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Effect of Flow on Heavy Quark Damping Rate in Hot QCD Plasma
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We determine an expression for the heavy quark damping rate in a viscous QCD plasma using kinetic
theory. Shear flow in a medium changes both boson and fermion distribution functions which eventually
modify heavy quark damping rate. In presence of non-zero velocity gradient in the medium all the bath
particles are out of equilibrium. In this scenario we estimate the first order correctionijpisiPfor the
damping rate. The transverse domain remains infrared divergent even after hard thermal loop corrections
as one encounters in case of ideal plasma.
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Introduction

Interaction or damping rates of parton scattering processes in a thermalized QGP has been studied since past
decades (Thoma and Gyulassy, 1991; Thoma, 1995; Blaizot and lancu, 1996; Blaizot and lancu, 1997). The
interaction rate is an important quantity to study the thermalization time of a pre-equilibrium parton gas in
ultrarelativistic heavy ion collisions (Thoma and Gyulassy, 1991; Thoma, 1995). The calculation is valid
only for the situation which does not initiate far from equilibrium. Furthermore, scattering rates are the basic
inputs for the calculation of the drag and diffusion coefficients (Bjorken, 1982 unpublished; Svetitsky, 1988;
Braaten and Thoma, 1991; Moore and Teaney, 2005; Dutt-Mazuetdgr, 2005). These coefficients are
essential to study the particle spectra using the Fokker Planck equation in heavy ion collision experiments.
Physically, interaction rate is related to the collisions with the other particles of the medium. It has been
seen from the very first attempts of the calculation of damping rgtéh@t in naive perturbation theory
becomes infrared divergent. However, in the non-relativistic plasma, where Coulomb interaction is the only
relevant interaction, it is well known that the interaction is screened and the screening effect enters through
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the effective boson propagator. With this effect taken into accountns out to be finite. However, the
problem becomes non-trivial while dealing with the relativistic plasma where one has to consider both th
electric and the magnetic interactions. The transverse sector remains divergent even after inclusion of
plasma corrections (Blaizot and lancu, 1996; Blaizot and lancu, 1997; Sarkar and Dutt-Mazumder, 201
Sarkar, 2014). This is because the latter is only dynamically screened. Finite result can be obtained usi
another resummation scheme developed by Bloch-Nordsieck propagator (Blaizot and lancu, 1996; Blaiz
and lancu, 1997; Boyanovslet al., 1998).

In recent years, the general belief is that the matter produced in Heavy lon Collider experiments behav
like nearly ideal fluid. The success of ideal hydrodynamics explains the lower boungs ¢n is shear
viscosity ands entropy density) and also both the hadron transverse momentum spectra and elliptic flo
(v2(pr)) in the low py region. Abovepr > 2GeV, the ideal hydrodynamic description breaks down
beyond whichwy (p7) does not rise as predicted by non-viscous hydrodynamics (Teaney, 2003; Drisling
al., 2010). Recently, several investigations have shown that the falling treng(;of) in the higherpp
region can be elucidated by invoking non-ideal (viscous) hydrodynamics. It is to be noted that in viscou
fluid the energy momentum tens@r{”) along with the non-interacting part receives a correction ey
involving both the coefficients of sheay)(@and bulk viscosity ().

The non-vanishing; modifies the particle distribution function as well as equation of motion. The
distribution function like stress energy tensor now will have a viscous correctionstgrire., for the fluid
constituents and we shall write= f° + §f, where, f* is the local thermal distribution function (Dusling
et al, 2010). In generaljf contains both the shear and the bulk viscosity coefficients and can be obtainec
by solving the linearized Boltzmann equation. Here, we restrict ourselves to the modificafifrdoé to

n only.

In recent years, several efforts have been made to understand the impact of these dissipative phenom
on various high energy heavy ion experimental observables like particle spectra, Handbury Brown-Twis
(HBT) radii and elliptic flow (Teaney, 2003). Recently, the impact of non-zeom the photon and the
dilepton production rates have been addressed in (Dusling and Lin, 2008; Dusling, 2010; Bhatt et al., 201(
Attempts have also been made to calculate the drag and diffusion co-efficients and heavy quark energy I
including the viscous corrections (Dasal., 2013; Sarkar, 2014). We, here, intend to calculate the heavy
quark damping rate in presence of longitudinal shear flow with viscous correctiodpta). The viscous
part is operative only when there exists momentum anisoti@pythere exists a non-zero velocity gradient
in plasma. This is a major departure from the all previous damping rate calculations where all the ba
particles are assumed to be in equilibrium.



Effect of Flow on Heavy Quark Damping Rate in Hot QCD Plasma 109

Formalism

The motion of a heavy quark in QCD plasma looks similar to that of test particle in plasma. Thus the problem

resembles to Brownian motion problem where quarks are rendering random motion and their distribution

obeys Boltzmann equation. In absence of external force and gradients of temperature, velocity or density
on the injected parton, the Boltzmann equation becomes,

ofp
e =l ®

right hand side of the above equation being the collision integral.

In the current paper we are concerned with a high energy heavy quark ofimgaasd momentunp
which scatters off the light quarksy, < ¢7") and gluons. The injected parton distribution has a fluctuating
part (f, = df,), whereas all the bath particles are affected by the velocity gradient of the medium. Since,
the injected parton is high energefi, > T' the equilibrium part of the distribution function vanishes. The
collision integral for2 — 2 scattering P + K — P’ + K') processes then can be written as,
iy B

cnl = 2E 27r 321<: 21)32E), @myai oIk = fi)

y (277)454(P+K—P’—K);Z]M\2. B
spin
The difference of the thermal phase space here with that of the light quarks in (Dutt-Mazetnder
al., 2005) is an important point to note here. To arrive at the above equation for high energy partons
the possibility of back scattering has been excluded and the approxinqatibrf%;) ~ 1 has also been
implemented in the thermal phase space sifige> T'. In relaxation time approximation with the help of
Egs. (1) and (2) the expression for damping rate can be expressed as shown below,

Do — —Clhy) = 55 ()" ©

where,y(p)° can be identified as the particle interaction rate,

o d3p' 3K
v T 39E, | (2r)%2E, (27)%2E, (27)%2E]
! / 1
x (fe+0fH(A % fp £ (P+K-P - K )5 > M (4)

spin
Now, if a gradient of flow is present in the medium the distribution of bath particles gets modified. One
writes viscous corrected distribution function gis= f2 + 6f (5 < f?), where,i = k, K. 8f"is the
first order viscous correction to the thermal distribution function.
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The explicit form ofé f;/ mentioned above depends on various ansatz (Heiselberg and Pethick, 1993
Heiselberg, 1994; Arnoldt al., 2000; Duslinget al., 2010),

Usually, x(k) can be determined from various microscopic theories as discussed in (Deistihg2010).

For the current study we are interested in a boost invariant expansion without transverse flow. In this scena
the viscous correction to the distribution function can be incorporated in the following way (Teaney, 2003
Bhattet al., 2010; Dat al., 2013),

§f1 (k) = fR(L £ f)Pi(k), (6)
where,
2
0 = g (5~ 32). @

The above viscous correction holds true only in the local rest frame of the fluid and it consists of the
first order correction in the expansion of shear part of the stress tensor. The flow iz @oisgandr is the
thermalization time of the quark-gluon plasma (QGP). It can be seen from the above expression that only
presence of momentum anisotropy the non-equilibrium part of the distribution function becomes operative

In a medium with non-zero shear flow the expression for damping rate then becomes,

1 / 1
W) =5 [P aiem) S P K~ P K S IME =0 ©
2 p Jp Kk 1,2 2 spin

where, [, is shorthand for[ d*k/(27)32E},.

In the last equation;’s contain the information of the viscous corrected phase-space fagtoansists
of the equilibrium part of the distribution functions. The heavy quark damping tdjewhere all the bath
particles are in thermal equilibrium can be obtained frem(Thoma and Gyulassy, 1991; Thoma, 1995;
Blaizot and lancu, 1996; Blaizot and lancu, 1997),

o = f(1% ). ©)

~", on the other hand, is the viscous corrected damping rate and can be derived,f(Sarkar and Dutt-
Mazumder, 2013),

ar = @R ) QS A £ O S (10)
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Fig. 1: Amplitudes for heavy quark 2 — 2 scattering in a QCD plasma

To arrive at the above expression we have neglected terms b&yopt) and O(f?). To proceed
further in the evaluation of damping rate, we require the information of interaction. For Q-q scattering
process in theé channel, the matrix element is given by (Peigne and Peshier, 2008a; Peigne and Peshier,
2008b),

1
50 Mg, = (11)

spin
where,s = s — mé s andt aretheusual Mandalstam variables.

At first, the case of hard gluon exchange has been considered where the medium effects on the propaga-
tor can be ignored. In this case one encounters both logarithmic and algebraic infrared diverge@geﬁ in
the formfygq(p) x [dgq/q and [ dq/q> unlike non-viscous medium. Usually, to handle these divergences
one incorporates the effects of plasma screening. The method of inclusion of the effects of screening was
first developed in (Braaten and Pisarski, 1990; Braaten and Yuan 1991). This involves introduction of an
arbitrary momentum cut-off scalg (¢7° <« ¢* < T) to divide the region of hard momentum transfer
(¢ > q*) from the soft region{ < ¢*). The calculation of hard momentum involves tree-level scattering
diagrams whereas Hard Thermal Loop (HTL) resummed propagator is necessary for the soft momentum
transfer. Since the external quark momentum is hard, inclusion of effective quark-gluon vertex is not re-
quired in the present context. Resummed quark-gluon vertex would contribute at higher order in coupling
constant. The matrix amplitude with HTL resummed gluon propagator in the large wavelengih<uiit
reduces to,

_|_

212 5 2 2. 4
(¢* +mp) ( —‘;}*2> <q6+ - lemD

1 2 4710212
50 My, = 320" Epk (12)

spin

1 (vg — “q’—j) q*cog¢ ]
) ;

where,mp ~ ¢T is the Debye mass. Evaluatin@q with both the hard and the soft contributions and
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restricting ourselves only to the leading logarithrhithannel contribution we obtain,

12

(2) 1 lf1(w) + fo(vy) (—; +log| e
+ (1) arfaw,) (ﬂ;— : )

D qunaz
n
VqrP) > <E>C2

V01 (P)

5 5
+ 2nT*mb f5 L0y Aty In _2mas_
b 225 15  |mp /@0,

e

wherefy|gql andﬂgqt denote the longitudinal and the transverse contributions to the damping\@(}e:(
7|qul + 7|gq7t). The functions and constants mentioned in the above expression of the damping rate ha
the following forms,

9' 4 2 b
G = 4(2%)3Tvp’f1(vp) B RS TRETYE

9 5
Faloy) = C() (32+3—10>

folwy) = (; - ?) (717;4 454(5)) ,

B AyginT? (Tt
CQ - W’ f4 - <10 - 45C(5)> )
2
o= (%) (14

gmaz IN EQ. (13), can be approximatedas, /E,T from the kinematics (Sarkar and Dutt-Mazumder, 2013)
andA, = 2ny/3 (ny is the number of flavor).

t channel contribution of quark-gluon (Q-g) scatterings can easily be extracted from Eq. (13). Eqg. (13
excludingA, has to be multiplied with4,, the color factord, = (N2 — 1)/2 = 4 (N, is the number of
color). The total contribution afchannel to they is then given byy|f, = —(4+2n;/3)y|/,,. In this context
it would be relevant to recall the expression for heavy quark damping rate in ideal QCD plasma (Thoma ar
Gyulassy, 1991),

), = ST (1] +¢&ﬁ%/w@
Qa 96 \m¥%  Ghas 48tm2, Jo q’

(15)
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where, A, = A, + A,. We now evaluate the contribution of Q-g scatterings to the viscous heavy quark
damping rate throughandu channels. The explicit derivation can be found in (Sarkar and Dutt-Mazumder,
2013), here, we guote only the final expression,

ordTd  T3m? AE, T
T~ i 92¢(3)In

@ = (2)es

—a| T3¢3)

p
135 3E, 2

— 2v(3) + 2<:'<3>)]. (16)

Cs = Apgt/ (3213773 E,). The leading term of Q-g scattering rate (bothsiandw channels) in ideal
plasma is given by (Peigne and Peshier, 2008b),

1 &k fi M
0
7(P)ag 167E, / (27)32k / s —m32

9T Ay [1 A5, T +(’)(1)} (17)

481 E, mg

The final expression of heavy quark damping rate in viscous plasma can be obtained by adding Egs.
(13) and (16) along with the ideal contributions Eqgs. (15) and (17) (Sarkar and Dutt-Mazumder, 2013),

1p)a = 1(D)ge +7(P)oy
+ <Z> C1 [f1(vp) + falvp)] <_2 + log (]T:? )
+ (Z) CLT? f3(vp) (ml% - q%i)
ol [ (- n )
+ (el 55 - (o]
— 27¢(3) + 2(’(3)>] (18)
where,C} = gt andCh =

It is evident from the above expression that divergence of the forig/q has been removed with the
plasma effects. But logarithmic divergence which was algebraic before screening, still remains even after
HTL resummation. This is reminiscent of what happens in case of the quasiparticle damping rate in ideal
plasma which requires further non-perturbative treatment as discussed in (Blaizot and lancu, 1996; Blaizot
and lancu, 1997; Boyanovslet al., 1998).
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Summary and Conclusion

To summarize, in the present work we have calculated heavy quark damping rate in a medium where
the bath patrticles are affected by the shear flow of the medium. It has been shown in the text, that effe
of flow of the medium enters into the calculatisia the viscous corrected distribution function in the
phase-space factor which in turn modifies the result. The calculation has been restricted only to the leadi
order contributions im/s by dropping all the next to leading order terms. The collision integral can be
further simplified by neglecting terms beyond quadratic order in distribution functions. Furthermore, for the
boson exchange we have retained only the soft frequencies following the standard formalism in non-visco
plasma. Effectively, these approximations allow us to present closed form analytical results. Itis to b
mentioned here that we have considered the fact that the flow has only longitudinal gradient and there
no transverse expansion. One of the interesting findings of the current study has been the infrared beha\
of the transverse damping rate due to the non-existence of screening for the static gluons. To remove t
divergence which remains even after using finite temperature HTL propagator one may perform furthe
resummation by using Bloch-Nordsieck propagator or renormalization group method as already suggest
in the text.
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