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\\'e present a method for fast optimal estimation of the temperature angular power spectrum 
from observations of the cosmic microwave background. We employ a Hamiltonian ~Jonte 
Carlo (HMC) sampler to obtain samples from the posterior probability distribution of all 
the power spectrum coefficients given a set of observations. We demonstrate the method on 
simulated WMAP observations. We then discuss extending the method to hanc'\e polarisation 
and demonstrate how sampling avoids the problem of E/B mixing caused by incomplete sky 
coverage. 

1 Introduction 

Observations of the cosmic microwave background (C:.VIB) have proved to be extremely valu­
able for testing and constraining cosmological models. The majority of models pwdict that the 
anisotropies in the CMB signal are Gaussian and their statistics isotropic across the sky. The 
angular power spectrum Ct therefore provides a natural connection between theory and obser­
vation and a va.riely of melhods have been explored lo compute the power spectrum from sets 
of observations. 

Maximum-likelihood methods 5•1•9 provide an optimal estimate of the C:~IB power spectrum 
however brute force implementations of the method can only be applied to small data sets as 
the required computation scales as O(Ngix), where Npix is the number of pixels in a CMB map. 
Alternatively one can resort to approximate pseudo-Ct method?. These scale as the map-making 
process and are fast even for the largest data sets. Both types of method can only supply an 
approximation to the likelihood function required to compare spectra predicted from theory 
with those estimated from observations. 

Au alternative framework has been develope<.112•8 where one explores the full posterior dis­
tribution of the power spectrum with Monte Carlo samples. This method is not only exact 
but scales like the pseudo-Ct methods. Under the assumption of position invariant, circularly 
symmetric beams and uncorrelated noise, the method scales as O(N!{;). 

The approach relies on the availability of an efficient method for sampling from high­
dimensional distributions. Previous implement.at.ions use a Gibbs sampler but this restricts 
the applicability of the method to Gaussian noise and CMB. We propose the use of a Hamilto­
nian Monte Carlo (HMC) sampler3. As opposed to the majority of Markov-Chain Monte Carlo 
(MCMC) methods, HMC scales well with problem size. Few requirements are made on the 
distribution to be sampled, thus giving us the opportunity for great flexibility. 
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2 Power spectrum estimation with sampling 

Suppose the true C'MB sky, descrihed by a pixelised map, is represented hy the vector t. The sky 
is observed and the resultant data vector (in any domain) dis the sum d = s+n of contributions 
due to the underlying CMB s and noise n. Moreover the signal is usually related to the true 
sky by the linear mapping R. The field t is related t.o the spherical harmonics by 

lm~ l 

t(xp) = L L UtmYtm(Xp), (1) 
l=2 m=-l 

where t(xp) is a single pixel in the map and Yem are the spherical harmonics. In this notation 
we may write our mu<lel for the data as 

d = RYa+ n. (2) 

Fur au isutrupil: Gaus:siau CMB the cuvariam:e matrix C uf the ai:m has cumpoueuts 

(3) 

where the set of {Ct} coefficients constitute the angular power spectrum. 
We aim to sample from the joint distribution Pr ( { Ct}ld). Although this is difficult to 

perform directly, it is possible to sample from the joint density of the power spectrum coefficients 
and the signal realization Pr ( {Ct}, aid) and then marginalise over a. The joint density can be 
written as the product of the appropriate conditional distributions 

Pr ( {Ct}, aid) ex: Pr (dla) Pr (al{ Ct}) Pr ( {Ct}). (4) 

Assuming a flat prior (Pr ( {Ct}) = 1) and Gaussian noise then the conditional distributions that 
make up (4) can be written as 

(5) 

where N = (nn T), and 

II ( 1 ) "i
1 

( 2£ + 1 CT/) 
Pr(al{Ct}) ex t Ct exp - - 2-Ct , (6) 

where CT£= utr L:m latml2
-

The selection of the domain in which to represent the data is determined hy the requirement 
that N has a simple form. In this work we assume that in the map domain N is well represented 
by a diagonal matrix. 

We draw samples from the joint space (a, {Ct}) using a Hamiltonian Monte Carlo sa~npler. 

3 Hamiltonian Monte Carlo 

Hamiltonian Monte Carlo draws parallels between classical dynamics and sampling to sup­
press the random walk behaviour inherent in most MCMC techniques. To sample from the 
multidimensional distribution Pr (x) we int.rodnce a moment.nm p and mass m and define the 
Hamiltonian 
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PTP 
H = - - log Pr (x). 

2m 
(7) 
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Figure 1: Binned power spectrum and 68 percent confidence intervals for the BMC sampling metho<l (black circles 
and error bars) compared to results from the MASTER method (grey squares and errorbars) when applied to a 
simulated Wl\IAP observation. the input spectrum for the simulation is shown in black and the spectrum of the 

realization in grey. 

A new sample is propo.se<l by <lrawiug a set of rau<lu111 111011ieuta p fru111 a Gaussian with 
variance m. We then move through the (x, p) space using Hamilton's equations {usually using a 
straight.forward first order discretisation}. After a random length of time t = T we accept with 
probability PA given by a modified Metropolis rule 

PA= min [1, exp{H(t = 0) - H(t = T))] {8) 

Since trajectories that obey Hamilton's equations conserve H we expect a high acceptance 
probability even after moving considerable distances in the parameter space. 

4 Application to simulated WMAP observations 

We produced a map of the CMB with a HEALPiX' Nside = 512 (~ 3 x 106 pixels}. Our C:MB 
simulation is a realization of a .t\CDM cosmology with the best fitting parameters from the 5-
year WMAP observationS> 10 and includes multipoles up tot= 512.The map was then smoothed 
with a 13-arcmin Gaussian beam, which is similar in size to the beam of the WMAP W-band. 
We then added anisotropic uncorrelated noise by making use of the publishecf Nobs and noise 
variance for the 5-year 11'MAP combined W band map. The map was cut with the Kp2 mask 
which excludes 15.33 of the sky. We included multipoles up to €max= 512 in our analysis. This 
gives us a total of around 2 x 105 parameters in our sampling space. 

For these simulations we made a tota! of 5000 bum in samples and recorded 10000 samples 
from the post burn-in phase. It takes arum1<l 20 seconds tu generate a single sample using two 
dual core Intel Xeon 5150 processors and the MPI parallelised HEALPix spherical harmonic 
transforms, resulting in a total processing time of around 80 hours. 

For comparison we applied the MASTER method 7 to the same data set. Our peak likeli­
hood Ce sample and 68 per cent confidence intervals, binned with the WMAI' team's scheme, 
are shown alongside the results of the :\!ASTER methoc, '.n Fig. l. For most of the range of 
angular scales lhe two estimates and their errors agree well. On the largest angular scales the 
MASTER estimate tends to underestimate the uncertainties and the symmetric errors are far 
from representative of the posterior. 

ahttp:/ /healpix.jpl.nasa.gov 
•http://la.rnbda.gsfc.nasa.gov/ product/ map/ dr3 / para.rneters.cfrn 
chttp://lambrla.gsfc.nasa.gov 
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Figure 2: The plots on the left show the BB spect.rnm estimated using Spice with the full sky (top) and when the 
data is cut with the WMAP polarisation ma.sk (bottom). The plot on the right shows the results of the sampler 

applied to the same simnlation.<, fullsky in hlne anrl cnt sky in reel. 

5 Extending the method to polarisation 

Polarisation provides a new set of opportunities for science and challenges for data analysis. 
Of particular interest is a measurement of the primordial B mode spectrum predicted by many 
inflationary models. One problem faced in the analysis is that for observations on thC' cut sky 
the separation into E and B modes is ambiguous. The E/B mixing is a problem for pseudo­
Ct methods whereas exact methods, such as sampling, can still construct optimal estimates. 
We apply Spice 11•2 and the HMC method to a set of signal dominated simulations. Figure 2 
shows how Spice fails to recover the BB when a cut is imposed whereas the sampler is relatively 
m1affected, a slight increase in the uncertainties caused by the removal of data from the cut. 

Acknowledgements 

We Lhank Morgan French for his contributions Lo Lhe early development of our sampler. .JFT 
acknowledges a STFC (formerly PPARC) studentship. MAJA is a member of the Cambridge 
Planck Analysis Centre, supportro by STFC' grant. ST/FOOfi24fi/l .This work wa." condnct.ro 
in cooperation with SGI/Intel utilising the Altix 3700 supercomputer at DAMTP Cambridge 
supported by HEFCE and STFC. We acknowledge the use of the Legacy Archive for .Microwave 
Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office 
of Space Science. Some oft.he results in this paper have been derived using the HEALPix 6 

package. 

1. Bond .J., .Jaffe A.H., Knox L., 1998, Physical Review D, 57, 2117 
2. Chon et al, 2004, MNRAS 350, 91-1 
3. Duane S., Kennedy A., Pendleton B. J., Roweth D., 1987, Physics Letters B, 195, 216 
4. Efstathiou G., 2003, MNRAS, 346, L26 
5. Gorski K. M., 1994, ApJ, 430, L85 
6. Gorski K. M., Hivon E., Sanday A. J ., Wandelt B. D., Hansen F. K., Reinecke l\l., 

Bartelmann M., 2005, Ap.J, 622, 759 
7. Hivon E. , Gorski K. M., Netterfield C. B., Crill B. P. , Prunet S., Hansen F., 2002 , ApJ, 

567, 2 
8. Jewell J. , Levin S., Anderson C., 2004, ApJ, 609, 1 
9. Oh S. P., Spergel D. N., Hinshaw G., 1999, Ap.J, 510, 551 

10. Spergel D. N. et al., 2007, ApJS, 170, 377 
11. S7.apudi, Prunet, Colom bi, 2001, Ap.J 548, i 15 
12. Wandelt B. D., Larson D. L., Laksminarayana A., 2004, Physical Review D, 70, 083511 

202 


