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Abstract In this manuscript, we study traversable worm-
hole configurations under the influence of different dark mat-
ter density models, including Burkert, Moore, and Einasto
density profiles. By using these density distributions, we con-
struct wormhole configurations and find out the unknowns
involved in the field equations. Finding the importance of
dark matter in the hunt for traversable wormhole solutions
inside galactic halos is the main goal of the current work. In
order to gain a deeper comprehension of the physical plau-
sibility and structural stability of the wormhole configura-
tions, we examine the behavior of essential physical quan-
tities, including the breaching of the null energy conditions,
active gravitational mass, the equation of state, and the con-
servation of the stress-energy tensor. Additionally, we study
the behavior of the complexity factor associated with each
density model. From the analysis of these physical quan-
tities, we show that the resulting wormhole solutions from
each density model deviates from the null energy conditions,
indicating that the wormhole configurations are supported
by dark matter in order to survive in the galactic halos and
exhibit viability.

1 Introduction

Newton claimed that gravity is an attraction that exists in both
absolute space and time. Einstein defined it as a spacetime
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curvature due to mass and energy, which contradicts New-
ton’s theory. According to Einstein’s relativistic ideas, space
and time are a singular continuum. While General relativity
(GR) proposed that heavy objects curve spacetime and affect
the time flow and velocity of other objects, Special Relativ-
ity (SR) stipulated that distance and time are relative to the
motion of an observer. This novel idea helped to provide a
more precise and comprehensive explanation of the universe
by describing phenomena like gravitational lensing and Mer-
cury’s orbital precession that Newton’s theory was unable to
account for [1]. At the beginning of the 20th century, Einstein
challenged Newton’s dissertation that time and length were
absolute since they lacked a physical foundation. He main-
tained that this notion cannot be included in the understand-
ing of the physical cosmos. Einstein’s thinking was influ-
enced by the Michelson-Morley experiment, which showed
that the earth did not appear to be moving through the luminif-
erous ether. This prompted Einstein to form the SR, which
also ended up removing inconsistencies in Maxwell’s elec-
tromagnetism theory [1]. In Einstein’s view, such theories
were inconsistent with Galilean kinematics, namely the law
of addition of velocity, where moving observers with respect
to one another would not at all experience the velocity of a
signal of light. To address this enigma, Einstein investigated
the synchronization of distant clocks. Though he was moti-
vated by the work of Michelson-Morley, he did not inves-
tigate the forces on objects moving through the aether in
developing SR. There are two fundamental principles that
are the foundation for this concept [2].

Within four years of Einstein developing SR, the under-
standing of algebraic ideas started to change rapidly. It was
suggested by the famous physicist Minkowski that it was
very beneficial to use just four coordinates (x1, x2, x3, x4)

inside a 4D spacetime domain. This marked a revolutionary

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-025-14740-7&domain=pdf
https://orcid.org/0000-0001-8227-2621
mailto:zeeshan.math@pu.edu.pk
mailto:mrizwan.math@gmail.com
mailto:dar.alshammari@uoh.edu.sa
mailto:o.almatroud@uoh.edu.sa
mailto:saleh.alshammari@uoh.edu.sa
mailto:m.alswalha@uoh.edu.sa


  998 Page 2 of 15 Eur. Phys. J. C           (2025) 85:998 

shift in theoretical philosophy that impacted GR in turn. A
marvel of human ingenuity, GR supplants Newtonian the-
ory of gravitation with a geometric model of spacetime that
permits accelerating systems of reference [3]. The easiest
to comprehend is Albert Einstein’s GR. The Einstein field
equations (EFE) provide the foundation of GR. These equa-
tions consist of ten interrelated nonlinear partial differential
equations that combine elliptic and hyperbolic properties.
Among the mathematical elements that are utilized to define
them are the curvature invariants, the metric tensor and the
Ricci tensor [4]. There is much interest in the search for an
exotic object theory in GR as found in the literature. The EFE
most probably has WHs as one of its solutions [5,6]. Con-
nections between two branes, cosmology, or even just two
points on the manifold are referred to as WHs. In 1935, Ein-
stein and Rosen [7] discovered the Einstein Rosen bridge,
one of the earliest WH solutions. The Einstein-Rosen WH
was initially demonstrated to be non-traversable since any-
thing, even not a photon, could traverse its throat because
of its rapid expansion and contraction [8]. However, Mor-
ris and Thorne later overcame WH traversability [3]. The
Schwarzschild WH [10,11] is a solution to one of the first
WH solutions in the Schwarzschild metric of a forever exist-
ing black hole. However, it came out too suddenly. That is,
WHs can be supported if there exists a special kind of matter
(i.e., exotic matter) with negative energy density [12–16].

As WHs have never been observed, there is intense argu-
ment regarding their existence and how they form. Yet, the
potential for possessing an extendable WH or fabricating one
in a laboratory in the distant future justifies the work of the-
orists and has garnered much attention in recent times [17–
20]. Gravitational repulsion is necessary for WHs that can
be traversed. This repulsion is often supplied by matters that
have negative kinetic terms, which prevents the throat from
collapsing. The gravitational theory must be modified to pro-
vide examples of WHs without the addition of such phantom
matter [21–27]. In such theories, WHs are often unstable to
linear perturbations [28–30]. Because of vacuum polariza-
tion nearby, little self-supported WHs may exist [31]. The
asymptotically flat spacetime is bonded with cylindrical WH
solutions, which are noncompact [32]. Thus, the key ques-
tion is whether compact objects such as asymptotically flat
traversable WHs might exist within Einstein gravity with-
out requiring the addition of phantom matter. Normal matter
fields must violate the null energy requirements in this case
[33,34]. The possibility that any EFE solution using ordinary
matter fields may generate such WHs was unknown before
the most recent study [35]. WH solutions in GR with two
Dirac fields and an extra Maxwell field with the standard
coupling between them were found in [35]. Two categories
of WH solutions were represented: The first is an analyti-
cal solution describing a symmetric WH with respect to the
throat sustained by massless and neutral fermions that are

symmetric with respect to the throat. The symmetric arrange-
ment of the matter fields and metric tensor is consistent with
the other solution, which is normalizable and was found by
numerical methods [36].

As observations attest, massive N-body simulations dur-
ing recent decades successfully duplicated the formation of
cosmic structures with increasing complexity and resolution
[37–40]. One such recent review is presented in [41], which
describes how a hydrodynamical model that predicts the evo-
lution of cosmic structures up to the nonlinear regime is the
culmination of complementary efforts to achieve a closed-
form description. The nonlinear cosmic power spectrum may
be expressed analytically and without parameters using a
novel method founded on kinetic field theory; an overview
of this technique can be found in [42]. According to all
these methods, cosmic structures originate from the begin-
ning seeds of overdensity in the power spectrum and travel
forward through cosmic time to become cosmic structures.
For the purpose of producing the nonlinear agglomerations
that we witness in the real world, these methods need the
initial phase-space configuration of overdensity seeds along
with a dynamic description of their changes over cosmic time.
Thus, based on the development of the phase-space volume
of the original density seeds, they derive the statistical fea-
tures of mass density perturbations of the whole observable
universe. To date, though, these methods have failed to suc-
cessfully infer the shape of individual mass density profiles
of simulated or actual galaxies or galaxy clusters. The rea-
son why one of these techniques has so far not succeeded in
explaining the mass density profiles may be that there is no
known physical correspondence between mass overdensity
power spectrum variations and the finding of a given cosmic
structure, like a (dark matter) halo.

The shape of the distribution of individual luminous mat-
ter, like the de-Vaucouleurs profile [43] or Jaffe profile [44],
and many heuristic fitting functions have successfully been
able to map out the forms of individual dark matter (DM)
halos, like the Einasto profile [45] and the Navarro Frenk
White profile [46,47]. Why the simulated and observed mass
density distributions fit well with these formulae is still a
mystery without a better grasp of how these profiles may
be formed from more basic concepts. In this article, we are
willing to determine the WH solutions by using different
density profiles for the DM haloes along with the analysis of
important factors associated with the WHs, including energy
conditions, conservation equation, equation of state (EoS),
complexity, and the active gravitational mass. Selecting an
appropriate DM density model plays an important role in the
formation of stable WH configurations. The Moore, Einasto,
and Burkert profiles all have distinctive structural proper-
ties that play an important role in influencing the spacetime
geometry. With its steep central cusp, Moore profile [48] rep-
resents a densely concentrated DM core, making it suitable

123



Eur. Phys. J. C           (2025) 85:998 Page 3 of 15   998 

for studying strong gravitational effects close to the throat
of the WH. In contrast, the Einasto profile, known for its
smoother and flexible description of the DM halos over a
larger radius range, has been utilised in recent wormholes
studies as it can generate realistic distributions of energy-
momentum in the modified theory of gravity [49]. Unlike
cusped profiles, the Burkert profile [50] has cored structure
that better fits galactic rotation curve data and reduces the
dependence on exotic matter near the WH throat, making it
an observationally viable framework for the WH configura-
tions.

The work is set up as follows: Section 2 provides the EFE.
The subsequent section provides a concise summary of the
parametric mass density profiles for the most commonly used
DM halo profiles of galaxies and clusters of galaxies. Section
3 describe the density profiles and involve the determination
of the unknowns involved in the EFE. Section 3 discuses
some factors that characterizes the WH solutions. Finally,
the last section completes our analysis by providing some
concluding remarks.

2 Basic formalism

In order to describe the geometry of the spacetime around
the WH, we use the following spherically symmetric,

time-independent line element

ds2 = gγμx
γ xμ

= diag

{
e2S,−

(
1 − χ

r

)−1
,−r2,−r2 sin2 ϑ

}
, (1)

where, S = S(r) and χ = χ(r) stands for redshift and
shape function respectively. The famous EFE is given by the
following mathematical expression

Gγμ = Rγμ − 1

2
Rgγμ = κTγμ. (2)

The anisotropic matter distribution as a relativistic source is
given by the following mathematical expression

Tγμ = (ρ + Ptan.)νγ νμ − Ptan.gγμ

+ (Prad. − Ptan.)xγ xμ, (3)

where ρ, Ptan. and Prad. stand for density, tangential and
radial distribution of pressure, respectively. In addition, the

radial unit four vector xγ and the four-velocity vector νγ

fulfill the following relations: xγ xγ = −1 and νγ νγ = 1.
After solving Eq. (2) and setting coupling constant κ = 1,
we get the following expressions for the EFE

ρ = χ ′

r2 , (4)

Prad. = 1

r3

[
−rχ S′ + r2S′ − χ

]
, (5)

Ptan. = 1

4r3

[
−2r2χ S′′ + 2r3S′′ + r2S′χ ′

−r2χ S′2 − rχ S′ + r3S′2 + 2r2S′ − 2rχ ′ + 2χ
]
.

(6)

The mathematical prediction of exotic matter (i.e., matter
that defies the energy conditions), occurring inside WHs in
GR [33], is ensured by analysing the null energy conditions
(NEC). The expression for the NEC is given as

ρ + Prad. ≥ 0 & ρ + Ptan. ≥ 0.

After substitution following expressions for NEC result

ρ + Prad. = −rχ S′ + r2S′ − χ

r3 + χ ′

r2 , (7)

ρ + Ptan. = r
(
2

(
r2S′′ + χ ′) + r S′ (χ ′ + 2

) + r2S′2) − χ
(
2r2S′′ + r2S′2 + r S′ − 2

)
4r3 . (8)

Furthermore, Tables 4, 5, and 6 provide the complete descrip-
tion of the ECs, including NEC, weak EC, strong EC, and
Dominant EC, along with their valid regions.

3 Different density models and the determination of the
unknowns in EFE

In this section we attempt to find out the unknowns involved
in the EFE by using three different DM density models. Each
model uses a limited set of parameters with a physical inter-
pretation to describe the mass density profile for the DM
halos.

3.1 Model I: Einasto Profile

The Einasto density profile for the DM haloes is given by the
following mathematical expression

ρE = ρ0 exp
(
− r

h

)1/α

, (9)
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where ρ0, α, and h represent the central density, shape param-
eter (Einasto index), and scale length, respectively [51–54].

On comparing Eqs. (4) and (9), we obtain the following
differential equation.

χ ′

r2 = ρ0 exp
(
− r

h

)1/α

. (10)

After solving the above equation and using the throat con-
dition (i.e., χ(r0) = r0) following mathematical form of the
function χ results

χ = h3αρ0	
(

3α,
(r0

h

)
1/α

)
−h3αρ0	

(
3α,

( r
h

)1/α
)

+r0,

(11)

The function χ is analysed graphically and found to meet all
the requirements that are mandatory for the shape function to
describe the WH geometry. Figure 1 provides the location of
WH throat, which lies at r0 = 0.6. Furthermore, Fig. 1 shows
the asymptotic flatness and satisfaction of the flaring-out con-
dition of the function χ . Table 1 illustrates the behaviour
of the shape function at different points on the radial axis
for some particular values of the parameters involved in the
mathematical expressions corresponding to the shape func-
tion. The analysis of ECs is also conducted and depicted in
Figs. 5 and 6. One can easily identify the validating region of
ECs just by studying the Table 4. Consider zero tidal force,
that is, S = constant , and substituting the values in Eqs.
(4) and (5), following expressions for the matter variables is
resulted

Prad. = 1

r3

{
−r0 − αh3ρ0

[
	

(
3α,

( r0

h

)
1/α

)

−	

(
3α,

( r
h

)1/α
)]}

, (12)

Ptan. = 1

4r3

{
2

(
h3αρ0

(
	

(
3α,

( r0

h

)
1/α

)
− 	(

3α,
( r
h

)1/α
))

+r0

)
−2r3ρ0 exp

{
−

( r
h

)1/α
}}

.

(13)

3.2 Model II: Moore profile

The Moore profile for the DM halo is defined as follows
[55,56]

ρM = ρ0

{
(r/β)−3/2

1 − (r/β)3/2

}
, (14)

where β stands for scale radius. On comparing Eqs. (3) and
(14), and solving the differential equation, we get the fol-
lowing expression for the shape function corresponding to
Moore’s profile

χ |M = − β3ρ0

(
2

3
log

(
−

√
r0

β
+ r0

β
+ 1

)

+2

3
log

(√
r0

β
+ 1

))

+β3ρ0

(
2

3
log

(
r

β
−

√
r

β
+ 1

)

+2

3
log

(√
r

β
+ 1

))
+ r0, (15)

Graphical analysis of the function χ reveals that it satisfies
every prerequisite needed for the shape function to describe
the geometry of the WHs. According to Fig. 1, the WH throat
is located at r0 = 0.6. Furthermore, Fig. 1 shows the asymp-
totic flatness and satisfaction of the flaring-out condition of
the function χ . Table 2 provides the values of the shape func-
tion versus radial distance r . In this case, the expressions for
the matter variable attain the following form

Prad. = −1

3r3

{
2β3ρ0

[
log

(
r

β
−

√
r

β
+ 1

)

+ log

(√
r

β
+ 1

)
− log

(
−

√
r0

β
+ r0

β
+ 1

)

− log

(√
r0

β
+ 1

)]
+ 3r0

}
, (16)

Ptan. = 1

2r3

⎧⎨
⎩

1

3
β3ρ0

⎡
⎣− 3r2

r2 + β2
√

r
β

+2 log

(
r

β
−

√
r

β
+ 1

)
+ 2 log

(√
r

β
+ 1

)

−2 log

(
−

√
r0

β
+ r0

β
+ 1

)

−2 log

(√
r0

β
+ 1

)]
+ r0

}
. (17)

3.3 Model III: Berkert profile

The Berkert profile for the DM halo is given as [50,57]

ρB =ρ0

⎧⎪⎨
⎪⎩

(
r
β

+ 1
)−1

(
r
β

)2 + 1

⎫⎪⎬
⎪⎭ . (18)

The comparison of Eqs. (3) and (18) yield an ODE, and after
solving this ODE following expression for the function χ

results

χ |B = − β3ρ0

(
1

4
log

(
β2 + r2

0

)

+1

2
log (β + r0) − 1

2
tan−1

(
r0

β

))
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Fig. 1 Behavior of χ against radial distance r

Table 1 Analysis of shape function obtained from Einasto profile versus radial coordinate r for h = 0.1, α = 3, ρ0 = 0.5 and r0 = 0.6

r χ χ ′ 1 − χ
r χ − r

1 0.0 0.483188 0.000001 − 4830.88 0.483188

2 0.2 0.493325 0.122204 − 1.46662 0.293325

3 0.4 0.533142 0.272108 − 0.332856 0.133142

4 0.6 0.6 0.390582 0 0

5 0.8 0.687116 0.141105 0.116 − 0.112884

6 1.0 0.788262 0.211738 0.072 − 0.211738

+ β3ρ0

(
1

4
log

(
β2 + r2

)
+ 1

2
log(β + r)

−1

2
tan−1

(
r

β

))
+ r0. (19)

The function χ is graphically analyzed and found to satisfy
all the requirements for the shape function to characterize
the geometry of the WHs. Figure 1 establishes that the WH
throat is situated at r0 = 0.6. Additionally, Fig. 1 demon-
strates the function χ ’s asymptotic flatness and flaring out
condition satisfaction. The behavior of the shape function at
various radial axis locations is shown in Table 1 for certain
values of the parameters used in the mathematical expres-
sions that correspond to the shape function. The matter vari-
able’s expressions in this instance take on the following form

Prad. = 1

4r3

{
β3ρ0

[
− log

(
β2 + r2

)
+ log

(
β2 + r2

0

)

−2 log(β + r) + 2 log (β + r0) + 2 tan−1
(
r

β

)

−2 tan−1
(
r0

β

)]
− 4r0

}
, (20)

Ptan. = 1

2r3

{
1

4
β3ρ0

[
log

(
β2 + r2

)
− 4r3

(β + r)
(
β2 + r2

)
− log

(
β2 + r2

0

)
+ 2 log(β + r) − 2 log (β + r0)

−2 tan−1
(
r

β

)
+ 2 tan−1

(
r0

β

)]
+ r0

}
. (21)

4 Important factors associated with the wormholes

This section addresses the important factors associated with
the WHs corresponding to the different DM halo density
models.
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Table 2 Analysis of shape function obtained from Moore profile versus radial coordinate r for β = 1.5, ρ0 = 0.5 and r0 = 0.6

r χ χ ′ 1 − χ
r χ − r

1 0.0 0.346283 0.00001 − 34627.3 0.346273

2 0.2 0.399763 0.39172 − 0.998817 0.199763

3 0.4 0.491423 0.510631 − 0.228559 0.0914235

4 0.6 0.6 0.567855 −4.44089 × 10−16 0

5 0.8 0.716338 0.591284 0.104578 − 0.0836621

6 1.0 0.835197 0.594794 0.164803 − 0.164803

4.1 Equation of state

The radial and tangential EoS corresponding to the Einasto
profile are defined and given as follows

WR |E = Prad.

ρ

= 1

r3ρ0

{
exp

[( r
h

)1/α
] (

h3αρ0

{
	

(
3α,

( r
h

)1/α
)

−	
(

3α,
(r0

h

)
1/α

)}
− r0

)}
, (22)

WT |E = Ptan.

ρ
= 1

2ρ0r3

{
exp

[( r
h

)1/α
] (

h3αρ0

{
	

(
3α,

(r0

h

)
1/α

)
− 	

(
3α,

( r
h

)1/α
)}

+r0) − r3ρ0

}
. (23)

For Moore’s profile, EoS is given as

WR |M = 1

3β2ρr2

{(√
r

β
+ 1

) √
r

β

[
β

(√
r

β
− 1

)
− r

]
[

2β3ρ0

(
log

(
r

β
−

√
r

β
+ 1

)
+ log

(√
r

β
+ 1

)

− log

(
−

√
r0

β
+ r0

β
+1

)
− log

(√
r0

β
+ 1

))
+ 3r0

]}
,

(24)

WT |M = 1

−6r2

{
−2

(
r2 + β2

√
r

β

)
log

(
r

β
−

√
r

β
+ 1

)

−2

(
r2+β2

√
r

β

)
log

(√
r

β
+1

)
−

3r0

(
r2+β2

√
r
β

)

β3ρ0

+2r2 log

(√
r0

β
+ 1

)
+ 3r2 + 2β2

√
r

β
log

(
−

√
r0

β
+ 2r2 log

(
−

√
r0

β
+ r0

β
+ 1

)
+ r0

β
+ 1

)

+2β2
√

r

β
log

(√
r0

β
+ 1

)}
. (25)

For the Burkert Profile, EoS attains the following form

WR |B= 1

4β3ρ0r3 (β + r)
(
β2 + r2

)
{
β3ρ0

(
− log

(
β2 + r2

)
+ log

(
β2 + r2

0

)

−2 log(β + r) + 2 log (β + r0)

+2 tan−1
(
r

β

)
− 2 tan−1

(
r0

β

))
− 4r0

}
(26)

WT |B = − 1

8β3ρ0r3 (β + r)
(
β2 + r2

) {
β3ρ0

(
− log

(
β2 + r2

)
+ log

(
β2 + r2

0

)

+2 tan−1
(
r

β

)
− 2 log(β + r) + 2 log (β + r0)

−2 tan−1
(
r0

β

))
− 4r0

}
− 1

2
. (27)

We have analyzed WR and WT graphically and studied their
behaviour. We found that these condition depicts opposite
behaviour relative to one another.

4.2 Conservation equation

Using the general Tolman–Oppenheimer–Volkoff (TOV)
equation, we examine the stability of the discovered WH
solutions. The definition of the generalized TOV equation is
[49]

−dPrad.

dr
− S′

2
(ρ + Prad.) − 2

r
(Prad. − Ptan.) = 0. (28)

A far more elegant method to describe the aforementioned
TOV equation (28) is as the sum of the forces in an equilib-
rium.

FA + FH + FG = 0, (29)

where

FA = −2

r
(Prad. − Ptan.), FH = −dPrad.

dr
and
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FG = − S′

2
(ρ + Prad.). (30)

Because we are considering zero tidal force i.e, S =
constant , so FG = 0 and our equilibrium scenario becomes

FA + FH = 0.

The expressions for hydrostatic and anisotropic forces cor-
responding to the Einasto profile is given as,

FA |E = 1

r4

{
3r0 + h3ρ0

(
3α	

(
3α,

(r0

h

)
1/α

)

− exp

{
−

( r
h

)1/α
} ( r

h

)3 − 3α	

(
3α,

( r
h

)1/α
))}

,

(31)

FH |E = − 1

r4

{
3r0 + h3ρ0

(
3α	

(
3α,

(r0

h

)
1/α

)

− exp

{
−

( r
h

)1/α
} ( r

h

)3 − 3α	

(
3α,

( r
h

)1/α
))}

.

(32)

For Moore’s profile

FA |M= − 1

3r4

{
−9r0

K +6β3P0

(
log

(
−

√
r0

β
+ r0

β
+ 1

)

+ log

(√
r0

β
+ 1

))
+ β3P0r

β
√

r
β

+ r

+
β3P0

(
2r − β

√
r
β

)

β − β
√

r
β

+ r

− 6β3P0

(
log

(
r

β
−

√
r

β
+ 1

)

+ log

(√
r

β
+ 1

))}
, (33)

FH |M= 1

3r4

{
−9r0

K + 6β3P0

(
log

(
−

√
r0

β
+ r0

β
+ 1

)

+ log

(√
r0

β
+ 1

))
+ β3P0r

β
√

r
β

+ r

+
β3P0

(
2r − β

√
r
β

)

β − β
√

r
β

+ r

− 6β3P0

(
log

(
r

β
−

√
r

β
+ 1

)

+ log

(√
r

β
+ 1

))}
(34)

For Burkert profile

FA |B= − 1

r4

{
1

4
β3ρ0

(
−3 log

(
β2 + r2

)

+ 4r3

(β + r)
(
β2 + r2

) + 3 log
(
β2 + r2

0

)

−6 log(β + r) + 6 log (β + r0)

+6 tan−1
(
r

β

)
− 6 tan−1

(
r0

β

))
− 3r0

}
, (35)

FH |B= 1

r4

{
1

4
β3ρ0

(
−3 log

(
β2 + r2

)

+ 4r3

(β + r)
(
β2 + r2

)
+3 log

(
β2 + r2

0

)
− 6 log(β + r)+6 log (β + r0)

+6 tan−1
(
r

β

)
− 6 tan−1

(
r0

β

))
− 3r0

}
. (36)

The graphical analysis of the equilibrium scenario reveals
that these forces cancel each other completely and ensure
the satisfaction of the conservation equation and hence, the
stability of the WH solutions.

4.3 Complexity

Herrera [58] presented a new concept of complexity within
self-gravitating fluids having static spherically symmetric
geometry in GR [58]. He performed an orthogonal decompo-
sition of the curvature tensor to get a peculiar mathematical
entity symbolized as YT F . This was named as the complexity
factor, having the following formula

YT F = (Prad. − Ptan.) − 1

2r3

∫ r

r0

x3ρ′(x).dx . (37)

This concept was widely used to study various astrophysical
applications by Herrera et al. [59–62] and other researchers
[5,63–71]. With the constraint YT F = 0, one can analyze a
homogeneous fluid under isotropic pressure with less com-
plexity in the population. This concept helps to study and
classify less-complex WHS supported with exotic matter
wormholes. This concept could lead to tracking the dynam-
ical evolution of minimal complex WHs, despite being sup-
ported by irregular and anisotropic matter [72,73]. After sub-
stituting the values following expressions for the complexity
factor associated with the WHs for different density profiles
is

YT F |E = h3ρ0

2r3

{
	

(
3α + 1,

( r0

h

)
1/α

)
− 3α	

×
(

3α,
( r0

h

)
1/α

)
+ exp

{
−

( r
h

)1/α
} ( r

h

)3 − 	

(
3α + 1,

( r
h

)1/α
)

+ 3α	

(
3α,

( r
h

)1/α
)}

− 3r0

2r3 .

(38)
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YT F |M =
r0

(
r
β

)3/2 (
r3

√
r
β

+ 2βr2 + β3
√

r
β

) (
β3ρ0

√
r0
β

− 3β
((

r0
β

)
3/2 + 1

))

2r5
(√

r
β

+ 1
) (

β + r
√

r
β

) (
β − β

√
r
β

+ r
) ((

r0
β

)
3/2 + 1

) . (39)

YT F |B = − r0
(
3β3 + r2

0

(
3β − β3ρ0

) + 3β2r0 + 3r3
0

)
2r3 (β + r0)

(
β2 + r2

0

) .

(40)

We observed that the complexity factor of the WHs corre-
sponding given density models increases steadily with time.
The complexity factor rises as the contribution of parameters
α and β grows. Therefore, it is probable that the density mod-
els will support increasingly intricate systems. However, it is
found that the complexity plays a part in the structure of WH
and that its contribution steadily diminishes after reaching
a particular radial coordinate value, such as r = 2. This is
illustrated graphically in Fig. 7.

4.4 Active Mass Function

The strength of the gravitational flux of the astrophysical
object, in our case, a WH is measured by the active gravita-
tional mass. Within the range between the throat r0 and an
outside radial distance r , the WH’s active mass is

M = 4π

∫ r

r0

ρ(x)x2 dx . (41)

After substituting the values and solving the above integral,
the following expressions of the mass function for different
density models result

M |E= 4πh3αρ0

{
	

(
3α,

( r0

h

)
1/α

)
− 	

(
3α,

( r
h

)1/α
)}

.

(42)

M |M = 8

3
πβ3ρ0

{
− log

(
−

√
r◦
β

+ r◦
β

+ 1

)

− log

(√
r◦
β

+ 1

)
+ log

(
r

β
−

√
r

β
+ 1

)

+ log

(√
r

β
+ 1

)}
. (43)

M |B = πβ3ρ0

{
log

(
β2 + r2

)
− log

(
β2 + r2

0

)

+2 log(β + r) − 2 log (β + r0)

−2 tan−1
(
r

β

)
+ 2 tan−1

(
r0

β

)}
. (44)

5 Final remarks

Scientists have been significantly fascinated by the scientific
research of WH geometry over the past decades. As a result,
WHs in the galactic halo zone were proposed by the URC
and NFW DM density profiles. In this article, we researched
the WH geometry under the influence of the Einasto, Moore,
and Burkert DM galactic halo profiles. The main conclusions
of the present study are discussed in detail below:

The DM halo profiles (including Einasto, Moore, and
Burkert profiles) were among the first topics we covered. By
comparing the energy density of GR with the energy density
of DM halo profiles, we were able to determine the shape
functions corresponding to these profiles. We have analyzed
derived features such as the condition of flare-out of the gen-
erated shape function against an asymptotic background. It
is noteworthy that the parameters of the model involved play
an important role in the manner in which the WHs are ana-
lyzed. We saw that the requirement of flare-out is met near the
throat. Furthermore, Tables 1, 2, and 3, and Fig. 1 provides
the comparison between the shape functions obtained from
each density profile. The behavior of the shape function χ

corresponding to different DM density profiles has been sys-
tematically analyzed through both graphical and tabular data
(Fig. 1 and Tables 1, 2 and 3). As evident from Fig. 1, all three
models satisfy the fundamental geometric constraint, ensur-
ing the validity of the flare-out condition near the throat of the
WH. The Einasto profile exhibits a constant rise in χ , which
indicates the existence of stable WH geometry. The Moore
profile exhibits a more concentrated central structure, and in
line with its cuspy density character, χ ′ displays a stronger
gradient close to the throat. The Burkert profile, on the other
hand, has a soft core, resulting in a less steep χ(r) growth
and less central curvature. The data in the table, which com-
pares the growth behavior and derivative character of χ(r)
among models, quantitatively supports these findings. This
demonstrates that the geometrical structure and feasibility of
WH configurations are significantly influenced by the density
profile that is chosen.

After that, we talked about ECs for every density model
with the right free parameter selections. Figures 2, 3, and
4 displays the plot of energy density vs radial distance,
indicating positively decreasing behavior over spacetime.
Additionally, the behavior of ρ + P denotes the violation
of radial NEC. According to fixed values of parameters
α = 3, h = 0.1, ρ0 = 0.5, β = 1.5 and r0 = 0.6, it was
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Table 3 Analysis of shape function obtained from Burkert profile versus radial coordinate r for β = 1.5, ρ0 = 0.5 and r0 = 0.6

r χ χ ′ 1 − χ
r χ − r

1 0.0 0.574539 0 − 57452.9 0.574529

2 0.2 0.575739 0.0173388 − 1.8787 0.375739

3 0.4 0.58309 0.0589648 − 0.457726 0.18309

4 0.6 0.6 0.110837 0 0

5 0.8 0.6274 0.162479 0.21575 − 0.1726

6 1.0 0.664555 0.207692 0.335445 − 0.335445

Fig. 2 Analysis of ECs corresponding to Einasto profile

Fig. 3 Analysis of ECs

Fig. 4 Analysis of ECs
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Table 4 Values of the ECs resulted from Einasto profile against the radial coordinate r for h = 0.1, α = 3, ρ0 = 0.5 and r0 = 0.6

r ρ + Prad. ρ + Ptan. ρ − Prad. ρ − Ptan. ρ + Prad. + 2Ptan. ρ − Prad. − 2Ptan.

1 0.0 −5.95352 × 1047 2.97676 × 1050 5.95352 × 1050 −2.97676 × 1050 0 0

2 0.2 − 74.3479 37.2955 74.591 − 37.0524 0 0.243117

3 0.4 − 9.26577 4.70055 9.4011 − 4.56522 1.77636 × 10−15 0.135335

4 0.6 − 2.73461 1.41047 2.82095 − 1.32414 4.44089 × 10−16 0.0863376

5 0.8 − 1.14909 0.604099 1.2082 − 0.544993 2.22045 × 10−16 0.0591057

6 1.0 − 0.586326 0.314328 0.628655 − 0.271998 0 0.0423292

Table 5 Values of the ECs resulted from Moore profile against the radial coordinate r for β = 1.5, ρ0 = 0.5 and r0 = 0.6

r ρ + Prad. ρ + Ptan. ρ − Prad. ρ − Ptan. ρ + Prad. + 2Ptan. ρ − Prad. − 2Ptan.

1 0.0 −3.46283 × 1038 1.73141 × 1038 3.46283 × 1038 −1.73141 × 1038 0 5.80948 × 1019

2 0.2 − 40.1774 29.8817 59.7634 − 10.2957 0 19.586

3 0.4 − 4.48705 5.43497 10.8699 0.947916 0 6.38288

4 0.6 − 1.2004 2.17758 4.35515 0.977174 0 3.15475

5 0.8 − 0.475217 1.16149 2.32298 0.686273 0 1.84776

6 1.0 − 0.240404 0.714996 1.42999 0.474592 0 1.18959

Table 6 Values of the ECs resulted from Moore profile against the radial coordinate r for β = 1.5, ρ0 = 0.5 and r0 = 0.6

r ρ + Prad. ρ + Ptan. ρ − Prad. ρ − Ptan. ρ + Prad. + 2Ptan. ρ − Prad. − 2Ptan.

1 0.0 −5.74539 × 1050 2.8727 × 1050 5.74539 × 1050 −2.8727 × 1050 0 1.0

2 0.2 − 71.5339 36.2004 72.4009 − 35.3335 0 0.866941

3 0.4 − 8.74225 4.73966 9.47932 − 4.0026 0 0.73706

4 0.6 − 2.4699 1.54283 3.08566 − 0.927066 0 0.615764

5 0.8 − 0.971517 0.739632 1.47926 − 0.231884 0 0.507748

6 1.0 − 0.456863 0.436124 0.872247 − 0.020739 0 0.415385

shown that NEC is violated at the throat. Tables 4, 5, and 6
provide the complete description of the ECs, including NEC,
weak EC, strong EC and Dominant EC along with their valid
regions. The radial and tangential EoS are calculated and
analysed graphically in Fig. 5 for the density models under
consideration. From Fig. 5 it is observed that the radial EoS
shows increasing behaviour near the WH throat while an
opposite pattern can be observed in the tangential EoS case.

The comparative analysis of ECs and EoS parameters (as
depicted in Figs. 2, 3, 4 and 5 and Tables 4, 5 and 6) provides
distinct characteristics of the Einasto, Moore, and Burkert
profiles in supporting stable WH structures. Breaching of
NEC is observed near the WH throat for all three models,
which ensures the need of exotic matter for sustaining the WH
geometry. NEC violation decreases as r increases, showing
that the exotic matter is localized. The core structure of the
Burkert profile shows milder and more localized violations,
while the Moore and Einasto profiles causes sharper NEC
violations. The radial and tangential EoS parameters exhibit
different trends for different density profiles. Whereas the

Einasto and Moore profiles exhibit sudden changes in WR

and WT close to the throat that stabilize only asymptotically,
the Burkert profile has smooth, well-defined transitions of
both parameters across the domain. This leads to a physi-
cally more reasonable method of approaching constant val-
ues at large radii. These findings demonstrate that the Burkert
profile provides more physically realistic WH solutions with
reduced exotic matter requirements, while the steeper gradi-
ents of the Moore and Einasto profiles make them particu-
larly valuable for studying WHs in strong-field gravitational
scenarios.

Furthermore, we have analysed important factors associ-
ated with the WHs including, equilibrium analysis, active
mass function, and complexity of the WHs solutions. The
conservation analysis involves the study of the behaviour of
the hydrostatic and anisotropic forces. The TOV equation
provides mathematical proof that these forces will balance
each other out in the long run. Consequently, it is reasonable
to say that the WH solutions for all the models under study
found in this research are classically stable. These forces are
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Fig. 5 Analysis of EoS

graphically demonstrated in Fig. 6 for each density model.
Readers who are interested in learning more about this issue
can consult [74], where the writers have thoroughly exam-
ined it. Moreover, the active gravitational mass is calculated
and analysed graphically in Fig. 8 for each density model.
The active gravitational mass M shows a monotonic radial
increase in all profiles, and the results assure physical con-
sistency. The Moore profile has the most rapid rate of mass

accumulation because of its very sharp central cusp, and the
Einasto profile has the slowest rate of increase because of its
large core. The Burkert profile is intermediate, having mod-
erate compactness as well as improved physical plausibility.
These systematic differences show how the inner slope of
density determines both the efficiency of mass generation
and the resulting spacetime geometry.
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Fig. 6 Analysis of conservative forces

Motivated by Herrera’s work [58], we have taken into
account the irrotational, time-independent spacetime metric
of the WH and subsequently analyzed the complexity factor.
The complexity factor YT F has a negative and monotonic
increasing behavior for all three models from large negative
values close to the WH throat and slowly converging to zero.
The Burkert profile is found to have the largest initial nega-
tive value, with the most significant anisotropic effects close
to the core, followed by the Moore and Einasto profiles. All

profiles, however, display smooth convergence, which indi-
cates stable configurations. This action supports the view
that complexity decreases with radial distance, increasing
the physical viability of the WH structures. The key find-
ing from our research is that, in GR, realistic geometries of
DM WHs may be found in the natural environment around
different galaxy haloes.

It is important to note that the Einasto, Burkert, and Moore
profiles analyzed in this research are not just theoretical mod-
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Fig. 7 Complexity of the system

els, but have also been well implemented to describe several
observed systems. For example, the Einasto profile has been
found to yield very good fits to the Milky Way and other spi-
ral galaxies’ mass distribution [75,76]. The Burkert profile
is typically employed to explain the cored density profiles of
dwarf spheroidal galaxies and low-surface-brightness galax-
ies [50,77,78], while the cuspy Moore profile has been used
in the modeling of galaxy clusters and high-resolution sim-

ulations [48,79]. Outside galactic dynamics, the same dark
matter distributions have also been explored around compact
objects, such as black holes [80,81], neutron stars [82], and
gravastars [83]. These observational links reinforce the phys-
ical applicability of the wormhole solutions obtained here and
make one suppose that such geometries may, in principle, be
tested within reasonable astrophysical situations.
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Fig. 8 Mass function

Author contributions ZY, MR, OAA: Writing [Pleaseinsertinto-
preamble] review & editing, Supervision, Conceptualization, Writ-
ing [Pleaseinsertintopreamble] original draft, Visualization, Validation,
Software, Methodology, Investigation. OAA, MMA, MA, ZY: Valida-
tion, Methodology, Formal analysis. Software, Methodology, Investi-
gation.

Funding The present work did not receive any funding.

Data Availibility This manuscript has no associated data or the data
will not be deposited. [Author’s Comment: Data sharing not applicable
to this article as no datasets were generated or analysed during the
current study.]

Code availability My manuscript has no associated code/software.
[Author’s comment: Code/Software sharing not applicable to this arti-
cle as no code/software was generated or analysed during the current
study.].

Declarations

Conflict of interest The authors have no Conflict of interest with
respect to the publication of the present paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. A. Einstein, Phys. Today 35, 45 (1982)
2. G. Holton, Am. J. Phy. 28, 627 (1960)
3. A. Einstein, in The meaning of relativity (Springer, 1922), p. 54
4. A. Einstein, W. Perrett, G. Jeffery, Ann. Phys. 354, 769 (1916)
5. Z. Yousaf, A. Adeel, M. Rizwan, G. Mustafa, A. Ali, Int. J. Geom.

Methods Mod. Phys., 2550093 (2025)
6. Z. Yousaf, B. Almutairi, M. Rizwan, T. Ganesan, M. Bhatti, Int. J.

Mod. Phys. D 34, 2450072 (2025)
7. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)
8. C.W. Misner, J.A. Wheeler, Ann. Phys. 2, 525 (1957)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C           (2025) 85:998 Page 15 of 15   998 

9. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
10. I.H. Redmount, Prog. Theor. Exp. Phys. 73, 1401 (1985)
11. T. Damour, S.N. Solodukhin, Phys. Rev. D 76, 024016 (2007)
12. J.H. Simonetti, M.J. Kavic, D. Minic, D. Stojkovic, D.-C. Dai,

Phys. Rev. D 104, L081502 (2021)
13. D.-C. Dai, D. Minic, D. Stojkovic, Phys. Rev. D 98, 124026 (2018)
14. D.-C. Dai, D. Stojkovic, Phys. Rev. D 100, 083513 (2019)
15. V. De Falco, E. Battista, S. Capozziello, M. De Laurentis, Eur.

Phys. J. C 81, 157 (2021)
16. E. Battista, S. Capozziello, A. Errehymy, Eur. Phys. J. C 84, 1314

(2024)
17. M.Y. Khlopov, B. Malomed, Y.B. Zeldovich, Mon. Not. R. Astron.

Soc. 215, 575 (1985)
18. D.-C. Dai, D. Minic, D. Stojkovic, Eur. Phys. J. C 80, 1 (2020)
19. V. De Falco, M. De Laurentis, S. Capozziello, Phys. Rev. D 104,

024053 (2021)
20. V. De Falco, Phys. Rev. D 108, 024051 (2023)
21. J. Maldacena, A. Milekhin, Phys. Rev. D 103, 066007 (2021)
22. P.L. McFadden, N. Turok, Phys. Rev. D 71, 086004 (2005)
23. K.A. Bronnikov, R.A. Konoplya, Phys. Rev. D 101, 064004 (2020)
24. K. Bronnikov, V. Melnikov, H. Dehnen, Phys. Rev. D 68, 024025

(2003)
25. K. Bronnikov, S.-W. Kim, Phys. Rev. D 67, 064027 (2003)
26. P. Kanti, B. Kleihaus, J. Kunz, Phys. Rev. D 85, 044007 (2012)
27. V. De Falco, E. Battista, S. Capozziello, M. De Laurentis, Phys.

Rev. D 101, 104037 (2020)
28. J. Gonzalez, F. Guzman, O. Sarbach, Class. Quant. Grav. 26,

015010 (2008)
29. M.A. Cuyubamba, R.A. Konoplya, A. Zhidenko, Phys. Rev. D 98,

044040 (2018)
30. E. Di Grezia, E. Battista, M. Manfredonia, G. Miele, Eur. Phys. J.

Plus 132, 537 (2017)
31. T. Harko, F.S. Lobo, M. Mak, S.V. Sushkov, Phys. Rev. D 87,

067504 (2013)
32. K. Bronnikov, V. Krechet, Phys. Rev. D 99, 084051 (2019)
33. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
34. S. Bolokhov, K. Bronnikov, S. Krasnikov, M. Skvortsova, Grav.

Cosmol. 27, 401 (2021)
35. J.L. Blázquez-Salcedo, C. Knoll, E. Radu, Phys. Rev. Lett. 126,

101102 (2021)
36. V. De Falco, E. Battista, S. Capozziello, M. De Laurentis, Phys.

Rev. D 103, 044007 (2021)
37. A. Del Popolo, M. Le Delliou, Galaxies 5, 17 (2017)
38. J.S. Bullock, M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys.

55, 343 (2017)
39. M. Kuhlen, M. Vogelsberger, R. Angulo, Phys. Dark Universe 1,

50 (2012)
40. C.S. Frenk, S.D. White, Ann. Phys. 524, 507 (2012)
41. B.M. Schäfer, in Formation of the First Black Holes (World Scien-

tific, 2019), pp. 23–44
42. M. Bartelmann, E. Kozlikin, R. Lilow, C. Littek, F. Fabis, I.

Kostyuk, C. Viermann, L. Heisenberg, S. Konrad, D. Geiss, Ann.
Phys. 531, 1800446 (2019)

43. G. de Vaucouleurs, Ann. d’Astrophys. 11, 247 (1948)
44. W. Jaffe, Mon. Not. R. Astron. Soc. 202, 995 (1983)
45. J. Einasto, Trudy Astrofizich. Inst. Alma-Ata 5, 87 (1965)
46. J.F. Navarro, in Symposium-international astronomical union

(Cambridge University Press, 1996), vol. 171, p. 255
47. J.F. Navarro, C.S. Frenk, S.D. White, arXiv preprint

arXiv:astro-ph/9508025 (1995)

48. B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel,
P. Tozzi, Astrophys. J. 524, L19 (1999)

49. Z. Yousaf, K. Bamba, B. Almutairi, M. Bhatti, M. Rizwan, Nucl.
Phys. B 1018, 116997 (2025)

50. A. Burkert, Astrophys. J. 447, L25 (1995)
51. J. Einasto, Astron. Nachr. 291, 97 (1969)
52. E. Retana-Montenegro, E. Van Hese, G. Gentile, M. Baes, F. Frutos-

Alfaro, Astron. Astrophys. 540, A70 (2012)
53. M. Baes, Astron. Astrophys. 667, A47 (2022)
54. P.F. de Salas, K. Malhan, K. Freese, K. Hattori, M. Valluri, J. Cos-

mol. Astropart. Phys. 2019, 037 (2019)
55. B. Moore, F. Governato, T. Quinn, J. Stadel, G. Lake, Astrophy. J.

499, L5 (1998)
56. B. Moore, Nature 370, 629 (1994)
57. A. Burkert, Astrophys. J. Lett 447, L25 (1995)
58. L. Herrera, Phys. Rev. D. 97, 044010 (2018)
59. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 98, 104059 (2018)
60. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 99, 044049 (2019)
61. L. Herrera, A. Di Prisco, J. Carot, Phys. Rev. D 99, 124028 (2019)
62. L. Herrera, Phys. Rev. D 101, 104024 (2020)
63. S. Bhattacharya, S. Nalui, J. Math. Phys. 64, (2023)
64. Z. Yousaf, K. Bamba, M.Z. Bhatti, U. Farwa, Int. J. Geom. Methods

Mod. Phys. 21, 2430005 (2024)
65. G. Panotopoulos, A. Rincon, I. Lopes, Phys. Lett. B 856, 138901

(2024)
66. M.Z. Bhatti, M.Y. Khlopov et al., Int. J. Geom. Methods Mod.

Phys. 2540014 (2025a)
67. Z. Yousaf, H. Asad et al., Int. J. Geom. Methods Mod. Phys.

2550145 (2025d)
68. N. Iqbal, S. Khan, M. Alshammari, W.W. Mohammed, M. Ilyas,

Eur. Phys. J. C 85, 372 (2025)
69. H.M.A. Mahmoud, S. Khan, L.M. Abdalgadir, Phys. Dark Universe

49, 101974 (2025)
70. S. Khan, J. Rayimbaev, I. Ibragimov, S. Muminov, A. Dauletov, A.

Abdujabbarov, Phys. Scr. 100, 085302 (2025)
71. M.Z. Bhatti, B. Almutairi et al., Int. J. Geom. Methods Mod. Phys.

22, 2550001 (2025)
72. A. Malik, T. Naz et al., Int. J. Geom. Methods Mod. Phys. 21,

2450186 (2024)
73. A. Malik, T. Naz et al., Int. J. Geom. Methods Mod. Phys. 21,

2440003 (2024)
74. O. Sokoliuk, A. Baransky, Eur. Phys. J. C 81, 1 (2021)
75. J.F. Navarro, E. Hayashi, C. Power, A. Jenkins, C.S. Frenk, S.D.

White, V. Springel, J. Stadel, T.R. Quinn, Mon. Not. R. Astron.
Soc. 349, 1039 (2004)

76. D. Merritt, J.F. Navarro, A. Ludlow, A. Jenkins, Astrophys. J. 624,
L85 (2005)

77. P. Salucci, A. Burkert, Astrophys. J. 537, L9 (2000)
78. W. De Blok, S.S. McGaugh, V.C. Rubin, Astron. J. 122, 2396

(2001)
79. T. Fukushige, J. Makino, Astrophys. J. 557, 533 (2001)
80. O.Y. Gnedin, J.R. Primack, Phys. Rev. Lett. 93, 061302 (2004)
81. M.Z. Bhatti, Phys. Dark Universe 49, 101953 (2025)
82. M. Razeira, A. Mesquita, C.A. Vasconcellos, R.O. Gomes, Int. J.

Mod. Phys. E 20, 109 (2011)
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