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The precise measurement of the energy content of a pulse signal, limited in time and bandwidth, is of great
interest in many applications, and can be achieved by direct digitization of the analog signal, followed by
calculation of the mean squared amplitude of the data samples. The beam position measurement in a particle
accelerator is among the applications, and this technique is proposed for the next generation of read-out
electronics for the beam position monitors of the CERN Large Hadron Collider. The analog-to-digital converter
is a key component of the signal processing chain, and defines the performance of the measurement through
its characteristics and features, in particular the maximum sampling rate and the effective number of bits.
This paper analyzes the error on the measurement of the signal energy for a specific pulse waveform within a
given time window, caused by the analog-to-digital converter sampling effects due to the finite, unsynchronized
sampling rate. In a following step the result is combined with the effect of a noisy analog-to-digital converter
of finite resolution. This gives a general expression for the signal-to-noise ratio, which can be used to find the
optimal trade-off between sampling rate and resolution of an analog-to-digital converter for any given single

pulse waveform.

1. Introduction

The precise, reproducible measurement of the energy of an analog,
single pulse waveform is of general interest in many technical appli-
cations. In the field of particle accelerator beam instrumentation it
is widely used to measure single bunch parameters such as intensity,
position and profile. One application is for the measurement of the
beam position, which is based on electromagnetic beam pickups, so-
called beam position monitors (BPM), which are distributed throughout
the accelerator, in strategic points of the machine layout. Each BPM
transforms the electromagnetically coupled signal from the beam into
a set of four analog signals that can be combined to give information
about the horizontal and vertical beam position. The initial electro-
magnetically coupled signals are typically on the same timescale as the
length of the traversing charged, particle bunch which, for the Large
Hadron Collider (LHC), is in the order of 1 ns. A change in the beam
position or in the beam intensity will result in a change of the amplitude
(or energy) of these pickup signals, while the shape of the waveform
remains the same [1].

The advances in the technology of analog-to-digital converters
(ADC) now enable the energy measurement of short, pulsed, electrical
signals through their direct digitization. In this context, the specifica-
tions and performance of the ADC play a critical role, and to a large

extent define the overall quality of the measurement. The choice of the
ADC is therefore a key element of the instrument design. The trade-
off between achievable resolution and maximum sampling rate has a
fundamental impact on the quality of the energy measurement of short,
pulsed signals, and is discussed in detail in the following sections.

The analysis of the effect of sampling on waveform distortion is
a classic problem extensively discussed in signal processing and in-
formation theory. In [2] Shannon introduced a sampling rate theory
in the presence of noise, providing an expression for the minimum
sampling rate required to remain within a given target distortion for a
bandlimited Gaussian source. In [3] he demonstrated that a minimum
sampling frequency exists, beyond which any continuous, band-limited,
noiseless signal can be reconstructed without error from its samples.
Such minimum frequency is named Nyquist rate (Ry,) and for a signal
with bandwidth B (the signal spectrum respects the condition | X (f)| =
0 for f > B) it is equal to twice the bandwidth (R Nyg = 2B).

For short, pulsed signals, the sampling frequency required by the
Nyquist-Shannon theorem for error free reconstruction is often not
achievable, being limited by the available ADC technology. Matthews
[4] and Kipnis, et al. [5] analyzed the effect of uniform sampling
distortion on a noisy, stationary Gaussian random process, in the case of
sub-Nyquist sampling, using a variety of proofing techniques. Moham-
madi and Marvasti [6] studied the trade-off between sampling frequency
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Fig. 1. Schematic representation of a BPM pick-up acquisition chain, based on direct
digitization.

and distortion of the reconstructed signal for uniform, and non-uniform
sampling patterns for stochastic, continuous periodic signals. They
expressed bounds for the mean value and the variance of the distortion
introduced by the sampling process in the reconstructed signal. Their
study for periodic signals is also applicable to signals defined over
a finite interval. Kipnis, et al. also considered the specific case of a
limited bitrate budget for both uniform and non-uniform sampling for
a noisy, stationary Gaussian random process [7]. They demonstrated
that under this constraint for a process with non-uniform power density
the optimal sampling frequency is below the Nyquist rate since “some
distortion due to sampling is preferred in order to increase the quantizer
resolution”.

This result motivates the “trade-off” of selecting ADCs with lower
sampling rates but higher resolution. There is a fundamental interest
to analyze and better understand the lower boundary of this trade-
off, and whether this can be extended through further band-limitation
with the addition of a low-pass filter. A typical beam instrumentation
system requires the measurement of the energy (which we sometimes
call “intensity”) of a series of short (ns or sub-ns time duration) pulsed
signals. While the shape of the waveform is the same for each pulse, the
amplitude to be measured may be different. In most applications, a low-
pass pre-filtering is applied to the source signal, acting as an integrator,
while also limiting the signal bandwidth, and therefore reducing the
Nyquist sampling rate requirement (see Fig. 1). However, a filter with
too low a cut-off frequency, or excessive time-domain ringing will lead
to interference between consecutive pulses.

This paper presents an analysis of the effect of the finite sampling
and noise introduced by the ADC, not on the distortion to the re-
constructed waveform, but on the integrated signal power calculated
from the individual signal samples, in order to evaluate if, and in
which conditions the mean square value of a short, analog pulse is
a good estimator of its total energy. The class of signals considered
were deterministic, single pulse waveforms of finite energy, defined
over a finite time interval, and are described formally in Section 2.
The study was limited to uniform sampling, i.e., all samples taken
at the same equidistant time interval. Unlike the works listed above,
this analysis looks at asynchronous sampling conditions between the
ADC input signal and the ADC clock for each single measurement,
which applies for many practical implementations. The result of the
analysis is an analytical expression for the error in the measured pulse
energy introduced by sampling the analog waveform below the Nyquist
rate (see Section 3.1). Combining this result with the effect of ADC
noise, a general expression for the signal-to-noise ratio (SNR) of the
measured pulse energy is obtained as a function of the pulse spectrum,
the sampling frequency and the converter noise (see Section 3.2).

The error analysis method presented results in functions that can
always be expressed by a limited set of discrete data values, and is
therefore ideal for use in numerical simulations. The method can be ap-
plied to any arbitrary waveform, with no known analytical expression,
if an oversampled numerical representation is available.

The final Section 4 presents the results of using this analysis for
three typical single pulse waveforms: a Gaussian pulse, the deriva-
tive of a Gaussian pulse in the form of an analytical expression, and
an oversampled numerical representation of a beam position monitor
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signal. All these results were verified with numerical simulations. To
underline how the technology-driven ADC trade-off affects the results,
the relationship between the maximum sampling frequency and the
ADC resolution for commercial ADCs was taken into account. This was
based on the Walden measure of performance [8], rather than the
fixed bitrate budget used by Kipnis [7]. While the fixed bitrate budget
is a popular metric in information theory to describe the limit of a
communication channel, the Walden measure of performance better
describes the trade-offs to be considered for state-of-the-art ADCs.

2. Problem definition

A given signal x(r) to be measured has an analog, deterministic, time
limited waveform, with the respective continuous spectrum X(f). The
quantity to be characterized by a quantitative measurement is the finite
signal energy E.

+oco +oo
E=/ |x<r>|2dt=/ IX(HIPdf < oo €]

If the signal is limited in time, a window T can be defined such that
outside this window x(7) ~ 0.

Such a signal can be made periodic by adding replicas of x(¢) spaced
by nT, without altering the signal amplitude within the window T

+o0

xp® = Y, x(t=nT) @
The spectrum of x(7) is discrete and defined by its Fourier coefficients
X, equivalent to the spectrum X (f) sampled at multiples of 1/7.

The power P of the periodic signal x;(r) can be calculated as
follows:
Py = i/T|xT<t>|2dr= l/T|x<r>|2dr= 3 xp ®

T 0 T 0 k=—00

Since x(¢) only has significant power within the window T, the
energy E, Eq. (1), and the power P;, Eq. (3), are related in the
following way:

+o0 T
E:/ |x(t)|2dt:/ |x(t)|?dt =T - Py 4
- 0

To determine the energy it is therefore sufficient to determine the
power of x(¢) within T, Eq. (3).

Let us assume the signal x(7) is sampled with an infinite resolution
with respect to the reported amplitudes. The sampling frequency F; is
related to the window length 7', which needs to be an integer multiple
of the sampling period 7, = 1/F,. This fact does not limit the choice
of sampling frequency, as the window length can always be increased
with respect to the minimum length T that satisfies x(t) ~ 0 V ¢ > T. The
discrete sequence %, is the result of the sampling process, and N = F,T
gives the number of samples within the window T. The associated
Discrete Fourier Transform (DFT)' is the sequence X « of N complex
coefficients.

The power of the sampled signal sequence of period T is then given
as:

N-1
R 1 )
b= 2% ®)
N n=0
Some questions now have to be discussed:

1. Under which conditions is P; a good estimator of Pp?
2. If a variation of the sampling phase is imposed on the sequence
%,, what effect does it have on P,?

1 The definition of the DFT used in the present work is the following:

N-1 N-1

N n 1 . n
x, = Z‘) X exp(j2nk o) &= X, =+ Z‘) x,exp(—j2k <) (5)
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3. What is the mean value and the variance of the error of the
power calculation if the signal considered is not noiseless?

Questions 1 and 2 are discussed in 3.1, while question 3 is discussed in
3.2.

3. General results

In this section, starting from the model described in the previous
Section 2, we analyze the effects of sampling distortion and noise on the
calculation of the pulse power, and hence energy, within the window
T. This leads to an expression for the signal-to-noise ratio of the power
measurement as a function of the signal spectrum, sampling frequency
and total noise.

3.1. Error of the power calculation for a noiseless pulsed signal caused by
sampling distortion

The signal power within the time window T, as shown in Eq. (3),
can be calculated in both time and frequency domain. As the power
Py is limited, the series | X, | converges. We always assume our pulsed
signal to be bandlimited, with Fourier coefficients vanishing above the
harmonic N:
IX;1>=0  Yi: |i|>N, )

which allows the following equation:

+0o +Ny
Pr= Y IXlP= Y IXP (®)
k=—c0 k=—Ng

It is worth noticing that the coefficients X,, cut off at the frequency
N, /T, are the result of the Discrete Fourier Transform of the periodic
signal x; (), sampled with a frequency F; = 2N,/T. As a consequence,
the signal power within the window T can be determined without
significant loss of information by a limited set of Fourier coefficients
X, with this limited set of coefficients calculated analytically from
the time-domain expression of the signal by a Fourier transform. These
coefficients can also be obtained numerically, via the Discrete Fourier
Transform of an oversampled numerical representation of the time-
domain waveform within the window T, requiring at least 2N, samples.
The following steps, focusing on the error in determining the signal
power assuming undersampling, can therefore equally well be applied
to any arbitrary waveform through oversampling.

The time sequence %, of N samples, as a result of sampling x; ()
within T at an arbitrary frequency F, = N /T, was defined in Section 2,
together with the signal power estimator Py (6). Applying the Parseval’s
theorem for the Discrete Fourier Transform, the power estimator P
can also be expressed as a function of the DFT coefficients X, of the
sampled sequence:

N-1

. 5 2

Pr = Z [ Xl ©)
k=0

Furthermore, the sequence X, « can be expressed as a function of
X, which are the Fourier coefficients of the continuous periodic signal
xp(), as %, is obtained by sampling x(¢). Xk result from making
the coefficients X, periodic, and can be constructed from a series of
overlapping replicas of the spectrum coefficients X,, shifted by integer
multiples of the sampling frequency F;.

+oo
X, = z Xiermn -

m=—oo

LN -1 (10)

Assuming a band-limited signal (Eq. (7)), and F,; > 2N, /T = Ry,
i.e, N > 2N,, the Nyquist-Shannon criterion is respected since the
sampling frequency is higher than the Nyquist rate, and the expression
(10) can be simplified to:

P X if k=0,1,...,|N/2]
Tl Xy, if k=|N/2J+1,....N—1
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Fig. 2. Aliasing of the first replica of a Gaussian spectrum for sampling at ~ 0.59 of
the Nyquist rate.

Under these conditions the sampling process does not introduce
errors, and P; is therefore a good estimator of Py:

N-1 5 IN/2| Ny
Pr=Y X = Y IxIP= Y IxP=p an
k=0 I=—|N/2| I=—Ny

where [ =k — |N/2].

The situation is different when oversampling is not achieved, i.e.,
N < 2N, and F; < Ry,,. In this case, the coefficients X, of the DFT
are affected by aliasing. Let us assume N > Ny, i.e., F; > Ry,,/2, then
only the first shifted replica of X (/) will affect the sequence (see Fig. 2),
and the coefficients X « for k=0,1,..., N — 1 can be expressed as:

X=Xy + X 12)

To see how Py is affected, the square of the absolute value of X,
for k = 0,1,...,N — 1 is expressed as a function of the coefficients
X = | Xy lexp(jgy):

A 2
1Xe)™ = 12X 1 + [ X I* + 21X 1 X _n | - cos(ey — dr_n) @3)

The power of the sequence, Py, is now expressed as:

N-1 N-1
Pr= Y X P+ Y 2AX Xy - cos(¢y — drn) a4
k=—N k=0

Under the hypothesis N > N, the first sum of Eq. (14) is Py, Eq. (8),
while the second sum expresses the error introduced by undersampling.
This error depends on the power spectral density of the pulse and on
the phase of the spectral coefficients.

Let us consider the case where the periodic, pulsed signal x;(z) is
sampled with a different sampling phase, expressed by a time delay z.
The resulting sequence %, ., with the respective DFT coefficients X, _,
is then defined by:

n,z>

Xy = xp(ntg — 1), n=0,1,...,N—-1 (15)

In the case where Ny < N <2N,, i.e., Ry, /2 < F; < Ry,,, leading
to aliasing of the first replica, the coefficients X, , can be found directly
from (12):

s . T . T
Ko =X,y -€xp (—j27r(k - N)—) +X, -exp (—jZﬂ'k—) .
’ T T
k=0,1,...., N -1 (16)
The square of the absolute value of the coefficients follows as:
2
|

O T
Reel” = X+ Xy 421X Xy cos (9 = iy = 22N 7 ) (17)
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Fig. 3. Complex phasor showing the power measurement error caused by sampling a
repetitive pulsed signal with a fixed delay r.

The result is similar to (13), but with an additional term in the
argument of the cosine. The power estimator now also includes the
dependency of the error due to the sampling delay:

N-1
Pro=Pr+2 Y IXilIX nl-cos (b — ¢y y —22F,7) as
k=0

The power measurement error is defined as ep, = P, — P, and
can be expressed as (see Appendix A.1 for details):

€p,, = Ax, N - 2c0sQrF7) + By, - 2sin(2nF7) 19
with:

N-1
Ax, N = z | X1 XN | - cos(dy — dp_n)

k=0

N-1 0
By, n = 2 | X | X n | - sin(dy — dr_n)

k=0

This error ep, can be rewritten as:

b, = 2R ((Ax v =i By, n)exp(21F,T) @1

It can be visualized as the projection of twice the length of a phasor on
the real axis, whose modulus depends on the coefficients of the signal
spectrum, and whose phase depends on the sampling frequency and
delay (see Fig. 3). If the phase rotation, i.e., the sampling delay, is
distributed uniformly, we can expect the mean value of the error for
multiple measurements to be zero. However if the sampling phase is
locked to the signal, the error on the power measurement remains con-
stant with an absolute value within the range [0,2, / Aik, N Bik’ Nl

The sampling delay z, caused by an asynchronous sampling phase,
can be modeled as a random variable described by a probability density
function. Let us assume 7 to be a continuous uniform random variable,
defined in the interval between zero and sampling period t;, = T/N
(z = UJ[0,1,]). The mean y,. and variance af of the power measurement
error, ep, , are given by (see Appendix A.2):

#e =Elep, 1=0 (22)

o; =El(ep,, = 1)1 = 2A%, y + By ») (23)

From (22) it follows that P, is an unbiased estimator for Py,
for a noiseless signal and a uniformly distributed sampling phase. On
the other hand, the variance of the error depends on both the signal
spectrum and the sampling frequency.

Since the error €pp, is expressed as an analytical function of a
random variable whose probability density function is known, we can
also calculate the probability density function of the error to have
further insights about the sampling error behavior (see Appendix A.3).
It is note-worthy that the error probability is higher for large errors,
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Fig. 4. Probability Density Function (PDF) of the relative error of the power measure-
ment of a Gaussian pulse signal (as described in Section 4.1), when sampled at half of
its Nyquist rate (analytical and numerical result).

within the limits given by the range of possible error values. Fig. 4
shows as example the probability density function for a Gaussian pulse
signal, as described in Section 4.1. This distribution must be taken into
account when designing systems using asynchronously sampled data.

3.2. Introduction of Gaussian noise and SNR analysis

A noisy system is typically analyzed by modeling the comprehensive
noise, e.g., as a zero-mean Gaussian variable v;,, with variance 0'3,
added to the otherwise noiseless signal. This noise contribution is
propagated to the power measurement when performing the mean
square of the sampled sequence. The estimated power including the

noise contribution is then given by Py:

1 N-1 ) 1 N-1 1 N-1
Pr=— Y (%,+v,) =Pr+— D vi+— Y 2%y, (24)
N n=0 N n=0 N n=0

Let us define the random variable y (Py,62, N) = P; — Py, which
expresses the contribution to the error by the noise injected into the
system. This error # is a function of the signal power, the noise variance
and the sampling frequency. Its mean value y, and its variance af’ are

calculated as (Appendix B):

py =0, (25)

: (Var [2,) +E[5,]*)

0.4 2
~ 2# + 4FVPT (26)

Summing both the sampling error ¢ and the noise error 5 to the
power measurement gives:

Pr=Pr+e (X, N,7)+n(Pp,c2,N) 27)

Both of these contributions are known in terms of their mean value and
variance.

The mean value of the total error is equal to the mean of the noise
error (25) as the mean of the sampling error is zero.

To calculate the variance of the total error, the relationship between
these two errors must be considered. For high sampling rates it is
reasonable to assume that the dependence of the noise error on changes
in the sampling phase is negligible (see the conclusions of Appendix B),
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so that the noise error variance can be approximated as in (26). The
two errors are thus considered independent and the total error variance
simply becomes the sum of the two individual variances.

From a system design perspective, it is useful to combine the results
in the form of a SNR expression. In most cases, the engineer is interested
in guaranteeing some minimum SNR. Using such an expression it is
therefore possible to navigate the ADC specification space to find a
solution that fulfills this requirement for given input signal conditions.
The signal-to-noise ratio expression also shows how the various error
terms limit the final pulse energy measurement:

P2
T
SNR,p = 10log), <02 +02)
€ n

PZ
r (28)

= 10log;, ; 5 = =
2(AXk’N + Bxk.N) +25 +45Pr

with Ay, y and By, y as defined in (20).

4. Application to example waveforms and remarks on ADC param-
eter trade-offs

The general result of the analysis presented above were applied to
four different deterministic waveforms:

* a Gaussian waveform;

the derivative of a Gaussian waveform;

the analytical expression for the waveform obtained from the
response of a LHC stripline beam position monitor pick-up to a
charged particle bunch;

the measurement from an oscilloscope of the response of a LHC
stripline beam position monitor pick-up to a charged particle
bunch.

The Gaussian waveform and the derivative of the Gaussian waveform
are generic signals that fit practical distributions. In beam diagnostic,
for example, a beam current transformer signal can be approximated
with a Gaussian waveform. On the other hand, the derivative of a
Gaussian waveform approximates the response of differential capacitive
systems, as button and stripline pickups in a particle accelerator. The
LHC stripline beam position monitor is here used as a specific example.

In an actual instrument these signals would require some pre-
processing before digitization, depending on the signal itself and on the
measurement requirements in terms of performance and bandwidth.
Here, pre-filtering and sources of perturbation other than the ADC are
omitted for the sake of generality, and to keep the signals defined by
analytical expressions, enabling the reader to easily reproduce them.

Closed, analytic formulae for the total pulse energy error and for
the SNR are provided for the Gaussian pulse, whilst for the other
cases the energy error and the SNR are expressed as a function of the
signal spectrum, obtained by numerical calculation of a Fast Fourier
Transformation (FFT) of the oversampled waveform, limited to a time
window T.

These signal examples and the digitization parameters used fit the
hypotheses assumed in the previous sections, namely:

+ the signal has finite energy and is limited in time;

+ the sampling frequency is in the range Ry,,/2 < F,; < Ry, and
therefore only the aliasing of the first replica is relevant;

» the sampling phase is a uniformly distributed random variable;

+ the noise is described by an independent and identically dis-
tributed, zero-mean, Gaussian variable.

For all examples the analytical, or quasi-analytical “oversampled”
results have been compared with numerical simulations. The variation
in pulse energy error was calculated after sampling the input signal
with a uniformly distributed sampling delay, and by adding Gaussian
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Fig. 5. Gaussian waveform in the time domain.
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Fig. 6. Gaussian waveform in the frequency domain, indicating the chosen bandwidth
limit at —60 dB.

noise. While the examples of a Gaussian pulse and derivative of a Gaus-
sian pulse are expressed in normalized time and frequency coordinates,
the BPM related examples use the actual time window and sampling
frequencies consistent with the oscilloscope-based measurement. This
allowed the ADC noise to be expressed as a function of the sampling
frequency, referring to commercially available, state-of-the-art ADCs.
Using this approach it was then possible to find a good compromise
between the maximum sampling frequency and the resolution of the
ADC, to maximize the SNR for a specific input signal.

4.1. Gaussian waveform and derivative of a Gaussian waveform

A Gaussian waveform with standard deviation ¢ and its maximum
amplitude in the center of time window T is given by:
1 _G=T/27

x(t) = ex
(= (-

(29)

Setting ¢ = 0.017 the pulse width with respect to the window size is
comparable to the one of the BPM example (see 4.2) and the signal can
be considered to be zero outside this window.

The result of the Fourier transformation of (29) follows as:

X(f) = exp(-2x°6* f2)exp(—j2n f T /2) (30

The signal x(t) and the modulus of its spectrum |X(f)| are shown
in Figs. 5 and 6 respectively (the latter with logarithmic scaling). The
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signal pulse has a finite energy E given by:

+oo 1
E =/ x(02dt = —— (3D
—co 2V no?
Using the periodic form of (29) over the period T, and following (4),
the discrete spectrum X, is the sampled version of X (f) at multiples of
1/T:

2
X, =X (%) = exp(—2z2%k2)exp(— k) (32)

To locate the range of sampling frequencies for which the energy
error expression is valid, the bandwidth, i.e., the parameter N, of (7),
must be defined. The Fourier transformation of a Gaussian function is
itself a Gaussian function, therefore the power density | X (f WP£0V £
However, a threshold can be set below which the spectral power can be
considered negligible. In this example the threshold was set to | X, |4z <
—60 dB, for a spectrum normalized with respect to its maximum value.
The value —60 dB = 1073 is rather arbitrarily chosen for this example,
but is compatible with the typical noise level of commercial ADCs being
investigated for this particular application [9-13]. In any practical ap-
plication this bandwidth limit must be set coherently with the expected
noise level. Verifying the bandwidth condition for k > 60, gives N, = 60
and a Nyquist rate of Ry, = 2N, /T = 120/T.

At this point, all elements to express the error due to asynchronous
sampling in the range Ry, /2 < F; < Ry, are given. The coefficients
A XN and By, N (definition (20)) follow as:

2 N-1 2
Agon = DN exp(—ZEZ%NZ) kzé exp(4nz%k(N - k) 33)
By n=0

and the variance of the error due to asynchronous sampling is given
by:

52 N-1 52 2

o= 2A§(k, Nv=2 exp(—2n2ﬁN2) kzé exp(47rz772k(N — k) (34)

For the full picture, the noise related to the ADC also needs to
be included. This is described by the variance o2, and leads to an
error variance contribution following (26). Referring to the definition
of Effective Number Of Bits (ENOB), we can express the standard
deviation of the noise of the ADC as:

V)
o, = —L3R~ENOB (35)
Viz

where Vigp is the full-scale range of the ADC input signal. For our
example Vigr was set to twice the maximum absolute value of the
input signal to take into account bipolar waveforms.

Fig. 7 shows the result for the Gaussian waveform (29) as SNR vs.
F,/Ry o i.e., (28), with (34) for the sampling distortion contribution to
the error, and for two values of ¢, reflecting the ADC noise contribution
to the error. In one case the standard deviation o, is set to a value of
—70 dB = 3.16 - 10~* with respect to the full-scale-range (maximum)
input signal value of the ADC, equivalent to a 11.33 ENOB ADC. In the
other case the ADC noise contribution is doubled, with ¢, set to a value
of —64 dB = 6.3 - 10~*. This is equivalent to the noise of a 10.33 ENOB
ADC. The plot shows the SNR as a function of the total error, combining
the two error sources. It also shows the SNR when only one source of
error, either sampling or noise, is taken into account. The results from
the analytical computation are observed to be confirmed by numerical
analysis.

Fig. 7 can be split into three regions: at low sampling frequencies
the achievable SNR is dominated by the effect of sampling distortion;
at high sampling frequencies the SNR is limited by the noise of the
ADC; between these two regions is a rather narrow transition region,
with the frequency at which this transition happens depending on the
noise. The less noisy the ADC the higher the transition frequency and
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Fig. 7. SNR as function of the normalized sampling rate for a Gaussian waveform.
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Fig. 8. Derivative of a Gaussian pulse in the time domain.
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Fig. 9. Derivative of a Gaussian pulse in the frequency domain, indicating the
bandwidth limit at —60 dB.

the more we can increase the signal to noise ratio through using higher
sampling rates.

The derivative of the Gaussian pulse was chosen as an example of
a bipolar pulse, as it closely resembles the type of signal produced
by many electromagnetic pick-ups in particle accelerators. The time
domain signal and frequency domain spectrum are shown in Figs. 8
and 9 respectively (the latter with logarithmic scaling). The same
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Fig. 10. SNR as function of the normalized sampling rate for a differentiated Gaussian
waveform.

formalism was applied to this signal as for the Gaussian signal pulse,
except that the discrete spectrum X, was not obtained by sampling the
analytically calculated spectrum X(f), but numerically from an FFT on
an oversampled sequence of the time-domain waveform. Fig. 10 shows
the SNR results in the same format as Fig. 7, and for the same noise
contribution values of ¢,. Again, a good match is observed with respect
to the values obtained through numerical analysis. This confirms the
validity of this approach also for the analysis of bipolar signals.

4.2. Typical beam position monitor signals, analytical expression and oscil-
loscope measurement

The beam position monitor (BPM) is an electromagnetic transducer
which delivers a pulsed output signal as it is excited by a passing bunch
of charged particles. While there are different types of BPMs [1], we
consider here the directional coupler BPM as an example, and use for
reference the geometry and dimensions of a typical directional coupler
BPM installed in the Large Hadron Collider (LHC) at CERN.

A directional coupler BPM consists of two or four orthogonally
oriented coupling electrodes. Each electrode can be considered to be
a transmission-line with a characteristic impedance Z,. The electrodes
are often shaped as strip transmission-lines with Z;, = 50 €, and this
is the reason why this type of directional coupler BPM is sometimes
known as a “stripline BPM”. An ideal directional coupler electrode
will only sense the incoming beam at its upstream port. A dual port
electrode can therefore be used to distinguish the beam direction, but
this is not of relevance for the following discussion, where we limit the
discussion to a single charged particle bunch passing the electrode in
one direction.

Consider a relativistic beam, i.e., with a velocity close to the speed
of light, with a Gaussian shaped longitudinal bunch profile similar
to (29), passing the BPM at the center, along the line of transverse
symmetry. The upstream port of each stripline electrode will generate
a voltage pulse given by [1]:

_ ¢ Zy eN, (t+1,)? (t—1,)?
no- 235 e (58 ) -e (58| o0

The definition of each parameter of (36) and their value for the LHC
stripline BPM case are listed in Table 1.

Fig. 11 shows the signal according to (36) for a time window of
T = 24 ns, contained within the LHC bunch spacing of 25 ns. The
frequency spectrum is shown in Fig. 12. Applying our bandwidth limit
at —60 dB below maximum magnitude gives corresponding frequency
of 2.21 GHz, which results in a Nyquist rate of 4.42 GHz. As for the
previous example of the Gaussian derivative, the spectral coefficients
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Table 1
Definition and value of the parameters of the LHC stripline BPM bunch response
expression.
Symbol Definition Value
Z, Port impedance 50 Q
t, Propagation delay 417 ps
] Electrode azimuthal width 0.27 rad
e Elementary charge 1.602- 1071 C
N, Bunch intensity 10'°
o, Bunch length 0.25 ns
—— Analytic pulse
=== Measured pulse
4 -
d
2 .
S
o)
ERE -
<y
3
<
—2 ¥
—4 A
0.0 0.5 1.0 1.5 2.0 2.5

time (s) le-8

Fig. 11. Analytic signal and measured signal using a broadband oscilloscope for a
charged particle bunch detected by a directional coupler BPM, in the time domain.

X, are computed numerically using an FFT. As our method can be used
for any oversampled numerical signal waveform, this analytic signal
can be compared to an actual bunch signal from an LHC directional
coupler BPM pickup acquired by a broadband, fast sampling (60 GS/s)
oscilloscope. The measured signal waveform is also shown in Fig. 11,
normalized to the same N, = 10" bunch intensity, with the correspond-
ing frequency domain spectrum shown in Fig. 12. Again, setting the
bandwidth limit to —60 dB results in a cut-off frequency of 2.67 GHz,
with the associated Nyquist rate of 5.34 GHz. The longitudinal particle
dynamics in the LHC is complex, it cannot be simply approximated by
a Gaussian distribution function. A real BPM stripline has inevitable
complexities and imperfections, as well. That is why the measured
bunch BPM signal appears to have more spectral content at high
frequencies with respect to the analytical approximation.

For this example, an ADC should be investigated in the range of
sampling frequencies 2.21 < F, < 4.42 GHz for the analytical signal
and in the range of sampling frequencies 2.67 < F, < 5.34 GHz for the
measured signal, corresponding to Ry,,/2 < F; < Ry,, for the two
cases. Instead of assuming a constant noise contribution of the ADC,
as in Section 4.1, we rely on data from commercially available ADC
products for this range of F;, and associate a realistic resolution with
each sampling frequency.

In his ADC survey [8] Walden collected data about the distribution
of resolution versus sampling rate of state-of-the-art converters. He
observed that, for high sampling rates, “approximately one bit of reso-
lution is lost for every doubling of the sampling rate”. This information
can be summarized in the universal measure of ADC performance that
he named P, defined as the effective number of quantization levels
times the sampling rate:

P = ZENOBFS (37)

This product has improved over time for every new generation of ADC
chips, with technology advancements achieving higher resolution at
higher sampling rates.
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Fig. 12. Analytic signal in the frequency domain and frequency domain representation
of a measured signal using a broadband oscilloscope (power spectral density normalized
to the total integrated average power, showing the imposed bandwidth limit at —60 dB
with respect to the peak) for a charged particle bunch detected by a directional coupler
BPM.

Investigating the data-sheets of commercially available ADC chips
with sampling rates in our range of interest [9-13], an average value
of P=2.3-10'% 5! was found.

By combining the expression (35) and the definition (37), we can
express the standard deviation of the noise of the ADC as a function of
the sampling rate:

_ Vrsr ﬂ

o, = 7
V12

Again, in this example the full scale range for the ADC input signal
(Vigr) Was set to twice the maximum absolute value of the input signal.

Fig. 13 displays the result of the SNR computation for the energy
estimation of both the analytic and measured BPM signals, taking into
account both sampling distortion error and the ADC noise, with the
latter now dependent on the sampling rate. The solid points show the
results of the numerical analyses, which are again in good agreement
with the analytical SNR results. The effect solely due to the noise of
the ADC is represented separately. In comparison to the noise calcu-
lation for the Gaussian and differentiated Gaussian pulses, where the
ADC noise was assumed to be constant with respect to the sampling
frequency, the SNR in this case decreases at higher sampling rates, as
the noise increases due to the lower effective ADC resolution.

Combining the noise effects with sampling distortion effects, leads
to a transition region at lower F, than observed for the Gaussian and
differentiated Gaussian pulses, where the ADC properties were kept
constant with sampling frequency (Figs. 7 and 10). This transition now
occurs at smaller fractions of the Nyquist rate, compared to the case
with constant ADC parameters, with the ADC noise starting to dominate
at lower frequencies. The transition region is also narrower, as a
consequence of the ADC noise error contribution worsening with higher
sampling rates, instead of decreasing, as in the case with constant ADC
noise.

Fig. 13 therefore allows us to find the optimal trade-off between
sampling rate and ADC resolution for the best achievable SNR perfor-
mance when measuring the pulse energy.

(38)

5. Conclusions

The analysis method presented in this paper allows calculation of
the Signal to Noise Ratio (SNR) when measuring the energy content
of an arbitrary, time limited waveform, considering the sampling fre-
quency and effective resolution of the ADC used. It can serve as a
powerful design tool to optimize the ADC choice for achieving the
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Fig. 13. SNR of the pulse energy measurement as function of the ADC sampling
frequency for a charged particle bunch detected by a directional coupler BPM.

minimum error on the measurement of the energy content of a pulsed
signal. Two distinct regimes are observed, one at lower frequencies
where the SNR of the energy measurement is limited by the effect of
sampling distortion, and one at high frequencies where the error is
dominated by the ADC noise. The exact transition frequency between
these two regimes depends on the bandwidth of the input signal and the
associated ADC choice. The optimum sampling frequency is observed to
lie well below the Nyquist rate when taking into account realistic ADC
parameters for the frequency regime discussed in this paper. Although
discussed in the context of measurement of beam position for particle
accelerators the method has applicability for any technique relying on
measuring the energy content of pulsed waveforms. This analysis is
based on the relationship between the power calculated in time and
frequency domain, starting with the expression of the signal spectrum
as a discrete and finite sequence. This gives the method a lot of flexibil-
ity, allowing it to be applied to any pulsed waveform, described either
as an analytical function or in an oversampled numerical form from a
computation or a measurement. As all the analytical calculations only
involve manipulation of a finite number of coefficients, the analysis can
be easily implemented in any numeric environment.

CRediT authorship contribution statement

Irene Degl’Innocenti: Conceptualization, Methodology, Software,
Writing - original draft. Andrea Boccardi: Conceptualization, Method-
ology, Writing - reviewing and editing, Supervision. Luca Fanucci:
Writing - review and editing, Supervision. Manfred Wendt: Concep-
tualization, Writing - review and editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Proofs of sampling distortion error analysis

A.1. Proof of expression (19)

The sampling distortion error term ep_ appears in Eq. (18) in the
form:
N-1

€p,, =2 z | X, 11X x| - cos (¢ — dy_n — 27 F;7)
k=0

(A1)
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Remembering that cos(a — b) = cos acos b+ sinasin b, the cosine term in
the sum can be split:

cos (d)k — N — ZJFFST) = cos(¢p; — ¢y_n)cosLrF,r)

+ sin(y, — dy_n) sin2rF,7) (A.2)

The sampling distortion error term ep,  can then be rewritten as:

N-1
ep,, = 2c0sQ2nF,7) Z XX w ] - cos(dy — dr_n)
k=0
N-1
+ 2sinQ2rF,7) Y 1X; |1 Xy | - sin(ey — )
k=0

(A.3)

The arguments of the two series are now deterministic function of the
signal spectrum and of the sampling frequency. To get a more synthetic
expression, the following coefficients are defined:

N-1
Ax, N = Z [ X1 X—n | - cos(dp — dy_n)
k=0
N-1
By, n = [ X1 XN - sin(dy — dp_n) (A.4)
k=0

A.2. Computation of sampling distortion error mean and variance

The sampling delay r is a continuous uniform random variable
defined in the interval between 0 and one sampling period ¢, = T/N
(r = U[0,7,]) and so the probability density function is:

1
ﬁm={%
0

Since the sampling distortion error €p,. is a function of the random
variable z, it is a random variable and it is possible to calculate its
first and second moment, respectively y,; . (the mean value) and , .
Starting from expression (19):

0<t<t

otherwise

He = E{GPTJ}

+o0
/ (Ax, N -2cosQrFin)

©

+BXk,N - 2sin(2r Fyt)) - f.(D)dt
1/F,
=24y, N / cos(2n Ft) - Fdt
0
1/F,
+2By, N / sin(2z Ft) - F,dt
0

0+0
=0 (A.5)

tre = Efeg )

2
= E((Ax,v -2¢05QnF) + By, y - 25inQxFn) )

= E{4A§(k,N - cos?(2nF 1)}
2 )
+E{4BX,“N -sin“(2z Fgt)}

+ E{8Ax, nByx, ncosQrF1)sin2zFt)}
= E{2A§(k’ ~ - (1 +cos(dnFyt))}

+E{ZB§(‘“N (1 = cos(4x F,1)))

+E{4Ay, yBy, ysin(dnF,)}
=245 N +O0+2B3  +0+0

2 2
2 (A3 + BYn)

The variance ‘752 is the difference between the second moment and
the square of the first moment; the latter being zero, it is equal to the
second moment y, . (A.6).

(A.6)
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A.3. Probability density function of the sampling distortion error on the
pulse power estimation

The explicit expression of the power estimation error (19) as a
function of the random variable = and the probability density function
of 7, f,(t), are known. The probability density function of ¢ P, Can then
be calculated, since it is a transformation of r and the fundamental
theorem of random variable transformation can be applied:

f:@)

(e)= (A7)
14©= X i
where ¢, is the set of the solutions to the equation e(r) = ¢:
Ax, N - 2c08Q2rF1)+ By, y - 2sinQrFi) =¢ (A.8)
The Eq. (A.8) can be solved and has two solutions:

2 2
4By +1[16A% \ +16B%  —4e?
tiy= arctan (A.9)
Fym 2 <2Axk,N + 5)

Combining the power estimation error expression (19), the solutions
described in the expression (A.9) and the probability density function
of the uniformly distributed sampling delay with the probability density
function transformation formula (A.7), the result is the probability
density function for the power estimation error (A.10), as a function of
the signal, the sampling frequency and the sampling delay. See Fig. 4
for the probability density function of the Gaussian pulse described in
Section 4.1.

fe(e) = d(py(e)™" +d(py(e)) ™!
d(p) = |4n (BXk,N cos(2 arctan(p)) — AXk,N sin(2 arctan(p))) |

4By, v £ [164% \ +16B% | —4e?

XN
pia= (A.10)

2 (ZAXk’N + e)

Appendix B. Propagation of the Gaussian noise in the power esti-
mation

The system noise is modeled as a zero-mean real Gaussian variable
v, with variance o2, added to the signal. The sampling delay is a
random uniformly distributed variable, so the sampled sequence is not
deterministic. The power estimation, affected by noise, is expressed
in Eq. (24). The error term due to noise is:
| N
2 &
n= N Z (vn +2x,,v,,) (B.1)
n=0
Before calculating the mean value and the variance of the error #,
here are listed the hypotheses on the signals:

1. The noise variable v; is zero-mean;

2. The observations of the noise variable v; are independent and
identically distributed;

3. The signal samples %; and the noise variable v; are independent.

And here are remembered some of the properties of the expectation,
variance and covariance operators used below:

1. If X and Y are independent random variable, the expectation of
their product is the product of their expectations:

E[XY]=E[X]E[Y] (B.2)

2. If X and Y are independent random variable, the variance of
their product is:

Var [XY] = (Var [X]+E[X]?) (Var [Y]+E[Y]*)
-E[XPE[Y] (B.3)
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3. The covariance of two random variables X and Y can be ex-
pressed as:

Cov[X,Y]=E[XY]-E[X]E[Y] (B.4)

4. The variance of the sum of random variables X; can be expressed
as:

Exploiting the linearity of the expectation operator, the expectation
of the error n can be manipulated as follows:

Nl | Nl
— 2 £
uy =E [N ,E')V"+N ;2xnvn:|

1 N-1 1 N-1
n=0 n=0

Since the noise variable v; is zero-mean, the expectation of its squared
value is its variance o2. Then, being the signal and the noise in-
dependent, the expectation of their product is the product of their
expectations, and the noise expectation is zero by definition. So the
value of the expectation of the distortion 5 on the power estimation,
due to noise, is:

ST vax]2 T Covlxox)

i=1 I<i<j<N

(B.5)

(B.6)

Hy = o2 (B.7)

\

The variance of the error # can be manipulated as well, applying
the variance operator properties:

3 (2 +zxnvn>]

n=0

62 = Var [L

n N

1 N-1

= N2 Z Var [v% + 2)?nv,,]
n=0

2
+ﬁz

0<n<m<N-1

(B.8)
Cov [vf +2%,v,, vﬁl + 2)%mvm]

Breaking the expression, each term of the sum can be further simplified.
About the argument of the first sum:

Var [vz + 2)%,,\/,,] = Var [vﬁ] + Var [2)?,,\/"] + Cov [vﬁ 2)?,,\/,,] (B.9)

The covariance term in (B.9) results to be 0 under the hypotheses on
the noise variable (the odd moments of a Gaussian variable are 0) an
on the independence between noise and signal:
Cov [v2,2%,v,] =E [2%,v}| - E [V}] E [2%,v,]

=E [2%,] E[v)] - 262E [%,] E [v,]

=0-0

=0 (B.10)

Moving the analysis to the argument of the second sum in (B.8),
applying the property (B.4), it results:
Cov [vi +2%,v,, vfn + 2)?,,,\/,,,] =
=E [vivﬁl +2%,v, vi + 2%, vmvpzl + 4)?,,\/,,)?,,,\/,,,]
—E [V} +2%,v,| E V2 +2%,v,] (B.11)

Applying then property (B.2) and the linearity of the expectation oper-
ator, remembering that v, is an i.i.d. variable and that it is independent
with respect to the signal %;, it follows that:

Cov [vi +2%,v,, vrzn + 2)?mvm] =
= E[E[] +E2%,]E W] E[v]

+E[2%,] E [v,| E [v2] + E [4%,%,] E [v,] E [v,]

= (B[] +E2%,]E[v]) (B[] +E [2%,] E [v.])

(B.12)

Since the noise v; is zero-mean, the covariance is finally zero:

Cov [v?‘ +2%,V,, vrzn + 2)?mvm] =

10

Nuclear Inst. and Methods in Physics Research, A 984 (2020) 164571

=E[E]+0+0+0- (E[v2] +0) (E[V2] +0)
=0 (B.13)

So, using the results (B.9), (B.10), and (B.13) to simplify the expres-
sion (B.8), the variance of the error 5 can be written as:

N-1 N-1
o = =3 X, Var[2] + o X Var [25,,] (B.14)
n=0 n=0

The argument of the first sum in (B.14), the variance of the square of
the zero-mean Gaussian variable v,, is a function of the variance o2:

Var [v2] = E[(v2 = o?)’]
=E [vf,' + 63 - 2v363]
=E [v;‘] + 0'3 —-2E [vﬁ] 03
= 30’3 + o"v‘ — 20'50'3

=20
\2

(B.15)

The argument of the second sum in (B.14), the variance of the prod-
uct between the signal sample and the added noise, can be rewritten

Var [28,v,] = (Var [28,] + E [28,]%) (Var [v,] +E[w]?)

~E[2%,]°E v

(Var [2%,] +E [22,]°) (o2 +0) ~E[2,] -0

4(Var [5,] +E[5,]) o (B.16)

The signal sample %, is the signal sample x(nt, + ) with sampling
delay 7, random uniformly distributed variable in the range [0, ¢,]. The
expectation and variance of %, are unknown. A possible assumption is
that x(nt,+7) might be linearized on the sampling interval and the mean
value would be x((n+1/2)t,). A second assumption is that the variance
of the single sample caused by the sampling phase variation is much
smaller than the sample mean value. Both approximations’ accuracy
increases with the sampling frequency, where the noise contribution
gets significant with respect to the sampling distortion contribution
to the power estimation error. Under these assumptions, the error 5
variance can finally be expressed and approximated as:

(Var [2,] +E [,])

N-1
2_ 2 4,4
O'r’ = NO'V =+ ﬁdv
N-1 ,
2 x(m+1/21)

n=0

24,4
N oy N2 oy
2 4, 4 5

NO'V + NGV PT
The sum of the square of the N samples of the noiseless signal is the
estimator of the pulse power P, in the noiseless case. Approximating
such a sum with Py itself is the more accurate the higher is the sampling
frequency. What is neglected with this approximation is in the order of

the product of the noise power with the single sample variance.

13

14

(B.17)
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