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1. Introduction

Virasoro minimal models and their characters have a long (and fruitful) history in conformal field theory, string theory and
of course in vertex algebra theory. It is by now well known that the character x.;"(q) of the minimal model L(cs, hy;")

is given by
he'—cs 1124

m,n q B s 2 mt—ns mt+ns mn
X5i'q) = T ) (g - g,
(@)oo keZ
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where 2 <'s,t € Z are coprime, 1 <m < 5,1 < n <1, (q)e = ¢(q) = [1;24(1 — ¢') and

_ 6(s — t)? mn (Mt —ns)? — (s —t)?
Co=loTrg s st | g
In particular,
11\ 1160 [ 1 12\ s [ 1 )
X2.5(q) =4q |_| (1= g>+2)(1 — g>+3) ! X25(q) =4q |_| (1= g> (1 — g>+4) (2)

n=0 n=0
give the product sides of the famous Rogers—Ramanujan series which appear in many papers on representation theory
of Virasoro and affine Lie algebras.

The results in this note arose as an attempt to find a representation theoretic explanation of the following theorem
obtained in 1983 by the first author [11]:

Theorem 1.1.
Denote by L(/\y) the basic (level one) highest weight module for the twisted affine Kac—-Moody algebra A(zz). Then

LAM)®L(A) = LE2AM)®Vid L)@ V2, )

such that suitably normalized and scaled characters of the multiplicity spaces Vi and V, coincide with the product sides
of Rogers—Ramanujan series (2).

This result was obtained in the principal mod 6 realization of A(ZZ) also studied in [4, 7, 23], so it is perhaps not
obvious what is its reformulation in the language of vertex algebras and twisted modules. The above result is somewhat
unexpected because the coset spaces, which are clearly unitary modules for the Virasoro algebra, are essentially given
by the characters of the (s, t) = (2,5) non-unitary minimal models! It is also interesting to notice that the principally
specialized characters of L(2A1) and L(/\¢) are also given by the above Rogers—Ramanujan series (again, suitably
normalized and scaled).

To explain the appearance of Rogers—Ramanujan g-series we recall first a pair of identities which can be traced back
to Bytsko and Fring [6] (for further identities, see [6] and also [19, 21])):

Xoo(q) +x62(@) = 305(0"), X5e(q) + xaa(q) = x25(q""). (4)
We also mention the related identities
Xool@) = x5(@) = x02(a%),  xen(@) = xa5(q) = x25(q?). (5)

Although all these formulas can be checked directly (see Appendix) they are very interesting for several reasons. Their
right hand sides are clearly (scaled) Rogers—Ramanujan series. Also, unlike the identities studied in [21] and [19],
the above formulas are among characters of modules of different central charges (in our case, of central charges —22/5
and 4/5). The key observation now is that the central charge of the coset spaces V4 and V, equals 4/5, the central charge
of (5,6) minimal models. So we are immediately led to the following conclusion: relations (4) should be interpreted as
decomposition formulas of the coset spaces V; and V5 into irreducible Virasoro characters of central charge 4/5. As we
shall see this is indeed the case. In fact, there is something even deeper going on. It turns out that V4 and V; are in fact
(the only twisted) irreducible modules for a larger rational vertex algebra which we end up calling W5(4/5), also known
as the Zamolodchikov Ws-algebra. This algebra has already appeared in the physics literature under the name 3-State
Potts model and more recently in the vertex algebra theory [16]. We first show that there are (at least) four different
ways of thinking about W5(4/5).
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Theorem 1.2,
The following vertex operator algebras are isomorphic:
(a) The parafermionic space Ky, (3,0) C Lq,(3,0) [10]

(b) A certain subalgebra MP of the lattice vertex algebra V;, where L = v2Q and Q is the root lattice of type A,
see [16, 20]

Lsi3(2Mo)
(c) The coset vertex algebra W, 3(/\0)®le3(/\0) [15]

sl3

(d) The simple affine W-algebra L(4/5), obtained via Drinfeld-Sokolov reduction [2, 12]

In physics literature equivalence of (a), (c) and (d) is more or less known. Construction (b) is more recent (again, see [16]).

Having enough knowledge about W5(4/5) we can now return to the cosets V4 and V5. These are not ordinary modules
for W3(4/5), but rather 7-twisted W5(4/5)-modules. Our main result is the following theorem about Ws(4/5).

Theorem 1.3.
For the rational vertex algebra W5(4/5) the following holds:

(a) AUt(W3(4/5)) = Zz.

(b) If we denote by t the nontrivial automorphism of Ws(4/5), then W5(4/5) is T-rational (i.e. W5(4/5) has finitely many
irreps and every t-twisted module is completely reducible).

(c) The algebra Ws(4/5) has precisely two inequivalent representations,
1 4 1 4 2 1 41 4 13
Wil — ] =Lz — Ll =, — d Wil =L[= < Ll =, —|.
(40) (5 40)€B (5 40) an (8) (5 8)@ (5 8)
(d) x(W*(1/40)) = xo5(q') and x(W"(1/8)) = x5 (9"")

Now we connect results from Theorem 1.1 with those in Theorem 1.3. Denote by o the principal automorphism of order
6 of sl3, and let Ly, (/o) be the affine vertex algebra associated to sl3 of level one. The basic A(zz)—module L;’l3 (1) can be
viewed as a g-twisted Ly, (/\g)-module, and its character is given by

o
o 1
trL(/\”qL O=ci24 _ o=1/72 ’
| | — o6n+1)6)(1 — q(6n+5)/6
b (1= qOm)(1 — glon+o)o)

where L?(0) is the o-twisted Virasoro operator.

Similarly, the characters of the two standard level two A(22)—modules (if viewed as o-twisted L, (2/\)-modules) are given
by

= 1
Lo(0)—c/24 _ —1/72 1.2, _1/3
trL(Z/\1)q = q |_| (1 — q(5n+1)/6)(1 — q(6”+5)/6) X25 (q )
n=0

and
0
1
L(0)—c/24 _ 1/6-1/72 11, 13
tring 9 aet = q |—| (1 — q(6n+1)/6)(1 — q(6n+5)/6) X2,5(q )
n=0

Now, formula (3) implies a g-series identity

1/2)

’

ad 1
—172 2By 12, 172 11, 13y 1
q |_(|)(1_q(6”+1)/6)(1_q(6n+5)/6) =205 ")x25(07"7) + X25(0 ") x5 (g
e

after we canceled try,)q"" =% from both sides of (3). This formula can be traced back to Ramanujan. This gives the
main result of our paper.
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Theorem 1.4.
As (0 x 1)-twisted Ly, (2/\o) ® W3(4/5)-module,

- e 1
ML) 2 15,eM W (5 ) @iz e (5).
We also have
try, g0 = 2(q"?), try, qMO = )i (g').

where L(0) is the coset Virasoro operator for the tensor product.

Finally, we mention that (5) can also be explained in terms of representations of W5(4/5). This requires a modular
invariance theorem for T-twisted modules [9]. This was pursued in the last section.

Remark 1.5.

The algebra W5(4/5) and some of its modules appear also in [18], where the coset Virasoro construction is applied
to the investigation of the branching rule decomposition of level-1 irreducible Eé”—modules with respect to the affine
subalgebra Ff).

2. The 3-state Potts model vertex algebra

Let us recall a few basic facts about the Virasoro algebra and its representation theory. We use M(c, h) to denote the
Virasoro Verma module of central charge ¢ and lowest conformal weight h, and denote its lowest weight vector by v .
We let V(c,0) = M(c, 0)/(L(—1)vco), the vacuum vertex algebra. We denote by L(c, h) the unique irreducible quotient
of M(c, h).

Recall (1). We will focus on the central charge cs6 = 4/5. It is well known that L(4/5,0), viewed as a vertex algebra,
has (up to equivalence) precisely 10 irreducible modules [22]:

4 41 4 2 4 13 4
(50) tl55) 155) 55) H5)

4 2 4 1 4 1 4 21 4 7
L(%’%)' L(é'm)' L(%’ﬁ)' L(a'ro)' L(§'§)~

It is also known that L(4/5,0) @ L(4/5,3) can be equipped with a simple vertex operator algebra structure, cf. [16]. Of
course, one can always define a vertex operator algebra structure on V@M, where M is any module with integral
grading by defining the action of M on M to be trivial. But such vertex algebra is not simple. As we shall see, there is
a unique vertex operator algebra structure on L(4/5,0)® L(4/5,3).

(6)

Let us also recall that the space of irreducible characters of L(4/5,0) is 10-dimensional (i.e. the characters are linearly
independent).

Proposition 2.1.
Let (V,Y,1) be a vertex algebra such that V = L(4/5,0)@® L(4/5,3) as a module for the Virasoro algebra and such that
Y15 3e4s3 F 0. If another vertex algebra W = L(4/5,0) @ L(4/5, 3) satisfies the same property, then W = V.

Proof. We certainly have an isomorphism f = f[; 450 ® f2],(4/53 between V and W viewed as Virasoro modules (f is
unique up to a choice of two nonzero scalars). Because of Y (1, x) = id, the map f; is uniquely determined sending the
vacuum of V' to the vacuum of W. Observe that in V, Yy = YT, 453814553 defines an intertwining operator of type

L(4/5,0)
L(4/5,3) L(4/5,3))
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otherwise this would contradict
L(4/5,3)

L(4/5,3) L@4/5,3)) ~

The same holds for Yy. According to [13], this intertwining operator is unique up to a nonzero constant. Thus, after
identification via f, we can find v # 0 such that vYy = Yyy. Therefore (u,v) — (fi(u), f2(v)/A), A2 = v, defines the wanted
automorphism between V and W. O

Existence of the vertex operator algebra satisfying the conditions in Proposition 2.1 has been established in [16]. We shall
denote it by W5(4/5). More precisely, we have [16]

Theorem 2.2.

The vertex algebra W5(4/5) is rational with the following irreducible modules (we also write their decompositions viewed

as Vir-modules):
4 4 2 4 2 4 7
W(0) = (5,0)®L(§,3), W(g) :L(§'§)®L(§'§)'

Now we prove the equivalence of (b) and (d) in Theorem 1.2.

Theorem 2.3.
Vertex algebras W5(4/5) and L(4/5) are isomorphic.

Proof. Recall first that L(4/5) is the unique irreducible quotient of the universal affine W-algebra M, (4/5), modulo
the maximal ideal. We can think of M,,(4/5) as the vertex algebra obtained via Drinfeld-Sokolov reduction from a
universal affine vertex algebra associated to s/l\g or constructed by using free fields via Miura transformation. Either
wauy, it is known that M, (4/5) is freely generated by the conformal vector w and another primary vector of degree three,
w_q1, that is L(O)w_11 = 3w_41 and L(n)w_41 = 0 for n > 1. It is also known that Y(w_41,x)w_11 is nonzero both
in My, (4/5) and in the quotient L,,c(4/5). Let us record

1
trm (4/5)‘7L(O) = (

4% Q)oo(G° @)oo’

i3

where (a; q)so = [i2(1 — ag’). More importantly, by using Frenkel-Kac-Wakimoto's character formula [12] (proven by
Arakawa [2]), we compute the character of L(4/5) as

LO-112 _ =112 \~2 5w(p)+20na; +20may —4p[2/40
tris 0107 = g7 Q)0 ) Y ewqPreOn e ome el
m,nEL weSs

where Sj3 is the Weyl group of sl;, oy and a, are simple roots, p is the half-sum of positive roots and |A|> = (A, A) is
normalized such that |a|? = 2 for each simple root . An easy computation shows that

tr|_(4/5) qL(0)71/12 _ q71/30(1 + qZ + 2q3 + 3q4 4. )

In fact we can show (by expanding both sides in g-series) that the following identity holds for m < 50:

L(0)=1/24 —

trias) g X55(q) + xs5(q)  mod g™, (7)
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Thus, the character of L(4/5) equals the character of W5(4/5) up to degree 50. Let us consider the Virasoro submodule
M C L(4/5) generated by w and w_;1. By Proposition 2.1, it is sufficient to show U(Vir) - 1 = L(4/5,0) C L(4/5) and
U(Vir) - w_41 = L(4/5,3). Indeed, if that is the case, then L(4/5,0) is a rational subalgebra of L(4/5), which decomposes
as a sum of L(4/5,0)-modules with integral conformal weights. But classification of L(4/5,0)-modules and (7) imply
L(4/5) = L(4/5,0)& L(4/5, 3), and the rest of the proof now follows from Proposition 2.1.

Denote by M the cyclic Virasoro module U(Vir)-1 and by M, the cyclic module U(Vir)-w_;1. By the universal property
of Verma modules, these cyclic modules are quotients of M(4/5,0) (even V/(4/5,0)) and M(4/5, 3), respectively. We claim
that My N M, = {0}. If not, My N M, is a nontrivial submodule of a quotient of M(4/5,0) and of M(4/5,3). Embedding
structure for Verma modules among the minimal series shows that this is impossible (the two modules belong to different
blocks). If we let xw(q) = tryy g"@=/>* we get

Xt (@) = X (9) + X, (9) > x5 () + Xae (q),

where > has an obvious meaning for two g-series with non-negative integer coefficients. Now, relation (7) implies
_ 15
Xuy(9) + X (q) = x55(9) + Xs(q)  mod g™

Thus xu, () = Xa(q) and xu,(q) = x22(q), and hence U(Vir)1 = L(4/5,0) and U(Vir)w_41 = L(4/5,3). O

Remark 2.4.

The previous theorem gives a representation theoretic proof of the g-series identity

_ _ w nor mar—4pl2 11 1,5
g (q)d - Y ) enqPrerinertmaioli — s () + xat(q),

m,neEL weSs

which presumably can be checked directly by applying methods similar to those used in Appendix.

Theorem 2.5.
Denote by W:Bg;&bﬂ) the coset vertex algebra obtained via the embedding Lq,(2,0) — Ly, (1,0)® L, (1,0). Then, as

vertex operator algebras, W5(4/5) = Wigg;@’sbm.

Proof. Observe first that the central charge of the coset vertex algebra is

with the Virasoro generator
w®l+1®w — wy,
where w; stands for the Sugawara generator of level k # —3. This coset is unitary so (as a Virasoro module, or

L(4/5,0)-module) it decomposes as a direct sum of irreducible modules of central charge 4/5. The graded dimension can
be now easily computed by using the rationality of L(4/5,0). Alternatively, we can recall a result from [15], where the

character of Wzgggebslgm is computed by using modular invariance. Either way,
sisesly() 4 4
wien = 40) ot £3)

as Virasoro modules. Finally to finish the proof we need

Yiasaeass F 0

in the coset algebra. This was proven by Bowknegt et al. in [3, 5], where it was shown that Wzgg;e@slzﬂ) has a degree 3

generator w_41 such that the brackets [w,, w,] satisfy the relations as in L(4/5). O
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N
3. t-twisted Ws(4/5)-modules and the structure of A.(W5(4/5))

In this part V' is a vertex operator algebra and 7 € AutV has order two. Recall the notion of a weak 7-twisted
V-module M. By definition we require a decomposition V = V%@ V', and the twisted vertex operator map Y7(-, x)

Y*(u,x) € (End /VI)[[X”Z, X71/2]]

such that
Yiu,x)= Y u(n)z", ue V', unyv=0 n>0,
nEZ+r[2
YT(1,x) = Idy,

and the Jacobi identity holds.

xo-%s(w) Y (U, ) YT (v, x2) —X0_15(u) YT (v, x0) Y7 (u, 1)
Xo —Xo

— r/2 —
(22 o255 o

where u € V" and v € V*. Clearly, from the Jacobi identity it follows that M is an untwisted (weak) V°-module.

(1) If we also require M to be graded M = 5, M,, where the grading is induced by the spectrum of L(0) and is bounded
from below, and has finite dimensional graded components, we say that M is a 7-twisted V-module.

(2) If we instead require M to be (N/2)-gradable, such that M = @, _y, M(n), u(m)M(n) C M(n + m —degu —1), then
M is called admissible [8].

Let M be an irreducible 7-twisted V-module. Then there is A such that we have the following decomposition with respect
to the spectrum of L(0):

M = @ (M).+n @M).+n+1/2)' (9)
n=0
so that if we let M\ = M., i, i € {0,1}, the vertex operator map Y7(-, x) is compatible with this Z,-decomposition,
a consequence O](
u(m)Mv C Mv+m—deguf1l

for homogeneous u. Again, M’ is a V%-module for i € {0,1}. A vertex operator algebra V is said to be r-rational if
every admissible 7-twisted V-module is completely reducible [8].

We also discuss intertwining operators among irreducible (ordinary) V-modules [13]. Without giving the full definition,
let us record that an intertwining operator of type (W1W3W2) is a linear map Y(u,x) € Hom(W,, Ws){x}, u € W, such
that (among other things) the following Jacobi identity holds:

xa16(w) Y(u, x1)Y(v, x2) w —xghs(ﬂ ) Y(v, x0) Y(u, xi)w = X;MS(M) Y(Y(u, xo)v, x2) w,
Xo —Xo X2

whereu e V,ve W and w € Ws.

Let us now focus on the twisted Jacobi identity (8) when u € V' and v € V° We shall see that the corresponding
identity is an essentially intertwining operator map between V%-modules. Because u € V', then Y*(u, x) restricted
on M’ is mapped to M™" where we use the mod 2 exponent notation. Denote by /(u, x) this restriction. Since v € V?,
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its action on M’ is the usual V°-module action, so we write Yy(u, x) instead of Y™ (u, x). The twisted Jacobi identity now
reads (after we apply it to a vector w):

X2 —X

X0 ( ”X;Oxz ) 1w, x1) Yo(v, x2) w — xg16( ) Yo(v, x2) {u, x1)w

X1 — Xo 12 X1 — Xo (10)
=x; ( o ) 5( - ) (Y (u, x0)v, x2) w.
Now, apply the substitution x; <> x; and xo — —xp. The identity then is
x3'o ( % ) Yo(v, xi) (v, x2)w — x5 ( %) I(u, x2) Yo(v, x1) w
0 —Xo
(1)

1(X2+X0)1/25(X2+X0

= IY - .
X . . ) ( o(u, XQ)V,X1)W

Because of Y(u, x)v = eV Yy (v, —x)u (the skew-symmetry), the right hand-side can be rewritten as

112 112

X2 + X X2 + X X2 + X X2 + X

xf1( 2 0) 6( 2 0)I(e’XOL(’”Yo(v,xo)u,m)W:xﬁ( 2 0) 5( 2 O)I(Yo(v,xo)u,x1—x0)w.
X1 Xq X1 X1

To finish the proof observe first that, by twisted weak associativity, we can always choose positive k € N such that
X512 (x, + xo)kl(Yo(v, Xo)u, xz) w

involves only positive (integrall) powers of the variable x,. Consider
X0 ( %) (X121 Yo(v, xo)u, x2) W), (12)

which also equals

X0 ( )(1)(7—2)(0 ) (02 + x0) x5 1Yo (v, x0)u, xo) w).

Now, we are allowed to replace in (12) the x; variable with x; — xo, so we get

X1 — X
x50 ( 1)(720 ) (xfxf()q — xo)"I(Yo(v, xo)u, X1 — Xo)W).

k—1/2X1—k

Finally, we multiply the last expression by x; and obtain

12
X1 — X x1—xo \ [ x1 — x
x2’16(1X720)I(Yg(v,xo)u,xz)W:xfé(%zo)(1)(720) I(Yo(v, xo)u, xi — xo) w.

Consequently, (11) and the last formula imply the following result.

Proposition 3.1.
M

The map I(-, x) defines an intertwining operator among V°-modules of type (v* M/w). The identity (10) is equivalent to
the Jacobi identity for (-, x).

We also have the following useful result.
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Lemma 3.2.
Let M be an irreducible T-twisted V-module for a simple vertex algebra V. Then for every nonzerou € V, m € M,

Y (u,x)m + 0.

The proof is clear (otherwise Y7 (a,x)m = 0 for every @ € V, which is impossible because M is cyclic). This statement,
in particular, yields M" # 0 and M° # 0.

We shall need a few results about 7-twisted Zhu's algebra A.(V) = V/O(V) following [8], where O(V) is the span of

vectors of the form
(1 +X)dega—1+6,+r/2

aob = Res, Y(a,x)b,

X1+§r
where a € V" and where 09 = 1 and d; = 0, and the multiplication * on A;(V) is induced via

(1 4+ x)%90

a* b = Res, Y(a,x)b.

For every a € V® and b € V' we have a b = 0 mod O(V), so b =0 as an element in A (V).
Now we specialize V = W5(4/5) = L(4/5,0)& L(4/5, 3).

Lemma 3.3.
The t-twisted Zhu algebra A;(W5(4/5)) is a quotient of the polynomial algebra kx.

Proof. Denote by s the natural projection from ‘W5(4/5) to A.(Ws(4/5)). Then m(v) = 0 for v € A(W5(4/5))1 [8].
If we denote Ag(W5(4/5)) = A(Ws(4/5)), where A(W5(4/5)) is the usual Zhu's algebra of W5(4/5), we clearly have an
isomorphism A;(Ws(4/5)) = A(Ws(4/5))o/l where [ is a certain ideal. O

We are primarily interested in irreducible t-twisted W5(4/5)-modules. Every such module is an ordinary module for
L(4/5,0), so it decomposes as a direct sum of (ordinary) modules given on the list in (6). Because of (9), any irreducible
T-twisted W3(4/5)-module is heavily constrained with respect to the spectrum of L(0). More precisely,

Proposition 3.4.
Let M be an irreducible t-twisted Ws(4/5)-module as in (9). Then M, viewed as an L(4/5,0)-module, is isomorphic to

either
4 1 4 2 41 4 13
@L(g,%)EB@L(g,%) or @L(g,g)GB@L(g,@),
i€l jel kek lel

where |, ], K, L are finite sets.

Proof. The spectrum of L(0) on M = M°@ M must be contained inside the set A+N/2, where A is the lowest weight
of irreducible L(4/5,0)-modules (6). Also, in addition M #+ 0. This implies that the absolute value of the difference
between the lowest conformal weights of M and of M' must lie within the set N + 1/2. An easy inspection of allowed
weights gives two possibilities: A = 3/8 or A = 1/40. O

The next result follows from the fusion rules for L(4/5,0) [16, 22] (see also [14]).

Lemma 3.5.
The module L(4/5,3) is a simple current (i.e. it permutes equivalence classes of irreducible modules under the fusion
product x). In particular,

()3 5) -1 (2d) o

4 4 1 4 2
L(é'3)*L(5'%)—L(6'%)' L(
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Now let us examine the number of irreducible summands in decompositions in Proposition 3.4.

Proposition 3.6.
Let M be as in Proposition 3.4. Then, viewed as a Vir-module,

~, (4 1 4 2 ~, (41 4 13

Proof. We prove the first assertion. Because the twisted module in question is irreducible and A.(Ws(4/5)) is
commutative, the top level must be an (irreducible) one-dimensional module. Therefore the set / must be a singleton.
If |J] > 2, the direct sum @jej L(4/5,21/40) decomposes into at least two irreducible L(4/5,0)-modules. To rule out
this case we apply the same argument as in the proof of [16, Lemma 5.3]. This argument and Lemma 3.5 yield a
Ws(4/5)-module on L(4/5,21/40), such that L(4/5,0) acts trivially on it. But this is clearly a contradiction, so |[J| =1. O

Theorem 3.7.
Let M be an irreducible T-twisted W5(4/5)-module such that

o (41 4 21 o (4 4 13

Then such M is unique up to isomorphism.

Proof. Recall that irreducible W3(4/5)-modules are in one-to-one correspondence with the modules for the Zhu
algebra A(W5(4/5)), which is isomorphic to a quotient of the polynomial algebra k[x], where x = [w]. Every such module
is one-dimensional so the top level of an irreducible W5(4/5)-module must be one-dimensional. The rest follows from
Proposition 3.6. O

In the next section (cf. Proposition 4.5) we construct two (irreducible) 7-twisted W3(4/5)-modules W7 (1/40) and W*(1/8),
which decompose as modules in Theorem 3.7. Consequently, combined with Lemma 3.3 we immediately obtain

Corollary 3.8.
The vertex algebra Ws(4/5) has precisely two t-twisted irreducible modules. Moreover, the twisted Zhu algebra
Ac(W3(4/5)) is isomorphic to C[x]/{(x — 1/40)(x — 1/8)).

Theorem 3.9.
The vertex algebra Ws(4/5) is C,-cofinite and t-rational.

Proof. The vertex algebra W5(4/5) contains a C,-cofinite subalgebra (i.e. L(4/5,0), with the same conformal vector)
thus it is Go-cofinite itself.

To prove the rationality we follow the standard arguments as from [16, Theorem 5.6], which we essentially repeat
here. We only have to prove complete reducibility. So let M be an arbitrary admissible W5(4/5)-module. We may
split M = M1/8® M1/40), where the weights of My are contained inside 1/8 + Nx/2, and the weights of M40y are
in 1/40 + N5o/2. Indeed, this follows from complete reducibility with respect to L(4/5,0), Lemma 3.5, Proposition 3.1 and
the fact that allowed lowest weights are 1/8 and 1/40. Our proof of complete reducibility of Mg is essentially the same
as the proof for M1,4q), so let us assume M = My g) for simplicity. Consider the (top) weight 1/8 subspace M(1/8) of M1g).
This is also an A(W5(4/5))-module. An easy analysis shows that, as L(4/5,0)-module, M = L(4/5,1/8)®" & L(4/5,13/8)",
with some multiplicities m and n. The multiplicity m is precisely the dimension of the weight 1/8 subspace. To finish the
proof we have to arque that m = n and M = (L(4/5,1/8)® L(4/5,13/8))®", as W3(4/5)-modules. Choose 0 # v € M(1/8)
and consider W3(4/5) - v. We claim that W5(4/5) - v = L(4/5,1/8) @ L(4/5,13/8). Clearly there could be only one copy
of L(4/5,1/8) inside W5(4/5) - v. Also, from the fusion rules, Lemma 3.5, restriction of the module map Y|, 4s5301(4/5.1/8):
where L(4/5,1/8) C W5(4/5)-v, must land inside W, where W is isomorphic to L(4/5,13/8), or is plainly zero. If the image
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is zero then L(4/5,1/8) becomes an irreducible module for W5(4/5), contradicting our classification of W5(4/5)-modules
in Proposition 3.6. We conclude W5(4/5) - v = L(4/5,1/8)e@ L(4/5,13/8).

Now, take a nonzero vector v/ € M(1/8) in the complement of Cv and repeat the procedure. Then W5(4/5)-v' N
'W3(4/5)-v must be trivial or L(4/5,13/8). The latter case cannot occur because of Proposition 3.6. This way we
obtain a decomposition of submodule of M isomorphic to (L(4/5,1/8)® L(4/5,13/8))®". The condition m = n must be
satisfied, otherwise we could quotient M with the submodule (L(4/5,1/8) & L(4/5,13/8))®" and obtain a module of lowest
weight 13/8, again a contradiction. O

4. Standard A(Zz)-modules and construction of r-twisted W5(4/5)-modules

In this section, our focus is the Kac—Moody Lie algebra of type A(zz) and its standard modules. We will denote by o
a principal (order 6) automorphism of sl3 such that

5

sb=@@ sl sblil={a € sk ofa) = Ta},

j=0

where & is a primitive 6th root of unity. Let A be a dominant weight of level [ for A(Zz). We denote by L3, (A) the

o-twisted AY'-module, which is also an Ly, (IAo)-module [17). In particular, L% (A;) (which is of level 2) and L (2A)
are g-twisted L, (2/\g)-modules. Theorem 1.1 gives construction of both modules inside the tensor product of the basic
module LY, (M) ® LY, (/). Indeed, it is easy to see that vz, ® v, is a highest weight module for L3, (2/\1) and the vector

sly sly
(f1-va,) ® VA, — VA, ® (f1-Va,) generates the module Lgb(/\o). Here {eo, fo, ho, €1, f1, h1} is the canonical set of generators

of A(Zz). We denote the twisted module map with Y?(-,x). In particular, for any x € sls[j], we have

Yox(=1)1,x) = ZX(” + é)xfnfj/6—1.

nezZ
Consider

8
1 -
et = 37 guf(—1)ui(—1)1 € Ly (Ao),

the Sugawara conformal vector of central charge 8(/(l + 3), where {u;} and {a;} are conveniently chosen orthogonal
bases such that o(u;) = 07'(@;), so that ui(—1)a;(—1)1 is fixed under the automorphism (we can actually choose {a;}
to be a permutation of {u;} [4]). Thus

Y(w,x) =) L{_(0)x".

nez
Denote by
W= w1 ®1 = 1Q w1 — w2 € Lys(No) ® L (M)

the coset Virasoro generator of central charge 2+ 2 —16/5 = 4/5, and let

Y(wx)=> L(n)x"2

neL

For related coset constructions see [1]. The following lemma is a crucial technical fact.

Lemma 4.1.
We have 3
5 4 1
Lica@va = 5vae Liavan = g5 van Lo (0)vag = 555 v
Consequently,
1 1
L(O) Vz/\1 = — Vz/\1 B L(O) V/\O = - V/\o‘

40 8
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Proof. We prove only the first formula L(O)van, = wap, /40, the other formula is proven along the same lines. Recall
that for the Virasoro algebra operator L(0) we picked generators u;, @i;, i € {1,...,8}, such that

O'(U,') = EjU,', J(U,’) = Eﬁij[l[,

Thus we have to compute expressions
Coeff,—2 Y (ui(—1)a;,(—1)1,x),

contributing to L(0), acting on the highest weight vectors vy, and on v,p, = vp,®Va,. For that we use a version of the
Jacobi identity (8) with v = u;(—1)1 and v = @;(—1)1, where the automorphism 7 is now a. In this setup

o\
Res,, CT,, Res,, (RHS of (8)) = Res,,CT, Res, x;" (”TX") 5(“)(72“) Yo (Y (ui, x0) 01, %),

which equals (by [4, 17])

Res,, x, V7 (u(—=1)ai(=1)1,x) + é[u,v, 7:)(0) + (j£6) [ (13)

where [ is the level.

Taking the same residues, now of the left hand side of the Jacobi identity, gives
Res,, CT,, Res,, (LHS of (8)) = CT,,: Y7 (ui, x2) Y°(a;,x2) :, (14)

the constant term of a twisted normally ordered product. Comparing the formulas (13) and (14), and summing over i,
gives an expression for L7_;(0). It is now easy to get L7_,(0)va, = 5va,/72. Next, we use the Sugawara operator L]_,(0)
and act on wp,. The only nonzero contributions when calculating these operators come from (j/6)[u;, d;)(0) and (’éﬁ)l.
After we sum over i we get L7_,(0)van, = 41v25, /360 and finally L(0)voa, = vap, /40. O

Remark 4.2.
Presumably the computation in Lemma 4.1 can be carried out via an explicit realization of A(22) on the twisted Fock space
obtained in [11].

The next result comes immediately from Theorem 2.5 and [15]:

Proposition 4.3.
We have the following decomposition of L., (2, 0) ® W5(4/5)-modules:

Lai5 (Mo) ® Las (o) = Lai5 (200) @ W(0) & Lot (A1) ® W(2/5).

The next goal is to find a twisted version of Proposition 4.3. The automorphism ¢ acts diagonally on Ly, (/o) ® Lei;(Ao),
and is denoted by o x 0. We have to see how it behaves when restricted to the subalgebra L, (2/\g) ® W3(4/5).

Lemma 4.4.
The automorphism o preserves W3(4/5). More precisely, we have 0y, 45 = T. Thus, 0 x U[st (2Ag)eWs(4/5) = O X T.

Proof. The automorphism ¢ acts (diagonally) on the tensor product Ly, (Ao)® Lq,(Ao). Therefore, o also preserves
Ly, (2/o). Since W3(4/5) is the commutant of Ly, (2/\g), by definition a,b = 0 for all a € Ly,(2/\g) and b € W3(4/5),
m > 0. But then o(a,b) = a(a),0o(b) = 0, and hence a(b) € W5(4/5). Recall Aut Ws(4/5) = Z,. If 0ly9,45 = 1, then
Vi would be an ordinary W5(4/5)-module. An easy inspection of modules in Theorem 2.2 implies that this is impossible.
The proof follows. O
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Consequently, we reached the desired decomposition analogous to the one in Proposition 4.3.

Proposition 4.5.
As (0 x 1)-twisted Ly, (2,0) ® W3(4/5)-modules,

1 1
15,15, M) = 15,7 W (55 @ 15,08 ().

where W*(1/40) and W™ (1/8) have lowest conformal weights 1/40 and 1/8, respectively.

Proof. The vertex algebra Ly,(2/\¢) is o-rational, thus L (A)®Lg, (A1) decomposes as a direct sum of o-twisted

sly

Lg;(2/\o)-modules. This decomposition is described in Theorem 1.1. As Ws(4/5) is the commutant of Ly,(2,0) C
Ly (Mo) ® Lai3(No), and L2, (M) ® LY, (/A1) is a twisted (o x 1)-module by Lemma 4.4, the multiplicity spaces in Theorem 1.1

sl3 sl3
are naturally 7-twisted W5(4/5)-modules. The proof now follows from Lemma 4.1. O

5. Modular invariance

Now we are ready to “explain” relations (5), and in particular the negative sign appearing in both identities. First
we recall a result from [9], where a version of Zhu's of modular invariance theorem was extended to general C,-cofinite
rational T-twisted vertex algebras (here 7 is at first an automorphism of finite order).

The setup is as follows. Pick a pair of commuting automorphisms (g, h) (of finite order) of V, where V is G-cofinite,
and satisfies all the rationality and finiteness conditions as in [9]. Then we let

Tulg. h, v, q) = trye(h)o(v)g" 0=/,

where M is h-stable g-twisted sector. This holomorphic function in |g| < 1, ¢ = e?¥, satisfies the modular transfor-
mation property under

ab )
= [c d] , ad—bc=1, e, Tm(g. h,v,q)l,.q = ;UWTW((g,h)y, q),

where the summation goes over all gh°-twisted sectors W which are g”h9-stable, and (g, h)y = (g°h¢, g h?). Observe
that the modular invariance mixes several twisted sectors.

Now specialize g = h = 1, where 7 is of order two.
Claim: 7 o M = M for every irreducible 7-twisted module M.

The T-twisted module 7 o M is defined via
Y/(u,x) = Y'(tu, x).

Because ToM is M = M°@M' as a vector space, we let
o:M—>toM, oy =1, oy = —1.

We claim that o is the wanted isomorphism. If u € V?, a(Y*(u,x)m)) = Y (u,x)tm = Y(u,x)om, and if u € V',
o(Y™(u,x)m) = (=1)Y"(u,x)am = Y(u,x)om. This proves the claim.

Notice that not every ordinary V-module is 7-stable. For instance, untwisted Ws(4/5)-module W(2/5, —) is not isomor-
phic to W(2/5, +), although the former is obtained as a r-twist from the later (cf. Theorem 2.2). Thus when g®h? # 1
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we can omit the stability condition (always satisfied). From now on we are interested only in vacuum twisted characters
so we let u = 1. Consider the standard generators S and T of the modular group, corresponding to y — —1/y and
y — y + 1, respectively. For the S matrix a =0, b =1, c = —1and d =0, and for the T-matrixa =1, b=1,¢=0
and d = 1.

Under the S transformation
Tu(t.1,1,9)l0s =Y cwTw(1,7.1,9),
w

where the summation is over untwisted modules which are 7-stable. Similarly,

Tu(t, 1,1,9)lr =) dwTw(t.7,1,q),
w

where the summation is over T-twisted modules. We also have

Tu(t. 1.1, 9) s =) ewTw(r.7,1,q),
w

where the summation is over T-twisted modules (which are t-fixed), and

Tu(t. T 1.q) =Y fwTw(t,1,1,9),
w

where the summation is over T-twisted modules. Moreover,

Tu(l, 7.1,9)lgs =) gwTw(t,1,1,q),
w

where the summation is over T-twisted modules, and

Tu(1. 7. 1,9)er =Y hwTw(l,7.1,q),
w

where the summation is over t-stable Ws(4/5)-modules. In the above formulas cw,dw,..., hy are some constants.
We summarize all these relations as

Corollary 5.1.
The vector space spanned by
{TM(1,T, 1,q) : M is untwisted and T—stable} and {TM(T, 7¢,1,q) : M is T-twisted and € = 0, 1}

is modular invariant.

Going back to W3(4/5). There are two 7-stable irreducible untwisted W3(4/5)-modules, namely W(0) and W(2/5). So the
relevant modular invariant space has a basis

Twr(iao(T, 751,9) = xap (@) + (=1)xas (@), Twre (T, T51,9) = x55() + (1) x2% (q),

where € € {0,1}, and
Two(1,7.1,9) = X240 () — X2 (@), Twem(1,7.1,9) = x20(q) — Xa5(q).

Thus, the left hand-sides in (5) are simply the twisted characters of irreducible (untwisted) W5(4/5)-modules. Combined
with the expected identities given on the right hand-sides in (5), or simply by using modular invariance arguments,
we easily get another (more natural) basis.

Proposition 5.2.
For V. ="'Ws(4/5) and T as above, the vector space spanned by expressions in Corollary 5.1 is 6-dimensional with a basis

D627, 020, 305", 05", o2 (=), xa5(—q")}.
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Appendix

In this section we discuss g-series identities underlying (4)—(5). The idea is relatively simple so we prove only the first
of identities in (4) here, and leave the rest to the reader. Similar methods can be used to prove other identities.

Proposition 5.3.
We have

Xae(q) + x521) = x23(q""). (15)

Proof. The left hand side of (15) is equal to

11120 30m2—4m 30m2+16m+2 30m2—14m+3/2 30m2+26m+4+3/2
gy (q -q +q -q (@)eo-

meZ

Thus it is sufficient to prove

. = ’ w32, 16
<z |—|(1 — gBrAR)(] — g (16)
n=0

30m2—4m 30m2+16m+2 30m2—14m+3/2 30m24+26m+4+3/2\ _ (9)os
E ( q —q +q —q =

Recall the quintuple product identity

Z(_»] )lnq3m2+mz3m+1 + Z(_1 )mq3m2—mz3m

mez mez

(17)
(1= ™)1 = ¢ 2201 = g 22 72)(1 + g 2)(1 + g*27)

Ik

=(1+2)

Il
=N

n

We rewrite the left hand-side as

E q12m2+2mzﬁm+1 _ 2 q12m2+‘|4m+426m+4 4 2 q12m272mz6m _ 2 q12m2+‘|0m+226m+3.

meZ meZ meZ meZ

Substitute now in (17) g for g2 and z for g3/, and multiply the resulting expression with g*2. Then (17) turns into
the left hand-side of (16). The proof now follows from an easy identity

o)

|—|(1 _ q(5n+2)/2)(1 _ q(5n+3)/2)
n=0

(1 + q3/2) |_|(1 _ q5N)(1 _ q10n78)(1 _ q10n72)(1 + q5n73/2)(1 + q5n+3/2) — (Q)oo ) D
n=1
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