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Abstract We obtain exact results in o’ for open and closed A-model topological
string amplitudes on a large class of toric Calabi-Yau threefolds by using their cor-
respondence with five dimensional gauge theories. The toric Calabi-Yaus that we
analyze are
obtained as minimal resolution of cones over Y”¢ manifolds and give rise via
M-theory compactification to SU(p) gauge theories on R* x S'. As an application
we present a detailed study of the local [, case and compute open and closed
genus zero Gromov-Witten invariants of the C?/Zg4 orbifold. We also display the
modular structure of the topological wave function and give predictions for higher
genus amplitudes. The mirror curve in this case is the spectral curve of the rela-
tivistic A; Toda chain. Our results also indicate the existence of a wider class of
relativistic integrable systems associated to generic Y74 geometries.
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1 Introduction

Since their formulation, topological theories have been a most fruitful source of re-
sults and ideas both in physics and mathematics. Topological amplitudes naturally
arise in the BPS sector of superstrings (I} [2) and supersymmetric gauge theories
(@) and as such have a wide range of applications, from the evaluation of BPS
protected terms in low-energy effective actions to black hole microstates count-
ing (4). Moreover, topological theories have provided new and powerful tools for
the computation of global properties of manifolds, e.g. Donaldson polynomials,
Gromov-Witten invariants, revealing at the same time surprising relationships be-
tween seemingly very different areas of mathematics.

One of the most appealing features of topological strings is that the calculation
of its amplitudes can be pushed to high orders, sometimes to all orders, in pertur-
bation theory. To this end, one exploits symmetries and recursion relations coming
either from the underlying .#" = (2,2) supersymmetric sigma-models - as mirror
symmetry and holomorphic anomaly equations - or from the properties of
some specific class of target manifolds - as localization and geometric transitions
for the A-model on toric Calabi-Yaus (5), or % -algebras and integrable hierar-
chies on the corresponding
B-model side (6).

These methods have been mostly applied in the large volume region of the
Calabi-Yau, where the perturbative expansion in o’ is well-behaved and the topo-
logical string partition function has a clear geometric interpretation as a generating
functional of Gromov-Witten invariants. However, away from the large volume
region, the perturbative series diverges and the corresponding geometrical inter-
pretation breaks down. Very few exact results are known outside this perturbative
regime, although significant progress has been recently obtained by using modular
invariance (7) and new matrix-model inspired techniques (8.

In this paper, we obtain exact results in o’ for a large class of toric Calabi-
Yau threefolds, and calculate the corresponding topological string amplitudes in
the full moduli space of closed and open strings. The basic idea is to resort to the
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correspondence with five-dimensional gauge theories via M-theory compactifica-
tion on the Calabi-Yau times a circle (9). More precisely, the geometries that we
consider are obtained from minimal resolution of Y74 singularities, and M-theory
compactification over them give rise to SU(p) gauge theories on R* x S! with a
g-dependent five dimensional Chern-Simons term (105 [11). The mirror geometry
can be written as a fibration over an hyperelliptic curve, whose periods provide
a basis for the solutions of the B-model Picard-Fuchs equations. Our main result
is that we get a closed form for the (derivatives of the) periods on the whole B-
model moduli space. We then expand them in different patches and calculate in
this way topological amplitudes not only in the large volume region, but in all
phases, including orbifold and conifold points. The analytic continuation prop-
erties and modular structure underlying higher genus amplitudes can be easily
worked out in our approach. As an application, we give predictions for Gromov-
Witten invariants for the orbifold C3 /Z4, which corresponds to the blow-down of
local F, geometry (p = g = 2).

We observe that, for p = g, the hyperelliptic curve appearing in the mirror
geometry can be identified with the spectral curve of an integrable system, given
by the relativistic generalization of the A, | Toda chain (12). The fact that with
our method we can find closed formulae for any value of the parameter g suggests
the existence of a wider class of relativistic integrable systems.

The structure of the paper is the following: in Sect.[2] we review the toric geom-
etry of Y74 singularities and their minimal resolutions, in Sect.[3|we discuss mirror
symmetry and the relation with integrable systems, in Sect.[d]we outline our proce-
dure to find topological amplitudes in the whole B-model moduli space, in Sect. [3]
we provide some preliminary checks of our formalism. In Sect. [§] we present a
detailed study of the local F, case: we first compute open and closed genus zero
Gromov-Witten invariants of the C?/Z4 orbifold, then analyze the modular prop-
erties of the topological wave function and use them to predict higher genus in-
variants. We conclude in Sect. [/| with some comments and future perspectives.
Some technical details on the analytic continuation of topological amplitudes are
collected in the Appendix.

2 Cones over Y71

The toric geometry of Y79 singularities (13) has been extensively studied in the
context of AdS/CFT correspondence (14), with the aim to provide non-trivial
checksﬂ for superconformal theories with reduced amount of supersymmetry. We
observe here that minimal resolution of such singularities gives rise precisely to
the local Calabi-Yau geometries that one usually considers to “geometrically en-
gineer” gauge theories via M-theory compactifications (11).

The manifolds Y74, with p and ¢ integers such that 1 < g < p, are an infinite
class of five-dimensional manifolds on which explicit Sasaki-Einstein metrics can
be constructed (13); the two extremal cases ¢ = 0 and ¢ = p may be formally
added to the family, corresponding to Z, quotients respectively of 711 (the base
of the conifold) and of S5 /Zy. Since YP4 are Sasaki-Einstein, the metric cone
C(YP1?) constructed over them is Kéhler Ricci-flat; moreover, given that the base

' See also (13) for related work.
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has a T3 of isometries effectively acting by (Hamiltonian) symplectomorphisms,
the cone is a toric threefold (14), that is, it contains an algebraic three-torus ((C*)3
as a dense open subset acting on the full variety through an extension of the natural
action on itself (for an introduction to toric geometry see for example (16; [17))).
As any toric CY threefold, its geometry is fully codified by a three dimensional
fan X whose rays end on an affine hyperplane, say r3 = 1, in the three dimensional
space R? with coordinates (ry,7,,73). For C(YP4), this is given by the following
four lattice vectors in Z>:

—1
5 V4 = pP—q . (21)

1
V1= 0 , V2=
1 1

—_ o O
<
W
Il
- O

In the following we will be interested in investigating the (GKZ extended) Kihler
moduli space of toric and canonical class preserving complete resolutions of C(¥Y7+9).
At the level of the toric diagram, this amounts (17)) to add the p — 1 internal points
vayj = (0,/,1) for j=1,...,p—1 and declare that the set of three dimensional
cones in the fan X is given by the simplicial cones whose projection on the r3 = 1
hyperplane yields a triangulation of the polyhedron {v;,vz,v3,v4}.

—_~—

The resolved geometry will be henceforth denoted as .2}, ;, = C(Y?+9) and the
corresponding fan as X, ;. It might also be described as a holomorphic quotient

(C\2)/(C)”

with Z a co-dimension >0 locus determined by the toric data (16) and the k*C*

. . (k) .
factor acting on the coordinates of CP*3 as z; — A9 z;, where ng) € 7 is a set
of integers such that

ZQl@vi:o k=1,....p. (2.2)

The set of charges for 2, ; is given by (see Fig.

Ql = (Aa _ZA_Bv B7 A7 Oa 0, 07 Oa 07 07 0)
Q = (0, 1, 0, 0,0 =2, 1, 0, 0, ..., 0, 0
Q; = (0, 0, 0, 0,0 1, -2, 1, 0, ..., 0, 0
Qs = (0, 0, 0, 0,0 0, 1, =2, 1, ..., 0, 0)23
Q, = (0, 0, 1, o0 0,0 0 0 0 .. 1 =2

with A and B coprime numbers solving the Diophantine equation (p —g)A+ pB =
0 for ¢ < p, while A =1 and B = 0 for ¢ = p. In real polar coordinates (|z;|, 6;),
this corresponds to the Higgs branch of a 4" = (2,2)d = 2 gauged linear 6-model
(GLSM) (18) with p+ 3 chiral fields z;. The D—term equation of motion is

p+3
Y Qal =0 k=1,...p 2.4)
Jj=1
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Fig. 1 The fan of C(Y?4) forp=5,q=2

Fig. 2 The fan of C(YP4) for p=5,g=2

—

Fig. 3 The pg-web diagram of C(Y?¢) for p=5,¢g=2
and U(1)? acts as

K g
=9 i k=1,...p, (2.5)

where 0; = arg(z;). The Fayet-Iliopoulos parameters f; are complexified Kihler
parameters of 2, ;. Indeed, the full cohomology ring of the smooth CY manifold
thus obtained can be easily read off from the fan (16} [19). For example, Betti
numbers are

bo=1, by = p, by=p—1, be = 0. (2.6)

Various aspects of these geometries have been considered in the context of topo-
logical strings. First of all, notice from Figs. [TH3| and formula (2.6)) that for p =1
we encounter the two most studied local curves: the conifold (¢ = 0) and C x Kp:
(g = 1), whose enumerative geometry (20), phase structure (21) and local mirror
symmetry properties (22) have been extensively studied. For p = 2, the local CY
in question is the total space of the canonical line bundle Kp, over the ¢'" Hirze-
bruch surface, g = 0, 1,2. For higher p we have the ladder geometries considered
in (L1} 23 245 125) in the context of geometric engineering of pure SYM theo-
ries with eight supercharges. In a suitable field theory limit described in (23), the
Gromov-Witten large radius expansion for these geometries was shown to repro-
duce for all g the weak coupling instanton expansion of the prepotential for 4" =2
SU(p) pure Yang-Mills in d = 4. Subsequently, they were shown (9} [10} 26)), to
geometrically engineer .4 = 1 SU(p) SYM on R* x S! with Chern-Simons cou-
pling kK = p — g, with the field theory limit above interpreted now as the limit in
which the fifth-dimensional circle shrinks to zero size.

The Kihler moduli space of these geometries presents a manifold richness
of phenomena which provide a natural testing ground for A-twisted topological
string theory away from the large radius phase, as well as for the search of direct
evidence for open/closed dualities in the strongly coupled o regime. The piv-
otal example of the latter is given by the case ¢ = 0, which is the large N dual
background of the open A-model on T*L(p, 1) obtained via geometric transition
(27). Moreover, it was noticed in (145 [19) that 2, , can be “blown-down” to orb-
ifolds of flat space of the form C?/Z,., (see Table ; here the geometric picture
becomes singular, though leaving still open the possibility for extracting enumer-
ative results in terms of orbifold Gromov-Witten invariants. These are precisely
the cases we will turn to study in Sect. 4]
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Table 1 Orbifold degenerations of 2}, ; into C*/Z,, for the first few values of p and g. The
fourth column lists the weights of the Z,, ; action on the coordinates (z;,z2,z3) of c?

)4 q ptq Weights
1 0 1 (0,0,0)
1 1 2 (0,1,1)
2 0 2 (0,1,1)
2 1 3 (1,1,1)
2 2 4 (1,1,2)

3 Mirror Symmetry for Local CY and Integrable Systems
3.1 Period integrals

A procedure for constructing mirror duals of (among others) toric CY threefolds
has been provided in (28)), elaborating on previous results of (29;30). The mirror

geometry 2, , of Z,, is an affine hypersurface in C? x (C*)?,
122 = Hp 4(u,v) 3.1

with (z1,22) € C? and (u,v) € (C*). In (3.1) H, 4(u,v) is the Newton polynomial
(31) of the polytope X, ;N {r3 =1} in 77 given by the intersection of the fan with
the affine hyperplane r3 = 1,

p .
— Zai+3u’. (3.2)
i=0

a up_q
Hp,(u,v) =av+ 2

The geometry is therefore that of a quadric fibration over the H, ,(u,v) =A € C
plane, which degenerates to a node above the punctured Riemann surface H,, ;(u, v)
0. We will call the latter the mirror curve I, ;.

Now, mirror symmetry in the compact case prescribes to reconstruct the A-
model prepotential from the computation of the (properly normalize(ﬂ) periods of
the holomorphic (3,0) form [Q] € H 3"0(%”1,\7 4) on a symplectic basis of homology
three-cycles

A= / 0,
JEeHy (2 4.2)

where £ in this case would be the residue form on Hp , = 0 of the holomorphic
4-form in H*0(C? x (C*)?\ Z,4),

dxidxadu/udv/v
Q=R S . 33
CSH,, 4 (u,v)=x1 22 {xwz —H,,(u,v) (3.3)
Special geometry then ensures (32) that the periods are related as
H = (10(a),1;(a), 0,7 (a),27 - Y 1:0,.F), (3.4)
i

2 In this section, we will not be careful about normalization factors. This will be of course our
concern in the calculations of Sect. El}
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where t;(a) defines a local isomorphism between the A model moduli space of

Zp,q and the B model moduli space of 2, ,, while .7 (¢) is the prepotential, i.e.
the sphere amplitude. They have respectively single and double logarithmic singu-
larities at the large complex structure point (29). In the local case under scrutiny
we must actually cope with the absence of a symplectic basis for H3 (%) 4,7Z);
according to (225 133)), the formalism carries through to the local setting by con-
sidering non-compact cycles as well and defining the periods along them via
equivariant localization}’| We will denote the corresponding extended homology
as H3<m) (Zpg 7).

The usual procedure that (¢;,9;.% ) are found is via integration of the associated
GKZ hypergeometric system (29; 32)

pa QY po QY

Qf.k) >0 Q,(k) <0

with ng) as in (2.3)). In a patch of the B-model moduli space, these are the Picard-

Fuchs (PF) equations for 2, ,. Typically, solutions of are obtained via series
integration by Frobenius method, i.e. solving recursion relations for the coeffi-
cients of a series expansion for (¢;, ;% ). This has to be done patch by patch in the
moduli space though, and it turns out to be hardly practicable as soon as the num-
ber of Kihler classes increases. To our knowledge, there is no explicit solution in
the literature when A1 (%£,4) > 2.

A possible alternative way to find H is via direct integration. This not viable

in the general case, but notice that due to the particular form ll of 3?; ¢» the
integration of £ over three-cycles boils down to that of a 1-differential dA over a
(ext)

basis of cycles in H, "’ (I}, 4,Z). As shown in (22), the periods of Q solve the PF
system (3.3)) if and only if those of

dudv
uy

dAp 4= Resy,  (uv)=0 logH), 4(u, v)} (3.6)

do on a basis of Hl(m) (Ip.q,Z). Picking up the residue gives

d
dA =logv? (3.7)
u

and the periods are thus computed as

d
s = / Jogv?¥. (3.8)
(exr)
YeH," (Ipg.Z) u

Unfortunately, the integrals are typically too awkward to carry out and no expres-
sion is known except for the simplest case of local curves; a perturbative evaluation
of them, though clearly possible, has no real advantages compared to tackling the
PF system upfront. However, we will see in Sect. [d|how to handle them in a direct
way.

3 'We bother with this solely for the case of local curves. For p > 2, as we will see, the inte-
gration over compact cycles is sufficient to extract enumerative information.
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Fig. 4 The pg-web for p =5, ¢ = 2 with a lagrangian brane on an inner leg

3.1.1 Mirror symmetry for open strings.

Recently, the open string sector of the A-model on toric CY has been subject to
deeper investigation, following the insight of (34} [35)), where a class of special
Lagrangian submanifolds was constructed generalizing (36). The prescription of
(34)) relies on the realization of a toric CY as a (degenerate) T3 fibration, parame-
terized by 6;, over the |z;| base, see 2.5). The authors of (34) consider a3 —k
real dimensional linear subspace W of the base

Yl =c*  a=1,...k q¢*€qQ, (3.9)

and then specify a T* fibration L over this subspace in such a way that the Kihler
form @ = ¥, d|zi|*> A d6; vanishes on it,

|, =0. (3.10)

The total space of this fiber bundle L is then Lagrangian by construction; more-
over, it turns out that it is volume minimizing in its homology class (special La-
grangian) if and only if }; g% = 0. In this case (3.10) implies

Y 6=o. (3.11)

In the case in which ¢% in are such that W intersects the edges of the toric
web, i.e. the loci where one S! of the toric fibration shrinks, L splits into two
Lagrangians L. with topology R? x S': the open modulus z is then given by the
size of the circle, complexified with the holonomy of a U(1) connection along it.

The mirror symmetry construction of (28) has been extended to these brane
configurations in (34). When k =2, L (resp. L_) gets mirror mapped to a curve
parameterized by x; (resp. 1)

Hyq(u,v)=0=ux; (resp.=ux). (3.12)

The moduli space of the mirror brane is then simply the mirror curve I, ;. Picking
a parametrization thereof (for instance the projection on the u or v-lines) by a
complex variable z leads us to write the open topological partition function

Fopen({ti},2) = ijh({ti})z}l; (3.13)
g,h

the sum is both over the genus of the source curve and the number of connected
components of its boundary. The choice of a “good” parametrization is dictated
by mirror symmetry and is related to phase transitions in the open string moduli
space for branes ending on toric curves meeting at a vertex in the web (see (8) for
details).

A very important fact is that the meromorphic differential dA turns out to have
a significant role for open string amplitudes as well. The dimensional reduction of



Exact Results for Topological Strings on Resolved Y74 Singularities 9

the

holomorphic Chern-Simons action on the mirror brane indeed yields a particu-
larly simple expression for the disc amplitude g = 0, & = 1. It is simply given by
the “Abel-Jacobi” map

Foult,2) = /Zlogv(u)%, (3.14)

where the integral on the r.h.s. is a chain integral [z*,z], with z* a fixed point on
the mirror curve. In (37) it was noticed that the disc amplitude (3.14) in a suitable
parameterization gets the form

F0.1(t,20pen) = Y NuwuLiz (e "2 ). (3.15)

m,n

In (3.15) Ny, are integer numbers counting open string BPS states and z,., is the
dressed open coordinate (33))
Zopen =2+ ), ——, (3.16)
i

Ti

where w; are combinations of gauge-invariant sigma model variables vanishing at
the point of maximally unipotent monodromy

()
wi=[]a” =1+6(e™) (3.17)
j

and r; are rational numbers. Notice that the open flat coordinates get corrected
by closed worldsheet instantons only. As discovered in (38),(see also (39)) an
extended Picard-Fuchs system may be constructed such that (3.14)), (3.16) are in
its kernel and this can be used for determining the r; in (3.16).

3.2 The B-model moduli space

A few remarks are in order at this point. The Riemann surfaces I, , come in a
family parameterized by {a;} in , which are the complex moduli of the mir-
ror geometry. The curve I, ; will be generically smooth in the B-model moduli
space: we will denote the open set where this happens as .# ,ff 4- However, a com-

pactification of ,///If g Will lead to loci where this is no longer true. Indeed, I}, 4
degenerates to a singular curve on the so-called principal discriminant locus of
the PF system (3.5). In correspondence with this, one of the homology cycles of
I, ; shrinks to zero size; GKZ solutions have then singularities and are subject to
logarithmic monodromy transformations around these loci, to which we will refer
as conifold loci. Moreover, there are also regions in the B-model moduli space
where the curve I, ; stays smooth, but the periods have finite monodromy because
the moduli space itself is singular, locally looking like C?/Z,; at the conformal
field theory level, this would be reflected by the appearance of a discrete quantum
symmetry. We will refer to the latter as an orbifold phase, in which we still re-
tain a geometric picture, though involving a singular (orbifold) target space in the
A-model side.
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To see why this happens from the mirror perspective one might argue as fol-
lows. The a;’s are sort of homogeneous coordinates for the complex structure mod-

uli space of 24, Indeed, only p out of p+ 3 are really independent, as an overall
rescaling of them and scalings of u and v in (3.1)) leave invariant the symplectic
form
du d
Ny (3.18)
u v
in (C*)2. That is, the moduli space of the mirror theory might be seen as arising
from a holomorphic quotient of CP*3 by a (C*)3 action with charges (see (3.2))

la1 a3 api3  ay  as ... app
Qi1, 0, 0, -1, 0, ..., 0
Q2 0) 07 12 P—q, 17 LR p_l (319)
Qs 1, 1, P

By subtracting a suitable codimension >0 locus to C”*3, we thus end up with a
toric

compactification of the family .#5 , which we call ., 1?-, ’qmr. Remarkably enough,
inspection shows (32) that the skeleton of a fan for the above system of charges
is simply given by the columns of the GLSM (2.3), and the toric variety associ-
ated with it is complete. This fan is called the secondary fan of 2 P4. In fact,
strictly speaking we are not dealing with a toric variety, as typically the secondary
fan will contain non-smooth simplicial cones, perhaps with marked points along
their facets. In the latter case, this would mean that the patch parameterized by the
corresponding a;’s looks like C?/Z,, rather than C?; as such, the periods of the
holomorphic three-form will inherit the finite monodromy from the monodromy
of the a; themselves. This will be of fundamental importance in our study of the
[C3/7Z4] orbifold in sect.

Additional, but somewhat milder phase transitions involve the purely open
string sector as well and are related, as already anticipated, to a choice of a parametriza-
tion of I', 4. See (8), to which we refer for a complete discussion of this subject.

3.3 Relation with integrable systems and five-dimensional gauge theories

Interestingly, the mirror curves of 2, , geometries are related to the Seiberg-
Witten curve of five dimensional gauge theories and the related integrable sys-
tems. Since, as we will show in the next section, this observation will prove to
be very fruitful in the study of the topological string moduli space of 2, ,, we
describe it here in some detail.

First of all, let us rewrite (3.2)) as

Y% =Py(X)* —daja X1 (3.20)
upon setting
Y =ajv—auP /v,
X =u, (3.21)

p .
Py(X) =Y aisX".
i=0
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In the a; = a» = (AR)”, a3 = a, = 1 patch the curve (3.20) and the differential
(3.7) are precisely the Seiberg-Witten curve and differential of SU (p). 4" =1SYM
theory on R* x S! with a g-dependent Chern-Simons term (11} 26).

Moreover, the SW curve and differential in the case p = g were shown in (40)
to coincide with the spectral curve and action differential of the A, | Ruijsenaars
model (12), i.e. the A,_; periodic relativistic Toda chain. More precisely, setting

{ =AR, (3.2) reads for p =g,

1 el du
I,,: CP(v+ ;) =1+ 1; wS+uf, di,,= logv7
which can be rewritten as
4 .
det(L(z) —w) = ) (—w)?/o;(z) =0 (3.22)
j=0

with the Lax matrix defined as
Lij = e®Pifi(lij +byj),
lij =8 i1 (14 8P2)& — 61185, (1+ ¢ Pz éi,
by — I—(ZC)” ii;: } (3.23)
f2= (1= G a)(1 = gPetarn),
&' =12l

where ¢,11 = q1,90 = qp, 0 are the elementary symmetric functions of L(z), S;
their z-independent factor, and we have made the change of variables (40)

—wu=1+C"z, z=w.

An identification of the curves for ¢ < p as the spectral curves of some finite
dimensional integrable mechanical system seems to be presently not known, and
it would be interesting to understand the role of the ¢ parameter in this context.
A second important remark is about the “field theory limit” discussed in (23).
From the mechanical system point of view, the parameter { in is essentially
the inverse of the speed of light, while in the field theory perspective { = AR,
where A is the strong coupling scale and R is the radius of the fifth-dimensional
circle. This means that the four-dimensional limit might be achieved as the non-
relativistic limit of the Toda chain. Denoting with ¢%, i = 1..., p the roots of the
polynomial P,(z) and introducing the new set of variables (11,

X = &R, (3.24)

we have that in the R — 0 limit (3.20) reduces to
y? = B,(2)? —4AP, (3.25)



12 A. Brini, A. Tanzini

Fig. 5 Cuts and punctures of the X plane in the genus 1 case

which is the Seiberg-Witten curve of .4~ =2 SU(p) Super Yang-Mills in d = 4.
Notice that in the R — 0 limit we completely lose track of the Chern-Simons pa-
rameter ¢, which has disappeared in formula (3.25)). More importantly, the variable
2 in takes now values in C in contrast with the C*—variable X. Because
of this, the peculiarly five-dimensional form of the differential , ie. dA =
logvdlogu, is replaced in the R — O limit by that of the usual (non-relativistic)
Toda differential dA = xd 1n(15,, +y). In fact, as we will see in the following, the
relativistic system and its non-relativistic counterpart - which by the discussion
above coincide respectively with the A—model on 2, ; and with its 4d Seiberg-
Witten limit - bear still deep structural resemblances and our aim will be to try to
exploit this to our advantage.

4 Solving the GKZ System in the Full Moduli Space

In this section we provide a method for finding the mirror map, as well as the
sphere and disc amplitude, for the A-model on 2, 4 to all orders in ¢’ without
resorting to solving the GKZ system directly. This will be accomplished by finding
closed forms for derivatives of the period integrals HJI:” 4 w.r.t. the bare moduli as
generalized hypergeometric functions.

First of all, let us resume what the ingredients at our disposal are. According
to (3.20) the mirror curve I, , is a two-fold covering of the X plane branched at
Y(X) =0, that is the locus

Py(X)* =4daja X" 1. 4.1)

The resulting curve has genus p — 1 and four punctures corresponding to the two
inverse images of X =0, X = oo. Let us denote the solutions to li as {bi}izi7 A

basis for H l(m) (Ip.q,7Z:) might be taken as the circles A;, B; encircling the intervals
Iy, = [b2i—1,b2i] Ip, = [b2i, b2t 1] 4.2)
fori=1,...,p—1, plus a circle Ag around one of the punctures at X =0 and a

contour By connecting the two punctures at X = 0 and X = oo. The 1-differential
dA, 4 is given, in an affine patch parameterized by X, as

4.3)

2_ P—d
dApq(X) = logv(u)% =log (P”(X) £ /Py(X)? —4a1arX ) dyx’

2a1

and a complete set of periods can be obtained by integrating it over the A /B-cycles

mw:ﬁwﬂw~ (4.4)
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More explicitly,
HA- = /bzi log PP(X)+ \/PP<X)2—4a1a2X[7*q dix (4 5)
’ bai—1 P,(X)— \/Pp(X)2—4a1a2XP*‘1 X'’
_— /-b21+1 Py(X) + /Py (X)T — 4a1apXP =9\ dX w
l 2 Py(X) = \/Py(X)? —dajaXP~4 | X’
P, (X)++/P,(X)? —daiaxXP~ 1\ d
114, :f 10g< »(X) \/ p(z) 142 >, @7
X=0 ai X
o Py(X) £ /P,(X)? —4ajarXP~9\ dX
I, :/ log< »(X) \/ p(2) 142 ) 48
0 a) X

We now make the following observation. As we have already noticed, the curve
(3.20) and the differential (4.3) are the Seiberg-Witten (SW) curve and differential
of a five dimensional theory compactified on a circle. In Seiberg-Witten theory, the

gauge coupling matrix
Oy, (M, \ "
= ! 4.9
tij duy ( du; ’ (4.9)

where u; are Weyl-invariant functions of the scalar fields, is known to be the pe-
riod matrix of the compactified SW curve, that is a ratio of periods of holomorphic
differentials. We then expect that derivatives of dA,, , with respect to suitable func-

tions of the bare moduli are holomorphic differentials on the compactified fp,q,
[0y dA] € H'O(T pq)- (4.10)

This is substantiated by the fact that, for p = g = 2, the relativistic Toda system and
the non-relativistic one share the same oscillation periods (41); more precisely, the
derivatives of the action with respect to the energy are the same (elliptic) functions
of the bare parameters. This was also noticed in (40) in the study of the singulari-
ties of the moduli space of A4 =1SU(2) SYM ind = 5.

Explicitly, we indeed have

ddApg X/
aaj+4 \/Pg(X) —4ajar XP—1

dx, 4.11)

ie., for j=0,...,p—2, abasis of holomorphic 1-forms on the 4-point compacti-
fication I"p ; = I}, ,U{04,0_ 00, co_} of the spectral curve I, .

4.1 Period integrals and Lauricella functions
This last observation allows us to give a straightforward recipe for computing

series expansions of solutions of the GKZ system (3.5) in the full B-model moduli
space. The procedure is the following:
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1.

Start with Ily, /g, and consider its a4 derivative for 0 < j < p—2,

dIy, s, /em ' . G “12)
914 (X —b)

with e; = b1, e; = by; for the A and B cycles respectively. The hyperelliptic
integral (4.12) has a closed expression given in terms of multivariate general-
ized hypergeometric functions of Lauricella type (42)),

My — e (ei)
9a;+4 [litiit1 (er—e;i)
(217 l) l 1 1 1. o~ eH—l_ei
X Fpy (2 53 '7E?J,1’x17-..7xi7xi+],...,l'2p77 :

4.13)

where z; = (ejr1 —e;)/(ej —e;), 2¢ = Im, | € Z is a phase depending on x;
and Flgn) is the hypergeometric series

i (@)t (B )y -+ (Ba)m, &) - S

My ooy =0 (}/)m+...+mnm1!...mn!

(s {BY: v {8)) =

(4.14)

which converges when |§;| < 1 for every i. In the above formula we used the
standard Pochhammer symbol (@), = I'(a+m)/I"(a). There are many al-
ternative ways to express (#.12)), for instance in terms of hyperelliptic 6 func-
tions; however, the above expression proves to be useful due to the fact that
Lauricella FD(") has good analytic continuation properties outside the unit poly-
disc |8;] < 1; some formulae, as well as asymptotic expansions around singu-
lar submanifolds, are collected in the Appendix, while others can be found in
(42 143). Notice that, as opposed to the usual situation in solving PF equa-
tions by the Frobenius method, we are not dealing here with hypergeometric
functions of the bare moduli, but rather of the relative distance x; between ram-
ification points; they have singular values precisely when the latter becomes 0,
1 or infinity, that is when we encounter a pinching point of I, ;. This shift in
perspective is definitely an advantage compared to other expressions for hy-
perelliptic integrals, involving for instance the F; Appell function for genus
2 (44; 45). These are simpler functions of the bare moduli, but have worse
analytic continuation properties and are less suited for a more complete study
of the moduli space, regarding for instance intersecting submanifolds of the
principal discriminant locus. The above fact was already pointed out in (46),
where the properties of F}} were exploited to study the Zs3 point of A" =2
SU(3) SYM.
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In many cases, FD("> can be reduced to a more familiar form. For instance,
for p =2 we have the expected complete elliptic integrals of the first kind

oy _ 2 (by —ba) (bs — by)
day B \/(bl —b3)(b2 _b4)K l:(bl —b3)(b2 —b4)] , 4.15)
oy 2 (b1 —b3)(by — bs)

das /(b1 —b2)(b3 — ba) {(191 — by) (b3 _b4)] : (4.16)

2. Once we have a representation for the derivatives of the periods in the form
@.13), @.15)-@.T6) we can use the formulae in Appendix [B] to analytically
continue them in any given patch of the B-model moduli space and find a cor-
responding power series expansion in the bare moduli ;. Integrating back with
respect to a; yields Iy, and Ilp, up to a constant of integration, independent
of a; for 0 < j < p—2. This has to be fixed either by some indirect consid-
eration (for instance, by imposing a prescribed asymptotic behavior around a
singular point) or by plugging it inside the PF system and imposing that the
period be in the kernel of the GKZ operators. This operation leads to a closed
ODE integrable by quadratures, which completes the solution of the problem
of finding expansions for Iy, /p; everywhere in the B-model moduli space.

3. The procedure provides us with p — 1 flat coordinates as well as p — 1 conju-
gate periods out of which to extract the prepotential. In order to find the p”
modulus, we pick up the residue (4.7)),

log <j:2—?> forg<p
dh = —— : 4.17)
7§(:0i log (W) forg=p

which are manifestly solutions of @ In the following, we will choose an
appropriate combination of them in order to have a prescribed behavior around
the expansion point under scrutiny.

4. Closed form computation of derivatives with respect to a; can be done for open
string amplitudes as well, which might be used to trade an expansion in terms
of the z parameter in with one in a;, completely resummed w.r.t. z. In
this case, dealing with chain integrals instead of period integrals leads one to
consider indefinite integrals and thus incomplete hyperelliptic integrals. The
latter can still be given the form of a multivariate Lauricella function, but with
order increased by one (42)),

IF01({ak}2) _ o (er)!

) 418
S o=V @

(gp) 1.1 1 _1.3_ ér —eq
F ANYAI s A A A R ) ) .
“fp <2z A M ML AR

As before, for p =2 (#.18) boils down to an incomplete elliptic integral of the
first kind in the form
d 1 - - i
790’1 ({ai}.2) = 2\/TF sin~ ! —(bl ba)(b2 — 2) ?> , (4.19)
8614 b (bz—b4)(b] —Z) b
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Fig. 6 The fan of local Fy

where

a= (b2 —b4)(b1 —bg) b= (b2 —b3)(b1 —b4).

Another important advantage of this method is that, instead of integrating back
patch-wise with respect to a;, we can get our hands dirty and work directly with

an Euler-type integral representation of the periods. The fact that F; Lg") has a single
integral representation saves us most of the pain in the problem of finding the ex-
plicit analytic continuation of Ily,/p,, which in the multi-parameter case involves
the use of multi-loop Mellin-Barnes integrals. The details for the case p =g =2
which will be of interest later on for the computation of orbifold Gromov-Witten
invariants are reported in Appendix [A] where also a closed expression for the A-
period can be found in terms of a generalized Kampé de Fériet hypergeometric
function.

5 Warm-up Tests of the Formalism

Let us show how the steps described in Sect. allow to quickly recover some
known results about mirror symmetry for local surfaces.

5.1 Local Fy : mirror map at large radius
Local mirror symmetry for Ky, has been studied in (47) in the check of the large

N duality with Chern-Simons theory on S /Z,. The mirror curve in this case can
be written as

ayv+ay/v=az/u+as+ asu. (5.1

Good variables around the large complex structure point (29) are given by

ajay asdas
iB= —>5 > iF= "5 - (52)
ay ay
Let us use the scaling freedom (3.19) to set
as =d5 = 1, a) =dap. (5.3)

By using the change of variables (3.20) the curve (5.1)) is then given by

2
Y2 = (X2+X+1> _ By (5.4)
VZF zF
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which is a double covering of the X —plane branched at

= 142/zp— /1 —4\/zp +4zp —dzr

by = 5.5
1 N (5.5)
by — —1-2\/zg— /1 —4,/z5+ 423 — 4z (5.6)
2V ’ '
be —14+2\/z+ /1 —4/zs + 4z — 4z 5.7)
3= TS ) .
b — —1—=2/z+ /1 —4\/z5 +4zp — 4z (5.8)
N : .

We choose the A-cycle as the loop encircling [b1,b;]. The asymptotics of the cor-
responding period will indeed identify it as the flat coordinate around zpz = zr = 0.

By expanding (4.15)) in (zp,zr) we have

aIl
aaA = /zr (2023 +6(30zF + 1)z3
4

+2(90zF + 12z + 1)zp + 2023 + 625 +2zp + 1) +--- (5.9)

which integrates to

2073,

3t 60zr 2% + 325 + 60272p. (5.10)

Iy =log(zr) +

From and (5.2) we can compute the remaining flat coordinate as

1

I = >

log B (5.11)
IF

It is then easy to see that the combinations of periods that have the right asymp-
totics at large radius are given by

—tp = —2ITy(zp,2r) + a(z8,2F), —tr = I4(zB,2F ). (5.12)
Inversion of (5.10) and (5.11) reads, setting Qg = e '8, QF = ¢ 'F,

25 = 6Q3 —2Q5 +6Q7Qp —2QrQp+ Qp+- -+,
zr = 6Q) —2QF +6QFQr —2QpQrF +Qp + -+, (5.13)

which is the mirror map as written in (48).
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5.2 Local Fy : orbifold point

Analogously, we can write down the expansion for the orbifold point (47), which
corresponds to a; = ay = a3 =as =1, a4 = 0. Setting a; =a, =1 —zxl, a4 =
r1x2, a3 = as = 1 as in (47), we have

51 = Iy =—log(1—xy),

1
61931520%
a1 (21 (21 (21 (1052 — 1856) +8000) — 12288) +6144)K (1)) 2§ +---]

sp = Iy +1Ig/2 = [22(35(32(x1 —2)z1(x1 (1121 — 96) +96)E (x1)

Upon introducing §; = s1 and § = s /s2 we have

xl(fl) = 1_6_Sla
~ 5 3 S
I 2 H N (52 _ S \a (_ 9%
x2(81,%) = s2+ n 25+ (192 192) + < 256 768> * ( 737280

75 780\ 4 58 75\ s
- TR 14
73728 245760) * <98304 983040> Sit (5.14)

in perfect agreement with (47)). Needless to say, the prepotential computation can
be checked exactly the same way. We have

|
Fo=Ii = o [xlxz ((75m1m2 5622 (1023 +9) 2 + 642 (1024 + 2122

+70)23 — 107520) K(1 —z1) + -]

3 Ty T3 21 5
-1 ( ) ) 2 3\ .3
og ()2~ @ T (G T gg)ui+ it g | @
185z  Sx3 \ 4
1
+( 1536 +1024)$1Jr (5.15)

which reproduces the analogous formula in (47)), modulo the ambiguity in the
degree-zero contribution.

5.3 Local I, at large radius

We might proceed along the same lines for the case of local F,. The curve is given
by

alv—l—@ =a3 +a4u+a5u2. (5.16)
v

Branch points are located at

\/a4 —4dazas— 8\/*\/>a5 _i6_1

u_"_i 2as
2as \/a4 —dazas+8,/ay\/aras =+4c, ’

205

(5.17)
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and we have accordingly

oIy /'62 dx _ K(l _*%) (5.18)

day  Jeo (X2—-)(X2-¢}) o ‘
oIy B /01 ax _ 2K (é) (5.19)
das ooy (X2-)(X2-¢}) o ‘

In this case good coordinates associated to the base P! and the P! fiber are

ajay asas
B — 72, IF — 72 (520)
a3 ay

Upon setting a; = ap, a3 = a5 = 1, periods take the form

16,/zpzr
otr . oIy o 2K (7 —8\/zngp—4zp+I)

%0 g [1-4(2y+ 1)z

78\/27311:7411:+1
°F Ol * (RsaT)

dzpdtyr — dzp ZF\/1—4(1—2¢ZE)ZF7

tg = Iy, —ITy_ = 2itan™" <\/4z3 - 1) , (5.21)

where the normalization has been chosen in order to get the right asymptotics.
Integration and inversion yields the mirror map at the large radius point

ZB(QB) = (62;241_;1)27

27 (Q,Qr) = (1+Qp) Qr + (-2 —4Q5 —2Q3) Q
+(3+3Qp+3Q5+30Q3) Qp +--,

(5.22)

with Qp = 78, Qr = e 'F and therefore
9 F (Qp,Qr) = (log(Qr)log(QpQr)) + (4+4Qp) Qr + (14 16Qs
3
030k + (5 + 3000+ 3605+ 22 ) 0

+ (i+260@%+64(623+62%)) Qp +-+ (5.23)

as in (29).
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Fig. 7 The fan of local F,

Fig. 8 The fan of [C3/7Z4)

6 Local F, and [C?/Z4] Orbifold Gromov-Witten Invariants
6.1 Orbifold mirror map and genus zero invariants

We will now apply the
considerations above to the study of the tip of the classical Kéhler moduli space
for local IF,, where the compact divisor collapses to zero size. The resulting geom-
etry (19) is a Z4 orbifold of C? by the action (®;z1,22,23) — (®z21, W22, ©®223),
with @ € Zy4. In the orbifold phase, the genus zero closed amplitude computes (49))
the generating function of genus-zero correlators of twist fields

1
ﬁorb , —
(S1/4 Sl/z) ni’m 2t

(11407 12511451 12 (6.1

In (6.1) the sum is over the generators sy 4, 51> of the orbifold cohomology ring
and they are associated respectively with the twisted sectors 1/4 and 1/2 under the
Z4 action. The corresponding topological observables are denoted respectively as

0y)4 and O 5. The correlators ( ﬁ;’; 4O /2> compute genus-zero orbifold Gromov-
Witten invariants N&’(l;n %)
From Fig. [/|we see that Mori vectors for local I, are

Ql = (07 17 17 07 _2)7
Q2 = (17 _27 Oa 17 0)7

and the mirror curve I3 > has the form @

with m insertions of weight 1/4 and n of weight 1/2.

6.2)

an 2
av+— =azt+asu—+asu”.
v

Following (50) we argue that the point we are looking for in the B-model moduli
space is given by az = a4 = 0. This would amount to shrinking to zero size the
compact divisor given, in the homogeneous coordinates z; introduced in Sect. 2}
by z5 = 0. When resolving C3/Zj, the latter corresponds to the extra divisor in
the blow-up procedure: indeed, dropping zs from the GLSM leads one to the
system of charges of the base [F; inside local IF,.

This argument is strengthened by the following remark. The secondary fan of

is shown in Fig.[9]and has the set of charges (see (3.19))

‘al as  das [75) aq

Ql ], 07 07 _17 0
Q0. 0. 2, 0 1 ©3
Q3 17 17 17 la 1

The fan of the toric compactification ./, 3" of A3, is simplicial but with

marked points: ///23 5" is thus a toric orbifold. Its orbifold patches are, as shown
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Fig. 9 The secondary fan of local I,

in Fig. E], a smooth C? patch containing the large complex structure point, two
non-smooth [C?/Z,] cones, and finally a [C? /Z,4] patch parameterized by (a3,as).
Inspection shows that the latter is a toric orbifold of C? by the action

ZyxC* — C?

6.4
Mz.y) — (Ax,A%). (4

(a3,a4) = (0,0) is therefore the only Z4 point in the compactified moduli space
as expected. From (6.4) we see that good coordinates around (a3,as) = (0,0) are
given by

a3 = \Vde,

y—dl (6.5)

Let us then find a complete basis of solutions for the GKZ system around this
point. Picard-Fuchs operators are written in this patch as

1
A = a0, + 5 644005,

, 1 ) | (6.6)
L =0y, — B(O‘” —46,,) - 16[,39,14,
and the branch points (5.17) here read
1 7
+c = :I:E a£—4a3 -8,
| 6.7)
+cp = :I:E\/a%—4a3—|—8,
while the period integrals (5.18),(5.19) and @.17)) become
2 2
az—4a3—8 az—4az+38
K (a§74a3+8) K <a£74a378)
8(14HA = - ;
\/ai—4a3 +8 \/aﬁ —4a3—8
2 _4az—8
K (aé21 3 )
Du ITp = pNatetd) (6.8)
A /ai —4az+38
a% -4

as
I, =log | Z & +——

We want to find solutions of the PF system (6.6) with prescribed monodromy
around (d,e) = (0,0), in order to match them with the conjugacy classes of Zj.
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Defining

(8—8i)7t1/2] (HB HA>
Sia= "= 12 |\ 1) (6.9)

rpy Nz T

2

@440 (5)" | (M I,
AT\ T e [\ T (6.10)
s1p = —2illy_+T, (6.11)

we then have

2 3

_ g4 e e 1 B 25e
s1/aldye) =d { +<32 192 " 2560 )¢ 18432
ed N 3e°d? N 5¢’d3 N
24 " 640 ' 7168 ’

1 3¢3 32 9e 3
i (es LY 4 (39 3 =3 Nagen
$3/4(de) = d Ke 12> * ( 32 7128 ' 2560 14336) d+ } - 614

The normalization of the mirror map has been fixed by imposing the correct
asymptotics sy/4 ~ aa, s1/2 ~ az as to reproduce the generators of the classical
orbifold cohomology. These are given by a4 and a3 respectively for the weight
1/4 and 1/2 twisted sectors. Concerning the solution s3 /4 this is identified with
the derivative of the generating function .%#,,;, in with respect to sy/4; in
fact, the orbifold cohomology pairing modifies this relation by a factor of 4, i.e.
§3/4 = 40, ,, Forp. Taking all this into account, inversion of and (6.13) gives

d2+-~], (6.12)

s12(d,e) = d'/? [e+ (6.13)

S1/4
the following expression for the prepotential

a%}rh
ds /4

53 $ 2957 45752
= <s1/2+1/2+1/2+ 12 + 12 +O<s{}2)>s1/4

4 (S1/2,51/4)

48 960 430080 @ 92897280

2 4 6 8
1 s 11s 49s 601s
i <_1 56~ 315~ esein ~ aasices T (1) | sl

2 96 9216 368640 41287680

3 5 7

Ts s 47s 6971s

P22y 2y T2 22 +O(S?/z) 514
3840 ' 1920 ' 460800 ' 412876800

... (6.15)

As a check, the prepotential thus obtained is invariant under monodromy. The first
few orbifold GW invariants are listed in Table [2] Our predictions exactly match
the resultsE] obtained in (51)) after the methods of (52).

4 We are grateful to Tom Coates for sharing with us his computations and for enlightening
discussions on this point.
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Table 2 Genus zero orbifold Gromov-Witten invariants Ng.?'fn.n) of [C3/7Z4]

m 2 1 6 3 10
n
0 0 -1 0 - 0
1 1 0 7 0 1083
4 128 1024
2 0 - 0 -1 0
1 3 3 85383
3 ) 0 3 0 o581
4 0 —ak 0 -1 0
5 1 0 47 0 360819
32 128 8192
6 0 ~ 0% 0 ) 0
7 103 0 e 0 o
8 0 ~ 2088 0 e 0
9 457 0 1809189 0 5312434641
1024 65536 524288
1 0w 0. 0
11 7859 0 56072653 0 254697581847
2048 131072 1048576
12 o, R 0 imme 0
13 801987 0 2354902131 0 31371782305803
16384 262144 4194304

Fig. 10 The pg-web of local F, with lagrangian branes on an upper (I) and lower (II) outer leg

6.2 Adding D-branes

Following the discussion of Sect. [3.1.1| we might want to turn on an open sector
and add Lagrangian branes to the orbifold. The procedure of (34;[35)) is in principle
valid away from the region of semi-classical geometry and has had a highly non-
trivial check for the local Iy case in (8), where open amplitudes have been matched
against Wilson lines in the large N dual Chern-Simons theory. First of all, we will
consider the setups I and II of Fig.[TI0] with a D-brane ending respectively on the
outer leg |z1| = |z3] and |z1| = |z2|. The choice of variables we have made for
the mirror curve I3 5, in which the B-model coordinate mirror to |z2| was gauge-
fixed to one, corresponds to phase /1. This means that v is the variable that goes
to one on the brane and X(;;) = u is the good open string parameter to be taken as
the independent variable in (3.16) (8). The transition from phase II to phase I is
accomplished by the (exponentiated) SL(2,Z) transformation

1
X =u——=Xq),

(6.16)
v — v
Accordingly, the differential (3.7) has the form
o a3X(21)+a4X(1)+1+\/ (a3XG) +asX()+12 4K ax, hose I
g 7 ~,~ phase
dL = Xa) ® (6.17)
az+asXp) +X<211)+\/ (a3+asXpp +X(2H) )2-4 dX
log 5 Xun phase II

We now turn to analyze the unframed A-model disc amplitude for a brane in phase
L. In order to do that we have to compute the instanton corrected open modulus
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(3.16) and the Abel-Jacobi map (3.14). To determine the former, and more pre-
cisely the r; coefficients in @]), we use the result of (38)), where the authors
show that for this outer-leg configuration the large radius open flat variable solv-
ing the extended Picard-Fuchs system is given by

t t
zﬁ,’fenzz+f+§+m7 (6.18)

where z =1og Xy In the (a3, a4) patch containing the orbifold point this becomes
R =2+ Wi+ O(as) + O(a3). (6.19)

Notice that in (6.18), (6.19), both z®  and z+ 7i solve the extended PF system

and can then serve as a flat coordinate: zﬁﬁen does the job by construction, and the
same is true for z because it is a difference of solutions of the Picard-Fuchs system
by (6.18). Following (8), we have that the difference z5f,, — % — % = z+ i is
a global open flat variable and serves as the expansion parameter at the orbifold

point. In terms of exponentiated variables, we then have:

zoh ==X (6.20)
Having the mirror map and using (3.14) or (4.18)) one can then mimic (§) and
expand the chain integral, thus obtaining the disc amplitude % i (a3,a4,2) as a
function of the bare variables, or, using (6.12)—(6.13), of the flat variables. Notice
that, since (a3, a4) have non-trivial Z4 transformations, in order to preserve the fact
that the curve (5.16)) stays invariant we are forced to assign weights (1/4,1/2) to

(u,v) respectively, and so according to l| Zg;l;n has weight —1/4. Eventually
we get

ar. orb Sl/zs?/4 S%/2S1/4 orb
,/0’1(51/4,51/27201,6") = - 192 + 32 —51/4 ZOPEn

2 2 2 4
$1251/4  S1)4 1 Sia b \2
+< 61 4 Thela e ) | Goren)

(75%/25?/4 B S?/4 Sl/2sl/4> (Z()rb )3

open

576 9 3
pe. 6.21)

which is monodromy invariant. The amplitude (6.21]) should correspond to a gen-
erating function of open Gromov-Witten invariants of the C3/Z4 orbifold.

The situation for phase II appears to be more subtle. The resulting topological
amplitude computed from the chain integral picks up a sign flip under Zj4.
This is not completely surprising, since it is known that disc amplitudes may have
non-trivial monodromy (37), and it might also be seen to be related to the more
complicated geometrical structure of the Z4 orbifold with respect to the Z3 case,
due to the presence of non-trivial stabilizers for the cyclic group action.
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6.3 Modular structure of topological amplitudes

Higher genus amplitudes are
associated to the quantization of the symplectic space spanned by the periods
of the mirror curve (54). The corresponding topological wave functional obeys
recursion relations (BCOV equations (2))) that allow to compute higher genus am-
plitudes building on genus zero and one results, up to holomorphic ambiguities. It
has been shown in (7) that this algorithm is made simpler and more efficient by
exploiting modular properties of the topological amplitudes.

Let us summarize very briefly the results of (7)) relevant for our discussion. As
recalled in Sect. 3, the choice of B-model complex structures can be parametrized
in terms of the periods of the three-form £ in a chosen symplectic basis A’ N B =
6; in H3(X,7Z), which define a so-called “real polarization”. Special geometry re-
lations between the periods 2/ = [, Q and p; = fB]_ Q are summarized in terms

of a prepotential .%(x') which turns out to be the genus zero free-energy of the
topological string. The “phase space” (z/, p ;) can be endowed with a natural sym-
plectic structure with symplectic form dx’ A dp;. The higher genus amplitudes
4 are associated to the quantization of this space, with the string coupling g2
playing the rdle of 7. More precisely, the full topological string partition function
Z(a') ~ exp¥, g:7 " Fy(a') is interpreted as a wave function (54). The periods
(z',pj) generically undergo an Sp(2p —2,7Z) transformation under a change of
symplectic basis of the mirror curve. Correspondingly, the B-model topological
amplitudes .7, have definite transformation properties that can be derived by im-
plementing the canonical transformation at the quantum level on the topological
wave function.

The crucial observation of (7)) is that there is a finite index subgroup I" C
Sp(2p—2,7Z) whichis a symmetry of the theory. I is precisely the group generated
by the
monodromies of the periods, which must leave invariant the topological wave-
function. This symmetry constrains the topological amplitudes; in particular in
the real polarization the .%, can be shown to be quasi-modular forms of I" (7),
namely they transform with a shift. For example for the case of elliptic mirror
curves, i.e. local surfaces, this amounts to say that the wave-function is a finite
power series in the second Eisenstein series.

We recall that one could also have chosen to parameterize the B-model moduli
space with the Hodge decomposition of H> (X ,Z) in terms of a fixed background
complex structure. The topological wave function in this holomorphic polarization
can be shown (54) to obey the BCOV holomorphic anomaly equations. The topo-
logical amplitudes ﬁg in this case turn out to be proper modular forms of weight
zero under I, namely invariant under I, but they are non-holomorphic. For el-
liptic mirror curves, they can be written in terms of a polynomial in a canonical,
non-holomorphic extension of the second Eisenstein series

EQ(T)—>E2(T,’?) ::EQ(T)—*i (6.22)
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with coefficients in the ring of holomorphic modular forms of I". Thus one can
pass from the real to the holomorphic polarization just by the above shift of vari-
ables.

The advantage of the approach proposed in (7)) is twofold. On one side it sim-
plifies the solution of BCOV equations by restricting the functional dependence
of the ﬁg to the ring of I' modular forms. On the other it allows to relate the topo-
logical amplitudes in different patches of the B-model moduli space allowing in
this way to extract enumerative invariants, e.g. at the orbifold point.

As we will show in the following, our method is perfectly tailored to display
the modular symmetry of the topological wave-function. In fact, the relation with
the Seiberg-Witten curves greatly simplifies the analysis of the modular properties
of higher genus amplitudes. Moreover, since we obtain explicit expressions for the
periods of the mirror curve in terms of the branch points, it is enough to write the
latter in terms of modular forms to make manifest the modular properties of genus
zero and one topological amplitudes, thus providing the building blocks for the
solution of BCOV equations. About the latter we point out however that there is a
caveat: for the geometries under our study in addition to the modular dependence
there is also a dependence on an extra parameter (independent of 7), as in the
discussion of (7)) about the similar case of local IF. This makes the solution of the
BCOV equations at higher genus more involved computationally, since one has to
fix a functional dependence on an extra datum. We choose to handle this problem
with the approach developed in (8;[58) in which the holomorphic .%, are defined
via recurrence relations inspired by matrix-model techniques. This will allow us
to display the general modular structure of the free energies in the local [, case,
in a way in which both the dependence on the modular variable and that on the
extra parameter are completely fixed.

In this section we first find the relevant change of basis from large radius to
the orbifold point and then identify the ring of modular functions relevant for the
local [, case. These results provide the necessary tools to discuss higher genus
invariants, which will be the subject of the next section.

6.3.1 The change of basis from large radius.

We already saw in the last section that the mirror map at the orbifold point is
obtained by choosing solutions of the GKZ system which diagonalize the mon-
odromy of the periods. This implies that the solutions at large radius (1,1, tr, dp.F)
are related to those at the orbifold point (1,51 /4,51 /2,53/4) by a linear transforma-
tion, which, for the subsector relating (t7, dr %) and (s, /2+53/4) might be regarded

as an (unnormalizedﬂ automorphism in H (I3 2,Z). In (7) it was shown that under
a symplectic change of basis

A—SH= (‘ég)ﬁ, SeSp(2p—2,7) (6.23)

the genus-g amplitudes .%, are subject to a transformation which can be derived by
implementing the canonical transformation associated to (6.23)) in the path integral

> The determinant of the change of basis is equal to 2, see (6.28), due to the fact that we are
dealing with a local threefold.
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defining the topological wave function. From saddle point expansion one then gets
jg :g‘\g+1—!}(A?§r<g))7 (624)

where I is determined by the Feynman rules in terms of lower genus vertices
0" .F,~4 and the propagator A given by

1

A~ T3 C 1D (6.25)
up to normalization factors. In lb 7 is the period matrix of fz’z. This means,
for instance, that knowledge of .%, in the large radius region allows one to com-
pute genus-g free energies in the full moduli space, provided that we know how the
periods are transformed when going from one region to another. This was success-
fully exploited in (7)) to predict higher genus orbifold Gromov-Witten invariants
for the [C?/Z;] orbifold from the ones of the large radius K> geometry.

We underline that our method of solving the extended GKZ system in the full
moduli space has the advantage to make much easier the study of the analytic
continuation properties and the consequent computation of the linear change of
basis (6.23). Indeed, instead of performing standard (but cumbersome) multiple
Mellin-Barnes transforms, we can easily read off what S and A are in our case

from formulae (A.2A.3) and (6.8). Let us define

1 1
t s
Hir = tB ; Horp = sl/ 2| (6.26)
F 1/4
ath/: S3/4

We can now simply compute the change of basis between the large radius and

the orbifold point by using the Euler integral representatiorﬁ (A.2) (see also
). We can relate I, = SII;g through

, (6.27)
where
273/2 (1-i)V/m
r(4)’ r(})’
S= . (6.28)
_r()’ @+HrE)’
NG 132

6 Actually, the computation is simple only when one works with the a4 derivatives of the
periods and then integrates back. This gives rise to the unknown coefficients (c,f,7,5). A
more careful inspection of the direct asymptotic expansion of the integrals (A.2), (A3) would
allow one to compute explicitly o, 8, y and § in ; anyway, all this will not overly bother
us, as only the S subsector in will be relevant for actual computations.
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6.3.2 Local F and I'(2) modular forms

The last formula in the previous section relates the physical periods of the large
radius patch to those of the orbifold patch and represents one of the main ingredi-
ents to make predictions about orbifold Gromov-Witten invariants at higher genus.
This should be already clear at this stage from (6.24)), but it can in fact be brought
to full power due to the beautiful results of (7). Let us see how this works in detail
for the p = 2, ¢ = 2 case we have been considering, and in particular let us figure
out what the relevant modular group I is in this case. In fact, we have already
answered this question: as we stressed in Sect. [3.3] the family of elliptic curves
in this case is the same as its field theory limit, the only thing that changes being
the symplectic structure defined on the elliptic fibration, i.e., the SW differential.
This was already noticed in the strictly related case of local IFy in (7). In particular
we might argue as follows for the present case. By formulae (3.20), the I3 »
family can be written as

2= (X*-chH)(X* D), (6.29)

where we have shifted the X variable in (3.20) by X = X +a4/2. Through the
following SL(2,C) automorphism of the X-plane:

. aX+b - 5
X="""" 7=(cX+4d)?,
cX+d (cX+d)
/ 2 a4 _
_ 12— 6 b c2(3¢c1 +¢2) _ Ve €2 de c1+3c
viatde e (- @) Aata) /6 (d-d)
(6.30)
we bring (6.29) to the celebrated Seiberg-Witten I"(2)-symmetric form
72=X>-1)(X —u), (6.31)
where
_dtbaata 6.32)

(c1—c2)?

With at hand we can re-express the quantities computed in the previous
section as I'(2) modular forms, whose ring is generated by the Jacobi theta func-
tions 62(7), 63(7), 04(7), all having modular weight 1/2. This goes as follows:
the Klein invariant j(7) of the curve is rationally related to u as

(3+u?)?
=1y

while inversion of (6.32) gives, writing everything for definiteness in the (a3,a4)
patch,

Jj(u) =64 (6.33)

u+3

ﬂi\/ﬁ . (6.34)

aﬁ—a3:
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Combining the two formulae above and using the definition (5.17) of ¢y, ¢z we
can write the latter as I"(2) modular forms as

0:(7) 6:(7)

(& (T) = 2 5 N2

65 (1) 65 (7)
which, being coordinates on the moduli space, are correctly modular invariant.

Given (6.33) it is then straightforward to write the building blocks of the
BCOV recursion in terms of modular forms. According to (2), the recursion relies
on knowledge of the Yukawa coupling C(7) and the genus one closed amplitude
fl(r,f); having exact expressions for the genus zero data as functions of the
branch points, one can use (6.35) to write down explicitly all the relevant quanti-
ties as modular functions.

Let us analyze the large radius Yukawa coupling first. We have

(7)) =2 (6.35)

(BT 4 ()
T o3 m\ 97T day '
Using (5.18) we have
2
K(1-3
atF ( L%) T 2
R S W) 6.36
day 1 472 (®), (6.36)
while combining (6.33)) and (5.17) yields
0 26 12
a2 n°(7) (6.37)

0t as(1) 6:(7)8’
where 11(7) is Dedekind’s function and we have used
213 (1) = 6,(7)65(7) 04 (7) (6.38)
besides the modular expression of a4 from (5.17)

~

0, (7
6;(7)

~—

as(t) =24/4 +asz+2. (6.39)
Putting it all together we arrive at

C(t)=— . (6.40)

Let us now address the issue of the genus 1 free energy Z (1,7). For g =1 the
holomorphic anomaly equation of (2)) reads in the local case at hand’

1

at%ﬁl(tat_) 2

CH Cuy, (6.41)

7 In the following we will suppress for notational simplicity the dependence on the f3 param-
eter, which is an auxiliary parameter entering in the definition of the differential, and write t = ¢
for the flat coordinate coming from an actual A-period integration.
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where indices in (6.41) are raised with the Weyl-Petersson metric G, = 23mr.
Rewriting everything as a function of 7, 7 (6.41) integrates immediately to

N 1
F1(1,7) = —ElogSmr—log|1//(‘c)|, (6.42)

where we have denoted by (1) the holomorphic ambiguity at genus one. The
pole structure of the amplitude fixes it uniquely; we will do it in the next section
by computing explicitly its holomorphic limit.

6.4 Higher genus amplitudes

In this section we will examine the higher genus amplitudes for K,. After dis-
cussing the genus one free energy, we will turn to the analysis of the g > 1 closed
amplitudes, treating in detail the case g = 2, and we will give predictions for orb-
ifold Gromov-Witten invariants of C3/Z, for g = 1,2.

6.4.1 One loop partition function for Y?9 and genus 1 orbifold GW.

Let us address the issue of the genus 1 free energy in slightly larger generality for
the full Y79 class. In this latter case it would be natural to guess that, again, the
same structure as in SU(p) Seiberg-Witten theory holds: monodromy invariance
requires it to be written in terms of I' C Sp(2p — 2,7Z) modular forms, and this
would lead to the appearance of Siegel modular forms with characteristic. How-
ever we happen to have already largely answered this question in the language
of hypergeometric functions of the branch points b;. Indeed, denoting collectively
with €'the set of flat coordinates, the holomorphic?ﬁ limit of .% (ﬁ:‘ﬁa) is given on
general grounds (2) as

1 1
T = —Elogdetf — E1ogA, (6.43)

where ¢ is the Jacobian matrix of the A-periods (in the appropriate polarization)
with respect to the bare variables and A is a rational function of the branch points,
with zeroes at the discriminant locus of the curve. But it turns out that the awkward
Jacobian _Z in is precisely the main object for which we have found a
closed form expression in (.13)! This is definitely an advantage with respect to
finding a hyperelliptic generalization of the modular symmetry of local surfaces,
and in the elliptic case it compendiates nicely the modular expression obtained in
the previous section. In the following we will therefore use (6.43) in the local [,
case to obtain a closed expression for .%; in homogeneous (bare) coordinates, and
then exploit to compute genus 1 orbifold GW invariants of C3/Z,.
From the considerations above we have at large radius

1 ot
FH(tr 1) = —3 log (&2) +log [c‘fc[z’(cl —e2)(er +cz)d}, (6.44)
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where the exponents of the second term are fixed by the topological vertex com-
putation asa = —1/6,b=—1/6,c=—1/12,d = —1/12. Then, from (5.17) and

5

1
-5 log (cf —¢3), (6:45)

and plugging in the mirror map (5.22) we can straightforwardly compute

P Qr Q) = (80 Kty Or_Op O 4

Qr Qr QF Qr  Qp 37Qr\
‘%‘6‘3‘2>%+Cu‘2+‘6>%*"

which is the correct form predicted by the topological vertex computation (5)). In
order to verify explicitly the assertions of the previous section, we can also use the
modular expression of ¢y, ¢ and 8a4tp to obtain the holomorphic limit of
in quasi-modular form. We indeed get

FLR(7) = —% logn (7). (6.47)

Plugging in the expression for the modular parameter ¢ = ¢**% in exponentiated

flat coordinates which can be computed from (5.22), (6.33)) and (6.34),

4(Q5,Qr) = QsQF + (4Q3 +4Q5) Q7
+(10Q3 +48Q3 +10Q5) Q% + 0 (Q;), (6.48)

we recover precisely (6.46).
Knowing %] for local F, we can straightforwardly obtain a prediction for

genus one orbifold Gromov-Witten invariants of C3 /Zy4; to relate to the
expansion of the g = 1 topological partition function at the orbifold point we just
need to specialize the Feynman expansion (6.24) to the case at hand. The one loop
term is given as

1 4

L[=-log— 6.4
=2 % e (649)

where the factor of 4 comes again from the orbifold cohomology pairing. The
genus one orbifold free energy will be then given as

F = FIR 1, (6.50)

where T can be written as a function of the g; variables using (5.18)), (5.19) or
directly as an expansion in orbifold flat coordinates using (6.28). We can now
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rewrite everything in terms of 5y 5, 514 by plugging the orbifold mirror map (6.13)
into the expression (6.44) of FLR, yielding

orb

arorb Nl (mn) m n
T (s17451/2) = X =581 2 (6.51)

'm
n,m n:m

2 2 2 3 4 2 5 6
_Sias12 Sty SSiasty | TS 13siusty o 31sh

384 192 9216 18432 163840 = 1105920

The same result would be obtained by using a modified expression for the Ja-

cobian in (6.43) adapted to the orbifold patch, i.e. by replacing d,,tr in (6.44)
with dg, s /4> without then considering the extra piece E6.49 from the Feynman
expansion. The first few GW invariants are reported in Table 3]

6.4.2 Generalities on g > 1 free energies.

Turning now to the case of g > 1 closed amplitudes, let us first of all recall the
main statements put forward in (7; [56) for the computation of higher genus free
energies. As mentioned in Sect. modular symmetry is an amazingly strin-
gent constraint. For 1-parameter models with elliptic mirror curve (like SU(2)
Seiberg-Witten theory, or local IP;) the authors of (7} 56) claim that solutions of
the genus g holomorphic anomaly equations can be written for g > 2 as

Fy(1,7) = CH72( Z D)+ (0P (r),  (652)

where 7 is the complex modulus of the mirror torus, C is the Yukawa coupling
3 Zo, c,ig)(r) are I'-modular forms of weight 6(¢g — 1) — 2k and the full non-

holomorphic dependence of j’g is captured by the modular, non-holomorphic ex-
tension of the second Eisenstein series (6.22).

Now, there are two ways to compute the expressions in (6.52)). The first one
consists in a direct study of the BCOV equations: in this context the holomorphic

(9)

modular coefficients ¢,”’ for k > 0 can either be fixed by the Feynman expansion
(6.24) in terms of derivatives of lower genus .%, or much more efficiently by ex-
ploiting the modular symmetry to perform a direct integration of the holomorphic
anomaly equations as in (56).

Within this method, the only real issue is to fix the so-called “holomorphic am-

biguity” at k =0, i.e. c(()g ) (7). In the 1-parameter cases analyzed in (7 [56)), this is

systematically done by plugging into (6.52)) an ansatz for cég ) (7) which is then de-
termined from extra boundary data. In more detail, this works as follows: at fixed

genus g, cO[I) (1) is a weight w = 6g — 3 modular form Now, the ring of weight
w holomorphic modular forms .#,,(I") is finitely generated, and the analytic be-

havior of .%,(7,7) at large radius allows to write an ansatz for c(()g) (t) with only

a finite number of unknown coefficients. At the same time, cég ) (7) is constrained

8 Recall that .#,(t,%) is modular invariant and that C(7) has weight —3 - see for example
@]} for the local I case.
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Table 3 Genus one orbifold Gromov-Witten invariants Ny’ b ) of [C3/Z4]

mn

m 0 2 4 6 8 10
n
1 441
0 0 8 0 309 0
1 0 1 0 31 0 71291
192 1024 32768
2 & 0 0 25 0
% 5 3072 485 512 2335165
3 0 768 0 ~4096 0 “ 131072
4 7 0 485 0 458295 0
768 12288 131072
5 0 39 40603 0 _ 58775443
2048 19152 262144
6 31 0 2025 0 10768885 0
1536 8192 262144
7 0 2555 0 293685 0 522517275
24576 32768 131072
8 219 0 240085 0 1437926315 0
24576 98304 2097152
9 0 20523 0 73017327 0 397762755193
24576 524288 4194304
10 16741 0 54986255 0 32280203275 0
24576 1572864 2097152
11 0 389975 0 _ 18440181205 0 _12177409993695
32768 6291456 4194304
12 1530037 0 1434341595 0 7495469356455 0
196608 2097152 16777216

to satisfy the so-called “gap condition” (57)): this imposes a sufficient number of
constraints to completely determine (indeed, overdetermine) the conjectured form
of the ambiguity as a function of the generators of .#,,(I").

The discussion of Sect. has shown that the case of local [, is in many
ways similar to the simpler examples of SU(2) Seiberg-Witten theory and local
IP2. However there is an extra complication, given by the fact that the elliptic mod-
ulus 7 is not the only variable in the game: here we actually have an extra bare
parameter as, or zg, Wthh 1s 1ndeendent on 7 and is related to the Kihler vol-
ume of the base P! (see ) That is, we deal here with a rwo-parameter
model, even though Wlth an elllptlc mirror curve, and we have to properly take
this into account. A first consequence of this fact is that the idea of using the gap
condition to fix the holomorphic ambiguity becomes computationally more com-

plicated, since our task is no longer reduced to fix simply a finite set of unknown

numerical coefficients of c(()'q>(‘v) as generated by a basis of .4, (I"): rather we

should fix a finite set of unknown functions of as.
A second possibility is to avail ourselves of the framework proposed in (8)
for the computation of topological string amplitudes based on the Eynard-Orantin

recursion for matrix models. This is based on a sequence of polydifferentials Wh(g )
on the mirror curve I', which are recursively computed in terms of residue calculus
on I" and out of which it is possible to extract the free energies .%, at any given
genus. Let us briefly review here this formalism in order to describe the general
structure of higher amplitudes, referring the reader to (8} |58)) for further details.

The ingredients needed are the same as for genus zero amplitudes, namely the
family of Hori-Vafa mirror curves H (u,v) =0 with differential dA (3.7). The
genus g free energies are then recursively given as

F1= 572, le}eg oWW,” (u), (6.53)
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where ¢ () is any antiderivative of the Hori-Vafa differential

du

do(u) =dA(u) = logv(u); (6.54)

and Wh(g ) (p1,..-,pn) with g,h € Z*, h > 1 is an infinite sequence of meromorphic
differentials on the curve defined by the Eynard-Orantin recursion

W (p1) =0, Wz“” (p1,p2) = B(p1,p2), (6.55)
Wi\ (p.p1 -, pn) ZRes (3() (Wh(+2 @GP, 1)

w _
+ Z Z |J|+1 (¢;p1) H—J+1(q7PH\J)>~ (6.56)

In the formulae above, g denotes the conjugate point to ¢, B(p, q) is the Bergmann
kernel, the one form dE,(p) is given as

1

dE4(p) = z/qu(p,%)dé’ 6.57)

and finally, given any subset J = {ij,...,i;} of H :={1,...,h}, we defined p; =
{piy--- pij}. We refer the reader to (8; 58)) for an exhaustive description of the
objects introduced above.

At a computational level, the formalism of (8) is somewhat lengthier than the
one of (56) for computing higher genus .%,. On the other hand, the recursion of
(8) has the great advantage of providing unambiguous results, with the holomor-

(9)

phic ambiguity ¢;”’ (7) automatically fixed. This precisely overcomes the problem
raised above. In the next section, we will therefore follow this second path to com-
plete the discussion of Sect. [6.3.2] by displaying explicitly the modular structure
of the .7, obtained through (6.53). An explicit computation of the g = 2 case, as
well as predictions at the orbifold point, will be left to Sect.

6.4.3 g > 1 and modular forms.

Let us specialize the recursion to the case of local F,. The Hori-Vafa differential
(4.3) reads, in the (a3,a4) patch,

d222(u) =log <P2(”)ziy(”)> %, (6.58)

where
Py (u) = a3 + agu+u?, Y(u)=/P}u)—4

and the I3 family can be written in the Z, symmetric form (6.29) as a two-fold
branched covering of the compactified u-plane

Y2 = (u—b1)(u—bo)(u—b3)(u—by) = (> —c})(@* —c3),  (6.59)
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thanks to (5.17) and (6.29) and having defined & = u + a4 /2. We have first of all
that

dA(u) —dA (@) = 2M (u)Y (u)du, (6.60)

where the so-called “moment function” M (u) is given, after using the fact that
log(P+Y) —log(P—Y)=2tanh~! (Y /P), as

1 1Y)
M(u) = ——— tanh ™! . 6.61
= g ) (©oh
Moreover, the one form dE(p,q) can be written as (58))
1Y(w) 1
E.(u) = = — L , .62
dE,,(u) Y () (u—w C(w)) du (6.62)
where
1 du 1 1 du
C =— 0 — —— = — 22 6.63
(w) 27i JaY(u) u—w’ 27i Ja Y (u) (6.63)

We have assumed here that w stays outside the contour A; when w lies inside the
contour A, C(w) in (6.62)) should be replaced by its regularized version
1
C*8(w) =C(w) — . 6.64
() = €0~ g1 (6.64)
Since I3, is elliptic, it is possible to find closed form expressions for C(u),
Creg(u), B(u,w) and L. We have

_ 2(by — b3) . by
) = ﬂ(u—b3)(u—b2)\/(b1 —b3)(by —by) [H( k) + by — b3 K(k)] ’
(6.65)
re _ 2(b3 _bZ) n u—b3
Cw) = m(u—0b3)(u—Db2)\/(b1 —b3)(bs — bs) [1‘[( k) + b3—b2K(k)] ’
(6.66)
1 2 ( 2) (b3 — by)
B V(b1 —b3)(ba —b4)K {(bl —b3)(b2 — ba) } (667
1 Y?(u) (Y2) (u) A(u)
Bluw) = v [2Y(w)(u—w)2 T w—m * 4Y(w)]
+2(uiw)2 (6.68)
where
p = (b1 =02)(b3 —bs) o, = b2 —=b1)(u—bs) g (ba—b3)(u—b)
(br—b3)(ba—bs)” ' (bs—b))(u—by)’ "' (ba—ba)(u—bs)’
(6.69)
A(Lt) = (u*b1)<ufb2> + (u*b3)(ufb4) + (b1 ,b3)(b2 fb4)E(k) , (6.70)

K(k)
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and K (k), E (k) and II(n,k) are the complete elliptic integrals of the first, second
and third kind respectively.

With these ingredients one can compute the residues as required in (6.56).
Given that dE,(p)/(dA(q) —dA(q)), as a function of ¢, is regular at the branch-
points, all residues appearing in will be linear combinations of the following
kernel differentials:

), \ dE,(p) 1
% (p) = Resyos, (duq) —di@) <q—xi>n>

B (n—ll)!Y(lp) anl LMI@ (piq_LC(Q))Lx[ (6.71)

In (6.71), C(p) should be replaced by Creg(p) wheni =1,2.
Let us then explicitly display the quasi-modular structure of the free energies
F4(az, t). We claim that the holomorphic limit of the 1-parameter examples (6.52)

n
Fy(1)=C7e) Y B +C (1) (2),
gets replaced here by

Eg( ) ](cj) (Cl3, T) + ngiz(a?n T)C(()g) (a37 T)v (672)

M=

fg(a%f) = C2y72(a371)
k

1

i.e., as a polynomial in the second Eisenstein series having (algebraic) functions of
az and 6;(7), i = 2,3,4 as coefficients; moreover, these coefficients are completely
determined in closed form from (6.56). Let us show in detail how this happens
in general, leaving the concrete example of the g = 2 case to the next section.

Formulae (6.53), (6.56), (6.68) and (6.71) imply that the final answer will be a

polynomial in the following five objects:

(n)
Mi(n)v ¢i(n)? AE")7 <1) ’ cg[(”)’ (6.73)

where, for a function f(x) with meromorphic square f?(z), we denote with fi(n)
the (n+ 1) f™ coefficient in a Laurent expansion of f(x) around b;,

00 f(""‘Ni)
flx)= ;N. W, (6.74)
and have defined

(n) .
Creojfor i=1,2
m_ ) e . (6.75)

c™ for i=3,4

1

i

Of the five building blocks in ) (" and ¢, ") are the ones which are com-
puted most elementarily from ( ([6321]) and (6.61), the result being in any
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case an algebraic function of (a3,as). When re-expressed in modular form, we
can actually say more about them: we have that the a3-dependence in Mi(") (a3,7)

and ¢l.(”) (a3,7) is constrained to come only through a4 (a3, T) as written in formula
(6.39). Indeed, from (3.17), we have that the branch points b; have the form

~ i), —% +ey(1), (6.76)
and therefore depend on a3 only through a4 (a3, ). Moreover, since Py (b;) =2
and the derivatives of P;(u) do not depend explicitly on a3, we have that the a3 de-
pendence in .%, as obtained from the recursion may only come through a4 (a3, 7).
Notice moreover that these are the only pieces bringing a dependence on the ad-
ditional a3 variable: all the others do not depend on the form of the differential
(6.58), and are functions only of differences of branch points b;. This means in
particular that they only depend on the variables ¢; and ¢; introduced in

and whose modular expressions we already found in (6.35)! This is immediate to
see for Agn) and (1/Y)§") from formulae (6.59) and (6.70). The case of %i(”) is just
slightly more complicated, but it is worth describing in detail for the discussion to
come. For n = 1, we need the first derivative of IT(x,y) with respect to x:

2E(y) + (y—2)K(y) + (2 —y) O (z,y)
2(x—1)z(y—x)

. 1(x,y) =

The above formula implies that

I (2, y) = Au(,9)K(y) + Bu(2,9)E(y) + Ca(,y) I (z,y),  (6.77)

where A,, B, and C, are rational functions of = and y. From (6.69), to compute

‘Ki("), we need to evaluate these expressions when 7y (resp. n4) equals either O or
k. But using

E
0,y) =K(y),  My,y)= 1_‘1/; (6.78)
we conclude that
" =R (c1,c2)K (k) + RS (c1,¢2)E (k) (6.79)

)

for two sequences of rational functions Rl(.”

observation: by (6.71), z" always appears multiplied by L in the recursion. By

1
(6.67)

. We now make the following basic

(n) _ pn 3 E(k)

L%n —Rln (Cl,C2)+R2n (Cl,CQ)@- (6.80)
This last observation allows us to collect all the pieces together and state the fol-
lowing. By Ii and |i we have that .%,(a3, ) is a polynomial in Ml@,

q)i("), Af"), (1/y )i"), ‘Ki(" , and moreover the whole discussion above as well as
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formulae (6.70) and (6.80) imply that this takes the form of a polynomial in
W (1) := E(k)/K(k),

Jla3,7 ZW" W (a3, ) (6.81)

(9) (

with coefficients /,”’ (a3, 7) in the ring of weight zero modular forms of I"(2),
parametrically depending on a3.
To conclude, we can exploit the fact that (59)

E(WK (k) = (g)zw (6.82)
and that from (6.33)) and (6.36),
K(K) = 2 05(7)0u(<), (6.83)

where we have used the fact that in our case

as the reader can easily check. Moreover, the second Eisenstein series satisfies the
duplication formula

Ey(t) | 6}(7)+65(7)

E>(27) = > + 1 . (6.84)
Therefore,
1
W(t)= ———=—(E 05 05 (1)) . 6.85
(T) 3042(1)932(1_) ( 2<T>+ 3(T>+ 4(1)) ( )
This proves (6.72)).

6.4.4 The g = 2 case in detail.

Let us complete the discussion of this section by presenting the explicit formulae
for the genus 2 case. By (6.53) and (6.56)), we need the complete expression of

WZ(O), W3(O) (1> ( ) and W( ). The first three were computed in (8) and are
given by

W2(0)(P1,P2) = B(Pl,Pz)
W (p1, p2,p3) = ZMZ G2 (p0)2 () (), (6.86)

1 4

1 & [ 24(b; 1
W) = izlxi(2’<p>+ iX <(Y2)(,<,,)i) - ,,l,_bj) )
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Wz(l) is then given from 1) as

'(p,p1) ZReS (d)l() (Wéo) (4,G,p1) +2W1(1)(q)W2<0)(c?,p1)) :

(6.87)

A very lengthy, but straightforward computation leads us to

Wi (p,q) = — [Ai(q)xf3)(p) +Bi(@)2” (p)

0| =
'M-&

1

1 1

+ Gl () + L Dij(a); Np)] : (6.88)
J#

For the sake of notational brevity, we spare to the reader the very long expressions

of the rational functions A;(q), Bi(q), Ci(q) and D;;(q). They involve Ml.(n), AE"),

(1Y )l(") and ‘Ki(") up to the third order in a Taylor-Laurent expansion around the

branch points.
The next step is given by

Eq4(p)

ZR < Lm—d,x() (W@ +w " @w"@). ©89

The pole structure of A;(q), Bi(q), Ci(¢) and D;;(g) dictates for Wl(z) (p) the fol-
lowing linear expression in terms of kernel differentials

w2 (p Z ZE 2" (6.90)

n=1i=

(n)

for some (very complicated) coefficients E;

by (6.53)

. The recursion is finalized for g =2

1
Fr=—3 Y Res o(pW (p). (6.91)
b; p=b;

It is useful to collect together terms involving the same powers of W (7). Taking

the residues in yieldﬂ

3

Y i (a3, 0w (1), (6.92)
n=0

% It must be noticed that, in order to match exactly the asymptotics of the Gromov-Witten
expansion at large radius, we have to subtract from (6.91)) a constant term in 7, namely, a rational
2
az—10
1440(a3—4)

function of a3 of the form It would be interesting to investigate the origin of this

discrepancy further.
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where
KO (s, 1) = S48, 085(7)
2457663 ()67 (1)
@) _ 1 aasr)? s 6 4
W@ ) = 032~ 51526, (5 0r (7] [92(1) (1564(7)° + 1605(1)264(T)

+ 62(7)"(863()2 + 1564(7)2) ]

W (g 1) = (62(7)* +204(7)* +363(1)°64(7)) | ai(a3,7) { 136,(1)'?
307264(7)205(7)? 294192 | 65(7)004(7)°
916,(1)® 486,(7)8  9104(7)%60,(7)* 966, (7 4]
93(1‘)694(’5)2 93(1')494(1')4 93(T)6 93(1)4 ’
) 1 1 1 6(7)% —565(7)26,(7)* +1063(7)°
(a5, 7) = 61440 <a3—|-2 _a3—2) = 3072&)9)3(1)29)4(1)4 =
4a§(a3,r)92(r)4 {]2 <92(r ‘o 92(1)4) 6564(7)* 175
2949120 05(7)8  64(7)8 03(7)®  65(7)204(7)?

_ 311 311 6565(1)° 17
293(1)4 294(7)4 94(‘6)6 46080
Plugging in the expression (6.48)) of the modular parameter ¢ in exponentiated

flat coordinates reproduces as expected the topological vertex expansion at large
radius

TR (Qp,Qr)

(6.93)

+ _L_%_i_i Q3_|_ _i_@_i_i 4
40 40 40 40)°FT\ 30 30 6 30)°F

1 Qs 299Q%  299Q3Y s 6
+<‘z4‘24‘z4‘ a ) Qe vo(ar). 99

Finally, we can use (6.92)) to make predictions for genus 2 orbifold Gromov-Witten
invariants of C3 /Z4 by using the Feynman expansion method of (2} [7) as we did
for the genus 1 free energy; the same result would be obtained by analytically con-
tinuing the holomorphic ambiguity h(()z) (a3,7) and taking the holomorphic limit of
the physical amplitude directly at the orbifold point (seelh60) for a detailed de-

scription of this method). The results are shown in Table [4]|'")

7 Conclusions and Outlook

In this paper we have proposed an approach to the study of A-model topological
amplitudes which yields exact results in o’ and as such applies to the full mod-
uli space, including orbifold and conifold divisors, of closed and open strings on a

10 While the final version of this paper was under completion, a preprint appeared (63) where
the same results have been obtained following a different method.
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Table 4 Genus two orbifold Gromov-Witten invariants N3"? ) Of [C3/Z4]

J(m,
m 0 2 4 6 8 10
n
0 _ 1 0 __61 0 _ 9023 0
960 30720 81920
1 0 41 0 6061 0 36213661
4 2457 786432
2 _ 1 6880 _ 647 5060 _ 1066027 864320
7680 92160 1310720
3 257 0 168049 0 887800477
92160 983040 15728640
. e
51 14745 196
5 0 23227 0 43685551 0 62155559923
1474560 23592960 62914560
6 _ 2479 0 _ 437953 0 _ 9817250341 0
245760 983040 62914560
7 0 418609 0 452348269 0 5851085490887
2949120 15728640 251658240
8 _ 19343 0 _ 303139073 0 _ 438364727389
245760 47185920 125829120
9 0 1380551 0 25384681949 0 355405937648809
737280 41943040 503316480
o0 e 0 mmme UV e
11 0 200852963 ) 0 25012290702059 0 54049855936801961
5898240 1509949440 2013265920
12 _ 59566853 0 _ 818897894611 0 _ 1840152188554961 0
3932160 251658240 503316480

large class of toric Calabi-Yau threefolds. One of the main virtues of this approach
is that it provides us with a closed expression for the (derivatives of the) periods
of the mirror curve, considerably simplifying the study of their analytic continu-
ation in the various patches and of the modular properties of the Gromov-Witten
generating functional. The local geometries that we have analyzed arise from the
minimal resolution of Y7+4 singularities. The general procedure to compute topo-
logical string amplitudes, outlined in Sect. 4, is based on the correspondence with
five-dimensional gauge theories and the associated Seiberg-Witten curves; it has
been fully exploited in Sect. [6] for the case p = 2, and used in particular to pre-
dict open and closed orbifold Gromov-Witten invariants of C3/Z, also at higher
genus.

Of course our strategy is completely general and could be adopted with no
changes, though becoming technically more involved, to compute amplitudes for
p > 2; moreover, it can be used to get some qualitative information about the be-
havior of the
B-model moduli space, which for these cases displays a richer set of phenomena.
Indeed, the mirror curves have higher genera and can be subject to more general
degeneration limits, for example when the neck connecting two handles becomes
infinitely long. In the underlying four-dimensional gauge theory this limit has been
recognized as a new superconformal phase (61)); it would be interesting to explore
its interpretation in the topological string moduli space.

The computations of Sect. @] have been based on extensively exploiting the
holomorphic properties (d.11)) of the B-model 1—differential, which came out by
appealing to the relation with gauge theories and integrable systems. On the gauge
theory side, one is able to obtain the Seiberg-Witten curve and the related differ-
ential in a suitable semiclassical limit involving a large number of instantons (62).
The considerations above suggest to reinterpret the transition to the mirror and
at the string theoretical level in terms of a semiclassical geometry in g — 0
which resums a large number of world-sheet instantons.



42 A. Brini, A. Tanzini

Some remarks are in order concerning the relation with integrable systems.
First of all, as we have discussed in Sect. 3.3, the mirror geometry for resolved
YP? singularities can be realized as a fibration over the spectral curve of the
relativistic A,_1 Toda chain. Actually our results for generic Y”¢ singularities
seems to indicate the existence of a larger class of integrable systems: it would
be interesting to understand this better and see what kind of deformations of the
Toda chain are associated to the ¢ parameter. Moreover, the existence of a set of
holomorphic differentials like could be recognized as a signal of a relation
with integrable hierarchies. More precisely, one could expect that a suitable gen-
eralization of the topological string prepotential - possibly including gravitational
descendants - could be interpreted in terms of a Whitham deformation of the in-
tegrable system. This would correspond to an “uplift” to topological strings of
similar notions developed in (63)) for four-dimensional Seiberg-Witten theory.

As a final comment, we might wonder how much of what we have learned
might be extended to other cases. Moving beyond Y7+, it is in fact straightfor-
ward to show that holomorphicity of (derivatives of) the differential can be shown
exactly as for the Y74 family, at least in the case in which the mirror curve is
hyperellipticf;r] at a pictorial level, this class coincides with those toric CY whose
toric diagram is contained into a vertical strip of width 2, modulo SL(2,Z) trans-
formations. Our methods thus continue to hold and apply with no modification for
this more general family as well; it would be very interesting to investigate the
possibility to generalize our approach to all toric Calabi-Yau three-folds.
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European Science Foundation Programme “Methods of Integrable Systems, Geometry, Applied
Mathematics” (MISGAM) and Marie Curie RTN “European Network in Geometry, Mathemat-
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A Euler Integral Representations, Analytic Continuation and Generalized
Hypergeometric Functions

As we pointed out in Sect. [4.T} another important feature of our formalism is the fact that we can
work directly with an Euler-type integral representation for the periods. We will focus here in
the case p = g = 2, but the strategy is completely general and computationally feasible as long
as x; is algebraically related to a;.

For p = g = 2, the derivatives of the periods have the simple form , 3.19). Using the
standard Euler integral representation for the complete elliptic integral K(x),

2K(T)*/] a9 ! A1)
o Vov1i—0V1—26’ '

1" For example, the canonical bundle over the second Del Pezzo dP; falls into this category,
though not being part of the Y74 class.
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we can integrate back a4 and get

1 2615(19
0 Voy1—6

2asd6 1 ( )
Ip(a; 4/ as6 + —c3)+c02 )],
5(ai) o7 log = a 4 (ci—a3)+e

My (a) = log {a4+ R 9)} , (A2)

(A.3)

where the constant factors in a4 are introduced as a constant of integration in order to satisfy
(3-3). Formulae (A-2)), (A3) then yield simple and globally valid expressions for the periods and
significantly ease the task of finding their analytic continuation from patch to patch. For small
as, we can simply expand the integrand and integrate term by term. For large a4 Il4 has the
following asymptotic behavior:

1\2 1\* 1\’
HA:2a510g(Za4)72(a3a§) (—) ( 3a3115 6a1a2a5) (a4) +0(—) ,

ag ag
(A4)

but an expansion for Ilg is much harder to find. The leading order term can still be extracted, for
example in the a; = a3 = as = 1 patch using

1
/O log |8a + 1+<b+ ) }\/iie 2Lir(~1—a)+ O(loga)
(A.5)
which gives
Iy =4{lo : —1lo 1 2+0(10 ) (A.6)
= g > ar g “ gas). .

Single and double logarithmic behaviors as in (A4] [A-6) are characteristic of the large radius
patch in the moduli space, which as we will see will be given precisely by a4 — oo (and a; — 0).

Lastly, a nice fact to notice is that the periods for this particular case take the form of known
generalized hypergeometric functions of two variables. For example we have that, modulo a4

independent terms, the A period can be written as
2 &
C1 Y ,C1 1-— -5
I 1

2
T T[la 1221
Iy ="logei+ = | 2 —c |7,
A= glogarty (cl ”) LLI
in terms of the Kampé de FérielEl hypergeometric function of two variables.

2

3
29

2

B Lauricella Functions

We collect here a number of properties and useful formulae for Lauricella’s FIS") functions. The

interested reader might want to look at (42) for a detailed discussion of this topic.

12 See Eric Weinstein, “Kampé de Fériet Function”, http://mathworld.wolfram.
com/KampedeFerietFunction.html, or (42;43) for a more detailed account on such
functions.
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B.1 Definition
The usual power series definition of Lauricella Fl()”) of n complex variables is

FD(n)(a’bl bn;()'l’], 7$n)

o - b (b
Z Z a)m1+ +mn( l)m] ( n')m,, $Tl B -$:?”, (B.])
my=0 =0 C)m1+---+mnml Sty
whenever |z1],...,|x,| < 1. For n =1 this is nothing but Gauss’ hypergeometric function » Fy (a, b; c; x);

for n = 2 it boils down to Appell’s Fi(a,b,c;d;x,y). It also satisfies the following system of
PDE’s, which generalizes the n = 1 hypergeometric equation

0%Fp oFp
abjFp = wj(1—z) =5 +( Zikaxka +le—(a+bj+a)e]==
J k#j J
oF,
fijxka—D7 j=1,...,n. (B.2)
A Otk
The system (B-2) has regular singular points when
2;=0,1,00 and z;=2x; i=1,...,n,j#I. (B.3)

The number of intersecting singular submanifolds in correspondence of the generic singular
point

(z1,...,2,) = (0,...,0,1...,1,00,... o) (B.4)
N N N
P q n—p—q

p+1 q+1 n—p—q-+1
2 2 2 ’
In contrast with the well-known n = 1 case, typically the Lauricella system does not close

under analytic continuation around a singular point. As explained in (42), a complete set of so-
lutions of the F}; system (B.2)) away from the region of convergence |z;| < 1 involves a larger set

of functions, namely Exton’s CX and D” r}q’ ‘We will report here a number of analytic continuation

formulae valid for generic n, and refer to (42)) for further results in this direction. See also (64)
for further developments in finding asymptotic expressions for large values of the parameters.

is

B.2 Analytic continuation formulae for Lauricella Fp

In the following, results on analytic continuation for Fp, will be expressed in terms of Exton’s C
and D functions

(b ads ()
Z
= Zmlw.mn Hz( i)m,' (a)Z;LH] mi—Zf:, mj (al)_Z?LkH mi+2{-\;1 m; ITi it

mi

(B.5)
P-q . /.
D(n) (a,by,....byse,csxy,. . xp)
Zw oo (a)mer]+---+mn7m17---7mp<hl)ml = (bn)my my i
— &m=0" =0 4 o1 L1 T
1 (C)qu b=y —mmp Cpy, | otmg 1

(B.6)
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e Continuation around (0,0,...,0,)

FD(”)(a,b],...,b,,;c;xl,,.,,x,,) =

c, by—a _ x e
Iﬂ|:bn7 :7a:|(7mﬂ) 4 D(n>(a7b17"'7bn71517C+a;libn+a;%7"'7axnl7%’1)
¢, —by,+a _ —1
—i_l—‘|:a7 Cfbn :|(_77n) bcr(ln )(b17~~~7bn71_C“’bn;a_bn;_xlv-~-7_$n71:$)‘
B.7)
e Continuation around (0,0,...,0,1)
F(">(ab bu;c;x ) =I|© ¢c—bn—a
D 301,...5,0p,C,X ..., Tp) = c—a, C—bn
X(I—I|)7b]...(1—$n,1)7b”’1
Xac,j”"C,(,Wl)(bl,...,bn.,l—l—bn—c;c—a—bn;lf—‘zl,...?lf;;il,lgf")
e P (LB R B ST R
a, by,
XF[()n)(C—a7b17...7bn71;0—a—bn+1;}:i’;w'w117;;::li]71_‘rn)'
(B.8)
e Continuation around (0,0,...,00,1)
.7 b + —
F[<)n>(a7b1,...,bn;C;I],...,SL’,,):F|:27 " bj C:|
X (1= 2o T (1 — )
XFg")(c—a,b],...,b,,,l;c—ln—---—bn;c—a—bn—l—l;
1—z, 1—z,
ba | don ),
¢, c—a—bya—b,_ _ _ _
+F{Cfa, cfbnilfbn:l la} O G
12 (B.9)
XD(';>(c—a—bn,b,,,..‘,bl;c—bn,l—b,,;bn,l—a—&-l;
zp—1 1 Tp_2 ] )
Ty =z I—xpy_g " 1—xy

¢, by_1—a
+I'

:| (1 —$n,])7a

XE (@b, b ase— Y bisby,a—by 1 +1;

1—; 1=2y 2 1 1—a, )
T—ap_ 2" Ty Ty 2 1=y /7

¢—a, n—1

Notice that the formulae above are valid only for generic values of the parameters b;, a
and c. Should one be confronted with singular cases, it would be necessary to take a suitable
regularization (such as b; — b; + €) and after analytic continuation take the € — 0 limit. See
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Appendix B in (46) for more details; suffice it here to report as an example the case b, = a:

Flg")(a,bl,...,b,,,l,a;c;agl,...,xn)
_ c - o c—a—|M||
_Flaw—a] (=)™ X =0T [c—a+\M|
a

)\MHm,,(1_"+a)2\M\+mn anl (b[>l1zi
(IM+my,)tmy ! i=1 "m;!

< (log(—2) +hn,) (22)" - (22) " (L) (B.10)

In
+I

¢,c—a —a [M|=1 (@)m, I"(|M|—mp)
a ( In) ZMZmn:o mny(p,a)w‘

n—1 (bi)mi mp My—1 1 n
<IG=y e (2 )

—hn

with
B, = W1+ M| +mp) + W (1+my) — yla+ M| +my) —y(c—a—my),
(B.11)
and M = (my,...,m,) is a multindex (so that [M| = Y™, m;).
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