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Modification of Premises for the Black Hole Information Paradox
Caused by Topological Constraints in the Event Horizon Vicinity

Janusz Edward Jacak

Institute of Theoretical Physics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27,
50-370 Wrocław, Poland; janusz.jacak@pwr.edu.pl

Abstract: We demonstrate that at the rim of the photon sphere of a black hole, the quantum statistics

transition takes place in any multi-particle system of indistinguishable particles, which passes through

this rim to the inside. The related local departure from Pauli exclusion principle restriction causes a

decay of the internal structure of collective fermionic systems, including the collapse of Fermi spheres

in compressed matter. The Fermi sphere decay is associated with the emission of electromagnetic

radiation, taking away the energy and entropy of the falling matter without unitarity violation. The

spectrum and timing of the related e-m radiation agree with some observed short giant gamma-

ray bursts and X-ray components of the luminosity of quasars and of short transients powered by

black holes. The release of energy and entropy when passing the photon sphere rim of a black

hole significantly modifies the premises of the information paradox at the falling of matter into a

black hole.

Keywords: black hole physics; non-thermal radiation mechanisms; information paradox

1. Introduction

Since the formulation of black hole termodynamics initiated by the illuminating papers
by Hawking and Bekenstein [1,2] about the entropy of a black hole, the problem of the fate
of the information (related to entropy) encoded in matter falling into a black hole is still at
the center of interest [3]. The proposed Hawking–Unruh radiation [1,4] has been proven
to be fully random [5], and thus could not carry out the information specific to the matter
consumed by the black hole, which causes an information paradox related to the irreversible
loss of this information. The proposed next concept of the creation near the event horizon
of particle–antiparticle pairs, with one carrying positive energy to infinity and the other
carrying negative energy into the black hole (leading to its evaporation), does not solve
the problem because of the quantum entanglement property called monogamy (particles
cannot simultaneously participate in double entanglement). Particles and antiparticles are
entangled, and Hawking radiation must be also entangled in consecutive time instants (a
new radiation with an old one) [6]; hence, to avoid such multiple entanglement, a breaking
of the particle–antiparticle entanglement at the event horizon of a black hole has been
suggested. Immediately, broken entanglement between the infalling and outgoing partner
particles would release energy, creating in this way a searing firewall at the event horizon
of a black hole [6]. Neither Hawking radiation nor firewall have been observed as of
yet. Some observational evidence of fuzzy black hole horizon searched in gravitational
wave signature obtained from LIGO observations of bouncing black holes [7] were finally
excluded because they occurred beneath the sufficient statistical significance level [8].

The information paradox remains at the center of the debate on quantum gravity,
and various attempts are being made to reconcile it with quantum unitarity. There are
searching effects which would be able to explain a unitary component of the thermal
Hawking radiation [9–14]. In [9], the particle–antiparticle mechanism is repeated with
time symmetry broken but with the negligence of entanglement monogamy. In [10,11]
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several assumptions are made about black hole quantization toward relativistic quantum
mechanics and string theory [11], which might not be evident from the point of view of
proper (yet not formulated) quantum gravity. More explicit quantization of black holes
in terms of the gravitational Bohr-like atom has assumed a potential for the black hole
Schrödinger equation as ∼− 1

r (where r is the distance to the gravitational singularity) [14],
which is, however, with the negligence of the spacetime curvature and related term ∼− 1

r3

dominating the potential near the event horizon. In the latter potential, no bounds from
below stationary states (atomic-like) exist (they do not exist for any exponent α > 2 in
potential − 1

rα , for which a particle unconditionally falls onto the center, not creating an
atom-like structure). Thus, arguing about quantum hairs or the atom-like model of black
holes is not complete in the view of general relativistic physics. Nonetheless, the idea
of quantum hairs due to gravity is popular; it needs, however, a further development of
gravity quantization. In addition, from observations of gravitational waves [7], no signature
of quantum hairs of black holes has been noticed [8].

In the present paper, we will contribute to the current discussion on the information
paradox for black holes [1,3,6], taking advantage of the observation that close to the event
horizon of a black hole, the homotopy class of particle trajectories changes itself qualita-
tively, and this topological property causes a local perturbation of quantum statistics in
any multi-particle collective system of indistinguishable identical particles passing inward
from the rim of the photon sphere (in the distance of 1.5rs from a central singularity of a
Schwarzschild black hole, where rs is the event horizon radius) [15]. The related quantum
collective statistics transition is accompanied by the release of energy and information
due to the local departure from Pauli exclusion principle constraints imposed on matter
when passing the photon sphere rim. In particular, the Fermi spheres of fermions in dense
quantumly degenerated multi-particle systems of identical indistinguishable fermions
collapse, which is associated with the emission of electromagnetic radiation.

Below, we present this effect in more detail, including the simulation of the Fermi
sphere decay at the collapse of 2.3 M⊙ neutron star merger (at Tolman–Oppenheimer–
Volkoff (TOV) stability limit [16,17]) associated with the release of ca. ∼1047 J of electro-
magnetic radiation in a sub-second time period in agreement with some observed short
giant gamma-ray bursts. Such bursts are equivalent to the conversion of a mass into the
electromagnetic radiation energy with the efficiency of ca. 30%, highly exceeding the
efficiency of nuclear fusion in stars, being of the order of 0.7%. A similar extreme efficiency
of the mass-to-radiation conversion, reaching 30%, can be attributed also to the collapse
of Fermi spheres of electrons and protons in accretion discs passing the photon sphere
rim of superluminous quasars powered by giant black holes ∼109 M⊙ and consuming
ca. 10 M⊙ per year [18]. The decay of Fermi spheres of electrons and protons in a stable
flow of the highly compressed plasma in an accretion disc passing the photon sphere rim
supplements the total luminosity of a quasar accretion disc with ∼1040 W [18–21] of the
non-thermal radiation from the vicinity of the event horizon not previously accounted for
in conventional models of matter accretion by black holes. This non-thermal radiation
is concentrated mostly in the spectral range of γ radiation (up to GeV) without a need
for the Comptonization (inverse Compton effect in hot plasma) of soft thermal photons
in more remote regions of an accretion disk conventionally assumed to fit astrophysical
observations [19,22]. This allows to avoid the problem of the improbable and extremely
high temperature of plasma needed for photon Comptonization in the vast accretion discs
of giant quasars.

We point out the significance of the described quantum statistics transition when
passing the photon sphere rim for the problem of an information and entropy behavior
(information paradox [1,2,4,5] and firewall concept [3,6]) for matter falling into black holes.

The paper is organized as follows. In the following paragraphs of Methods (Section 2),
we detail the topological effect in the vicinity of general relativistic gravitational singularity.
Next, within Results (Section 3), using quantum mechanics approach, we draw out a
conclusion related to the transition in quantum statistics in multi-particle systems passing



Entropy 2024, 26, 1035 3 of 27

the photon sphere rim and rooted in the trajectory homotopy qualitative local change in
this region. The Section 4 embraces a consideration of the high-energy effects associated
with the described quantum statistics transition and their comparison to astrophysical
observations. Section 5 for the premises of the information paradox and the concept of
a black hole firewall are finally presented. Some quantum mechanics methods needed
for the reasoning in the developed model are summarized in the Appendices, including
topology-type foundations for quantum statistics in collective systems of indistinguishable
particles subjected to external constraints.

2. Methods

2.1. Change in Trajectory Homotopy Class When Passing the Photon Sphere Rim

Quantum topological effects are rooted in the algebraic topology [23] properties of the
classical counterparts of quantum systems and expressed by homotopy groups related to
the manifolds on which the dynamics of the particular classical system takes place [24].
When quantum effects concern the quantum statistics of identical, indistinguishable par-
ticles, then the homotopy group π1 (frequently called the fundamental group) of the
multi-particle classical configuration space for the specific manifold on which the collective
multi-particle system resides is of primary importance [25]. The π1 group of the multi-
particle configuration space is called the braid group [25–29] and collects non-homotopic
classes of closed loops of multi-particle trajectories in the configuration space, including the
indistinguishability of identical particles (non-homotopy means that loops from different
classes cannot be continuously deformed one to another). The braid groups allow us
to distinguish between various quantum partners of the same classical particles like of
fermions, bosons, anyons and composite topological particles (e.g., composite fermions or
composite bosons). The difference between these types of quantum particles is distinct and
specific for each type of scalar unitary representation of the classical braid group, which
describes all exchanges of indistinguishable particles on some manifold (the domain of
classical particle dynamics) because the π1(A) group is the collection of closed loops in the
space A. If A is the multi-particle configuration space of N indistinguishable particles (as
for braid groups), then bundles of N individual particle trajectories linking particle distri-
butions, which differ only in the various numbering of particles, are closed loops due to the
indistinguishability of particles—thus, braids display all possible exchanges of particles.
Quantum multi-particle wave functions must transform according to the scalar unitary
representation of a particular braid (an element of the braid group), the one which defines
some pattern of particle exchanges (the renumbering of them). Though the renumbering of
the arguments of the multi-particle wave function is a simple permutation of argument
indices, the corresponding braid is not this permutation, in the general case, and includes
also topological constraints specific to the manifold on which the particles are located.
This reveals the notion of quantum statistics associated with the unitary representations of
braid groups rather than of permutation groups (but for 3D manifolds braid groups equal
to permutation groups). Braid groups have usually many different scalar unitary repre-
sentations; thus, to the same classical particles, different quantum ones may correspond.
For 3D manifolds on which classical particles can be located, the braid groups are always
permutation groups [25], with only two possible different scalar unitary representations,
symmetric and antisymmetric, describing bosons and fermions, respectively. For 2D mani-
folds, the braid group is different—called Artin groups (manifold being the 2D plane [30])
with more numerous scalar unitary representations giving rise to anyons, particles with
fractional statistics [29,31,32]. More details are given in Appendix A including also the
precise definition of quantum statistics in terms of Feynman path quantization [27,33,34].

The general relativistic curvature of the spacetime gives also an occasion to study
the quantum statistics of indistinguishable identical particles on manifolds with various
locations with respect to the gravitational singularity of a classical black hole. Changes
in the homotopy properties of multi-particle trajectories in local manifolds approaching
the event horizon of a black hole translate into quantum phenomena experienced by any
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matter built of indistinguishable particles and being consumed by black holes. To gain
insight into such effects, the homotopy of classical trajectories of particles approaching the
black hole event horizon must be first analyzed.

Let us consider the availability of local closed loops for trajectories of particles in
various regions of the upper vicinity of the event horizon for a local multi-particle system
of free massive identical and indistinguishable particles suitable to define their quantum
statistics. The analysis of the trajectory behavior of free particles resolves itself by the
consideration of geodesics in the Schwarzschild metric [35],

−c2dτ2 = −
(

1 − rs
r

)

c2dt2

+
(

1 − rs
r

)−1
dr2 + r2(dθ2 + sin2θdφ2),

(1)

with rs =
2GM

c2 is the Schwarzschild radius (event horizon radius) for the black hole with
the mass M (G—the gravitational constant, c—light velocity in vacuum). Geodesics can be
found via the conventional solution (cf. Ref. [36]) of the Hamilton–Jacobi equation for a
particle with the small mass m in spherical rigid stationary coordinates (r, θ, φ, the same as
for a remote observer, in which the Schwarzschild metric (1) is written; τ in this equation is
the proper time of the particle). These trajectories (considered in the θ = 0 plane without
any loss of generality because of the rotational symmetry) have the form [36], for the
trajectory radius,

ct = E0
mc2 ×

∫

dr

(1− rs
r )

√

( E0
mc2

)2
−
(

1+ L2

m2c2r2

)

(1− rs
r )

,
(2)

and for the azimuthal angle,

φ =
∫

dr
L
r2

[

E2
0

c2 −
(

m2c2 +
L2

r2

)

(

1 − rs

r

)

]−1/2

, (3)

where L and E0 are particle angular momentum and energy (integrals of the motion),
respectively. Equation (2) is often rewritten in a differential form,

1
1 − rs/r

dr

cdt
=

1
E0

[

E2
0 − U2(r)

]1/2
, (4)

with the effective potential,

U(r) = mc2
[

(

1 − rs

r

)

(

1 +
L2

m2c2r2

)]1/2

. (5)

The square of this potential is plotted in Figure 1, illustrating the main features of the
black hole singularity neighborhood. From this figure, we note that the squared potential
is steeper at r < 1.5rs the greater the angular momentum L (this property of the folded
spacetime near a black hole is often interpreted such that close to the event horizon, the
centrifugal force additionally attracts a particle, quite oppositely to the classical Newton
gravitation center).

Using Equation (5), one can write out the conditions for circular orbits, U(r) = E0,

in the extremes of the potential, ∂U(r)
∂r = 0, in the following form [36]:

E0 = Lc
√

2
rrs

(

1 − rs
r

)

,

r
rs
= L2

m2c2r2
s

[

1 ±
√

1 − 3m2c2r2
s

L2

]

,
(6)

where the sign + in the second equation corresponds to stable orbits (at the minimum of
U(r)) and the sign − to unstable ones (at the maximum of U(r)). Particular stable and
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unstable circular orbits depend on the angular momentum L and on the energy E0 of a
particle. In Figure 2, the radii of stable and unstable circular orbits of the particle in the
vicinity of the event horizon are shown as functions of the angular momentum L, which
are determined by the solution of the second equation in the pair (6)—for sign +, the upper
branch (the blue line in the figure) gives the radii of stable circular orbits. This branch
terminates in the point A at r = 3rs—i.e., the innermost stable circular orbit exists at r = 3rs

for L =
√

3mcrs and E0 =
√

8
9 mc2 (the energy is determined by the first equation of the

pair (6)). The innermost unstable circular orbit (in the solution of the second equation
of (6) with the sign −) occurs at r = 1.5rs for L, E0 → ∞. The branch for unstable circular
orbits (marked by red line in the figure) begins at point A and terminates asymptotically in
infinity at the radius 1.5rs. Below this radius, no circular orbit exists. Though Equation (6)
is written for a particle with mass m, the above derivation can be repeated for zero rest
mass particles (like photons). The innermost unstable circular orbits occurs at r = 1.5rs for
all particles regardless of their mass (also for photons with zero rest mass). This universal
limiting orbit is frequently called the photon sphere rim (the photon sphere extends from
the rim to the event horizon).

0 1 2 3 4 5

0

2

4

-2

square of the effective potential Eq.(5)

(U
/m

c
2
)2

r/rs

l=2

l=3

l=0.2

l=0.5

l=5

Figure 1. The squared effective potential (5) for some exemplary values of reduced angular momen-
tum l = L

mcrs
(dimensionless). With the increase in L, the squared potential is steeper in the region

r ∈ (0, 1.5rs) (singular at r = 0). The event horizon at r = rs and the innermost unstable circular orbit
with r = 1.5rs are marked.

The even more important property of the photon sphere rim (the innermost unstable
circular orbit) is the unavoidable falling of any particle toward the event horizon if it was
passing the photon sphere rim inward. This property follows directly from the motion of
Equations (2) and (3). They describe a specific motion of particles in the region rs < r < 1.5rs

in the form of unidirectional short spirals directed toward the event horizon for any particle
passing the photon sphere rim inward. These spirals are exemplified in Figure 3 for several
values of motion integrals L and E0 (l = L

mcrs
and e = E0

mc2 ). The reverse traveling of
particles is also possible (which means the escape of a particle from the photon sphere),
but this requires a change in the initial conditions (to inverse velocity) unavailable for free
particles falling from the outside across the photon sphere rim as is considered here. All
particles entering the photon sphere from outside must fall unavoidably toward the event
horizon—their movement is locally unidirectional—as is visualized in Figure 3. Falling
particles achieve the event horizon at t = ∞ as is noticeable from Equation (2) (thus,
the event horizon in non-observable for any remote observer), but if one changes to the
proper time, then the event horizon is passing by falling particles at finite proper time
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τ and the whole dynamics of these particles finishes in a central singularity of a black
hole also after a finite τ period. However, below the event horizon, any change in the
initial conditions does not allow particles to escape this region. The event horizon is an
ostensible singularity (visible in the Schwarzschild metric (1) at r = rs) and can be removed
by changing to non-stationary or non-rigid coordinates as was demonstrated by various
redefinitions of the metric, e.g., [37–39]. This arbitrariness in the description of the same
folded spacetime follows from the freedom in the selection of time coordinates versus space
ones (corresponding to the various slicing of the same folded spacetime into spatial and
temporal pieces). In particular, the Schwarzschild metric (1) is suited to properly describing
the outer region with respect to the event horizon in the rigid stationary coordinates,
the same as a remote observer. These coordinates are especially convenient to analyze in
a transparent manner the homotopy of trajectories of free particles falling onto the event
horizon from outside of the photon sphere, though the homotopy of these trajectories is the
same in any other coordinates (regardless of the metric choice).

1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

local loops from crossing conic sections

local loops from crossing conic sections
1.5

A

circular orbits

L/mcrs

r
/r

s

4.0

stable circular orbits

unstable circular orbits

no local closed loops no citcular orbits

Figure 2. Radii of stable (blue line) and unstable (red line) circular orbits versus an angular momen-
tum of a particle near the general relativistic gravitational singularity in the Schwarzschild metric (1)
obtained by the solution of the second equation in the pair (6). The innermost stable circular orbit
occurs at r = 3rs (yellow dashed horizontal). The coordinates of the point A are L =

√
3mcrs and

E0 =
√

8
9 mc2. The innermost unstable circular orbit occurs at r = 1.5rs for infinite values of L and

E0—marked in the figure by a brown dashed horizontal asymptote. Beneath the innermost stable
circular orbit, neither a circular nor any local closed orbit exists. The event horizon and the photon
sphere rim (the innermost unstable circular orbit) are shown for illustration.

Using Equations (2) and (3), one can analyze the trajectory behavior in various sectors
of the event horizon vicinity. For r > 1.5rs, any free-particle trajectories have the shape of
conic-like sections. Distinct from conic sections for Newton-type gravitational singularity,
in Schwarzschild geometry, some additional precession of ellipse occurs (like of Mercury in
the sun’s gravitation), which does not, however, change the homotopy class of trajectories
in this region. Conic-like sections can have both opposite orientations of the particle
movement. In addition, there always exist two distinct and oppositely oriented conic-like
sections, which can mutually cross in two different closely located points, creating local
arbitrarily small closed loops (like an ellipse intersecting with a circle or hyperbole, and
so on). Such a possibility defines the trajectory homotopy class of these trajectories for
multi-particle systems beyond the photon sphere rim. In cross-points of two oppositely
oriented conic section-like trajectories, two different particles can be placed, and the local
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loop built of these conic-like section pieces displays the exchange of these particles—in
other words, exchanges of particle pairs are possible beyond the photon sphere rim.

black hole

photon sphere rimevent horizon

rs 1.5 rs

one-way

spirals

conic

sections

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.1

0.2

0.3

0.4

r/rs

ɸ

spirals in variables ɸ versus r

l=1,e=1

l=1,e=1.1

l=1,e=1.2

l=1,e=1.3

Figure 3. Trajectories of particles which have crossed the photon sphere rim inward, have the form of
short spirals directed onto the event horizon—this follows from the solution of Equation (3) in the
radius sector r ∈ (rs, 1.5rs). In the figure, there are shown these spirals for several initial conditions
and motion integrals L and E0 as specified in the Inset (in which spirals are shown in the coordinates—
azimuthal angle versus radius). Though unidirectional spirals can mutually intersect (for opposite
signs of angular momenta), it is impossible to close any loop built from their pieces. It means that
particles in the photon sphere cannot mutually exchange positions if they belong to the multi-particle
system which has passed the photon sphere rim inward. The timing of traversing these spirals is
defined by Equation (2) written in the ordinary time of a remote observer. Changing to the proper
time (or to any other curvilinear coordinates in different metrics) does not change the homotopy class
of these spirals—local closed loops are not admissible beneath the photon sphere rim in contrary
to the upper neighborhood, where arbitrary small local loops are possible due to the crossing of
conic sections.

Nevertheless, beneath the photon sphere rim for rs < r < 1.5rr, Equations (2) and (3)
do not describe conic-like sections any more, but define only short spirals as admissible
free particle trajectories—as illustrated in Figure 3. These spirals are unidirectional for
all particles in any local multi-particle system passing the photon sphere rim inward.
From pieces of these unidirectional spirals, it is impossible to create a local closed loop.
Beneath the photon sphere rim, there do not exist local closed loops for mutual particle
exchanges because it is impossible to build such loops from even an arbitrarily large number
of pieces of one-way spirals approaching the event horizon. This is a specific property of
general relativistic gravitational singularity and is easily noticeable in the Schwarzschild
metric, which properly describes the upper neighborhood of the event horizon in the
coordinates of a remote observer. For such an observer, the time t needed to approach the
event horizon by any particle is infinite, but the trajectory shape (and a related homotopy
class of trajectories) is independent of the motion rate. The homotopy class is the same if
one changes to the proper time τ, which allows to describe the passing of a particle by the
event horizon within a finite period of the proper time and the termination of a particle
movement in the central singularity also after a finite proper time period. This can be
illustrated in non-stationary metrics, e.g., by Kruskal–Szekeres [37,38] or in metrics by
Novikov [39]. The homotopy of trajectories is the same in any coordinates (is immune
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to the deformation), but the selection of the Schwarzschild metric (1) is convenient to
analyze trajectories without a need to modify Feynman path integrals written in stationary
and rigid coordinates of a remote observer (cf. Appendix A) convenient to quantize
classical multi-particle systems and to identify quantum statistics. The Schwarzschild
metric (1), similar to other metrics, displays the same gravitationally folded spacetime,
and various metrics correspond only to a different slicing of the same curved spacetime
into its spatial and temporal components. This gravitationally curved spacetime has an
inherent property, which is that it is not admitted a description in stationary rigid spatial
coordinates simultaneously with the inner and outer regions with respect to the event
horizon [36]), and the Schwarzschild metric expressed in time-independent (stationary)
spatial coordinates, the same as of a remote observer, is suited to the upper vicinity of the
event horizon.

Below the photon sphere rim for r ∈ (rs, 1.5rs), no closed local loops built of pieces
of one-way short spirals given by Equations (2) and (3) exist (cf. Figure 3), whereas above
this rim (r > 1.5rs), trajectories are of the conic section type, allowing arbitrarily small
closed loops built of trajectory pieces. This is a qualitative change in the homotopy class
of trajectories in multi-particle systems of free indistinguishable identical particles when
passing the photon sphere rim.

The change in the homotopy class for particle classical trajectories in multi-particle
systems of identical indistinguishable particles described above is of fundamental sig-
nificance for the quantization of such multi-particle systems and for the assigning of a
quantum statistics to particles in these systems. Quantum statistics is topologically con-
ditioned [27,32,40], and is assigned to identical indistinguishable particles according to
a scalar unitary representation of a braid group [25] describing all accessible exchanges
of positions of these particles. Usually, braid groups have multiple scalar unitary repre-
sentations defining different quantum statistics for the same classical particle archetype.
The braid group is the first homotopy group π1 of the multi-particle configuration space of
a system [23,25,26]. For N identical indistinguishable particles placed on some manifold
M, the configuration space FN is defined as follows:

FN = (MN − ∆)/SN , (7)

where MN = M×M× · · · ×M is the N-fold product of the manifold M to account for
positions of all particles equally, ∆ is a diagonal subset of MN , which contains points with at
least two particle coordinates coinciding. ∆ is removed from the coordination space in order
to assure the particle number conservation. The division of the space by the permutation
group SN introduces the indistinguishability of particles and according to the definition of
the quotient space, points in FN , which differ in particle numbering, only are unified into a
single point. The braid group is defined as π1(FN) (the first homotopy group [23,25,26])
and according to the definition, it collects non-homotopic classes of closed loops in FN .
Loops from different non-homotopic classes cannot be deformed in a continuous manner,
one into another, without cutting. Loops from π1(FN) are multi-strand trajectories in FN ,
joining points with different numbers of particles (unified into a single point in FN) and
thus describe all possible interchanges of particle positions on M. The braid group π1(FN)
is a multi-cyclic group generated by a finite set of generators, {σi, i = 1, . . . , N − 1}, which
are elementary braids—σi is a braid corresponding to the exchange of the position of the
i-th particle with the (i + 1)-th one when other particles stay in rest (numeration of particles
is arbitrary but fixed) [25,26]. For 3D spatial manifolds in unfolded spacetime, σ2

i = e
(neutral group element) for all i; hence, for three-dimensional manifolds, π1(FN) = SN

independently of a manifold form [25,26]. There exist only two different scalar unitary
representations of SN defined on generators, σi → eiπ or ei0, corresponding to fermions
and bosons, respectively. They correspond to two different quantization ways of the same
classical particles on 3D manifolds.

In the Schrödinger quantum mechanics representation, the multi-particle wave func-
tions must transform according to a scalar unitary representation of the braid when wave
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function coordinates (classical positions of particles on a manifold M) exchange in a way
defined by this particular braid. As for 3D manifolds, braids are permutations only, and
thus multi-particle wave functions must be antisymmetric for fermions and symmetric for
bosons. Note, that even for free particles, the multi-particle wave functions for fermions
as well for bosons are quantumly entangled states corresponding to non-separable func-
tions in N-particle tensor productive Hilbert space. This entanglement is not induced by
any interaction.

For 2D spatial manifolds, braid groups are different from SN . In the 2D case, σ2
i ̸= e,

and braid groups are infinite (but countable, as the generator set {σi, i = 1, . . . , N − 1} is
finite). For M = R2 (a plane), the braid group is the infinite Artin group [26,30]. The Artin
group has also an infinite number of different scalar unitary representations σi → eiα with
α ∈ [0, 2π). Each α defines a different sort of quantum particle—so-called anyons [31].
Anyons satisfy fractional quantum statistics.

Topological constraints imposed on multi-particle trajectories affect quantum statistics
(as exemplified above in the case of a two-dimensional manifold defining a collective
system). Specific homotopy restrictions for trajectories close to a gravitation singularity in
spacetime folded along the general relativity Einstein’s equations also modify quantum
statistics for particles on any local manifold in the vicinity of the event horizon.

2.2. Quantum Statistics Transition in Multi-Particle Systems Passing the Photon Sphere Rim of a
Black Hole

The formal mathematical definition of the quantum statistics (valid also in the relativis-
tic case) can be formulated within the quantization by Feynman path integration [33,34]
extended for multi-particle systems of identical indistinguishable particles [27,41,42]. A
path integral for N indistinguishable identical particles has the form [27,41–43]

I(Z1, t1; Z2, t2)

= ∑
l∈π1

eiαl
∫

dλle
iS[λl(Z1,t1;Z2,t2)]/h̄, (8)

where points Z1 = (z1
1, . . . , z1

N) and Z2 = (z2
1, . . . , z2

N) are two different points in multi-
dimensional configuration space FN that define the start and final points for the propagator
I(Z1, t1; Z2, t2) between time instants t1 and t2, respectively. This propagator is the matrix
element of the quantum evolution operator for a whole system in the position represen-
tation (between localized states characterized by particle positions Z1 and Z2), i.e., it is
a complex amplitude of the probability for quantum transition between these localized
states. S[λl(Z1, t1; Z2, t2)] in Equation (8) is the classical action, i.e., the time integral of the
Lagrangian of the whole system along the trajectory λl(Z1, t1; Z2, t2)—this is a functional
over the path space. In the Lagrangian, an interaction can be included between particles.

To an open trajectory linking Z1 and Z2 in FN , an arbitrary braid loop can be attached
to an arbitrary intermediate trajectory point, which reflects the possibility of particle
numbering changes on the way (this is due to particle indistinguishability). The discrete
index l in Equation (8) numerates braids in the full braid group π1(FN), and eiαl , αl ∈ [0, 2π)
is the scalar unitary representation of the l-th braid (braid groups are countable; thus, l
is discrete). Different braids are non-homotopic (cannot be deformed in a continuous
manner one into another without cutting); thus, trajectories with attached braids split into
non-homotopic families without any continuous linkage. This precludes the definition of
the measure in the whole path space (because of the absence of the continuity between
sectors), and therefore, the measure in the path space can be only defined separately on
each disjoint sector of this space numbered by l—the resultant family of measures for path
integration is denoted by dλl in (8). The contributions to the path integral from all sectors
of the path domain numbered by braid group elements must be finally added with an
arbitrary unitary phase factor (unitarity is required to be consistent with the quantum
mechanics causality). These unitary factors form scalar unitary representations of the
full braid group [27]. The arbitrariness of phase factors translates into the multiplicity
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of scalar unitary representations of a particular braid group [27]. Any representation
assigns different quantum statistics for particles on manifold M [25]. For 3D manifolds
in unfolded space, the braid group is always equal to the permutation group SN , which
has two different scalar unitary representations, σi → ±1, assigning bosons and fermions,
respectively. For 2D manifolds, the braid groups are different from SN and have more
scalar unitary representations assigning anyons besides bosons and fermions [31].

The braids attached to an open multi-strand trajectory in FN must be built of pieces
of classically accessible trajectories, similarly to all paths for the Feynman integral over
trajectories [34,43]. The trajectories entering the Feynman path integral must belong to
the domain of the measure in the path space. This measure is constructed in analogy to
the Wiener measure [44] in path integrals for stochastic processes used earlier to describe
Brownian motion [41] and next extended by Feynman for quantum path integrals (with
the difference resolving itself to a complex integrand in comparison to the Wiener integral
with a real integrand). The requirements imposed on the domain of the measure in the
path space are the same for both types of integrals [41] and specify what ’summation over
all paths’ means in (8). In fact, not all paths contribute but only those which are congruent
with the measure definition (i.e., belong to the measure domain). The definition of the
measure in the Feynman path integral is the same as that for the Wiener measure [44]
and arises via the time discretization and the creation of piece-wise continuous (but not
smooth, in general) paths with fixed start and final points but with arbitrary positions of
intermediate points joining consecutive sectors of the time discretization. Here, a restriction
occurs, however—trajectory pieces on each sector of time discretization must exist as
classical attainable trajectories; otherwise, the construction of the path is ineffective, and the
corresponding path must be discarded from the path domain. Such situations have been
encountered in Brownian motions with barriers and noticed for quantum path integrals by
Pauli [41] (for more details and summary, cf. Appendix A).

In the exceptional situation where classical trajectories for particle position exchanges
do not exist on intermediate segments of the time discretization, it is impossible to define
braids except for a trivial one e (neutral group element without any path). In such a case,
the summation over l in Equation (8) disappears, and no quantum statistics can be assigned.
We encounter such restrictions in the case of any multi-particle system beneath the photon
sphere rim of a black hole.

In the case of the trajectory homotopy class occurring in the vicinity of the event
horizon of a black hole, for multi-particle systems of free particles passing inward from
the photon sphere rim, braids cannot be constructed from pieces of unidirectional spirals
defined by Equations (2) and (3) for r ∈ (rs, 1.5rs) because local loops cannot be closed here
by any number of one-way trajectory pieces (cf. Figure 3). For particles in the multi-particle
system that pass the photon sphere rim inward, no braid can be constructed except for a
trivial braid e. The multi-particle configuration space is thus simply connected here (the
term simple connectivity is addressed in the case of a space where the first homotopy group
π1 of this space is a trivial group {e}) and no quantum statistics can be assigned to particles
beneath the photon sphere rim [43,45]. If π1(FN) = {e}, then the sum over l in Equation (8)
disappears, and scalar unitary representation is only e → 1 (because e · e = e, and it holds
also for any representation), and this representation does not assign any statistics, as e does
not define any particle exchange.

This is different compared to the Newton gravitation center, for which conic section
trajectories and local arbitrarily small loops for particle exchanges are available in arbi-
trary close vicinity to the point-like gravitational center. For the Newton gravitational
center various, conic sections that are oppositely directed can cross at arbitrarily close
points, making it possible to create closed small local loops describing particle mutual inter-
changes. Even though for a large distance from the gravitational general relativistic center,
the Schwarzschild trajectories can be approximated by conic section-like curves (modified
by some additional deformation, e.g., a precession of elliptical orbits, similar to that ob-
served for Mercury in the sun’s gravitation), in close vicinity to the event horizon, conic
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section-like trajectories completely disappear below the photon sphere rim. The one-way
spirals that are accessible beneath the photon sphere rim (described by Equations (2) and (3)
as visualized in Figure 3 for rs < r < 1.5rs) do not allow the closing of a small local loop
built of even an arbitrary large number of pieces of these unidirectional spirals. Hence,
for r ≥ 1.5rs, the fermionic or bosonic quantum statistics can be assigned [25,26] in contrary
to the region r ∈ (rs, 1.5rs), where no quantum statistics is defined [43]. In this region, the
Pauli exclusion principle is locally waived off, in particular. Though geodesics defined by
Equations (2) and (3) describe the trajectories of free particles in multi-particle systems,
such systems are sufficient to define quantum statistics, as the local deformations due to
interaction between particles cannot change the homotopy class of their trajectories.

3. Results

3.1. Collapse of Fermi Spheres in Dense Systems of Fermions Passing the Photon Sphere Rim

The local decay of quantum statistics (described above) is associated with the release of
energy upon passing inward from the photon sphere rim by any multi-particle macroscopic
system of fermions structured due to the Pauli exclusion principle. This energy emission in
the form of electromagnetic radiation according to the Fermi golden rule admitted here
for quantum transitions (due to the local departure from the Pauli exclusion principle,
which outside the photon sphere blocks such transitions) takes away the entropy along
with the energy, and the particles devoid of quantum statistics create a pure quantum state
of individual particles which cannot interchange their positions, like in an ideal crystal
invoked in the third law of thermodynamics by Nernst. The matter that next crosses
(within a finite length of the proper time) the event horizon does not carry the entropy or
information related to quantum statistics, which modifies premises for the information
paradox [1,2] and the firewall concept at the event horizon of a black hole [6]. The role of
some kind firewall is taken by the, visible to any distant observer, radiation burst released
during the passing by the falling matter of the photon sphere rim relatively distantly from
the event horizon. The shift of the firewall to the photon sphere rim is schematically shown
in Figure 4.

firewall on photon sphere rimfirewall on event horizon

Figure 4. Illustrative drawing of the shift of a firewall from the event horizon to the photon sphere rim.
The firewall on the event horizon proposed by Polchinski [6] in order to cope with the information
paradox would be invisible for any remote observer. The decay of Fermi spheres in compressed matter
passing the photon sphere rim is the source of intensive e-m radiation emission, which takes away
the energy and entropy of matter consumed by a black hole—thus, it can take the role of the firewall,
considerably changing the premises of the information paradox. Such a firewall would be visible to
any remote observer—in particular, it can be responsible for some giant gamma-ray bursts associated
with collapses of neutron star mergers or large non-thermal radiation of superluminous quasars.

Each multi-particle system which passes the photon sphere rim inward loses its
quantum statistics. This does not violate the Pauli theorem on spin and statistics as shown
in Appendix B.
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The exclusion principle for fermions asserts that quantum particles of the fermionic
type cannot share any common single-particle quantum state. In particular, fermions
cannot share the same localized single-particle quantum states, which manifest themselves
when approaching, by a fermion, a space region already occupied by another one. Hence,
identical indistinguishable fermions repulse themselves mutually. This is addressed as the
quantum degeneracy repulsion, and in multi-fermion systems, it raises a pressure related
to this repulsion (without contribution of any elementary interaction forces). This pressure
can exert giant strength forces which are able to stop the collapse of white dwarfs (due to
the quantum degeneracy repulsion of electrons) [46] or neutron stars (where a gravitation
collapse is halted by the quantum degeneracy repulsion of neutrons) [16,17,47].

The exclusion principle for fermions leads also to the formation of a Fermi sphere in
the case of a large number of identical fermions located in some volume; if the chemical
potential µ (the energy increase in a thermodynamic multi-particle system caused by the
addition of a single particle to the system) is much greater than the temperature T of the
system expressed in an energy scale µ ≫ kBT, then kB is the Boltzmann constant. In such
systems, fermions are forced to occupy consecutive energy single-particle stationary states
one by one, resulting in the accumulation of energy because the ladder of consecutive
filled energy states is as large as the number of particles in the system. In an isotropic
case, when the stationary states are numbered by momentum |p| (like for free particles

with energy p2

2m or relativistic ones
√

c2 p2 + m2c4 − mc2), the filled states form a sphere in
momentum space with a finite radius called the Fermi momentum pF. Such a collective
state in a multi-particle system of fermions accumulates a great amount of energy in the
Fermi sphere (greater the higher the density of fermions). For example, free electrons in
metal under normal conditions with a typical concentration of the Avogadro number per
cm3 accumulate in a free electron Fermi sphere an energy of the order of 1010 J/m3. In a
neutron star with a mass of 2.3 sun masses compressed to a sphere with a radius of the
order of 6–10 km, the Fermi sphere of neutrons accumulates ca. 1046–1047 J. When the
Fermi statistics is defined (as outside of the black hole photon sphere), the Fermi spheres in
multi-particle systems are stable, and the stored energy cannot be released because of the
blockade by the Pauli exclusion principle. The situation changes, however, when quantum
statistics cannot be defined below the photon sphere rim of a black hole. The energy
accumulated in the Fermi sphere of strongly compressed fermion systems passing the
photon sphere rim inward can be released here.

Fermi momentum pF, i.e., the radius of the Fermi sphere in the degenerate homoge-
neous quantum liquid of fermions, is a function of the particle concentration solely [48]:

pF = h̄(3π2ρ)1/3, (9)

where h̄ = h
2π is the reduced Planck constant, and ρ = N

V is the concentration of N fermions
in the spatial volume V. Remarkably, the Fermi momentum is independent of the interac-
tion of fermions according to the Luttinger theorem [48,49]. This fact can be noticed by qua-
siclassical reasoning and is thus immune to interaction. According to the Bohr–Sommerfeld
rule, the phase space equivalent to the Fermi sphere volume 4

3 πp3
F in momentum space and

the spatial volume V corresponds to
2V4πp3

F
3(h̄2π)3 single-particle quantum states (the additional

2 in the numerator is due to the spin degeneracy for fermions with 1
2 spin). If all these

states are filled by N particles, then Formula (9) is reproduced.
The whole Fermi sphere gathers the energy in spatial volume V (neglecting the

interaction of fermions):

E = ∑p ε(p) f (ε(p))

= V
(2πh̄)3

∫

d3pε(p) f (ε(p))

=
∫ pF

0 dp
∫ π

0 dθ
∫ 2π

0 dφp2sinθε(p) V
(2πh̄)3

= V
2π2 h̄3

∫ pF
0 dpp2ε(p),

(10)
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where the sum runs over occupied states only, which is assured by the Fermi–Dirac dis-
tribution function f (ε(p)) = 1

e(ε(p)−µ)/kBT+1
→T→0 1 − Θ(ε(p)− εF) (Θ(x) is the Heaviside

step function, ε(p) =
√

p2c2 + m2c4 − mc2 (in the relativistic case), εF = ε(pF) = µ(T = 0)
is called Fermi energy, and µ is the chemical potential at T = 0), and p, θ, φ are spherical
variables in the momentum space. The energy estimation Equation (10) holds for zero
temperature, as well as for non-zero temperatures, if kBT ≪ µ ≃ εF (i.e., when the Fermi
liquid is quantumly degenerated).

For a neutron star at the TOV limit [16,17] with the density of the order of 5× 1018 kg/m3

(corresponding to 2.3 sun masses compressed to a compact neutron star with a radius of
ca. 6 km), the neutron Fermi sphere energy reaches 0.5 × 1047 J (cf. Table 1), just like the
energy of the frequently observed cosmic short giant gamma-ray bursts (assuming the
isotropy of their sources). The Fermi energy in this case is εF ≃ 0.34 GeV (i.e., ≃ 4 × 1012 K
in temperature units, when kB = 1 is assumed), which is much greater than the supposed
temperature of a neutron star, of the order of 106 K (thus, neutrons in a neutron star form a
degenerate quantum system).

Table 1. For a neutron star merger with M = 2.3 M⊙ (only the rest mass of neutrons, N = 2.73× 1057

of neutrons), a varying radius r is assumed. The corresponding neutron concentration ρ = N
V and

density d = M+E/c2

V (including the mass increase due to energy accumulated in the neutron Fermi
sphere). For such a concentration of neutrons, their Fermi momentum pF is assessed. The energy
accumulated in the Fermi sphere in the compressed neutron star merger E is equivalent to a fraction
of the sun mass E

c2 (this energy is of the order of the total energy of the short giant gamma-ray burst
associated with a neutron star merger collapse).

Radius r ρ = N
V , N = M

mn
d = M+E/c2

V pF [kg m/s] E [J] E
c2

6 km 3.2 × 1045 1/m3 5.6 × 1018 kg/m3 4.7 × 10−19 4.75 × 1046 J 0.26 M⊙

8 km 1.27 × 1045 1/m3 2.27 × 1018 kg/m3 3.5 × 10−19 2.7 × 1046 J 0.15 M⊙

10 km 6.5 × 1044 1/m3 1.14 × 1018 kg/m3 2.8 × 10−19 1.84 × 1046 J 0.1 M⊙

The coincidence of the energy stored in the Fermi sphere of neutrons in a neutron
star at TOV limit with the energy of short giant gamma-ray bursts supports the idea that
the source (yet unknown) of some of these bursts is a collapse of the Fermi sphere of
neutrons when the whole star is compressed to the volume inside its own photon sphere.
The assistance of the collapses of neutron star mergers crossing the TOV limit by giant
γ-ray bursts was suspected earlier, but the mechanism of the conversion of ca. 0.25 sun
masses into electromagnetic radiation within a subsecond time was beyond any earlier
known mechanisms. The appropriate mechanism is, however, offered by the local decay
of quantum statistics. During the related decay of the Fermi sphere of neutrons, the latter,
liberated from the Pauli exclusion principle constraint, falls apart when charged electrons
and protons interact with the electromagnetic field.The jumping of these particles onto
their ground state upon the decay of the neutron Fermi sphere will release a giant flux of
isotropic electromagnetic radiation along the Fermi golden rule for quantum transitions,
with a dominant component of the gamma radiation because of the large value of Fermi
energy in this case, in agreement with the spectral features of observable short gamma-ray
bursts (cf. Tables 1 and 2).

In another example, in an accretion disc of a quasar, the density of electron and proton
plasma (assuming the accretion of neutral hydrogen) grows with the falling of the matter
toward the event horizon. The diluted neutral gas is ionized in the accretion disc due to
friction and eventually becomes a dense plasma of electrons and protons, both of which
are degenerate Fermi liquids. Even though the local temperature in the accretion disk can
be high (even up to 106 K in the vastaccretion disc of large quasars), the Fermi energy
of electrons and of protons at the photon sphere rim is of the order of GeV (i.e., of the
order of 1013 K), which means that both components of plasma are quantumly degenerate
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liquids. For two-component plasma in the accretion disc of the quasar, both Fermi spheres
of electrons and protons contribute to the energy storage. This energy grows at the cost
of the gravitational energy of the central black hole, which compresses multi-particle
systems to an extremely high concentration, increasing the Fermi sphere size. At the
same concentration of electrons and protons (due to the neutrality of plasma in the disc
at accretion of a neutral gas), electrons accumulate larger kinetic energy than protons
because of the lower electron rest mass. The energy accumulated in the Fermi spheres of
electrons and protons can be released in the form of the electromagnetic radiation if the
Pauli exclusion principle is locally waived off at the rim of the photon sphere, due to the
local decay of quantum statistics. In the case of steady conditions at the matter accretion
by a black hole, the continuous-in-time process of extracting energy from a stable flux of
plasma takes place, and the electromagnetic radiation can be counted per second, resulting
in stable contribution to the total luminosity of a quasar expressed in J/s. The source of
this radiation is located at the photon sphere rim at a distance of 1.5rr from the singularity
center. This is far below the accretion disc inner edge assumed in the conventional classical
hydrodynamic models of these discs [19,39,50]; thus, this non-thermal radiation does not
conflict with the radiation from more distant regions of the accretion disc. Taking into
account the high luminosity of the radiation associated with the Fermi sphere decay, it
can significantly contribute to the total luminosity from the accretion disc and solve the
long-standing problem of the discrepancy of conventional models [19] with observations
of superluminous quasars [20,21,51]—for more details and comparison with observations,
cf. Section 4.2.

Table 2. Fermi golden rule estimation of the time ∆t of complete decay of the Fermi sphere for
neutron star merger with the mass 2.3 M⊙ as in Table 1 for different photon energies h̄ω and for
electron and proton contributions.

Electrons Protons

h̄ω [eV] γ(h̄ω) [1/s] ∆t [s] γ(h̄ω) [1/s] ∆t [s]

0.1 GeV 2.5 × 1022 5 × 10−21 2.9 × 1021 4.5 × 10−20

1 MeV 2.4 × 1026 5 × 10−25 2.4 × 1024 5.5 × 10−23

1 keV 2.6 × 1028 5 × 10−27 2 × 1030 6 × 10−29

Superluminous quasars with a central black hole ∼109 M⊙ consume typically 10 sun
masses per year (0.1 Earth mass per second), when the accretion of the gas is limited only
by the uppermost density of stable matter at the photon sphere rim (similar to the density
of neutron star at TOV limit or to the density of atom nuclei). The continuous decay of
Fermi spheres of electrons and protons in accretion plasma crossing the photon sphere
rim of a supermassive central black hole releases photons with a total energy of up to
30% of the falling mass [22,45]. This fraction of the mass is the energy (divided by c2) of the
Fermi spheres of electrons and protons accumulated at the cost of the black hole gravitation
during matter compression in the accretion disc. This rapidly released energy, in the form of
electromagnetic radiation, contributes to the luminosity of superluminous quasars with ca.
1040 W at a close vicinity to the event horizon (when passing the rim of the photon sphere at
r = 1.5rs), in better agreement with the observations than only radiation from more distant
regions of the accretion disc [19–21,52]. If the supply of the matter to the accretion disc is
limited by environmental conditions, then the density of plasma at the photon sphere rim
is not extreme, and the efficiency of the Fermi sphere decay is much lower than 30% (cf.
Table 3). The detailed quantitative estimations, including general relativistic corrections of
the density and a comparison with examples of astrophysical observations, are presented
in Section 4.2.
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Table 3. The Fermi energy, denoted by εF, for electrons in a system determines the maximum energy
h̄ωmax of emitted photons. Associated with this energy is the Fermi momentum pF, which represents
the radius of the Fermi sphere in momentum space. The relation between the Fermi energy and

Fermi momentum is given by εF =
√

p2
Fc2 + m2

e c4 − mec2. The Fermi momentum, in turn, is directly

related to the electron concentration ρ as pF = h̄(3π2ρ)1/3; cf. Equation (9). In a neutral plasma
passing through a photon sphere rim, the rate of mass-energy conversion η during the decay of
Fermi spheres of electrons and protons depends solely on the particle concentration ρ at that rim (the
same for electrons and protons); cf. Equation (17). The luminosity due to this process is calculated
for a specific Fermi energy and a mass consumption rate by a black hole—an exemplary one of
0.06 Earth masses per second (or 5.6 solar masses per year). The luminosity is proportional to this
mass consumption rate.

εF [eV] pF [kg m/s] ρ = N
V [1/m3] η [%] Luminosity

2 keV 2.4 × 10−23 4 × 1032 0.00006 2 × 1034 W

10 keV 5.4 × 10−23 4.6 × 1033 0.0003 1 × 1035 W

100 keV 1.7 × 10−22 1.4 × 1035 0.003 1 × 1036 W

1 MeV 7.5 × 10−22 1.2 × 1037 0.04 1.2 × 1037 W

10 MeV 5.6 × 10−21 5.1 × 1039 0.4 1.3 × 1038 W

100 MeV 5.3 × 10−20 4.3 × 1042 4 1.3 × 1039 W

0.5 GeV 2.7 × 10−19 5.7 × 1044 20 5.9 × 1039 W

0.8 GeV 4.2 × 10−19 2.3 × 1045 29 1.2 × 1040 W

1 GeV 5.3 × 10−19 4.3 × 1045 35 1.7 × 1040 W

3.2. Spectrum and Timing of Short Giant Gamma-Ray Burst at Unstable Neutron Star
Merger Collapse

A rapid departure from the Pauli exclusion principle relieves the internal quantum
degeneracy pressure in the neutron star merger, allowing it to collapse (when the merger
is compressed by its own gravity to the volume beneath the photon sphere rim of the
corresponding black hole). The decay of the Fermi sphere of fermions releases energy accu-
mulated in this sphere in the form of electromagnetic radiation along the Fermi golden rule
for quantum transitions of charged particles (products of the decomposition of neutrons)
admitted when the matter compression is beyond the TOV limit (when the whole neutron
star is inside its own photon sphere). The energy of the neutron Fermi sphere in the neutron
star merger at the TOV limit largely agrees with the energy of the observed giant short
gamma-ray bursts of total energy ∼1046–1047 J (assuming isotropic their sources). Free
neutrons are unstable with the time decay for electrons, protons, and electron antineutrinos
of the order of 15 min. In neutron stars, neutrons are stabilized only by the Pauli exclusion
principle (similarly to stable nuclei). When the quantum statistics decays, the neutrons
decompose into stable electrons and protons—charged particles interact with an electro-
magnetic radiation and neutral antineutrino, along β− decay exponentially accelerated by
large number of neutrons in a neutron star merger (resulting in a collective avalanche-type
β− transition governed by the Fermi golden rule). Liberated charged electrons and protons
interact with an electromagnetic field and rapidly jump onto lower quantum states emitting
photons. The kinetics of these transitions can be assessed also by the application of the
Fermi golden rule.

This rule gives the probability per time unit of quantum transitions between two
stationary quantum states of a charged particle induced by the time-dependent perturbation
of an electromagnetic field. For an initial quantum stationary state |1⟩ of a particle with
energy E1 and final one |2⟩ with energy E2, this transition probability is given by the
following expression [53]:
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w1,2 =
2π

h̄
|⟨1|V̂(r)|2⟩|2δ(E1 − E2 − αh̄ω), (11)

where ⟨1|V̂(r)|2⟩ is the matrix element of an operator V̂(r) describing the coupling of a
charged particle to the electromagnetic field taken between the initial and final states, and
αh̄ω is the energy of an emitted photon. The Dirac delta expresses the energy conservation
at this transition. As we consider the transition close to the black hole event horizon at
the photon sphere rim, where it is admitted due to the local departure from the Pauli
exclusion principle, a gravitational redshift of photon frequency α = (1 − rs

r )
1/2 ≃ 0.57 for

r = 1.5rs is included. Relativistic electrons or protons interacting with e-m field have single-

particle Hamiltonians, Ĥe(p) =
√

(p̂ ∓ eA(r, t))2c2 + m2
e(p)

c4 − me(p)c
2, where A(r, t) =

A0ei(q·r−cqt)/h̄ is the vector potential of the e-m field (of the plane wave form, at the chosen
gauge divA = 0) and p̂ = −ih̄∇. The Fermi golden rule describes quantum transitions
with linear accuracy with respect to the perturbation [53]; therefore, the operator V̂ in
Equation (11) must be taken as the term that is linear with respect to A in the Hamiltonian,
which is as follows:

V̂(r, t) = ∓ ec2A(r, t) · p̂
√

p̂2c2 + m2
e(p)

c4
, (12)

where e = 1.6 × 10−19 C, and ± corresponds to an electron and a proton, respectively.
For isotropic systems with local translational symmetry, the states |1(2)⟩ can be

taken in the form |1(2)⟩ = 1
(2πh̄)3/2 e

i(p1(2) ·r−Ep1(2)
t)/h̄

, i.e., states in the Fermi sphere with

p1(2) ≤ pF, p1 > p2. The matrix element in Equation (11) can be calculated analytically, and
it gains the form

⟨p1|V(r)|p2⟩ = ∓δ(p1 − p2 − q)
ec2A0 · p2

√

p2
2c2 + m2

e(p)
c4

. (13)

Equation (11) can be thus rewritten as follows:

w1,2 = V
(2π)2 h̄4 e2c2 A2

0cos2θ f (p2)δ(p1 − p2 − q)

×δ(Ep1 − Ep2 − αcq),
(14)

with f (p2) =
p2

2c2

p2
2c2+m2

e(p)
c4 < 1, and θ is the angle between vectors A0 and p2 (for details of

the calculation, in particular, the way of treatment with the Dirac delta square, cf. [15]).
Next, the integration of Equation (14) over all initial and final states in the Fermi

sphere (up to pF) must be performed to estimate the time span for an entire Fermi sphere
decay. This integration over p1 and p2 gives the result:

w =
∫

pF
d3 p1

∫

pF
d3 p2w1,2 = (N + 1)γ,

γ = mce2

3πε0 h̄2y

∫ 1
−1 dz

∫ pF/mc
0 dx x4

x2+1

×δ(
√

x2 + y2 + 2xyz + 1 −
√

x2 + 1 − 0.57y),

(15)

where x = p2/mc, y = q/mc = h̄ω/mc2. N = ε0
VE2

0
2h̄ω is the number of photons h̄ω in

the volume V (where E0 and A0 are the amplitudes of the electric field and of the vector
potential of the e-m radiation, respectively, and A0 = E0/ω). The density of the e-m field
energy is ε0E2

0/2, which translates into number N of photons (ε0 is the dielectric constant).
As usual for the forced emission, the non-zero value of the probability w for N = 0 describes
the spontaneous emission rate (because the only non-zero matrix element of the creation
operator for photons in the case of the quantized vector potential in Equation (12) is out of
the diagonal and equal to

√
N + 1).
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Knowing the probability per time unit of the forced emission w, the total number of
emitted photons in infinitesimal time duration dt can be written as follows:

dN = (N + 1)γdt, (16)

which gives the solution for N(t) in the form lnN = γt. Hence, lnN0 = γ∆t, where ∆t is
the time of the total Fermi sphere decay, and N0 is the number of emitted photons being of
the order of the particle number in the system. ∆t = lnN0

γ(y)
depends on photon frequency

h̄ω = ymc2 via function γ(h̄ω) according to Equation (15).
For an exemplary neutron star merger with 2.3 solar masses, the time span ∆t of

the decay of the Fermi sphere of electrons displays the rapid process of photon emission
varying with the h̄ω energy of emitted photons as shown in Table 2. However, we do
not take into account in the above assessment the time of the decay of neutrons into
electrons and protons (and antineutrino), which slows down the photon burst. Such a
decomposition (β− decay) of neutrons in the initial neutron star is blocked by the Pauli
exclusion principle. The β− decay of an isolated neutron has the half-time of ca. 880 s and
occurs due to theconversion of the negatively charged − 1

3 e down quark to the positively
charged 2

3 e up quark with the emission of a W− boson. This W− boson decays next, almost
instantly, into an electron and an electron antineutrino. If the Pauli exclusion principle
is locally waived off, then neutrons decay in a collective manner along the Fermi golden
rule, similar to Equation (16) dynamics, with probability γ′ for the spontaneous decay of a
neutron. As γ′ ∼ 1

880 1/s, the decay of all neutrons in the considered merger would take
ca. 30 h. However, quarks also lose their fermionic quantum statistics when passing the
photon sphere rim of a black hole, and the decay of an isolated neutron is here faster—its
spontaneous decay into a proton by the conversion d → u of quarks is not hampered by
the presence of a second u quark in a proton. This accelerates the spontaneous decay of a
free neutron by a few orders—to the order of γ′ ∼ 103 1/s, which leads to the liberation of
electrons and protons during the forced collective decay of neutrons in the whole merger
of mass 2.3 solar masses within ca. ln(2.53 × 1057)/γ′ ≃ 0.1 s. The subsequent release of
antineutrinos (with the known time scale of 10−27 s for the decay of bosons W−) and of
photons (cf. Table 2) are both almost instant. Such timing of the entire process of the merger
collapse into a black hole agrees with observations of some kind of short gamma-ray bursts
earlier suspected to be associated with the neutron star merger to black hole transitions.

Protons give a slightly longer duration of the burst in the range of high photon energy
(cf. Table 2) but also in the ultra-fast time scale. Note also that the total energy of the
Fermi sphere of protons in the considered merger is ca. ∼ 0.7 of the Fermi sphere energy of
electrons (at the same Fermi momentum of both, cf. Section 4.2).

The rapid emission of photons at the decay of the Fermi sphere of neutrons during
the collapse of unstable neutron star merger is slowed down by the collective β−-type
liberation of the charged (interacting with e-m radiation) components of the initial neutrons.
Hence, the photon burst should be associated by a preceding burst of electron antineutrinos
emitted at the collective β− decay of neutrons. Such antineutrino bursts have not been
observed as of yet, which could be linked to the most frequent intergalactic distances to
collapsing neutron star mergers and to the almost infinitesimal interaction of antineutrinos
with their counters.

3.3. The Radiation Efficiency of Fermi Sphere Decay in Plasma at Varying Particle Concentrations

As indicated by Equation (9), the Fermi momentum of fermions in a system depends
solely on their concentration ρ = N

V . In electrically balanced plasma, where the concen-
trations of electrons and protons are equal, both types of particles will have the same
Fermi momentum.
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The energy released per second due to the decay of Fermi spheres of electrons and
protons in such plasma can be calculated using Equation (10):

E = (V/(2π2h̄3))
∫ pF

0
dpp2(

√

p2c2 + m2
e c4 −mec2 +

√

p2c2 + m2
pc4 −mpc2)withV = N/ρ.

Considering that the mass of plasma flowing through the photon sphere rim per
second is approximately M = Nmp + +Nme ≃ Nmp, and the energy accumulated in
Fermi spheres is equivalent to a mass E/c2, we can determine the rate of mass-to-radiation
energy conversion:

η = E/c2

M+E/c2

= NI/(ρc22π2 h̄3)

Nmp+NI/(ρc22π2 h̄3)

= I
ρc22π2 h̄3mp+I ,

(17)

where
I =

∫ pF
0 dpp2(

√

p2c2 + m2
e c4

−mec2 +
√

p2c2 + m2
pc4 − mpc2).

(18)

It is remarkable that η is a function of ρ, solely (via pF, the upper limit at integration).
Additionally, it is notable that the mass of plasma at the rim of the photon sphere is larger
than when far from this region because of the mass increase due to the energy accumulated
in the electron and proton Fermi spheres. The accumulation of the fermion kinetic energy
in Fermi spheres is undergone at the cost of the attraction of the central black hole in
the region outside of the photon sphere, where the Pauli exclusion principle holds and
fermions must fill different quantum states in a large ladder of single-particle eigen states.
The dependence of the accumulated energy in Fermi spheres on electrons and protons
versus particle concentration is illustrated in Table 3. The energy released per second,
E = V

2πh̄3 I , depends on ρ and is proportional to the mass consumption rate per second
M ≃ ρVmp (plus also the much lower mass of electrons). This energy released in the form
of e-m radiation at the decay of Fermi spheres of charged particles (along the Fermi golden
rule, when the Pauli exclusion principle is locally waived out) increases the luminosity of
a quasar (or other light sources powered by black holes). Via extracting the non-thermal
radiation component of the observed total luminosity (mostly in the X-ray region, which
is rather not of the thermal type for black-body temperatures, assessed also from the
observations) it is possible to estimate in an independent way the rate of mass consumption,
taking into account also the upper limit of the energy of the registered photons (with the
help of the data as listed in Table 3 for a few examples). This is similar, to some extent,
to the remote measurement of a black-body temperature of an accretion disc via observing
an optical thermal part of the radiation and comparing it to a black-body spectrum.

4. Discussion

4.1. Upgrade of Premises for Information Paradox

The thermodynamics of black holes [1,2] poses the problem of the fate of the informa-
tion encoded in matter falling into a black hole. Black hole radiation of the Hawking–Unruh
type [4,5] is fully random and cannot carry out the information specific to the matter con-
sumed by the black hole, which causes an information paradox. To cope with this paradox,
the creation of particle–antiparticle pairs on the event horizon and the escape of a particle
associated with the capturing by a black hole of its antimatter partner is considered, which,
however, does not solve the problem because of the quantum entanglement property called
its monogamy. Particles and antiparticles are entangled, and Hawking radiation must be
also entangled in distinct time events [6], and to avoid such a double entanglement, it has
been suggested an instant breaking of the particle–antiparticle entanglement at the event
horizon of a black hole. Immediately, broken entanglement between the infalling particle
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and the outgoing antiparticle would release a large amount of energy, creating in this way
a hot firewall at the event horizon [6]. Such a hypothetical firewall on the event horizon
would not be observable for any distant observer because the falling of the matter on the
event horizon takes, for remote observers, an infinite amount of time. Some traces of a
fuzzy horizon with a firewall would be noticeable, in principle, via gravitational wave
observations. The observational evidence of a fuzzy black hole horizon in a gravitational
wave signature gathered by LIGO observations of bouncing black holes [7] is, however,
excluded because they are not sufficiently statistically significant [8].

The information paradox poses a problem for quantum gravitation, as Polchinski
with co-authors [6] stated that the paradox may eventually require to give up one of three
time-tested principles: Einstein’s equivalence principle, unitarity, or the existing quantum
field theory. According to the theoretical quantum field models of gravitation singularity,
including holographic formulation [3], the unitarity at matter consumption by black holes
should be maintained, which challenges, however, Einstein’s equivalence principle or the
existing quantum field theory [6].

The decay of quantum statistics when passing the photon sphere rim, presented in
this paper, can, however, contribute to the problem of an information paradox and to the
concept of a black hole firewall, updating the related premises to some extent. The decay
of quantum statics is associated with the release of energy along the Fermi golden rule
scheme in agreement with unitary evolution in quantum mechanics. This energy release
resembles some kind of firewall positioned, however, at the photon sphere rim instead of a
hypothetical one on the event horizon [6]—cf. the scheme in Figure 4. In addition, the event
horizon (even if attributed to a firewall) is unobservable for distant observers, as the falling
of the matter onto the event horizon takes an infinite amount of time in the Schwarzschild
metric, as opposed to the radiation bursts at the photon sphere rim. The latter can be
treated as a modified firewall concept. In addition, the decay of Fermi spheres of electrons
and protons in plasma is almost instant (cf. Table 2), and slowed down by the β− decay
of neutrons only upon neutron star collapse. The giant gamma ray bursts associated with
the neutron star merger collapses can be thus treated as the observable visualization of a
new concept of a black hole firewall located at its photon sphere rim, similarly to the X-ray
component of the luminosity of quasars. Although the entropy behavior when passing the
photon sphere rim needs a more thorough analysis, the energy escape along with entropy
to outer space from the photon sphere rim during quantum statistics transition significantly
modifies the premises for the discussion of the information paradox. Moreover, the decay
of quantum statistics beneath the photon sphere rim should affect the local quantum field
theory formulation in the vicinity of the event horizon inside the photo sphere. The related
quantum fields cannot be assigned locally neither as fermionic nor as bosonic, and it raises
the question of to what extent this would be helpful in quantum gravity theory formulation.

4.2. Astrophysical Observations Which Support Quantum Statistics Transition at Photon Sphere
Rim of Black Holes

Superluminous quasars, powered by black holes with masses of approximately one
billion solar masses, consume roughly 10 solar masses annually (equivalent to 0.1 Earth
mass per second). To explain their exceptionally high luminosity of around 1040 W over
extended periods, these quasars must convert approximately 30% of their accreted mass
into electromagnetic radiation. Traditional hydrodynamic models of quasar accretion discs
fall short in fully describing such intense radiation, particularly its high-energy photon
component [20,21,39,50,51]. A common approach extends the radiation model of the micro-
quasar Cygnus X-1 [19], proposing a hot toroidal region within the accretion disc located
at a distance of approximately 6 Schwarzschild radii from the central singularity. In this
region, the Comptonization of soft photons could potentially produce sufficiently energetic
photons. However, the required plasma temperatures within this bulb—109 K for electrons
and 1011 K for ions—are highly unlikely in the vast accretion discs of superluminous
quasars, which have radii approximately 108 times larger than that of Cignus X-1. There-
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fore, the thermal radiation from the accretion disc [52] and not extreme Comptonization
cannot explain the radiation intensity and its spectral composition for superluminous
quasars [18,20,21,51].

Nevertheless, the decay of Fermi spheres of electrons and protons in quasar accretion discs
when passing the photon sphere rim provides an efficient mechanism for converting gravita-
tional energy into electromagnetic radiation, including high-energy photons, which can explain
the observed luminosities of giant quasars, avoiding the need for extreme Comptonization.

Matter accreting onto a black hole undergoes high compression and can reach even its
maximum stable density at the photon sphere rim in extreme situations. The compression
of the infalling matter leads to the accumulation of giant energy within the Fermi spheres
of electrons and protons, which in such conditions are quantumly degenerated systems
and, before passing the photon sphere rim, constrained by the Pauli exclusion principle.
Using Equations (9) and (10), one can estimate the energy accumulated in these Fermi
spheres per second in plasma flow. For a typical accretion rate of 0.1 Earth mass per second,
the energy released at the photon sphere rim and associated with the decay of Fermi spheres
of electrons and protons is approximately 1040 J per second, primarily in the form of hard
X-ray radiation. This non-thermal radiation from the vicinity of the event horizon aligns
with the observed luminosities of superluminous quasars, eliminating the need for the
Comptonization of soft thermal photons.

General relativistic corrections to the Fermi momentum due to the spacetime curvature
near the event horizon are relatively small. These corrections do not significantly alter
our energy estimates, as demonstrated by calculations using Equation (10). In the case of
extreme stable plasma concentrations near the photon sphere rim, as is believed to occur in
superluminous quasars, the efficiency of mass-to-radiation conversion is approximately
30%. This implies that the release of the combined energy of the electron and proton
Fermi spheres is ca. 1040 J per second, equivalent to 30% of the accreted mass (note that
this converted into the e-m radiation part of mass multiplied by c2 is just the energy
accumulated in Fermi spheres in its flow per second due to the plasma compression beyond
the photon sphere rim by the gravitational attraction of the singularity).

Electrons have a lower rest mass than protons, leading to a slightly higher total energy
in the electron Fermi sphere (both electrons and protons have the same Fermi momentum,
as the concentration of both is the same in a neutral plasma). For the same Fermi momentum
at the photon sphere rim, the Fermi energy of electrons is approximately 1.4 times that
of protons. In both cases, the Fermi energy significantly exceeds the actual temperature
of the accretion disc, indicating that the electron and proton Fermi liquids are quantum
degenerate near the photon sphere rim.

The Fermi energy of electrons also sets an upper limit on the energy of emitted
photons due to Fermi sphere decay. When the matter accretion rate is limited by external
factors (like a shortage in matter supply), the plasma density near the photon sphere rim
is lower than would be extreme, resulting in reduced energy accumulation in the Fermi
spheres and a lower efficiency of mass-to-radiation conversion (also a lower upper limit
of emitted photon energy). However, even in these cases, the decay of Fermi spheres still
produces non-thermal photons, which can contribute to the radiation from less luminous
e-m radiation sources powered by black holes, such as transient active galactic nuclei,
microquasars, and tidal disruption events. By fitting the Fermi energy to the observed
photon maximum energies in these events, one can estimate the local density of fermions
at the photon sphere rim. This information can then be used to calculate the volume
of compressed plasma and the matter consumption rate by virtue of the observed total
luminosity, providing an independent assessment of the total mass consumed by the black
hole during the whole radiation episode. This approach offers a new tool for studying
black hole accretion processes and understanding the nature of various astronomical
transients. We meticulously analyze the following astronomical events, employing the
aforementioned methodology:
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• AT 2020neh: A rapidly brightening tidal disruption event (TDE) candidate, originating
from a dwarf galaxy SDSSJ152120.07+140410.5 at a redshift of z = 0.06. The central
black hole within this galaxy possesses a mass of approximately 105 solar masses [54].
AT 2020neh has been under continuous observation since June 2020, with its peak
luminosity occurring in July and persisting for approximately 20 days. Concurrent
observations in optical, ultraviolet, and X-ray wavelengths have revealed an X-ray
component reaching a maximum of 4.5 × 1034 W, comparable to other TDEs [55].
The overall peak luminosity attained 4.2 × 1036 W. By employing conventional hydro-
dynamic models [56], it has been estimated the rate at which stellar debris from the
disrupted star (assumed to be a main sequence star with a mass of 1.3 solar masses)
is accreting onto the black hole. The observed optical and ultraviolet spectra have
been successfully fitted using a black body temperature model, exhibiting a cooling
rate of approximately 104 K per 20 days. While no definitive mechanism for the X-ray
component has been identified, post-flare observations and prior survey data have
ruled out the presence of a gaseous accretion disk around the host galaxy’s black hole.
However, by applying Equation (10) to the disrupted stellar debris during the peak
luminosity phase and considering the maximum energy of observed X-ray photons
(10 keV), we find that the contribution to the luminosity primarily in the X-ray range
is approximately 4 × 1034 W due to the decay of Fermi spheres within the ionized
debris consumed by the black hole. This result is consistent with the observed spectra
of TDEs [54,55].

• AT2021lwx: Located at a redshift of z = 0.995, AT2021lwx exhibited a temporal in-
crease in radiation luminosity to 7 × 1038 W, commencing in April 2021 and lasting
over a year [57]. This event represents the most energetic non-quasar transient ever
observed, with no prior emission detected in the preceding several years. The optical
and ultraviolet spectral energy distribution of AT2021lwx indicates a black-body tem-
perature of 1.2 × 104 K. This transient is believed to be the result of a massive gaseous
cloud accreting onto a black hole (this black hole mass has been estimated to be be-
tween 108 and 109 solar masses), rather than TDE. The observed X-ray component,
spanning the energy range of 0.3 to 10 keV with a luminosity of 1.52 × 1038 W, has
proven challenging to explain using conventional models at such a low temperature.
However, by incorporating the emission arising from the decay of Fermi spheres
within compressed fermion systems passing through the photon sphere rim of the
central black hole, we can reconcile the Fermi momentum (related to the compression
level via Equation (9) and linked to the maximum observed photon energy) and a
realistic supply of matter at the accretion site to achieve a luminosity of approxi-
mately 1.5 × 1038 W. This contribution effectively supplements the total luminosity
of AT2021lwx and provides an explanation for the observed X-ray component at
this event.

• Transient AGN 1ES 1927+654: Located at a redshift of z = 0.017, this active galactic
nucleus (AGN) underwent a 100-fold brightening event lasting for one year, beginning
in December 2017. The optical and ultraviolet spectral components increased during
this period, while the gamma-ray flux exhibited a decline. By July 2018, the X-ray
coronal emission had vanished, only to reappear a few months later [58]. The source
subsequently returned to its pre-changing-look state after approximately one year in
the optical, ultraviolet, and X-ray ranges. Previous interpretations [58] suggested that
the puzzling behavior of gamma-ray radiation in AGN 1ES 1927+654 was due to the
temporary quenching of jets from a spinning black hole caused by the consumption
of an oppositely magnetized gas cloud during a changing-look episode. However,
the quantum statistics transition at photon sphere rim of the black hole offers an
alternative explanation for the observed behavior without relying on such speculations
about jet quenching. In the case of AGN 1ES 1927+654, the source of gamma radiation
is believed to be associated with electrons and positrons accelerated by the magnetic
field within the jets of the spinning black hole, in accordance with the Blandford–
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Znajek model of jet formation [59]. This model explains the formation of jets for
spinning Kerr-like black holes, where the dragging of the reference frame in the Kerr
metric causes the magnetic field frozen within the accretion matter to rotate. This
results in an outgoing flux of angular momentum, extracting energy from the system
and propelling jets into outer space. The rotating magnetic field within these jets
accelerates electrons and positrons, leading to the production of gamma-ray radiation.
The source of electron–positron pairs in the Blandford–Znajek model is a strong electric
field generated by the rotating magnetic field frozen within the ergosphere. In the
case of the AGN 1ES 1927+654 transient, the decay of Fermi spheres of electrons and
protons from the occasionally captured gas cloud produces sub-MeV radiation (at
most 2 keV, consistent with X-ray observations [58]) due to the relatively low plasma
compression at the photon sphere rim. These photons are unable to excite additional
electron–positron pairs within the ergosphere but can exert a force on existing pairs
created according to the Blandford–Znajek mechanism, pushing them towards the
event horizon. This ultimately leads to a reduction in the supply of electrons and
positrons to the jets (via diffusion to jets across nodes in the ergosphere of a Kerr-like
black hole), resulting in a temporary quenching of gamma-ray radiation without the
need to speculate on the demagnetization of the AGN by an oppositely magnetized
gas cloud during this episode [58].

The aforementioned examples provide compelling support for the model of Fermi
sphere decay in matter compressed by the central black hole as it traverses the photon
sphere rim. Moreover, the described quantum transition is predicted to terminate rapidly
upon crossing this boundary, in accordance with the Fermi golden rule as outlined in
Section 3.2. This rapid termination could potentially refine conventional models of radia-
tion decline observed in AGN transients and tidal disruption events.

5. Conclusions

The local departure from the Pauli exclusion principle in multi-particle systems ap-
proaching the event horizon of a black hole when passing the photon sphere rim [43,45]
explains the release of short giant gamma-ray bursts at collapses of neutron star mergers
exceeding the TOV limit. Both the energy and timing of these bursts agree with the energy
accumulated in the Fermi sphere of neutrons and with the time rate of its decay. The
same quantum mechanism contributes to the luminosity of quasars with additional X-ray
non-thermal radiation from the vicinity of the event horizon to well below the inner edge of
the accretion disc assumed in conventional models [19,39,50]. The mass-to-radiation energy
conversion rate at Fermi sphere collapse reaches 30% for the uppermost electron–hadron
concentration in stable compressed matter (like in a neutron star at TOV limit or in super-
luminous quasars). Such a situation corresponds to the supply of matter to a black hole
limited only by the stability of compressed matter, and in cases of lower matter supply, the
effect of the Fermi sphere decay is less powerful but still can contribute to the luminosity
of micro-quasars and transients in closer active galactic nuclei (AGNs) or even at flares
associated with tidal disruption events (TDEs). The decay of the Fermi sphere mainly
produces X-rays (even during not extreme matter compression), which can conveniently
complement conventional models of AGN transients and TDE bursts, improving the fit to
the observational data.

The described topological effect contributes to the problem of the information paradox
and the related concept of the firewall of a black hole [1,3,6]. The photon radiation associated
with the decay of structured collective multi-particle systems of fermions when passing the
photon sphere rim of a black hole offers a mechanism of a firewall, allowing the avoidance
of the problem with the unitarity violation upon matter consumption by a black hole.

Funding: This research was supported by project K69FFPT2023, Department of Quantum Technolo-
gies of WUST.



Entropy 2024, 26, 1035 23 of 27

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Quantum Statistics and Trajectories Entering Feynman Path Integrals

Quantum statistics of indistinguishable identical particles is rooted in topology [25,27,32,40]
and is defined by a scalar unitary representation of the braid group π1(FN) for a particular
system of N particles with dynamics confined to some spatial manifold M. For these parti-
cles, the multi-particle configuration space is defined by Equation (7), i.e., as
FN = (MN − ∆)/Sn. In this definition, MN = M×M× · · · ×M is an N-fold prod-
uct of the manifold to account, independently, for the positions of all particles. ∆ denotes
a diagonal subset of MN collecting points, for which coordinates of at least two particles
coincide, and subtracted from the space in order to ensure particle number conservation.
The quotient structure of the space FN is generated via the division by permutation group
SN , which displays the indistinguishability of identical particles. The division by Sn means
that particle distributions on M, which differ by particle numeration only, are unified
into a single point in FN . The topological structure of the space FN is characterized by
homotopy groups [23], in trajectory terms, by the first homotopy group π1. This group
for an arc-connected space A, π1(A), collects non-homotopic classes of closed trajectory
loops in A. Non-homotopy [23] means that trajectory loops from different classes cannot
be deformed in a continuous manner one onto another without cutting. If π1(A) = {e},
where e is a neutral group element, then the space A is simply connected. Otherwise, when
π1(A) is non-trivial, the space A is multiply connected. In the case where for the space
A the multi-particle configuration space FN is taken, the first homotopy group π1(FN) is
called the braid group [25,26], and trajectory loops are multi-strand paths in FN joining
variously numbered but the same distribution of particles. These braids display exchanges
of particles on M. Braid entanglements of individual particle trajectories in multi-strand
bunches depend on the topology of M, including the dimension of M. For 3D spatial man-
ifolds in unfolded spacetime, π1(FN) = SN , the finite permutation group of DimSN = N!.
For 2D spatial manifolds, π1(FN) is different. For M = R2, π1(FN) = BN , where BN is an
infinite (countable) Artin group [26,30].

Quantum statistics is assigned to indistinguishable particles according to scalar uni-
tary representations of the braid group for a particular system. Various braid groups have
different scalar unitary representations, and these representations are usually multiple.
The permutation group SN has two different scalar unitary representations, defined by
group generators σi → eiπ and σi → ei0, where σi, i = 1, . . . , N − 1 are elementary braids
(group generators) describing exchanges of the i-th particle with the (i + 1)-th one when
other particles remain at rest. These two representations define fermions and bosons,
respectively. The Artin group BN has an infinite number of different scalar unitary rep-
resentations, σi → eiα, α ∈ [0, 2π), which define fractional quantum statistics and related
quantum particles called anyons, besides fermions and bosons [31].

The definition of quantum statistics via a choice of a scalar unitary representation of a
particular braid group is formulated mathematically within the quantization via Feynman
path integration. The latter was defined originally for a single particle [34] and subsequently
generalized for multi-particle systems of indistinguishable particles [27–29,32]. The Feyn-
man integral over trajectories for N particles on a manifold M [27,34,41,42] gives the matrix
element of the quantum evolution operator of a whole system in position representation,

I(Z1, t1; Z2, t2)

= ∑l eiαl
∫

dλle
iS[λl(Z1,t1;Z2,t2)]/h̄,

(A1)

where points Z1 = (z1
1, . . . , z1

N) and Z2 = (z2
1, . . . , z2

N) are two different points in multi-
particle configuration space FN of N indistinguishable particles, which define the start
and final points for the propagator (matrix element of the quantum evolution operator),
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I(Z1, t1; Z2, t2), between localized states Z1 at time instant t1 and Z2 at t2, respectively. The
summation over trajectories (integration with the measure dλl in the space of trajectories)
concerns all accessible classical trajectories λl linking points Z1 and Z2 in FN . Both the
trajectory and the measure are assigned with an index l, numbering braids from the braid
group. This denotes an attachment of the l-th braid loop to an open trajectory joining Z1
and Z2 in FN , and displays the possibility of the exchanges of indistinguishable particles in
the way of a multi-strand trajectory. According to the group structure, an arbitrary number
of braids added to an open trajectory in arbitrary intermediate points of this open trajectory
add up to a single braid indexed by l—a discrete index because braid groups are countable
as multi-cyclic groups generated by finite set of generators σi. The classical action functional
S[λl(Z1, t1; Z2, t2)] is the time integral of Lagrangian

∫ t2
t1

L[λl ]dt, where L = T − V, and T
is the kinetic energy of all particles and V is their potential energy including interparticle
interaction. S[λl ] is a functional over the domain of trajectories. This domain is decomposed
into disjoint sectors numbered by l because of the non-homotopy of braids. The measure
for the integration over trajectories thus splits into a family of independent measures {dλl}
because the measure definition requires a continuity condition on the domain, which is
impossible to be satisfied for trajectories with added different braids that are mutually
non-homotopic. In this way, the Feynman path integral splits into integration over disjoint
path domain sectors and the contributions of all sectors must be added up with arbitrary
weight factors (unitary due to the causality requirement for quantization). These weight
factors form a scalar unitary representation of the braid group [27] denoted in Equation (A1)
as eiαl , with αl ∈ [0, 2π). The choice among various possible braid group representations
determines the quantum statistics of particles after quantization.

The sum over trajectories in the Feynman path integral is precisely defined by the
domain of the measure in the path space. The measure dλl (for each l) is constructed
in analogy to the Wiener measure [44] for the path integration of stochastic processes,
used earlier to describe Brownian motion [41,44]. Feynman path integrals differ from
Wiener integrals in complex valued integrands [34,41]. Nonetheless, the requirements
imposed onto trajectories included in the measure domain are similar to those for the
Wiener measure, i.e., trajectories must be classically accessible piece-wise continuous paths
for particles [34]. Any trajectory contributing to the path integral arises via the construction
of the measure in the Feynman path integral (cf. Chapter 2.4 in Ref. [34]) related to
the discretization of time and the building of various piece-wise continuous curves from
pieces of arbitrary classical trajectories on infinitesimal time segments. This procedure
is conditioned only by the existence of real classical trajectories on particular segments,
though the resulting continuous non-smooth trajectory is not, in general, an admissible
classical trajectory. Integrating over arbitrary positions of intermediate discretization
points (for the infinitesimal step of the time discretization) means the sum over arbitrary
trajectories. In the case when some real classical trajectories are inaccessible in a system,
the construction of the measure is ineffective, and related trajectories must be discarded
from the path domain. This has been discussed for Brownian motion with barriers and
noticed for Feynman path quantization by Pauli [41].

The measure construction concerns also braid paths in the case of the multi-particle
system of indistinguishable particles. If braids do not exist due to a topological reason,
like being beneath the photon sphere rim of a black hole, then the sum over l disappears
from Equation (A1), and the factor eiαl = 1, which does not assign any quantum statistics
(if the braid group is trivial, π1(FN) = {e}, its scalar unitary representation is only e → 1,
as e · e = e, and this representation does not assign any statistics because e does not describe
any interchange of particles).

Appendix B. Quantum Statistics and Spin: A Topological Perspective

The Pauli theorem [60], one of the cornerstones of quantum mechanics, posits a direct
correlation between spin of particles and their quantum statistics. Half-integer spin parti-
cles are fermions, while integer spin particles are bosons. This theorem’s foundation lies
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in the Dirac electrodynamics for 1
2 -spin non-interacting particles, where the Hamiltonian

formulation necessitates anticommuting quantum fields for positive-definite kinetic en-
ergy [61,62]. Pauli’s theorem extends to interacting particles and can be elegantly proven
through a topological framework using homotopy group for quantum statistics defini-
tion [25,40]. This connection arises from the overlap between the rotation group, defining
spin or angular momentum, and the braid group, describing quantum statistics, resulting
in the coincidence of their unitary representations.

In 3D manifolds, the rotation group O(3) is covered by SU(2), yielding two classes
of irreducible unitary representations corresponding to integer and half-integer angular
momenta [63]. These align with the two possible scalar unitary representations of the per-
mutation group SN , which is the braid group for 3D manifolds. The overlap between these
groups ensures their representation compatibility. Consequently, half-spin representations
of the rotation group must correspond to the odd representation σi → eiπ = −1 of the braid
group (fermions), while integer angular momentum representations align with the even
representation σi → ei0 = 1 of the permutation group (bosons).

This topological approach extends Pauli’s theorem to 2D manifolds, encompassing
anyons, particles that defy the fermion–boson dichotomy [29,32]. In 2D, the Abelian
rotation group O(2) is isomorphic to U(1), sharing the same continuous scalar unitary
representations eiα, α ∈ [0, 2pi) as the Artin group (the braid group for M = R2). Therefore,
Pauli’s theorem holds even for non-quantized spin s = α

2π in 2D (where rotations commute),
aligning with anyon statistics defined by eiα (α ∈ [0, 2π)).

The equivalence of quantum statistics and spin, however, hinges on the simultaneous
existence of a rotation group and a braid group that are both non-trivial. When one of these
groups is trivial, as in the case of a simply connected configuration space FN beneath a
black hole’s photon sphere rim, the spin may be defined independently of the statistics.
This occurs due to the vanishing overlap between the trivial braid group and the rotation
group (except for a neutral element), circumventing the Pauli theorem’s restrictions.
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