a certain tλ̃u P SpecCrλs corresponds to the compact

complex supermanifold P2|2
ω pFM q having the obstruction class ωM P H1pTP2p´3qq represented by

λ̃ P C – SpecCrλs.
Clearly, looking at the central fibre, above t0u P SpecC rλs, corresponds to set λ “ 0 in the tran-
sition functions of M , that is, X0 “ ϕ´1p0q corresponds to a split supermanifold: we call it split
locus of the family ϕ : X Ñ SpecCrλs.

Let us now take on our explicit examples. We start from the decomposable case, choosing
FM “ ΠOP2p´1q ‘OP2p´2q. The split locus of the family corresponds to the weighted projective
superspace, we call it P2|2p´1,´2q, having a structure sheaf given by

OP2|2p´1,´2q
..“ OP2 ‘OP2p´3q ‘Π rOP2p´1q ‘OP2p´2qs . (3.148)

This split structure sheaf leads to the obvious transition functions of the split type. For P2|2p´1,´2q
we get

z10 “
1

z11
, z20 “

z21

z11
, θ10 “

θ11

z11
, θ20 “

θ21

pz11q
2
. (3.149)

Upon using these transition functions, one gets the following result.

Corollary 3.1 (Global Sections at the Split Locus). The tangent sheaf TM of M “ P2|2p´1,´2q,
defined as above, has 13|12 global sections. A basis for H0pTM q in the local chart U0 is given by

Ṽ1 “ Bz10
Ṽ2 “ z20Bz10

Ṽ3 “ Bz20
Ṽ4 “ z10Bz20

Ṽ5 “ z10Bz10
Ṽ6 “ z20Bz20

Ṽ7 “ θ10Bθ20 Ṽ8 “ z10θ10Bθ20 Ṽ9 “ z20θ10Bθ20 Ṽ10 “ θ10Bθ10 Ṽ11 “ θ20Bθ20

Ṽ12 “ pz10q
2Bz10

` z10z20Bz20
` z10θ10Bθ10

` 2z10θ20Bθ20

Ṽ13 “ z10z20Bz10
` pz20q

2Bz20
` z20θ10Bθ10

` 2z20θ20Bθ20

Ξ̃1 “ θ10Bz10 Ξ̃2 “ θ10Bz20 Ξ̃3 “ Bθ10 Ξ̃4 “ Bθ20 Ξ̃5 “ z10Bθ20 Ξ̃6 “ z20Bθ20

Ξ̃7 “ pz10q
2Bθ20

Ξ̃8 “ pz20q
2Bθ20

Ξ̃9 “ z10Bθ10
Ξ̃10 “ z20Bθ10

Ξ̃11 “ z10θ10Bz10
` z20θ10Bz20

` 2θ10θ20Bθ20
Ξ̃12 “ z10z20Bθ20

. (3.150)

There are some interesting facts to notice when looking at the family ϕ : X Ñ SpecCrλs.

1. All the fibres corresponding to non-split supermanifolds are isomorphic. Only the split-locus
corresponding to P2|2p´1,´2q makes exception: it is the only non-isomorphic supermanifold
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in the family and indeed the cohomology jumps to different values above it. In other words
we find

R0ϕ˚TX {SpecCrλspλ̃q –

"

C13|12 above the split-locus, λ̃ “ 0

C12|12 elsewhere, λ̃ ‰ 0
(3.151)

R1ϕ˚TX {SpecCrλspλ̃q –

"

C1|0 above the split-locus, λ̃ “ 0

0 elsewhere, λ̃ ‰ 0
(3.152)

where TX {SpecCrλs is the relative tangent sheaf to ϕ : X Ñ SpecCrλs and Ri is the right-
derived cohomology functor.

2. At the level of the global sections, the difference between the split case and the non-split case
(after modding out the θθ-terms) resides in that the two global sections Ṽ5 and Ṽ6 of TM fail
to be global in the non-split case treated above. Instead, they need to be arranged together
to form a global section, which is V5 “ Ṽ5 ´ Ṽ6.

3. The previous corollary and the first observation above have another consequence yet. Indeed,
one finds that, in contrast with the non-split case λ̃ ‰ 0 which is rigid - it has no deformations,
accounted in the first cohomology group of the tangent sheaf -, one finds H1pTM q – C1|0

above the split-locus. By the way, deformation theory for supermanifolds and, in particular,
for non-projected supermanifolds, has yet to be properly addressed and developed in the
literature, thus we refrain to comment further the results we have found above.

Now, consider instead the non-decomposable sheaf FM “ ΠΩ1
P2 . The supermanifold above the split

locus λ “ 0, we call it P2|2pΠΩ1
P2q, has structure sheaf given by

OP2|2pΠΩ1
P2
q

..“ OP2 ‘OP2p´3q ‘ΠΩ1
P2 . (3.153)

This structure sheaf has the obvious transition functions of the split type. Clearly, while the odd
transition functions remain the same, one needs to set λ “ 0 in (3.139) for the even transition
functions, that become the usual transition functions of P2. These lead to the following corollary.

Corollary 3.2 (Global Sections at the Split Locus). The tangent sheaf TM of M “ P2|2pΠΩ1
P2q,

defined as above, has 9|9 global sections. A basis for H0pTM q in the local chart U0 is given by

Ṽ1 “ Bz1 Ṽ2 “ Bz2 Ṽ3 “ θ1Bθ1 ` θ2Bθ2 , Ṽ4 “ z1Bz1 ´ θ2Bθ2

Ṽ5 “ z2Bz1 ` θ2Bθ1 Ṽ6 “ z2Bz2 ` θ2Bθ2 Ṽ7 “ z1Bz2 ` θ1Bθ2

Ṽ8 “ pz1q
2Bz1 ` z1z2Bz2 ` 2z1θ1Bθ1 ` pz2θ1 ` z1θ2qBθ2

Ṽ9 “ z1z2Bz1 ` pz2q
2Bz2 ` pz2θ1 ` z1θ2qBθ2 ` 2z2θ2Bθ2 (3.154)

Ξ̃1 “ Bθ1 Ξ̃2 “ Bθ2 Ξ̃3 “ θ1Bz1 ` θ2Bz2 , Ξ̃4 “ z1Bθ1 Ξ̃5 “ z2Bθ1

Ξ̃6 “ z2Bθ2 Ξ̃7 “ z1Bθ2 Ξ̃8 “ pz1q
2Bθ1 ` z1z2Bθ2 , Ξ̃9 “ z1z2Bθ1 ` pz1q

2Bθ2 . (3.155)

We stress the following facts.

1. Again, all of the fibres corresponding to non-split supermanifolds are isomorphic, while the
split-locus corresponding to P2|2pΠΩ1

P2q makes exception and its cohomology jumps to dif-
ferent values. We find

R0ϕ˚TX {SpecCrλspλ̃q –

"

C9|9 above the split-locus, λ̃ “ 0

C8|9 elsewhere, λ̃ ‰ 0
(3.156)

R1ϕ˚TX {SpecCrλspλ̃q –

"

C1|1 above the split-locus, λ̃ “ 0

C0|1 elsewhere, λ̃ ‰ 0
(3.157)

where we have used the same notation as above for the relative tangent sheaf and the right
derived cohomology functor.
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2. If we mod out the θθ-terms, and we compare all the global sections of a generic non-projected
supermanifolds having λ̃ ‰ 0 with the global sections above the split-locus we find that these
differ by the sections Ṽ3 and Ṽ4 and in particular one has V3 “ Ṽ4 ` Ṽ3.

3. In contrast with the decomposable case treated above, we have that also the generic fibre,
over λ̃ ‰ 0, does have an infinitesimal odd deformation, but it does not have any even
deformation, while above the split-locus we find both even and odd deformations.
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Chapter 4

Supergeometry of Π-Projective
Spaces

4.1 Introduction and Motivation

We have seen in the previous chapter that a remarkable difference between ordinary algebraic
geometry and super algebraic geometry is concerned with the role of projective superspaces as a
natural set-up and ambient space. Indeed, there are important examples of supermanifolds that fail
to be projective, i.e. they do not posses any (ample) invertible sheaf that allows for an embedding
into projective superspaces [52] and this is the case of the family of non-projected supermanifolds
P2
ωpFM q we have introduced in the previous chapter. Also, as discussed early on, there is no natural

generalisation of the Plücker map, so that super Grassmannians cannot in general be embedded
into projective superspaces.

This led Manin to suggest that in a supergeometric setting, invertible sheaves might not play
the same fundamental role they play in ordinary algebraic geometry. Instead, together with Sko-
rnyakov, he proposed as a suitable substitute of invertible sheaves in algebraic supergeometry, the
notion of Π-invertible sheaves. These are locally-free sheaves of rank 1|1 endowed with a specific
odd symmetry, locally exchanging the even and odd components, called Π-symmetry. The spaces
allowing for such sheaves to be defined were first constructed by Manin, see [41]: these are called
Π-projective spaces PnΠ and more in general Π-Grassmannians. The relevance of these geometric
objects became apparent along with the generalisation to a supersymmetric context of the theory of
elliptic curves and theta functions due to Levin. In particular, it was realised in [39] and [40] that
the correct supergeometric generalisation of theta functions, called supertheta functions, should
not be sections of certain invertible sheaves, but instead sections of Π-invertible sheaves and every
supersymmetric elliptic curve can be naturally embedded into a certain product of Π-projective
spaces PnΠ by means of supertheta functions. Recently, following an observation due to Deligne,
Kwok has provided in [36] a different description of Π-projective spaces PnΠ by constructing them

as suitable quotients by the algebraic supergroup G1|1
m “ D˚, the multiplicative version of the

super skew field D, which is a non-commutative associative superalgebra, thus making apparent a
connection between Π-projective geometry and the broader universe of non-commutative geometry.

In this chapter we will provide a new construction of Π-projective spaces PnΠ, showing how they
arise naturally as non-projected supermanifolds over Pn, upon choosing the fermionic sheaf of the
supermanifold to be the cotangent sheaf Ω1

Pn . More precisely, we will show that for n ą 1 any
Π-projective space can be defined by three ordinary objects, a projective space Pn, the sheaf of
1-forms Ω1

Pn defined on it and a certain cohomology class, actually the fundamental obstruction

class, ω P H1pPn, TPn b
Ź2

Ω1
Pnq, where TPn is the tangent sheaf of Pn. In the case n “ 1 one does

not need any cohomology class and the data coming from the projective line P1 and the cotangent
sheaf Ω1

P1 “ OP1p´2q are enough to describe the Π-projective line P1
Π. Moreover we show that

Π-projective spaces are all Calabi-Yau supermanifolds, that is, they have trivial Berezinian sheaf,
a feature that makes them particularly interesting for physical applications.
Moreover, we provide some pieces of evidence that the relation with the cotangent sheaf of the
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underlying manifold is actually a characterising one in Π-geometry. Indeed, not only Π-projective
spaces, but also more in general Π-Grassmannians can be constructed as certain non-projected
supermanifolds starting from the cotangent sheaf of the underlying reduced Grassmannias. We
show by means of an example that in this context the non-projected structure of the superman-
ifold becomes in general more complicated and, in addition to the fundamental one, also higher
obstruction classes enter the description.
Later on we make contact with the previous chapter, by reconsidering the embedding of the
two non-projected homogeneous supermanifolds P2

ωpFM q that arise upon choosing a decompos-
able fermionic sheaf of the kind FM “ ΠOP2p´1q ‘ ΠOP2p´2q or a non-decomposable fermionic
sheaf of the kind FM “ ΠΩ1

P2 . In particular we will show that, choosing a decomposable fermionic
sheaf, leads to a non Π-projective supermanifold: that is, the supermanifold cannot be embed-
ded into any Π-projective space PnΠ. On the other hand, choosing the fermionic sheaf to be the
non-decomposable sheaf FM “ ΠΩ1

P2 , we find that this supermanifold is actually the Π-projective

plane P2
Π, and as such it has a minimal embedding into the super Grassmannian Gp1|1,C3|3q.

4.2 Π-Projective Geometry and Π-Grassmannians

In this section we will give a short introduction to Π-projective geometry and Π-Grassmannians,
for more details and thorough treatment we invite the reader to refer to [41] and [42] as usual.

As far as the author is concerned the most straightforward and immediate way to introduce
Π-projective spaces and their geometry is via super Grassmannians. This approach has also the
merit to make clear that Π-projective spaces are in general embedded in super Grassmannians,
showing that super Grassmannians are once again good embedding spaces in a supergeometric
context, as discussed in the previous chapter. The notation for super Grassmannians is based on
section 3.5 of the previous chapter.

Our starting point is the definition of Π-symmetry. We will give a general definition on sheaves.

Definition 4.1 (Π-Symmetry). Let G be a locally-free sheaf of OM -modules of rank n|n on a
supermanifold M , a Π-symmetry is an isomorphism such that pΠ : G ÝÑ ΠG and such that
p2

Π “ id.

We now work locally and use simply the supercommutative free C-module Cn|n “ Cn ‘ ΠCn,
instead of a generic sheaf: we can therefore choose a certain basis of even elements such that
Cn “ Spante1, . . . , enu and we generate a basis for the whole Cn|n as follows

Cn|n “ Spante1, . . . , en | pΠe1, . . . , pΠenu. (4.1)

Clearly, the action of pΠ exchanges the generators of Cn and ΠCn.
We observe that somehow the presence of a Π-symmetry should remind us of a “physical super-
symmetry”, as it transform even elements in odd elements and viceversa. Also, as supersymmetry
requires a Hilbert space allowing for the same amount of bosonic and fermionic states, similarly
Π-symmetry imposes an equal number of even and odd dimensions for a certain “ambient space”,
as it might be the supercommutative free module Cn|n above.
Along this line, one can give the following

Definition 4.2 (Π-Symmetric Submodule). Let M be a supercommutative free A-module such that
M “ An ‘ΠAn. Then we say that a super submodule S ĂM is Π-symmetric if it is stable under
the action of pΠ.

This has as a consequence the following obvious lemma:

Lemma 4.1. Let M be a supercommutative free A-module such that M “ An‘ΠAn together with
a basis given by te1, . . . , en | pΠe1, . . . , pΠenu. Then a super submodule of M is Π-symmetric if and
only if for every element v “

řn
i“1 x

iei ` ξ
ipΠei it also contains vΠ “

řn
i“1p´ξ

iei ` x
ipΠeiq

The proof is clear, as vΠ is nothing but the Π-transformed partner of v. Notice, though, the
presence of a minus sign due to parity reasons.
Such Π-symmetric submodules allow us to define Π-projective superspaces, we call them PnΠ, and,
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more in general, Π-symmetric super Grassmannians. The construction follows closely the one of
super Grassmannians of the kind Gp1|1;n` 1|n` 1q, but we only take into account Π-symmetric
free submodules characterised as by the Lemma 4.1. These, in turn, allow us to write down the
n ` 1 affine super cells covering PnΠ, each of these related to an affine supermanifold of the kind
Ũi ..“ pUi,Crz1i, . . . , zni, θ1i, . . . , θnisq – Cn|n and where Ui are the usual open sets covering Pn.
We try to make these considerations explicit by considering the case of the the Π-projective line,
we call it P1

Π.

Example 4.1 (Π-Projective Line P1
Π). This is the classifying space of the Π-symmetric 1|1 di-

mensional super subspaces of C2|2, corresponding to the super Grassmannian GΠp1|1; 2|2q, where
subscript refers to the presence of the Π-symmetry with respect to the ordinary case treated pre-
viously. This is covered by two affine superspaces, each isomorphic to C1|1, having coordinates in
the super big-cells notation given by

ZU0
..“

ˆ

1 x0 0 ξ0

0 ´ξ0 1 x0

˙

ZU1
..“

ˆ

x1 1 ξ1 0

´ξ1 0 x1 1

˙

. (4.2)

It is then not hard to find the transition functions in the intersections of the charts either by means
of allowed rows and column operation or by the method explained above. By rows and columns
operations, for example, one finds:

ˆ

1 x0 0 ξ0

0 ´ξ0 1 x0

˙

R0{x0,R1{x0
ÝÑ

ˆ

1{x0 1 0 ξ0{x0

0 ´ξ0{x0 1{x0 1

˙

ˆ

1{x0 1 0 ξ0{x0

0 ´ξ0{x0 1{x0 1

˙

R0´ξ0{x0R1
ÝÑ

ˆ

1{x0 1 ´ξ0{x
2
0 0

0 ´ξ0{x0 1{x0 1

˙

ˆ

1{x0 1 ´ξ0{x
2
0 0

0 ´ξ0{x0 1{x0 1

˙

R1`ξ0{x0R0
ÝÑ

ˆ

1{x0 1 ´ξ0{x
2
0 0

ξ0{x
2
0 0 1{x0 1

˙

.

One can then read the transition functions in the intersection of the affine charts, characterising
the structure sheaf OP1

Π
of the Π-projective line:

x1 “
1

x0
, ξ1 “ ´

ξ1
x2

0

. (4.3)

This leads to the conclusion that the Π-projective line P1|1
Π is the 1|1-dimensional supermanifold

that is completely characterised by the pair pP1,ΠOP1p´2qq. We emphasise that OP1p´2q – Ω1
P1

over P1: we will see in what follows that this is not by accident.

Before we go on, some easy remarks are in order. First, one can immediately observe that the
Π-projective line is substantially different compared with the projective superline P1|1 (this is also
remarked in [28]). Indeed, as explained in Theorem 3.1, being P1|1 a 1|1 dimensional supermanifold
is completely characterised by the pair p|M | “ P1,FM “ ΠOP1p´1qq.
Also, without going into details, we note that while P1|1 can be structured as super Riemann surface
(see [41] or [69]), the Π-projective line P1

Π cannot. Indeed, the fermionic bundle FP1|1
Π

“ pOP1
Π
q1 is

given by OP1p´2q and this does not define a theta characteristic on P1. Indeed, there is just one
such, and it is given by OP1p´1q, therefore the only genus zero super Riemann surface is given by
the ordinary P1|1 “ pP1,OP1p´1qq. This has a certain importance in the mathematical formulation
of superstring perturbation theory [69].

Before we go on, we recall that in case a supermanifold M has odd dimension greater than 1 it
is no longer true in general that the supermanifold is completely determined by the pair pMred,FM q

(as showed in Theorem 3.3, Chapter 3, for the case the odd dimension is equal to 2) and if this is
the case, then the supermanifold is split.
In the following theorem we use the same method as above to write down the generic form of
the transition functions of PnΠ: we will see that a certain nilpotent correction appears in the even
transition functions.
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Theorem 4.1. Let PnΠ ..“ pPn,OPn
Π
q be the n-dimensional Π-projective space and let Ũi “ pUi,Crzji, θjisq –

Cn|n for i “ 0, . . . , n, j ‰ i be the affine supermanifolds covering PnΠ. In the intersections Ui X Uj
for 0 ď i ă j ď n` 1 the transition functions characterising OPn

Π
have the following form:

` ‰ i : z`j “
z`i
zji
`
θjiθ`i
z2
ji

, θ`j “
θ`i
zji
´
z`i
z2
ji

θji; (4.4)

` “ i : zij “
1

zji
, θij “ ´

θji
z2
ji

. (4.5)

Proof. PnΠ is covered by n ` 1 affine charts, whose coordinates are given in the super big cell
notation by

ZUi
“

ˆ

z1i ¨ ¨ ¨ 1 ¨ ¨ ¨ zni θ1i ¨ ¨ ¨ 0 ¨ ¨ ¨ θni

´θ1i ¨ ¨ ¨ 0 ¨ ¨ ¨ ´θni z1i ¨ ¨ ¨ 1 ¨ ¨ ¨ zni

˙

, (4.6)

where the 1’s and 0’s sit at the i-th positions. Considering the super big cell ZUj for j ‰ i one
can find the transition functions by bringing ZUi in the form of ZUj by means of allowed rows and
column operations (and remembering that it is not possible to divide by a nilpotent element) as
done above in the case of P1

Π. It is easily checked that this yields the claimed result.

In the following section we will see that the same transition functions characterising PnΠ arise
naturally upon the choice of the cotangent sheaf as the fermionic sheaf for a supermanifold over
Pn.

4.3 Cotangent Sheaf and Π-Projective Spaces

We now enter the main section of the chapter: here we will provide a construction of PnΠ as a non-
projected supermanifold over Pn having ferminic sheaf given by the cotangent sheaf on ordinary
projective space.

We keep the notation we have employed in the previous chapter when working on ordinary
projective spaces Pn. We consider the usual covering by n` 1 open sets tUiuni“0 characterised by
the condition Ui ..“ trX0 : . . . : Xns P Pn : Xi ‰ 0u. Defining the affine coordinates to be

zji ..“
Xj

Xi
, (4.7)

we have that Pn gets covered by standard n ` 1 affine charts isomorphic to Cn. This allows to
easily write down the transition functions for two sheaves of interest, the tangent and the cotangent
sheaf.

• Tangent Sheaf TPn : on the intersection Ui X Uj one finds:

Bzji “ ´zij
ÿ

k‰j

zkjBzkj
(4.8)

Bzki
“ zijBzkj

k ‰ j (4.9)

• Cotangent Sheaf Ω1
Pn : on the intersection Ui X Uj one finds:

dzji “ ´
dzij
z2
ij

(4.10)

dzki “ ´
zkj
z2
ij

dzij `
dzkj
zij

k ‰ j (4.11)

We now consider a supermanifold of dimension n|n having reduced space given by Pn and a
fermionic sheaf FM given by ΠΩ1

Pn . As already stressed in the previous chapter for the specific
case of ΠΩ1

P2 , that gave an example of non-projected supermanifolds of the kind P2
ωpFM q having
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a non-decomposable homogeneous fermionic sheaf, we have that ΠΩ1
Pn is a sheaf of OPn-modules

of rank 0|n, that is locally-generated on Ui by n odd elements tθ1i, . . . , θniu that transform on the
intersections UiXUj as the local generators of the cotangent sheaf, tdz1i, . . . , dzniu: in other words,
the correspondence is dzki Ø θki for k ‰ i.
The crucial observation is that the fermionic sheaf FM “ ΠΩ1

Pn determined by the cotangent sheaf
Ω1

Pn reproduces exactly the odd transition functions of PnΠ. It is then natural to ask whether the
whole OPn

Π
is determined someway by ΠΩ1

Pn . We will see that this question has an affermative
answer, by realising PnΠ as the non-projected supermanifold whose even part of the structure sheaf
OPn

Π
is determined by OPn and the fundamental obstruction class ωM .

First we need to prove that the choice FM “ ΠΩ1
Pn can actually give rise to a non-projected

supermanifold. For this to be true it is enough that H1pTPn b Sym2ΠΩ1
Pnq ‰ 0: this is achieved

in the following

Lemma 4.2. H1pTPn b Sym2ΠΩ1
Pnq – C

Proof. Due to parity reason, one has Sym2ΠΩ1
Pn –

Ź2
Ω1

Pn , therefore it amounts to evaluate

H1pTPn b
Ź2

Ω1
Pnq : this can be done using the Euler exact sequence tensored by Ω2

Pn
..“

Ź2
Ω1

Pn ,
this reads

0 // Ω2
Pn

// Ω2
Pnp`1q‘n`1 // TPn b Ω2

Pn
// 0. (4.12)

Using Bott formulas (see for example [49]) to evaluate the cohomology of Ω2
Pn and Ω2

Pnp`1q one is
left with the isomorphism H1pTPn b Ω2

Pnq – H2pΩ2
Pnq – C, again by Bott formulas.

A consequence of the lemma is that each choice of a class 0 ‰ ωM P H1pTPn b Sym2ΠΩ1
Pnq

gives rise to a non-projected supermanifold having reduced space Pn and fermionic sheaf ΠΩ1
Pn .

Making use of the Bott formulas, as in the proof of the previous lemma, is certainly the briefest and
easiest way to show the non vanishing of the cohomology group. Anyway, there is another more
instructive way to achieve the same result: this also has the merit to allow to find the representative
of H1pTPn b Sym2ΠΩ1

Pnq. Keeping in mind that Sym2ΠΩ2
Pn –

Ź2
Ω1

Pn , one starts from the dual
of the Euler exact sequence, that reads

0 // Ω1
Pn

// OPnp´1q‘n`1 // OPn // 0. (4.13)

Taking its second exterior power one gets

0 //
Ź2

Ω1
Pn

//
Ź2 `OPnp´1q‘n`1

˘

// Ω1
Pn

// 0. (4.14)

Notice that clearly
Ź2OPnp´1q‘n`1 – OPnp´2q‘p

n`1
2 q, and, more important, that the existence

of this short exact sequence depends on the fact that OPn is of rank 1. A more careful discussion
of the general framework for second exterior powers of short exact sequences of locally-free sheaf
of OMred

-modules is deferred to the Appendix.
This short exact sequence can be in turn tensored by TPn as to yield

0 // TPn b
Ź2

Ω1
Pn

// TPnp´2q‘p
n`1

2 q // TPn b Ω1
Pn

// 0. (4.15)

Upon using the Euler exact sequence for the tangent sheaf twisted by OPnp´2q, one sees that for

n ą 1 the cohomology groups H0pTPnp´2q‘p
n`1

2 qq and H1pTPnp´2q‘p
n`1

2 qq are zero, and therefore

the long exact cohomology sequence gives the isomorphism H0pTPn b Ω1
Pnq – H1pTPn b

Ź2
Ω1

Pnq.
The global section generating H0pTPn b Ω1

Pnq is easily identified in C0pTPn b Ω1
Pnq. In particular,

it is easy to verify that H0pTPn b Ω1
Pnq has basis given by tηiu

n
i“0 P

śn
i“0pTPn b Ω1

PnqpUiq, with

ηi “
ÿ

j‰i

Bzji b dzji. (4.16)

We aim to lift this element to the generator of H1pTPnb
Ź2

Ω1
Pnq, making the isomorphism explicit:

this will be the key step of our construction of Π-projective spaces as non-projected supermanifolds.
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To achieve this, we need to study carefully the homomorphisms of sheaves entering the exact
sequence (4.14). First we consider the injective map ^2ι :

Ź

Ω1
Pn Ñ

Ź2OPnp´1q‘n`1. This is
given by

^2ι :
Ź2

Ω1
Pn

//
Ź2 `OPnp´1q‘n`1

˘

df ^ dg � // ιpdfq ^ ιpdgq

(4.17)

where ι : Ω1
Pn Ñ Op´1q‘n`1 is the map from the dual of the Euler exact sequence, that is, working

for example in the chart Ui,

ι : Ω1
Pn

// OPnp´1q‘n`1

df “
ř

j‰i fjidzji
� //

´

f0i

Xi
, . . . ,´ 1

X2
i

ř

j‰iXjfji, . . . ,
fnj

Xi

¯

.

(4.18)

Getting back to (4.14) and working in the chart Ui, the map Φ2 :
Ź2 `OPnp´1q‘n`1

˘

Ñ Ω1
Pn is

defined as follows

Φ2 :
Ź2 `OPnp´1q‘n`1

˘

// Ω1
Pn

pf0, . . . , fnq ^ pg0,^, gnq
� // Xi

řn
j“0

ř

k‰iXj pfj b gk ´ gj b fkq d
´

Xk

Xi

¯

,

where dpXk{Xiq “ dzki. The reader can check that these maps give rise to an exact sequence of
locally-free OPn -modules. Clearly, the maps entering the exact sequence (4.15) are just the same
tensored by identity on the tangent sheaf.
Knowing these map, we prove the following lemma.

Lemma 4.3 (Lifting). The cohomology group H1pTPnb
Ź2

Ω1
Pnq has basis tωijuiăj P

ś

iăj

´

TPn b
Ź2

Ω1
Pn

¯

pUiX
Ujq, with

ωij “
ÿ

k‰j

Bzkj
b
dzij ^ dzkj

zij
. (4.19)

Proof. We need to lift the element p
ř

j‰i Bzji b dzjiqi“0,...,n P Z
0pTPn bΩ1

Pnq to Z1pTPn b
Ź2

Ω1
Pnq

as in the following diagram:

C1pTPn b
Ź2

Ω1
Pnq // // C1pTPn b

Ź2OPnp´1q‘n`1q

C0pTPn b
Ź2OPnp´1q‘n`1q // //

δ

OO

C0pTPn b Ω1
Pnq

where the maps are induced by those defining the short exact sequence 4.15. The first step is to
find the pre-image of the element

ř

j‰i Bzji b dzji in C0pTPn b
Ź2OPnp´1q‘n`1q. We work, for

simplicity, in the chart Ui, and we look for elements f ’s and g’s such that

ÿ

j‰i

Bzji b dzji
!
“

˜

ÿ

j‰i

Bzji

¸

b

˜

ÿ

`‰i

Xi

n
ÿ

k“0

Xk

”

f
pjq
k b g

pjq
` ´ g

pjq
k b f

pjq
`

ı

dz`i

¸

.

The condition is satisfied by the choice

f
pjq
k “

δki
Xi

g
pjq
` “

δ`j
Xi
, (4.20)

so that one finds that the pre-image in the chart Ui reads

Φ´1
2

˜

ÿ

j‰i

Bzji b dzji

¸

“
ÿ

k‰i

Bzki
b
ei ^ ek
X2
i

(4.21)
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where we have denoted tei ^ ekui‰k a basis for the second exterior power
Ź2OPnp´1q‘n`1.

Now we lift this element to a Čech 1-cochain by means of the Čech coboundary map δ as to get
on an intersection Ui X Uj

sij ..“ psi ´ sjqtUiXUj “
1

X2
j

ÿ

k‰i,j

Bzkj
b

ˆ

zkj
zij

ej ^ ei `
1

zij
ei ^ ek ` ej ^ ek

˙

(4.22)

It is not hard to verity that psijqi‰j is the image through the injective map ^2ι of elements

ωij ..“
ÿ

k‰j

dzij ^ dzkj
zij

b Bzkj
P Z1pU , TPn b

2
ľ

Ω1
Pnq, (4.23)

which represents the lifting of
ř

j‰i Bzji b dzji, and generates the cohomology group H1pTPn b
Ź2

Ω1
Pnq.

Notice that in (4.23) one finds the actual elements that enter the transition functions of the non-
projected supermanifold in the identification dzij ^ dzkj Ø θijθkj , where the second is to be
understood as the symmetric product, giving an element in Sym2ΠΩ1

Pn .
The previous lemma gives all the elements we need in order to recognise the Π-projective space
PnΠ as the non-projected supermanifold associated to the cotangent sheaf on Pn. In particular, we
have the following

Theorem 4.2 (Π-Projective Spaces). The Π-projected space PnΠ ..“ pPn,OPn
Π
q is the non-projected

supermanifold uniquely identified by the triple pPn,ΠΩ1
Pn , λq, where λ ‰ 0 is the representative of

ωM P H1pTPn b Sym2ΠΩ1
Pnq – C.

Proof. It is enough to proof that the sheaf OPn
Π

can be determined out of the structure sheaf OPn

of Pn, the fermionic sheaf ΠΩ1
Pn and the non-zero representative λ P Czt0u of ωM P H1pTPn b

Sym2ΠΩ1q – C. We have already observed that the transition functions of pOPn
Π
q1 do coincide

with those of ΠΩ1
Pn . Moreover, up to a change of coordinate or a scaling, λ can be chosen equal to

1. Then, we see that the transition functions of pOPn
Π
q0 are determined by (3.10) as a non-projected

extension of OPn by Sym2ΠΩ1
Pn , as follows

zki “
zkj
zij

`

˜

ÿ

k‰j

θijθkj
zij

Bzkj

¸

zki “
zkj
zij

`

˜

ÿ

k‰j

θijθkj
z2
ij

Bzki

¸

zki (4.24)

“
zkj
zij

`
θijθkj
z2
ij

(4.25)

and clearly, zji “ 1{zij . Here, we have used the result of the previous lemma 4.3 to write the
representatives of the fundamental obstruction class tωijuiăj . This completes the proof.

Now that we have constructed Π-projective spaces as non-projected supermanifolds, we investigate
a property that all of the Π-projective spaces share, regardless their dimensions: they have trivial
Berezinian sheaf, and as such, they are Calabi-Yau supermanifolds (see section 1.3, in particular
Definition 1.20 and the discussion thereof).

Before we go into the proof of the theorem, we recall that given a supermanifold M , the Berezinian
sheaf BerpM q is, by definition the sheaf BerpΩ1

M q, as in Definition 1.18. That is, given an open
covering tUiuiPI of the underlying topological space of M , the Berezinian sheaf BerM is the sheaf
whose transition functions tgijui‰jPI are obtained by taking the Berezinian of the super Jacobian
of a change of coordinates in Ui X Uj .

Theorem 4.3 (PnΠ are Calabi-Yau Supermanifolds). Π-projective spaces PnΠ have trivial Berezia-
nian sheaf. That is, BerpPnΠq – OPn

Π
.

Proof. Let us consider the generic case n ě 2. By symmetry, it is enough to prove the triviality
of the Berezianian sheaf in a single intersection. One starts computing the super Jacobian of the
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transition functions in 4.4 and 4.5: this actually gives the transition functions of the cotangent
sheaf to PnΠ in a certain intersection UiXUj , that can be represented in a super matrix of the form

rJ acsij “

¨

˚

˚

˚

˚

˚

˚

˝

A B

C D

˛

‹

‹

‹

‹

‹

‹

‚

(4.26)

for some A and D even and B and C odd sub-matrices depending on the intersection Ui X Uj .
Then one computes Ber rJ acsij by means of the formula BerpXq “ detpAqdetpD´CA´1Bq´1 that
reduces the computation of the Berezinian of a super matrix X to a computation of determinants
of ordinary matrices. It can be easily checked that for every non-empty intersection Ui X Uj one
gets

detA “ ´
1

zn`1
ij

, detpD ´ CA´1Bq´1 “ ´zn`1
ij , (4.27)

so that Ber rJ acsij “ 1, proving triviality of BerpPnΠq. The interested reader finds some explicit
computation performed in the intersection U0 X U1 in the Appendix.
Finally, the case n “ 1 is trivial, as P1

Π is split: in general, as shown in Theorem 1.1, for a split
supermanifold BerpM q – π˚pKMred

b detF˚M q where π : M Ñ Mred is the projection onto the
reduced manifold and KMred

is the canonical sheaf of the reduced manifold, so that in the case of
P1

Π one gets

BerpP1
Πq – π˚

`

KP1 b pΩ1
P1q

˚
˘

– π˚ pOP1p´2q bOP1p`2qq – π˚OP1 “ OP1
Π
. (4.28)

thus concluding the proof.

Note that we did already know examples of split Calabi-Yau supermanifolds in every bosonic/even
dimension: these are the well-known projective superspaces of the kind Pn|n`1 for every n ě 1
(see section 1.3 in the first chapter). The previous theorem characterises Π-projective spaces
as relatively simple examples of non-projected Calabi-Yau supermanifold for every bosonic/even
dimension. In this context, the Π-projective line P1

Π is actually the only Calabi-Yau supermanifold
of dimension 1|1 which has P1 as reduced space.

4.4 A Glimpse at Π-Grassmannians

In the previous section we have shown that Π-projective spaces arise as certain non-projected
supermanifolds whose fermionic sheaf is related to the cotangent sheaf of their reduced manifold
Pn and, as such, they have a very simple structure.

Remarkably, something very similar happens more in general for Π-Grassmannians (see [41]),
supporting the idea of a close connection between Π-symmetry in supergeometry and the ordinary
geometry of cotangent sheaves of the ordinary reduced variety. Indeed we claim

“all of the Π-Grassmannians GΠpn;mq can be constructed as higher-dimensional non-projected
supermanifolds whose fermionic sheaf is given precisely by the cotangent sheaf of their reduced

manifold, the ordinary Grassmannian Gpn;mq”.

The difference that makes things trickier compared to the case of the Π-projective spaces, is that
also higher obstruction classes - not only the fundamental one - might appear, leading to non-
projected and non-split supermanifolds.
The construction of Π-Grassmannians as non-projected supermanifolds related to the cotangent
sheaf Ω1

Gpn;mq of the underlying Grassmannian Gpn;mq, the relation between their dimension,
structure and the presence of higher obstructions to splitting are topics that the author wish to
address in the near future.
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For the time being, in support of the above claim and as an illustrative example, we analyse the
structure of the transition functions in certain big-cells of the Π-Grassmannian GΠp2; 4q: notice
that, as in the ordinary context, this is the first Π-Grassmannian that is not a Π-projective space.
We start considering the reduced manifold, the ordinary Grassmannian Gp2; 4q and look at the
change of coordinates between the big-cells

ZU1 “

ˆ

1 0 x11 x21

0 1 y11 y21

˙

ZU2 “

ˆ

1 x12 0 x22

0 y12 1 y22

˙

. (4.29)

By row-operations one easily finds that

x12 “ ´
x11

y11
, x22 “ x21 ´

x11y21

y11
, (4.30)

y12 “
1

y11
, y22 “

y21

y11
. (4.31)

In the correspondence tdxij Ø θij , dyij Ø ξiju of the local frames of the cotangent sheaf with
those of its parity-reversed version ΠΩ1

Gp2;4q we are concerned with, one has the following transition
functions

θ12 “ ´
θ11

y11
`
x11

y2
11

ξ11, θ22 “ θ21 ´
y21

y11
θ11 ´

x11

y11
ξ21 `

x11y21

y2
11

ξ11, (4.32)

ξ12 “ ´
ξ11

y2
11

, ξ22 “
ξ21

y11
´
y21

y2
11

ξ11. (4.33)

Now look at the corresponding change of coordinates in U1 X U2 for GΠp2; 4q: the super big-cells
then look like

ZU1 “

¨

˚

˚

˝

1 0 x11 x21 0 0 θ11 θ21

0 1 y11 y21 0 0 ξ11 ξ21

0 0 ´θ11 ´θ21 1 0 x11 x21

0 0 ´ξ11 ´ξ21 0 1 y11 y21

˛

‹

‹

‚

(4.34)

ZU2
“

¨

˚

˚

˝

1 x12 0 x22 0 θ12 0 θ22

0 y12 1 y22 0 ξ12 0 ξ22

0 ´θ12 0 ´θ22 1 x12 0 x22

0 ´ξ12 0 ´ξ22 0 y12 1 y22

˛

‹

‹

‚

. (4.35)

Again, by acting with row-operations on U1 one finds the following change of coordinates for
GΠp2; 4q in U1 X U2

x12 “ ´
x11

y11
´
θ11ξ11

y2
11

, x22 “ x21 ´
x11y21

y11
`
θ11ξ21

y11
´

x11

y112
ξ11ξ21 ´

y21

y2
11

θ11ξ11,

y12 “
1

y11
, y22 “

y21

y11
`
ξ11ξ21

y2
11

,

θ12 “ ´
θ11

y11
`
x11

y2
11

ξ11, θ22 “ θ21 ´
y21

y11
θ11 ´

x11

y11
ξ21 `

x11y21

y2
11

ξ11 ´
θ11ξ11ξ21

y2
11

ξ12 “ ´
ξ11

y2
11

, ξ22 “
ξ21

y11
´
y21

y2
11

ξ11.

We observe the following facts: as in the the case of Π-projective spaces, the bosonic transition
functions get nilpotent “corrections” taking values in Sym2ΠΩ1

Gp2;4qpU1 X U2q.
More important, here is the difference: the fermionic transition functions are almost the same but
not actually the same as those of ΠΩ1

Gp2;4q above! Indeed, in the transition functions of θ22 appears

a term taking values in Sym3ΠΩ1
Gp2;4qpU1XU2q - the term ´

θ11ξ11ξ21

y2
11

- that tells that GΠp2; 4q will

also be characterised geometrically by the presence of higher (fermionic) obstructions! This is a
subtle issue, as these obstructions are actually not well-defined whenever the first obstruction is
non-zero, as in this case!
Once again, this example exposes a crucial problem in the theory of supermanifolds and calls for
the need of a careful study of higher obstruction classes, an issue the author intends to address in
a near future.
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4.5 Reprise: Homogeneous P2
ωpFM q and Embedding in PnΠ

In this section we make the connection with the previous chapter, by discussing in more detail the
possible embeddings for homogeneous P2

ωpFM q in connection with Π-projective spaces PnΠ.
Again, as in the case of embeddings into projective superspaces discussed above, looking for

embeddings in a Π-projective spaces calls for a search for suitable ample invertible sheaves, in
particular we need to look for a special kind of invertible sheaf. With reference to Definition 4.1,
we give the following

Definition 4.3 (Π-Invertible Sheaf). Let M be a supermanifold. A Π-invertible sheaf GΠ is a
pair pG, pΠq, where G is a locally-free sheaf of OM -modules of rank 1|1 and pΠ : G Ñ ΠG is a
Π-symmetry.

Locally, on an open set U Ă |M | one has that the Π-symmetry pΠ : G Ñ ΠG exchanges the even
and odd components of the sheaf, GtU– OM pUq ‘ΠOM pUq.

Without going into detail, we mention that an important Π-invertible sheaf studied in [36] and
suggestively denoted with OPn

Π
p1q, plays the same role of the hyperplane bundle in the context

of Π-projective geometry, that is it governs the maps to Π-projective spaces. Indeed in [36] is
proved a theorem analogous to the one that holds for the sheaf OPnp1q in relation with maps to
projective spaces Pn in ordinary algebraic geometry and for the sheaf OPn|mp1q in relations with
maps to projective superspaces Pn|m. More precisely, one finds that OPn

Π
p1q is globally generated

by n` 1|n` 1 global sections, that we formally denote by t rX0, . . . , rXn | rΘ0, . . . , rΘnu (see [36]).
These serve to prove that if EΠ is a Π-invertible sheaf on a supermanifold M , having n`1|n`1 global
sections ts0, . . . , sn|ξ0, . . . , ξnu that globally generate it, then there exists a (unique) morphism

φEΠ
: M Ñ PnΠ such that EΠ “ φ˚EΠ

pOPn
Π
p1qq and such that si “ φ˚EΠ

p rXiq and ξj “ φ˚EΠ
prΘjq for

i “ 0, . . . , n and j “ 0, . . . , n. The converse is also true: given a morphism φ : M Ñ PnΠ, then there
exists a globally generated Π-invertible sheaf GΠ,φ such that it is generated by the global sections

φ˚p rXiq and φ˚prΘiq for i “ 0, . . . , n` 1. This result suggests the following

Definition 4.4 (Π-Projective Supermanifold). We say that a complex supermanifold M is Π-
projective if there exists a morphism φ : M Ñ PnΠ such that φ is injective on Mred and its differential
dφ is injective everywhere on TM .

In order to discuss Π-projectivity of supermanifolds, we are thus led to study the Π-invertible
sheaves that can be defined on them. The most useful tools for this purpose are provided by
Manin in [42]. There, it is noted that, giving an odd involution on a rank 1|1 sheaf corresponds
to reduce its structure group, that generically is the whole super Lie group GLp1|1,OM q, to the

non-commutative multiplicative group G1|1
m pOM q. Likewise, the set of isomorphism classes of Π-

invertible sheaves on a certain supermanifold M , denoted with PicΠpM q by similarity with the
usual Picard group, can be identified with the pointed set H1pG1|1pOM qq.

The embedding Gm ãÑ G1|1
m , induces a map as follows

i : Pic0pM q ÝÑ PicΠpM q
LM ÞÝÑ LM ‘ΠLM , (4.36)

where LM is a locally-free sheaf of OM -modules of rank 1|0 and the Π-invertible sheaf LM ‘ΠLM
is called the interchange of summands, to stress that it comes endowed with the odd involution pΠ.
We say that a Π-invertible GΠ sheaf splits if there exists a locally-free sheaf of OM -module LM of
rank 1|0 such that GΠ is isomorphic to the interchange of summands LM ‘ΠLM . Analogously, we

might have said that a Π-invertible sheaf splits if its structure group G1|1
m can in turn be reduced

to the usual Gm.
The injective map Gm Ñ G1|1

m fits into an exact sequence as follows (see again [42])

1 // Gm // G1|1
m

// G0|1
a

// 0, (4.37)

that is useful to study whenever a Π-invertible sheaf splits as the interchange of summands. Indeed,

as Gm is central in G1|1
m , the sequence of pointed sets corresponding to the first Čech cohomology
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groups associated to the short exact sequence above can be further extended to H2pGmpOM qq “

H2pO˚M ,0q, giving

¨ ¨ ¨ // Pic0pM q // PicΠpM q // H1pOM ,1q
δ // H2pO˚M ,0q. (4.38)

Clearly, the obstruction to splitting of Π-invertible sheaves for a supermanifolds lies in the image
of the map PicΠpM q Ñ H1pOM ,1q or, analogously, by exactness, in the kernel of H1pOM ,1q Ñ

H2pO˚M ,0q.

These considerations can be used to study the existence of embeddings into PnΠ for the two
homogeneous supermanifolds P2

ωpFM q in the case of decomposable and non-decomposable fermionic
sheaf.

4.5.1 P2
ωpΠOP2p´1q ‘ ΠOP2p´2qq is Non Π-Projective

In this subsection we study the existence of embeddings into PnΠ for the non-projected homogeneous
supermanifold P2

ωpFM q in the case one chooses the fermionic sheaf to be the decomposable sheaf
FM “ ΠOP2p´1q ‘ΠOP2p´2qq. In particular, we have the following theorem.

Theorem 4.4. Let M “ P2
ωpFM q with fermionic sheaf FM given by FM “ ΠOP2p´1q‘ΠOP2p´2q.

Then PicΠpM q is just a point, representing the trivial Π-invertible sheaf OM ‘ΠOM . In particular
M cannot be embedded in a Π-projective space.

Proof. Remembering that FM – OM ,1, as the supermanifold has dimension 2|2, one easily compute
that

H1pOM ,1q – H1pFM q – H1pOP2p´1qq ‘H1pOP2p´2qq “ 0. (4.39)

This tells that we have a surjection

Pic0pM q ÝÑ PicΠpM q ÝÑ 0. (4.40)

and therefore all the Π-invertible sheaves will be of the form LM ‘ ΠLM . On the other hand
we do already know that the even Picard group of M is actually trivial, and the only invertible
sheaf of rank 1|0 is actually the structure sheaf. This tells that the only Π-invertible sheaf that
can be defined on M endowed with a decomposable fermionic sheaf as above is actually given by
GΠ

..“ OM ‘ΠOM . We have

PicΠpM q “ tOM ‘ΠOM u, (4.41)

that is the pointed set PicΠpM q is given by its base point only. Clearly, as there are no non-trivial
Π-invertible sheaf there is no hope for M to be embedded in a Π-projective space.

This result shows that, under these circumstances, the notion of Π-invertible sheaves is not useful
to get more geometrical knowledge of the supermanifold: the non-projected supermanifold P2

ωpFM q

endowed with the decomposable fermionic sheaf FM is not only non-projective, but also non Π-
projective and, so far, super Grassmannians proved to be the only suitable ambient space for it.
The scenario is much different as one considers P2

ωpFM q endowed with the non-decomposable
fermionic sheaf FM “ ΠΩ1

P2 , as we shall see in the next subsection.

4.5.2 P2
ωpΠΩ1

P2q is P2
Π and its Minimal Embedding

In this subsection we stress an obvious consequence of Theorem 4.2: the non-projected homoge-
neous supermanifold P2

ωpΠΩ1
P2q is actually the Π-projective plane P2

Π, and as such it describes

1|1-dimesional Π-symmetric subspaces of C3|3.

Corollary 4.1 (P2
ωpΠΩ1

P2q “ P2
Π (Version 1)). The non-projected homogeneous supermanifold

P2
ωpΠΩ1

P2q is the Π-projective plane P2
Π.
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Proof. This is nothing but a corollary of Theorem 4.2, that characterises Π-projective spaces PnΠ,
by a triple pPn,ΠΩ1

Pn , ωq, for ω a non-zero class in H1pTPn b Sym2ΠΩ1
Pnq – C. In particular,

for P2
Π we have the triple pP2,ΠΩ1

P2 , ωq for ω a non-zero class in H1pTP2p´3qq – C. In view of
Theorem 3.3 and Definition 3.2, this supermanifold is nothing but the non-projected homogeneous
supermanifold P2

ωpΠΩ1
P2q.

Clearly, the same result could also be achieved explicitly. Indeed the Π-projective plane P2
Π is

covered by three affine charts, whose coordinates are given in the super big-cell notation by

ZU0 “

ˆ

1 z10 z20 0 θ10 θ20

0 ´θ10 ´θ20 1 z10 z20

˙

ZU1 “

ˆ

z11 1 z21 θ11 0 θ21

´θ11 0 ´θ21 z11 1 z21

˙

ZU2
“

ˆ

z12 z22 1 θ12 θ22 0

´θ12 ´θ22 0 z12 z22 1

˙

,

these make apparent that the reduced manifold of P2
Π is actually P2 and can also be used to find

the transition functions to be compared with the ones we have found in (3.139).

Corollary 4.2 (P2
ωpΠΩ1

P2q is P2
Π (Version 2)). The non-projected homogeneous supermanifold

P2
ωpΠΩ1

P2q is the Π-projective plane P2
Π.

Proof. We have already seen that the topological space underlying P2
Π is P2. To prove that the

two spaces are the same supermanifold we consider the structure sheaf OP2
Π

of P2
Π and we prove

that the transition functions among its affine charts coincide with those of P2
ωpΠΩ1

P2q. To this end,
by allowed rows operation we get

ˆ

z11 1 z12 θ11 0 θ12

´θ11 0 ´θ12 z11 1 z12

˙

R0{z11,R1{z11
ÝÑ

ˆ

1 1{z11 z21{z11 θ11{z11 0 θ12

´θ11{z11 0 ´θ12{z11 1 1{z11 z12{z11

˙

Ñ

R0´θ11{z11R1
ÝÑ

ˆ

1 1{z11 z21{z11 ` θ11θ12{pz11q
2 0 ´θ11{pz11q

2 θ12{z11 ´ z12θ11{pz11q
2

´θ11{z11 0 ´θ12{z11 1 1{z11 z12{z11

˙

Ñ

R1`θ11{z11R0
ÝÑ

ˆ

1 1{z11 z21{z11 ` θ11θ12{pz11q
2 0 ´θ11{pz11q

2 θ12{z11 ´ z12θ11{pz11q
2

0 `θ11{pz11q
2 ´θ12{z11 ` z12θ11{pz11q

2 1 1{z11 z12{z11 ` θ11θ12{pz11q
2

˙

.

So that one finds

z10 “
1

z11
, z20 “

z21

z11
`
θ11θ21

pz11q
2
, θ10 “ ´

θ11

pz11q
2
, θ20 “ ´

z21θ11

pz11q
2
`
θ21

z11
,

these indeed coincide with the transition functions we found in (3.139), once it is set λ “ 1. By
analogous calculations one checks that the same happens in the other intersections, thus showing
P2

Π “ P2
ωpΠΩ1

P2q.

This result, in turn, has an obvious corollary, that gives the minimal embedding of P2
ωpΠΩ1

P2q into
a super Grassmannian.

Corollary 4.3 (Minimal Embedding of P2
ωpΠΩ1

P2q). The non-projected homogeneous supermanifold

P2
ωpΠΩ1

P2q embeds into Gp1|1;C3|3q.

Proof. Since we have shown that P2
ωpΠΩ1

P2q “ P2
Π and the Π-projective plane P2

Π has been presented

as a closed sub-supermanifold inside Gp1|1;C3|3q, the same holds true for P2
ωpΠΩ1

P2q and we have

a linear embedding of M into Gp1|1;C3|3q.
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Appendix A

Some Exact Sequences

As the construction is not readily available in literature, we clarify in what follows the structure
of the maps entering the second exterior power of a short exact sequence of locally-free sheaf of
OX -modules / vector bundles, where X is an ordinary complex manifold: these constructions are
exploited in section 4.3 of the thesis. We will work in full generality, even if for our purposes it is
enough to consider the (easier) special case in which the quotient sheaf is invertible.

We start looking at the following exact sequence of locally-free sheaf of OX -modules:

0 // F ι // G π // H // 0. (A.1)

Then, in general, there is an exact sequence

0 //
Ź2 F ^

2ι //
Ź2 G

φ
// Q // 0. (A.2)

where the map φ has yet to be defined and the quotient bundle fits into

0 // F bH // Q //
Ź2H // 0. (A.3)

Indeed, to get an idea, locally, the first exact sequence splits to give G – F‘H. Taking the second
exterior power one gets

2
ľ

G “
2
ľ

F ‘ pF ‘Hq ‘
2
ľ

H, (A.4)

therefore, keep working locally, taking the quotient by
Ź2 F it gives

Q –
Ź2 G

L

Ź2 F – pF bHq ‘
2
ľ

H, (A.5)

that suggests why the second exact sequence is true.
Notice that if we consider the case rankH “ 1, then one has

Ź2H “ 0, and then sequence for
Q tells that Q – F bH, therefore one finds that

0 //
Ź2 F ^

2ι //
Ź2 G

φ
// F bH // 0. (A.6)

Getting back to the general setting, in order to define the map φ we consider the alternating map

Φ : G b G // Hb G
g1 b g2

� // πpg1q b g2 ´ πpg2q b g1.

(A.7)

Notice that one has the commutative diagram

G b G Φ //

q

��

Hb G

Ź2 G

φ2

66
(A.8)
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and, by the usual universal property, the map Φ factors over
Ź2 G to induce a map

Φ2 : G b G // Hb G
g1 ^ g2

� // πpg1q b g2 ´ πpg2q b g1.

(A.9)

We note that Φ2 ˝ ^
2ι “ 0, indeed:

`

Φ2 ˝ ^
2ι
˘

pf1 ^ f2q “ Φ2pf1 ^ f2q “ πpf1q b f2 ´ πpf2q b f1 “ 0, (A.10)

since ι : F Ñ G is an inclusion and since kerπ “ im ι – F .
Now, since Φ2 ˝ ^

2ι “ 0, one has that Φ2p
Ź2 Fq “ 0, so that one has that, in turn Φ2 factors

through Q, as to yield a well-defined map φ2 : QÑ F bH, as follows

G b G Φ //

q

��

Hb G

Ź2 G

Φ2

66

φ

��

Q

φ2

>>
(A.11)

Now, let us examine the following exact sequence obtained by tensoring with Hb´ the first exact
sequence:

0 // Hb F 1bι
// Hb G 1bπ

// HbH // 0, (A.12)

where the maps are the obvious ones. We observe that

• im 1b ι Ă Φ2p
Ź2 Gq, indeed for g P G such that πpgq “ h we have that

p1b ιqphb fq “ hb ιpfq “ πpgq b f ´ πpfq b g “ Φ2pg ^ fq (A.13)

as πpfq “ 0 and confusing ιpfq with f (remember that ι is an immersion). This implies that
Hb F – im 1b ι Ă φ2pQq.

• im pp1b πq ˝ Φ2q Ă
Ź2H, indeed

p1b πq pΦ2pg1 ^ g2qq “ p1b πq pπpg1q b g2 ´ πpg2q b g1q

“ πpg1q b πpg2q ´ πpg2q b πpg1q “ πpg1q ^ πpg2q. (A.14)

Conversely, working on the fibers, one has that
Ź2H Ă im pp1b πq ˝ Φ2q, so that one con-

cludes that im pp1b πq ˝ Φ2q “
Ź2H that in turn implies that

im pp1b πq ˝ φ2q “

2
ľ

H. (A.15)

This says that φ2 maps onto
Ź2H.

As we have shown that the map φ2 is such that F b H Ă imφ2, and that φ2 is onto
Ź2H,

by counting the dimensions, φ2 is actually also injective, therefore F b H Ă φ2pQq implies that
F b G Ă Q, which establishes the second exact sequence for Q.
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Appendix B

The Berezinian Sheaf of PnΠ

In this Appendix we support the proof of Theorem 4.3, by explicitly working out the Berezinian
of the super Jacobian in the intersection U0 X U1 of the usual covering of Pn.
Given the transition functions of PnΠ, as in 4.4 and 4.5, in the intersection U0 X U1, the super
Jacobian matrix reads

rJ acs10 “

¨

˚

˚

˚

˚

˚

˚

˝

A B

C D

˛

‹

‹

‹

‹

‹

‹

‚

(B.1)

where one has

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ 1
z2
10

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´ z20

z2
10
´ 2 θ10θ20

z3
10

1
z10

0 ¨ ¨ ¨ 0

...
. . .

...
. . .

´ zn0

z2
10
´ 2 θ10θn0

z3
10

0 ¨ ¨ ¨ 0 1
z10

˛

‹

‹

‹

‹

‹

‹

‹

‚

B “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
θ20

z2
10
´ θ10

z2
10

0 ¨ ¨ ¨ 0

...
. . .

...
. . .

θn0

z2
10

0 ¨ ¨ ¨ 0 ´ θ10

z2
10

˛

‹

‹

‹

‹

‹

‹

‹

‚

(B.2)

C “

¨

˚

˚

˚

˚

˚

˚

˚

˝

`2 θ10

z3
10

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´ θ20

z2
10
` 2 z20

z3
10
θ10 ´

θ10

z2
10

0 ¨ ¨ ¨ 0

...
. . .

...
. . .

´ θn0

z2
10
` 2 zn0

z3
10
θ10 0 ¨ ¨ ¨ 0 ´ θ10

z2
10

˛

‹

‹

‹

‹

‹

‹

‹

‚

D “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ 1
z2
10

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´ z20

z2
10

1
z10

0 ¨ ¨ ¨ 0

...
. . .

...
. . .

´ zn0

z2
10

0 ¨ ¨ ¨ 0 1
z10

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (B.3)

Now, clearly detpAq “ ´ 1
zn`1
10

and one can compute that

D ´ CA´1B “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´ 1
z2
10

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´ z20

z2
10
´ θ10θ20

z3
10

1
z10

0 ¨ ¨ ¨ 0

...
. . .

...
. . .

´ zn0

z2
10
´ θ10θn0

z3
10

0 ¨ ¨ ¨ 0 1
z10

˛

‹

‹

‹

‹

‹

‹

‹

‚

(B.4)

so that one finds detpD ´ CA´1Bq´1 “ ´zn`1
10 . Putting the two results together, one has

Ber rJ acs10 “ detpAqdetpD ´ CA´1Bq´1 “

ˆ

´
1

zn`1
10

˙

¨
`

´zn`1
10

˘

“ 1. (B.5)
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