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We present a method for [ast optimal estimation of the temperature angular power spectrum
from observations of the cosmic microwave background. Wc employ a Hamiltonian Monte
Carlo (HMC) sampler to obtain samples [rom the posterior probability distribution of all
the power spectrumn coefficients given a set of observations. We demonstrate the method on
simulated WMAP observations. We then discuss extending the method to hancle polarisation
and demonstrate how sampling avoids the problem of E/B mixing caused by incomplete sky
coverage.

1 Introduction

Observations of the cosmic microwave background (CMB) have proved to be extremely valu-
able for testing and constraining cosmological models. The majority of models predict that the
anisotropies in the CMB signal are Gaussian and their statistics isotropic across the sky. The
angular power spectrum C; therefore provides a natural connection between theory and obser-
valion and a variely ol methods have been explored to compute the power specirum [rom sels
of observations.

Maximum-likelihood methods®!® provide an optimal estimate of the CAIB power spectrum
however brute force implementations of the method can only be applied to small data sets as
the required computation scales as O(Ngix), where Ny, is the number of pixels in a CMB map.
Alternatively one can resort to approximate pseudo-Cp methods’. These scale as the map-making
process and are fast even for the largest data sets. Both types of method can only supply an
approximation to the likelihood function required to compare spectra predicted from theory
with those estimated from observations.

An alternative framework has been developed'?® where one explores the full posterior dis-
tribution of the power spectrum with Monte Carlo samples. This method is not only exact
but scales like the pseudo-Cy methods. Under the assumption of position invariant, circularly
symmetric beams and uncorrelated noise, the method scales as (D(szjﬁ(2 )-

The approach relies on the availability of an efficient method for sampling from high-
dimensional distributions. Previous implementations use a Gibbs sampler but this restricts
the applicability of the method to Gaussian noise and CMB. We propose the use of 2 Hamilto-
nian Monte Carlo (HMC) sampler’. As opposed to the majority of Markov-Chain Monte Carlo
(MCMC) methods, HMC scales well with problem size. Few requirements are made on the
distribution to be samnpled, thus giving us the opportunity for great flexibility.
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2 Power spectrum estimation with sampling

Suppose the true CMB sky, described by a pixelised map, is represented by the vector t. The sky
is observed and the resultant data vector (in any domain) d is the sum d = s+n of contributions
due to the underlying CMB s and noise n. Moreover the signal is usually related to the true
sky by the linear mapping R. The field t is related to the spherical harmonics by

fmax

'3
t(xﬂ) = Z Z athl'm(zp)7 (1)

£=2 m=—¢

where t(z,) is a single pixel in the map and Y, are the spherical harmonics. In this notation
we ay write our model for the data as

d=RYa+n. (2)
For an isotropic Gaussian CMB the covariance matrix C of the ag,, has components
Cemprmy = (alma;’m') = Cdpe' O’ (3)

where the set of {C;} coefficients constitute the angular power spectrum.

We aim to sample from the joint distribution Pr({C,}|d). Although this is difficult to
perform directly, it is possible to sample from the joint density of the power spectrum coefficients
and the signal realization Pr({C;},a|d) and then marginalise over a. The joint density can be
written as the product of the appropriate conditional distributions

Pr ({C¢},a|d) x Pr(d|a) Pr(al{C¢}) Pr ({C¢}) . (4)

Assuming a flat prior (Pr ({C,}) = 1) and Gaussian noise then the conditional distributions that
make up (4) can be written as

Pr(d|a) x exp [—%(d —~RYa)TN"1(d - RYa)] ; (5)

where N = (nnT), and
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Priaiic < I1 (5) " = (-%72%). ©®)

where 0¢ = 1 37 laem|*

The selection of the domain in which to represent the data is determined by the requirement
that N has a simple form. In this work we assume that in the map domain N is well represented
hy a diagonal matrix. /

We draw samples from the joint space (a, {C¢}) using 2 Hamiltonian Monte Carlo sampler.

3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo draws parallels between classical dynamics and sampling to sup-
press the random walk behaviour inherent in most MCMC techniques. To sample from the
multidimensional distribution Pr(x) we introduce a momentnm p and mass m and define the
Hamiltonian

T,
p'p
H=rr_ .
o log Pr (x) (7
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Figure 1: Binned power spectrum and 68 percent confidence intervals for the HMC sampling method (black circles

and error bars) compared to results from the MASTER method (grey squares and errorbars) when applied to a

simulated WMAP observation. the input spectrum for the simulation is shown in black and the spectrum of the
realization in grey.

A new sample is proposed by drawing a set of random wowenta p from a Gaussian with
variance m. We then move through the (x, p) space using Hamilton’s equations (usually using a
straightforward first order discretisation). After a random length of time t = T' we accept with
probability pa given by a modified Metropolis rule

pa=min[l,exp(H(t =0) — H(t =T))] (8)

Since trajectories that obey Hamilton’s equations conserve H we expect a high acceptance
probability cven after moving considerable distances in the parameter space.

4 Application to simulated WMAP observations

We produced a map of the CMB with a HEALPix® Ngige = 512 (~ 3 x 10° pixels). Our CMR
simulation is a realization of a ACDM cosmology with the best fitting parameters from the 5-
year WMAP observation? 1° and includes multipoles up to £ = 512.The map was then smoothed
with a 13-arcmin Gaussian beam, which is similar in size to the beam of the WMAP W-band.
We then added anisotropic uncorrelated noise by making use of the published® Nyps and noise
variance for the 5-year vi’MAP combined W band map. The map was cut with the Kp2 mask
which excludes 15.3% of the sky. We included multipoles up to £, = 512 in our analysts. This
gives us a total of around 2 x 10° parameters in our sampling space.

For these simulations we made a totz! of 5000 burn in samples and recorded 10000 samples
from the post burn-in phase. It takes around 20 seconds to generate a single sarple using two
dual core Intel Xeon 5150 processors and the MPI parallelised HEALPix spherical harmonic
transforins, resulting in a total processing time of around 80 hours.

For comparison we applied the MASTER method 7 to the same data set. Our peak likeli-
hood C; sample and 68 per cent confidence intervals, binned with the WMAP teawn’s scheine,
are shown alongside the results of the MIASTER methocd ‘u Fig.1l. For most of the range of
angular scales the two estimates and their errors agree well. On the largest angular scales the
MASTER estimate tends to underestimate the uncertainties and the symmetric errors are far
from representative of the posterior.

“http://healpix.jpl.nasa.gov
*http://lambda.gsfc.nasa.gov/product /map/dr3/parameters.cfm
“http://lambda.gslc.nasa.gov
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Figure 2: The plots on the left show the BB spectrum estimated using Spice with the full sky (top) and when the
data is cut with the WMAP polarisation mask (bottom). The plot on the right shows the results of the sampler
applied to the same simulations, fullsky in blue and cut sky in red.

5 Extending the method to polarisation

Polarisation provides a new set of opportunities for science and challenges for data analysis.
Of particular interest is a measurement of the primordial B mode spectrum predicted by many
inflationary models. One problem faced in the analysis is that for observations on the cut sky
the separation into E and B modes is ambiguous. The E/B mixing is a problem for pseudo-
C, methods whereas exact methods, such as sampling, can still construct optimal estimates.
We apply Spice %2 and the HMC method to a set of signal dominated simulations. Figure 2
shows how Spice fails to recover the BB when a cut is imposed whereas the sampler is relatively
unsffected, a slight increase in the uncettainties caused by the removal of data from the cut.
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