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1. Introduction

Virasoro minimal models and their characters have a long (and fruitful) history in conformal field theory, string theory andof course in vertex algebra theory. It is by now well known that the character χm,ns,t (q) of the minimal model L(cs,t , hm,ns,t )is given by
χm,ns,t (q) = qh

m,n
s,t −cs,t /24(q)∞ ·

∑
k∈Z

qstk2(qk(mt−ns) − q(mt+ns)k+mn),
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where 2 ≤ s, t ∈ Z are coprime, 1 ≤ m < s, 1 ≤ n < t, (q)∞ = φ(q) = ∏∞i=1(1− qi) and
cs,t = 1− 6(s − t)2

st , hm,ns,t = (mt − ns)2 − (s − t)24st . (1)
In particular,

χ1,12,5 (q) = q11/60 ∞∏
n=0

1(1− q5n+2)(1− q5n+3) , χ1,22,5 (q) = q−1/60 ∞∏
n=0

1(1− q5n+1)(1− q5n+4) (2)
give the product sides of the famous Rogers–Ramanujan series which appear in many papers on representation theoryof Virasoro and affine Lie algebras.The results in this note arose as an attempt to find a representation theoretic explanation of the following theoremobtained in 1983 by the first author [11]:
Theorem 1.1.
Denote by L(Λ1) the basic (level one) highest weight module for the twisted affine Kac–Moody algebra A(2)2 . Then

L(Λ1)⊗L(Λ1) = L(2Λ1)⊗V1⊕L(Λ0)⊗V2, (3)
such that suitably normalized and scaled characters of the multiplicity spaces V1 and V2 coincide with the product sides
of Rogers–Ramanujan series (2).
This result was obtained in the principal mod 6 realization of A(2)2 also studied in [4, 7, 23], so it is perhaps notobvious what is its reformulation in the language of vertex algebras and twisted modules. The above result is somewhatunexpected because the coset spaces, which are clearly unitary modules for the Virasoro algebra, are essentially givenby the characters of the (s, t) = (2, 5) non-unitary minimal models! It is also interesting to notice that the principallyspecialized characters of L(2Λ1) and L(Λ0) are also given by the above Rogers–Ramanujan series (again, suitablynormalized and scaled).To explain the appearance of Rogers–Ramanujan q-series we recall first a pair of identities which can be traced backto Bytsko and Fring [6] (for further identities, see [6] and also [19, 21]):

χ1,25,6 (q) + χ1,45,6 (q) = χ1,12,5 (q1/2), χ2,25,6 (q) + χ2,45,6 (q) = χ1,22,5 (q1/2). (4)
We also mention the related identities

χ2,15,6 (q)− χ2,55,6 (q) = χ1,12,5 (q2), χ1,15,6 (q)− χ1,55,6 (q) = χ1,22,5 (q2). (5)
Although all these formulas can be checked directly (see Appendix) they are very interesting for several reasons. Theirright hand sides are clearly (scaled) Rogers–Ramanujan series. Also, unlike the identities studied in [21] and [19],the above formulas are among characters of modules of different central charges (in our case, of central charges −22/5and 4/5). The key observation now is that the central charge of the coset spaces V1 and V2 equals 4/5, the central chargeof (5, 6) minimal models. So we are immediately led to the following conclusion: relations (4) should be interpreted asdecomposition formulas of the coset spaces V1 and V2 into irreducible Virasoro characters of central charge 4/5. As weshall see this is indeed the case. In fact, there is something even deeper going on. It turns out that V1 and V2 are in fact(the only twisted) irreducible modules for a larger rational vertex algebra which we end up calling W3(4/5), also knownas the Zamolodchikov W3-algebra. This algebra has already appeared in the physics literature under the name 3-StatePotts model and more recently in the vertex algebra theory [16]. We first show that there are (at least) four differentways of thinking about W3(4/5).
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Theorem 1.2.
The following vertex operator algebras are isomorphic:(a) The parafermionic space Ksl2 (3, 0) ⊂ Lsl2 (3, 0) [10].(b) A certain subalgebra M0 of the lattice vertex algebra VL, where L = √2Q and Q is the root lattice of type A2,

see [16, 20].(c) The coset vertex algebra W
Lsl3 (2Λ0)
Lsl3 (Λ0)⊗Lsl3 (Λ0) [15].(d) The simple affine W-algebra L(4/5), obtained via Drinfeld–Sokolov reduction [2, 12].

In physics literature equivalence of (a), (c) and (d) is more or less known. Construction (b) is more recent (again, see [16]).Having enough knowledge about W3(4/5) we can now return to the cosets V1 and V2. These are not ordinary modulesfor W3(4/5), but rather τ-twisted W3(4/5)-modules. Our main result is the following theorem about W3(4/5).
Theorem 1.3.
For the rational vertex algebra W3(4/5) the following holds:(a) Aut(W3(4/5)) = Z2.(b) If we denote by τ the nontrivial automorphism of W3(4/5), then W3(4/5) is τ-rational (i.e. W3(4/5) has finitely many

irreps and every τ-twisted module is completely reducible).(c) The algebra W3(4/5) has precisely two inequivalent representations,

Wτ
( 140

) = L
(45 , 140

)
⊕L
(45 , 2140

)
and Wτ

(18
) = L

(45 , 18
)
⊕L
(45 , 138

)
.

(d) χ(Wτ (1/40)) = χ1,22,5 (q1/2) and χ(Wτ (1/8)) = χ1,12,5 (q1/2).
Now we connect results from Theorem 1.1 with those in Theorem 1.3. Denote by σ the principal automorphism of order6 of sl3, and let Lsl3 (Λ0) be the affine vertex algebra associated to ŝl3 of level one. The basic A(2)2 -module Lσsl3 (Λ1) can beviewed as a σ-twisted Lsl3 (Λ0)-module, and its character is given by

trL(Λ1)qLσ (0)−c/24 = q−1/72 ∞∏
n=0

1(1− q(6n+1)/6)(1− q(6n+5)/6) ,
where Lσ (0) is the σ-twisted Virasoro operator.Similarly, the characters of the two standard level two A(2)2 -modules (if viewed as σ-twisted Lsl3 (2Λ0)-modules) are givenby

trL(2Λ1)qLσ (0)−c/24 = q−1/72 ∞∏
n=0

1(1− q(6n+1)/6)(1− q(6n+5)/6) χ1,22,5 (q1/3)
and trL(Λ0)qLσ (0)−c/24 = q1/6−1/72 ∞∏

n=0
1(1− q(6n+1)/6)(1− q(6n+5)/6) χ1,12,5 (q1/3).

Now, formula (3) implies a q-series identity
q−1/72 ∞∏

n=0
1(1− q(6n+1)/6)(1− q(6n+5)/6) = χ1,22,5 (q1/3)χ1,22,5 (q1/2) + χ1,12,5 (q1/3)χ1,12,5 (q1/2),

after we canceled trL(Λ1)qLσ (0)−c/24 from both sides of (3). This formula can be traced back to Ramanujan. This gives themain result of our paper.
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Theorem 1.4.
As (σ ×τ)-twisted Lsl3 (2Λ0)⊗W3(4/5)-module,

Lσsl3 (Λ1)⊗Lσsl3 (Λ1) ∼= Lσsl3 (2Λ1)⊗Wτ
( 140

)
⊕Lσsl3 (Λ0)⊗Wτ

(18
)
.

We also have trV1 qL(0)−c/24 = χ1,22,5 (q1/2), trV2 qL(0)−c/24 = χ1,12,5 (q1/2).
where L(0) is the coset Virasoro operator for the tensor product.

Finally, we mention that (5) can also be explained in terms of representations of W3(4/5). This requires a modularinvariance theorem for τ-twisted modules [9]. This was pursued in the last section.
Remark 1.5.The algebra W3(4/5) and some of its modules appear also in [18], where the coset Virasoro construction is appliedto the investigation of the branching rule decomposition of level-1 irreducible E (1)6 -modules with respect to the affinesubalgebra F (1)4 .
2. The 3-state Potts model vertex algebra

Let us recall a few basic facts about the Virasoro algebra and its representation theory. We use M(c, h) to denote theVirasoro Verma module of central charge c and lowest conformal weight h, and denote its lowest weight vector by vc,h.We let V (c, 0) = M(c, 0)/〈L(−1)vc,0〉, the vacuum vertex algebra. We denote by L(c, h) the unique irreducible quotientof M(c, h).Recall (1). We will focus on the central charge c5,6 = 4/5. It is well known that L(4/5, 0), viewed as a vertex algebra,has (up to equivalence) precisely 10 irreducible modules [22]:
L
(45 , 0

)
, L

(45 , 18
)
, L

(45 , 23
)
, L

(45 , 138
)
, L

(45 , 3
)
,

L
(45 , 25

)
, L

(45 , 140
)
, L

(45 , 115
)
, L

(45 , 2140
)
, L

(45 , 75
)
.

(6)
It is also known that L(4/5, 0)⊕L(4/5, 3) can be equipped with a simple vertex operator algebra structure, cf. [16]. Ofcourse, one can always define a vertex operator algebra structure on V ⊕M, where M is any module with integralgrading by defining the action of M on M to be trivial. But such vertex algebra is not simple. As we shall see, there isa unique vertex operator algebra structure on L(4/5, 0)⊕L(4/5, 3).Let us also recall that the space of irreducible characters of L(4/5, 0) is 10-dimensional (i.e. the characters are linearlyindependent).
Proposition 2.1.
Let (V , Y , 1) be a vertex algebra such that V ∼= L(4/5, 0)⊕L(4/5, 3) as a module for the Virasoro algebra and such that
Y �L(4/5,3)⊗L(4/5,3) 6= 0. If another vertex algebra W ∼= L(4/5, 0)⊕L(4/5, 3) satisfies the same property, then W ∼= V .

Proof. We certainly have an isomorphism f = f�L(4/5,0)⊕f2�L(4/5,3) between V and W viewed as Virasoro modules (f isunique up to a choice of two nonzero scalars). Because of Y (1, x) = id, the map f1 is uniquely determined sending thevacuum of V to the vacuum of W . Observe that in V , ỸV = Y �L(4/5,3)⊗L(4/5,3) defines an intertwining operator of type(
L(4/5, 0)

L(4/5, 3) L(4/5, 3)
)
,
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otherwise this would contradict
I
(

L(4/5, 3)
L(4/5, 3) L(4/5, 3)

) = 0.
The same holds for ỸW . According to [13], this intertwining operator is unique up to a nonzero constant. Thus, afteridentification via f , we can find ν 6= 0 such that νỸV = ỸW . Therefore (u, v) 7→ (f1(u), f2(v)/λ), λ2 = ν, defines the wantedautomorphism between V and W .
Existence of the vertex operator algebra satisfying the conditions in Proposition 2.1 has been established in [16]. We shalldenote it by W3(4/5). More precisely, we have [16]
Theorem 2.2.
The vertex algebra W3(4/5) is rational with the following irreducible modules (we also write their decompositions viewed
as Vir-modules):

W(0) = L
(45 , 0

)
⊕L
(45 , 3

)
, W

(25
) = L

(45 , 25
)
⊕L
(45 , 75

)
,

W

(25 ,+
) = L

(45 , 23
)
, W

(25 , −
) = L

(45 , 23
)
,

W

( 115 ,+
) = L

(45 , 115
)
, W

( 115 , −
) = L

(45 , 115
)
.

Now we prove the equivalence of (b) and (d) in Theorem 1.2.
Theorem 2.3.
Vertex algebras W3(4/5) and L(4/5) are isomorphic.

Proof. Recall first that L(4/5) is the unique irreducible quotient of the universal affine W-algebra Msl3 (4/5), modulothe maximal ideal. We can think of Msl3 (4/5) as the vertex algebra obtained via Drinfeld–Sokolov reduction from auniversal affine vertex algebra associated to ŝl3, or constructed by using free fields via Miura transformation. Eitherway, it is known that Msl3 (4/5) is freely generated by the conformal vector ω and another primary vector of degree three,
w−11, that is L(0)w−11 = 3w−11 and L(n)w−11 = 0 for n ≥ 1. It is also known that Y (w−11, x)w−11 is nonzero bothin Msl3 (4/5) and in the quotient Lvac(4/5). Let us record

trMsl3 (4/5)qL(0) = 1(q2;q)∞(q3;q)∞ ,
where (a;q)∞ = ∏∞i=0(1− aqi). More importantly, by using Frenkel–Kac–Wakimoto’s character formula [12] (proven byArakawa [2]), we compute the character of L(4/5) as

trL(4/5)qL(0)−1/12 = q−1/12(q)−2
∞

∑
m,n∈Z

∑
w∈S3

εwq|5w(ρ)+20nα1+20mα2−4ρ|2/40 ,

where S3 is the Weyl group of sl3, α1 and α2 are simple roots, ρ is the half-sum of positive roots and |λ|2 = 〈λ, λ〉 isnormalized such that |α|2 = 2 for each simple root α . An easy computation shows that
trL(4/5)qL(0)−1/12 = q−1/30(1 + q2 + 2q3 + 3q4 + · · · ).

In fact we can show (by expanding both sides in q-series) that the following identity holds for m ≤ 50:
trL(4/5)qL(0)−1/24 ≡ χ1,15,6 (q) + χ1,55,6 (q) mod qm. (7)
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Thus, the character of L(4/5) equals the character of W3(4/5) up to degree 50. Let us consider the Virasoro submodule
M ⊂ L(4/5) generated by ω and w−11. By Proposition 2.1, it is sufficient to show U(Vir) · 1 = L(4/5, 0) ⊂ L(4/5) and
U(Vir) · w−11 = L(4/5, 3). Indeed, if that is the case, then L(4/5, 0) is a rational subalgebra of L(4/5), which decomposesas a sum of L(4/5, 0)-modules with integral conformal weights. But classification of L(4/5, 0)-modules and (7) imply
L(4/5) ∼= L(4/5, 0)⊕L(4/5, 3), and the rest of the proof now follows from Proposition 2.1.Denote by M1 the cyclic Virasoro module U(Vir) ·1 and by M2 the cyclic module U(Vir) ·w−11. By the universal propertyof Verma modules, these cyclic modules are quotients of M(4/5, 0) (even V (4/5, 0)) and M(4/5, 3), respectively. We claimthat M1 ∩M2 = {0}. If not, M1 ∩M2 is a nontrivial submodule of a quotient of M(4/5, 0) and of M(4/5, 3). Embeddingstructure for Verma modules among the minimal series shows that this is impossible (the two modules belong to differentblocks). If we let χW (q) = trW qL(0)−c/24, we get

χL(4/5)(q) ≥ χM1 (q) + χM2 (q) ≥ χ1,15,6 (q) + χ1,55,6 (q),
where ≥ has an obvious meaning for two q-series with non-negative integer coefficients. Now, relation (7) implies

χM1 (q) + χM2 (q) ≡ χ1,15,6 (q) + χ1,55,6 (q) mod q50.
Thus χM1 (q) = χ1,15,6 (q) and χM2 (q) = χ1,55,6 (q), and hence U(Vir)1 = L(4/5, 0) and U(Vir)w−11 = L(4/5, 3).
Remark 2.4.The previous theorem gives a representation theoretic proof of the q-series identity

q−1/12(q)−2
∞ ·

∑
m,n∈Z

∑
w∈S3

εwq|5w(ρ)+20nα1+20mα2−4ρ|2/40 = χ1,15,6 (q) + χ1,55,6 (q),
which presumably can be checked directly by applying methods similar to those used in Appendix.
Theorem 2.5.
Denote by W

sl3(1)⊗sl3(1)sl3(2) the coset vertex algebra obtained via the embedding Lsl3 (2, 0) ↪→ Lsl3 (1, 0)⊗Lsl3 (1, 0). Then, as
vertex operator algebras, W3(4/5) ∼= W

sl3(1)⊗sl3(1)sl3(2) .

Proof. Observe first that the central charge of the coset vertex algebra is
4− 165 = 45 ,

with the Virasoro generator
ω1⊗1 + 1⊗ω1 − ω2,where ωk stands for the Sugawara generator of level k 6= −3. This coset is unitary so (as a Virasoro module, or

L(4/5, 0)-module) it decomposes as a direct sum of irreducible modules of central charge 4/5. The graded dimension canbe now easily computed by using the rationality of L(4/5, 0). Alternatively, we can recall a result from [15], where thecharacter of Wsl3(1)⊗sl3(1)sl3(2) is computed by using modular invariance. Either way,
W

sl3(1)⊗sl3(1)sl3(2) = L
(45 , 0

)
⊕L
(45 , 3

)
as Virasoro modules. Finally to finish the proof we need

YL(4/5,3)⊗L(4/5,3) 6= 0
in the coset algebra. This was proven by Bowknegt et al. in [3, 5], where it was shown that Wsl3(1)⊗sl3(1)sl3(2) has a degree 3generator w−11 such that the brackets [wn, wm] satisfy the relations as in L(4/5).
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3. τ-twisted W3(4/5)-modules and the structure of Aτ(W3(4/5))
In this part V is a vertex operator algebra and τ ∈ AutV has order two. Recall the notion of a weak τ-twisted
V -module M. By definition we require a decomposition V = V 0⊕V 1, and the twisted vertex operator map Y τ (·, x)

Y τ (u, x) ∈ (EndM)[[x1/2, x−1/2]]
such that

Y τ (u, x) = ∑
n∈Z+r/2u(n)z−n−1, u ∈ V r , u(n)v = 0, n � 0,

Y τ (1, x) = IdM ,
and the Jacobi identity holds.

x−10 δ
(
x1 − x2
x0

)
Y τ (u, x1)Y τ (v, x2)− x−10 δ

(
x2 − x1
−x0

)
Y τ (v, x2)Y τ (u, x1)

= x−12
(
x1 − x0
x2

)r/2
δ
(
x1 − x0
x2

)
Y τ(Y (u, x0)v, x2), (8)

where u ∈ V r and v ∈ V s. Clearly, from the Jacobi identity it follows that M is an untwisted (weak) V 0-module.
(1) If we also require M to be graded M =⊕νMν , where the grading is induced by the spectrum of L(0) and is boundedfrom below, and has finite dimensional graded components, we say that M is a τ-twisted V -module.
(2) If we instead require M to be (N/2)-gradable, such that M =⊕n∈N/2 M(n), u(m)M(n) ⊂ M(n+m− degu− 1), then

M is called admissible [8].
Let M be an irreducible τ-twisted V -module. Then there is λ such that we have the following decomposition with respectto the spectrum of L(0):

M = ∞⊕
n=0
(
Mλ+n⊕Mλ+n+1/2), (9)

so that if we let Mi = Mλ+n+i/2, i ∈ {0, 1}, the vertex operator map Y τ (·, x) is compatible with this Z2-decomposition,a consequence of
u(m)Mν ⊂ Mν+m−degu−1,

for homogeneous u. Again, Mi is a V 0-module for i ∈ {0, 1}. A vertex operator algebra V is said to be τ-rational ifevery admissible τ-twisted V -module is completely reducible [8].We also discuss intertwining operators among irreducible (ordinary) V -modules [13]. Without giving the full definition,let us record that an intertwining operator of type ( W3
W1 W2

) is a linear map Y(u, x) ∈ Hom(W2,W3){x}, u ∈ W1, suchthat (among other things) the following Jacobi identity holds:
x−10 δ

(
x1 − x2
x0

)
Y (u, x1)Y(v, x2)w − x−10 δ

(
x2 − x1
−x0

)
Y(v, x2)Y (u, x1)w = x−12 δ

(
x1 − x0
x2

)
Y
(
Y (u, x0)v, x2)w,

where u ∈ V , v ∈ W1 and w ∈ W2.Let us now focus on the twisted Jacobi identity (8) when u ∈ V 1 and v ∈ V 0. We shall see that the correspondingidentity is an essentially intertwining operator map between V 0-modules. Because u ∈ V 1, then Y τ (u, x) restrictedon Mi is mapped to Mi+1 where we use the mod 2 exponent notation. Denote by I(u, x) this restriction. Since v ∈ V 0,
7
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its action on Mi is the usual V 0-module action, so we write Y0(u, x) instead of Y τ (u, x). The twisted Jacobi identity nowreads (after we apply it to a vector w):
x−10 δ

(
x1 − x2
x0

)
I(u, x1)Y0(v, x2)w − x−10 δ

(
x2 − x1
−x0

)
Y0(v, x2)I(u, x1)w

= x−12
(
x1 − x0
x2

)1/2
δ
(
x1 − x0
x2

)
I
(
Y (u, x0)v, x2)w. (10)

Now, apply the substitution x1 ↔ x2 and x0 7→ −x0. The identity then is
x−10 δ

(
x1 − x2
x0

)
Y0(v, x1)I(v, x2)w − x−10 δ

(
x2 − x1
−x0

)
I(u, x2)Y0(v, x1)w

= x−11
(
x2 + x0
x1

)1/2
δ
(
x2 + x0
x1

)
I
(
Y0(u,−x0)v, x1)w. (11)

Because of Y (u, x)v = exL(−1)Y0(v,−x)u (the skew-symmetry), the right hand-side can be rewritten as
x−11
(
x2 + x0
x1

)1/2
δ
(
x2 + x0
x1

)
I
(
e−x0L(−1)Y0(v, x0)u, x1)w = x−11

(
x2 + x0
x1

)1/2
δ
(
x2 + x0
x1

)
I
(
Y0(v, x0)u, x1 − x0)w.

To finish the proof observe first that, by twisted weak associativity, we can always choose positive k ∈ N such that
xk+1/22 (x2 + x0)k I(Y0(v, x0)u, x2)w

involves only positive (integral!) powers of the variable x2. Consider
x−12 δ

(
x1 − x0
x2

)(
xk1 xk+1/22 I(Y0(v, x0)u, x2)w), (12)

which also equals
x−12 δ

(
x1 − x0
x2

)((x2 + x0)kxk+1/22 I(Y0(v, x0)u, x2)w).
Now, we are allowed to replace in (12) the x2 variable with x1 − x0, so we get

x−12 δ
(
x1 − x0
x2

)(
xk1 xk2 (x1 − x0)1/2I(Y0(v, x0)u, x1 − x0)w).

Finally, we multiply the last expression by x−k−1/22 x−k1 and obtain
x−12 δ

(
x1 − x0
x2

)
I
(
Y0(v, x0)u, x2)w = x−12 δ

(
x1 − x0
x2

)(
x1 − x0
x2

)1/2
I
(
Y0(v, x0)u, x1 − x0)w.

Consequently, (11) and the last formula imply the following result.
Proposition 3.1.
The map I(·, x) defines an intertwining operator among V 0-modules of type

( Mi+1
V 1 Mi

)
. The identity (10) is equivalent to

the Jacobi identity for I( · , x).
We also have the following useful result.
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Lemma 3.2.
Let M be an irreducible τ-twisted V -module for a simple vertex algebra V . Then for every nonzero u ∈ V , m ∈ M,

Y τ (u, x)m 6= 0.
The proof is clear (otherwise Y τ (a, x)m = 0 for every a ∈ V , which is impossible because M is cyclic). This statement,in particular, yields M1 6= 0 and M0 6= 0.We shall need a few results about τ-twisted Zhu’s algebra Aτ (V ) = V /O(V ) following [8], where O(V ) is the span ofvectors of the form

a ◦ b = Resx (1 + x)dega−1+δr+r/2
x1+δr Y (a, x)b,where a ∈ V r and where δ0 = 1 and δ1 = 0, and the multiplication ∗ on Aτ (V ) is induced via

a ∗ b = Resx (1 + x)dega
x Y (a, x)b.

For every a ∈ V 0 and b ∈ V 1 we have a ∗ b = 0 mod O(V ), so b = 0 as an element in Aτ (V ).Now we specialize V = W3(4/5) = L(4/5, 0)⊕L(4/5, 3).
Lemma 3.3.
The τ-twisted Zhu algebra Aτ (W3(4/5)) is a quotient of the polynomial algebra k [x].
Proof. Denote by π the natural projection from W3(4/5) to Aτ (W3(4/5)). Then π(v) = 0 for v ∈ A(W3(4/5))1 [8].If we denote A0(W3(4/5)) = A(W3(4/5)), where A(W3(4/5)) is the usual Zhu’s algebra of W3(4/5), we clearly have anisomorphism Aτ (W3(4/5)) ∼= A(W3(4/5))0/I where I is a certain ideal.
We are primarily interested in irreducible τ-twisted W3(4/5)-modules. Every such module is an ordinary module for
L(4/5, 0), so it decomposes as a direct sum of (ordinary) modules given on the list in (6). Because of (9), any irreducible
τ-twisted W3(4/5)-module is heavily constrained with respect to the spectrum of L(0). More precisely,
Proposition 3.4.
Let M be an irreducible τ-twisted W3(4/5)-module as in (9). Then M, viewed as an L(4/5, 0)-module, is isomorphic to
either ⊕

i∈I

L
(45 , 140

)
⊕
⊕
j∈J

L
(45 , 2140

)
or

⊕
k∈K

L
(45 , 18

)
⊕
⊕
l∈L

L
(45 , 138

)
,

where I, J, K , L are finite sets.

Proof. The spectrum of L(0) on M = M0⊕M1 must be contained inside the set λ+N/2, where λ is the lowest weightof irreducible L(4/5, 0)-modules (6). Also, in addition Mi 6= 0. This implies that the absolute value of the differencebetween the lowest conformal weights of M0 and of M1 must lie within the set N + 1/2. An easy inspection of allowedweights gives two possibilities: λ = 3/8 or λ = 1/40.
The next result follows from the fusion rules for L(4/5, 0) [16, 22] (see also [14]).
Lemma 3.5.
The module L(4/5, 3) is a simple current (i.e. it permutes equivalence classes of irreducible modules under the fusion
product ×). In particular,

L
(45 , 3

)
×L
(45 , 138

) = L
(45 , 18

)
, L

(45 , 3
)
×L
(45 , 18

) = L
(45 , 138

)
,

L
(45 , 3

)
×L
(45 , 140

) = L
(45 , 2140

)
, L

(45 , 3
)
×L
(45 , 2140

) = L
(45 , 140

)
.
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Now let us examine the number of irreducible summands in decompositions in Proposition 3.4.
Proposition 3.6.
Let M be as in Proposition 3.4. Then, viewed as a Vir-module,

M ∼= L
(45 , 140

)
⊕L
(45 , 2140

)
or M ∼= L

(45 , 18
)
⊕L
(45 , 138

)
.

Proof. We prove the first assertion. Because the twisted module in question is irreducible and Aτ (W3(4/5)) iscommutative, the top level must be an (irreducible) one-dimensional module. Therefore the set I must be a singleton.If |J| ≥ 2, the direct sum ⊕
j∈J L(4/5, 21/40) decomposes into at least two irreducible L(4/5, 0)-modules. To rule outthis case we apply the same argument as in the proof of [16, Lemma 5.3]. This argument and Lemma 3.5 yield a

W3(4/5)-module on L(4/5, 21/40), such that L(4/5, 0) acts trivially on it. But this is clearly a contradiction, so |J| = 1.
Theorem 3.7.
Let M be an irreducible τ-twisted W3(4/5)-module such that

M ∼= L
(45 , 140

)
⊕L
(45 , 2140

)
or M ∼= L

(45 , 18
)
⊕L
(45 , 138

)
.

Then such M is unique up to isomorphism.

Proof. Recall that irreducible W3(4/5)-modules are in one-to-one correspondence with the modules for the Zhualgebra A(W3(4/5)), which is isomorphic to a quotient of the polynomial algebra k [x], where x = [ω]. Every such moduleis one-dimensional so the top level of an irreducible W3(4/5)-module must be one-dimensional. The rest follows fromProposition 3.6.
In the next section (cf. Proposition 4.5) we construct two (irreducible) τ-twisted W3(4/5)-modules Wτ (1/40) and Wτ (1/8),which decompose as modules in Theorem 3.7. Consequently, combined with Lemma 3.3 we immediately obtain
Corollary 3.8.
The vertex algebra W3(4/5) has precisely two τ-twisted irreducible modules. Moreover, the twisted Zhu algebra
Aτ (W3(4/5)) is isomorphic to C[x]/〈(x − 1/40)(x − 1/8)〉.
Theorem 3.9.
The vertex algebra W3(4/5) is C2-cofinite and τ-rational.

Proof. The vertex algebra W3(4/5) contains a C2-cofinite subalgebra (i.e. L(4/5, 0), with the same conformal vector)thus it is C2-cofinite itself.To prove the rationality we follow the standard arguments as from [16, Theorem 5.6], which we essentially repeathere. We only have to prove complete reducibility. So let M be an arbitrary admissible W3(4/5)-module. We maysplit M = M(1/8)⊕M(1/40), where the weights of M(1/8) are contained inside 1/8 + N≥0/2, and the weights of M(1/40) arein 1/40+N≥0/2. Indeed, this follows from complete reducibility with respect to L(4/5, 0), Lemma 3.5, Proposition 3.1 andthe fact that allowed lowest weights are 1/8 and 1/40. Our proof of complete reducibility of M(1/8) is essentially the sameas the proof for M(1/40), so let us assume M = M(1/8) for simplicity. Consider the (top) weight 1/8 subspace M(1/8) of M(1/8).This is also an A(W3(4/5))-module. An easy analysis shows that, as L(4/5, 0)-module, M ∼= L(4/5, 1/8)⊕m⊕L(4/5, 13/8)⊕n ,with some multiplicities m and n. The multiplicity m is precisely the dimension of the weight 1/8 subspace. To finish theproof we have to argue that m = n and M ∼= (L(4/5, 1/8)⊕L(4/5, 13/8))⊕m , as W3(4/5)-modules. Choose 0 6= v ∈ M(1/8)and consider W3(4/5) · v . We claim that W3(4/5) · v ∼= L(4/5, 1/8)⊕L(4/5, 13/8). Clearly there could be only one copyof L(4/5, 1/8) inside W3(4/5) · v . Also, from the fusion rules, Lemma 3.5, restriction of the module map Y �L(4/5,3)⊗L(4/5,1/8),where L(4/5, 1/8) ⊂W3(4/5)·v , must land inside W , where W is isomorphic to L(4/5, 13/8), or is plainly zero. If the image
10



A.J. Feingold, A. Milas

is zero then L(4/5, 1/8) becomes an irreducible module for W3(4/5), contradicting our classification of W3(4/5)-modulesin Proposition 3.6. We conclude W3(4/5) · v ∼= L(4/5, 1/8)⊕L(4/5, 13/8).Now, take a nonzero vector v ′ ∈ M(1/8) in the complement of Cv and repeat the procedure. Then W3(4/5) · v ′ ∩
W3(4/5) · v must be trivial or L(4/5, 13/8). The latter case cannot occur because of Proposition 3.6. This way weobtain a decomposition of submodule of M isomorphic to (L(4/5, 1/8)⊕L(4/5, 13/8))⊕m . The condition m = n must besatisfied, otherwise we could quotient M with the submodule (L(4/5, 1/8)⊕L(4/5, 13/8))⊕m and obtain a module of lowestweight 13/8, again a contradiction.
4. Standard A(2)2 -modules and construction of τ-twisted W3(4/5)-modules

In this section, our focus is the Kac–Moody Lie algebra of type A(2)2 and its standard modules. We will denote by σa principal (order 6) automorphism of ŝl3 such that
sl3 = 5⊕

j=0 sl3[j ], sl3[j ] = {a ∈ sl3 : σ (a) = ξ ja},

where ξ is a primitive 6th root of unity. Let Λ be a dominant weight of level l for A(2)2 . We denote by Lσsl3 (Λ) the
σ-twisted A(2)2 -module, which is also an Lsl3 (lΛ0)-module [17]. In particular, Lσsl3 (Λ2) (which is of level 2) and Lσsl3 (2Λ1)are σ-twisted Lsl3 (2Λ0)-modules. Theorem 1.1 gives construction of both modules inside the tensor product of the basicmodule Lσsl3 (Λ1)⊗Lσsl3 (Λ1). Indeed, it is easy to see that vΛ1⊗vΛ1 is a highest weight module for Lσsl3 (2Λ1) and the vector(f1 · vΛ1 )⊗vΛ1 − vΛ1⊗ (f1 · vΛ1 ) generates the module Lσsl3 (Λ0). Here {e0, f0, h0, e1, f1, h1} is the canonical set of generatorsof A(2)2 . We denote the twisted module map with Y σ ( · , x). In particular, for any x ∈ sl3[j ], we have

Y σ (x(−1)1, x) =∑
n∈Z

x
(
n+ j6

)
x−n−j/6−1.

Consider
ωk=l = 12(l+ 3) 8∑

i=1 ui(−1) ūi(−1)1 ∈ Lsl3 (lΛ0),
the Sugawara conformal vector of central charge 8l/(l + 3), where {ui} and {ūi} are conveniently chosen orthogonalbases such that σ (ui) = σ−1(ūi), so that ui(−1) ūi(−1)1 is fixed under the automorphism (we can actually choose {ūi}to be a permutation of {ui} [4]). Thus

Y (ωl, x) =∑
n∈Z

Lσk=l(0)x−n−2.
Denote by

ω = ωk=1⊗1− 1⊗ωk=1 − ωk=2 ∈ Lsl3 (Λ0)⊗Lsl3 (Λ0)the coset Virasoro generator of central charge 2 + 2− 16/5 = 4/5, and let
Y (ω, x) =∑

n∈Z

L(n)x−n−2.
For related coset constructions see [1]. The following lemma is a crucial technical fact.
Lemma 4.1.
We have

Lσk=1(0)vΛ1 = 572 vΛ1 , Lσk=2(0)v2Λ1 = 41360 v2Λ1 , Lσk=2(0)vΛ0 = 13180 vΛ0 .
Consequently,

L(0)v2Λ1 = 140 v2Λ1 , L(0)vΛ0 = 18 vΛ0 .

11
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Proof. We prove only the first formula L(0)v2Λ1 = v2Λ1 /40, the other formula is proven along the same lines. Recallthat for the Virasoro algebra operator L(0) we picked generators ui, ūi, i ∈ {1, . . . , 8}, such that
σ (ui) = ξ jui, σ (ūi) = ξ6−j ūi.

Thus we have to compute expressions Coeffx−2Y σ(ui(−1)ūi(−1)1, x),
contributing to L(0), acting on the highest weight vectors vΛ1 and on v2Λ1 = vΛ1⊗vΛ1 . For that we use a version of theJacobi identity (8) with u = ui(−1)1 and v = ūi(−1)1, where the automorphism τ is now σ . In this setup

Resx2 CTx0 Resx1 (RHS of (8)) = Resx2 CTx0 Resx1 x−12
(
x1 − x0
x2

)−j/6
δ
(
x1 − x0
x2

)
Y σ(Y (ui, x0)ūi, x2),

which equals (by [4, 17]) Resx2 x2Y σ(ui(−1)ūi(−1)1, x2) + j6 [ui, ūi](0) + (j/62
)
l, (13)

where l is the level.Taking the same residues, now of the left hand side of the Jacobi identity, gives
Resx2 CTx0 Resx1 (LHS of (8)) = CTx2 : Y σ (ui, x2)Y σ (ūi, x2) : , (14)

the constant term of a twisted normally ordered product. Comparing the formulas (13) and (14), and summing over i,gives an expression for Lσk=l(0). It is now easy to get Lσk=1(0)vΛ1 = 5vΛ1 /72. Next, we use the Sugawara operator Lσk=2(0)and act on v2Λ1 . The only nonzero contributions when calculating these operators come from (j/6)[ui, ūi](0) and (j/62 )l.After we sum over i we get Lσk=2(0)v2Λ1 = 41v2Λ1 /360 and finally L(0)v2Λ1 = v2Λ1 /40.
Remark 4.2.Presumably the computation in Lemma 4.1 can be carried out via an explicit realization of A(2)2 on the twisted Fock spaceobtained in [11].
The next result comes immediately from Theorem 2.5 and [15]:
Proposition 4.3.
We have the following decomposition of Lsl3 (2, 0)⊗W3(4/5)-modules:

Lsl3 (Λ0)⊗Lsl3 (Λ0) = Lsl3 (2Λ0)⊗W(0)⊕Lsl3 (Λ1)⊗W(2/5).
The next goal is to find a twisted version of Proposition 4.3. The automorphism σ acts diagonally on Lsl3 (Λ0)⊗ Lsl3 (Λ0),and is denoted by σ ×σ . We have to see how it behaves when restricted to the subalgebra Lsl3 (2Λ0)⊗W3(4/5).
Lemma 4.4.
The automorphism σ preserves W3(4/5). More precisely, we have σ�W3(4/5) = τ. Thus, σ ×σ�Lsl3 (2Λ0)⊗W3(4/5) = σ ×τ.

Proof. The automorphism σ acts (diagonally) on the tensor product Lsl3 (Λ0)⊗Lsl3 (Λ0). Therefore, σ also preserves
Lsl3 (2Λ0). Since W3(4/5) is the commutant of Lsl3 (2Λ0), by definition amb = 0 for all a ∈ Lsl3 (2Λ0) and b ∈ W3(4/5),
m ≥ 0. But then σ (amb) = σ (a)mσ (b) = 0, and hence σ (b) ∈ W3(4/5). Recall AutW3(4/5) = Z2. If σ�W3(4/5) = 1, then
V1 would be an ordinary W3(4/5)-module. An easy inspection of modules in Theorem 2.2 implies that this is impossible.The proof follows.

12
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Consequently, we reached the desired decomposition analogous to the one in Proposition 4.3.
Proposition 4.5.
As (σ ×τ)-twisted Lsl3 (2, 0)⊗W3(4/5)-modules,

Lσsl3 (Λ1)⊗Lσsl3 (Λ1) = Lσsl3 (2Λ1)⊗Wτ
( 140

)
⊕ Lσsl3 (Λ0)⊗Wτ

(18
)
,

where Wτ (1/40) and Wτ (1/8) have lowest conformal weights 1/40 and 1/8, respectively.

Proof. The vertex algebra Lsl3 (2Λ0) is σ-rational, thus Lσsl3 (Λ1)⊗Lσsl3 (Λ1) decomposes as a direct sum of σ-twisted
Lsl3 (2Λ0)-modules. This decomposition is described in Theorem 1.1. As W3(4/5) is the commutant of Lsl3 (2, 0) ⊂
Lsl3 (Λ0)⊗Lsl3 (Λ0), and Lσsl3 (Λ1)⊗Lσsl3 (Λ1) is a twisted (σ ×τ)-module by Lemma 4.4, the multiplicity spaces in Theorem 1.1are naturally τ-twisted W3(4/5)-modules. The proof now follows from Lemma 4.1.
5. Modular invariance

Now we are ready to “explain” relations (5), and in particular the negative sign appearing in both identities. Firstwe recall a result from [9], where a version of Zhu’s of modular invariance theorem was extended to general C2-cofiniterational τ-twisted vertex algebras (here τ is at first an automorphism of finite order).The setup is as follows. Pick a pair of commuting automorphisms (g, h) (of finite order) of V , where V is C2-cofinite,and satisfies all the rationality and finiteness conditions as in [9]. Then we let
TM (g, h, v, q) = trMφ(h)o(v)qL(0)−c/24,

where M is h-stable g-twisted sector. This holomorphic function in |q| < 1, q = e2πiy, satisfies the modular transfor-mation property under
γ = [a bc d

]
, ad − bc = 1, i.e., TM (g, h, v, q)�γ·q =∑

W

σWTW ((g, h)γ, q),
where the summation goes over all gahc-twisted sectors W which are gbhd-stable, and (g, h)γ = (gahc, gbhd). Observethat the modular invariance mixes several twisted sectors.Now specialize g = h = τ, where τ is of order two.
Claim: τ ◦ M ∼= M for every irreducible τ-twisted module M.
The τ-twisted module τ ◦ M is defined via

Ỹ (u, x) = Y τ (τu, x).
Because τ ◦ M is M = M0⊕M1 as a vector space, we let

σ : M → τ ◦M, σ�M0 = 1, σ�M1 = −1.
We claim that σ is the wanted isomorphism. If u ∈ V 0, σ (Y τ (u, x)m)) = Y τ (u, x)τm = Y τ (u, x)σm, and if u ∈ V 1,
σ (Y τ (u, x)m) = (−1)Y τ (u, x)σm = Ỹ (u, x)σm. This proves the claim.Notice that not every ordinary V -module is τ-stable. For instance, untwisted W3(4/5)-module W(2/5, −) is not isomor-phic to W(2/5,+), although the former is obtained as a τ-twist from the later (cf. Theorem 2.2). Thus when gbhd 6= 1
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we can omit the stability condition (always satisfied). From now on we are interested only in vacuum twisted charactersso we let u = 1. Consider the standard generators S and T of the modular group, corresponding to y 7→ −1/y and
y 7→ y + 1, respectively. For the S matrix a = 0, b = 1, c = −1 and d = 0, and for the T -matrix a = 1, b = 1, c = 0and d = 1.Under the S transformation

TM (τ, 1, 1, q)�q·S =∑
W

cWTW (1, τ, 1, q),
where the summation is over untwisted modules which are τ-stable. Similarly,

TM (τ, 1, 1, q)�q·T =∑
W

dWTW (τ, τ, 1, q),
where the summation is over τ-twisted modules. We also have

TM (τ, τ, 1, q)�q·S =∑
W

eWTW (τ, τ, 1, q),
where the summation is over τ-twisted modules (which are τ-fixed), and

TM (τ, τ, 1, q)�q·T =∑
W

fWTW (τ, 1, 1, q),
where the summation is over τ-twisted modules. Moreover,

TM (1, τ, 1, q)�q·S =∑
W

gWTW (τ, 1, 1, q),
where the summation is over τ-twisted modules, and

TM (1, τ, 1, q)�q·T =∑
W

hWTW (1, τ, 1, q),
where the summation is over τ-stable W3(4/5)-modules. In the above formulas cW , dW , . . . , hW are some constants.We summarize all these relations as
Corollary 5.1.
The vector space spanned by{

TM (1, τ, 1, q) : M is untwisted and τ-stable
}

and
{
TM (τ, τε, 1, q) : M is τ-twisted and ε = 0, 1}

is modular invariant.

Going back to W3(4/5). There are two τ-stable irreducible untwisted W3(4/5)-modules, namely W(0) and W(2/5). So therelevant modular invariant space has a basis
TWτ (1/40)(τ, τε, 1, q) = χ1,25,6 (q) + (−1)εχ1,45,6 (q), TWτ (1/8)(τ, τε, 1, q) = χ2,25,6 (q) + (−1)εχ2,45,6 (q),

where ε ∈ {0, 1}, and
TW(0)(1, τ, 1, q) = χ2,15,6 (q)− χ2,55,6 (q), TW(2/5)(1, τ, 1, q) = χ1,15,6 (q)− χ1,55,6 (q).

Thus, the left hand-sides in (5) are simply the twisted characters of irreducible (untwisted) W3(4/5)-modules. Combinedwith the expected identities given on the right hand-sides in (5), or simply by using modular invariance arguments,we easily get another (more natural) basis.
Proposition 5.2.
For V = W3(4/5) and τ as above, the vector space spanned by expressions in Corollary 5.1 is 6-dimensional with a basis{

χ1,12,5 (q2), χ1,22,5 (q2), χ1,12,5 (q1/2), χ1,22,5 (q1/2), χ1,12,5 (−q1/2), χ1,22,5 (−q1/2)}.
14
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Appendix

In this section we discuss q-series identities underlying (4)–(5). The idea is relatively simple so we prove only the firstof identities in (4) here, and leave the rest to the reader. Similar methods can be used to prove other identities.
Proposition 5.3.
We have

χ1,25,6 (q) + χ1,45,6 (q) = χ1,12,5 (q1/2). (15)
Proof. The left hand side of (15) is equal to

q11/120∑
m∈Z

(
q30m2−4m − q30m2+16m+2 + q30m2−14m+3/2 − q30m2+26m+4+3/2)/(q)∞.

Thus it is sufficient to prove
∑
m∈Z

(
q30m2−4m − q30m2+16m+2 + q30m2−14m+3/2 − q30m2+26m+4+3/2) = (q)∞

∞∏
n=0(1− q(5n+2)/2)(1− q(5n+3)/2) . (16)

Recall the quintuple product identity
∑
m∈Z

(−1)mq3m2+mz3m+1 +∑
m∈Z

(−1)mq3m2−mz3m

= (1 + z) ∞∏
n=1(1− q2n)(1− q4n−2z2)(1− q4n−2z−2)(1 + q2nz)(1 + q2nz−1). (17)

We rewrite the left hand-side as∑
m∈Z

q12m2+2mz6m+1 −∑
m∈Z

q12m2+14m+4z6m+4 +∑
m∈Z

q12m2−2mz6m −∑
m∈Z

q12m2+10m+2z6m+3.

Substitute now in (17) q for q5/2 and z for q−3/2, and multiply the resulting expression with q3/2. Then (17) turns intothe left hand-side of (16). The proof now follows from an easy identity
(1 + q3/2) ∞∏

n=1(1− q5n)(1− q10n−8)(1− q10n−2)(1 + q5n−3/2)(1 + q5n+3/2) = (q)∞
∞∏
n=0(1− q(5n+2)/2)(1− q(5n+3)/2) .
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