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Effect of Flow on Heavy Quark Damping Rate in Hot QCD Plasma 

SREEMOYEE SARKAR*

Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

(Received on 20 May 2014; Accepted on 2 September 2014)

We determine an expression for the heavy quark damping rate in a viscous QCD plasma using kinetic

theory. Shear flow in a medium changes both boson and fermion distribution functions which eventually

modify heavy quark damping rate. In presence of non-zero velocity gradient in the medium all the bath

particles are out of equilibrium. In this scenario we estimate the first order correction in (O(η/s)) for the

damping rate. The transverse domain remains infrared divergent even after hard thermal loop corrections

as one encounters in case of ideal plasma.
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Introduction

Interaction or damping rates of parton scattering processes in a thermalized QGP has been studied since past

decades (Thoma and Gyulassy, 1991; Thoma, 1995; Blaizot and Iancu, 1996; Blaizot and Iancu, 1997). The

interaction rate is an important quantity to study the thermalization time of a pre-equilibrium parton gas in

ultrarelativistic heavy ion collisions (Thoma and Gyulassy, 1991; Thoma, 1995). The calculation is valid

only for the situation which does not initiate far from equilibrium. Furthermore, scattering rates are the basic

inputs for the calculation of the drag and diffusion coefficients (Bjorken, 1982 unpublished; Svetitsky, 1988;

Braaten and Thoma, 1991; Moore and Teaney, 2005; Dutt-Mazumderet al., 2005). These coefficients are

essential to study the particle spectra using the Fokker Planck equation in heavy ion collision experiments.

Physically, interaction rate is related to the collisions with the other particles of the medium. It has been

seen from the very first attempts of the calculation of damping rate (γ) that in naive perturbation theoryγ

becomes infrared divergent. However, in the non-relativistic plasma, where Coulomb interaction is the only

relevant interaction, it is well known that the interaction is screened and the screening effect enters through
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the effective boson propagator. With this effect taken into accountγ turns out to be finite. However, the

problem becomes non-trivial while dealing with the relativistic plasma where one has to consider both the

electric and the magnetic interactions. The transverse sector remains divergent even after inclusion of the

plasma corrections (Blaizot and Iancu, 1996; Blaizot and Iancu, 1997; Sarkar and Dutt-Mazumder, 2013;

Sarkar, 2014). This is because the latter is only dynamically screened. Finite result can be obtained using

another resummation scheme developed by Bloch-Nordsieck propagator (Blaizot and Iancu, 1996; Blaizot

and Iancu, 1997; Boyanovskyet al., 1998).

In recent years, the general belief is that the matter produced in Heavy Ion Collider experiments behaves

like nearly ideal fluid. The success of ideal hydrodynamics explains the lower bounds onη/s (η is shear

viscosity ands entropy density) and also both the hadron transverse momentum spectra and elliptic flow

(v2(pT )) in the low pT region. AbovepT À 2GeV, the ideal hydrodynamic description breaks down

beyond whichv2(pT ) does not rise as predicted by non-viscous hydrodynamics (Teaney, 2003; Duslinget

al., 2010). Recently, several investigations have shown that the falling trend ofv2(pT ) in the higherpT

region can be elucidated by invoking non-ideal (viscous) hydrodynamics. It is to be noted that in viscous

fluid the energy momentum tensor (Tµν) along with the non-interacting part receives a correction termδTµν

involving both the coefficients of shear (η) and bulk viscosity (ζ).

The non-vanishingη modifies the particle distribution function as well as equation of motion. The

distribution function like stress energy tensor now will have a viscous correction termδf , i.e., for the fluid

constituents and we shall writef = f0 + δf , where,f0 is the local thermal distribution function (Dusling

et al., 2010). In general,δf contains both the shear and the bulk viscosity coefficients and can be obtained

by solving the linearized Boltzmann equation. Here, we restrict ourselves to the modification ofδf due to

η only.

In recent years, several efforts have been made to understand the impact of these dissipative phenomena

on various high energy heavy ion experimental observables like particle spectra, Handbury Brown-Twiss

(HBT) radii and elliptic flow (Teaney, 2003). Recently, the impact of non-zeroη on the photon and the

dilepton production rates have been addressed in (Dusling and Lin, 2008; Dusling, 2010; Bhatt et al., 2010).

Attempts have also been made to calculate the drag and diffusion co-efficients and heavy quark energy loss

including the viscous corrections (Daset al., 2013; Sarkar, 2014). We, here, intend to calculate the heavy

quark damping rate in presence of longitudinal shear flow with viscous correction uptoO(η/s). The viscous

part is operative only when there exists momentum anisotropy,i.e., there exists a non-zero velocity gradient

in plasma. This is a major departure from the all previous damping rate calculations where all the bath

particles are assumed to be in equilibrium.
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Formalism

The motion of a heavy quark in QCD plasma looks similar to that of test particle in plasma. Thus the problem

resembles to Brownian motion problem where quarks are rendering random motion and their distribution

obeys Boltzmann equation. In absence of external force and gradients of temperature, velocity or density

on the injected parton, the Boltzmann equation becomes,

∂fp

∂t
= −C[fp], (1)

right hand side of the above equation being the collision integral.

In the current paper we are concerned with a high energy heavy quark of massmQ and momentump

which scatters off the light quarks (mq ¿ gT ) and gluons. The injected parton distribution has a fluctuating

part (fp = δfp), whereas all the bath particles are affected by the velocity gradient of the medium. Since,

the injected parton is high energeticEp À T the equilibrium part of the distribution function vanishes. The

collision integral for2 → 2 scattering (P + K → P ′ + K ′) processes then can be written as,

C[fp] =
1

2Ep

∫
d3k

(2π)32k

d3p
′

(2π)32E′
p

d3k
′

(2π)32k′
δfpfk(1± fk′ )

× (2π)4δ4(P + K − P ′ −K ′)
1
2

∑

spin

|M|2. (2)

The difference of the thermal phase space here with that of the light quarks in (Dutt-Mazumderet

al., 2005) is an important point to note here. To arrive at the above equation for high energy partons

the possibility of back scattering has been excluded and the approximation(1 ± f0
E′p

) ' 1 has also been

implemented in the thermal phase space sinceEp′ À T . In relaxation time approximation with the help of

Eqs. (1) and (2) the expression for damping rate can be expressed as shown below,

∂δfp

∂t
= −C[fp] = −δfpγ(p)0. (3)

where,γ(p)0 can be identified as the particle interaction rate,

γ0
p =

1
2Ep

∫
d3k

(2π)32Ek

d3p
′

(2π)32E′
p

d3k
′

(2π)32E′
k

× (fk + δfη
k )(1± fk

′ ± δfη
k′)(2π)4δ4(P + K − P

′ −K
′
)
1
2

∑

spin

|M|2. (4)

Now, if a gradient of flow is present in the medium the distribution of bath particles gets modified. One

writes viscous corrected distribution function asfi = f0
i + δfη

i (δfη
i ¿ f0

i ), where,i = k, k
′
. δfη

i is the

first order viscous correction to the thermal distribution function.
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The explicit form ofδfη
i mentioned above depends on various ansatz (Heiselberg and Pethick, 1993;

Heiselberg, 1994; Arnoldet al., 2000; Duslinget al., 2010),

δfη
i = χ(k)

f0
k (1± f0

k )
T

k̂ik̂j∇iuj . (5)

Usually, χ(k) can be determined from various microscopic theories as discussed in (Duslinget al., 2010).

For the current study we are interested in a boost invariant expansion without transverse flow. In this scenario

the viscous correction to the distribution function can be incorporated in the following way (Teaney, 2003;

Bhattet al., 2010; Daset al., 2013),

δfη
i (k) = f0

i (1± f0
i )Φi(k), (6)

where,

Φi(k) =
1

2T 3τ

η

s

(
k2

3
− k2

z

)
. (7)

The above viscous correction holds true only in the local rest frame of the fluid and it consists of the

first order correction in the expansion of shear part of the stress tensor. The flow is alongz axis andτ is the

thermalization time of the quark-gluon plasma (QGP). It can be seen from the above expression that only in

presence of momentum anisotropy the non-equilibrium part of the distribution function becomes operative.

In a medium with non-zero shear flow the expression for damping rate then becomes,

γ(p) =
1

2Ep

∫

p′,k,k′

∑

i=1,2

αi(2π)4δ4(P + K − P
′ −K

′
)
1
2

∑

spin

|M|2 = γ0 + γη, (8)

where,
∫
k is shorthand for

∫
d3k/(2π)32Ek.

In the last equationαi’s contain the information of the viscous corrected phase-space factor.α1 consists

of the equilibrium part of the distribution functions. The heavy quark damping rate (γ0), where all the bath

particles are in thermal equilibrium can be obtained fromα1 (Thoma and Gyulassy, 1991; Thoma, 1995;

Blaizot and Iancu, 1996; Blaizot and Iancu, 1997),

α1 = f0
k (1± f0

k′ ). (9)

γη, on the other hand, is the viscous corrected damping rate and can be derived fromα2 (Sarkar and Dutt-

Mazumder, 2013),

α2 '
[
Φkf

0
k (1± f0

k )± Φkf
0
k′f

0
k ± Φk′f

0
k′f

0
k

]
. (10)
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Fig. 1: Amplitudes for heavy quark 2 → 2 scattering in a QCD plasma

To arrive at the above expression we have neglected terms beyondO(η/s) andO(f2
i ). To proceed

further in the evaluation of damping rate, we require the information of interaction. For Q-q scattering

process in thet channel, the matrix element is given by (Peigne and Peshier, 2008a; Peigne and Peshier,

2008b),

1
2

∑

spin

|M|2Qq ∝ s̃2

t2
, (11)

where,s̃ = s−m2
Q, s andt aretheusual Mandalstam variables.

At first, the case of hard gluon exchange has been considered where the medium effects on the propaga-

tor can be ignored. In this case one encounters both logarithmic and algebraic infrared divergences inγη
Qq of

the formγη
Qq(p) ∝ ∫

dq/q and
∫

dq/q3 unlike non-viscous medium. Usually, to handle these divergences

one incorporates the effects of plasma screening. The method of inclusion of the effects of screening was

first developed in (Braaten and Pisarski, 1990; Braaten and Yuan 1991). This involves introduction of an

arbitrary momentum cut-off scaleq∗ (gT ¿ q? ¿ T ) to divide the region of hard momentum transfer

(q À q?) from the soft region (q ¿ q?). The calculation of hard momentum involves tree-level scattering

diagrams whereas Hard Thermal Loop (HTL) resummed propagator is necessary for the soft momentum

transfer. Since the external quark momentum is hard, inclusion of effective quark-gluon vertex is not re-

quired in the present context. Resummed quark-gluon vertex would contribute at higher order in coupling

constant. The matrix amplitude with HTL resummed gluon propagator in the large wavelength limitq ¿ T

reduces to,

1
2

∑

spin

|M|2Qq = 32g4E2
pk2

[
1(

q2 + m2
D

)2 +

(
v2
p − ω2

q2

)
q2cos2φ

(
1− ω2

q2

)(
q6 + π2ω2m4

D
16

)
]
, (12)

where,mD ∼ gT is the Debye mass. Evaluatingγη
Qq with both the hard and the soft contributions and
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restricting ourselves only to the leading logarithmict channel contribution we obtain,

γη
Qq,l(p) '

(η

s

)
C1 [f1(vp) + f2(vp)]

(
−1

2
+ log

∣∣∣∣
qmax

mD

∣∣∣∣
)

+
(η

s

)
C1T

2f3(vp)
(

1
m2

D

− 1
q2
max

)
,

γη
Qq,t(p) '

(η

s

)
C2

[
f4

∫ q∗

0

dq

q

+ 2πT 2m2
Df5

(
−16v5

p

225
− 4v5

p

15
ln

∣∣∣∣
2qmax

mD
√

πvp

∣∣∣∣
)]

, (13)

whereγ|ηQq,l andγ|ηQq,t denote the longitudinal and the transverse contributions to the damping rate (γ|ηQq =

γ|ηQq,l + γ|ηQq,t). The functions and constants mentioned in the above expression of the damping rate have

the following forms,

C1 =
g4Aq

4(2π)3τvp
, f1(vp) = π2

(
−vp

4
− v3

p

18
+

v5
p

12

)
,

f2(vp) = ζ(3)

(
3vp

2
+ v3

p −
9v5

p

10

)
,

f3(vp) =

(
vp

3
− v3

p

3

)(
7π4

10
− 45ζ(5)

)
,

C2 =
Aqg

4πT 2

16(2π)3τvpm2
D

, f4 =
(

7π4

10
− 45ζ(5)

)
,

f5 =
(

π2

3
− 3ζ(3)

)
. (14)

qmax in Eq. (13), can be approximated as∼ √
EpT from the kinematics (Sarkar and Dutt-Mazumder, 2013)

andAq = 2nf/3 (nf is the number of flavor).

t channel contribution of quark-gluon (Q-g) scatterings can easily be extracted from Eq. (13). Eq. (13)

excludingAq has to be multiplied withAg, the color factorAg = (N2
c − 1)/2 = 4 (Nc is the number of

color). The total contribution oft channel to theγ is then given byγ|ηQ = −(4+2nf/3)γ|ηQq. In this context

it would be relevant to recall the expression for heavy quark damping rate in ideal QCD plasma (Thoma and

Gyulassy, 1991),

γ(p)0Qq =
g4AbT

3

96π

(
1

m2
D

− 1
q2
max

)
+

g4AbT
3vp

48πm2
D

∫ q∗

0

dq

q
,

(15)
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where,Ab = Aq + Ag. We now evaluate the contribution of Q-g scatterings to the viscous heavy quark

damping rate throughs andu channels. The explicit derivation can be found in (Sarkar and Dutt-Mazumder,

2013), here, we quote only the final expression,

γη
Qg(p) '

(η

s

)
C3

[
2π4T 4

135
− T 3m2

q

3Ep

(
2ζ(3) ln

∣∣∣∣
4EpT

m2
q

∣∣∣∣ + 3ζ(3)

− 2γζ(3) + 2ζ ′(3)

)]
. (16)

C3 = Afg4/(32T 3τπ3Ep). The leading term of Q-g scattering rate (both ins andu channels) in ideal

plasma is given by (Peigne and Peshier, 2008b),

γ(p)0Qg =
1

16πEp

∫
d3kfk

(2π)32k

∫
dt
|M|2

s−m2
q

=
g4T 2Af

48πEp

[
ln

∣∣∣∣
4EpT

m2
q

∣∣∣∣ +O(1)
]

. (17)

The final expression of heavy quark damping rate in viscous plasma can be obtained by adding Eqs.

(13) and (16) along with the ideal contributions Eqs. (15) and (17) (Sarkar and Dutt-Mazumder, 2013),

γ(p)Q = γ(p)0Qq + γ(p)0Qg

+
(η

s

)
C′1 [f1(vp) + f2(vp)]

(
−1

2
+ log

∣∣∣∣
qmax

mD

∣∣∣∣
)

+
(η

s

)
C′1T 2f3(vp)

(
1

m2
D

− 1
q2
max

)

+
(η

s

)
C′2

[
f4

∫ q∗

0

dq

q
+ 2πT 2m2

Df5

(
−16v5

p

225
− 4v5

p

15
ln

∣∣∣∣
2qmax

mD
√

πvp

∣∣∣∣
)]

+
(η

s

)
C3

[
2π4T 4

135
− T 3m2

q

3Ep

(
2ζ(3) ln

∣∣∣∣
4EpT

m2
q

∣∣∣∣ + 3ζ(3)

− 2γζ(3) + 2ζ ′(3)

)]
(18)

where,C′1 = g4Ab

4(2π)3τvp
andC′2 = Abg

4πT 2

16(2π)3τvpm2
D

.

It is evident from the above expression that divergence of the form
∫

dq/q has been removed with the

plasma effects. But logarithmic divergence which was algebraic before screening, still remains even after

HTL resummation. This is reminiscent of what happens in case of the quasiparticle damping rate in ideal

plasma which requires further non-perturbative treatment as discussed in (Blaizot and Iancu, 1996; Blaizot

and Iancu, 1997; Boyanovskyet al., 1998).
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Summary and Conclusion

To summarize, in the present work we have calculated heavy quark damping rate in a medium where all

the bath particles are affected by the shear flow of the medium. It has been shown in the text, that effect

of flow of the medium enters into the calculationvia the viscous corrected distribution function in the

phase-space factor which in turn modifies the result. The calculation has been restricted only to the leading

order contributions inη/s by dropping all the next to leading order terms. The collision integral can be

further simplified by neglecting terms beyond quadratic order in distribution functions. Furthermore, for the

boson exchange we have retained only the soft frequencies following the standard formalism in non-viscous

plasma. Effectively, these approximations allow us to present closed form analytical results. It is to be

mentioned here that we have considered the fact that the flow has only longitudinal gradient and there is

no transverse expansion. One of the interesting findings of the current study has been the infrared behavior

of the transverse damping rate due to the non-existence of screening for the static gluons. To remove this

divergence which remains even after using finite temperature HTL propagator one may perform further

resummation by using Bloch-Nordsieck propagator or renormalization group method as already suggested

in the text.
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