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Abstract We obtain exact results in α ′ for open and closed A-model topological
string amplitudes on a large class of toric Calabi-Yau threefolds by using their cor-
respondence with five dimensional gauge theories. The toric Calabi-Yaus that we
analyze are
obtained as minimal resolution of cones over Y p,q manifolds and give rise via
M-theory compactification to SU(p) gauge theories on R4×S1. As an application
we present a detailed study of the local F2 case and compute open and closed
genus zero Gromov-Witten invariants of the C3/Z4 orbifold. We also display the
modular structure of the topological wave function and give predictions for higher
genus amplitudes. The mirror curve in this case is the spectral curve of the rela-
tivistic A1 Toda chain. Our results also indicate the existence of a wider class of
relativistic integrable systems associated to generic Y p,q geometries.
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1 Introduction

Since their formulation, topological theories have been a most fruitful source of re-
sults and ideas both in physics and mathematics. Topological amplitudes naturally
arise in the BPS sector of superstrings (1; 2) and supersymmetric gauge theories
(3) and as such have a wide range of applications, from the evaluation of BPS
protected terms in low-energy effective actions to black hole microstates count-
ing (4). Moreover, topological theories have provided new and powerful tools for
the computation of global properties of manifolds, e.g. Donaldson polynomials,
Gromov-Witten invariants, revealing at the same time surprising relationships be-
tween seemingly very different areas of mathematics.

One of the most appealing features of topological strings is that the calculation
of its amplitudes can be pushed to high orders, sometimes to all orders, in pertur-
bation theory. To this end, one exploits symmetries and recursion relations coming
either from the underlying N = (2,2) supersymmetric sigma-models - as mirror
symmetry and holomorphic anomaly equations (2) - or from the properties of
some specific class of target manifolds - as localization and geometric transitions
for the A-model on toric Calabi-Yaus (5), or W -algebras and integrable hierar-
chies on the corresponding
B-model side (6).

These methods have been mostly applied in the large volume region of the
Calabi-Yau, where the perturbative expansion in α ′ is well-behaved and the topo-
logical string partition function has a clear geometric interpretation as a generating
functional of Gromov-Witten invariants. However, away from the large volume
region, the perturbative series diverges and the corresponding geometrical inter-
pretation breaks down. Very few exact results are known outside this perturbative
regime, although significant progress has been recently obtained by using modular
invariance (7) and new matrix-model inspired techniques (8).

In this paper, we obtain exact results in α ′ for a large class of toric Calabi-
Yau threefolds, and calculate the corresponding topological string amplitudes in
the full moduli space of closed and open strings. The basic idea is to resort to the
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correspondence with five-dimensional gauge theories via M-theory compactifica-
tion on the Calabi-Yau times a circle (9). More precisely, the geometries that we
consider are obtained from minimal resolution of Y p,q singularities, and M-theory
compactification over them give rise to SU(p) gauge theories on R4 × S1 with a
q-dependent five dimensional Chern-Simons term (10; 11). The mirror geometry
can be written as a fibration over an hyperelliptic curve, whose periods provide
a basis for the solutions of the B-model Picard-Fuchs equations. Our main result
is that we get a closed form for the (derivatives of the) periods on the whole B-
model moduli space. We then expand them in different patches and calculate in
this way topological amplitudes not only in the large volume region, but in all
phases, including orbifold and conifold points. The analytic continuation prop-
erties and modular structure underlying higher genus amplitudes can be easily
worked out in our approach. As an application, we give predictions for Gromov-
Witten invariants for the orbifold C3/Z4, which corresponds to the blow-down of
local F2 geometry (p = q = 2).

We observe that, for p = q, the hyperelliptic curve appearing in the mirror
geometry can be identified with the spectral curve of an integrable system, given
by the relativistic generalization of the Ap−1 Toda chain (12). The fact that with
our method we can find closed formulae for any value of the parameter q suggests
the existence of a wider class of relativistic integrable systems.

The structure of the paper is the following: in Sect. 2 we review the toric geom-
etry of Y p,q singularities and their minimal resolutions, in Sect. 3 we discuss mirror
symmetry and the relation with integrable systems, in Sect. 4 we outline our proce-
dure to find topological amplitudes in the whole B-model moduli space, in Sect. 5
we provide some preliminary checks of our formalism. In Sect. 6 we present a
detailed study of the local F2 case: we first compute open and closed genus zero
Gromov-Witten invariants of the C3/Z4 orbifold, then analyze the modular prop-
erties of the topological wave function and use them to predict higher genus in-
variants. We conclude in Sect. 7 with some comments and future perspectives.
Some technical details on the analytic continuation of topological amplitudes are
collected in the Appendix.

2 Cones over Y p,q

The toric geometry of Y p,q singularities (13) has been extensively studied in the
context of AdS/CFT correspondence (14), with the aim to provide non-trivial
checks1 for superconformal theories with reduced amount of supersymmetry. We
observe here that minimal resolution of such singularities gives rise precisely to
the local Calabi-Yau geometries that one usually considers to “geometrically en-
gineer” gauge theories via M-theory compactifications (11).

The manifolds Y p,q, with p and q integers such that 1 < q < p, are an infinite
class of five-dimensional manifolds on which explicit Sasaki-Einstein metrics can
be constructed (13); the two extremal cases q = 0 and q = p may be formally
added to the family, corresponding to Zp quotients respectively of T 1,1 (the base
of the conifold) and of S5/Z2. Since Y p,q are Sasaki-Einstein, the metric cone
C(Y p,q) constructed over them is Kähler Ricci-flat; moreover, given that the base

1 See also (15) for related work.
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has a T3 of isometries effectively acting by (Hamiltonian) symplectomorphisms,
the cone is a toric threefold (14), that is, it contains an algebraic three-torus (C∗)3

as a dense open subset acting on the full variety through an extension of the natural
action on itself (for an introduction to toric geometry see for example (16; 17)).
As any toric CY threefold, its geometry is fully codified by a three dimensional
fan Σ whose rays end on an affine hyperplane, say r3 = 1, in the three dimensional
space R3 with coordinates (r1,r2,r3). For C(Y p,q), this is given by the following
four lattice vectors in Z3:

v1 =

1
0
1

 , v2 =

0
0
1

 , v3 =

 0
p
1

 , v4 =

 −1
p−q

1

 . (2.1)

In the following we will be interested in investigating the (GKZ extended) Kähler
moduli space of toric and canonical class preserving complete resolutions of C(Y p,q).
At the level of the toric diagram, this amounts (17) to add the p−1 internal points
v4+ j = (0, j,1) for j = 1, . . . , p− 1 and declare that the set of three dimensional
cones in the fan Σ is given by the simplicial cones whose projection on the r3 = 1
hyperplane yields a triangulation of the polyhedron {v1,v2,v3,v4}.

The resolved geometry will be henceforth denoted as Xp,q ≡ C̃(Y p,q) and the
corresponding fan as Σp,q. It might also be described as a holomorphic quotient

(Cp+3 \Z)/(C∗)p

with Z a co-dimension >0 locus determined by the toric data (16) and the kthC∗

factor acting on the coordinates of Cp+3 as zi → λQ
(k)
i zi, where Q

(k)
i ∈ Z is a set

of integers such that

p+3

∑
i=1

Q
(k)
i vi = 0 k = 1, . . . , p. (2.2)

The set of charges for Xp,q is given by (see Fig. 2)

Q1 = (A, −2A−B, B, A, 0, 0, 0, 0, 0, 0, 0)
Q2 = (0, 1, 0, 0, −2, 1, 0, 0, . . . , 0, 0)
Q3 = (0, 0, 0, 0, 1, −2, 1, 0, . . . , 0, 0)
Q4 = (0, 0, 0, 0, 0, 1, −2, 1, . . . , 0, 0)
...

...
...

...
...

...
...

...
...

...
...

...
Qp = (0, 0, 1, 0, 0, 0, 0, 0, . . . , 1, −2)

(2.3)

with A and B coprime numbers solving the Diophantine equation (p−q)A+ pB =
0 for q < p, while A = 1 and B = 0 for q = p. In real polar coordinates (|zi|,θi),
this corresponds to the Higgs branch of a N = (2,2)d = 2 gauged linear σ -model
(GLSM) (18) with p+3 chiral fields zi. The D−term equation of motion is

p+3

∑
j=1

Qk
j|zi|2 = tk k = 1, . . . , p (2.4)
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Fig. 1 The fan of C(Y p,q) for p = 5, q = 2

Fig. 2 The fan of C̃(Y p,q) for p = 5, q = 2

Fig. 3 The pq-web diagram of C̃(Y p,q) for p = 5, q = 2

and U(1)p acts as

z j → e2πiQ(k)
j θ j z j k = 1, . . . , p, (2.5)

where θ j = arg(z j). The Fayet-Iliopoulos parameters tk are complexified Kähler
parameters of Xp,q. Indeed, the full cohomology ring of the smooth CY manifold
thus obtained can be easily read off from the fan (16; 19). For example, Betti
numbers are

b0 = 1, b2 = p, b4 = p−1, b6 = 0. (2.6)

Various aspects of these geometries have been considered in the context of topo-
logical strings. First of all, notice from Figs. 1–3 and formula (2.6) that for p = 1
we encounter the two most studied local curves: the conifold (q = 0) and C×KP1

(q = 1), whose enumerative geometry (20), phase structure (21) and local mirror
symmetry properties (22) have been extensively studied. For p = 2, the local CY
in question is the total space of the canonical line bundle KFq over the qth Hirze-
bruch surface, q = 0,1,2. For higher p we have the ladder geometries considered
in (11; 23; 24; 25) in the context of geometric engineering of pure SY M theo-
ries with eight supercharges. In a suitable field theory limit described in (23), the
Gromov-Witten large radius expansion for these geometries was shown to repro-
duce for all q the weak coupling instanton expansion of the prepotential for N = 2
SU(p) pure Yang-Mills in d = 4. Subsequently, they were shown (9; 10; 26), to
geometrically engineer N = 1 SU(p) SY M on R4×S1 with Chern-Simons cou-
pling k = p− q, with the field theory limit above interpreted now as the limit in
which the fifth-dimensional circle shrinks to zero size.

The Kähler moduli space of these geometries presents a manifold richness
of phenomena which provide a natural testing ground for A-twisted topological
string theory away from the large radius phase, as well as for the search of direct
evidence for open/closed dualities in the strongly coupled α ′ regime. The piv-
otal example of the latter is given by the case q = 0, which is the large N dual
background of the open A-model on T ∗L(p,1) obtained via geometric transition
(27). Moreover, it was noticed in (14; 19) that Xp,q can be “blown-down” to orb-
ifolds of flat space of the form C3/Zp+q (see Table 1); here the geometric picture
becomes singular, though leaving still open the possibility for extracting enumer-
ative results in terms of orbifold Gromov-Witten invariants. These are precisely
the cases we will turn to study in Sect. 4.
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Table 1 Orbifold degenerations of Xp,q into C3/Zp+q for the first few values of p and q. The
fourth column lists the weights of the Zp+q action on the coordinates (z1,z2,z3) of C3

p q p+q Weights
1 0 1 (0,0,0)
1 1 2 (0,1,1)
2 0 2 (0,1,1)
2 1 3 (1,1,1)
2 2 4 (1,1,2)

3 Mirror Symmetry for Local CY and Integrable Systems

3.1 Period integrals

A procedure for constructing mirror duals of (among others) toric CY threefolds
has been provided in (28), elaborating on previous results of (29; 30). The mirror
geometry X̂p,q of Xp,q is an affine hypersurface in C2× (C∗)2,

x1x2 = Hp,q(u,v) (3.1)

with (x1,x2)∈C2 and (u,v)∈ (C∗)2. In (3.1) Hp,q(u,v) is the Newton polynomial
(31) of the polytope Σp,q∩{r3 = 1} in Z3 given by the intersection of the fan with
the affine hyperplane r3 = 1,

Hp,q(u,v) = a1v+
a2up−q

v
−

p

∑
i=0

ai+3ui. (3.2)

The geometry is therefore that of a quadric fibration over the Hp,q(u,v) = λ ∈ C
plane, which degenerates to a node above the punctured Riemann surface Hp,q(u,v)=
0. We will call the latter the mirror curve Γp,q.

Now, mirror symmetry in the compact case prescribes to reconstruct the A-
model prepotential from the computation of the (properly normalized2) periods of
the holomorphic (3,0) form [Ω ] ∈H3,0(X̂p,q) on a symplectic basis of homology
three-cycles

EΠ =
∫

EΓ∈H3(X̂p,q,Z)
Ω ,

where Ω in this case would be the residue form on Hp,q = 0 of the holomorphic
4-form in H4,0(C2× (C∗)2 \X̂p,q),

Ω = ResHp,q(u,v)=x1x2

[
dx1dx2du/udv/v
x1x2−Hp,q(u,v)

]
. (3.3)

Special geometry then ensures (32) that the periods are related as

EΠ = (t0(a), ti(a),∂tiF (a),2F −∑
i

ti∂tiF ), (3.4)

2 In this section, we will not be careful about normalization factors. This will be of course our
concern in the calculations of Sect. 4.
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where ti(a) defines a local isomorphism between the A model moduli space of
Xp,q and the B model moduli space of X̂p,q, while F (t) is the prepotential, i.e.
the sphere amplitude. They have respectively single and double logarithmic singu-
larities at the large complex structure point (29). In the local case under scrutiny
we must actually cope with the absence of a symplectic basis for H3(X̂p,q,Z);
according to (22; 33), the formalism carries through to the local setting by con-
sidering non-compact cycles as well and defining the periods along them via
equivariant localization.3 We will denote the corresponding extended homology
as H(ext)

3 (X̂p,q,Z).
The usual procedure that (ti,∂iF ) are found is via integration of the associated

GKZ hypergeometric system (29; 32)

∏
Q

(k)
i >0

(
∂

∂ai

)Q
(k)
i

= ∏
Q

(k)
i <0

(
∂

∂ai

)Q
(k)
i

k = 1, . . . , p (3.5)

with Q
(k)
i as in (2.3). In a patch of the B-model moduli space, these are the Picard-

Fuchs (PF) equations for X̂p,q. Typically, solutions of (3.5) are obtained via series
integration by Frobenius method, i.e. solving recursion relations for the coeffi-
cients of a series expansion for (ti,∂iF ). This has to be done patch by patch in the
moduli space though, and it turns out to be hardly practicable as soon as the num-
ber of Kähler classes increases. To our knowledge, there is no explicit solution in
the literature when h11(Xp,q) > 2.

A possible alternative way to find EΠ is via direct integration. This not viable
in the general case, but notice that due to the particular form (3.1) of X̂p,q, the
integration of Ω over three-cycles boils down to that of a 1-differential dλ over a
basis of cycles in H(ext)

1 (Γp,q,Z). As shown in (22), the periods of Ω solve the PF
system (3.5) if and only if those of

dλp,q ≡ ResHp,q(u,v)=0

[
dudv

uv
logHp,q(u,v)

]
(3.6)

do on a basis of H(ext)
1 (Γp,q,Z). Picking up the residue gives

dλ = logv
du
u

, (3.7)

and the periods are thus computed as

Π
Γp,q
γ =

∫
γ∈H(ext)

1 (Γp,q,Z)
logv

du
u

. (3.8)

Unfortunately, the integrals are typically too awkward to carry out and no expres-
sion is known except for the simplest case of local curves; a perturbative evaluation
of them, though clearly possible, has no real advantages compared to tackling the
PF system upfront. However, we will see in Sect. 4 how to handle them in a direct
way.

3 We bother with this solely for the case of local curves. For p ≥ 2, as we will see, the inte-
gration over compact cycles is sufficient to extract enumerative information.
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Fig. 4 The pq-web for p = 5, q = 2 with a lagrangian brane on an inner leg

3.1.1 Mirror symmetry for open strings.

Recently, the open string sector of the A-model on toric CY has been subject to
deeper investigation, following the insight of (34; 35), where a class of special
Lagrangian submanifolds was constructed generalizing (36). The prescription of
(34) relies on the realization of a toric CY as a (degenerate) T3 fibration, parame-
terized by θi, over the |zi| base, see (2.4, 2.5). The authors of (34) consider a 3−k
real dimensional linear subspace W of the base

∑
i

qα
i |zi|2 = cα

α = 1, . . . ,k; qα
i ∈Q, (3.9)

and then specify a Tk fibration L over this subspace in such a way that the Kähler
form ω = ∑i d|zi|2∧dθi vanishes on it,

ω|L = 0. (3.10)

The total space of this fiber bundle L is then Lagrangian by construction; more-
over, it turns out that it is volume minimizing in its homology class (special La-
grangian) if and only if ∑i qα

i = 0. In this case (3.10) implies

∑
i

θi = 0. (3.11)

In the case in which cα in (3.9) are such that W intersects the edges of the toric
web, i.e. the loci where one S1 of the toric fibration shrinks, L splits into two
Lagrangians L± with topology R2 × S1: the open modulus z is then given by the
size of the circle, complexified with the holonomy of a U(1) connection along it.

The mirror symmetry construction of (28) has been extended to these brane
configurations in (34). When k = 2, L+ (resp. L−) gets mirror mapped to a curve
parameterized by x2 (resp. x1)

Hp,q(u,v) = 0 = x1 (resp. = x2). (3.12)

The moduli space of the mirror brane is then simply the mirror curve Γp,q. Picking
a parametrization thereof (for instance the projection on the u or v-lines) by a
complex variable z leads us to write the open topological partition function

Fopen({ti},z) = ∑
g,h

Fg,h({ti})zh; (3.13)

the sum is both over the genus of the source curve and the number of connected
components of its boundary. The choice of a “good” parametrization is dictated
by mirror symmetry and is related to phase transitions in the open string moduli
space for branes ending on toric curves meeting at a vertex in the web (see (8) for
details).

A very important fact is that the meromorphic differential dλ turns out to have
a significant role for open string amplitudes as well. The dimensional reduction of
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the
holomorphic Chern-Simons action on the mirror brane indeed yields a particu-
larly simple expression for the disc amplitude g = 0, h = 1. It is simply given by
the “Abel-Jacobi” map

F0,1(t,z) =
∫ z

logv(u)
du
u

, (3.14)

where the integral on the r.h.s. is a chain integral [z∗,z], with z∗ a fixed point on
the mirror curve. In (37) it was noticed that the disc amplitude (3.14) in a suitable
parameterization gets the form

F0,1(t,zopen) = ∑
m,n

Nm,nLi2(e−t·mzn
open). (3.15)

In (3.15) Nm,n are integer numbers counting open string BPS states and zopen is the
dressed open coordinate (35)

zopen = z+∑
i

wi− ti
ri

, (3.16)

where wi are combinations of gauge-invariant sigma model variables vanishing at
the point of maximally unipotent monodromy

wi = ∏
j

a
Q

(i)
j

j = ti +O(e−ti) (3.17)

and ri are rational numbers. Notice that the open flat coordinates get corrected
by closed worldsheet instantons only. As discovered in (38),(see also (39)) an
extended Picard-Fuchs system may be constructed such that (3.14), (3.16) are in
its kernel and this can be used for determining the ri in (3.16).

3.2 The B-model moduli space

A few remarks are in order at this point. The Riemann surfaces Γp,q come in a
family parameterized by {ai} in (3.1), which are the complex moduli of the mir-
ror geometry. The curve Γp,q will be generically smooth in the B-model moduli
space: we will denote the open set where this happens as M B

p,q. However, a com-
pactification of M B

p,q will lead to loci where this is no longer true. Indeed, Γp,q
degenerates to a singular curve on the so-called principal discriminant locus of
the PF system (3.5). In correspondence with this, one of the homology cycles of
Γp,q shrinks to zero size; GKZ solutions have then singularities and are subject to
logarithmic monodromy transformations around these loci, to which we will refer
as conifold loci. Moreover, there are also regions in the B-model moduli space
where the curve Γp,q stays smooth, but the periods have finite monodromy because
the moduli space itself is singular, locally looking like Cp/Zn; at the conformal
field theory level, this would be reflected by the appearance of a discrete quantum
symmetry. We will refer to the latter as an orbifold phase, in which we still re-
tain a geometric picture, though involving a singular (orbifold) target space in the
A-model side.
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To see why this happens from the mirror perspective one might argue as fol-
lows. The ai’s are sort of homogeneous coordinates for the complex structure mod-
uli space of X̂ p,q. Indeed, only p out of p+3 are really independent, as an overall
rescaling of them and scalings of u and v in (3.1) leave invariant the symplectic
form

du
u
∧ dv

v
(3.18)

in (C∗)2. That is, the moduli space of the mirror theory might be seen as arising
from a holomorphic quotient of Cp+3 by a (C∗)3 action with charges (see (3.2))

a1 a3 ap+3 a2 a4 . . . ap+2
Q1 1, 0, 0, −1, 0, . . . , 0
Q2 0, 0, p, p−q, 1, . . . , p−1
Q3 1, 1, 1, 1, 1, . . . , 1

(3.19)

By subtracting a suitable codimension >0 locus to Cp+3, we thus end up with a
toric
compactification of the family M B

p,q, which we call M B,tor
p,q . Remarkably enough,

inspection shows (32) that the skeleton of a fan for the above system of charges
is simply given by the columns of the GLSM (2.3), and the toric variety associ-
ated with it is complete. This fan is called the secondary fan of X p,q. In fact,
strictly speaking we are not dealing with a toric variety, as typically the secondary
fan will contain non-smooth simplicial cones, perhaps with marked points along
their facets. In the latter case, this would mean that the patch parameterized by the
corresponding ai’s looks like Cp/Zn rather than Cp; as such, the periods of the
holomorphic three-form will inherit the finite monodromy from the monodromy
of the ai themselves. This will be of fundamental importance in our study of the
[C3/Z4] orbifold in sect. 4.

Additional, but somewhat milder phase transitions involve the purely open
string sector as well and are related, as already anticipated, to a choice of a parametriza-
tion of Γp,q. See (8), to which we refer for a complete discussion of this subject.

3.3 Relation with integrable systems and five-dimensional gauge theories

Interestingly, the mirror curves of Xp,q geometries are related to the Seiberg-
Witten curve of five dimensional gauge theories and the related integrable sys-
tems. Since, as we will show in the next section, this observation will prove to
be very fruitful in the study of the topological string moduli space of Xp,q, we
describe it here in some detail.

First of all, let us rewrite (3.2) as

Y 2 = Pp(X)2−4a1a2X p−q (3.20)

upon setting

Y = a1v−a2up−q/v,
X = u, (3.21)

Pp(X) =
p

∑
i=0

ai+3X i.
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In the a1 = a2 = (ΛR)p, a3 = ap = 1 patch the curve (3.20) and the differential
(3.7) are precisely the Seiberg-Witten curve and differential of SU(p)N = 1 SYM
theory on R4×S1 with a q-dependent Chern-Simons term (11; 26).

Moreover, the SW curve and differential in the case p = q were shown in (40)
to coincide with the spectral curve and action differential of the Ap−1 Ruijsenaars
model (12), i.e. the Ap−1 periodic relativistic Toda chain. More precisely, setting
ζ = ΛR, (3.2) reads for p = q,

Γp,p : ζ
p(v+

1
v
) = 1+

p−1

∑
l=1

ulSl +up, dλp,p = logv
du
u

which can be rewritten as

det(L(z)−w) =
p

∑
j=0

(−w)p− j
σ j(z) = 0 (3.22)

with the Lax matrix defined as

Li j = eRpi fi(li j +bi j),

li j = δi, j+1(1+ζ
pz)ξi−δi,1δ j,p(1+ζ

−pz−1)ξ1,

bi j =
[
−(iζ )p i ≤ j−1
1 i > j−1 ,

f 2
i = (1−ζ

2eqi+1−qi)(1−ζ
2eqi−qi−1),

ξ
−1
i = 1−ζ

−2eqi−1−qi ,

(3.23)

where qp+1 = q1,q0 = qp, σ j are the elementary symmetric functions of L(z), S j
their z-independent factor, and we have made the change of variables (40)

−wu = 1+ζ
pz, z = v.

An identification of the curves for q < p as the spectral curves of some finite
dimensional integrable mechanical system seems to be presently not known, and
it would be interesting to understand the role of the q parameter in this context.

A second important remark is about the “field theory limit” discussed in (23).
From the mechanical system point of view, the parameter ζ in (3.23) is essentially
the inverse of the speed of light, while in the field theory perspective ζ = ΛR,
where Λ is the strong coupling scale and R is the radius of the fifth-dimensional
circle. This means that the four-dimensional limit might be achieved as the non-
relativistic limit of the Toda chain. Denoting with eφi , i = 1 . . . , p the roots of the
polynomial Pp(x) (3.22) and introducing the new set of variables (11),

y = Y,

X = e2Rx, (3.24)

eφi = eR(ai−ai+1),

we have that in the R → 0 limit (3.20) reduces to

y2 = P̃p(x)2−4Λ
2p, (3.25)
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Fig. 5 Cuts and punctures of the X plane in the genus 1 case

which is the Seiberg-Witten curve of N = 2 SU(p) Super Yang-Mills in d = 4.
Notice that in the R → 0 limit we completely lose track of the Chern-Simons pa-
rameter q, which has disappeared in formula (3.25). More importantly, the variable
x in (3.25) takes now values in C in contrast with the C∗−variable X . Because
of this, the peculiarly five-dimensional form of the differential (3.7), i.e. dλ =
logvd logu, is replaced in the R → 0 limit by that of the usual (non-relativistic)
Toda differential dλ = xd ln(P̃p + y). In fact, as we will see in the following, the
relativistic system and its non-relativistic counterpart - which by the discussion
above coincide respectively with the A−model on Xp,q and with its 4d Seiberg-
Witten limit - bear still deep structural resemblances and our aim will be to try to
exploit this to our advantage.

4 Solving the GKZ System in the Full Moduli Space

In this section we provide a method for finding the mirror map, as well as the
sphere and disc amplitude, for the A-model on Xp,q to all orders in α ′ without
resorting to solving the GKZ system directly. This will be accomplished by finding
closed forms for derivatives of the period integrals Π

Γp,q
γ w.r.t. the bare moduli as

generalized hypergeometric functions.
First of all, let us resume what the ingredients at our disposal are. According

to (3.20) the mirror curve Γp,q is a two-fold covering of the X plane branched at
Y (X) = 0, that is the locus

Pp(X)2 = 4a1a2X p−q. (4.1)

The resulting curve has genus p−1 and four punctures corresponding to the two
inverse images of X = 0, X = ∞. Let us denote the solutions to (4.1) as {bi}2p

i=1. A
basis for H(ext)

1 (Γp,q,Z) might be taken as the circles Ai, Bi encircling the intervals

IAi = [b2i−1,b2i] IBi = [b2i,b2i+1] (4.2)

for i = 1, . . . , p− 1, plus a circle A0 around one of the punctures at X = 0 and a
contour B0 connecting the two punctures at X = 0 and X = ∞. The 1-differential
dλp,q is given, in an affine patch parameterized by X , as

dλp,q(X) = logv(u)
du
u

= log

(
Pp(X)±

√
Pp(X)2−4a1a2X p−q

2a1

)
dX
X

, (4.3)

and a complete set of periods can be obtained by integrating it over the A/B-cycles

ΠA/B =
∮

A/B
dλp,q. (4.4)
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More explicitly,

ΠAi =
∫ b2i

b2i−1

log

(
Pp(X)+

√
Pp(X)2−4a1a2X p−q

Pp(X)−
√

Pp(X)2−4a1a2X p−q

)
dX
X

, (4.5)

ΠBi =
∫ b2i+1

b2i

log

(
Pp(X)+

√
Pp(X)2−4a1a2X p−q

Pp(X)−
√

Pp(X)2−4a1a2X p−q

)
dX
X

, (4.6)

ΠA0 =
∮

X=0
log

(
Pp(X)±

√
Pp(X)2−4a1a2X p−q

2a1

)
dX
X

, (4.7)

ΠB0 =
∫

∞

0
log

(
Pp(X)±

√
Pp(X)2−4a1a2X p−q

2a1

)
dX
X

. (4.8)

We now make the following observation. As we have already noticed, the curve
(3.20) and the differential (4.3) are the Seiberg-Witten (SW) curve and differential
of a five dimensional theory compactified on a circle. In Seiberg-Witten theory, the
gauge coupling matrix

τi j =
∂ΠBi

∂uk

(
∂ΠAk

∂u j

)−1

, (4.9)

where ui are Weyl-invariant functions of the scalar fields, is known to be the pe-
riod matrix of the compactified SW curve, that is a ratio of periods of holomorphic
differentials. We then expect that derivatives of dλp,q with respect to suitable func-
tions of the bare moduli are holomorphic differentials on the compactified Γ p,q,

[∂ f (ai)dλ ] ∈ H1,0(Γ p,q). (4.10)

This is substantiated by the fact that, for p = q = 2, the relativistic Toda system and
the non-relativistic one share the same oscillation periods (41); more precisely, the
derivatives of the action with respect to the energy are the same (elliptic) functions
of the bare parameters. This was also noticed in (40) in the study of the singulari-
ties of the moduli space of N = 1 SU(2) SY M in d = 5.

Explicitly, we indeed have

∂dλp,q

∂a j+4
=

X j√
P2

p (X)−4a1a2X p−q
dX , (4.11)

i.e., for j = 0, . . . , p−2, a basis of holomorphic 1-forms on the 4-point compacti-
fication Γ p,q = Γp,q∪{0+,0−,∞+,∞−} of the spectral curve Γp,q.

4.1 Period integrals and Lauricella functions

This last observation allows us to give a straightforward recipe for computing
series expansions of solutions of the GKZ system (3.5) in the full B-model moduli
space. The procedure is the following:
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1. Start with ΠAi/Bi and consider its a j+4 derivative for 0 ≤ j ≤ p−2,

∂ΠAi/Bi

∂a j+4
=
∫ ei+1

ei

X j√
∏

2p
i=1(X −bi)

dX (4.12)

with ei = b2i−1, ei = b2i for the A and B cycles respectively. The hyperelliptic
integral (4.12) has a closed expression given in terms of multivariate general-
ized hypergeometric functions of Lauricella type (42),

∂ΠAi/Bi

∂a j+4
= eiϕ

π
(ei) j√

∏k 6=i,i+1(ek− ei)

×F(2p−1)
D

(
1
2

;
1
2
, . . . ,

1
2
, j;1;x1, . . . , x̂i, x̂i+1, . . . ,x2p,

ei+1− ei

ei

)
,

(4.13)

where x j = (ei+1 − ei)/(e j − ei), 2ϕ = lπ , l ∈ Z is a phase depending on xi

and F(n)
D is the hypergeometric series

F(n)
D (α;{βi};γ;{δi}) =

∞

∑
m1...mn=0

(α)m+···+mn(β1)m1 . . .(βn)mnδ
m1
1 . . .δ mn

n

(γ)m+···+mnm1! . . .mn!

(4.14)

which converges when |δi| < 1 for every i. In the above formula we used the
standard Pochhammer symbol (α)m = Γ (α + m)/Γ (α). There are many al-
ternative ways to express (4.12), for instance in terms of hyperelliptic θ func-
tions; however, the above expression proves to be useful due to the fact that
Lauricella F(n)

D has good analytic continuation properties outside the unit poly-
disc |δi|< 1; some formulae, as well as asymptotic expansions around singu-
lar submanifolds, are collected in the Appendix, while others can be found in
(42; 43). Notice that, as opposed to the usual situation in solving PF equa-
tions by the Frobenius method, we are not dealing here with hypergeometric
functions of the bare moduli, but rather of the relative distance xi between ram-
ification points; they have singular values precisely when the latter becomes 0,
1 or infinity, that is when we encounter a pinching point of Γp,q. This shift in
perspective is definitely an advantage compared to other expressions for hy-
perelliptic integrals, involving for instance the F4 Appell function for genus
2 (44; 45). These are simpler functions of the bare moduli, but have worse
analytic continuation properties and are less suited for a more complete study
of the moduli space, regarding for instance intersecting submanifolds of the
principal discriminant locus. The above fact was already pointed out in (46),
where the properties of Fn

D were exploited to study the Z3 point of N = 2
SU(3) SY M.
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In many cases, F(n)
D can be reduced to a more familiar form. For instance,

for p = 2 we have the expected complete elliptic integrals of the first kind

∂ΠA

∂a4
=

2√
(b1−b3)(b2−b4)

K
[
(b1−b2)(b3−b4)
(b1−b3)(b2−b4)

]
, (4.15)

∂ΠB

∂a4
=

2√
(b1−b2)(b3−b4)

K
[
(b1−b3)(b2−b4)
(b1−b2)(b3−b4)

]
. (4.16)

2. Once we have a representation for the derivatives of the periods in the form
(4.13), (4.15)-(4.16) we can use the formulae in Appendix B to analytically
continue them in any given patch of the B-model moduli space and find a cor-
responding power series expansion in the bare moduli ai. Integrating back with
respect to a j yields ΠAi and ΠBi up to a constant of integration, independent
of a j for 0 ≤ j ≤ p− 2. This has to be fixed either by some indirect consid-
eration (for instance, by imposing a prescribed asymptotic behavior around a
singular point) or by plugging it inside the PF system and imposing that the
period be in the kernel of the GKZ operators. This operation leads to a closed
ODE integrable by quadratures, which completes the solution of the problem
of finding expansions for ΠAi/Bi everywhere in the B-model moduli space.

3. The procedure provides us with p−1 flat coordinates as well as p−1 conju-
gate periods out of which to extract the prepotential. In order to find the pth

modulus, we pick up the residue (4.7),

∮
X=0±

dλ =


log
(
± a3

a1

)
for q < p

log
(

a3±
√

a2
3−4a1a2

2a1

)
for q = p

, (4.17)

which are manifestly solutions of (3.5). In the following, we will choose an
appropriate combination of them in order to have a prescribed behavior around
the expansion point under scrutiny.

4. Closed form computation of derivatives with respect to a j can be done for open
string amplitudes as well, which might be used to trade an expansion in terms
of the z parameter in (3.16) with one in a j, completely resummed w.r.t. z. In
this case, dealing with chain integrals instead of period integrals leads one to
consider indefinite integrals and thus incomplete hyperelliptic integrals. The
latter can still be given the form of a multivariate Lauricella function, but with
order increased by one (42),

∂F0,1({ak},z)
∂a j+4

= eiϕ
π

(ei) j√
∏k 6=i,i+1(ek− ei)

2
√

z (4.18)

×F(2p)
D

(
1
2

;
1
2
, . . . ,

1
2
, j,

1
2

;
3
2

;x3, . . . ,x2p,
e2− e1

e1
,z
)

.

As before, for p = 2 (4.18) boils down to an incomplete elliptic integral of the
first kind in the form

∂F0,1({ak},z)
∂a4

= 2

√
1
b̃

F

(
sin−1

(√
(b1−b4)(b2− z)
(b2−b4)(b1− z)

)∣∣∣∣ ãb̃
)

, (4.19)
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Fig. 6 The fan of local F0

where

ã = (b2−b4)(b1−b3) b̃ = (b2−b3)(b1−b4).

Another important advantage of this method is that, instead of integrating back
patch-wise with respect to a j, we can get our hands dirty and work directly with
an Euler-type integral representation of the periods. The fact that F(n)

D has a single
integral representation saves us most of the pain in the problem of finding the ex-
plicit analytic continuation of ΠAi/Bi , which in the multi-parameter case involves
the use of multi-loop Mellin-Barnes integrals. The details for the case p = q = 2
which will be of interest later on for the computation of orbifold Gromov-Witten
invariants are reported in Appendix A, where also a closed expression for the A-
period can be found in terms of a generalized Kampé de Fériet hypergeometric
function.

5 Warm-up Tests of the Formalism

Let us show how the steps described in Sect. 4.1 allow to quickly recover some
known results about mirror symmetry for local surfaces.

5.1 Local F0 : mirror map at large radius

Local mirror symmetry for KF0 has been studied in (47) in the check of the large
N duality with Chern-Simons theory on S3/Z2. The mirror curve in this case can
be written as

a1v+a2/v = a3/u+a4 +a5u. (5.1)

Good variables around the large complex structure point (29) are given by

zB =
a1a2

a2
4

, zF =
a3a5

a2
4

. (5.2)

Let us use the scaling freedom (3.19) to set

a3 = a5 = 1, a1 = a2. (5.3)

By using the change of variables (3.20) the curve (5.1) is then given by

Y 2 =
(

X2 +
X
√

zF
+1
)2

− 4zB

zF
X2, (5.4)
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which is a double covering of the X−plane branched at

b1 =
−1+2

√
zB−

√
1−4

√
zB +4zB−4zF

2
√

zF
, (5.5)

b2 =
−1−2

√
zB−

√
1−4

√
zB +4zB−4zF

2
√

zF
, (5.6)

b3 =
−1+2

√
zB +

√
1−4

√
zB +4zB−4zF

2
√

zF
, (5.7)

b4 =
−1−2

√
zB +

√
1−4

√
zB +4zB−4zF

2
√

zF
. (5.8)

We choose the A-cycle as the loop encircling [b1,b2]. The asymptotics of the cor-
responding period will indeed identify it as the flat coordinate around zB = zF = 0.
By expanding (4.15) in (zB,zF) we have

∂ΠA

∂a4
=
√

zF(20z3
B +6(30zF +1)z2

B

+2(90z2
F +12zF +1)zB +20z3

F +6z2
F +2zF +1)+ · · · (5.9)

which integrates to

ΠA = log(zF)+
20z3

B
3

+60zF z2
B +3z2

B +60z2
F zB. (5.10)

From (4.17) and (5.2) we can compute the remaining flat coordinate as

Π0 =−1
2

log
zB

zF
. (5.11)

It is then easy to see that the combinations of periods that have the right asymp-
totics at large radius are given by

− tB ≡−2Π0(zB,zF)+ΠA(zB,zF), −tF ≡ ΠA(zB,zF). (5.12)

Inversion of (5.10) and (5.11) reads, setting QB = e−tB , QF = e−tF ,

zB = 6Q3
B−2Q2

B +6Q2
FQB−2QFQB +QB + · · · ,

zF = 6Q3
F −2Q2

F +6Q2
BQF −2QBQF +QF + · · · , (5.13)

which is the mirror map as written in (48).
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5.2 Local F0 : orbifold point

Analogously, we can write down the expansion for the orbifold point (47), which
corresponds to a1 = a2 = a3 = a5 = 1, a4 = 0. Setting a1 = a2 =

√
1−x1, a4 =

x1x2, a3 = a5 = 1 as in (47), we have

s1 ≡ Π0 =− log(1−x1),

s2 ≡ ΠA +ΠB/2 =
1

61931520π
[x2(35(32(x1−2)x1(x1(11x1−96)+96)E(x1)

+x1(x1(x1(x1(105x1−1856)+8000)−12288)+6144)K(x1))x8
2 + · · ·

]
.

Upon introducing s̃1 = s1 and s̃2 = s1/s2 we have

x1(s̃1) = 1− e−s̃1 ,

x2(s̃1, s̃2) = s̃2 +
s̃2

4
s̃1 +

(
s̃2

192
−

s̃3
2

192

)
s̃2

1 +
(
− s̃2

256
−

s̃3
2

768

)
s̃3

1 +
(
− 49s̃2

737280

+
7s̃3

2
73728

−
7s̃5

2
245760

)
s̃4

1 +
(

5s̃3
2

98304
−

7s̃5
2

983040

)
s̃5

1 + · · · (5.14)

in perfect agreement with (47). Needless to say, the prepotential computation can
be checked exactly the same way. We have

Fs2 ≡ ΠA =
1

53760

[
x1x2

(
(75x3

1x
6
2−56x2

1(10x2
2 +9)x4

2 +64x1(10x4
2 +21x2

2

+70)x2
2−107520

)
K(1−x1)+ · · ·

]
= log

(x1

16

)
s2−

x3
2

12
x1 +(

x2

4
+

x3
2

48
)x2

1 +
(
− 21

128
x2 +

5
768

x3
2

)
x3

1

+
(

185x2

1536
+

5x3
2

1024

)
x4

1 + · · · (5.15)

which reproduces the analogous formula in (47), modulo the ambiguity in the
degree-zero contribution.

5.3 Local F2 at large radius

We might proceed along the same lines for the case of local F2. The curve is given
by

a1v+
a2

v
= a3 +a4u+a5u2. (5.16)

Branch points are located at

u+
a4

2a5
=

±
√

a2
4−4a3a5−8

√
a1
√

a2a5
2a5

≡±c1

±
√

a2
4−4a3a5+8

√
a1
√

a2a5
2a5

≡±c2

, (5.17)
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and we have accordingly

∂ΠA

∂a4
=
∫ c2

c1

dX
(X2− c2

1)(X2− c2
2)

=
K
(

1− c2
2

c2
1

)
c1

, (5.18)

∂ΠB

∂a4
=
∫ c1

−c1

dX
(X2− c2

1)(X2− c2
2)

=
2K
(

c2
1

c2
2

)
c2

. (5.19)

In this case good coordinates associated to the base P1 and the P1 fiber are

zB =
a1a2

a2
3

, zF =
a3a5

a2
4

. (5.20)

Upon setting a1 = a2, a3 = a5 = 1, periods take the form

∂ tF
∂ zF

=
∂ΠA

∂ zF
=−

2K
(
− 16

√
zBzF

−8
√

zBzF−4zF +1

)
πzF

√
1−4

(
2
√

zB +1
)

zF

,

∂ 2F

∂ zF ∂ tF
=

∂ΠB

∂ zF
=−

4K
(
−8

√
zBzF−4zF +1

8
√

zBzF−4zF +1

)
zF

√
1−4

(
1−2

√
zB
)

zF

,

tB = Π0+ −Π0− = 2i tan−1
(√

4zB−1
)

, (5.21)

where the normalization has been chosen in order to get the right asymptotics.
Integration and inversion yields the mirror map at the large radius point

zB(QB) =
QB

(QB +1)2 ,

zF(QB,QF) = (1+QB)QF +
(
−2−4QB−2Q2

B
)
Q2

F

+
(
3+3QB +3Q2

B +3Q3
B
)
Q3

F + · · · , (5.22)

with QB = e−tB , QF = e−tF and therefore

∂tF F (QB,QF) = (log(QF) log(QBQF))+(4+4QB)QF +(1+16QB

+Q2
B)Q2

F +
(

4
9

+36QB +36Q2
B +

4Q3
B

9

)
Q3

F

+
(

1
4

+260Q2
B +64(QB +Q3

B)
)

Q4
F + · · · (5.23)

as in (29).
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Fig. 7 The fan of local F2

Fig. 8 The fan of [C3/Z4]

6 Local F2 and [C3/Z4] Orbifold Gromov-Witten Invariants

6.1 Orbifold mirror map and genus zero invariants

We will now apply the
considerations above to the study of the tip of the classical Kähler moduli space
for local F2, where the compact divisor collapses to zero size. The resulting geom-
etry (19) is a Z4 orbifold of C3 by the action (ω;z1,z2,z3) → (ωz1,ωz2,ω

−2z3),
with ω ∈Z4. In the orbifold phase, the genus zero closed amplitude computes (49)
the generating function of genus-zero correlators of twist fields

F orb(s1/4,s1/2) = ∑
n,m

1
n!m!

〈Om
1/4O

n
1/2〉s

m
1/4sn

1/2. (6.1)

In (6.1) the sum is over the generators s1/4, s1/2 of the orbifold cohomology ring
and they are associated respectively with the twisted sectors 1/4 and 1/2 under the
Z4 action. The corresponding topological observables are denoted respectively as
O1/4 and O1/2. The correlators 〈Om

1/4O
n
1/2〉 compute genus-zero orbifold Gromov-

Witten invariants Norb
0,(m,n) with m insertions of weight 1/4 and n of weight 1/2.

From Fig. 7 we see that Mori vectors for local F2 are

Q1 = (0, 1, 1, 0, −2),
Q2 = (1, −2, 0, 1, 0), (6.2)

and the mirror curve Γ2,2 has the form (5.16)

a1v+
a2

v
= a3 +a4u+a5u2.

Following (50) we argue that the point we are looking for in the B-model moduli
space is given by a3 = a4 = 0. This would amount to shrinking to zero size the
compact divisor given, in the homogeneous coordinates zi introduced in Sect. 2,
by z5 = 0. When resolving C3/Z4, the latter corresponds to the extra divisor in
the blow-up procedure: indeed, dropping z5 from the GLSM (6.2) leads one to the
system of charges of the base F2 inside local F2.

This argument is strengthened by the following remark. The secondary fan of
(6.2) is shown in Fig. 9 and has the set of charges (see (3.19))

a1 a3 a5 a2 a4
Q1 1, 0, 0, −1, 0
Q2 0, 0, 2, 0, 1
Q3 1, 1, 1, 1, 1

(6.3)

The fan of the toric compactification M B,tor
2,2 of M B

2,2 is simplicial but with

marked points: M B,tor
2,2 is thus a toric orbifold. Its orbifold patches are, as shown
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Fig. 9 The secondary fan of local F2

in Fig. 9, a smooth C2 patch containing the large complex structure point, two
non-smooth [C2/Z2] cones, and finally a [C2/Z4] patch parameterized by (a3,a4).
Inspection shows that the latter is a toric orbifold of C2 by the action

Z4×C2 → C2

(6.4)
λ (x,y) → (λx,λ 2y).

(a3,a4) = (0,0) is therefore the only Z4 point in the compactified moduli space
as expected. From (6.4) we see that good coordinates around (a3,a4) = (0,0) are
given by

a3 =
√

de,

a4 = d1/4.
(6.5)

Let us then find a complete basis of solutions for the GKZ system around this
point. Picard-Fuchs operators are written in this patch as

L1 = a3∂
2
a4

+
1
2

θa4θa3 ,

L2 = ∂
2
a3
− 1

16
(θ 2

a4
−4θ

2
a3

)− 1
4

θa3θa4 ,

(6.6)

and the branch points (5.17) here read

± c1 =±1
2

√
a2

4−4a3−8,

± c2 =±1
2

√
a2

4−4a3 +8,

(6.7)

while the period integrals (5.18),(5.19) and (4.17) become

∂a4ΠA =
K
(

a2
4−4a3−8

a2
4−4a3+8

)
√

a2
4−4a3 +8

−
K
(

a2
4−4a3+8

a2
4−4a3−8

)
√

a2
4−4a3−8

,

∂a4ΠB = 2
K
(

a2
4−4a3−8

a2
4−4a3+8

)
√

a2
4−4a3 +8

,

Π0± = log

a3

2
±

√
a2

3−4

2

 .

(6.8)

We want to find solutions of the PF system (6.6) with prescribed monodromy
around (d,e) = (0,0), in order to match them with the conjugacy classes of Z4.
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Defining

s1/4 =

[
(8−8i)π1/2

Γ
( 1

4

)2

](
ΠB

2
− ΠA

1− i

)
, (6.9)

s3/4 =

[
(4+4i)Γ

( 1
4

)2

π3/2

](
ΠB

2
+

ΠA

1+ i

)
, (6.10)

s1/2 =−2iΠ0− +π, (6.11)

we then have

s1/4(d,e) = d1/4
[

1+
(

e2

32
− e

192
+

1
2560

)
d− 25e3

18432
d2 + · · ·

]
, (6.12)

s1/2(d,e) = d1/2
[

e+
e3d
24

+
3e5d2

640
+

5e7d3

7168
+ · · ·

]
, (6.13)

s3/4(d,e) = d3/4
[(

e− 1
12

)
+
(

3e3

32
− 3e2

128
+

9e
2560

− 3
14336

)
d + · · ·

]
. (6.14)

The normalization of the mirror map has been fixed by imposing the correct
asymptotics s1/4 ∼ a4, s1/2 ∼ a3 as to reproduce the generators of the classical
orbifold cohomology. These are given by a4 and a3 respectively for the weight
1/4 and 1/2 twisted sectors. Concerning the solution s3/4, this is identified with
the derivative of the generating function Forb in (6.1) with respect to s1/4; in
fact, the orbifold cohomology pairing modifies this relation by a factor of 4, i.e.
s3/4 = 4∂s1/4Forb. Taking all this into account, inversion of (6.12) and (6.13) gives
the following expression for the prepotential

4
∂Forb

∂ s1/4
(s1/2,s1/4)

=

(
s1/2 +

s3
1/2

48
+

s5
1/2

960
+

29s7
1/2

430080
+

457s9
1/2

92897280
+O

(
s11

1/2

))
s1/4

+

(
− 1

12
−

s2
1/2

96
−

11s4
1/2

9216
−

49s6
1/2

368640
−

601s8
1/2

41287680
+O

(
s10

1/2

))
s3

1/4

+

(
7s1/2

3840
+

s3
1/2

1920
+

47s5
1/2

460800
+

6971s7
1/2

412876800
+O

(
s9

1/2

))
s5

1/4

+ . . . . (6.15)

As a check, the prepotential thus obtained is invariant under monodromy. The first
few orbifold GW invariants are listed in Table 2. Our predictions exactly match
the results4 obtained in (51) after the methods of (52).

4 We are grateful to Tom Coates for sharing with us his computations and for enlightening
discussions on this point.
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Table 2 Genus zero orbifold Gromov-Witten invariants Norb
0,(m,n) of [C3/Z4]

m 2 4 6 8 10
n
0 0 − 1

8 0 − 9
64 0

1 1
4 0 7

128 0 1083
1024

2 0 − 1
32 0 − 143

512 0
3 1

32 0 3
32 0 85383

16384
4 0 − 11

256 0 − 159
128 0

5 1
32 0 47

128 0 360819
8192

6 0 − 147
1024 0 − 157221

16384 0
7 87

1024 0 20913
8192 0 73893099

131072
8 0 − 1803

2048 0 − 3719949
32768 0

9 457
1024 0 1809189

65536 0 5312434641
524288

10 0 − 70271
8192 0 − 498785781

262144 0
11 7859

2048 0 56072653
131072 0 254697581847

1048576
12 0 − 15933327

131072 0 − 11229229227
262144 0

13 801987
16384 0 2354902131

262144 0 31371782305803
4194304

Fig. 10 The pq-web of local F2 with lagrangian branes on an upper (I) and lower (II) outer leg

6.2 Adding D-branes

Following the discussion of Sect. 3.1.1 we might want to turn on an open sector
and add Lagrangian branes to the orbifold. The procedure of (34; 35) is in principle
valid away from the region of semi-classical geometry and has had a highly non-
trivial check for the local F0 case in (8), where open amplitudes have been matched
against Wilson lines in the large N dual Chern-Simons theory. First of all, we will
consider the setups I and II of Fig. 10, with a D-brane ending respectively on the
outer leg |z1|= |z3| and |z1|= |z2|. The choice of variables (3.2) we have made for
the mirror curve Γ2,2, in which the B-model coordinate mirror to |z2| was gauge-
fixed to one, corresponds to phase II. This means that v is the variable that goes
to one on the brane and X(II) ≡ u is the good open string parameter to be taken as
the independent variable in (3.16) (8). The transition from phase II to phase I is
accomplished by the (exponentiated) SL(2,Z) transformation

X(II) ≡ u → 1
u
≡ X(I),

v → vu2.

(6.16)

Accordingly, the differential (3.7) has the form

dλ =


log

a3X2
(I)+a4X(I)+1+

√
(a3X2

(I)+a4X(I)+1)2−4X4
(I)

2X4
(I)

dX(I)
X(I)

phase I

log
a3+a4X(II)+X2

(II)+
√

(a3+a4X(II)+X2
(II))

2−4

2
dX(II)
X(II)

phase II

. (6.17)

We now turn to analyze the unframed A-model disc amplitude for a brane in phase
I. In order to do that we have to compute the instanton corrected open modulus
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(3.16) and the Abel-Jacobi map (3.14). To determine the former, and more pre-
cisely the ri coefficients in (3.16), we use the result of (38), where the authors
show that for this outer-leg configuration the large radius open flat variable solv-
ing the extended Picard-Fuchs system is given by

zLR
open = z+

tB
4

+
tF
2

+πi, (6.18)

where z = logX(I). In the (a3, a4) patch containing the orbifold point this becomes

zLR
open = z+πi+O(a4)+O(a3). (6.19)

Notice that in (6.18), (6.19), both zLR
open and z + πi solve the extended PF system

and can then serve as a flat coordinate: zLR
open does the job by construction, and the

same is true for z because it is a difference of solutions of the Picard-Fuchs system
by (6.18). Following (8), we have that the difference zLR

open −
tB
4 −

tF
2 = z + πi is

a global open flat variable and serves as the expansion parameter at the orbifold
point. In terms of exponentiated variables, we then have:

Zorb
open =−X(I). (6.20)

Having the mirror map and using (3.14) or (4.18) one can then mimic (8) and
expand the chain integral, thus obtaining the disc amplitude F0,1(a3,a4,z) as a
function of the bare variables, or, using (6.12)–(6.13), of the flat variables. Notice
that, since (a3,a4) have non-trivial Z4 transformations, in order to preserve the fact
that the curve (5.16) stays invariant we are forced to assign weights (1/4,1/2) to
(u,v) respectively, and so according to (6.20) Zorb

open has weight −1/4. Eventually
we get

F0,1(s1/4,s1/2,Z
orb
open) =

(
−

s1/2s3
1/4

192
+

s2
1/2s1/4

32
− s1/4

)
Zorb

open

+

(
s2

1/2s2
1/4

64
−

s2
1/4

4
+ s1/2

(
1
2
−

s4
1/4

384

))
(Zorb

open)
2

+

(
7s2

1/2s3
1/4

576
−

s3
1/4

9
+

s1/2s1/4

3

)
(Zorb

open)
3

+ · · · (6.21)

which is monodromy invariant. The amplitude (6.21) should correspond to a gen-
erating function of open Gromov-Witten invariants of the C3/Z4 orbifold.

The situation for phase II appears to be more subtle. The resulting topological
amplitude computed from the chain integral (3.14) picks up a sign flip under Z4.
This is not completely surprising, since it is known that disc amplitudes may have
non-trivial monodromy (37), and it might also be seen to be related to the more
complicated geometrical structure of the Z4 orbifold with respect to the Z3 case,
due to the presence of non-trivial stabilizers for the cyclic group action.
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6.3 Modular structure of topological amplitudes

Higher genus amplitudes are
associated to the quantization of the symplectic space spanned by the periods
of the mirror curve (54). The corresponding topological wave functional obeys
recursion relations (BCOV equations (2)) that allow to compute higher genus am-
plitudes building on genus zero and one results, up to holomorphic ambiguities. It
has been shown in (7) that this algorithm is made simpler and more efficient by
exploiting modular properties of the topological amplitudes.

Let us summarize very briefly the results of (7) relevant for our discussion. As
recalled in Sect. 3, the choice of B-model complex structures can be parametrized
in terms of the periods of the three-form Ω in a chosen symplectic basis Ai∩B j =
δ i

j in H3(X̂ ,Z), which define a so-called “real polarization”. Special geometry re-
lations between the periods xi =

∫
Ai Ω and p j =

∫
B j

Ω are summarized in terms
of a prepotential F0(xi) which turns out to be the genus zero free-energy of the
topological string. The “phase space” (xi, p j) can be endowed with a natural sym-
plectic structure with symplectic form dxi ∧ d pi. The higher genus amplitudes
Fg are associated to the quantization of this space, with the string coupling g2

s
playing the rôle of h̄. More precisely, the full topological string partition function
Z(xi) ∼ exp∑g g2g−2

s Fg(xi) is interpreted as a wave function (54). The periods
(xi, p j) generically undergo an Sp(2p− 2,Z) transformation under a change of
symplectic basis of the mirror curve. Correspondingly, the B-model topological
amplitudes Fg have definite transformation properties that can be derived by im-
plementing the canonical transformation at the quantum level on the topological
wave function.

The crucial observation of (7) is that there is a finite index subgroup Γ ⊂
Sp(2p−2,Z) which is a symmetry of the theory. Γ is precisely the group generated
by the
monodromies of the periods, which must leave invariant the topological wave-
function. This symmetry constrains the topological amplitudes; in particular in
the real polarization the Fg can be shown to be quasi-modular forms of Γ (7),
namely they transform with a shift. For example for the case of elliptic mirror
curves, i.e. local surfaces, this amounts to say that the wave-function is a finite
power series in the second Eisenstein series.

We recall that one could also have chosen to parameterize the B-model moduli
space with the Hodge decomposition of H3(X̂ ,Z) in terms of a fixed background
complex structure. The topological wave function in this holomorphic polarization
can be shown (54) to obey the BCOV holomorphic anomaly equations. The topo-
logical amplitudes F̂g in this case turn out to be proper modular forms of weight
zero under Γ , namely invariant under Γ , but they are non-holomorphic. For el-
liptic mirror curves, they can be written in terms of a polynomial in a canonical,
non-holomorphic extension of the second Eisenstein series

E2(τ)→ Ê2(τ, τ̄) := E2(τ)− 3
π

1
ℑmτ

(6.22)
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with coefficients in the ring of holomorphic modular forms of Γ . Thus one can
pass from the real to the holomorphic polarization just by the above shift of vari-
ables.

The advantage of the approach proposed in (7) is twofold. On one side it sim-
plifies the solution of BCOV equations by restricting the functional dependence
of the F̂g to the ring of Γ modular forms. On the other it allows to relate the topo-
logical amplitudes in different patches of the B-model moduli space allowing in
this way to extract enumerative invariants, e.g. at the orbifold point.

As we will show in the following, our method is perfectly tailored to display
the modular symmetry of the topological wave-function. In fact, the relation with
the Seiberg-Witten curves greatly simplifies the analysis of the modular properties
of higher genus amplitudes. Moreover, since we obtain explicit expressions for the
periods of the mirror curve in terms of the branch points, it is enough to write the
latter in terms of modular forms to make manifest the modular properties of genus
zero and one topological amplitudes, thus providing the building blocks for the
solution of BCOV equations. About the latter we point out however that there is a
caveat: for the geometries under our study in addition to the modular dependence
there is also a dependence on an extra parameter (independent of τ), as in the
discussion of (7) about the similar case of local F0. This makes the solution of the
BCOV equations at higher genus more involved computationally, since one has to
fix a functional dependence on an extra datum. We choose to handle this problem
with the approach developed in (8; 58) in which the holomorphic Fg are defined
via recurrence relations inspired by matrix-model techniques. This will allow us
to display the general modular structure of the free energies in the local F2 case,
in a way in which both the dependence on the modular variable and that on the
extra parameter are completely fixed.

In this section we first find the relevant change of basis from large radius to
the orbifold point and then identify the ring of modular functions relevant for the
local F2 case. These results provide the necessary tools to discuss higher genus
invariants, which will be the subject of the next section.

6.3.1 The change of basis from large radius.

We already saw in the last section that the mirror map at the orbifold point is
obtained by choosing solutions of the GKZ system which diagonalize the mon-
odromy of the periods. This implies that the solutions at large radius (1, tB, tF ,∂FF )
are related to those at the orbifold point (1,s1/4,s1/2,s3/4) by a linear transforma-
tion, which, for the subsector relating (tF , ∂FF ) and (s1/2,s3/4) might be regarded
as an (unnormalized)5 automorphism in H1(Γ2,2,Z). In (7) it was shown that under
a symplectic change of basis

EΠ → S EΠ =
(

A B
C D

)
EΠ , S ∈ Sp(2p−2,Z) (6.23)

the genus-g amplitudes Fg are subject to a transformation which can be derived by
implementing the canonical transformation associated to (6.23) in the path integral

5 The determinant of the change of basis is equal to 2, see (6.28), due to the fact that we are
dealing with a local threefold.
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defining the topological wave function. From saddle point expansion one then gets

F̃g = Fg +Γg(∆ ,Fr<g)), (6.24)

where Γg is determined by the Feynman rules in terms of lower genus vertices
∂ nFr<g and the propagator ∆ given by

∆ ' 1
τ +C−1D

(6.25)

up to normalization factors. In (6.25) τ is the period matrix of Γ 2,2. This means,
for instance, that knowledge of Fg in the large radius region allows one to com-
pute genus-g free energies in the full moduli space, provided that we know how the
periods are transformed when going from one region to another. This was success-
fully exploited in (7) to predict higher genus orbifold Gromov-Witten invariants
for the [C3/Z3] orbifold from the ones of the large radius KP2 geometry.

We underline that our method of solving the extended GKZ system in the full
moduli space has the advantage to make much easier the study of the analytic
continuation properties and the consequent computation of the linear change of
basis (6.23). Indeed, instead of performing standard (but cumbersome) multiple
Mellin-Barnes transforms, we can easily read off what S and ∆ are in our case
from formulae (A.2-A.3) and (6.8). Let us define

EΠLR =

 1
tB
tF

∂FF

 , EΠorb =


1

s1/2
s1/4
s3/4

 . (6.26)

We can now simply compute the change of basis between the large radius and
the orbifold point by using the Euler integral representation6 (A.2) (see also (6.9–
6.11)). We can relate Πorb = S̃ΠLR through

S̃ =

 1 0 0 0
π −i 0 0
α β S
γ δ

 , (6.27)

where

S =


2π3/2

Γ ( 1
4 )

2
(1−i)

√
π

Γ ( 1
4 )

2

−Γ ( 1
4 )

2

√
π

( 1
2 + i

2 )Γ ( 1
4 )

2

π3/2

 . (6.28)

6 Actually, the computation is simple only when one works with the a4 derivatives of the
periods and then integrates back. This gives rise to the unknown coefficients (α,β ,γ,δ ). A
more careful inspection of the direct asymptotic expansion of the integrals (A.2), (A.3) would
allow one to compute explicitly α , β , γ and δ in (6.27); anyway, all this will not overly bother
us, as only the S subsector in (6.27) will be relevant for actual computations.
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6.3.2 Local F2 and Γ (2) modular forms

The last formula in the previous section relates the physical periods of the large
radius patch to those of the orbifold patch and represents one of the main ingredi-
ents to make predictions about orbifold Gromov-Witten invariants at higher genus.
This should be already clear at this stage from (6.24), but it can in fact be brought
to full power due to the beautiful results of (7). Let us see how this works in detail
for the p = 2, q = 2 case we have been considering, and in particular let us figure
out what the relevant modular group Γ is in this case. In fact, we have already
answered this question: as we stressed in Sect. 3.3, the family of elliptic curves
in this case is the same as its field theory limit, the only thing that changes being
the symplectic structure defined on the elliptic fibration, i.e., the SW differential.
This was already noticed in the strictly related case of local F0 in (7). In particular
we might argue as follows for the present case. By formulae (3.20), (5.17) the Γ2,2
family can be written as

Y 2 = (X̂2− c2
1)(X̂

2− c2
2), (6.29)

where we have shifted the X variable in (3.20) by X̂ = X + a4/2. Through the
following SL(2,C) automorphism of the X̂-plane:

X̂ =
aX̃ +b
cX̃ +d

, Ỹ = (cX̃ +d)2Y,

a=

√
c1c2− c2

2√
4c1 +4c2

, b=
c2(3c1 + c2)

2
√

c2
(
c2

1− c2
2

) , c=−

√
c2

1
c2
− c2

2(c1 + c2)
, d =

c1 +3c2

2
√

c2
(
c2

1− c2
2

) ,
(6.30)

we bring (6.29) to the celebrated Seiberg-Witten Γ (2)-symmetric form

Ỹ 2 = (X̃2−1)(X̃ −u), (6.31)

where

u =
c2

1 +6c2c1 + c2
2

(c1− c2)2 . (6.32)

With (6.32) at hand we can re-express the quantities computed in the previous
section as Γ (2) modular forms, whose ring is generated by the Jacobi theta func-
tions θ2(τ), θ3(τ), θ4(τ), all having modular weight 1/2. This goes as follows:
the Klein invariant j(τ) of the curve (6.31) is rationally related to u as

j(u) = 64
(3+u2)3

(u2−1)2 (6.33)

while inversion of (6.32) gives, writing everything for definiteness in the (a3,a4)
patch,

a2
4−a3 =

u+3√
2
√

u+1
. (6.34)
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Combining the two formulae above and using the definition (5.17) of c1, c2 we
can write the latter as Γ (2) modular forms as

c1(τ) = 2
θ 2

4 (τ)
θ 2

2 (τ)
, c2(τ) = 2

θ 2
3 (τ)

θ 2
2 (τ)

, (6.35)

which, being coordinates on the moduli space, are correctly modular invariant.
Given (6.35) it is then straightforward to write the building blocks of the

BCOV recursion in terms of modular forms. According to (2), the recursion relies
on knowledge of the Yukawa coupling C(τ) and the genus one closed amplitude
F̂1(τ, τ̄); having exact expressions for the genus zero data as functions of the
branch points, one can use (6.35) to write down explicitly all the relevant quanti-
ties as modular functions.

Let us analyze the large radius Yukawa coupling first. We have

C ≡ ∂ 3F

∂ t3
F

=
4
π

(
∂a4

∂τ

∂ tF
∂a4

)−1

.

Using (5.18) we have

∂ tF
∂a4

=
K
(

1− c2
2

c2
1

)
c1

=
π

4
θ

2
2 (τ), (6.36)

while combining (6.35) and (5.17) yields

∂a4

∂τ
=− 26

a4(τ)
η12(τ)
θ2(τ)8 , (6.37)

where η(τ) is Dedekind’s function and we have used

2η
3(τ) = θ2(τ)θ3(τ)θ4(τ) (6.38)

besides the modular expression of a4 from (5.17)

a4(τ) = 2

√
4

θ 4
4 (τ)

θ 4
2 (τ)

+a3 +2. (6.39)

Putting it all together we arrive at

C(τ) =−a4(τ)
64

θ 6
2 (τ)

η12(τ)
. (6.40)

Let us now address the issue of the genus 1 free energy F̂1(τ, τ̄). For g = 1 the
holomorphic anomaly equation of (2) reads in the local case at hand7

∂
2
t̄tF̂1(t, t̄) =

1
2

Ctt
t̄ Cttt , (6.41)

7 In the following we will suppress for notational simplicity the dependence on the tB param-
eter, which is an auxiliary parameter entering in the definition of the differential, and write t ≡ tF
for the flat coordinate coming from an actual A-period integration.
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where indices in (6.41) are raised with the Weyl-Petersson metric Gt̄t = 2ℑmτ .
Rewriting everything as a function of τ , τ̄ (6.41) integrates immediately to

F̂1(τ, τ̄) =−1
2

logℑmτ − log |ψ(τ)|, (6.42)

where we have denoted by ψ(τ) the holomorphic ambiguity at genus one. The
pole structure of the amplitude fixes it uniquely; we will do it in the next section
by computing explicitly its holomorphic limit.

6.4 Higher genus amplitudes

In this section we will examine the higher genus amplitudes for KF2 . After dis-
cussing the genus one free energy, we will turn to the analysis of the g > 1 closed
amplitudes, treating in detail the case g = 2, and we will give predictions for orb-
ifold Gromov-Witten invariants of C3/Z4 for g = 1,2.

6.4.1 One loop partition function for Y p,q and genus 1 orbifold GW.

Let us address the issue of the genus 1 free energy in slightly larger generality for
the full Y p,q class. In this latter case it would be natural to guess that, again, the
same structure as in SU(p) Seiberg-Witten theory holds: monodromy invariance
requires it to be written in terms of Γ ⊂ Sp(2p− 2,Z) modular forms, and this
would lead to the appearance of Siegel modular forms with characteristic. How-
ever we happen to have already largely answered this question in the language
of hypergeometric functions of the branch points bi. Indeed, denoting collectively
with Et the set of flat coordinates, the holomorphic Ēt limit of F̂ (Et,Ēt) is given on
general grounds (2) as

F1(Et) =−1
2

logdetJ − 1
12

log∆ , (6.43)

where J is the Jacobian matrix of the A-periods (in the appropriate polarization)
with respect to the bare variables and ∆ is a rational function of the branch points,
with zeroes at the discriminant locus of the curve. But it turns out that the awkward
Jacobian J in (6.43) is precisely the main object for which we have found a
closed form expression in (4.13)! This is definitely an advantage with respect to
finding a hyperelliptic generalization of the modular symmetry of local surfaces,
and in the elliptic case it compendiates nicely the modular expression obtained in
the previous section. In the following we will therefore use (6.43) in the local F2
case to obtain a closed expression for F1 in homogeneous (bare) coordinates, and
then exploit (6.24) to compute genus 1 orbifold GW invariants of C3/Z4.

From the considerations above we have at large radius

F LR
1 (tF , tB) =−1

2
log
(

∂ tF
∂a4

)
+ log

[
ca

1cb
2(c1− c2)c(c1 + c2)d

]
, (6.44)
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where the exponents of the second term are fixed by the topological vertex com-
putation as a =−1/6, b =−1/6, c =−1/12, d =−1/12. Then, from (5.17) and
(5.18),

F LR
1 (QF ,QB) =−1

2

K
(

1− c2
2

c2
1

)
c1

− 1
6

logc1c2−
1

12
log
(
c2

1− c2
2
)
, (6.45)

and plugging in the mirror map (5.22) we can straightforwardly compute

F LR
1 (QF ,QB) =

(
− log(QB)

24
− log(QF)

12

)
− QF

6
− Q2

F
12

− Q3
F

18
− Q4

F
24

(6.46)

+
(
−QF

6
− Q2

F
3
− Q3

F
2

)
QB +

(
−Q2

F
12

− Q3
F

2
+

37Q4
F

6

)
Q2

B + · · · ,

which is the correct form predicted by the topological vertex computation (5). In
order to verify explicitly the assertions of the previous section, we can also use the
modular expression of c1, c2 and ∂a4tF to obtain the holomorphic limit of (6.42)
in quasi-modular form. We indeed get

F LR
1 (τ) =−1

2
logη(τ). (6.47)

Plugging in the expression for the modular parameter q = e2πiτ in exponentiated
flat coordinates which can be computed from (5.22), (6.33) and (6.34),

q(QB,QF) = QBQ2
F +

(
4Q2

B +4QB
)
Q3

F

+
(
10Q3

B +48Q2
B +10QB

)
Q4

F +O
(
Q5

F

)
, (6.48)

we recover precisely (6.46).
Knowing F1 for local F2 we can straightforwardly obtain a prediction for

genus one orbifold Gromov-Witten invariants of C3/Z4; to relate (6.46) to the
expansion of the g = 1 topological partition function at the orbifold point we just
need to specialize the Feynman expansion (6.24) to the case at hand. The one loop
term is given as

Γ1 =
1
2

log
4

τ +C−1D
, (6.49)

where the factor of 4 comes again from the orbifold cohomology pairing. The
genus one orbifold free energy will be then given as

F orb
1 = F LR

1 +Γ1, (6.50)

where τ can be written as a function of the ai variables using (5.18), (5.19) or
directly as an expansion in orbifold flat coordinates using (6.28). We can now
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rewrite everything in terms of s1/2, s1/4 by plugging the orbifold mirror map (6.13)
into the expression (6.44) of F LR

1 , yielding

F orb
1 (s1/4,s1/2) = ∑

n,m

Norb
1,(m,n)

n!m!
sm

1/4sn
1/2 (6.51)

= −s2
14s12

384
+

s2
12

192
−

5s2
14s3

12
9216

+
7s4

12
18432

−
13s2

14s5
12

163840
+

31s6
12

1105920
+ · · · .

The same result would be obtained by using a modified expression for the Ja-
cobian in (6.43) adapted to the orbifold patch, i.e. by replacing ∂a4tF in (6.44)
with ∂a4s1/4, without then considering the extra piece (6.49) from the Feynman
expansion. The first few GW invariants are reported in Table 3.

6.4.2 Generalities on g > 1 free energies.

Turning now to the case of g > 1 closed amplitudes, let us first of all recall the
main statements put forward in (7; 56) for the computation of higher genus free
energies. As mentioned in Sect. 6.3.2, modular symmetry is an amazingly strin-
gent constraint. For 1-parameter models with elliptic mirror curve (like SU(2)
Seiberg-Witten theory, or local P2) the authors of (7; 56) claim that solutions of
the genus g holomorphic anomaly equations can be written for g ≥ 2 as

F̂g(τ, τ̄) = C2g−2(τ)
n

∑
k=1

Êk
2(τ, τ̄)c(g)

k (τ)+C2g−2(τ)c(g)
0 (τ), (6.52)

where τ is the complex modulus of the mirror torus, C is the Yukawa coupling
∂ 3

t F0, c(g)
k (τ) are Γ -modular forms of weight 6(g− 1)− 2k and the full non-

holomorphic dependence of F̂g is captured by the modular, non-holomorphic ex-
tension of the second Eisenstein series (6.22).

Now, there are two ways to compute the expressions in (6.52). The first one
consists in a direct study of the BCOV equations: in this context the holomorphic
modular coefficients c(g)

k for k > 0 can either be fixed by the Feynman expansion
(6.24) in terms of derivatives of lower genus Fg′ , or much more efficiently by ex-
ploiting the modular symmetry to perform a direct integration of the holomorphic
anomaly equations as in (56).

Within this method, the only real issue is to fix the so-called “holomorphic am-
biguity” at k = 0, i.e. c(g)

0 (τ). In the 1-parameter cases analyzed in (7; 56), this is
systematically done by plugging into (6.52) an ansatz for c(g)

0 (τ) which is then de-
termined from extra boundary data. In more detail, this works as follows: at fixed
genus g, c(g)

0 (τ) is a weight w = 6g− 3 modular form.8 Now, the ring of weight
w holomorphic modular forms Mw(Γ ) is finitely generated, and the analytic be-
havior of Fg(τ, τ̄) at large radius allows to write an ansatz for c(g)

0 (τ) with only
a finite number of unknown coefficients. At the same time, c(g)

0 (τ) is constrained

8 Recall that Fg(τ, τ̄) is modular invariant and that C(τ) has weight −3 - see for example
(6.40) for the local F2 case.
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Table 3 Genus one orbifold Gromov-Witten invariants Norb
1,(m,n) of [C3/Z4]

m 0 2 4 6 8 10
n
0 0 1

128 0 441
4096 0

1 0 - 1
192 0 - 31

1024 0 - 71291
32768

2 1
96 0 35

3072 0 235
512 0

3 0 - 5
768 0 - 485

4096 0 - 2335165
131072

4 7
768 0 485

12288 0 458295
131072 0

5 0 - 39
2048 0 - 40603

49152 0 - 58775443
262144

6 31
1536 0 2025

8192 0 10768885
262144 0

7 0 - 2555
24576 0 - 293685

32768 0 - 522517275
131072

8 2219
24576 0 240085

98304 0 1437926315
2097152 0

9 0 - 22523
24576 0 - 73017327

524288 0 - 397762755193
4194304

10 16741
24576 0 54986255

1572864 0 32280203275
2097152 0

11 0 - 389975
32768 0 - 18440181205

6291456 0 - 12177409993695
4194304

12 1530037
196608 0 1434341595

2097152 0 7495469356455
16777216 0

to satisfy the so-called “gap condition” (57): this imposes a sufficient number of
constraints to completely determine (indeed, overdetermine) the conjectured form
of the ambiguity as a function of the generators of Mw(Γ ).

The discussion of Sect. 6.3.2 has shown that the case of local F2 is in many
ways similar to the simpler examples of SU(2) Seiberg-Witten theory and local
P2. However there is an extra complication, given by the fact that the elliptic mod-
ulus τ is not the only variable in the game: here we actually have an extra bare
parameter a3, or zB, which is independent on τ and is related to the Kähler vol-
ume of the base P1 (see (4.17), (6.8)). That is, we deal here with a two-parameter
model, even though with an elliptic mirror curve, and we have to properly take
this into account. A first consequence of this fact is that the idea of using the gap
condition to fix the holomorphic ambiguity becomes computationally more com-
plicated, since our task is no longer reduced to fix simply a finite set of unknown
numerical coefficients of c(g)

0 (τ) as generated by a basis of Mw(Γ ): rather we
should fix a finite set of unknown functions of a3.

A second possibility is to avail ourselves of the framework proposed in (8)
for the computation of topological string amplitudes based on the Eynard-Orantin
recursion for matrix models. This is based on a sequence of polydifferentials W (g)

h
on the mirror curve Γ , which are recursively computed in terms of residue calculus
on Γ and out of which it is possible to extract the free energies Fg at any given
genus. Let us briefly review here this formalism in order to describe the general
structure of higher amplitudes, referring the reader to (8; 58) for further details.

The ingredients needed are the same as for genus zero amplitudes, namely the
family of Hori-Vafa mirror curves H(u,v) = 0 (3.2) with differential dλ (3.7). The
genus g free energies are then recursively given as

Fg =
1

2−2g ∑
bi

Res
u=bi

φ(u)W (g)
1 (u), (6.53)
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where φ(u) is any antiderivative of the Hori-Vafa differential

dφ(u) = dλ (u) = logv(u)
du
u

(6.54)

and W (g)
h (p1, . . . , ph) with g,h∈Z+, h≥ 1 is an infinite sequence of meromorphic

differentials on the curve defined by the Eynard-Orantin recursion

W (0)
1 (p1) = 0, W (0)

2 (p1, p2) = B(p1, p2), (6.55)

W (g)
h+1(p, p1 . . . , ph) = ∑

bi

Res
q=bi

dEq(p)
dλ (q)−dλ (q̄)

(
W (g−1)

h+2 (q, q̄, p1, . . . , ph)

+
g

∑
l=0

∑
J⊂H

W (g−l)
|J|+1 (q, pJ)W

(l)
|H|−|J|+1(q̄, pH\J)

)
. (6.56)

In the formulae above, q̄ denotes the conjugate point to q, B(p,q) is the Bergmann
kernel, the one form dEq(p) is given as

dEq(p) =
1
2

∫ q̄

q
B(p,ξ )dξ , (6.57)

and finally, given any subset J = {i1, . . . , i j} of H := {1, . . . ,h}, we defined pJ =
{pi1 , . . . , pi j}. We refer the reader to (8; 58) for an exhaustive description of the
objects introduced above.

At a computational level, the formalism of (8) is somewhat lengthier than the
one of (56) for computing higher genus Fg . On the other hand, the recursion of
(8) has the great advantage of providing unambiguous results, with the holomor-
phic ambiguity c(g)

0 (τ) automatically fixed. This precisely overcomes the problem
raised above. In the next section, we will therefore follow this second path to com-
plete the discussion of Sect. 6.3.2 by displaying explicitly the modular structure
of the Fg obtained through (6.53). An explicit computation of the g = 2 case, as
well as predictions at the orbifold point, will be left to Sect. 6.4.4.

6.4.3 g > 1 and modular forms.

Let us specialize the recursion to the case of local F2. The Hori-Vafa differential
(4.3) reads, in the (a3,a4) patch,

dλ2,2(u) = log
(

P2(u)±Y (u)
2

)
du
u

, (6.58)

where

P2(u) = a3 +a4u+u2, Y (u) =
√

P2
2 (u)−4

and the Γ2,2 family can be written in the Z2 symmetric form (6.29) as a two-fold
branched covering of the compactified u-plane

Y 2 = (u−b1)(u−b2)(u−b3)(u−b4) = (û2− c2
1)(û

2− c2
2), (6.59)
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thanks to (5.17) and (6.29) and having defined û = u + a4/2. We have first of all
that

dλ (u)−dλ (ū) = 2M(u)Y (u)du, (6.60)

where the so-called “moment function” M(u) is given, after using the fact that
log(P+Y )− log(P−Y ) = 2tanh−1 (Y/P), as

M(u) =
1

uY (u)
tanh−1

[
Y (u)
P2(u)

]
. (6.61)

Moreover, the one form dE(p,q) can be written as (58)

dEw(u) =
1
2

Y (w)
Y (u)

(
1

u−w
−LC(w)

)
du, (6.62)

where

C(w) :=
1

2πi

∮
A

du
Y (u)

1
u−w

, L−1 :=
1

2πi

∮
A

du
Y (u)

. (6.63)

We have assumed here that w stays outside the contour A; when w lies inside the
contour A, C(w) in (6.62) should be replaced by its regularized version

Creg(w) = C(w)− 1
Y (w)

. (6.64)

Since Γ2,2. is elliptic, it is possible to find closed form expressions for C(u),
Creg(u), B(u,w) and L. We have

C(u) =
2(b2−b3)

π(u−b3)(u−b2)
√

(b1−b3)(b2−b4)

[
Π(n4,k)+

u−b2

b2−b3
K(k)

]
,

(6.65)

Creg(u) =
2(b3−b2)

π(u−b3)(u−b2)
√

(b1−b3)(b2−b4)

[
Π(n1,k)+

u−b3

b3−b2
K(k)

]
,

(6.66)

L−1 =
2√

(b1−b3)(b2−b4)
K
[
(b1−b2)(b3−b4)
(b1−b3)(b2−b4)

]
, (6.67)

B(u,w) =
1

Y (u)

[
Y 2(u)

2Y (w)(u−w)2 +
(Y 2)′(u)

4Y (w)(w−u)
+

A(u)
4Y (w)

]
+

1
2(u−w)2 (6.68)

where

k =
(b1−b2)(b3−b4)
(b1−b3)(b2−b4)

, n4 =
(b2−b1)(u−b3)
(b3−b1)(u−b2)

, n1 =
(b4−b3)(u−b2)
(b4−b2)(u−b3)

,

(6.69)

A(u) = (u−b1)(u−b2)+(u−b3)(u−b4)+(b1−b3)(b2−b4)
E(k)
K(k)

, (6.70)
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and K(k), E(k) and Π(n,k) are the complete elliptic integrals of the first, second
and third kind respectively.

With these ingredients one can compute the residues as required in (6.56).
Given that dEq(p)/(dλ (q)− dλ (q̄)), as a function of q, is regular at the branch-
points, all residues appearing in (6.56) will be linear combinations of the following
kernel differentials:

χ
(n)
i (p) = Resq=xi

(
dEq(p)

dλ (q)−dλ (q̄)
1

(q−xi)n

)
=

1
(n−1)!

1
Y (p)

dn−1

dqn−1

[
1

2M(q)

(
1

p−q
−LC(q)

)]
q=xi

. (6.71)

In (6.71), C(p) should be replaced by Creg(p) when i = 1,2.
Let us then explicitly display the quasi-modular structure of the free energies

Fg(a3,τ). We claim that the holomorphic limit of the 1-parameter examples (6.52)

Fg(τ) = C2g−2(τ)
n

∑
k=1

Ek
2(τ)c(g)

k (τ)+C2g−2(τ)c(g)
0 (τ),

gets replaced here by

Fg(a3,τ) = C2g−2(a3,τ)
n

∑
k=1

Ek
2(τ)c(g)

k (a3,τ)+C2g−2(a3,τ)c(g)
0 (a3,τ), (6.72)

i.e., as a polynomial in the second Eisenstein series having (algebraic) functions of
a3 and θi(τ), i = 2,3,4 as coefficients; moreover, these coefficients are completely
determined in closed form from (6.56). Let us show in detail how this happens
in general, leaving the concrete example of the g = 2 case to the next section.
Formulae (6.53), (6.56), (6.68) and (6.71) imply that the final answer will be a
polynomial in the following five objects:

M(n)
i , φ

(n)
i , A(n)

i ,

(
1
Y

)(n)

i
, C

(n)
i , (6.73)

where, for a function f (x) with meromorphic square f 2(x), we denote with f (n)
i

the (n+1) f th coefficient in a Laurent expansion of f (x) around bi,

f (x) =
∞

∑
n=−Ni

f (n+Ni)
i

(p−bi)n/2 , (6.74)

and have defined

C
(n)
i =

C(n)
reg,i for i = 1,2

C(n)
i for i = 3,4

. (6.75)

Of the five building blocks in (6.73), M(n)
i and φ

(n)
i are the ones which are com-

puted most elementarily from (6.58), (6.54) and (6.61), the result being in any
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case an algebraic function of (a3,a4). When re-expressed in modular form, we
can actually say more about them: we have that the a3-dependence in M(n)

i (a3,τ)
and φ

(n)
i (a3,τ) is constrained to come only through a4(a3,τ) as written in formula

(6.39). Indeed, from (5.17), (6.35) we have that the branch points bi have the form

− a4

2
± c1(τ), −a4

2
± c2(τ), (6.76)

and therefore depend on a3 only through a4(a3,τ). Moreover, since P2(bi) = 2
and the derivatives of P2(u) do not depend explicitly on a3, we have that the a3 de-
pendence in Fg as obtained from the recursion may only come through a4(a3,τ).
Notice moreover that these are the only pieces bringing a dependence on the ad-
ditional a3 variable: all the others do not depend on the form of the differential
(6.58), and are functions only of differences of branch points bi. This means in
particular that they only depend on the variables c1 and c2 introduced in (5.17)
and whose modular expressions we already found in (6.35)! This is immediate to
see for A(n)

i and (1/Y )(n)
i from formulae (6.59) and (6.70). The case of C

(n)
i is just

slightly more complicated, but it is worth describing in detail for the discussion to
come. For n = 1, we need the first derivative of Π(x,y) with respect to x:

∂xΠ(x,y) =
xE(y)+(y−x)K(y)+

(
x2−y

)
Π(x,y)

2(x−1)x(y−x)
.

The above formula implies that

∂
(n)
x Π(x,y) = An(x,y)K(y)+Bn(x,y)E(y)+Cn(x,y)Π(x,y), (6.77)

where An, Bn and Cn are rational functions of x and y. From (6.69), to compute
C

(n)
i , we need to evaluate these expressions when n1 (resp. n4) equals either 0 or

k. But using

Π(0,y) = K(y), Π(y,y) =
E(y)
1−y

(6.78)

we conclude that

C
(n)
i = R(n)

1 (c1,c2)K(k)+R(n)
2 (c1,c2)E(k) (6.79)

for two sequences of rational functions R(n)
i . We now make the following basic

observation: by (6.71), C
(n)
i always appears multiplied by L in the recursion. By

(6.67)

LC
(n)
i = R̃(n)

1 (c1,c2)+ R̃(n)
2 (c1,c2)

E(k)
K(k)

. (6.80)

This last observation allows us to collect all the pieces together and state the fol-
lowing. By (6.56) and (6.53) we have that Fg(a3,τ) is a polynomial in M(n)

i ,
φ

(n)
i , A(n)

i , (1/Y )(n)
i , C

(n)
i , and moreover the whole discussion above as well as
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formulae (6.70) and (6.80) imply that this takes the form of a polynomial in
W (τ) := E(k)/K(k),

Fg(a3,τ) =
n

∑
k=0

W k(τ)h(g)
k (a3,τ) (6.81)

with coefficients h(g)
k (a3,τ) in the ring of weight zero modular forms of Γ (2),

parametrically depending on a3.
To conclude, we can exploit the fact that (59)

E(k)K(k) =
(

π

2

)2 4E2(2τ)−E2(τ)
3

(6.82)

and that from (6.35) and (6.36),

K(k) =
π

2
θ3(τ)θ4(τ), (6.83)

where we have used the fact that in our case

K(k) =
√

c2

c1
K
(

1− c2
2

c2
1

)
,

as the reader can easily check. Moreover, the second Eisenstein series satisfies the
duplication formula

E2(2τ) =
E2(τ)

2
+

θ 4
4 (τ)+θ 4

3 (τ)
4

. (6.84)

Therefore,

W (τ) =
1

3θ 2
4 (τ)θ 2

3 (τ)

(
E2(τ)+θ

4
3 (τ)+θ

4
4 (τ)

)
. (6.85)

This proves (6.72).

6.4.4 The g = 2 case in detail.

Let us complete the discussion of this section by presenting the explicit formulae
for the genus 2 case. By (6.53) and (6.56), we need the complete expression of
W (0)

2 , W (0)
3 , W (1)

1 , W (1)
2 and W (2)

1 . The first three were computed in (8) and are
given by

W (0)
2 (p1, p2) = B(p1, p2),

W (0)
3 (p1, p2, p3) =

1
2

4

∑
i=1

M2(bi)(Y 2)′(bi)χ
(1)
i (p1)χ

(1)
i (p2)χ

(1)
i (p3), (6.86)

W (1)
1 (p) =

1
16

4

∑
i=1

χ
(2)
i (p)+

1
8

4

∑
i=1

(
2A(bi)

(Y 2)′(bi)
−∑

j 6=i

1
bi−b j

)
χ

(1)
i (p).
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W (1)
2 is then given from (6.56) as

W (1)
2 (p, p1) = ∑

bi

Res
q=bi

dEq(p)
dλ (q)−dλ (q̄)

(
W (0)

3 (q, q̄, p1)+2W (1)
1 (q)W (0)

2 (q̄, p1)
)

.

(6.87)

A very lengthy, but straightforward computation leads us to

W (1)
2 (p,q) = −1

8

4

∑
i=1

[
Ai(q)χ

(3)
i (p)+Bi(q)χ

(2)
i (p)

+ Ci(q)χ
(1)
i (p)+ ∑

j 6=i
Di j(q)χ

(1)
i (p)

]
. (6.88)

For the sake of notational brevity, we spare to the reader the very long expressions
of the rational functions Ai(q), Bi(q), Ci(q) and Di j(q). They involve M(n)

i , A(n)
i ,

(1/Y )(n)
i and C

(n)
i up to the third order in a Taylor-Laurent expansion around the

branch points.
The next step is given by

W (2)
1 (p) = ∑

bi

Res
q=bi

dEq(p)
dλ (q)−dλ (q̄)

(
W (1)

2 (q, q̄)+W (1)
1 (q)W (1)

1 (q̄)
)

. (6.89)

The pole structure of Ai(q), Bi(q), Ci(q) and Di j(q) dictates for W (2)
1 (p) the fol-

lowing linear expression in terms of kernel differentials

W (2)
1 (p) =

5

∑
n=1

4

∑
i=1

E(n)
i χ

(n)
i (p) (6.90)

for some (very complicated) coefficients E(n)
i . The recursion is finalized for g = 2

by (6.53)

F2 =−1
2 ∑

bi

Res
p=bi

φ(p)W (2)
1 (p). (6.91)

It is useful to collect together terms involving the same powers of W (τ). Taking
the residues in (6.91) yields9

3

∑
n=0

h(2)
n (a3,τ)W n(τ), (6.92)

9 It must be noticed that, in order to match exactly the asymptotics of the Gromov-Witten
expansion at large radius, we have to subtract from (6.91) a constant term in τ , namely, a rational

function of a3 of the form a2
3−10

1440(a2
3−4) . It would be interesting to investigate the origin of this

discrepancy further.
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where

h(2)
3 (a3,τ) =

5a2
4(a3,τ)θ 4

2 (τ)
24576θ 2

3 (τ)θ 2
4 (τ)

,

h(2)
2 (a3,τ) =

1
1024

− a4(a3,τ)2

49152θ3(τ)6θ4(τ)4

[
θ2(τ)4(15θ4(τ)6 +16θ3(τ)2

θ4(τ)4

+ θ2(τ)4(8θ3(τ)2 +15θ4(τ)2))
]
,

h(2)
1 (a3,τ) = −

(
θ2(τ)4 +2θ4(τ)4 +3θ3(τ)2θ4(τ)2

)
3072θ4(τ)2θ3(τ)2 +

a2
4(a3,τ)
294192

[
13θ2(τ)12

θ3(τ)6θ4(τ)6

+
91θ2(τ)8

θ3(τ)6θ4(τ)2 +
48θ2(τ)8

θ3(τ)4θ4(τ)4 +
91θ4(τ)2θ2(τ)4

θ3(τ)6 +
96θ2(τ)4

θ3(τ)4

]
,

h(2)
0 (a3,τ) =

1
61440

(
1

a3 +2
− 1

a3−2

)
+

θ2(τ)8−5θ3(τ)2θ2(τ)4 +10θ3(τ)6

30720θ3(τ)4θ4(τ)4

+4
a2

4(a3,τ)θ2(τ)4

2949120

[
12
(

θ2(τ)4

θ3(τ)8−
θ2(τ)4

θ4(τ)8

)
− 65θ4(τ)2

θ3(τ)6 − 175
θ3(τ)2θ4(τ)2

− 311
2θ3(τ)4 −

311
2θ4(τ)4 −

65θ3(τ)2

θ4(τ)6

]
+

17
46080

. (6.93)

Plugging in the expression (6.48) of the modular parameter q in exponentiated
flat coordinates reproduces as expected the topological vertex expansion at large
radius

F LR
2 (QB,QF)

=
(
− 1

120
− QB

120

)
QF +

(
− 1

60
− QB

60
− Q2

B
60

)
Q2

F

+
(
− 1

40
− QB

40
− Q2

B
40

− Q3
B

40

)
Q3

F +
(
− 1

30
− QB

30
− Q2

B
6
− Q3

B
30

)
Q4

F

+
(
− 1

24
− QB

24
− 299Q2

B
24

− 299Q3
B

24

)
Q5

F ++O
(
Q6

F

)
. (6.94)

Finally, we can use (6.92) to make predictions for genus 2 orbifold Gromov-Witten
invariants of C3/Z4 by using the Feynman expansion method of (2; 7) as we did
for the genus 1 free energy; the same result would be obtained by analytically con-
tinuing the holomorphic ambiguity h(2)

0 (a3,τ) and taking the holomorphic limit of
the physical amplitude directly at the orbifold point (see (60) for a detailed de-
scription of this method). The results are shown in Table 4.10

7 Conclusions and Outlook

In this paper we have proposed an approach to the study of A-model topological
amplitudes which yields exact results in α ′ and as such applies to the full mod-
uli space, including orbifold and conifold divisors, of closed and open strings on a

10 While the final version of this paper was under completion, a preprint appeared (65) where
the same results have been obtained following a different method.
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Table 4 Genus two orbifold Gromov-Witten invariants Norb
2,(m,n) of [C3/Z4]

m 0 2 4 6 8 10
n
0 − 1

960 0 − 61
30720 0 − 9023

81920 0
1 0 41

46080 0 6061
245760 0 36213661

7864320
2 − 7

7680 0 − 647
92160 0 − 1066027

1310720 0
3 0 257

92160 0 168049
983040 0 887800477

15728640
4 − 11

5120 0 − 65819
1474560 0 − 18530321

1966080 0
5 0 23227

1474560 0 43685551
23592960 0 62155559923

62914560
6 − 2479

245760 0 − 437953
983040 0 − 9817250341

62914560 0
7 0 418609

2949120 0 452348269
15728640 0 5851085490887

251658240
8 − 19343

245760 0 − 303139073
47185920 0 − 438364727389

125829120 0
9 0 1380551

737280 0 25384681949
41943040 0 355405937648809

503316480
10 − 604199

655360 0 − 2982122587
23592960 0 − 16896151842371

167772160 0
11 0 200852963

5898240 0 25012290702059
1509949440 0 54049855936801961

2013265920
12 − 59566853

3932160 0 − 818897894611
251658240 0 − 1840152188554961

503316480 0

large class of toric Calabi-Yau threefolds. One of the main virtues of this approach
is that it provides us with a closed expression for the (derivatives of the) periods
of the mirror curve, considerably simplifying the study of their analytic continu-
ation in the various patches and of the modular properties of the Gromov-Witten
generating functional. The local geometries that we have analyzed arise from the
minimal resolution of Y p,q singularities. The general procedure to compute topo-
logical string amplitudes, outlined in Sect. 4, is based on the correspondence with
five-dimensional gauge theories and the associated Seiberg-Witten curves; it has
been fully exploited in Sect. 6 for the case p = 2, and used in particular to pre-
dict open and closed orbifold Gromov-Witten invariants of C3/Z4 also at higher
genus.

Of course our strategy is completely general and could be adopted with no
changes, though becoming technically more involved, to compute amplitudes for
p > 2; moreover, it can be used to get some qualitative information about the be-
havior of the
B-model moduli space, which for these cases displays a richer set of phenomena.
Indeed, the mirror curves have higher genera and can be subject to more general
degeneration limits, for example when the neck connecting two handles becomes
infinitely long. In the underlying four-dimensional gauge theory this limit has been
recognized as a new superconformal phase (61); it would be interesting to explore
its interpretation in the topological string moduli space.

The computations of Sect. 4 have been based on extensively exploiting the
holomorphic properties (4.11) of the B-model 1−differential, which came out by
appealing to the relation with gauge theories and integrable systems. On the gauge
theory side, one is able to obtain the Seiberg-Witten curve and the related differ-
ential in a suitable semiclassical limit involving a large number of instantons (62).
The considerations above suggest to reinterpret the transition to the mirror and
(4.11) at the string theoretical level in terms of a semiclassical geometry in gs → 0
which resums a large number of world-sheet instantons.
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Some remarks are in order concerning the relation with integrable systems.
First of all, as we have discussed in Sect. 3.3, the mirror geometry for resolved
Y p,p singularities can be realized as a fibration over the spectral curve of the
relativistic Ap−1 Toda chain. Actually our results for generic Y p,q singularities
seems to indicate the existence of a larger class of integrable systems: it would
be interesting to understand this better and see what kind of deformations of the
Toda chain are associated to the q parameter. Moreover, the existence of a set of
holomorphic differentials like (4.11) could be recognized as a signal of a relation
with integrable hierarchies. More precisely, one could expect that a suitable gen-
eralization of the topological string prepotential - possibly including gravitational
descendants - could be interpreted in terms of a Whitham deformation of the in-
tegrable system. This would correspond to an “uplift” to topological strings of
similar notions developed in (63) for four-dimensional Seiberg-Witten theory.

As a final comment, we might wonder how much of what we have learned
might be extended to other cases. Moving beyond Y p,q, it is in fact straightfor-
ward to show that holomorphicity of (derivatives of) the differential can be shown
exactly as for the Y p,q family, at least in the case in which the mirror curve is
hyperelliptic;11 at a pictorial level, this class coincides with those toric CY whose
toric diagram is contained into a vertical strip of width 2, modulo SL(2,Z) trans-
formations. Our methods thus continue to hold and apply with no modification for
this more general family as well; it would be very interesting to investigate the
possibility to generalize our approach to all toric Calabi-Yau three-folds.
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techi, C. Manolache, F. Nironi, S. Pasquetti, E. Scheidegger for useful conversations, and we are
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discussions during the final phase of this project. The present work is partially supported by the
European Science Foundation Programme “Methods of Integrable Systems, Geometry, Applied
Mathematics” (MISGAM) and Marie Curie RTN “European Network in Geometry, Mathemat-
ical Physics and Applications” (ENIGMA).

A Euler Integral Representations, Analytic Continuation and Generalized
Hypergeometric Functions

As we pointed out in Sect. 4.1, another important feature of our formalism is the fact that we can
work directly with an Euler-type integral representation for the periods. We will focus here in
the case p = q = 2, but the strategy is completely general and computationally feasible as long
as xi is algebraically related to ai.

For p = q = 2, the derivatives of the periods have the simple form (5.18), (5.19). Using the
standard Euler integral representation for the complete elliptic integral K(x),

2K(x) =
∫ 1

0

dθ√
θ
√

1−θ

1√
1−xθ

, (A.1)

11 For example, the canonical bundle over the second Del Pezzo dP2 falls into this category,
though not being part of the Y p,q class.
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we can integrate back a4 and get

ΠA(ai) =
∫ 1

0

2a5dθ√
θ
√

1−θ
log
[

a4 +
√

c2
1 +(c2

2− c2
1)(1−θ)

]
, (A.2)

ΠB(ai) = 4
∫ 1

0

2a5dθ√
1−θ 2θ

log

 1√
c2

1− c2
2

(
a4θ +

√
(c2

1− c2
2)+ c2θ 2

) ,

(A.3)

where the constant factors in a4 are introduced as a constant of integration in order to satisfy
(3.5). Formulae (A.2), (A.3) then yield simple and globally valid expressions for the periods and
significantly ease the task of finding their analytic continuation from patch to patch. For small
a4, we can simply expand the integrand and integrate term by term. For large a4 ΠA has the
following asymptotic behavior:

ΠA =2a5 log(2a4)−2
(
a3a2

5
)( 1

a4

)2

+
(
−3a2

3a3
5−6a1a2a3

5
)( 1

a4

)4

+O
(

1
a4

)5

,

(A.4)

but an expansion for ΠB is much harder to find. The leading order term can still be extracted, for
example in the a2 = a3 = a5 = 1 patch using

∫ 1

0
log

[
θa+

√
1+
(

b+
a2

4

)
θ 2

]
dθ√

1−θ 2θ
= 2Li2(−1−a)+O(loga)

(A.5)

which gives

ΠB = 4
(

log
(

1
2 4
√

a1

)
− log

(
1
a4

))2

+O(loga4) . (A.6)

Single and double logarithmic behaviors as in (A.4, A.6) are characteristic of the large radius
patch in the moduli space, which as we will see will be given precisely by a4 →∞ (and a1 → 0).

Lastly, a nice fact to notice is that the periods for this particular case take the form of known
generalized hypergeometric functions of two variables. For example we have that, modulo a4
independent terms, the A period can be written as

ΠA =
π

4
logc1 +

π

4

(
a2

4
c1
− c1

)
F1,2,2

1,1,1

[
1 3

2 , 1 1
2 , 1

2
2 2 1

∣∣∣∣∣c1

(
1−

a2
4

c2
1

)
,c1

(
1−

c2
2

c2
1

)]
(A.7)

in terms of the Kampé de Fériet12 hypergeometric function of two variables.

B Lauricella Functions

We collect here a number of properties and useful formulae for Lauricella’s F(n)
D functions. The

interested reader might want to look at (42) for a detailed discussion of this topic.

12 See Eric Weinstein, “Kampé de Fériet Function”, http://mathworld.wolfram.
com/KampedeFerietFunction.html, or (42; 43) for a more detailed account on such
functions.

http://mathworld.wolfram.com/KampedeFerietFunction.html
http://mathworld.wolfram.com/KampedeFerietFunction.html
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B.1 Definition

The usual power series definition of Lauricella F(n)
D of n complex variables is

F(n)
D (a,b1, . . . ,bn;c;x1, . . . ,xn)

=
∞

∑
m1=0

· · ·
∞

∑
mn=0

(a)m1+···+mn(b1)m1 · · ·(bn)mn

(c)m1+···+mn m1! · · ·mn!
xm1

1 · · ·xmn
n , (B.1)

whenever |x1|, . . . , |xn|< 1. For n = 1 this is nothing but Gauss’ hypergeometric function 2F1(a,b;c;x);
for n = 2 it boils down to Appell’s F1(a,b,c;d;x,y). It also satisfies the following system of
PDE’s, which generalizes the n = 1 hypergeometric equation

ab jFD = x j(1−x j)
∂ 2FD

∂x2
j

+(1−x j) ∑
k 6= j

xk
∂ 2FD

∂xk∂x j
+[c− (a+b j +a)x j]

∂FD

∂x j

−b j ∑
6= j

xk
∂FD

∂xk
, j = 1, . . . ,n. (B.2)

The system (B.2) has regular singular points when

xi = 0,1,∞ and xi = x j i = 1, . . . ,n, j 6= i. (B.3)

The number of intersecting singular submanifolds in correspondence of the generic singular
point

(x1, . . . ,xn) = (0, . . . ,0︸ ︷︷ ︸
p

,1 . . . ,1︸ ︷︷ ︸
q

,∞, . . . ,∞︸ ︷︷ ︸
n−p−q

) (B.4)

is (
p+1

2

)(
q+1

2

)(
n− p−q+1

2

)
.

In contrast with the well-known n = 1 case, typically the Lauricella system does not close
under analytic continuation around a singular point. As explained in (42), a complete set of so-
lutions of the Fn

D system (B.2) away from the region of convergence |xi|< 1 involves a larger set
of functions, namely Exton’s Ck

n and Dp,q
(n) . We will report here a number of analytic continuation

formulae valid for generic n, and refer to (42) for further results in this direction. See also (64)
for further developments in finding asymptotic expressions for large values of the parameters.

B.2 Analytic continuation formulae for Lauricella FD

In the following, results on analytic continuation for FD will be expressed in terms of Exton’s C
and D functions

C(k)
n ({bi},a,a′;{xi})
= ∑m1,...mn ∏i(bi)mi(a)

∑
n
i=k+1 mi−∑

k
i=1 mi

(a′)−∑
n
i=k+1 mi+∑

k
i=1 mi

∏i
x

mi
i

mi!
,

(B.5)
Dp,q

(n)(a,b1, . . . ,bn;c,c′;x1, . . . ,xn)

= ∑
∞
m1=0 · · ·∑∞

mn=0
(a)mp+1+···+mn−m1−···−mp (b1)m1 ···(bn)mn

(c)mq+1+···+mn−m1−···−mp c′mp+1+···+mq m1!···mn! xm1
1 · · ·xmn

n ,

(B.6)
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• Continuation around (0,0, . . . ,0,∞)

F(n)
D (a,b1, . . . ,bn;c;x1, . . . ,xn) =

Γ

[
c, bn−a

bn, c−a

]
(−xn)−aF(n)

D (a,b1, . . . ,bn−1,1− c+a;1−bn +a; x1
xn

, . . . , xn−1
xn

, 1
xn

)

+Γ

[
c, −bn +a
a, c−bn

]
(−xn)−bC(n−1)

n (b1, . . . ,bn,1− c+bn;a−bn;−x1, . . . ,−xn−1,
1
xn

).

(B.7)

• Continuation around (0,0, . . . ,0,1)

F(n)
D (a,b1, . . . ,bn;c;x1, . . . ,xn) = Γ

[
c, c−bn−a

c−a, c−bn

]
×(1−x1)−b1 . . .(1−xn−1)−bn−1

×x−bn
n C(n−1)

n (b1, . . . ,bn,1+bn− c;c−a−bn; x1
1−x1

, . . . ,
xn−1

1−xn−1
, 1−xn

xn
)

+Γ

[
c, bn +a− c
a, bn

]
(1−x1)−b1 . . .(1−xn−1)−bn−1(1−xn)c−a−bn

×F(n)
D (c−a,b1, . . . ,bn−1;c−a−bn +1; 1−xn

1−x1
, . . . , 1−xn

1−xn−1
,1−xn).

(B.8)

• Continuation around (0,0, . . . ,∞,1)

F(n)
D (a,b1, . . . ,bn;c;x1, . . . ,xn) = Γ

[
c, bn +a− c
a, bn

]
×(1−xn)c−a−bn ∏

n−1
i=1 (1−xi)−bi

×F(n)
D (c−a,b1, . . . ,bn−1;c−b1−·· ·−bn;c−a−bn +1;

1−xn
1−x1

, . . . , 1−xn
1−xn−1

,1−xn)

+Γ

[
c, c−a−bn,a−bn−1

c−a, c−bn−1−bn, a

]
(1−x1)−b1 . . .(1−xn−1)−bn−1x−bn

n

×D1,2
(n)(c−a−bn,bn, . . . ,b1;c−bn−1−bn;bn−1−a+1;

xn−1
xn

, 1
1−xn−1

,
xn−2

1−xn−2
. . . , x1

1−x1
)

+Γ

[
c, bn−1−a

c−a, bn−1

]
(1−xn−1)−a

×F(n)
D (a,b1, . . . ,bn−2;c−∑

n
i=1 bi;bn,a−bn−1 +1;

1−x1
1−xn−1

, . . . ,
1−xn−2
1−xn−1

, 1
1−xn−1

, 1−xn
1−xn−1

).

. (B.9)

Notice that the formulae above are valid only for generic values of the parameters bi, a
and c. Should one be confronted with singular cases, it would be necessary to take a suitable
regularization (such as bi → bi + ε) and after analytic continuation take the ε → 0 limit. See
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Appendix B in (46) for more details; suffice it here to report as an example the case bn = a:

F(n)
D (a,b1, . . . ,bn−1,a;c;x1, . . . ,xn)

= Γ

[
c

a,c−a

]
(−xn)−a

∑M ∑
∞
mn=0 Γ

[
c−a−|M||
c−a+ |M|

]
× (a)|M|+mn (1−c+a)2|M|+mn

(|M|+mn)!mn! ∏
n−1
i=1

(bi)mi
mi!

×(log(−xn)+hmn)
(

x1
xn

)m1
· · ·
(

xn−1
xn

)mn−1(
1
xn

)mn

+Γ

[
c,c−a

a

]
(−xn)−a

∑M ∑
|M|−1
mn=0

(a)mn Γ (|M|−mn)
mn!(c−a)|M|−mn

×∏
n−1
i=1

(bi)mi
mi!

xm1
1 · · ·xmn−1

n−1

(
1
xn

)mn
,

(B.10)

with

hmn = ψ(1+ |M|+mn)+ψ(1+mn)−ψ(a+ |M|+mn)−ψ(c−a−mn),
(B.11)

and M = (m1, . . . ,mn) is a multindex (so that |M| ≡ ∑
mn
i=1 mi).
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