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Abstract

Understanding the preferences of transient types for host galaxies with certain characteristics is key to studies of
transient physics and galaxy evolution, as well as to transient identification and classification in the LSST era. Here
we describe a value-added database of extragalactic transients—supernovae, tidal disruption events, gamma-ray
bursts, and other rare events—and their host galaxy properties. Based on reported coordinates, redshifts, and host
galaxies (if known) of events, we cross-identify their host galaxies or most likely host candidates in various value-
added or survey catalogs, and compile the existing photometric, spectroscopic, and derived physical properties of
the host galaxies in these catalogs. This new database covers photometric measurements from the far-ultraviolet to
mid-infrared. Spectroscopic measurements and derived physical properties are also available for a smaller subset of
hosts. For our 36,333 unique events, we have cross-identified 13,753 host galaxies using host names, plus
4480 using host coordinates. Besides those with known hosts, there are 18,100 transients with newly identified host
candidates. This large database will allow explorations of the connections of transients to their hosts, including a
path toward transient alert filtering and probabilistic classification based on host properties.

Unified Astronomy Thesaurus concepts: Transient sources (1851); Gamma-ray bursts (629); Supernovae (1668);
Tidal disruption (1696); Astronomy data analysis (1858); Radio transient sources (2008)

1. Introduction

Extragalactic transients cover a wide range of energetic, fast,
and usually cataclysmic events observed across the electro-
magnetic spectrum, as well as the recently revealed gravitational
wave (GW) and neutrino windows. These events include, but are
not limited to, supernovae (SNe), gamma-ray bursts (GRBs), tidal
distribution events (TDEs), fast radio bursts (FRBs), and GW
events. With better observational facilities and computational
technologies, our understanding of these transient phenomena has
advanced considerably in the new century. However, their
connection to the evolution history and observational properties
of their host galaxies remains to be further explored.

Transients are stellar or supermassive black hole phenomena
in nature. They occur on much smaller spatial scales than the
typical size of galaxies. They are also ephemeral compared to
timescales of galaxy evolution. Notwithstanding the dramatic
contrast in spatial and temporal scales, there are examples of
well-established transient-host connections:

1. Core-collapse (CC) SNe show stronger preference for
late-type, star-forming galaxies than thermonuclear Type
Ia supernovae (SNe Ia; e.g., van den Bergh 1959;

Tammann 1978; Oemler & Tinsley 1979; Sullivan et al.
2006; Li et al. 2011; Foley & Mandel 2013; Graur et al.
2017).

2. Compared to normal SNe Ia, SNe Ia-91bg tend to occur
in early-type hosts, while SNe Ia-91T and Ia-02cx favor
late types (Taubenberger 2017, and references therein).

3. The hosts of short-duration gamma-ray bursts (SGRBs)
are brighter, larger in size, more metal-rich, and, on
average, more quiescent than typical hosts of long-
duration gamma-ray bursts (LGRBs; Berger 2009; Fong
et al. 2010; Lyman et al. 2017).

4. The rate of TDEs is dramatically boosted in post-starburst
galaxies (French et al. 2016), although the underlying
driving mechanism is subject to debate (Graur et al. 2018;
Stone et al. 2018).

5. The recently discovered electromagnetic counterpart of
GW event GW170817 (Abbott et al. 2017), also detected
as an SGRB, lies in an early-type galaxy with shell-like
merger features.

6. The known hosts of FRBs show rather diverse properties,
with a possible excess of galaxies in the green valley, or
galaxies with harder ionizing radiation than provided by
star formation alone (e.g., Heintz et al. 2020).

This synopsis is certainly not exhaustive but nevertheless
demonstrates that some transients prefer certain host environ-
ments. There may be still other connections that, while subtle,
could be discovered with a large, well-curated database gleaned
from archived surveys.
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To a certain extent, such transient-host connections can be
interpreted within our existing picture of transient physics and
galaxy evolution. From a statistical and empirical perspective,
the event rates of optical SNe and their counterparts at other
wavelengths depend on the recent star formation history and
the delay time distribution of supernova explosion since star
formation; theoretically, the preferred channel and mechanism
of the explosion could also depend on the metallicity and
dynamical environment, which directly shape the evolutionary
path of progenitors and indirectly affect stellar binarity and
initial mass function. For TDEs, the event rates not only are
related to the integrated stellar populations of the host but also
are regulated by the concentration of star formation, availability
of gas near the galactic nucleus, and/or the disturbed central
stellar and gas dynamics in the host. Due to the uncertainties in
our theoretical models, it is unclear to what extent the rates of
transients depend on the global properties of their hosts.
Potential biases in transient surveys further complicate the
interpretation of the observed transient-host connections.
Nevertheless, the study of transient-host connections points to
a better-refined view of transient phenomena and galaxy
evolution, including the physics of massive stars, interacting
binaries, and compact objects and the role of supermassive
black holes and active nuclei in galaxy evolution.

Transient-host connections are also of practical interest.
Modern transient surveys, particularly the Legacy Survey of
Space and Time (LSST) at Vera C. Rubin Observatory (Ivezić
et al. 2019), are expected to deliver nearly 10 million transient
alerts every night in real time. For extragalactic events, over a
year of operation, LSST is estimated to detect about 0.2 million
SNe Ia, a smaller but comparable sample of CC SNe, and
orders of magnitude fewer other uncommon transients
inundated in the torrent of alerts.10 Selecting a subset of
potentially interesting events would be essential for any study
that requires follow-up observations using other facilities.
Often this must be done quickly in the early phase of transient
evolution, when evanescent phenomena may give us valuable
insights into their physical models. Host properties thus open
up a new avenue toward automated alert filtering and
classification, even preclassification, i.e., assigning event rates
or probabilities to galaxies in the field based on their properties,
before any alerts arrive. Indeed, the viability and reliability of
host-based transient classification has been clearly demon-
strated by the early conceptual work of Foley & Mandel (2013)
and recent attempts of Gagliano et al. (2021). Even photometric
data alone may effectively distinguish potential hosts of certain
rare transients (e.g., French & Zabludoff 2018). Meanwhile,
new-generation transient brokers for Zwicky Transient Facility
(Bellm et al. 2019) and the future LSST, such as ANTARES
(Narayan et al. 2018), ALeRCE (Förster et al. 2021), Lasair
(Smith et al. 2019), MARS,11 and Fink (Möller et al. 2021), are
all capable of cross-matching transient alerts with external
source catalogs, providing the necessary infrastructure for host-
based event filtering and classification. Given this potential to
provide a baseline estimate of transient probabilities (i.e., a
categorical prior function of different types) or rates indepen-
dent of any transient characteristics, the power of host
properties must be fully utilized now for imminent transient
surveys.

Exploring the connections of extragalactic transients and
their host properties entails a complete census of known
transient hosts, including their properties measured by various
sky surveys across the electromagnetic spectrum. Existing
samples and catalogs of transient host galaxies, such as the
time-controlled sample of Lick Observatory Supernova Search
(LOSS; Leaman et al. 2011; Li et al. 2011), also the host
samples of SDSS-II Supernova Survey (Sako et al. 2018)
and the Dark Energy Survey (DES) Supernova Programme
(Wiseman et al. 2020), usually focus on a dedicated transient
survey or a specific class of transients. The recently released
GHOSTdatabase (Gagliano et al. 2021), which has a consider-
ably larger transient sample, is mostly limited to the
photometric properties of supernova hosts obtained by the
Pan-STARRS (PS1) survey. There is no single catalog to date
of consistently measured host properties, across a wide
wavelength range, for a large and up-to-date sample of
transient events. Reasons include the following:

1. Host galaxies are not always reported by transient surveys
or summarized in catalogs or platforms. Consequently, a
considerable fraction of transients in the literature, even
with accurate sky coordinates, redshifts, and classifica-
tions, have no easily accessible host data of any kind.

2. Beyond that, new transients are continuously being
discovered at ever-improving efficiencies, posing an
immediate challenge to human-based host identifying
and reporting. Automated host identifying algorithms,
using either catalogs or images, are favored in this
situation. However, only a few such algorithms have been
developed up to date. (e.g., Sullivan et al. 2006; Gupta
et al. 2016; Sako et al. 2018; Gagliano et al. 2021).

3. Even for transients with identifiable hosts, obtaining their
properties involves substantial efforts. Some surveys
conduct dedicated observations of hosts. Accessing
archival data of public surveys, a more viable approach
for many other cases, also requires host matching, quality
control, and data compilation.

Constructing a transient-host database with better coverage
of previous transient events and available host properties
remains a crucial step for the in-depth exploration and analysis
of transient-host connections. Here we present such a new
transient-host database. We find counterparts of host galaxies in
external catalogs using the reported host name designations or
coordinates, as presented in the data sources. For events
without reported host galaxies, we identify their best host
candidates within nearby extragalactic objects, cross-matched
in the various external catalogs. Our goal here is to locate the
correct counterparts of transient host galaxies in various
catalogs, which entails cross-matching sources in multiple
catalogs, and, when necessary, ranking potential host galaxies
to identify the most likely candidates. Therefore, we refer to the
process as the cross-identification of transient host galaxies.
We then collate properties of our identified host galaxies and
host candidates, including photometry across UV to IR
wavelengths, morphology, spectral lines and indices, and
derived physical parameters such as stellar mass, metallicity,
and star formation rate provided in those catalogs.
This first paper describes our database of transient host

galaxies and the workflow to construct it. In Section 2, we
review our data sources for transient events (published catalogs
and online services) and the procedure to create a sample of

10 LSST Science Book v2, Chapter 8 and Chapter 11.
11 Mars.lco.global
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unique transient events. In Section 3, we describe our method
to search host properties in external catalogs and collect their
information. We also discuss our strategy to identify new host
galaxies for those without hosts reported in our data sources.
We then describe the detailed object selection criteria and data
coverage in each external catalog in Section 4, and we present
the basic statistics of our transient-host pairs in Section 5.
Finally, we discuss our software implementation and data
format in Section 6 and summarize in Section 7.

2. The Transient Sample

This section describes our selected upstream data sources for
transient events and the procedure to assemble a transient
sample. We also present the basic statistics in these upstream
data sources and the compiled transient sample as of 2021 June
1, i.e., the cutoff date of transient events for the initial release of
our database presented in this paper.

2.1. Upstream Data Sources for Transients

Existing transient events are detected by various surveys or
missions, reported at multiple circulars or platforms, and
cataloged by several sites or numerous individual publications.
There is no single data source that covers all previously known
transient events. Therefore, we choose a few representative data
sources with relatively complete records for each major
transient type, organized in a machine-readable format for
easier access. Below we discuss our transient data sources for
each major type.

2.1.1. Supernovae

Our supernova records are imported from the Open Super-
nova Catalog (OSC; Guillochon et al. 2017).12 The OSC
compiles SNe in numerous published catalogs, individual
works, and online services, notably the Transient Name Server
(TNS),13 Padova-Asiago Supernova Catalog (Barbon et al.
1999),14 the Latest Supernova website15 (Gal-Yam et al. 2013),
the Weizmann Interactive Supernova data REPository (Yaron
& Gal-Yam 2012),16 and the CfA Supernova Data Archive,17

etc. Apart from the basic information (or metadata) of SNe and
supernova candidates, the catalog also compiles their light
curves, spectra, X-ray, and radio measurements. For every
single event, all related data are self-contained in a single file,
where the historical versions of each file are traceable via their
git-based version control solution.

Although great efforts are made in Guillochon et al. (2017)
to collect and homogenize supernova data in various sources,
for our transient sample, there are a few issues to be resolved
when importing their supernova records. First, the supernova
basic data (or metadata) in OSC—such as classification, sky
coordinates, and redshifts—trace back to the multiple auto-
matically updated or manually maintained reference sources.
As a result, slightly different, inconsistent, or even erroneous
values are often provided for the same data field (or column),
requiring further selection and validation. Second, not all the

records in OSC are directly detected and reliably classified
SNe. There are a large fraction of transient candidates in OSC
without classification. There are also supernova remnants and
historical SNe (i.e., discovered before photometric techniques
became available) in the Milky Way or nearby galaxies. Long-
duration GRBs in the CGRO/BATSE Catalog and grbcatalog.
com, even without the associated SNe detected, are also
included for the association of LGRBs with some CC SNe.
Third, the type labels (including major types and detailed
subtypes) in OSC can sometimes be ambiguous, incomplete,
and even inconsistent. Reliable classification requires high-
quality light curves and spectra covering critical phases of
evolution, which are not always available. The criteria and
technique for transient classification could also differ among
survey programs or research groups. Even the classification
scheme is evolving as our knowledge of supernova physics
advances. As a result, events are not classified consistently
among different sources.
For our work, we only select a subset of records in OSC,

with further data curation for clarity and consistency. Records
with classification, redshift or host information of any kind
(names, or coordinates), are selected. Supernova candidates and
unclassified events are omitted unless their redshifts or hosts
are also reported. Those temporarily ignored candidates and
unclassified events will be added back to our database during
future updates once they are confirmed or classified in OSC.
We also skip ancient SNe and supernova remnants, even if their
types are indirectly inferred in the literature. Furthermore, we
only select GRBs in OSC with the associated SNe detected (
i.e., classified as SNe at the same time). Similarly, we omit
records labeled as TDEs at this stage. TDEs and GRBs are
added via other data sources (discussed later).
The snapshot of OSC we use here has 82,864 records, where

26,868 records are classified (i.e., with type labels assigned),
and 21,592 records have host galaxy information, either name
designations or coordinates. As new records and data are added
into OSC by programs and users regularly, we set up an
automatic script to pull the latest version of OSC hosted at
github.com and update our transient records accordingly. Our
database does not include detailed supplementary data of each
event in OSC, including transient light curves, spectra, X-ray,
and radio fluxes.

2.1.2. Tidal Disruption Events

Currently, there are only a few dozen tidal disruption events
reported in the literature. For the initial release of our database,
we use the summarized list in the review of French et al. (2020)
as our primary data source. Additionally, we use the Open TDE
Catalog,18 a close sibling of the OSC, as our secondary data
source.19 Like OSC, the Open TDE Catalog is designed as a
complete sample of known TDEs, including likely ones, in the
literature or transient circulars, where basic data are compiled
from various reference sources. This catalog also includes
unconfirmed or possible events where alternative explanations
or classifications may exist, which requires manual inspection
and selection.
To incorporate these records into the database, we combined

events in both data sources into a single, unified list of TDEs.

12 sne.space, github.com/astrocatalogs/supernovae
13 www.wis-tns.org
14 graspa.oapd.inaf.it/cgi-bin/sncat.php
15 www.rochesterastronomy.org/supernova.html
16 wiserep.weizmann.ac.il/
17 www.cfa.harvard.edu/supernova/SNarchive.html

18 tde.space
19 For future updates of the database, we may switch our primary data source
to the Transient Name Server.
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We manually match the events in these two data sources by
name designations (including variants) to ensure that the
combined list is free of duplicates. To verify our name-based
matching and to further identify unique events in each data
source, we also spatially cross-match events using an angular
distance threshold of 5″. Finally, we use the metadata (name,
coordinate, redshift, and host galaxy) in French et al. (2020)
whenever available, but also keeping other names and aliases in
the Open TDE catalog.

We also unified the type labels in our combined list of TDEs.
The type labels within the Open TDE Catalog are still to be
standardized. Some events are classified by their inferred
progenitors or physical scenarios (e.g., “MS+SMBH”), while
others are only labeled as “TDE” or “TDE?.” We first assign
“TDE” labels to all the events in the combined list. For events
in the list of French et al. (2020), we further assign labels to
indicate their detected wavelengths, like “UVOptTDE” for
events detected in UV or optical bands and “XrayTDE” for
X-ray detected events. Possible and likely X-ray detected
events in French et al. (2020) are labeled as “PossibleX-
rayTDE” and “LikelyXrayTDE,” based on the samples of
Auchettl et al. (2017). There are other proposed classification
schemes in the literature (e.g., van Velzen et al. 2021), which
could be included in the future release of our database.

There are 43 TDEs in the list of French et al. (2020) and 97
events in the Open TDE catalog (as of 2021 June 1). Excluding
41 common ones, the combined list has 98 unique events.

2.1.3. Gamma-Ray Bursts

We use the following catalogs of individual GRB missions
for their relatively better localization accuracy than other
catalogs.

1. Swift Catalog20 (Lien et al. 2016) is a catalog of events
detected by the Burst Alert Telescope (BAT) on Swift.
BAT localizes GRBs to arcminute-level accuracy. Some
events also have afterglow detection by the X-ray
Telescope and UV/Optical Telescope on board, which
further improves the positioning accuracy to arcsecond
level.

2. Fermi/LAT Catalog21 (Ackermann et al. 2013) includes
events detected by the Large Area Telescope (LAT) on
Fermi, with arcminute-level positioning accuracy. This
does not include events only detected by the Gamma-Ray
Burst Monitor, which has a larger error circle (degree-
level in the best case).

3. INTEGRAL/IBIS Catalog (Vianello et al. 2009; Bošnjak
et al. 2014) and later events localized with the
INTEGRAL Burst Alert System22 (Mereghetti et al.
2003) are events detected by the Imager on-Board the
INTEGRAL Satellite (IBIS), with a typical positional
error of about ¢2 . For high signal-to-noise events, the
accuracy may reach the subarcminute level.

The catalogs listed above certainly do not cover all well-
localized GRBs. Other missions, such as HETE-2, BeppoSAX,
and AGILE, also report events that are well-localized via
afterglows or by the associated SNe, usually with other

facilities. We do not use their original catalogs due to the lack
of precise coordinates there.
We also accessed several ancillary data sources for GRBs,

including the catalog of the GRB Host Studies Project23

(Savaglio 2006; Savaglio et al. 2006), the GRB list maintained
by Jochen Greiner,24 the Gamma-Ray Burst Online Index,25

and the GRBweb catalog.26 These ancillary data sources
summarize GRB properties from multiple missions and follow-
up programs, including data reported to the GCN circulars27

that are not machine-readable at the moment. These ancillary
data sources provide us with (1) potentially better coordinates
than reported in the three mission catalogs above, (2) more
well-localized GRBs that are not reported in those mission
catalogs, and (3) most importantly, GRB redshifts measured
from the afterglows, host galaxies, or associated SNe.
We use the latest online version of these mission catalogs

and ancillary data sources to ensure that our GRB records are
up-to-date. We combine records from these reference sources
into a single list, during which we cross-match GRBs by their
standardized names to eliminate duplicates. For each event, we
choose the best sky coordinate (i.e., with the smallest 90% error
circle) within these reference sources. Redshift and T90 (i.e., the
time when 90% photons arrive), when available, are usually
consistent across these reference sources. If not, we take the
median value of all the reported measurements.
Events in our list are classified as GRB by default.

According to their T90 values, we further classify them into
long-duration GRBs (LGRBs; T90� 2 s) and short-duration
GRBs (SGRBs; T90< 2 s). Events without T90 in any of our
data sources are only classified as GRB. The traditional long-
short dichotomy might be further refined using the spectral
hardness (e.g., Zhang et al. 2012), which remains a part of our
future work.
It should be emphasized that GRBs are, on average, detected

at higher redshifts than other transients. The drastically
decreased completeness of survey catalogs, combined with
the large error in coordinates, makes the host hard or even
impossible to be identified in some cases. Therefore, we use a
rather conservative sample selection and catalog accessing
strategy to reduce the fraction of misidentified hosts. We only
include GRBs with a 90% error radius under 5″ in our sample.
Meanwhile, the default search radius for GRBs without
redshifts is reduced to minimize the confusion due to other
nearby galaxies (Section 3). Even with more accurate
coordinates and smaller search radii, the chance remains that
some GRB hosts are undetected or incorrectly identified.
Checking quality control metrics (Section 3.5) is always
encouraged when using their compiled host properties.
Besides nine GRBs with associated optical SNe in OSC, we

have 7939 unique GRBs from our selected data sources, where
1621 of them have a 90% error radius better than 5″ and are
thus included in the transient sample.

2.1.4. Other Rare Transients

Our database also includes rare transients such as FRBs and
GWs. These rare events are generally poorly localized, so we

20 swift.gsfc.nasa.gov/archive/grb_table/fullview/
21 fermi.gsfc.nasa.gov/ssc/observations/types/grbs/lat_grbs/table.php
22 ibas.iasf-milano.inaf.it

23 www.grbhosts.org
24 https://www.mpe.mpg.de/~jcg/grbgen.html
25 https://sites.astro.caltech.edu/grbox/grbox.php
26 https://user-web.icecube.wisc.edu/~grbweb_public/
27 gcn.gsfc.nasa.gov/gcn3_archive.html
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only include 14 FRBs and one GW event with host galaxies
reported in the literature out of over 100 FRBs and nine GWs.
These events include GW170817 (Abbott et al. 2017),
FRB121102 (Chatterjee et al. 2017), FRB180916 (Marcote
et al. 2020), FRB180924 (Bannister et al. 2019), FRB181112
(Prochaska et al. 2019), FRB190102 (Macquart et al. 2020),
FRB190523 (Ravi et al. 2019), FRB190608 (Macquart et al.
2020), and FRB190614 (Law et al. 2020).28,29 Their metadata
are referred from the Fast Radio Burst Catalogue (Petroff et al.
2016) and the list of detections made by the LIGO-Virgo-
KAGRA Collaborations.30 We also refer to the FRB Host
database31 (Heintz et al. 2020) for the host associations of
known FRBs. For the rest of the events, we do not attempt to
identify their host candidates.

Besides the one associated with GW170817, there are
several more kilonova or macronova events (including
candidates) reported in the literature. We label the event
associated with GW170817 as “Kilonova.” Events listed in
the Open Kilonova Catalog32 (another sibling of OSC), mostly
short GRBs, are labeled as kilonova candidates (“Possi-
bleKilonova”). These kilonova candidates include
GRB050709 (Jin et al. 2016), GRB060614 (Yang et al.
2015), GRB080503 (Perley et al. 2009), GRB130603B (Fong
et al. 2014), and GRB150101B (Troja et al. 2018).

2.1.5. Remarks on Data Source Selection

There are a few more actively maintained catalogs and
online services for extragalactic transients, including the
TNS,33 which cross-identifies transient events; the Astrono-
mer’s Telegram (ATel)34 where initial discovery, confirmation,
and classification of transients are posted; and the GCN
circular35 where high energy transients are reported and
archived. Many sky surveys or space missions also produce
their own catalogs of detected events and candidates. There are
also catalogs that are no longer being actively updated (e.g., the
supernova catalog of Lennarz et al. 2012).

We use the data sources above as they are relatively complete
(including events in multiple missions, surveys, and catalogs), and
data are summarized and tabulated in a machine-readable form.
The basic statistics of our data sources are summarized in Table 1.
We may include other transient data sources for transients with
records in an easily accessible format in future releases.

2.2. Construction of Transient Sample

Having transient records selected from those upstream data
sources, we combine these records into a single, unified
transient sample. We only keep their metadata for each event,
including sky coordinates, redshift, type labels, host name,
and/or coordinate (if available). We take the following

approaches to ensure that events in the combined transient
sample are unique, are consistently classified, and have their
best-available metadata compiled.

2.2.1. Ensuring the Uniqueness of Events

We first make our transient sample unique to each event. A
transient can be independently detected, with unique identifiers
assigned by different surveys, missions, or research groups, in
their own naming conventions. When events are reported to
circulars like TNS and ATel, there could be another assigned
designation (e.g., “AT” prefix + year + alphabetic identifier)
for the event. Finally, when confirmed with follow-up
observations, there might be an official name assigned using
the naming convention of the community. These aliases and
designations should point to the same event in our transient
sample. Meanwhile, future events could be detected by
multiple messengers, and they should point to the same entry
in the database, provided that clear associations are established.
This is already partly done within OSC but not across all of our
upstream data sources.
To make the table unique to each event, besides the preferred

or most commonly used designations, we also keep a list of
aliases for each event. When a new event is reported at our
transient data sources, we first search the alias lists of existing
events to check if this is already assigned to a record. We create
a new record for this event only when all of its names are new in
our transient sample. When maintaining alias lists, we also
considered variants of transient designations in the literature. For
example, starting on 2010 January 1, the first GRB detected on a
day is always labeled as “A,” even if there is no other GRB on
that day (Barthelmy et al. 2009). However, such a change of a
naming convention is not strictly obeyed in the literature. There
are also minor variations like with or without white spaces or
dashes (e.g., ASASSN versus ASAS-SN). We created possible

Table 1
Upstream Data Sources for Transients

Source Number Type
Total Used

The Open Supernova Catalog 82,864 34,547 SN
French et al. (2020) Review 43 43 TDE
The Open TDE Catalog 97 96 TDE
Swift GRB Catalog 1651 1493 GRB
Fermi/LAT GRB Catalog 145 78 GRB
INTEGRAL/IBAS GRB Catalog 140 140 GRB
The Fast Radio Burst Catalogue 118 13 FRB
LIGO–Virgo–Kagra Detections 12 1 GW
The Open Kilonova Catalog 6 6 KN

GRB Host Studies (GHostS)a 235 L GRB
Jochen Greiner’s GRB Lista 2226 L GRB
Gamma-Ray Burst Online Indexa 2082 L GRB
GRBweb Databasea 7559 L GRB
FRB Host Galaxy Databaseb 19 L FRB
Taubenberger (2017) Reviewc 60 L SN

Notes. Number counts include all records in the original data source (Total)
and the number of records that contributed any data in our sample (Used).
Besides French et al. (2020), other reference sources are actively updated.
Numbers are as of 2021 June 1.
a Ancillary data source for GRB localization, T90, and redshifts.
b Ancillary data source for FRB host association.
c Ancillary data source for SNe Ia classification.

28 Heintz et al. (2020) and Bhandari et al. (2020) have recently reported the
host galaxies of FRB190611, FRB190711, FRB190714, FRB191001, and
FRB200434, which will be included in the next release of the database.
29 FRB150418 (Keane et al. 2016) is not included as its afterglow, with which
the host was located, and is likely a coincident variable source (Williams &
Berger 2016). Also, the case of FRB171020 (Mahony et al. 2018) is not
included due to its indefinitive host association.
30 www.ligo.org/detections.php
31 frbhosts.org
32 kilonova.space
33 wis-tns.weizmann.ac.il
34 www.astronomerstelegram.org
35 gcn.gsfc.nasa.gov
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variants of event names, even though they do not strictly follow
the naming conventions of certain transient communities or
survey programs. This effectively prevents duplicates when the
database is updated in the future.

Finally, we create unique identifiers for each transient event
in our database (“_id”); identifiers are used consistently
everywhere for host cross-matching and host candidate
identification.

2.2.2. Finding the Best-available Metadata

When assembling the transient sample using several different
data sources, we may also have multiple coordinates or redshifts
reported for the same event beside multiple type labels. Finding
the best-available sky coordinates and redshifts would thus be
necessary for our later host cross-matching or identification. We
only use the most referred coordinates for SNe, i.e., the sky
coordinates that are most widely used in various data sources.
We do this by pairing R.A./decl. by their data sources and
counting the number of primary references linked to each
coordinate pair reported in OSC. When available, we always
prefer the spectroscopic redshift of the host galaxy over the
spectroscopic redshift of the SNe, as we are assembling a catalog
of transient host galaxies. Photometric redshifts of any kind have
the lowest priority. For redshift values without types indicated,
we assume that they are the spectroscopic redshifts of the
transients. Finally, when more than one redshift of the same
priority level are reported, we take the median value.

Most GRBs have no associated SNe detected, except for a
handful of cases. We always use the coordinates with the
smallest 90% error circle for these events. We also include
positional accuracy (90% error radius in arcseconds) for GRBs.
Many GRBs have X-ray or UV/optical afterglows detected,
which provides more accurate localization (arcsecond-level)
than the coarse coordinates determined with wide-angle, coded
mask detectors (usually arcminute level in the best cases).
When available, we use the most accurate position determined
using X-ray or optical afterglows. Finally, when associated
optical SNe are detected, we prefer supernova coordinates and
redshifts, over those reported for GRB, for the same reason.

Commonly assumed as nuclear events, the reported transient
coordinates of TDEs are usually their host coordinates in
optical wavelengths. Instead, a small subset of TDEs may only
have X-ray determined transient coordinates reported, with
relatively poor localization accuracy. We take the as-reported
positions as their nominal host coordinates when matching
objects in other catalogs (see Section 3). Using the host
coordinates of their optical counterparts in our final compiled
summary table is always recommended over their nominal host
coordinates.

Finally, the metadata of other rare events, including FRBs
and GWs, are generally unique and consistent across different
reference sources, so we do not make a further selection.

2.2.3. Standardization of the Classification Scheme

To create a master sample of transients, one needs coherent
and consistent classification for events observed in various
wavelengths and timescales. This is a nontrivial task when
working with diverse reference sources and archival records of
historical events due to their minor discrepancies of classifica-
tion schemes. The existing classification scheme for transients,
particularly for SNe, is mostly phenomenological. Supernova

types are primarily assigned based on spectral features and
sometimes the shape of light curves. Meanwhile, the grouping
of subtypes (taxonomy or hierarchyof supernova types) is
usually motivated by physical models. Even most data sources
follow this well-established classification scheme, the detailed
type notations and label systems (i.e., the union of possible
types labels) are not identical, especially when new phenomena
are discovered or potentially new types are identified. From the
viewpoint of a retrospective meta-analysis, there are a few
issues to be resolved when unifying transient types in different
reference sources into a single, consistent scheme.
First, the notations (or type labels) for transient classification

could vary in different reference sources, especially for unusual
transients that do not naturally fit the existing classification
scheme or newly identified subtypes that lack a standard
notation in the community. When the complexity of the
supernova phenomena cannot be described in our existing
scheme, the hybrid, intermediate, or transitional types are
occasionally used in the literature to designate these indecisive
cases. For example, SNe Ia with circumstellar interaction have
been once classified as “Ia/IIn” or “Ian” by some observers for
their strong narrow Balmer line emission, a definitive signature
for Type IIn SNe, before they are recognized as a subgroup of
SNe Ia (Ia-CSM or Ia-02ic; Silverman et al. 2013, 2016).
Similarly, Type IIb SNe, whose hydrogen lines—for which
Type II are assigned—fade at later stages until they eventually
become SNe Ib-like. Before the popularization of “IIb”
designation, these events occasionally receive “II/Ib” classifi-
cation for such transitional behaviors. More commonly, several
type notations are used interchangeably to refer to the same
newly identified subgroup of events (e.g., Ia-06gz and Ia-09dc),
which should be unified during data compilation.
Second, the label system could be different across reference

sources, requiring a unified classification scheme. Some
reference sources may use complex or fine-grained classifica-
tion schemes, including more refined subtypes, while others
may only limit to some major types. When combining type
labels in multiple reference sources, as a result, there could be
inconsistencies due to the classification schemes themselves.
For example, the same supernova could be classified as “Ia-
91bg” in some reference sources and as “Ia” in other reference
sources with a more limited range of type labels. As a result, in
the combined sample, some “Ia-91bg” events may have
coexisting “Ia” labels assigned, but other “Ia-91bg” events
may not, leading to inconsistent labeling of events. Ideally, we
would use the best-refined subtype label of each event
whenever possible so that transients are always uniquely and
unambiguously classified to the finest details. However, in a
combined sample of transients, the same event could have
multiple, incompatible subtype labels, i.e., labels not along the
same branch of the classification tree. This can result from
disagreements among reference sources or independent detec-
tion in multiple wavelengths or by multiple messengers.
Therefore, we allow the same transient event to have multiple
labels. Meanwhile, we choose a hierarchical classification
scheme so that variations of classification schemes can
naturally fit in.
Our convectional, phenomenologically-based classification

scheme for transients is not strictly connected to the driving
physical mechanisms, including progenitors, exploding mechan-
isms, and circumstellar environments. When constructing a
hierarchical classification scheme, instead of adhering to a purely
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phenomenological scheme, we group transient types based on
their physical origins whenever known. For example, SNe IIb
are commonly considered as close siblings of hydrogen-poor
SNe Ib and Ic (or stripped-envelope SNe), rather than a subtype
of Type II supernova (e.g., Filippenko et al. 1993). Similarly,
Ca-rich events, named after their strong nebular-phase calcium
lines, have been previously classified as a subgroup of SNe Ib by
their maximum-light spectra. Later studies revealed their
thermonuclear origin—they closely resemble SNe Ia, rather
than collapsing massive stars like SNe Ib (e.g., Perets et al.
2010). These subtypes are preferably grouped by their physical
origins instead of spectral signatures. To attain consistency of
classification when combining labels from reference sources
with different classification schemes, we assign each event its
best-refined subtype (there can be multiple) and all their physical
parent labels so that each label in our transient sample points to a
complete subset of events, including its physical subtypes.

Third, another source of inconsistency is the group of so-
called peculiar events. SNe with extreme properties or unusual
signatures are labeled as peculiar events in our conventional
classification scheme (e.g., “Pec” in many catalogs). However,
this all-inclusive label is not used consistently in different
reference sources. For example, a few well-defined subtypes of
SN Ia, such as Ia-91T and Ia-91bg, are sometimes (but not
always) labeled as “Ia Pec.” These robustly defined, relatively
uncommon subtypes have characteristic observational signa-
tures and are potentially related to the diverse channels,
progenitors, or environments of SNe Ia. Many other peculiar
SNe are just classified by template-matching algorithms, where
the “Pec” label is inherited from the best-matching template,
without other detailed and definitive type labels. Occasionally,
individual papers classify events as peculiar without a new
label for their uncommon properties. These unspecified
peculiar SNe could just be outliers of ordinary events, but
they may also contain new subtypes that are yet to be
discovered. Given the context-specific meaning of “peculiar
SNe,” we use “Pec” as a flag for relatively uncommon subtypes
and individual events with unusual properties instead of a
subtype.

The standardization of the label system and subtype
hierarchy must be done on a case-by-case basis. We discuss
our detailed strategy in Appendix B. The hierarchy of transient
type labels is listed in Table 2.

2.2.4. Remarks on Transient Classification

We discussed the standardization of the classification
scheme in the previous subsection. Such a procedure ensures
a unified label system and coherent subtype hierarchy within
the database. However, transients in our combined sample are
detected and classified by numerous survey programs and
researchers, over decades, using a wide variety of data and
techniques. Therefore, the results may suffer from possible
ambiguity or uncertainty, potential methodological bias, and
even human subjectivity.

First, transients are primarily classified by their photometric
or spectroscopic signatures, while the quality, wavelength
range, and temporal coverage of data are sometimes too
insufficient to precisely and definitively subtype those events.
For example, some supernova subtypes are characterized by
their early-time or nebular-phase spectral features, whereas a
high-quality spectrum is not always available when they are far
before or after maximum. As a work-around for time-intensive

spectroscopic classification, efforts have been made to classify
transients purely based on light curves of limited epochs and
filters, either with or without redshifts (e.g., Frieman et al.
2008; Kessler et al. 2010; Lochner et al. 2016). The results of
such classifications bear even larger uncertainties.

Table 2
Type Hierarchy and Number Counts of Transients

Note. Total indicates the number of events with a certain type label, including
events classified as subtypes. Host indicates the number events with known
host galaxies (names or coordinates). Rows with “unspecified” in Type exclude
events with subtype labels under the same parent type. Transient types here are
not mutually exclusive. Some types may have common physical origins, and
the same event may receive multiple types.
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Second, the technique and criteria used could also bias the
results. Several active transient follow-up programs rely on
template-matching techniques to classify events, where a
spectral library of various transient types and phases are
cross-correlated with the observed spectra to determine the
most-alike types (e.g., Smartt et al. 2015). Such classifications
and dating of transients are implicitly affected by the coverage
of types and phases in the template library and possibly even by
the quality and representativeness of the individual spectra. The
aforementioned photometric classification is another example
of how technique and criteria may affect the results.

Third, a nonnegligible fraction of classifications are visually
done by experienced observers in an empirical and perhaps
subjective manner. The results may, therefore, vary from one
person to another.

Indeed, the ambiguities, biases, and inconsistencies cannot
be fully controlled or corrected without tracing back the
original reference sources or conducting a comprehensive
reanalysis of archival data. However, proper curation of
existing classification does, at least, guarantee the consistency
of type labels within our database.

2.3. Transient Sample Statistics

In this version of our database, the transient sample has
36,333 unique events, including 23,703 SNe, 1621 GRBs,
99 TDEs, 14 FRBs, and 1 GW event. The remaining ones are
not explicitly classified yet. These are mostly candidate events
with either a potential host or redshift reported. The numbers
above do not sum up to the total number of classified events in
the transient sample, as some events are detected in multiple
wavelengths or messengers and thus are double-counted. Also,
as we have applied a series of selection criteria, the number
counts do not match their corresponding upstream data sources.
Number statistics, by type labels, are summarized in Table 2
and Figure 1.

More than half of the events in our database are Type Ia
SNe, where 4% of them are further classified as some subtype
of SNe Ia or marked as peculiar SNe Ia. These 4% SNe Ia
include well-defined subtypes, like Ia-91T, Ia-91bg, and Ia-
02cx, and other less commonly detected subtypes, like Ia-09dc
and peculiar events without clearly defined subtypes. CC SNe
(“CC”), including Ib, Ic, II, and their subtypes, are the second
most abundant major class of events in our sample, accounting
for nearly one-third of our transient events. We further divide
CC SNe into hydrogen-poor stripped-envelope SNe (“SE,”
including Ib, Ic, and IIb) and hydrogen-rich Type II SNe. SE
SNe accounts for about 20% of CC SNe, which is slightly
lower than the common estimate of volumetric SE-to-CC ratio
(e.g., -

+36.5 %5.4
5.5 in Smith et al. 2011; -

+30.4 %4.9
5.0 in Shivvers

et al. 2017) Most CC SNe are Type II, but only 24% of Type II
SNe are further classified into subtypes by their light-curve
shapes or spectral signatures. The remaining 5% of events in
our transient sample are mostly GRBs, and the majority are
LGRBs. Other rare events, such as TDEs and superluminous
supernovae (SLSNe; “SLSN” under CC SNe), only account for
about 1% of all events.

Within the transient sample, 28,995 events have redshifts
reported in their upstream data sources. These are spectroscopic
redshifts of either transient or their host galaxies. Very
occasionally, host photometric redshifts are used. The redshift
distributions of major transient types are quite distinct from
each other (Figure 2, left). Type Ia SNe are distributed over the

entire redshift range, with an extended high-redshift tail, likely
due to their higher luminosities. Type II and stripped-envelope
SNe are concentrated at lower redshifts, and particularly, SE
SNe are at even lower redshifts than Type II SNe. Non-SN

Figure 1. The number of transients under each type label, illustrated with
stacked bars to show the relative sample sizes. Here, labels with ellipses (K)
only count events with any subtype classification under this parent type, while
labels with asterisks (*) count events without any further refined subtype label
in the hierarchy (i.e., unspecified as defined in Table 2). Events with multiple
incompatible labels (i.e., labels that are not subtypes of each other) are
accounted for multiple times. Type Ia supernova is the most representative type
in our sample, followed by CC SNe (Type Ib, Ic, and II). Gamma-ray bursts
dominate the remaining 7% of classified events. Relatively rare events, like
superluminous supernovae (SLSNe) and tidal disruption events, only account
for about 1% of all records.
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events, primarily GRBs with redshifts available in our sample,
also extend to very high redshifts compared to other transients.
Regarding the fractions of major transient types (Figure 2,
right), most events at the lower-redshift side (z 0.02) are CC
SNe, and the fraction of SE SNe within CC SNe drops toward
higher redshifts. At medium redshifts (z 0.02), SNe Ia
quickly dominate the local fraction of events, within which
SNe Ia with detailed subtypes are mostly distributed at the
lower-redshift side.

We further inspected the redshift and luminosity distance
distributions of transients across subtypes as defined in Table 2,
calculated using WMAP 9 yr cosmological parameters
(Hinshaw et al. 2013). Luminosity distances are presented as
distance moduli to be more closely related to the detectability
of transients and can better illustrate the biases and hetero-
geneity in our database (Figure 3). Notably, SNe Ia in our
sample have a double-peaked distance modulus distribution,
where the first peak appears between z∼ 0.05 and 0.1, with a
secondary peak between z∼ 0.2 and 0.5. Given the large
fraction and extended redshift distribution of SNe Ia in our
transient sample, the full-sample redshift distribution (in the
distance modulus) is also double-peaked. Regarding subtypes
of SNe Ia, we notice that subluminous Ia-91bg and Ia-02cx are
more skewed toward lower redshifts than overluminous Ia-91T
and Ia CSM. Ca-rich transients are distributed similarly to other
low-luminosity SNe Ia. Within CC SNe, SE SNe (Ib, IIb, and
Ic) have very similar, if not slightly lower, redshifts compared
to Type II SNe, which dominate the total number of CC SNe.
SLSNe (“SLSN”) are clearly skewed toward higher redshifts, in
which hydrogen-poor SLSNe (SLSN-I) are distributed farther
than hydrogen-rich SLSNe (SLSN-II). Meanwhile, Type II L
are at the lower-redshift end of Type II, although their peak
magnitudes are not fainter than Type II P, which dominate the
number count of photometrically classified Type II. For other
subtypes of CC SNe, the differences are more nuanced. Type
Ibn SNe are at the higher-redshift tail of SE SNe, likely due to
their higher peak luminosities. Similarly, relatively brighter
SNe Ic with broad emission lines (SNe Ic BL) are at slightly
higher redshifts than the normal SNe Ic. Finally, rare events

like TDEs and FRBs are distributed at higher redshifts than CC
SNe, and GRBs have the highest average redshift compared to
other major types.
The double-peaked distance modulus distribution for SNe Ia

could be a direct result of our sample heterogeneity. These
transients are discovered by various surveys with significantly
different sky coverage, cadence, and sensitivity. Consequently,
the spatial-temporal coverage of our sample is far more
complicated than a single survey. As illustrated in Figure 4, our
events can be loosely grouped into low-redshift and high-
redshift groups. The low-redshift group is mostly associated
with wide-area, shallow surveys, with steadily improving depth
over the years. Meanwhile, the high-redshift group is primarily
contributed by a few deeper surveys that are more localized in
their sky coverage. This is evident in their decl. angles on the
sky, where low-redshift events have scattered and well-mixed
decl. angles, while high-redshift events only have a few
discrete ranges of values (i.e., their survey fields) that are
related to their time of discovery.
Finally, the All-sky map of our transient events clearly

shows the footprints of a few major deep and narrow-field
supernova surveys (Figure 5), notably the SDSS Supernova
Survey (Frieman et al. 2008), the Supernova Legacy Survey
(Astier et al. 2006), the ESSENCE Supernova Survey
(Miknaitis et al. 2007), the High-Z Supernova Search (Schmidt
et al. 1998), and the Supernova Cosmology Project. These deep
supernova surveys, however, only contribute a limited fraction
of events in our transient sample. Wide-field transient surveys
contribute the most records. Labeling transient records by
individual survey programs could be interesting for certain
studies, but this cannot be achieved easily due to the
incompleteness of information in our upstream data sources.
The number statistics, local fraction, and redshift distribution

indicate that our transient sample is highly heterogeneous.
Multiple factors could contribute to such heterogeneity. First,
there could be a classical Malmquist bias, where intrinsically
brighter events can be observed at greater distances. A possible
second-order effect is that slowly evolving events have a longer
time window for detection and classification and are thus easier

Figure 2. Left: the cumulative distribution of transient redshifts in our database. The redshift axis is stretched so that events are uniformly distributed along the axis.
Major supernova types, including Type Ia, Type II, and stripped-envelope (Ib, Ic), are highlighted here. Compared to Type II and SE SNe, SNe Ia generally have
higher redshifts in our sample, likely due to their higher luminosities. Meanwhile, SE SNe are distributed at even lower redshifts than Type II. Other transients, mainly
GRBs with redshifts reported, are distributed at the higher redshift side of our sample. Right: the fraction of each major type across the redshift range, with similar,
stretched redshift so that the shaded area scales with number counts. Labels with ellipses count events of any subtype under this parent type, while labels with asterisks
only include events without any subtype labels. A large fraction of events at low redshift are CC SNe, and the relative fraction of stripped-envelope SNe (SN Ib and Ic)
within CC SNe drops with increasing the redshift. The contribution of SNe Ia increases with redshift and peaks near z ; 0.1, while subtypes of SNe Ia are mostly at
the lower redshifts.
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to be identified than those that rise and fade quickly. Second,
the criteria or techniques for classification may also introduce
some bias, as many subtypes require high-quality spectra or
even spectra at a certain phase of evolution to identify, which
are often unavailable for distant, faint, or rapidly fading objects.

Third, and perhaps most importantly, our master transient list is
a compilation of various data sources, including spontaneous
discoveries and transient surveys with vastly different detection
efficiencies defined by their survey design (e.g., sky area, field-
of-view, single-epoch sensitivity, and cadence). Therefore, the
number count, relative fraction by redshift, and luminosity
distance distribution do not represent their true cosmological
event rates or that of a sensitivity-limited survey.

3. Host Cross-identification

To compile the properties of host galaxies, one needs to
identify their counterparts in other data sets and then access
their observed or derived properties. The procedure includes
three steps: searching for potential counterparts of host galaxies
in other data sets, matching potential counterparts across data
sets to ensure their spatial association and correspondence
relationship, and identifying the true counterparts of host
galaxies.
Through this section, we use sources for records in other

data sets, objects for actual galaxies and stars in the sky, groups
for clumps of spatially associated sources in other data sets
matched by our algorithm, and fields for patches of sky near
transient coordinates containing the host and other objects.
We aim to cross-match sources in other data sets into groups

correctly, then identify the counterparts of known hosts or rank
the cross-matched groups to identify the best host candidates
when necessary. Therefore, we refer to the entire procedure as
cross-identification. We use known hosts for host galaxies
cross-matched using existing host names or coordinates, and
newly identified hosts (or simply new hosts) for host galaxies
identified by our ranking algorithm. Many newly identified
hosts are probably apparent to previous authors or observers,
and some may have been identified elsewhere. However, these
hosts are not reported to our upstream data sources. Our work
provides independent host cross-identification for these events.
In the following subsections, we describe the detailed

procedure of host cross-identification. The workflow is outlined
in Figure 6.

Figure 3. The distribution of redshift and luminosity distance for each type,
shown as normalized density with respect to distance modulus. Labels with
asterisks are events that are not further classified as any subtype of this parent
type, i.e., “unspecified” events in Table 2. Luminous events, like SNe Ia and
SLSNe, are generally populated at the higher-redshift side. Meanwhile, relative
to their parent types, luminous subtypes (e.g., Ia-91T, Ia CSM, and Ibn) are
usually at the higher-redshifts side, while faint subtypes (e.g., Ia-91bg, Ia-02cx,
and Ca-rich) are usually at lower redshifts. However, the different distributions
cannot be fully attributed to the classical Malmquist bias. Some types require
detailed observations (e.g., densely sampled light curves, spectra) to be
classified, implicitly biasing them to lower redshifts. Also, our transients are
compiled from various surveys and spontaneous discoveries that do not share
the same detection efficiencies.

Figure 4. Year of discovery vs. redshift of our transient events, color-coded
with the decl. angle. The time axis is stretched so that transients are uniformly
distributed, and the vertical axis is in uniform scale of the cosmological
distance modulus. The transient sample is a mixture of shallow, wide-field
surveys and deep, high-redshift surveys with limited sky coverage. There exists
a low-redshift, spatially scattered component peaked at z ; 0.05, with another
higher redshift, spatially more localized component around z ; 0.5. Conse-
quently, the redshift or luminosity distance distribution of our events is double-
peaked, as illustrated in Figure 3.
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3.1. Accessing Sources in External Catalogs

We search for the counterparts of host galaxies in other data
sets, including value-added catalogs (VACs) and survey catalogs,
which we collectively refer to as external catalogs. VACs are
online astronomical databases including the NASA/IPAC Extra-
galactic Database (NED), SIMBAD, and HyperLEDA. They
collect the observed and derived properties of objects from
multiple surveys and in the literature. More importantly, they are
directly accessible using common name designations of astronom-
ical objects. Survey catalogs are high-level data products of

individual photometric or spectroscopic surveys, either hosted at
web services or provided as static files containing directly
measured properties of objects. Generally, without name-resolving
services like Sesame,36 the data of individual objects in survey
catalogs are only accessible using their sky coordinates.
External catalogs we use in this work are summarized in
Tables 3 and 4. The number statistics and source selection
criteria of these catalogs are discussed in Section 4.

Figure 5. Top: equatorial coordinates of transients in Lambert cylindrical equal-area projection. Colors indicate their redshifts, and gray points are events without
redshifts. The dashed and dotted lines trace ecliptic and Galactic planes, respectively. The fields of several deep supernova surveys are clearly visible, but they only
contribute a limited fraction of events. Large-area surveys discover most events. Bottom: similar to the top panel, but showing Galactic coordinates instead. The
discovery dates of events are color-coded with uniform number density over the color axis. Gray points indicate events without discovery dates. The dashed and dotted
lines trace equatorial and ecliptic planes, respectively. The timespans of major deep supernova surveys, particularly the SDSS-II supernova survey near the equatorial
plane, are clearly visible.

Figure 6. The general procedure to compile host properties for transient events. For events with known hosts, we resolve host names in NED and SIMBAD to obtain
the best-available host coordinates and search the coordinates in external catalogs. The catalog sources that correspond to our known hosts are selected with a multi-
catalog cross-matching process to avoid mismatching. For events without hosts reported, we search the transient coordinates in external catalogs with larger cone radii,
cross-match all nearby catalog sources with a similar approach, and identify the most likely host candidates within cross-matched groups using a trained ranking
function. The subsections are indicated on each block.

36 cds.u-strasbg.fr/cgi-bin/Sesame
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When either the host name or coordinate is known, finding
the counterparts of the host in external catalogs becomes a
trivial problem. Even some survey catalogs are not directly
accessible using host names alone; the corresponding sky
coordinates of these names are still easily obtainable from
VACs. However, host names or coordinates are only known for
a fraction of events. About half of all events, even having
redshift or classification, do not have a host name or coordinate
reported. Subject to the availability of host information, we use
two different approaches to search for potential counterparts of
hosts in external catalogs. We outline the two approaches here.
The details are discussed in Appendix D.

3.1.1. Events with Known Hosts

Nearly half of the transients in our sample have host galaxies
reported. Their host galaxies are usually identified by experienced
human observers, whereas the involvement of automated
programs is increasing in recent years (e.g., Gupta et al. 2016;
Sako et al. 2018; Gagliano et al. 2021). Often host galaxy names
are reported, with or without the corresponding coordinates.
Occasionally only host coordinates are provided. Whenever
possible, we use host names to access their properties in VACs to
ensure reliable matching. Meanwhile, many survey catalogs are
only accessible with sky coordinates. We resolve the existing
host names in VACs to find their corresponding host coordinates.
Even though some events already have host coordinates reported
along with host names, to avoid possible errors, we would like to

update their as-reported host coordinates with the name-resolved
coordinates in VACs.
To ensure that the host names and coordinates we use are

reliable, we conducted a systematic quality check of their
original reference sources. Only host names and coordinates
from reliable reference sources are used in this work. The
procedure of quality checking and the selection of reference
sources are described in Appendix C. For events with known
host names, we first resolve their names in NED and SIMBAD
to find the best-available host coordinates. The procedure is
described in Appendix D.1. Once succeeded, we use the name-
resolved host coordinates to access other catalogs and find host
properties. We use the existing, as-reported host coordinates
when no host name can be resolved, but host coordinates are
given to search external catalogs. When searching external
catalogs, we use a fixed radius of 15″ for the name-resolved
host coordinates and 30″ for the as-reported coordinates. Such
large search radii minimize the chance of missing the true host
due to ambiguous or inaccurate coordinates, a common
situation for irregular, disturbed, or well-resolved large host
galaxies. Even using known host coordinates, the returned
sources do not always correspond to our known host galaxies.
Other non-host objects may also populate the field given by our
relatively large search radii. Therefore, we always perform a
local cross-matching to ensure that the host properties we
compiled are complete and uncontaminated (Section 3.2).
Finally, we use transient coordinates to access nearby sources

Table 3
Photometric Catalogs

Catalog Version Filters Hosted at References

GALEX Medium-depth Imaging Survey (MIS) GR5 FUV, NUV Vizier Bianchi et al. (2011)
GALEX All-sky Imaging Survey (AIS) GR6/7 FUV, NUV Local Bianchi et al. (2017)
SDSS Primary Survey Objects (photoPrimary) DR16 u, g, r, i, z, y SkyServer Ahumada et al. (2020)
Pan-STARRS 3π Survey, Stacked Object DR2 g, r, i, z, y MAST Chambers et al. (2016)
DECaLS, Tractor Catalog DR8 g, r, z; W1–W4 Datalab Dey et al. (2019)
MzLS/BASS, Tractor Catalog DR8 g, r, z; W1–W4 Datalab Zou et al. (2017)
2MASS, Extended Source Catalog (XSC) L J, H, Ks Vizier Skrutskie et al. (2006)
2MASS, Point Source Catalog (PSC) L J, H, Ks Vizier Jarrett et al. (2000)
AllWISE Source Catalog L W1–W4 Vizier Cutri et al. (2014)
unWISE Source Catalog L W1, W2 Datalab Schlafly et al. (2019)
UKIDSS Large Area Survey (LAS) DR9 Y, J, H, K Vizier Lawrence et al. (2007)
DES, Co-added Source Catalog DR2 g, r, i, z, y Datalab Abbott et al. (2018)
SkyMapper, Main Table (“master”) DR2 u, v, g, r, i, z Local Wolf et al. (2018)
VHS Band-merged Multi-wave-band Catalog DR4.1 Y, J, Ks Vizier McMahon et al. (2013)
SuperCOSMOS All-sky Galaxy Catalog L B, R, I Local Peacock et al. (2016)
NSA 1.0.1 FUV, NUV; Local L

u, g, r, i, z

Table 4
Spectroscopic, Value-added, and Astrometric Catalogs

Catalog Type Version Hosted At References

SIMBAD Basic Data VAC L simbad.u-strasbg.fr L
NED Basic Data VAC L ned.ipac.caltech.edu L
HyperLEDA Astrophysical Parameters VAC L Local L
SDSS MPA-JHU Catalogs spectroscopic DR7 Local Kauffmann et al. (2003);

Brinchmann et al. (2004);
Tremonti et al. (2004)

Gaia Sources (“gaia_source”) astrometric DR2 Vizier Gaia Collaboration et al. (2018)
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for events without any host coordinate, either name-resolved or
as-reported.

3.1.2. Events without Host Information

For events without host galaxies reported, we aim to identify
their best host candidates and then compile their properties in
external catalogs. We search transient coordinates in VACs and
survey catalogs with flexible, per-case search radii to enclose
catalog sources that match the true hosts. Transient coordinates
may have significant angular offsets to their hosts. Therefore,
the search radius for each event must be adjusted to optimize
the chance to enclose the true host. We determine the search
radius primarily based on the transient redshifts. For events
with redshifts reported, we use the angular distance corresp-
onding to a projected distance of 45 kpc at the reported redshift
to search catalog sources. When there is no redshift reported,
we use a default search radius of 30″. Specifically, for GRBs
without known redshifts, we use 3 times the 90% error radius
as the search radius. Due to this conservative search radius, we
may miss their true hosts, but this also reduces misidentified
hosts. We set the lower and upper limits of the search radius to
15″ and 2′, but for GRBs, the lower and upper limits are 5″ and
15″. These catalog sources are then cross-matched into
spatially associated groups (i.e., host candidates) with compiled
properties (Section 3.2).

3.2. Cross-matching Objects

To compile the properties of host galaxies in external catalogs,
we need to ensure that only robustly detected catalog sources that
spatially coincide with our best-available host coordinates are
used. Meanwhile, when identifying new host galaxies, we also
need to select a group of catalog sources in the field with a
confirmed spatial association and readily compiled properties,
rather than treating catalog sources as individual objects and
choosing the best host candidates from them. We need to
spatially cross-match sources we obtained in external catalogs
and establish their correspondent relationship for both purposes.

Cross-matching more than 20 catalogs with a wide latitude
of angular resolution, sensitivity, and a mixture of photometric
techniques is challenging. Several factors make the problem
complicated. The sensitivities (or depths) of sky surveys are
vastly different, where sources detected in one survey could be
absent in other catalogs. Meanwhile, there could also be
significant field-to-field variations of source densities and
survey coverages. Some sources in certain catalogs could be
artifacts or duplicates of existing sources in the same catalog
that should be removed. Finally, even true and unique sources
could be foreground stars rather than distant galaxies that could
host our transients. Therefore, when cross-matching catalog
sources, the criteria should be optimized for every catalog and
tuned in each field. Artifacts and duplicates of the existing
sources should be excluded to ensure that the cross-matched
catalog sources are genuine and unique. Foreground stars
should be flagged whenever possible to facilitate the identifica-
tion of new host candidates.

Catalog sources are cross-matched once their coordinates
coincide within a certain threshold. Source coordinates bear
random errors depending on the signal-to-noise ratio of detection
and the angular resolution of the survey (optical and pixel
sampling), along with systematic errors inherited from survey-wide
astrometric calibration. For resolved sources, such as our host

galaxies, the measured positions also depend on the photometric
technique used and the de-blending of detected sources. Irregular,
disturbed, or well-resolved galaxies are particularly affected by this
issue. The criterion for spatial coincidence is, therefore, essential for
any cross-matching algorithm. The conventional way to cross-
match two catalogs relies on a constant angular distance threshold,
which is heuristically tuned to maximize the number of reliably
matched pairs while not causing mismatches. One may also use the
position errors of sources when provided and match sources in a
probabilistic way. Matching multiple catalogs, however, is a
substantially more challenging problem. For example, Pineau et al.
(2017) use χ2 test in combinatorial analysis to cross-match multiple
catalogs, while Salvato et al. (2018) establish the correspondence of
sources with Bayesian statistics. These algorithms either rely on
detailed source properties or require extensive calibration with large
samples and are thus unfeasible given our large number of external
catalogs. Due to data availability issues, we do not attempt to
elaborate on the detailed source properties (astrometric, geometric,
or photometric) when cross-matching. Also, the algorithm must be
tuned and optimized using existing fields only, rather than a
significant portion of the full catalog.
We cross-match these catalogs simultaneously in a single run

using connected components in undirected graphs, where
connectivity (i.e., adjacency matrix) is determined by pairwise
angular distances, predefined per-catalog astrometric tolerances,
and per-field matching thresholds. Here, the astrometric tolerance
of each catalog (Table 5) is a predefined global constant reflecting
the average positional error of sources in this catalog, while the
matching threshold in each field represents an acceptance
threshold of cross-matching that can be fine-tuned locally to
compensate the field-to-field variation of source density and
catalog coverage. The algorithm is a simple generalization of the
two–catalog matching case, which is outlined below and
described as the pseudocode in Appendix E:

1. Selecting catalog sources. We first select true and unique
sources in each catalog in the vicinity of each queried
coordinate (or “field”). The detailed criteria are discussed
in Section 4. Real sources with potential quality issues
(e.g., saturated in the image, close to a bright star, or field
edge) are preserved. We leave such quality control of
measured properties for those who use our data.

Table 5
Astrometric Tolerances for External Catalogs

Catalog Tolerance Catalog Tolerance

NED 0.″937 2MASS XSC 0.″968
SIMBAD 1.″230 2MASS PSC 0.″752
HyperLEDA 1.″227 UKIDSS LAS 0.″474
GALEX MIS 1.″641 VHS 0.″904
GALEX AIS 1.″824 AllWISE 1.″211
SDSS 0.″456 unWISE 1.″336
PS1 1.″421 NSA 1.″433
DES 0.″227 SuperCOSMOS 0.″813
DESI-LS 1.″196 Gaia 0.″010
SkyMapper 1.″077 MPA-JHU 0.″010
VST-ATLAS 0.″293

Note. The per-catalog astrometric tolerances are estimated by maximizing the
overall connectivity score, as described in Appendix F. Gaia and MPA-JHU
catalogs have fixed astrometric tolerances of 0.″01. These catalogs are matched
passively with other catalogs.
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2. Calculating pairwise distances. We project selected
catalog sources in the field onto a local two-dimensional
Cartesian frame, in which sky coordinates are converted
to directional angular offsets to the queried coordinate.
Then we calculate the pairwise angular distances of
catalog sources, excluding pairs within the same catalog
that are always supposed to be disconnected.

3. Finding connected source pairs. The pairwise angular
distances are further normalized with their corresponding
pairwise astrometric tolerances. Here the pairwise astro-
metric tolerance for any two catalogs is defined as the
square roots of their quadratically summed, per-catalog
astrometric tolerances. Source pairs with normalized
angular distances below the per-field matching threshold
are considered as connected.

4. Finding groups of connected sources. We finally split
sources into interconnected groups, in which any two
sources are either directly connected or can be indirectly
connected via a chain of connected sources. Each
interconnected group of catalog sources is considered a
cross-matched group. Isolated sources that are not
connected to other sources are also considered as
single-source cross-matched groups.

Analogous to a conventional probabilistic two-catalog cross-
matching problem, assuming that per-catalog astrometric
tolerances are isotropic positional errors of sources, the
normalized distance is related to the Mahalanobis distance of
the centroid position distributions for a source pair. Not
surprisingly, the values of per-catalog astrometric tolerances
and per-field matching thresholds are critical to the accuracy of
cross-matching. We choose per-catalog astrometric tolerances
using a global optimization method, and the per-field matching
threshold is tuned with a similar approach, which is discussed
in Appendix F. To further assess the quality of cross-matching,
we introduced several metrics for cross-matched groups, which
are discussed in Appendix G.

Before finding the known host galaxies or best host
candidates and compiling their properties, some issues and
complications remain with these cross-matched groups. First, a
substantial fraction of catalog sources are actually Milky Way
stars, rather than distant galaxies that could be transient hosts.
These foreground stars may become interlopers during host
identification and contaminate the compiled host properties if
not handled properly. The situation worsens for the transients at
lower Galactic latitudes. Therefore, foreground stars must be
properly labeled and excluded when necessary. Another issue
is that some catalogs may contribute more than one source in a
single cross-matched group. Indeed, we do not directly connect
sources contributed by the same catalog, but they can still be
passively connected via other sources in the group. This leads
to the confusion of multiple-catalog sources, where only one
(or rarely, none) of these sources can reasonably represent the
measured properties of the group. When such confusion occurs,
we need to select the right source (or representative source) for
the properties of the object measured by this survey. The
procedure is described in Appendix H. It is worth noting that,
even though we distinguish stars from galaxies here, we still
allow possible stellar objects to be identified as host galaxies,
given the inevitable confusion of star/galaxy separation in
external catalogs (Section 3.4).

3.3. Finding Sources Matching Known Hosts

For events with known hosts, we only need to identify their
counterparts in external catalogs or, more accurately, the cross-
matched group near each transient that contains these catalog
sources. We put the name-resolved or as-provided host
coordinates into the field as a virtual source and cross-match
it with other catalog sources using zero per-catalog astrometric
tolerance. The cross-matched group that contains this virtual
source is considered as the counterpart of the known host.
When using name-resolved host coordinates, the coordinate

always coincides with (and thus matches) a NED or SIMBAD
source with the same object name. We then mark the group as a
“confirmed-by-name” host. When using as-provided host
coordinates, and when the coordinate that matches a group
has not been identified as a star, we consider the group a
“confirmed-by-coordinate” host. If any cross-matched source in
the group is believed to be a star rather than a galaxy, we only
consider the group a primary host candidate instead of a
confirmed host.
Finally, if we cannot identify a “confirmed-by-name” or

“confirmed-by-coordinate” host using host coordinates, or if
only transient coordinates are used for source searching, we
proceed to rank cross-matched groups by their likelihood to be
the true host using the procedure described in the following
subsection. This includes the case in which the as-reported host
coordinates coincide with a star or even match nothing in the
search radius.
To ensure that these known host coordinates have success-

fully matched the indicated galaxies, we perform a compre-
hensive visual inspection of these fields (Appendix J.1).
Occasionally, if the host coordinate failed to match the center
of the indicated galaxy or the most prominent component of an
irregular host, we manually reassign the host to the correct
cross-matched group. We focus on the results of cross-
matching. Generally, we do not judge the correctness of
transient-host association in our upstream data sources.
However, if there is clearly a better choice of a host galaxy
than the indicated one, we mark the galaxy as an “alternative
host” and flag the case without reassigning the host. To
summarize, in 91 cases, the input host coordinate missed the
indicated galaxy; in 257 cases, we noticed better hosts than the
indicated ones. For various reasons, like image quality issues,
we are unable to inspect 106 cases. The majority of known and
cross-matched hosts (17,556) passed the inspection without any
issues.

3.4. Finding New Host Candidates

For events without known and confirmed hosts, we identify
their best host candidates among cross-matched groups. Host
galaxies reported in previous surveys are often visually
identified by experienced observers in discovery or archival
images. Such a manual or semiautomatic workflow may remain
effective if transients, mainly SNe, are classified and reported at
the current rate; however, this would become infeasible for
future high-efficiency follow-up programs or large transient
samples, as we discussed here. Meanwhile, for state-of-the-art
and future time-domain sky surveys, the growing involvement
of galaxy properties in real-time alert processing and follow-up
scheduling also requires efficient and reliable methods for
automated host identification.
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Finding host galaxies is usually straightforward for human
observers using images. However, it may not be an easy
problem for automated algorithms when only cataloged source
properties are available. Transients may occur anywhere within
and even far outside the optical radii of their host galaxies.
Therefore, the right host is not always obvious, and confusion
of multiple possible hosts is sometimes inevitable, even for
human observers. Only one (or even none) could be the true
host among those cross-matched groups in each field, assuming
that sources are properly matched. We need an effective and
robust method to rank these cross-matched groups by their
possibility to be the host. We formulate the problem as follows:
each cross-matched group could be characterized with a set of
numeric or binary-valued parameters. We aim to construct a
continuous scalar function of these parameters, whose value
indicates the possibility that a cross-matched group can be the
true host. The function need not be a probability estimate in
nature, as we only use it as a numeric score to rank the groups
and identify the best host candidate of each event. Also, the
function should differentiate multiple possible hosts effectively
to avoid confusion, i.e., being reasonably sensitive and
monotonic. We noticed that the decision functions inside the
conventional binary classifiers might satisfy these requirements
if the classifier is trained to separate cross-matched groups into
true hosts and other non-host objects. We, therefore, train the
binary classifiers to distinguish known hosts from other nearby
non-host objects and then use the trained decision function to
rank cross-matched groups of events without known hosts.

There are several important aspects of this machine-learning-
based host ranking method: the construction of the training data
set, the parameterization of cross-matched groups, the evalua-
tion of performance, and finally, the choice of classifiers. Here
we outline the overall procedure to construct ranking functions.
Relevant details are discussed in Appendix I.

The training set lays the groundwork of our ranking
functions. Aiming for a clean training set, we choose the
known and properly cross-matched hosts that passed our visual
inspection without quality issues or alternative hosts
(Section 3.3, Appendix J). We access external catalogs and
cross-match sources again, supposing that neither host name
nor coordinate is available so that the training set best
resembles the actual situation of host ranking. Cross-matched
groups near these transients are labeled as either “true hosts” or
“other objects” based on our existing knowledge about their
true hosts. We include both “true hosts” and “other objects” in
the training set, where the latter enable the ranking function to
reject non-host objects near transient coordinates. The training
set, as a result, is much larger than the actual number of
transients used for training.

There is a wide range of options for the input variables of
ranking functions, such as transient-host offsets, results of
cross-matching, or detailed source properties. We call a
particular combination of input variables a feature set. As the
starting point, we construct a basic feature set using only those
universally available parameters of each group, regardless of
which catalogs have been cross-matched. We also expand the
basic feature set into its redshift-dependent version using a few
transient redshift-relevant parameters. Some more detailed (but
not universally available) properties in external catalogs,
including optical-infrared magnitude, angular size, photometric
redshift, and other derived parameters, may further improve the
performance of ranking functions. Assuming that some

particular wide-field surveys have the required sensitivity to
detect the true hosts, we further expand the basic feature set
with similar source properties measured in these catalogs.
However, these feature sets are only applicable in the coverage
of these surveys, and the choice of host is also limited to groups
with required parameters available.
Since the ranking functions are trained using events with

known hosts, we can evaluate their performances by checking
if a ranking function can recover those hosts. We define the
accuracy of a ranking function as the chance that the group of a
known host will rank the highest among all cross-matched
groups in its field. In other words, the accuracy here is the
fraction of known hosts that have been successfully recovered
by the ranking function, which differs from the accuracy
commonly used in statistics, machine learning, or other
research disciplines. We choose this particular performance
metric because the goal of training differs from the actual way
the trained model was applied. The classifiers are trained to
distinguish individual “true hosts” from “other objects,”
without the contextual information about other groups in the
field; while the trained decision functions are used to rank
(instead of to classify) all cross-matched groups in the same
field and identify the best one. A result-oriented metric may
better reflect the expected outcome of the training process.
The decision functions of trained binary classifiers are the

actual ranking functions we use. To choose the best classifier
for the purpose, we compare several conventional algorithms in
the training and testing process, including Logistic Regression,
Support Vector Machine (SVM; Cortes & Vapnik 1995),
Random Forest (RF; Ho 1995; Breiman 2001), AdaBoost
(Freund & Schapire 1997), Stochastic Gradient Descent (SGD),
and Multilayer Perceptron (MLP). We test their performance
under different input feature sets, including the basic feature set
and its redshift-dependent version, as well as other feature sets
that rely on certain detailed source properties in external
catalogs. These classifiers all reach above 95% accuracy.
Logistic Regression classifier, in particular, achieves
97.3%± 0.3% and 97.5%± 0.6% accuracy using the basic
feature set and its redshift-dependent version. It also stably
outperforms other classifiers when using those derived feature
sets with detailed source properties. Therefore, we use Logistic
Regression as the default classifier. When transient redshift is
available, we use the redshift-dependent version of the basic
feature set; otherwise, we use the default, redshift-independent
version. When applicable, ranking scores from other classifier
and feature set combinations are also provided, but we do not
use them to rank candidates directly.
As a final note, the highest-ranking group in a field is

referred to as the primary candidate, and other groups are
collectively considered secondary candidates. However, if the
primary candidate is already assigned in a field, other groups
are all secondary candidates. We list the primary candidate first
in the data set, followed by secondary candidates in descending
order of their ranking scores. The structure of the database is
described in Section 6.

3.5. Quality Control of Newly Identified Hosts

We use trained ranking functions to identify the best host
candidates for events without reported hosts. Although
performing reasonably well in cross-validation, the ranking
functions have not been tested for performance for newly
identified hosts. Meanwhile, quality control flags and metrics
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are also desired for the individual events to facilitate the use of
the database. We provide two sets of quality control flags and
metrics based on the visual inspection and mock sample tests.

3.5.1. Visual Inspection

We perform a comprehensive visual inspection of new hosts
identified by us. The inspection is aimed to (1) evaluate the
accuracy of ranking functions on these new hosts; (2)
understand the failure modes of ranking functions; (3) provide
quality flags for the use of their host properties; and (4) make
corrections to misidentified hosts when possible.

We rely on visual inspection because the true hosts remain
unknown at this point. Other transient-host catalogs may serve
as the ground truth here, but these catalogs may also have
misidentified hosts, leading to inaccurate estimates of accuracy.
Indeed, visual inspection is a subjective evaluation of quality
and performance, which depends on the designed workflow,
image quality, and our discernment; while being an indepen-
dent test, it reveals true performance and failure modes that are
otherwise hard to characterize.

We have previously inspected the cross-matching of known
hosts (Section 3.3, Appendix J.1). For the sample of new hosts
identified in this work, we focus on whether the default ranking
functions have identified the most likely host we noticed in
image cutouts. We make corrections when hosts are likely
misidentified. Also, when there are multiple possible hosts, or
when we cannot identify the most likely host in image cutouts,
we mark these indecisive cases with appropriate flags. The
procedure and criteria of the visual inspection are discussed in
Appendix J.2.

As a summary, without considering cases in which we are
unsure about the most likely hosts, the default ranking
functions achieved 97.0% overall accuracy, comparable to
the results from cross-validation. Taking those indecisive cases
into consideration, the accuracy tops at 97.3% under the
optimistic assumption that indecisive cases are always correctly
identified; but this accuracy may also drop to 89.1% in an
improbable pessimistic situation that the ranking function failed
in all indecisive cases.

3.5.2. Confidence Scores

As a complementary method for quality control, we
introduce a numeric metric for the reliability of new hosts,
namely the confidence score. The confidence score charac-
terizes the degree to which a host candidate stands out among
nearby non-host objects. True hosts are, in fact, outliers among
those more abundant non-host objects in the field. They should
have significantly higher-ranking scores than nearby non-host
objects, assuming properly trained ranking functions. If the
ranking score of a candidate is comparable to the best scores
that non-host objects can reach by chance, then the candidate
is, to a certain extent, indistinguishable from non-host objects.
This makes the candidate a less reliable one. We use
randomized mock transient samples and metrics for outlier
detection to carry out the comparison here.

We feed a randomized mock transient sample into the
workflow to construct baseline distributions, i.e., the distribu-
tion for the best-ranking score that non-host objects can get by
chance. With the corresponding cumulative distributions, we
can map the ranking score of a new candidate into a percentage
score, which we refer to as the confidence score. For a well-

behaved ranking function, reliable candidates should have
confidence scores close to 100%, because their ranking scores
are significantly higher than non-host field objects; transients
with multiple possible hosts may have more than one group
with high confidence scores; finally, if no candidate reached a
high confidence score, then all its candidates are likely
indistinguishable from non-host field objects, and the event
itself is likely hostless. Indeed, the baseline distributions
depend on the transient redshift and catalog coverage and
should be constructed separately for each ranking function. We
discuss the details of implementation in Appendix K.
Nevertheless, the confidence scores only serve as a

reference. They are still based on the trained ranking functions
themselves, which do not directly indicate the correctness of
transient-host association. Misidentified hosts could have high
confidence scores, while genuine hosts may also have low
confidence scores. Cross-checking with the visual inspection
results, or performing some basic quality assessment, is
encouraged when using confidence scores.

3.6. Accuracy of Ranking Functions

We use trained ranking functions to identify host candidates
for events without reported hosts. The default ranking functions
achieve above 97% accuracy from the cross-validation using
known hosts, and our visual inspection reveals a similar
empirical accuracy in new hosts identified in this work. To
further understand the behavior of ranking functions and to
characterize the quality of the data set in detail, here we analyze
the dependence of accuracy on some key transient or host
parameters, including transient redshift, transient type, transi-
ent-host angular offset, and host optical-near-infrared (NIR)
magnitude.
For the comparison of accuracy across types, we group

transients into broad classes using the hierarchy in Table 2.
Nonsupernova transients, mainly GRBs, are grouped into
“Other.” Some unclassified transients, which enter our sample
because either the redshift or host galaxy is known, are grouped
into “Unknown.” For optical-NIR magnitudes of hosts, we use
r-, i-, or z-band magnitudes from DESI Legacy Surveys (LS)
and PS1. Outside their coverage, SDSS, VST-ATLAS, or
SkyMapper, are also used. For continuous variables, we divide
events into bins of equal sample size along the axis of interest
to characterize the dependency of accuracy.

3.6.1. Accuracy from Cross-validation

We do not use trained classifiers to rank cross-matched
groups when the host is already known. Instead, we trust the
reported host and directly use the host coordinate to match the
right group. However, as the training set, we can use these
known hosts to test the accuracy and analyze the behavior of
our ranking functions.
We estimate the accuracy with standard tenfold cross-

validation. We divide the sample into 10 subsamples, where
each subsample contains about the same number of fields.
During each test, we use one subsample for testing and the rest
for training. We repeat the test 10 times and use each
subsample once in turn for testing. The results are averaged
over 10 tests to represent the performance. Besides estimating
the overall accuracy, we also derive the dependence of
accuracy on transient redshift, transient type, transient-host
angular offset, and host optical-NIR magnitude by binning the
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test sample, estimating the per-bin accuracy, and taking the
average of 10 separate tests. For each test, to estimate the per-
bin accuracy to the percent-level, each bin must contain at least
a few hundred events, which limits the bin number along
the axis.

We summarize the dependency of accuracy in the upper
subpanels of Figure 7. We only show the accuracy curves for
the two default ranking functions for clarity. Accuracy curves
using other feature sets are summarized in Appendix I.3. The
change of accuracy over the redshift range is at the level of a
few percent, indicating the stable performance of the ranking
functions. The accuracy is lower than average for low-redshift
or high-redshift events. Also, at larger transient-host offsets or
for fainter hosts, the accuracy is lower than average. The
degradation of accuracy for low-redshift events is likely
attributable to larger transient-host angular offsets. Toward

the higher redshifts, the properties of true hosts become less
distinguishable from those ubiquitous faint galaxies, possibly
leading to higher failure rates. Notably, even at the relatively
small transient-host angular offsets, the accuracy is only at
98%. Failure happens here when a more distant object is
chosen rather than the true host in close proximity. We do not
see a significant variation of accuracy across transient types.
The accuracy in “SLSN” and “Other” (mainly TDEs and
GRBs) is noisy due to their limited sample size compared to the
number of folds. Using transient redshift-relevant parameters
marginally boosts the overall accuracy, and the improvement is
clear at large transient-host offsets.
For the accuracy of other feature sets (Appendix I.3), we

notice that the inclusion of some source properties can further
improve the accuracy above our basic feature sets. Even only at
the percent-level, the increase in accuracy indicates a

Figure 7. The accuracy of host cross-identification with our default ranking functions, using redshift-dependent variables (red) or not (blue). The four panels here
show the dependence of accuracy on transient redshift, transient-host angular offset, transient type, and host optical-NIR magnitude. Except for the panel of transient
type, we split the sample into bins of equal number counts along the axis of interest and plot the per-bin accuracy at the median value of the bin. We estimate the
accuracy in two separate ways. With the sample of known hosts (i.e., the training set), we calculated the average accuracy using tenfold cross-validation, where the
standard deviations are indicated as error bars. For the sample of new hosts, we estimated an empirical accuracy with a visual inspection, defined as the fraction of
visually identified hosts that are also chosen by our algorithm. Vertical error bars outline the range of accuracy due to the uncertain cases (Appendix J.2). We plot the
distribution of both samples as shaded areas in each subpanel. The densities are over the logarithmic axis for redshift and transient-host angular offset, so the histogram
area corresponds to the sample size. For the dependence on redshift, we also plot the subset of points without redshift, in the gray shaded area of the first panel.
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significant reduction of failure rates. However, this comes with
the cost that some host galaxies may not have the required
features and are thus ignored by these ranking functions.

3.6.2. Empirical Accuracy from Visual Inspection

We also estimate the accuracy of new hosts from the results
of the visual inspection. Because the inspection relies on our
discernment instead of some ground truth, we refer to this as
extitempirical accuracy. In the subsample of events with
unambiguous and clearly visible hosts, we use the fraction of
successfully identified cases as the empirical accuracy. There
are, however, many cases in which the most likely host cannot
be determined visually, usually due to image quality issues,
confusion of multiple nearby galaxies, and even the complete
absence of any likely hosts. The uncertainty in accuracy due to
these cases should be taken into consideration. Therefore, we
further estimate the optimistic and pessimistic limits of
empirical accuracy supposing that all these indecisive cases
are either successfully identified or missed by the ranking
functions (Section 3.5.1).

We focus on the dependence of the empirical accuracy on
the key transient and host parameters, which is outlined in the
lower subpanels in Figure 7. We find similar patterns of
dependence as we have seen in known hosts. The accuracy
does not change significantly along the axes. We find lower
than average accuracy in low-redshift or high-redshift bins,
larger transient-host angular offsets, and fainter hosts. Con-
sidering the loss of accuracy due to indecisive cases, even in
the pessimistic situation, the accuracy of the low- to mid-
redshift events remains around 95%. However, for high-
redshift events, the large fraction of indecisive cases implies a
likely lower accuracy than outlined here—the pessimistic lower
limit of the last redshift bin is under 70%. For this reason,
“SLSN” and “Other” (mainly GRBs), usually high-redshift
events, have pessimistic lower limits around 80% and 50%,
respectively. Using redshift as input may improve the results
for high-redshift or fainter hosts among cases with identifiable
hosts, although the improvement may not be significant
considering the broad range of accuracy due to indecisive
cases.

Finally, it shall be noted that, for indecisive cases, their
redshift and type are intrinsic properties of the events, so that
we can quote the optimistic and pessimistic limits for these two
curves. However, the transient-host angular offset and host
optical-NIR magnitude depend on the host and are unknown
for indecisive cases. Therefore, we are unable to quote the
optimistic and pessimistic limits for these two panels.

3.6.3. Typical Failure Modes

To understand the reason for which the ranking functions
miss the true hosts, we rerun our redshift-independent default
ranking function on the entire training set, i.e., the known and
properly cross-matched hosts that passed our visual inspection,
and then select cases in which the top-ranking groups are not
the true hosts. On the other hand, from the visual inspection of
new hosts, we also summarize cases where the ranking
functions missed the most likely hosts as we noticed in the
images. We analyze the failed cases on either side and find
some common failure modes.

Figure 8 shows examples of failed cases, grouped into four
common failure modes. First, in some fields, the true host could

be ambiguous, given the existing input parameters. Some of
these cases can be resolved using more detailed source
properties like shape parameters or galaxy redshifts, but some
remain challenging even for human observers. Second, in some
cases, the true host lies beyond the search radius, so another
group inside the radius is mistakenly chosen as the host. These
are usually low-redshift events with larger than typical
transient-host angular offsets. Since we exclude such cases
for the training set, the examples here are selected from new
hosts. Failure like this can be reduced with larger search radii at
the cost of higher computational and storage overloads. Third,
some well-resolved nearby galaxies are split into multiple
sources in certain survey catalogs. These parts or substructures
of galaxies, when cross-matched into groups, become inter-
lopers that confuse our ranking functions and reduce the
accuracy (see also Appendix G). Fourth, the ranking scores can
be undesirably boosted or penalized in certain situations,
leading to the ignorance of a clear and unambiguous nearby
host that other methods may not easily miss. Here the second
and third failure modes are closely related to low-redshift
events, which are less of a concern at higher redshifts.
However, the other two failure modes are limits of the method
itself and can only be resolved using better-tailored ranking
functions.
We estimate the accuracy based on the assumption that the

true host is always inside the search radius. In reality, there are
occasional cases where the true host is beyond the radius, as
shown in Figure 8. Most of the time, the true host is just outside
the search radius. For the training set, we excluded 262 events
due to the absence of the true host in the radius. This represents
a small fraction compared to the resulted training set (17,421).
For new hosts, at least 91 events are affected by this issue
(Appendix J.2).

3.7. Notes on Undetected Hosts

Our training and testing process implicitly assumes that
every transient should have a host. In reality, it is not
uncommon to see transients without apparent host galaxies in
discovery or archival images. We adhere to public, wide-field
surveys to identify host galaxies, while many hosts, especially
those of high-redshift transients (e.g., SLSNe, GRBs), may
drop below the sensitivity limits of these wide-field surveys and
are thus undetected. Intergalactic stars may also contribute to
such hostless transients. Their “host galaxies” are certainly
misidentified and should be excluded from any analysis.
We use visual inspection to flag possible hostless transients

(Appendix J.2). The criteria we apply are rather conservative.
We only rely on DESI-LS images or, occasionally, PS1 images
without stacking artifacts, to identify them. We avoid labeling
an event as hostless if its vicinity (angular separation 15″)
contains any possible faint galaxies. These faint and sometimes
barely resolved galaxies are ubiquitous in survey images, and
they are generally distant background galaxies per the
photometric redshift catalog of Zhou et al. (2021). However,
we cannot eliminate the possibility that some of them are
actually real host galaxies at large projected distances
compared to their sizes. We check image cutouts of the larger
field of view for low-redshift cases to exclude possible hosts at
extreme angular distances. Finally, if there is neither object in
the image nor sources in survey catalogs, but the name of a
nearby VAC source clearly indicates the host, we do not label
the event as hostless. We assume that their hosts, if they exist,
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are low-mass galaxies with small sizes. If they are marginally
detectable, they should be excluded by the criteria above. Our
inspection leaves 408 likely hostless events at the sensitivity
limits of our background images and external catalogs.

These 408 possible hostless transients include 176 GRBs,
158 SNe Ia, 30 SLSNe, 43 CC SNe that are not SLSNe, and a
few more unclassified events. Since one event can have
multiple types, the numbers above do not match the sample
size. More than half of these possible hostless events have
redshifts reported, with a median value of 0.4. GRBs, and

SLSNe dominate the high-redshift side of the population, and
the low-redshift side (z< 0.1) consists exclusively of SNe (42
in total). Therefore, both low-redshift and high-redshift events
may contribute to the population of hostless transients here.
However, the actual number of hostless transients could be

underestimated here. Take the actually detected GRB hosts in
Hjorth et al. (2012) for instance. At a limiting magnitude of
R; 24, typical of modern wide-field sky surveys, only 24% of
their hosts are detectable; at a deeper limiting magnitude of
R; 24.5, more than half of their hosts remain undetected. Yet,

Figure 8. Examples of incorrectly identified hosts from cross-validation of known hosts and visual inspection of new hosts. Each panel shows a field centered at the
transient event, with the event name and angular scale of 5″ indicated at the corners. Inside the search radius of each event (dotted circle), the best host (either
previously reported or visually identified) and algorithm-identified host are highlighted with red and orange crosses, and other cross-matched sources are marked with
white circles. Each row here represents a common failure mode: (1) inevitable confusion of multiple likely host candidates in the field, in which the true host could be
ambiguous even for visual identification; (2) the true host is located beyond the search radius due to an exceptionally large transient-host offset; (3) part of a well-
resolved, nearby large galaxy is identified as the host, instead of its main component; and (4) another cross-matched object, either nearby or far in the background, is
erroneously identified as the host at higher ranks. Events at lower redshifts are more susceptible to the second and third cases.
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this does not include the upper limits reported in Hjorth et al.
(2012). Our visually identified sample of hostless transients is
certainly nonexhaustive.

Finally, the confidence score is an alternative, quantitative
approach to identify hostless events. These events do not have
hosts; as a result, their best-ranking candidates are nearby non-
host objects, which are expected to follow the baseline
distributions as we discussed in Section 3.5.2. We show the
distribution of confidence scores for possible hostless transients
in Appendix K.

3.8. Notes on the Workflow

We discussed the cross-identification of host galaxies under
two different circumstances: events with known hosts and
events without hosts reported. The procedure to access external
catalogs and cross-match catalog sources are similar, as
outlined in Figure 6. In fact, we combine these two parallel
workflows into a single pipeline. Accessing and compiling
properties of known hosts is just a trivial case of the entire
procedure, where the part of ranking host candidates can be
skipped. The entire pipeline is summarized as pseudocode in
Appendix E.

In Figure 9, we show some typical host galaxies that went
through our pipeline, including both known hosts and new
hosts. These hosts are randomly selected near a few redshift
values as examples. Even having more than 20 catalogs with
nonnegligible catalog-to-catalog offsets of sky coordinates, our
cross-matching algorithm works reasonably well for hosts
across the entire redshift range.

Similar to the transient collection, we store the compiled
properties of host galaxies in a separate data collection, indexed
by the unique identifier of each event. For events with
confirmed hosts, either by name or by coordinate, we store
the properties of the cross-matched host and other cross-
matched groups. When there is no confirmed host besides the
properties of the primary candidate, we also store the properties
of other cross-matched groups (“secondary candidates”) in
descending order by their ranking score in the field. Note that,
when the as-reported host coordinates match a stellar object,
the group is marked as a primary candidate instead of a
“confirmed-by-coordinate” host (Section 3.3). Otherwise, the
group with the highest-ranking score becomes the default
primary candidate.

We retrieve and compile host properties separately for each
event, and consequently, there could be duplicates of hosts if
several transients have been detected in the same galaxy.
However, this is a relatively uncommon situation, as only 1886
known hosts in our database have more than one transient.
Therefore, we do not index these cross-matched hosts uniquely
to eliminate duplicates at this moment. Our statistics and
analyses are also based on the idea of transient-host pairs rather
than individual hosts.

3.9. Comparison with Similar Works

The technique to cross-identify host galaxies and the data
products presented in this work is unique in many aspects. Here
we compare our method and data set with similar works in the
literature and discuss the advantages and drawbacks of the
different approaches.37

3.9.1. The Directional Light Radius Method

The Directional Light Radius (DLR) method (e.g., Sullivan
et al. 2006; Gupta et al. 2016; Sako et al. 2018), which relies on
galaxy shapes and sizes to identify hosts, is probably the most
widely used technique in previous works. The angular
distances of potential host galaxies to a transient are normalized
by their elliptical radii in the direction of the transient (i.e., the
DLR). The resulted parameter (dDLR) is a comparison of
transient-galaxy angular distance and galaxy angular size,
taking the axis ratio and position angle (inclination or
projection effects) into consideration. Nearby galaxies with
smaller dDLR are more likely to be the host.38 The DLR method
implicitly assumes that transients in galaxies have a similar
radial extent as the stellar light, which is reasonable for most
stellar explosions. Calculating dDLR requires no more than the
basic shape and size parameters of galaxies, making this
method easy to implement and thus popular for similar studies.
The method also has some clear drawbacks. First, shape and

size parameters, such as moments of light, are method- and
data-dependent. The resulted dDLR are thus comparable only
within the same survey. Such parameters are also noisy for low
signal-to-noise detections or marginally resolved galaxies,
leading to significant errors in the estimated dDLR. Second,
even assuming that transients following stellar light and galaxy
isophotes are elliptical, the dramatic differences in radial light
profiles (or concentration of light) remains a source of bias. For
example, the effective radius (r50) is commonly used to
calculate dDLR, but the fraction of enclosed light in units of r50
depends on the light profile, even for the simplest models. At
four times the effective radius, the fraction of enclosed stellar
light is 99.1% for an exponential disk, but for de Vaucouleurs’
profile, the fraction is only 84.7%. The same dDLR value,
therefore, corresponds to a different fraction of enclosed light
and hence the probability of being (or not being) the true host.
Third, the comparison of dDLR implicitly assumes a uniform
transient rate and detection efficiency across galaxies, which
may become an issue when there are multiple candidates with
comparable dDLR. Finally, for many photometric catalogs, there
is a specific issue with nearby large galaxies. Most photometric
pipelines are not optimized for galaxies of large angular sizes.
Their resolved substructures, such as clumps, spiral arms, and
even massive star clusters, can be broken into individual
sources by profile-fitting or de-blending algorithms. Such
substructures may impede host identifying, where the source
with the smallest dDLR could be a substructure instead of the
galaxy core.
The DLR method is not immediately applicable to our entire

transient sample due to the heterogeneity in transient types,
redshift range, and catalog coverage. For example, shape and
size parameters required by the DLR method are not always
provided in external catalogs. Even when available, they are in
diverse representations and are survey-dependent. However,
for some specific catalogs, we implement the method. We test
the accuracy when only dDLR is used to rank host galaxies. We
also include this dDLR parameter in some feature sets and
analyze the performance. Only using dDLR to rank nearby
groups, we can recover nearly 90% of known hosts. The
implied 10% misassociation rate is higher than the estimate of

37 It has come to our attention that Aggarwal et al. (2021) have proposed a
Bayesian method for host galaxy identification.

38 In this work and in Gupta et al. (2016), dDLR refers to the normalized
transient-galaxy angular distance by DLR. In Gagliano et al. (2021), dDLR
refers to the DLR itself, and θ/dDLR is the normalized angular distance
(Equation (9)).
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5% in Gagliano et al. (2021) while close to the mock sample
performance in Gupta et al. (2016). On the other hand, feature
sets including dDLR achieve higher accuracy than the default
ranking functions. However, the improved performance may
not be fully attributed to this single parameter.

3.9.2. The Gradient Ascent Method

The recent work of Gagliano et al. (2021) represents a more
sophisticated genre of technique, where the gradient of surface
brightness extracted from image cutouts, instead of cataloged
source properties, is used to associate transients with potential
hosts. They locate the peak of surface brightness (i.e., the core
of the potential host) in the image cutout and use the cataloged
source at the peak position for host properties. Finding the peak
of light in an image is a nontrivial task in the presence of
foreground stars and resolved galaxy substructures. They
remove point sources, smooth out the fluctuations over the
extended light component, and construct the gradient field for
the light. After then, starting from the transient location, the
algorithm ascends to the core of a nearby galaxy following this
gradient field. This method works remarkably well for the low-
redshift host galaxies with resolved substructures where the
conventional DLR method could easily fail.

However, the technique requires direct analysis of image
cutouts, potentially with higher computational costs. The
quality and availability of image data could also be a constraint
of its applicability. Also, the hyper-parameters in the entire

workflow, such as the smoothing scale and the star/galaxy
separation criteria, must be tuned for each survey. Finally,
analogous to an optimization problem, the chance remains that
the current solution (i.e., the peak of surface brightness) is only
a local minimum instead of the global best solution, or the
solution converges in the wrong direction.

3.9.3. The Ranking Function Method

In this work, we introduce a machine-learning-based host
candidate ranking technique. We characterize potential hosts by
various parameters, including basic parameters that are
universally available for every cross-matched group and,
optionally, detailed source properties in external catalogs.
These parameters are then fed into a ranking function, which
sorts these potential hosts by their estimated possibility to be
the right host. The ranking function is trained using known,
properly cross-matched, and visually inspected host galaxies in
our data set, essentially turning the problem into a regular
classification or regression problem.
Using a trained algorithm instead of a designed one based on

certain assumptions is the primary difference of our approach
compared to other methods. Those already identified hosts,
including non-host objects in the same field, are used to train
ranking functions and objectively evaluate their performances.
A trained algorithm generally uses fewer assumptions and is
thus less vulnerable to biases inherited from the imposed
assumptions. This method is also extensible and flexible. Any

Figure 9. Examples of cross-matching catalog sources using astrometric tolerances and connectivity of objects. Each panel here shows the color composite image of a
host galaxy on the left side, with transient name, redshift, and 1″ angular scale (red bar) indicated. The cross-matched catalog sources are plotted with various symbols
on the right side, and a zoom-in view of the red circle (radius indicated) centered at the host. To cross-match objects, the distances of catalog sources are normalized by
their pairwise astrometric tolerances and then compared to their thresholds of connectivity (Section 3.2). Connected pairs under this criteria are indicated as gray lines,
and groups of interconnected catalog sources are further labeled as cross-matched objects. For clarity, we only zoom into the host here, while other catalog sources in
the search radius are also cross-matched into groups in the same way. These panels are randomly selected near redshifts 0.02, 0.05, 0.1, 0.2, 0.5, and 1, where the
upper six panels are known hosts, and the lower six panels are new hosts with our algorithm (Section 3.4). The cross-matching algorithm we developed is effective yet
flexible for most hosts, while more complex cases are discussed in Appendix G.
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characteristics of potential hosts can be used as input, and many
conventional classification and regression algorithms can act as
the ranking function. Actually, this is a framework for a family
of methods. However, the method relies on a well-constructed
and sufficiently large training set, which may not be available
for other similar problems. One may create a training set using
mock transient-host pairs as done in Gupta et al. (2016), but the
assumptions made when generating mock transient-host pairs
could implicitly bias the results. We also assume that the cases
to which the trained ranking function is applied are similar to
those in the training data set. This is less of a concern since the
new hosts have empirical accuracy comparable to the accuracy
from cross-validation, but the transferability of the trained
model should be tested in other similar applications.

We provide a matrix of trained ranking functions, but the
default ranking functions we used deserve further discussion.
To ensure the completeness of the input variables, the default
ranking functions only take the basic characteristics of cross-
matched groups that are independent of catalogs that have been
matched. Detailed source properties in external catalogs, which
proved to improve the accuracy, are not used. Therefore, the
behavior of the default ranking functions might be partly driven
by non-physical factors. We use a simple Logistic Regression
classifier here. Such a simple linear model may suffer from
underfitting, but the model is also insensitive to outliers in the
training set and systematic variations in some variables. In
other words, a simple linear algorithm guarantees the
robustness of the trained model, but it may also lack the
capability to differentiate multiple likely candidates.

3.9.4. Single-catalog versus Multiple-catalog Techniques

We choose hosts from cross-matched groups, where each
group may contain sources from multiple external catalogs.
This multi-catalog approach, driven by our motivation to
provide rich host properties across multiple surveys, clearly
differs from previous works. Our method and data set naturally
provide better coverage of host properties over a wide range of
wavelengths, robustly cross-matched across various catalogs,
but the downsides are also clear. To begin with, cross-matching
multiple catalogs, which itself is a challenging problem for
galaxies with a wide range of angular sizes and redshifts,
becomes an extra step. More importantly, due to the sensitivity
limits and partial sky coverage of surveys, cross-identified
hosts cannot have complete source properties across these 21
external catalogs. Consequently, there is a trade-off between
the accuracy and applicability of the training functions if one
plans to use detailed source properties as the input parameters.
Adhering to those universally available basic features avoids
the problem, but the performance could be driven by non-
physical factors. Also, the compiled data set could be sparse,
especially for high-redshift hosts or hosts beyond the coverage
of major sky surveys. On the contrary, single-catalog
techniques can fully utilize the existing source properties when
finding host galaxies. Host properties compiled in this way are
also consistently measured and are only subject to the selection
function of one survey. However, the data provided are always
limited without further cross-matching with other catalogs.

3.9.5. Comparison with the Gagliano et al. (2021) Data Set

Finally, besides the different methods to identify host
galaxies as we discussed above, it is also worth comparing

the publicly available data set presented here with the GHOST
database maintained by Gagliano et al. (2021). First, our work
includes more transient types, such as TDEs, GRBs, and other
rare events, with fine-grained taxonomy, while Gagliano et al.
(2021) focus mainly on spectroscopically confirmed SNe.
Second, our transient sample includes 18,140 events with
known and cross-matched hosts and 18,100 new hosts. The
larger sample size compared to the GHOST database is mainly
due to our different sample selection criteria and the inclusion
of other transient types. Third, we choose to trust the reported
hosts when available and only use the algorithm when there is
no usable host information, while Gagliano et al. (2021)
perform consistent catalog-based and image-based host match-
ing for all their SNe. Fourth, the data set presented here
includes cross-matched properties in 21 catalogs, while
Gagliano et al. (2021) provide source properties mainly in
the PS1 catalog, with limited data in other catalogs. We also
include properties of secondary host candidates. Finally,
besides the static version of the database in various formats,
at the moment, we do not provide the visualization and data
access tools as Gagliano et al. (2021) did. This could be a part
of our future updates.

4. Host Data Compilation

The general guideline to choosing external catalogs is that
the data should be available for a large fraction of our hosts,
and in combination, these catalogs should cover the entire UV-
optical-IR wavelength range. Following this principle, we
select a wide variety of catalogs (Tables 3 and 4). Here, we
discuss the basic characteristics, source selection, and star-
galaxy separation criteria used for our external catalogs. We
also briefly summarize the coverage of host properties in these
catalogs. Note that the column names mentioned are as they
appeared in our data sources.

4.1. GALEX

We choose the All-sky Imaging Survey (AIS) GR6/7
(Bianchi et al. 2011) and the Medium-depth Imaging Survey
(MIS) GR5 (Bianchi et al. 2017) catalogs of the GALEX
mission for UV photometry of host galaxies. They provide
fixed circular apertures (8 and 17 pixels) and elliptical Kron
magnitudes in the far-UV (FUV) and near-UV (NUV) bands,
with related shape parameters for apertures and standard
SExtractor flags in each band. The AIS has point-source-
limiting magnitudes (5σ, AB) of 20.8 (NUV) and 19.9 (FUV),
covering 2.6× 104 deg2 (63% of the sky), while the MIS
covers only 1000 deg2 but reaches deeper limiting magnitudes
of 22.7 in NUV and 22.6 in FUV.
We do not impose source selection criteria for GALEX

catalogs. Sources in both catalogs are always assumed to be
valid objects. There are sources that are affected by dichroic
mirror, detector window, or detector edge reflection artifacts.
These sources, although they shall be excluded for photometric
analysis as recommended by the references above, usually
match true objects in deeper optical surveys. We, therefore,
preserve these sources in our cross-matching process, and these
potentially corrupted photometric measurements can be
excluded later using corresponding artifact bits in Nafl and
Fafl columns. Given the relatively low angular resolution of
the GALEX survey, we do not use their star-galaxy separation
parameters as given in the catalogs. Taking both AIS and MIS
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into account, 9125 of our known hosts have GALEX
magnitudes in at least one band (usually NUV), while
6791 have magnitudes in both GALEX bands. Meanwhile,
8161 new hosts have at least one band available, and 5993 have
both bands available.

4.2. SDSS Photometric and Spectroscopic Catalogs

We also use the SDSS DR16 source catalog (Ahumada et al.
2020) for optical photometry of host galaxies. This data release
covers 1.4× 104 deg2 (34% the sky) in ugriz bands, reaching
point-source sensitivity down to 22.2 mag in g and r (95%
completeness, asinh magnitude). We accessed the photometric
object table at the SDSS SkyServer.39 The table provides
complete point-spread function (PSF), profile-fitting (de
Vaucouleurs, exponential and composite), fixed aperture, and
Petrosian photometry of the detected objects. We exclude
duplicate sources by selecting primary survey objects
(mode=1). Stars are identified using their pipeline morpholo-
gical classification (class) when cross-matching objects. This
morphological indicator is based on the comparison of model-
fitting magnitudes with PSF-fitting magnitudes. However, we
only perform star-galaxy separation for sources brighter than
i = 20 (asinh magnitude). Fainter than this magnitude, the
purity of stars begins to drop.40

We also search for spectroscopic targets in the MPA-JHU
catalogs (Kauffmann et al. 2003; Brinchmann et al. 2004;
Tremonti et al. 2004). These catalogs are based on the spectra
of SDSS DR8 (Aihara et al. 2011), which provides spectral
properties (spectral indices, line equivalent widths, and fluxes)
and derived physical parameters (star formation rates, stellar
masses, and gas-phase metallicities) based on SDSS spectrosc-
opy. We select objects that are classified as galaxies
(SPECTROTYPE=‘GALAXY’) with reliable measurements
(RELIABLE=1). Spectra are also deduplicated using the list
provided by the authors.

Within our transient-host pairs, 12,018 known hosts and
10,998 new hosts have SDSS photometry. Given that SDSS
uses asinh magnitudes (Lupton et al. 1999), reported
magnitudes close to the detection limit may have a very low
signal-to-noise ratio. Requiring a minimal S/N of 5 in g, r, and
i bands, 9845 known hosts and 9711 new hosts have reliable
SDSS magnitudes. Further including the two shallower bands
(z, u), the number count drops to 6575 and 6783 for known
hosts and new hosts. Meanwhile, 3811 known hosts and
3709 new hosts have reliable spectroscopic measurements in
the MPA-JHU catalogs.

4.3. DESI Legacy Imaging Survey

The DESI-LS (Dey et al. 2019) includes three photometric
surveys that are complementary in the sky coverage and filter
set: the Mayall z-band Legacy Survey (MzLS), which maps the
high galactic altitude region in the northern hemisphere above
decl.= 30° in the zband; the Beijing-Arizona Sky Survey
(BASS), which has a similar footprint above decl.= 30° in the
g and r bands; and the Dark Energy Camera Legacy Survey
(DECaLS), which covers the equatorial region. They jointly
cover 1.4× 104 deg2 in the g, r, and zbands.

While conducted using different facilities, the reduced
images of these surveys are processed using the same
photometric pipeline (tractor; Lang et al. 2016), which
creates catalogs by measuring source properties jointly over
multiple images. This allows the incorporation of data from
other surveys. Besides the existing unWISE stacked images
(see Section 4.6), the latest LS DR8 also processed DES DR1
images, further extending the total sky coverage to
1.94 × 104 deg2 (grz; W1, W2), reaching decl.=−60° in the
southern Galactic cap region.
The tractor catalogs provide profile-fitting measurements

of sources, where we take the geometric parameters related to
de Vaucouleurs and exponential components, the fraction of de
Vaucouleurs components, and the pipeline-chosen types and
magnitudes. We search for primary objects within these three
surveys (brick_primary=1), so that duplicates can be
excluded. When cross-matching sources, stellar sources are
identified using the morphological classification flag (type),
where moderately bright sources (g< 22) with “PSF” type are
considered as stellar sources. At g = 22 mag, about half of the
extended sources are classified as “REX,” a special type for
possibly extended sources that cannot be robustly classified due
to their low signal-to-noise ratios. There are also about an equal
number of pointlike (“PSF”) sources and “REX” sources near
this magnitude. We conclude that the signal-to-noise of
detection fainter than this limit is insufficient to make definitive
source morphology classification, so we do not use source
morphology classification beyond this limit. Besides source
characteristics in tractor catalogs, we further include the
photometric redshift estimated in Zhou et al. (2021).
Within our database, 14,576 known hosts and 13,958 new

hosts have photometric measurements from these three surveys.

4.4. Pan-STARRS

We also retrieve photometric measurements of our host
galaxies and candidates in the Pan-STARRS DR2 (PS1 DR2)
stacked object table, which mainly includes the 3π Steradian
Survey (Chambers et al. 2016). The 3π Steradian Survey
imaged the entire northern sky above decl.=−30° in grizy,
reaching multi-epoch stacked limiting magnitudes (5σ, AB) of
21.4 (y) to 23.3 (g). The catalog provides band-wise Kron and
PSF magnitudes with related geometric parameters. Given its
wide coverage and high sensitivity, PS1 DR2 photometry is
vastly available and relatively complete for our known hosts
and new hosts.
We select primary detections (primaryDetection=1) of

objects within StackObjectThin table, with valid g-band
detection (gKronMag > -999). When cross-matching objects,
bright objects that have a significant difference in point-source
and Kron magnitudes (iPSF< 20 mag, iPSF− iKron> 0.05 mag)
are considered as pointlike sources. There are 14,446 known
hosts and 13,797 new hosts that match PS1 DR2 sources.

4.5. 2MASS Point and Extended Source Catalogs

We use the 2MASS Point Source Catalog (PSC; Skrutskie
et al. 2006) and the Extended Source Catalog (XSC; Jarrett
et al. 2000) as our primary data source for NIR photometry.
They both cover the entire sky in J, H, and Ks bands. The PSC
measured fixed aperture magnitudes of over 5 × 108 pre-
sumably point sources, reaching limiting magnitudes (10σ,
Vega) of J= 15.8 and Ks= 14.3. The XSC contains 1.6 × 106

39 skyserver.sdss.org/dr16/en/home.aspx
40 classic.sdss.org/dr7/products/general/stargalsep.html
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sources, measured with isophotal, Kron, and extrapolated total
radius apertures, reaching limiting magnitudes (10σ, Vega) of
J; 14.7 to Ks; 13.1, depending on the surface brightness
profile. We accessed both catalogs as a few percent for objects
in the PSC are actually unresolved extragalactic sources
(Rahman et al. 2016), and the PSC also has better depth.

We neither imposed selection criteria when searching for
objects nor did we use point-source or extended source
classifications to identify stellar and galaxies when cross-
matching objects. Within our hosts, 10,707 known hosts and
8117 new hosts have matched PSC sources. Meanwhile,
9419 known hosts and 5529 new hosts have matched XSC
sources. Most XSC objects also have detection in PSC, while
1368 known hosts and 2613 new hosts only cross-matched with
PSC objects. However, as we have discussed, PSC is optimized
for point-source photometry, and well-resolved galaxies might
be split into multiple point sources in PSC. Therefore, we
always use XSC photometry when available.

4.6. Mid-IR Photometry Based on WISE Data

Several different catalogs based on the images of the WISE
survey (Wright et al. 2010) contribute to mid-infrared host
magnitudes. WISE surveyed the entire sky in four mid-infrared
passbands (W1–W4; 3.4, 4.6, 12, and 22 μm). Primarily we use
the AllWISE Source Catalog (Cutri et al. 2014), which
measures source magnitudes using co-added images of the
original WISE mission and the extended, post-cryogenic
NEOWISE phase (Mainzer et al. 2011). The sensitivity is
higher at shorter wavelengths with more episodes of stacked
imaging, reaching limiting magnitudes (95% completeness,
point source, Vega) of 17.1 in W1 and 15.7 in W2. In W3 and
W4 bands, the limiting magnitudes (95% completeness, point
source, Vega) are 11.5 and 7.7, respectively.

We also included measurements in a few other WISE-based
catalogs. Notably, Lang (2014) produced resolution-optimized
co-adds of WISE images (“unWISE”), allowing more sources
to be detected than the original AllWISE catalog. These co-
added images are already used for the model-fitting photometry
in DESI-LS (Dey et al. 2019; see Section 4.3). Beyond that, we
also use the All-sky unWISE Catalog (Schlafly et al. 2019) as a
complement to the official AllWISE catalog and tractor-
measured mid-IR magnitudes in LS DR8. Primary sources
(primary>0) are selected to avoid duplicates. Note that both
AllWISE and unWISE catalogs measure objects as pointlike
sources, and consequently, the magnitudes of extended sources
would be inaccurate compared to model-fitting magnitudes.
Well-resolved nearby galaxies could also be split into multiple
sources in AllWISE and unWISE catalogs.

Of our host galaxies, 15,061 known hosts and 13,060 new
hosts have measurements in the AllWISE catalog. Meanwhile
16,444 known hosts and 15208 new hosts matched objects in
the unWISE catalog. Finally, DESI-LS catalogs perform forced
photometry over unWISE images, and magnitudes are thus
available for all optically detected objects, although the signal-
to-noise ratio of detection may vary.

4.7. DES

For hosts in the southern hemisphere, the DES DR2 catalog
is our primary source for deep optical photometry. The survey
imaged 5000 deg2 of the southern Galactic cap region in grizY
bands, reaching co-added, point-source-limiting magnitudes

(10σ, AB) of g= 24.33 and r= 24.08 in its first major data
release (Abbott et al. 2018). The catalog provides band-wise
fixed circular aperture magnitudes and elliptical Kron magni-
tudes, with aperture geometric parameters, other SExtrac-
tor flags, and star-galaxy separation parameters in each band.
We note that the catalog of DESI-LS already contains source
properties in the footprint of DES. However, the official DES
catalog contains full five-band data with source properties
measured using an alternative photometry method. We,
therefore, include DES in our database.
We searched objects in the co-added source catalog of DES

DR2. Stars are identified using the criteria in Equation (4)
(Sevilla-Noarbe et al. 2018), with an additional magnitude limit
of i< 21.5 for better purity of stars. Within our transient-host
pairs, 5549 known hosts and 3031 new hosts have DES sources
matched. All of them have complete photometry in all five DES
bands.

4.8. UKIDSS LAS

The Large Area Survey (LAS) of UKIDSS (Lawrence et al.
2007) is a near-infrared (YJHK ) survey covering two
continuous regions in the northern Galactic cap region and
the southern side of SDSS Stripe 82. The 4000 deg2 survey
area has been intensively imaged by several major optical
surveys, making it an important data source for NIR
photometry. Sources in the catalog have fixed aperture and
Petrosian magnitudes (with aperture parameters) reported in
each band, with a designed photometric depth (5σ point source,
Vega) of 18.2 mag in K and 20.3 mag in J. Some sources have
two separate epochs of J-band measurements.
We search primary objects (m = 1) in the main source table,

where artifacts (cl = 0 or pn>0.1) are rejected. Sources with
high probability of being stars (p* >0.95) are marked as stars
when cross-matching with other catalogs. We have valid
UKIDSS LAS photometry in at least one band for 5036 known
hosts and 2886 new hosts. Meanwhile, 3620 known hosts and
2258 new hosts have complete photometric detection in all four
bands.

4.9. VHS

The VHS DR4 catalog (McMahon et al. 2013) is our primary
source for deep NIR photometry in the southern hemisphere.
This hemispheric survey imaged most of the southern sky in
YJHKs bands, with comparable sensitivity to the UKIDSS
LAS, reaching point-source limiting magnitudes (5σ Vega) of
20.2 in J and 18.1 in Ks. Fixed aperture magnitudes of three
diameters (2″, 2.″8, 5.″7) and Petrosian magnitudes are reported
for each band.
We searched for primary objects (PriOrSec=1 or

priOrSec=FrameId) in the source table, where artifacts
(Mclass=0 or pNoise> 0.1) are excluded. When cross-
matching with other catalogs, objects with high probabilities of
being stars (p* > 0.95) are marked as stellar objects. Within our
hosts, 5664 known hosts and 2318 new hosts have valid
photometry in VHS.

4.10. VST-ATLAS

The survey footprint of the VST-ATLAS consists of two
separate fields in the southern hemisphere that substantially
overlap with DECaLS and DES, covering a total area of
4700 deg2 in ugriz bands. The sensitivities are comparable to
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the SDSS, reaching 23.2 mag in g and 22.6 mag in r
(5σmedian depth, AB). Sources have fixed aperture magni-
tudes in three diameters (2″, 2.″8, 5.″7,) and Petrosian
magnitudes reported in each band. We use the VST-ATLAS
as a complementary data source for optical photometry,
especially in the u band that is not imaged by DECaLS or DES.

When accessing the catalog, we select primary objects and
exclude duplicates of known sources (PriOrSec=1 or
priOrSec=FrameId). Possible noise or artifacts
(Mclass=0 or pNoise>0.1) are also excluded. When
cross-matching with other catalogs, objects that are very likely
to be stars by probability (p* > 0.95) are considered as stars.
Within our hosts, 1616 known hosts and 1436 new hosts have
valid photometry in the VST-ATLAS.

4.11. SkyMapper

The SkyMapper Southern Survey (Keller et al. 2007) aims to
image the entire southern hemisphere in uvgriz bands with
multi-epoch sensitivity similar to SDSS. The latest publicly
available data release (DR2; Onken et al. 2019) we used here
contains images of the snapshot-style shallow survey and the
deeper main survey. The local sensitivity ranges from about 18
mag to 22 mag in g and r (10σ, point source, AB), depending
on the completeness of the survey. We accessed the main table
in which PSF and Petrosian magnitudes of sources are provided
in each band, along with source geometric properties. Though
not as deep as other optical catalogs here, its hemispheric
coverage and u-band filter remains a great advantage over other
surveys.

We searched for sources in the master table without a
selection cut. Given that the angular resolution of SkyMapper
is slightly lower than other optical surveys we use, we also do
not use their star-galaxy separation parameters when cross-
matching with other catalogs. In our catalog, 6896 known hosts
and 4218 new hosts have valid photometric magnitudes in the
SkyMapper catalog.

4.12. SuperCOSMOS

We include the All-sky galaxy catalog (Peacock et al. 2016)
of SuperCOSMOS surveys (Hambly et al. 2001) as an auxiliary
data source for optical photometry. The catalog is based on the
digitized photographic plates with the UK Schmidt Camera,
Palomar Schmidt Telescope, and ESO Schmidt Camera,
providing calibrated B-, R-, and I-band photometry down to
limiting magnitudes (AB) of BJ 21, RF 19.5 and IN 18.5.
Unlike other optical catalogs we use here, the magnitudes in
this catalog are measured in the traditional Johnson–Cousins
system, but a significant advantage is its complete coverage of
the entire sky and its good sensitivity in the B band.

We obtained the static version of this catalog at the
SuperCOSMOS Science Archive.41 No specific selection cut
was made when searching for objects. For our hosts,
12,307 known hosts and 12,038 new hosts have matched
photometry in the SuperCOSMOS All-sky galaxy catalog.

4.13. NSA

The NASA-Sloan Atlas (NSA) is a catalog of local galaxies
(z 0.15) based on the SDSS and GALEX data sets. With

improved image reduction, Blanton et al. (2011) and source
extraction optimized for nearby large galaxies, and the catalog
measured the detailed properties of about 0.6 million galaxies.
Notably, Petrosian photometry with elliptical aperture, best-
fitting Sérsic profile parameters with variable index, derived
asymmetry and concentration indices, and K-corrected source
characteristics are provided for objects, besides their classical
SDSS-style circular Petrosian photometry and azimuthally
averaged radial light profile.
We do not make specific selection cuts when searching for

objects in this catalog, and all objects are considered to be
galaxies. Within our database, 5638 known hosts and 4044 new
hosts matched objects in this catalog.

4.14. HyperLEDA

HyperLEDA (Makarov et al. 2014) is another value-added
catalog that compiles properties of galaxies across various
surveys and reference sources. While HyperLEDA is not used
in resolving host names, we accessed their table of homo-
genized astrophysical parameters to further enrich our available
host properties. These properties include, but are not limited to,
morphological T-type and detailed signatures (bars, rings, etc.),
geometric properties, stellar and gas-phase kinematics, H I
21 cm and FIR fluxes, Mg II spectral indices, etc.
We only select objects that are classified as galaxies in

HyperLEDA. Multiplicities of galaxies, like pairs, triplets, and
groups, are not used as their sky coordinates could be quite
uncertain. We have 12,728 known hosts and 8465 new hosts
matched with HyperLEDA objects, but the availability of
galaxy properties varies significantly from one object to
another.

4.15. Gaia

We also searched for objects in the Gaia DR2 catalog (Gaia
Collaboration et al. 2016, 2018). Gaia is a specialized
astrometric mission for Galactic stars, which we do not use
for host properties here. Instead, we use the astrometric
properties of cross-matched Gaia sources to identify foreground
stars against distant host candidates. Most galaxies, even in the
magnitude limit of the Gaia instrument, are absent in the
catalog, while the bright and compact galaxy nuclei are
sometimes detected and cataloged.
Here we identify stars with the astrometric excess noise

parameter (ò). This parameter, measured in the unit of
milliarcseconds, characterizes the goodness-of-fit with their
astrometric model, where values closer to zero indicate
astrometrically well-behaved sources. Stars usually have lower
ò compared to galaxies at similar magnitudes. This parameter
has been used in previous works to separate stars and galaxies,
while the detailed criteria vary. DESI-LS Pipeline labels
sources above G= 19 mag with  < 10 as point sources.42

This is independent of their source morphological classification.
Considering the degradation of astrometric fits at fainter
magnitudes, Koposov et al. (2017) select stars with a magnitude-
dependent cut (Equation (1)) of  < - +Glog 0.15 15 0.2510 ( ) .
Though known to be effective, the purity and accuracy of similar
methods are yet to be tested and compared.

41 ssa.roe.ac.uk, accessed on 2018 June 20.

42 See github.com/legacysurvey/legacypipe, in py/legacypipe/refer-
ence.py, commit a4a2fcd
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We use the following empirical criterion for stellar sources:

 s< - +log 0.4 log 0.8.10 10

Rather than doing a simple magnitude-dependent cut on ò, we
use the significance level of astrometric excess noise (σò) in our
criterion to optimize the efficiency at fainter magnitudes. As
illustrated in Figure 10, there is a clear gap that separates
pointlike and extended sources in log10 – slog10 plane, which
extends to fainter magnitudes. To ensure that our selection cut
yields a complete sample of extended sources, or equivalently,
a pure sample of point sources, we cut near the cloud of point
sources. Note that objects with nonnegligible ò are not
guaranteed to be galaxies, as unresolved binaries may also
have positive ò. This is not against our goal to keep a complete
sample of galaxies.

4.16. Extinction Corrections

Host properties like photometric magnitudes and intrinsic
colors need the correction of foreground Galactic extinction to
be fairly interpreted and compared. Accurate correction of
Milky Way extinction requires high-resolution reddening
maps, extinction curves, filter transmission profiles, and source
spectral characteristics, which are beyond the scope of this
paper. Without introducing extra complexities, we provide
empirical extinction corrections of host magnitudes in
each band.

The foreground reddening at the positions of host galaxies is
estimated using the map of Schlegel et al. (1998), as

implemented in mwdust43 (Bovy et al. 2016). Extinction
correction in GALEX, SDSS, 2MASS, and WISE (W1, W2)
bands are estimated using the empirical coefficients in Yuan
et al. (2013). We also calculate another set of corrections for
GALEX bands using Peek & Schiminovich (2013), given the
vast range of estimated extinction coefficients for GALEX
bands in the literature. These extinction corrections are
provided separately in the database and are not directly applied
to the measured magnitudes in each catalog.

5. Statistics of Transient-host Pairs

In this section, we summarize the basic statistics of our
transient-host pairs, including both the confirmed host galaxies
and primary host candidates. Secondary host candidates in each
field are not included in the statistics of host properties here.

5.1. Angular and Physical Distances

The transient-host angular distance is expected to be
comparable to the optical sizes of galaxies, except for nuclear
events such as TDEs, and outlying events like Ca-rich gap
transients (Kasliwal et al. 2012; Lunnan et al. 2017). Therefore,
without considering the size evolution of galaxies, the angular
transient-host distance should scale with the cosmological
angular size-redshift relation. The distances of our transient-
host pairs agree with this general trend (Figure 11). Toward
higher redshifts, the angular distance decreases following the
angular diameter distance until z∼ 2, where the angular scale
peaks. Converted to the proper distance at their redshifts, the
deprojected physical distance is similar across the entire
redshift range, with very little or no redshift evolution. The
average physical distance of transient-host pairs is 6.50 kpc,
with twenty-fifth, fiftieth, and seventy-fifth percentiles of
1.66 kpc, 4.01 kpc, and 8.29 kpc, respectively. This also
justifies our redshift-dependent search radius of 30 kpc when
searching for objects in external catalogs for events without any
host information reported.
As a side note, at intermediate to high redshift, an angular

distance of 1″ projects to a few kiloparsecs, as indicated by the
dashed line in the right panel of Figure 11. The deprojected
physical distance here may have larger errors than for lower-
redshift events. Also, our deprojected distance does not
consider the ellipticity of host galaxies. A more comprehensive
analysis of transient-host distances will be performed in our
future work.

5.2. Redshift Coverage of Host Properties

For transients with host properties available in a certain
external catalog, we inspect their redshift distributions
(Figure 12). We convert redshifts to cosmological luminosity
distance moduli for better illustration and comparison with host
photometric magnitudes. The aforementioned double-peaked
transient redshift distribution remains clear in the known hosts
(top row, Figure 12), but the newly identified hosts do not have
such a double-peaked distribution. The double-peaked transient
redshift distribution is also imprinted onto other external
catalogs.
For external catalogs, besides being shaped by the under-

lying transient sample, their redshift distributions also reflect
their relative sensitivity or depth. External catalogs with better

Figure 10. Star-galaxy separation using Gaia astrometric excess noise (ò) and
its statistical significance (σò), illustrated with a cross-matched example of Gaia
and MzLS/BASS. Sources are classified into “point” (PSF) or “extended”
(EXP, DEV, COMP, REX) by DESI-LS pipeline morphological types, and
further separated into “bright” or “faint” groups by Gaia G-band magnitude of
19. DESI-LS use G < 19 and  <log 0.510 (vertical dashed line) as their
criterion for astrometric point sources, which is independent of their
morphological classification. To improve the effectiveness at fainter magni-
tudes while ensuring the purity of point sources, we use a magnitude-
independent selection cut (solid line) that aligns with the gap that separates
pointlike and extended sources in this plane.

43 github.com/jobovy/mwdust
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sensitivity, such as GALEX MIS and DES, tend to have a
higher fraction of high-redshift events. Conversely, external
catalogs with relatively lower sensitivity, like 2MASS,
GALEX AIS, and SkyMapper, have more events at lower
redshifts. As a result of such vastly different catalog-wise
redshift distributions, it could be nontrivial to find a proper set
of external catalogs that provides adequate coverage in both
redshift and photometric wavelength.

5.3. Coverage of Host Properties by Types

Here we summarize the fraction of hosts (both known and
newly identified) that have valid catalog objects cross-matched
in an external catalog, under each transient type label. Results
are listed in Figure 13. In the first three rows, we also show the
fraction of transients with redshift, with confirmed hosts or
newly identified primary host candidates. Note that only types
with at least five events are listed here. The coverage of host
properties here also reflects the sky coverage and depth (or
sensitivity) of these external catalogs. Full-sky and hemispheric

surveys, including WISE, GALEX, SkyMapper, PS1, and
SuperCOSMOS, have better coverage of host properties in
general. Meanwhile, some transient types have slightly better
coverage of host properties than others, such as Ia-91bg and Ia-
02cx. This could be a result of their redshift distributions, as
events at lower redshifts may have more complete properties
compiled in external catalogs. Secondary factors, like systema-
tic differences of their host luminosities or SEDs, may also
have a nonnegligible effect. Such nonuniform coverage of host

Figure 11. Top: the angular transient-host distances in our database, including
both known host galaxies and newly identified hosts. Thermonuclear (Ia) and
core-collapse (CC) supernovae are plotted separately with orange and blue
dots. Angular distances matching 1 kpc and 6.5 kpc (average deprojected
physical distance) are outlined in dashed and solid gray lines, respectively.
Bottom: the deprojected physical distance of transient-host pairs (in kilo-
parsecs), with similar symbols as in the top panel. Physical distance matching
1″ angular scale (typical position accuracy of galaxy coordinates) is indicated
in gray dashed line. The angular distance mainly follows the cosmological
angular diameter distance, where most events happen within 1 and 10 kpc.
Converted to the physical distances, we find little or no redshift dependence of
transient-host distance, with an average value of 6.5 kpc.

Figure 12. Redshift and luminosity distance distributions of transients with
host properties available in each external catalog, shown as normalized
densities with respect to distance modulus. The top two rows show the
distribution for events with confirmed known hosts and newly identified
candidates, while other rows show subsets of all hosts (confirmed and newly
identified) with data in the external catalog available, as indicated at the left
side. Here the distributions mainly reflect the depth of external catalogs, where
deeper surveys like GALEX MIS and DES have more higher-redshift events
than those shallow surveys (e.g., SkyMapper). The double-peaked redshift
distribution of transients is clear in the known hosts.

27

The Astrophysical Journal Supplement Series, 259:13 (57pp), 2022 March Qin et al.



properties is naturally expected due to the heterogeneity of our
transient sample and external catalogs, where the cosmic
volume is not coherently sampled on both sides and events are
classified in different ways.

5.4. Host Photometric Magnitudes

The external catalogs we choose have substantial overlap in
their nominal photometric bands. Here we compare photo-
metric magnitude distributions of known hosts and newly
identified primary candidates, grouped by their photometric
bands (Figure 14). Even for the same photometric band, the
filter profiles, photometeric techniques, and calibrations could
be quite dissimilar across these surveys. We could compare the
reported magnitudes in different surveys if they measure the
same region of SED and the results are in the same magnitude
system. For a fair comparison, we cut magnitudes to a signal-
to-noise ratio of 5.

Besides the clearly different sample sizes and limiting
magnitudes as we have discussed in Section 4, we also noticed
that the double-peaked redshift distribution also imprints on the
photometric magnitudes of a few bands, including grizy and
W1, W2. More specifically, optical surveys with substantial
coverage in the northern hemisphere, like SDSS, MzLS/BASS,
and PS1, tend to have such features. Southern hemisphere

surveys, such as DES, VST-ATLAS, and SkyMapper, do not
have a secondary peak. Even excluding SNe in SDSS Stripe
82, which contributed a significant fraction of the medium- to
high-redshift events (Figure 4, 5), the second peak remains in
grz bands. However, when excluding events above z; 0.1, the
second peak in grz bands disappears. Therefore, we expect that
the double-peaked magnitude distribution is related to the
double-peaked transient redshift distribution, where high-
redshift events in the northern hemisphere (or northern Galactic
cap) contribute to the fainter, secondary peak. The fainter hosts
of low-redshift events do not lead to such double-peaked
distributions.

5.5. Photometry Calibration across Catalogs

As we have discussed above, the external catalogs we
choose overlap significantly in sky coverage and filter set.
Many hosts, as a result, could have multiple magnitudes
reported for the same (yet not exactly identical) band,
contributed by different surveys, reductions, or measurements.
These magnitudes might be inconsistent, i.e., their offsets are
greater than their claimed random errors. There could be
catalog-wise systematic errors, which are not properly
accounted for in their reported magnitudes.

Figure 13. Fractional converge of host properties within each data set, for each major transient type. The fractions of events with valid redshift, known hosts, or newly
identified hosts are also indicated in three separate columns. The fractional coverage accounted here primarily reflects the coverage of a catalog in sky area and depth.
Wide-area sky surveys, including PS1, WISE, SDSS, and SuperCOSMOS, have generally better coverage over almost all transient types. The depth or sensitivity of a
catalog may also have a nonnegligible effect on the availability. Furthermore, transient subtypes that require detailed follow-up to identify have relatively complete
host properties as they are usually biased to lower redshifts.
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Many factors, like detailed filter profiles and photometric
calibration, may contribute to the offsets here. Beyond that,
perhaps the most important factor is the choice of photometric
techniques. Modern surveys measure extended objects using
either aperture photometry (e.g., Petrosian 1976; Kron 1980) or
profile-fitting photometry (e.g., Lupton et al. 1999; Lang et al.
2016). Considering factors like the galaxy light profile,
morphological uniformity, source angular size, and sky back-
ground level, none of these methods is fully immune to
potential biases. Moreover, de-blending (or not) can also be a
source of inconsistencies in magnitudes, especially for crowded
fields or well-resolved galaxies. Therefore, careful selection
and cross-calibration of external catalogs might be required to
reduce biases when combining or comparing the photometric
measurements for each band. Or at least, the systematic
uncertainties should be estimated and taken into account for

these measured magnitudes. This remains a part of our
future work.

6. Data Format and Availability

This database is designed to be maintainable and updated
regularly to incorporate recently detected and classified
transient events, as well as newly released survey data sets
for host galaxies. The changes in upstream data sources and the
updates to this catalog should be traceable using a version
control solution.
The data is publicly available as a document-based database

and can be imported and accessed with standard database
protocols. Finally, static, “clean” versions of the database are
provided on a regular basis, in standard machine-readable
formats like FITS and NumPy.

Figure 14. The photometric magnitude (AB) distribution of known hosts and newly identified hosts in our external catalogs, grouped by their nominal photometric
bands. In each panel, the photometric band is indicated at the upper right corner, while the catalog and number count of valid values are listed in the legend. Histogram
heights are scaled to the highest peak in each photometric band. We applied a signal-to-noise cut of 5 for a fair comparison. Vega magnitudes are converted to the AB
system using the zero-points in Jarrett et al. (2011). Note that deep optical catalogs with substantial coverage in the northern hemisphere have prominent double-
peaked magnitude distributions. These events are mostly at higher redshifts, rather than in fainter hosts at lower redshifts.
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6.1. Database Structure

Most modern astronomical databases, particularly those used
in sky surveys, are relational databases, or sometimes loosely
called “SQL-like” databases. Records in a relational database
are organized into separate tables with strict predefined formats
(“data model” or “schema”), and records are interlinked by
reference keys within, and across tables. However, the
heterogeneity and complexity of our data bring challenges to
conventional table-based relational database systems. Creating
separate tables for every data source would be inevitable in this
case, let alone accessing or updating tables via enormous
reference keys and status flags.

We use Mongodb,44 a document-oriented database solution,
to store our data. Its design philosophy grants great flexibility
in data structure and naturally fits our purpose. Such a database
keeps collections of documents, where every document is an
independent, dictionary-like (key-value style) data container
with versatile, even nested or hierarchical, structures. For a
single event, the query results and cross-identified hosts are
independent of other events. Rather than distributing these
records across multiple tables, it is more convenient to group
them into one self-contained document per event. This is also
easier to access and maintain compared to joining multiple
tables by reference keys in SQL-like languages.

Our database contains multiple data collections: (1) a master
collection of transient events (“events“), including their sky
coordinates, redshifts, classification, and reported host galaxies,
along with other basic characteristics; (2) a collection for query
results in NED and SIMBAD (“vacs”), as the center
coordinates and searching radii used in other catalogs relies
on results returned from VACs; (3) multiple data collections for
the query results in survey catalogs, grouped by their data
sources (“vizier,” “local” for local catalogs, “mast,”
“datalab,” and “sdss” for SDSS SkyServer); (4) a
collection for cross-identified hosts (“host_summary”),
including the list of cross-matched objects, their properties in
various catalogs, and their ranks when multiple candidates are
present. Every unique event points to a document in each
collection that shares a unique index.

Maintaining multiple collections is mainly for easier
implementation and better maintainability. Finally, as an end-
user product, we also created a cleaned-up version, where
transient characteristics and properties of hosts or candidates
are combined into a stand-alone collection, with user-friendly
structures. Tables in standard FITS and NumPy formats are
also released on a regular basis, but only the properties of
confirmed hosts and primary candidates are included.

6.2. Maintenance of the Database

We plan to update the database on a regular basis to
incorporate recent transient events in our data sources and the
latest survey catalogs for host properties. This requires the
following: (1) a mechanism to trace the change in upstream
data sources, (2) bookkeeping of historical versions after a
document is updated or removed, and (3) extendable catalog
searching and object cross-matching codes to easily incorporate
new survey catalogs.

To trace the change in the transient event data sources, we
generate “version control codes” (VCCs) for each event, with

one VCC per data source. This is the MD5 hash value of the
original record in formatted, plain text representation. Any
change in the data source, even a very minor one, would result
in a different VCC than the previous one, indicating that
catalog queries and host cross-matching must be performed
again for this event. Besides VCCs, we also set human-
readable date stamps for each update. Moreover, events that no
longer exist in any data source would be marked for removal.
To trace the changes within our database, when a document

is updated or removed, we keep a snapshot of the previous
version. These snapshots are stored in separate collections,
indexed with the unique identifiers of transient events, and
organized in chronological order for each event. This is done
only for our transient, VAC, and host collections, as the
contents of survey catalogs are static, and their versions are
indicated by the generation of the data release.
Finally, to ensure that our database is extendable, we have

developed standardized, general-purpose query scripts for
external survey catalogs. New catalogs on Vizier, Data
Lab, and MAST can be included using configuration files,
without adding new code. We also create separate task scripts
for our transient data sources yet share those commonly used
routines (e.g., determining search radius) to retain the
modularity of the program and the consistency of their
behavior.

6.3. Data Access

We provide the cleaned-up, reorganized version of the host
property collection in three formats for users with different
purposes:

1. The human-readable, self-contained, plain text JSON
format uses one file per event. JSON is a conventional
data exchange format that stores data in nested dic-
tionary-like (key-value style) or array-like structures. This
is suitable for those interested in an individual or smaller
sample of events. Also, when performance is not a critical
factor of consideration and query operations are not
required, JSON files can also be used instead of other
formats. The format is also used by the OSC.

2. The full snapshot of the host property collection in BSON
format, known as BSON, is a binary analog and extension
of JSON format that is used internally in MongoDB for
data storage. The snapshot contains one single large file
that can be directly imported into a local MongoDB
database. This version is suitable for those using a
significant portion of the data set, or those who need
query and aggregation capabilities.

3. The compiled tables of transient and host properties, in
standard NumPy and FITS formats, is a format that only
includes properties of known and newly identified hosts,
without detailed data quality control flags and properties
of other cross-matched objects that may contain the right
host when our host identification fails. This is a
convenient format when only properties of robustly
identified and cross-matched hosts are concerned.

These data are available at doi:10.5281/zenodo.5568962.
The data schema for the host collection is illustrated using an
example in Appendix L.44 www.mongodb.com, github.com/mongodb/mongo
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7. Summary

We assemble a database for extragalactic transient events
and the properties of their host galaxies. Transients including
SNe, TDEs, GRBs, FRBs, and GW events are compiled from
various data sources. Based on the availability of host names or
coordinates in those data sources, we search the value-added
catalogs and survey catalogs for photometric and spectroscopic
properties of potential host galaxies. The returned objects and
sources in those catalogs are then cross-matched to find host
properties. For events without known hosts, we also rank cross-
matched objects to identify their best host candidates and
compile their properties.

We design detailed strategies for source queries in external
catalogs to maximize the chance of finding the right host. We
search sky coordinates of host galaxies whenever available, and
we always obtain host coordinates using value-added catalogs
if their names are provided. For transient events without host
coordinates, we search their event coordinates. The search
radius is then determined with a fixed projected distance at the
transient redshift, or a default radius when transient redshift is
unknown. The search radii of GRBs, as an exception, are partly
based on their localization accuracy.

We also design custom procedures to improve the accuracy
of object cross-matching and host candidate ranking when
necessary. When cross-matching sources across catalogs, we
identify groups of spatially associated sources by their pairwise
angular distances, the empirically calibrated per-catalog astro-
metric tolerances, and the per-field matching thresholds. When
required, we rank cross-matched groups to find new host
candidates as per their angular distances to the reported
transient coordinates, the results of source matching in external
catalogs, the geometric properties of the cross-matched groups,
their possibility of being foreground stars, and optionally,
detailed source properties in cross-matched catalogs. Here stars
are identified and excluded using relatively conservative
photometric, morphological, or astrometric criteria. Primary
host candidates are identified using a Logistic Regression-
based ranking algorithm, trained with transient-host pairs with
the known, properly cross-matched, and visually inspected host
galaxies. The ranking algorithm reaches above 97% overall
accuracy in our cross-validation using known hosts. Also, the
visual inspection of newly identified hosts reveals a similar
accuracy.

Aiming to optimize the coverage of host properties, we
select source catalogs of wide-area sky surveys with com-
plementary survey regions and filter sets. We search catalogs of
GALEX and WISE missions for UV and mid-infrared
photometry. Meanwhile, we use catalogs of various ground-
based surveys for optical-IR properties, including 2MASS,
VHS, and UKIDSS for near-infrared, as well as SDSS, DES,
DECaLS, MzLS/BASS, PS1, VST-ATLAS, and SkyMapper
for optical photometry. Extra properties are supplied by NSA,
HyperLEDA, and MPA-JHU catalogs.

We provide our data in human-readable, plain text JSON
files, MongoDB database snapshots, and standard NumPy/
FITS tables. The data, including documentation and examples,
can be accessed online at doi:10.5281/zenodo.5568962.
Source code for this project is also available at https://
github.com/shiaki/THEx-database.

By the sample size of transients, the coverage of transient
types, the number of newly identified host candidates, and the

availability of host galaxy properties, our database is the largest
publicly available data set for transient host galaxies.
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Appendix A
Acronyms and References for Galaxy Data Sources

We list the acronyms of survey programs and data sources in
Table 6, along with their references.
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Appendix B
Standardization of Type Labels

Below we discuss our detailed procedure to standardize
transient type labels. Here typewriter fonts indicate the actual
standardized labels used in our database.

Homogenizing type labels. When more than one type label
refers to essentially the same group of transients, we choose a
single, unique label to designate all of them. To decouple type
labels from yet-unclear physical scenarios or progenitor
properties, we follow the rule that rare subtypes are named
either after their commonly referred to prototype events or by
their most distinctive observational signatures. For example,
“Iax” and “Ia-02cx” are used interchangeably in the literature
for a subgroup of faint-and-slow thermonuclear SNe, so we
combine events under the “Iax” label into “Ia-02cx.”
Similarly, the “Ia-02ic,” “Ia-11kx,” and “Ian” labels are
merged into the more descriptive and commonly used “Ia-
CSM.” Events labeled as “Ia-SC” (super-Chandrasekhar) and
“Ia-06gz” are grouped into “Ia-09dc” because “Ia-SC”
makes assumptions about the progenitor properties and “Ia-
06gz” is less commonly used compared to “Ia-09dc.” This is
already partly done within OSC, and we further extended their
list of predefined synonyms.45

Handling hybrid, intermediate, or transitional types. A very
small fraction of events are labeled as such composite types.
The rule to relabel these composite types depends on the reason
for the classification. For composite labels due to the mixed
usage of criteria or techniques, we split the labels and set them
separately. As an example, SNe classified as “IIn P” are labeled
as both “IIn” and “II P” simultaneously, because “n”
indicates a spectral signature while “P” indicates a light-curve
shape. For unstandardized notations of later-defined subtypes
in this style, we use the proper subtype labels instead. Events
classified as “Ia/IIn,” for example, will be labeled as “Ia CSM”

following this rule, rather than Ia and IIn as in the previous
case. Finally, for composite types, due to their ambiguous
photometric or spectroscopic signatures, we also split the
labels. Meanwhile, we add an additional “AMBIGUOUS” flag to
these events (see later). Events classified as “Ia-CSM/IIn” (not
Ia/IIn) will receive both the “Ia-CSM” and “IIn” labels, with
“AMBIGUOUS” flags. An exception to this rule is that Type Ib/
c SNe are not labeled as both “Ib” and “Ic.” Instead, we
reserve a “Ib/c” label for these events.
Rebuilding the hierarchy of type labels. The type labels of

each event are aggregated from multiple reference sources,
often with variations in the granularity of their label system. To
fit these type labels into a consistent and maximally compatible
classification scheme, we assign each event its best-refined
subtype (there can be multiple) and all their physical parent
labels, so that each label in our database points to a complete
sample of events, including its subtypes. The hierarchy of
transient types is listed in Table 2. For example, we always add
“Ia” labels to events with “Ia-91T,” “Ia-91bg,” and other
similar SN Ia subtype labels. Events classified as “Ic BL” are
also labeled as “Ic,” “SE” (stripped envelope), and “CC” (core
collapse). Note that SNe IIb are considered as a subtype of Ib,
instead of Type II. These events are more related to stripped-
envelope SNe (Ib, Ic; Filippenko et al. 1993). Similarly, earlier
works classify Ca-rich transients as a subtype of SN Ib, but
here we group these events under SN Ia, as they are likely from
thermonuclear events (Perets et al. 2010). Furthermore, we set a
separate branch for SLSNe (“SLSN”), due to their nonhomo-
geneous observational signatures and possible diversity of
physical scenarios (Gal-Yam 2019).
Flagging ambiguous and conflicting cases. Besides curated

type labels, we also set special quality control flags to indicate
the status of label homogenization. For a single event, when its
original list of type labels contains an ambiguous label that has
been split into two labels with physically incompatible types,
we mark the event as an ambiguous case (“AMBIGUOUS”).
Meanwhile, when its original list of type labels contains any

Table 6
Acronyms and References for Missions, Surveys, and Online Services

Name Acronym References

Galaxy Evolution Explorer GALEX Martin et al. (2005)
Sloan Digital Sky Survey SDSS York et al. (2000)
Panoramic Survey Telescope and Pan-STARRS Chambers et al. (2016)
Rapid Response System

Mayall z-band Legacy Survey MzLS Dey et al. (2019)
Beijing-Arizona Sky Survey BASS Zou et al. (2017)
Dark Energy Camera Legacy Survey DECaLS Dey et al. (2019)
Dark Energy Survey DES DES Collaboration et al. (2016)
VLT Survey Telescope ATLAS VST-ATLAS Shanks et al. (2015)
SkyMapper Southern Sky Survey SkyMapper Keller et al. (2007)
Two Micron All-sky Survey 2MASS Skrutskie et al. (2006)
Vista Hemisphere Survey VHS McMahon et al. (2013)
UKIRT Infrared Deep Sky Survey UKIDSS Lawrence et al. (2007)
Wide-field Infrared Survey Explorer WISE Wright et al. (2010)
SuperCOSMOS Sky Surveys SuperCOSMOS Hambly et al. (2001)
NASA/IPAC Extragalactic Database NED Helou et al. (1991)
SIMBAD Astronomical Database SIMBAD Wenger et al. (2000)
HyperLeda Extragalactic database HyperLEDA Paturel et al. (2003)
NASA-Sloan Atlas NSA L
Gaia L Gaia Collaboration et al. (2016)

Note. References listed are project or mission description papers.

45 github.com/astrocatalogs/supernovae/blob/master/input/type-
synonyms.json
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two labels with incompatible types (i.e., inconsistent classifica-
tion in different reference sources), we label the event as a
conflicting case (“CONFLICT”). Here any two labels become
incompatible when they are not on the same major branch of
the classification tree (Ia, stripped-envelope “SE,” II, and
non-SN labels), as listed in Table 2.

Flagging peculiar events. Events of relatively rare subtypes
are always labeled as peculiar (“Pec”), and “Pec” labels in
original data sources are also preserved. Here we do not
consider “Pec” as a subtype or an intermediate level in the
hierarchy of classification. This special label is used as a flag,
rather than a subtype. Therefore, “Ia Pec” events are always
labeled as “Ia” and “Pec” simultaneously. Meanwhile, other
rare and more specified subtypes of SNe Ia, such as Ia-91T and
Ia-91bg, are also labeled as “Pec.” There could be known
subtypes that are only classified as peculiar events, without
detailed subtype labels. We further consult the review paper of
Taubenberger (2017) to assign the proper subtype labels for 60
peculiar SNe Ia in our sample.

Assigning type labels for GRBs, TDEs, and rare events. As
discussed in Section 2.1.3, we always assign “GRB” labels for
both long and short GRBs. Whenever possible, we use their T90
value (the time when 90% of photons reach the detector) to
further classify them into short GRBs (“SGRB,” T90< 2 s) or
long GRBs (“LGRB,” T90� 2 s). When there is an associated
optical supernova detection (rather than the afterglow), we also
preserve other type labels assigned to this event. Similarly, we
assign the “TDE” labels for all TDEs in our combined list. For
records in the review from French et al. (2020), we further
assign “UVOptTDE,” “XrayTDE,” “LikelyXrayTDE,” and
“PossibleXrayTDE” per their wavelengths and the quality
of detection. FRBs and GW events are labeled as “FRB” and
“GW,” respectively. Except for GW170817, other events in the
Open Kilonova Catalog are only labeled as candidates
(“PossibleKilonova”).

Appendix C
Host Galaxy Reference Sources

The host galaxy names and coordinates in the OSC are
collected from a wide variety of reference sources, including
astronomical catalogs, individual papers, as well as supernova
discoveries reported to the TNS, The ATel, and, historically, to
the Central Bureau of Astronomical Telegrams that issues
International Astronomical Union Circulars (IAUCs) and
Central Bureau Electronic Telegrams (CBETs). We use their
host names and coordinates to match sources in external
catalogs and to train our ranking functions. The contribution
and data quality of these reference sources, therefore, must be
assessed beforehand. Here we focus on whether the provided
host names or coordinates point to any possible host galaxies,
while the reliability of transient-host association here (against
other nearby galaxies) will be addressed later in Appendix J.1.

We collect the host names and coordinates reported in OSC
along with their reference sources (catalogs, individual papers,
TNS/ATel reports, and IAUC/CBET issues). For supernova

reports in TNS/ATel/IAUC/CBAT, we consider the entire
platform or series, instead of individual indexed reports therein,
as the data source. We resolve host names in NED and
SIMBAD to find their corresponding sky coordinates. Coordi-
nates in NED are preferred when names are recognized at both
sides. To examine if these name-resolved or as-provided
coordinates are valid coordinates of galaxies, we obtained
DESI-LS image cutouts using the Sky Viewer.46 These image
stamps are centered at transient coordinates, with the box size
covering four times the largest transient-host angular offset
among all known host coordinates of the event. Name-resolved
and as-reported host coordinates of this event are plotted onto
the image, with anonymized names of reference sources.
Images are also randomly shuffled to minimize consistency
issues in this quick inspection.
We classify these host coordinates into four cases: (1)

“Good,” host coordinate is clearly centered on a possible host
galaxy in the image; (2) “Off,” host coordinate points to a
possible host galaxy in the image but deviates from its center
(or the most prominent component) by more than 2″, which
may challenge the cross-matching algorithm; (3) “Missed,”
host coordinate points to a galaxy whose association with the
transient is dubious, or no galaxy is visible at the indicated
position due to erroneous coordinate or very faint host, and (4)
“Unknown,” inspection cannot be performed due to image
issues. When the host is ambiguous in the image, we consider
the coordinate “Good” or “Off” when it points to any possible
galaxy, without determining if the galaxy appears to be the
most likely host or not.
In Table 7, we summarize the number of host names and

coordinates provided in each reference source (“Total”) and the
number of host names that are recognized in either NED or
SIMBAD (“Resolved”). Due to the limited sky coverage of
DESI-LS, we are only able to inspect a subset of host names
and coordinates (“Inspected”). We evaluate the quality using
the “Good” fraction and “Missed” fraction, with the total
number of “Good,” “Off,” and “Missed” as the denominator.
Most reference sources have “Good” fractions above 90%.
Notably, the host coordinates in the Asiago Supernova
Catalogue have a relatively lower “Good” fraction due to the
truncation of R.A. (in “hh:mm:ss” format) at seconds, leading
to an average position shift of several arcseconds. The issue is
also propagated into the data set of Lennarz et al. (2012).
Therefore, we ignore the host coordinates provided in these two
reference sources. Furthermore, host coordinates from indivi-
dual papers are also ignored for their low overall “Good”
fraction.
Finally, it should be emphasized that the results shall not be

considered as an examination of their original host galaxy
assignments. The resolution and sensitivity of image cutouts,
the procedure of data compilation in OSC and its upstream data
sources, the accuracy of coordinates in NED and SIMBAD,
and, fundamentally, the empirical and nonexhaustive nature of
this inspection can all affect the “Good” fraction of these
reference sources.

46 https://www.legacysurvey.org/viewer
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Table 7
Major Contributors of Host Information in the Open Supernova Catalog

Reference Source Total Resolved Inspected Good Off Missed Unknown Fraction

Good Missed

Latest Supernovaea 8716 8654 6482 6020 186 68 208 0.960 0.011
Asiago Supernova Catalogue (Barbon et al. 1999) 6746 3461 2625 2437 60 13 115 0.971 0.005
Transient Name Serverb 4822 4785 3731 3475 104 38 114 0.961 0.011
SDSS-II Supernova Survey Data Release (Sako et al. 2018) 4300 487 491 463 1 14 13 0.969 0.029
“A Unified Supernova Catalogue” (Lennarz et al. 2012) 3860 3393 2706 2519 47 15 125 0.976 0.006
The Pan-STARRS Survey for Transientsc (Huber et al. 2015) 2770 2755 2236 2109 47 40 40 0.960 0.018
The Astronomer’s Telegramd 2689 2552 1636 1515 48 27 46 0.953 0.017
International Astronomical Union Circulars 1785 1783 1406 1300 34 10 62 0.967 0.007
Redshift-independent Distances in NED (NED-D v13.1.0; Steer

et al. 2017)
1566 1564 1432 1315 24 20 73 0.968 0.015

Central Bureau Electronic Telegramse 1417 1409 1013 931 24 6 52 0.969 0.006
ASAS-SN Supernovaef 1110 1060 779 726 22 10 21 0.958 0.013
Gaia Photometric Science Alertsg (Hodgkin et al. 2021) 845 841 525 492 18 7 8 0.952 0.014
UC Berkeley Filippenko Group’s Supernova Databaseh 656 655 520 484 9 2 25 0.978 0.004
Berkeley SN Ia Program Low-redshift SN Ia Sample (Silverman

et al. 2012)
578 577 460 424 18 5 13 0.949 0.011

Catalina Real-time Transient Survey, Supernova Hunti 393 367 296 279 6 6 5 0.959 0.021
K 266 255 200 187 3 4 6 0.964 0.021
CBAT Transient Objects Confirmation Pagej 335 334 259 243 10 0 6 0.960 0.000
SDSS-II Photometrically Classified SN Ia (Campbell et al. 2013) 317 317 320 303 1 11 5 0.962 0.035
Cosmicflows-2 (Tully et al. 2013) 288 288 228 212 7 0 9 0.968 0.000
LOSS Stripped-envelope SN Sample (Shivvers et al. 2019) 218 218 167 155 2 0 10 0.987 0.000
LOSS SN Ia Light-curve Data Set (Ganeshalingam et al. 2010) 162 162 139 127 6 0 6 0.955 0.000
SDSS-II, SN Ia Host Properties (Gupta et al. 2011) 156 156 159 150 0 4 5 0.974 0.026
Jha et al. (2007) 131 131 104 95 6 1 2 0.931 0.010
Reindl et al. (2005) 111 111 92 83 6 1 2 0.922 0.011
Weyant et al. (2014) 100 100 73 63 2 0 8 0.969 0.000
Wang et al. (2006) 98 98 73 66 5 0 2 0.930 0.000
CfAIR2 SN Ia Near-infrared Light-curve Sample (Friedman et al.

2015)
95 93 71 64 2 1 4 0.955 0.015

CfA4 SN Ia Light-curve Sample (Hicken et al. 2012) 89 89 74 67 2 3 2 0.931 0.042
LOSS SN Ia Photometric Data Release (Stahl et al. 2019) 86 86 69 63 3 0 3 0.955 0.000
Parodi et al. (2000) 67 67 56 50 4 1 1 0.909 0.018
Rodríguez et al. (2014) 52 52 40 38 1 0 1 0.974 0.000
Galbany et al. (2016) 50 50 35 34 0 0 1 1.000 0.000
Other Reference Sources (five or more SNe) 1429 1422 1236 1072 37 49 78 0.926 0.042
Other Reference Sources (fewer than five SNe) 389 362 328 270 14 2 42 0.944 0.007

Asiago Supernova Catalogue (Barbon et al. 1999) 6491 ... 5654 1712 1637 1901 404 0.326 0.362
“A Unified Supernova Catalogue” (Lennarz et al. 2012) 5509 ... 4892 2448 346 1732 366 0.541 0.383
SDSS-II Supernova Survey Data Release (Sako et al. 2018) 3813 ... 3757 3619 48 34 56 0.978 0.009
Pan-STARRS Photometrically Classified SNe (Jones et al. 2018) 1163 ... 1198 1152 2 8 36 0.991 0.007
SDSS-II SN Ia Rates Sample (Smith et al. 2012) 341 ... 334 321 1 9 3 0.970 0.027
Prieto et al. (2008) 254 ... 258 249 3 0 6 0.988 0.000
Nearby Supernova Factory SN Ia Host Sample (Childress et al.

2013)
253 ... 229 200 17 6 6 0.897 0.027

CANDELS SN Ia Rate Sample (Rodney et al. 2014) 63 ... 78 58 1 0 19 0.983 0.000
Other Reference Sources 15 ... 12 5 4 2 1 0.455 0.182

Notes. Table shows the statistics of reference sources for host names (before the horizontal line) and for host coordinates (after the horizontal line). Columns are as
defined in Appendix C.
a https://www.rochesterastronomy.org/supernova.html
b https://www.wis-tns.org/
c https://star.pst.qub.ac.uk/ps1threepi/psdb/
d https://astronomerstelegram.org/
e http://www.cbat.eps.harvard.edu/cbet/RecentCBETs.html
f http://www.astronomy.ohio-state.edu/asassn/sn_list.html
g http://gsaweb.ast.cam.ac.uk/alerts/home
h http://heracles.astro.berkeley.edu/sndb/
i http://nesssi.cacr.caltech.edu/SNhunt/, which appeared as two separate reference sources in OSC (see the following line).
j http://www.cbat.eps.harvard.edu/unconf/tocp.html
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Appendix D
Accessing External Catalogs

D.1. Resolving Host Names in Value-added Catalogs

Here we discuss the procedure to resolve existing host names
and choose the best name-resolved coordinate for the host.

We choose NED and SIMBAD to resolve existing host
names,47 as they are the most commonly used astronomical
databases and presumably have the best-available compilation
of object names, sky coordinates, redshifts, and other basic
data. These VACs indeed provide some measured and derived
properties of hosts, but the data are usually incomplete or not
up-to-date. Accessing other survey catalogs for host properties
remains necessary to compile their properties. There are other
online services like HyperLEDA that are capable of resolving
object names, while scripted access is not supported yet.

We collect host names of each event from reliable reference
sources (Appendix C). These host names are resolved
individually and separately in NED and SIMBAD to obtain
their corresponding coordinates and other basic data. We
exclude resolved coordinates with large uncertainties (error
circle above 2.″5 in NED, precision grade of 5 or below in
SIMBAD), and then choose the best resolved coordinate of
each host name from the remaining ones. For each name, we
use a coordinate in NED, unless the name is only resolved in
SIMBAD. Host names without resolved and precise coordi-
nates in either VAC are considered as unresolved.

When there are more than one resolved host names at this
moment, we check their consistencies. Pairs of name-resolved
coordinates with separations above 5″ are considered incon-
sistent, which implies possible disagreement of transient-host
association among reference sources. In the presence of any
inconsistent pair, we skip the remaining steps and conclude
without a best name-resolved coordinate.

Finally, when no host name is successfully resolved, we
leave without a best name-resolved coordinate. When there is
only one resolved name, we use it for the best name-resolved
coordinate. When multiple names are resolved, we choose one
for the best name-resolved coordinate. We prefer common
galaxy names (e.g., NGC, IC, UGC, and PGC galaxies) over
IAU-style source names (catalog name + sexagesimal
coordinate), and anonymous galaxies (“Anon” + sexagesimal
coordinate) have the lowest priority. We also prefer names
resolved simultaneously in NED and SIMBAD if the rule
above cannot decide the best host.

D.2. Searching Nearby Sources in External Catalogs

When searching host (or transient) coordinates in external
catalogs for nearby sources, to optimize the chance of finding
the right host in external catalogs, we set the sky coordinate and
radius to search based on the following approach. If there is a
best name-resolved host coordinate, we use this coordinate to
search other catalogs with a search radius of 15″. When
resolving host names, we already have their basic properties in
NED or SIMBAD, but we also perform a coordinate-based
search again in the same catalog to access other nearby sources.
If there is no name-resolved coordinate, but a host coordinate is
directly provided in any of those upstream data sources, we use
this as-reported host coordinate with a search radius of 30″.

Finally, when neither name-resolved nor as-reported host
coordinate is available, we use transient coordinates to search
for nearby sources. The search radius in this situation is set
based on the redshift of the event. For events with known
redshifts, we set the search radius to match a projected distance
of 45 kpc at the transient redshift. Otherwise, we use a default
search radius of 30.″ Specifically, for GRBs with neither a
redshift estimate nor a later supernova detection, we use three
times the 90% error radius as the search radius. When
searching transient coordinates, we clip the search radius
within 15″ and ¢2 to increase the chance of enclosing the right
host, without including too many irrelevant non-host objects.
For GRBs with search radii set by error circles, we clip the
search radii within 5″ and 15″. The workflow is also
summarized in Figure 15.
When coordinates and search radii are determined, we search

for nearby sources of transient events in external catalogs.
Depending on their availability, our external catalogs can be
classified into two categories, those accessible at online
services (via web application programming interface or API,
client-side packages, or other protocols) and those provided as
static tables in text or binary formats.
For online catalogs, as per the service where they are hosted,

we use the proper interface or tool to access their data. Catalogs
hosted by the Astro Data Lab of NSF’s National Optical-
Infrared Astronomy Research Laboratory (formerly NOAO
Data Lab) are accessed using their official Python client.48

Meanwhile, catalogs hosted at VizieR49 and SDSS SkyServer50

are accessed via the third-party astroquery package
(Ginsburg et al. 2019). Finally, one catalog hosted at MAST51

is accessed directly using their web API. We record the detailed
return statuses of queries when accessing online catalogs.
Failed requests due to any error are flagged to be made again to
ensure that our database includes everything available in those
external catalogs.
Local catalogs, on the contrary, are provided as static binary

or plain text tables and thus cannot be accessed using
coordinates and search radii like the online services. We
spatially index their catalog sources so that they can be queried
with the same interface as we used for online services.
Depending on the size of the catalog, we use two different
solutions. Sources in smaller catalogs (below 107 records) are
indexed with kd-tree (as implemented in SciPy) using their
three-dimensional Cartesian coordinates on the unit celestial
sphere. Regarding algorithm complexity, efficiency, and
scalability, this is not the optimal solution, but it is quick and
easy to deploy. Sources in larger catalogs (above 107 records)
are indexed with healpix (via healpy), where sky
coordinates are converted to one-dimensional pixel indices in
which they reside. Searching for sources near a position
becomes finding sources with certain pixel indices, which
significantly improves performance. We index sources with
different resolution levels, and when searching sources, the best
spatial resolution is chosen to match the search radius so that
the region is fully covered, and the speed is optimized at the
same time. Sources inside the pixels of interest but beyond the
search radius are excluded. To further improve performance,
before indexing spatial coordinates using either method, we

47 Accessed via astroquery (Ginsburg et al. 2019), github.com/astropy/
astroquery

48 github.com/noaodatalab/datalab
49 vizier.u-strasbg.fr
50 skyserver.sdss.org/dr16/en/home.aspx
51 archive.stsci.edu
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make quality control cuts and drop the unused columns to
reduce the size of the catalog. Catalogs published in text
formats are also converted to binary formats for better speed.

Having queried results in various external catalogs, we create
local data collections in our database to store them. We do this
for each service or interface via which the data are accessed

(VizieR, Data Lab, local, etc.). In each data collection, besides
adding lists of returned sources in external catalogs, we also
add auxiliary information including the search radius and the
source of searched coordinates (host coordinates obtained by
resolving names, host coordinates as provided in data sources,
or transient coordinates).

Figure 15. The procedure to access value-added catalogs and survey catalogs for host properties. For each event, we determine the coordinate to search (host or
transient coordinate) and the search radius based on the availability of information in our transient data sources. Whenever possible, we search host coordinates
resolved using VACs or as provided in the transient data set, instead of the transient coordinate. When searching a transient coordinate, to optimize the chance of
covering the true host, we determine the search radius using transient redshift if available. In the absence of transient redshift, the error circle is also used for GRBs.

Appendix E
Algorithm for Cross-matching

We list our algorithm for cross-matching as pseudocode below.

Algorithm 1. Cross-identification of Host Galaxies

procedure CROSS_IDENTIFYs k, , _ ,is star catalog
input: s: length-n array of real number pairs, projected Cartesian coordinates of sources;

k: length-n array of real numbers, per-catalog astrometric tolerances for sources in s;
is_star: length-n array of binary flags, whether the source is star-like (true) or not (false);
catalog: length-n integer array, external catalog identifiers of sources.

output: is_confirmed: binary flag, if primary_hostis a confirmed host (true) or a primary candidate (false);
primary_host: integer set, indices of sources for the confirmed host or primary candidate;
secondary_hosts: list of integer sets, indices of sources in each secondary host candidate.

is_confirmed ¬ false
primary_host ¬ null
secondary_hosts ¬ empty list

for all si, sj ÎS where <i j do
dij, dji ¬  - +s s k ki j i j

2 2 1 2( ) ▹ d: (n+1, n+1) matrix, normalized distance;

for Îs Si do

+di n, 1, +dn i1,  ¬ s ki i ▹ normalized distance to the queried coordinate.

for Ît _i thres axis do ▹ _thres axis: array of real numbers, trial matching thresholds;
i ¬ connected_components d t, i( ) ▹  : array of integer sets, possible matching configurations;
i ¬ count_valid_pairs  d t, , ,i i( )catalog ▹  : array of integers, number of valid pairs.

Wopt := the unique element in , which maximizes  at minimal log _∣ ( )∣thres axis ▹ the optimal configuration;

topt := the unique element in thres_axiscorresponding to Wopt ▹ the optimal matching threshold;

w0 := the unique element in Wopt, where + În w1 0( ) ▹ group matching the queried coordinate.
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(Continued)

Qi ¬ quality_metrics w s d t, , ,i opt( ) for wi in Wopt ▹ Q: array of tuples, quality metrics of groups.

if queried host coordinate and length >w 10( ) then ▹ host position is queried and properly matched.
primary_host ¬w0

if for all Îp representative_source w0( ), =p_ [ ]is star false then ▹ host position matched a non-stellar object.
is_confirmed ¬ true

if using name-resolved coordinate then
is_confirmed ¬ true

if =_is confirmed false then
for Îw Wi opt do

vi ¬ representative_sources wi( )
 q ¬ si p where Îp wi ▹ qi: mean angular distance to the queried coordinate.

¬fi ranking_function q ¼v Q, , , _ , ,i i i( )catalog is star

for wi in W, sorted by f in descending order, do
if =_primary host null then ▹ transient coordinate is queried, or host coordinate unmatched.
primary_host ¬wi

else
insert wi to the end of secondary_hosts

function count_valid_pairsW, d, t, catalogs  V
input: W: list of integer sets, indices of sources in cross-matched groups;

d: + +n n1, 1( ) matrix, normalized pairwise distances of sources;
t: positive real number, matching threshold.
catalogs: external catalog identifiers of sources;

output: V: integer, the number of “valid pairs” under this configuration.

V ¬ 0
for wi ä W do
forAllp, q äwi where <p q do
if dpq < t and catalog ¹p[ ] catalog q[ ] then
V ¬ +V 1

function CONNECTED_COMPONENTSd, t→ W
input: d: + +n n1, 1( ) matrix, normalized pairwise distances of sources;

t: positive real number, matching threshold.
output: W: list of integer sets, a unique partition of integer set ¼ +n1, , 1{ } that cannot be further refined,

where for any Îw Wi and for any Îi wi, Îj j Q;{ , ¹j i and < Íd t wij i}
(abridged)

function REPRESENTATIVE_SOURCES(w) → v
input: w: set of integers, indices of sources in a cross-matched group.
output: v: set of integers, a subset of w, in which each external catalog contributes at most one source.
(abridged)

function RANKING_FUNCTION (θ, v, catalogs, _is star, Q), K → f
input: θ: real number, average angular distance to the origin, i.e., the queried coordinate;

v: set of integers, indices of representative sources in a cross-matched group;
catalogs: array of integers, external catalog identifiers of sources;

_is star: array of binary flags, indicator for stellar sources.
K: other source properties.

output: f: real number, the ranking score.
(abridged)

function QUALITY_METRICS(w, s, d, t) → Q
input: w: set of integers, indices of representative sources in a cross-matched group;

s: array of real number pairs, projected Cartesian coordinates of sources;
d: + +n n1, 1( ) matrix, normalized pairwise distances of sources;
t: real number, a cross-matching threshold.

output: Q: 3-tuple, quality metrics of the cross-matched group.
(abridged)
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Appendix F
Finding Astrometric Tolerances and Matching Thresholds

Every unique object in the sky, in ideal situations,
corresponds to a cross-matched group of catalog sources, in
which each catalog contributes at most one source. Given a
constant matching threshold, when per-catalog astrometric
tolerances are excessively large, irrelevant nearby sources can
be included in the cross-matched groups, and even nearby
cross-matched groups can be glued together into one group;
conversely, insufficient per-catalog astrometric tolerances, in
this case, may leave some catalog sources unmatched, and even
split a properly matched group into multiple smaller groups,
leading to the incompleteness of compiled properties and the
nonunique correspondence of cross-matched groups and true
objects in the sky. The astrometric tolerance of each catalog
should depend on its astrometry calibration and image
resolution, as well as the angular size and signal-to-noise ratio
of individual detected sources. Such information, however, is
not always provided in external catalogs. We, therefore,
determine the per-catalog astrometric tolerances in an empirical
approach.

Finding the best per-catalog astrometric tolerances requires a
performance metric, i.e., a numeric indicator for the goodness
of cross-matching. We use the number of “valid pairs” cross-
matched under a constant, unity per-field matching threshold as
the performance metric (or “objective function”) to be
optimized. Here two catalog sources form a valid pair if (1)
they are directly connected under the existing per-catalog
astrometric tolerances and a constant, unity per-field matching
threshold, and (2) both sources are uniquely matched in this
group, without the confusion of multiple sources in the same
catalog. Such a combinatorial objective function is tailored
toward large cross-matched groups with the least confusion.
We use the first criterion to increase the chance of having
sources matched, while the second criterion penalizes confu-
sion of multiple sources—inside a group, we only count valid
pairs of uniquely matched sources. The number of sources and
their maximal number of possible connections are always
limited in a field. When properly matched, the same source can
participate in more valid pairs and thus has a higher per-source
contribution; meanwhile, a higher fraction of those possible
connections would become real. From either perspective,
counting the number of connections is a reasonable choice.

Maximizing the objective function is a computationally
intensive optimization problem, where the value for each
catalog is a free parameter to tune, and evaluating the objective
function requires cross-matching all catalog sources in all
existing fields for once. Even more complicated is that the
objective function is a nondifferentiable and noncontinuous
one, which may have a plethora of local extrema that
challenges the conventional optimization algorithms. Given
the unknown properties of this objective function, instead of
using any local or global optimization algorithm, we search the
best astrometric tolerances with a Monte Carlo approach. We
replace the log-likelihood function in the Markov Chain Monte
Carlo algorithm with our objective function so that astrometric
tolerances with better overall performances (i.e., a higher
number of valid pairs) are preferred during the sampling
process. Given enough time, we could find a set of best global
astrometric tolerances. It must be emphasized that the Monte
Carlo sample, in this case, should not be interpreted as the

posterior of the best-fitting parameters, as the objective
function itself is not a likelihood or any other probability
density in nature.
Converting the objective function to a log-likelihood

function needs some scaling. Any monotonically increasing
function, in principle, can be used here as a scaling function.
However, if the gradient of the scaling function is too steep,
then minor changes in the number of valid pairs may lead to a
significant change in the density of the Monte Carlo sample.
Given that the Monte Carlo sample traces linear density while
the value of the log-likelihood function is supposed to be
logarithmic, the sampling process can be thus extremely
sensitive to local the maxima, leading to trapped chains, slow
convergence, and an over-constrained, spiky Monte Carlo
sample. On the contrary, if the gradient of the scaling function
is too shallow, then the log-likelihood function cannot
effectively perceive the improvement of the objective function,
leading to an overly smooth Monte Carlo sample with a low
contrast of density. We tested several possible scaling
functions, and a simple power function with an index of
0.618 leads to the best balance of sampling efficiency and the
contrast of sample density.
There are 30,000 fields in our sample. To evaluate the

objective function, all these fields must be cross-matched again
using the newly proposed astrometric tolerances. To make the
problem computationally feasible, we precalculate the pairwise
distance matrices and combine them into larger block diagonal
matrices so that each evaluation of the objective function takes
only a few seconds on a single core of a conventional desktop
computer (Intel Core i7-9700K, 3.6 GHz), and sampling
200,000 steps using emcee (Foreman-Mackey et al. 2013)
takes less than a day. We locate the best astrometric tolerances
by finding the maximum of the marginalized Monte Carlo
sample density using a Gaussian smoothing kernel of 0″.125,
after throwing away the first 20,000 points. The final sampled
parameter space is illustrated in Figure 16, and the best-overall
parameters are listed in Table 5.
When finding the astrometric tolerance using Monte Carlo

sampling, we used a fixed, unity matching threshold for all of
our fields. We consider the astrometric tolerance as a globally
averaged property of a catalog, reflecting the typical scatter of
source coordinates averaged over all existing fields. However,
the globally averaged astrometric tolerances are not necessarily
the optimal values for individual fields. There could be field-to-
field variations of source density and catalog coverage.
Meanwhile, the scatter of source coordinates for hosts may
also depend on their redshifts. The same set of globally
averaged astrometric tolerances could be overly large in certain
fields but too small for some other fields, combining or splitting
properly matched groups and leading to mismatching or
incompleteness of host properties.
To enable some local fine-tuning of the cross-matching

criteria, we allow the matching threshold to vary in each field.
Tuning the matching threshold is equivalent to scaling the
astrometric tolerances by a constant factor in this field. When
cross-matching, we use the matching threshold that maximizes
the number of valid pairs matched in this field, and the
matching threshold is chosen from 31 logarithmically spaced
values from 0.316 to 3.16. When several matching thresholds
produce the same maximal number of valid pairs, we use the
one that is closest to unity.
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In Figure 17, we show the distribution of the fine-tuned
per-field cross-matching threshold, along with the improve-
ments in the number of valid pairs, compared to the number
of pairs matched under a constant threshold of unity. For
confirmed hosts and primary candidates, after the cross-

matching threshold is tuned, there is about 10% to 20%
increase in the number of valid pairs. We note that we allow
the matching threshold to vary in each field; the default
matching threshold of unity is still the best value in most
fields.

Figure 16. Finding the best astrometric tolerances for external catalogs using Monte Carlo sampling. The results here show a Monte Carlo sample of 200,000 points,
optimized for an objective function with a constant power index of 0.618 for the scaling function, as discussed in Appendix F. We use a fixed axis range of (0″, 3″) for
all subpanels, including marginalized distributions and two-dimensional projections of the sample. The best-overall astrometric tolerances, determined by searching
the peak of marginalized distribution using a Gaussian kernel of 0″.125, are indicated with blue lines. The detailed values are listed in Table 5.
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Appendix G
Quality Metrics of Cross-matching

Cross-matching sources across multiple external catalogs is a
nontrivial problem in many aspects. We use per-catalog
astrometric tolerances and per-field matching thresholds to
determine the connectivity of sources, which we have already
discussed in Appendix H. To further ensure that our cross-
matching is valid and the compiled host properties are accurate,
we introduce three quality control metrics for cross-matched
groups:

1. Mean offset (d) measures the average angular distance of
sources to the group centroid, i.e., the equal-weighted
mean position of sources in this group. This metric
measures the size of a cross-matched group, where
compact groups should have a lower mean offset.

2. Axis ratio (σa/σb) measures the roundness of a cross-
matched group, calculated using the eigenvalues of a
second-order moment matrix. This is the axis ratio

(semimajor to semiminor) of sky coordinate distribution,
where lower values (closer to 1) indicate a more isotropic
distribution. Along with this axis ratio, we also provide
similar indicators, such as ellipticity and the absolute
value of Pearson’s r in this case.

3. Degree of connectivity (F) is the number of direct
connections in a group divided by the maximal possible
number of connections in a group with N sources. This
parameter measures the compactness of a group, where a
compact group is expected to have most sources
interconnected, except for source pairs from the same
catalog; meanwhile, a loose, wide-spanning group should
have many source pairs unconnected, resulting in a lower
value for this number.

For all of the cross-matched groups, including known hosts,
newly identified host candidates, and other cross-matched
groups, we always provide these three quality control metrics.
Figure 18 shows the distribution of these quality control
metrics for known and newly identified hosts. We also make
sure that these parameters behave well in the limiting case of
only a few sources matched, when some parameters may have
singular values. For the connectivity, we use the number of
direct matches divided by the number of maximal possible
matches plus one to avoid division by zero for the single-source
groups. For ellipticity, we assume that the single-source groups
are close to groups with only two sources. Their axis ratio
equals 0, ellipticity equals 1, and Pearson’s r is also 1.
Besides these quality metrics, we also provide lists of

catalogs that cover the field and that have been matched by the
confirmed host or primary candidate of the field. For catalogs
covering the field but not matched by the confirmed host or
primary candidate, we also provide the nearest source, in these
catalogs, to our confirmed host or primary candidate. We note
that such kind of situation does not necessarily indicate quality
issues in cross-matching, but this can be used as a diagnostic
for potentially under matched (splitted) groups and to locate
missed sources. Detailed statistics of cross-matching are listed
in Table 8.
It is worth noting that, nearby large galaxies pose a

significant challenge to our cross-matching algorithm, and
their properties should be used with care. These well-resolved
galaxies could have large catalog-to-catalog offsets in sky
coordinates, and sometimes these large galaxies are even split
into multiple sources in certain catalogs. We demonstrate
relatively successful cases and failed cases in Figure 19.

Figure 17. Top: the improvement of connectivity after tuning the matching
threshold. We count the number of valid pairs (Npair) using the adjusted
matching threshold and compare it to the number of valid pairs matched under
unity threshold (Npair,unity). Their ratio represents the improvement of cross-
matching after per-field fine-tuning of the matching threshold. The solid line
shows the moving median of Npair/Npair,unity, while the thin lines show the
corresponding 25%–75%. Bottom: histogram of the locally adjusted matching
threshold. More than half of the fields are cross-matched using a default unity
matching threshold (gray zone), so we only show the distribution for those with
different matching thresholds.
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Figure 18. Three quality control metrics of cross-matching for known and newly identified hosts. For cross-matched objects in a group, we calculate their average
distance to the group centroid (mean offset, d), the axis ratio (semimajor to minor) of covariance ellipse (σa/σb), and the number of directly connected pairs to the
maximal number of allowed connections (i.e., degree of connectivity). We split our hosts into three subgroups of nearly equal sizes per their number of cross-matched
catalog objects (N). The dark and light contours in each panel enclose 50% and 95% of the hosts in each subgroup, while hosts outside 95% contours are plotted as
individual points. The top and right sides of each panel show the cumulative histograms of each metric for each subgroup. Properly matched groups are expected to be
compact (low d) and isotropic (σa/σb near unity), in which catalog objects are adequately connected (high degree of connectivity). Cross-matched groups with extreme
values, like large d and σa/σb, or very low degree of connectivity, should be used with care.

Table 8
Summary of Cross-matching

Catalog Matched Nearby Confusion
<2″ <5″

NED 29070 18 239 733
SIMBAD 21005 38 275 184
HyperLEDA 21123 25 237 27
GALEX MIS 2991 18 251 2
GALEX AIS 16181 93 1170 48
SDSS 22945 33 306 504
PS1 28145 44 450 302
DES 8559 19 116 72
DESI-LS 28439 34 313 1538
SkyMapper 11070 31 249 101
VST-ATLAS 3045 5 32 508
2MASS XSC 14900 11 63 3
2MASS PSC 18745 31 211 389
UKIDSS LAS 8183 16 181 304
VHS 7968 24 185 122
AllWISE 28009 118 1175 102
unWISE 31530 150 1126 966
NSA 9634 14 161 1
SCOS 24265 87 597 375
Gaia 9608 23 750 174
MPA-JHU 7558 5 81 6

Note.Matched indicates the number of confirmed hosts and primary candidates with the catalog matched. Nearby shows the number of cases when a confirmed host or
primary candidate did not match the source in a certain catalog, but there exists sources in this catalog within some angular distance. This need not be a problem of
cross-matching. Confusion shows the number of confirmed hosts and primary candidates with multiple sources in this catalog that matched.
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Appendix H
Star/Galaxy Separation and Resolution of Confusion

Before locating the groups corresponding to our known hosts
or ranking cross-matched groups to identify the best host
candidates, we need to assign source properties to cross-

matched groups. The procedure here includes a simple star/
galaxy separation, as foreground stars should not be considered
as host candidates, as well as the selection of source properties
when a group includes multiple sources from the same catalog,
i.e., resolving confusion of multiple matched sources.

Figure 19. Top: cross-matching catalog sources in fields with nearby large galaxies. Two examples here are PS16fdq (left) and SNhunt124 (right). The spiral arms,
bright clumps, and extended outskirts of nearby large galaxies are often broken into individual sources when the object detection algorithm is not tailored toward such
situations. Nearby large galaxies with low surface brightness, flat light profile, or irregular morphology may also have significant catalog-to-catalog offsets in source
coordinates. Consequently, their compiled host properties are subject to incompleteness or mismatching. Even the cross-matched substructures may interfere with the
identification of new hosts. Bottom: cross-matching catalog sources with non-optimal astrometric tolerances or matching thresholds. Examples here are SN2017hdn
(left) and SDSS-II SN 15822 (right). The cross-matched groups in both cases contain at least two distinct objects, which are glued into a single group either due to
large scatter of source coordinates or by a few bridging sources. Such groups can be excluded by their extreme values of connectivity and mean offset. We illustrate
the connectivity of catalog sources in selected groups with zoom-in panels, where the panel sizes are indicated at lower left corners. Red dashed circles indicate cross-
matched groups with spanning distances above 1″.
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To accurately identify foreground stars in each field, upon
cross-matching catalog sources, we utilize source morphology
indicators or star/galaxy separation parameters provided in
these catalogs to flag potential stellar sources. More accurately,
these indicators or parameters only separate point and extended
sources. Some extragalactic objects, such as quasars and cores
of extremely compact galaxies, could be classified as point
sources. Conversely, some extended sources could be fore-
ground sources like stellar multiplicities or nebulae. Here
“stars” and “galaxies” are only used loosely to refer to these
two types of sources. We choose rather strict criteria for stellar
sources so that the identified subset of sources is pure and
genuine galaxies would not be easily flagged as stellar sources.
After flagging individual stellar sources in external catalogs, we
check if our cross-matched groups contain stellar sources.
Without the confusion of multiple sources, when any catalog
source in a cross-matched group satisfies the criteria for stellar
sources, we flag the entire group as a star.

Even with the optimized astrometric tolerances and matching
thresholds, confusion or missing of sources could still occur in
some fields, i.e., a certain catalog may contribute more than one
valid source to a cross-matched group, or a catalog source that
corresponds to the true host is not included in the group. Both
cases are penalized by our target function of optimization as
described in Appendix F and should have already been
minimized. However, the first case, if present, could still lead
to mismatching of host properties.

Whenever a cross-matched group contains more than one
source from a certain catalog, we keep all sources but select
only one of them to represent the measured properties of the
cross-matched group within that catalog. For the photometric
catalogs, the brightest source is selected as the representative
source, and the deepest photometric band of each survey is
used to rank confusing sources. For the other catalogs, the one
closest to the group centroid, i.e., the average position of
sources in this group, is selected to represent the properties of
this group. In any case, we prefer non-stellar sources over
stellar ones when finding the representatives within confusing
sources.

Finally, in the case of a cross-matched group containing
confusing sources in certain catalogs, and the group is not yet
labeled as a star under stellar criteria for other catalogs without
confusion, we select representative sources for catalogs with
confusion first, and then label the entire group as a star only if
any of these representative sources satisfies our stellar criteria.
In other words, when there is a confusion of multiple sources in
a catalog with stellar source criteria, and the group is not
labeled as a star by other catalogs without confusion, it would
only be labeled as a star when all confusing sources satisfy
stellar criteria in at least one of the catalogs that has multiple
confusing sources.

Appendix I
The Ranking Functions

I.1. Constructing the Training Set

To construct a training set for ranking functions, we choose
transients that (1) have name-resolved or as-reported host
coordinates in our trusted reference sources, (2) have valid
sources in external catalogs cross-matched using host coordi-
nates, and (3) have been visually inspected by us to have
acceptable quality, i.e., “OK” cases without further flags,

comments, or alternative hosts (Appendix J.1). We search their
transient coordinates again in external catalogs, with the search
radius set as if neither host names nor host coordinates are
known. We then cross-match the retrieved catalog sources in
these fields with the same astrometric tolerances. Query results
and cross-matched groups are stored in a separate “training”
database, with an identical structure as the main database.
Cross-matched groups closest to the known, visually confirmed
hosts in the main database are labeled as “true hosts,” while
other groups in the field are labeled as “other objects.” In the
absence of a “true host,” we exclude the field from the training
set. About 0.3% of the “true hosts” have large angular offsets
(� 3″) to their counterparts in the main database, which are
usually caused by the change of cross-matching thresholds (and
hence group members) under different search radii and field
centers (Appendix F). We do not use these fields for the
training set.
When assembling the training set, we do not include fields in

which the true hosts are beyond the search radii. However, we
keep track of these excluded fields to estimate their impact on
the accuracy afterward.

I.2. Constructing the Feature Sets

To characterize cross-matched groups in each field, we start
from the following parameters:

1. The angular distances of group centroids to the transient
coordinate (δθ, in arcseconds); besides linear angular
distances, we also include dqarcsinh arcsec( ) and

dq+1 1 arcsec( ) in the list of parameters;
2. The projected physical distances (δr, in kiloparsecs), for

events with known redshifts only; similarly, besides
linear distances, we also include drarcsinh 15 kpc( ) and
1/(1+ δr/15 kpc) in the list of parameters;

3. Binary flags indicating if the cross-matched group
contains source(s) from a specific catalog; every survey
or value-added catalog corresponds to one flag;

4. Geometric signatures and quality metrics of cross-
matched groups, including the mean offset (d), axes ratio
(σb/σa) and the degree of connectivity (F) of each group;
these parameters are discussed in detail in Appendix G;

5. Stellarity parameters, including a binary flag indicating if
any representative source satisfies the criteria for stellar
sources and the fraction of representative sources from
catalogs with star-galaxy separation criteria that are likely
stars;

6. Field-aware contextual parameters, including the quantile
ranks within the field for (1) the number of catalogs
matched, (2) the linear distance to transient coordinates,
and (3) the connectivity parameter (F).

The list above includes 32 or 35 parameters (3 angular
distances, 3 optional projected physical distances, 21 binary
flags for external catalogs, 3 geometric and quality metrics, 2
parameters for stellarity, and 3 contextual parameters). We
choose these parameters because this is a complete set of
parameters, which is universally available for any cross-
matched groups, even in sky areas that are not covered by
certain surveys or for hosts that are beyond the sensitivity limits
of certain surveys. Also, they do not rely on detailed galaxy
properties. These two feature sets, which we name as Basic8
(32 parameters) and Basic8_z (35 parameters, including
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redshift-dependent projected distances), lay the groundwork for
other input feature sets.

We also extend the “basic” feature sets above using other
more detailed source properties. Since optical-NIR magnitudes
are the most available kind of source properties in external
catalogs, we create the AnyMag/AnyMag_z feature sets,
which include existing parameters in Basic8/Basic8_z
feature sets, with one more parameter, the optical-NIR
magnitude of the group. This optical-NIR magnitude is selected
in DESI-LS, PS1, DES, SDSS, VST-ATLAS, and SkyMapper
catalogs, in the preferred order here. We use r-, i-, or z-band
extended source magnitude in these catalogs, whichever is
available first. Due to their dependence on source optical-NIR
magnitudes, the feature sets also limit the choice of possible
hosts to groups with any of these catalogs matched. Other
groups would not be ranked and selected as the host candidate.

Furthermore, since PS1 and DESI-LS are the two most
widely available external catalogs for our host candidates, we
construct feature sets based on their measured source proper-
ties. The PS1/PS1_zfeature sets, which are also based on the
existing Basic8/Basic8_zfeature sets, have the following
additional parameters:

1. The Kron magnitudes (Kron 1980) of PS1 sources, in the
r, i, or z bands, whichever is properly measured first in
this preferred order;

2. The Kron radii in the same band as the magnitude above,
which measure the angular sizes of objects using the first
radial moments of their surface brightness profiles;

3. The ratio of δθ to the Kron radius above, which is
analogous to dDLR used in the DLR method, but without
correcting for the axis ratio or inclination of galaxies.

Since the Kron radius here includes seeing contribution, the
sources sizes are overestimated, especially for compact sources.
This may reduce the distinguishing power of the ranking
function in some situations.

We also constructed LS/LS_zfeature sets, which include
parameters in the existing Basic8/Basic8_z feature sets,
with the following additional ones:

1. The profile-fitting magnitude of DESI-LS sources,
preferably in the r band, but the z or gbands are also
used in the absence of r-band data;

2. The measured half-light radius R50 and the calculated R90

(radius enclosing 90% of total flux) under the best-fitting
light profile; for point sources, both radii are set to 0.1″;

3. dDLR calculated using R50 and R90, considering the
position angle and axis ratio of galaxies, following the
definition in Sullivan et al. (2006);

4. The photometric redshifts zph of LS sources from Zhou
et al. (2021), the squared difference of transient redshift
and zph, and, finally,

s- + -z z 1 1 1zph
2 2

ph
( ) ( )

where szph is the uncertainty of zph estimate.

Note that R90 of galaxies are derived from R50 using the ratio
of R90 to R50 under the best-fitting light profile. For the
exponential profile, we use R90/R50; 3.52; while for de
Vaucouleurs’ profile, we use R90/R50; 5.58. The position
angles and axis ratios are converted from ellipticities in
complex representation. When fitted with composite models

(exponential plus de Vaucouleurs’), the complex ellipticity,
R50, and R90 are the linear combination of the two components,
weighted by their fractions in the total flux. The last three
zph-related parameters are only used for transients with known
redshifts (i.e., only in LS_z feature set). The function forms are
chosen to separate true hosts (with consistent redshift) and
other objects (with possible inconsistent redshift) easily using
simple linear classifiers.
For testing and comparison, we also assemble feature sets

that only use information relevant to PS1 or LS catalogs. We
derived PS1sub/PS1sub_z feature sets from the existing
PS1/PS1_z feature sets, in which parameters related to multi-
catalog cross-matching and other cross-matched catalogs are
ignored. Similarly, we assemble LSsub/LSsub_z feature sets
using only the parameters available from LS sources alone,
including zph-related parameters.
Feature sets using more detailed source properties in external

catalogs are only available for some host candidates. We plot
the fraction of availability in the bottom subpanels of
Figure 20.

I.3. Testing the Classifiers

Having the training set ready, we trained several commonly
used binary classifiers, including Logistic Regression, SVM
(with regularization parameter C= 0.25), RF (with a maximal
depth of 5), AdaBoost, SGD, and MLP, using the default
hyper-parameters in scikit-learn (v0.22.1) unless noted.
We train ranking functions with every possible combination

of classifiers and input feature sets. When using feature sets
with transient redshift-dependent parameters (i.e., feature sets
with “_z” suffix), we limit our training and testing to transients
with known redshifts; otherwise, the entire training set is used.
If the feature set relies on source properties in a particular
external catalog, we further limit the training set to transients in
the coverage of that survey, whose “true hosts” have a source
in that catalog matched. Even for transients in the coverage of
the survey, the “true hosts” may not have the required
parameter available. We show the fraction of availability in
Figure 20.
Furthermore, we create two special ranking functions for

comparison; one selects the nearest group to the transient
coordinate (“Naive Nearest”), and the other selects the group
with the minimal dDLR (based on R50) in the field (“Simple
DLR”). They directly use− δθ or dDLR as the ranking scores,
where the negative signs select groups with the lowest δθ or
dDLR. The latter ranking function is only limited to transients
and host candidates with DESI-LS parameters.
We assess the performance of these trained ranking functions

by the chance that the true host has the highest-ranking score in
its field, which we loosely refer to as the accuracy. The
accuracy is averaged over a standard tenfold cross-validation
(Section 3.6.1), where training and test data sets are split based
on fields rather than individual cross-matched groups. Besides
the overall accuracy, we also analyzed the dependence of the
accuracy on transient redshift, transient-host angular offset,
host optical-NIR magnitude, and transient type. The results are
estimated in bins of equal sample size (except for transient
type), and the accuracy in each bin is averaged over tenfold
tests. The results are summarized in Figure 20.
We summarize the overall performance of ranking functions

in Table 9. With the “basic” feature sets, the accuracy is above
96% for all classifiers, in which the Logistic Regression
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classifier achieves 97.5%± 0.6% accuracy using the transient
redshift-related parameters or 97.3%± 3% without using
redshift-related parameters. Therefore, we use Logistic Regres-
sion and “basic” feature sets as our default ranking functions.
When transient redshift is available, we use the redshift-
dependent feature set (Basic_z); otherwise, we use the
redshift-independent version (Basic).

We calculate the ranking scores of other feature sets in our
released data set, but we do not use the scores to rank cross-
matched groups. However, it is worth comparing their
performances with the default ranking functions. We see a
clear increase in accuracy when source properties are included
(Table 9, Figure 20). For example, adding any optical-NIR
magnitude to the existing redshift-dependent “basic” feature set
improves the accuracy to 98.6%. The inclusion of source
properties in PS1 and LS can even push the accuracy further to
99.3% and 98.8%, respectively. For their redshift-independent
versions, the accuracy is similar, if not marginally lower. Even

a percent-level increase of accuracy in this range indicates a
significant reduction of failure rates compared to the default
ranking function. Therefore, the inclusion of detailed source
properties brings a substantial performance improvement.
The improvements in accuracy, however, come with the cost

that true hosts without the required extra parameters measured
are ignored. For example, many true hosts do not have PS1-
relevant parameters measured, especially for fainter or brighter
hosts close to the sensitivity and saturation limits (Figure 20,
“Availability” subpanels). Even PS1-based feature sets outper-
form our default ranking functions (“basic” feature sets); this
may not benefit host matching in reality. On the contrary,
feature sets with DESI-LS-relevant parameters are available for
most of the true hosts. Assuming those true hosts, if above the
sensitivity of DESI-LS, will be detected and cataloged, the
improved accuracy would facilitate host matching of transient
surveys.

Figure 20. Accuracy of the ranking function estimated using the training sample, averaged over standard tenfold cross-validation. We show the dependence of
accuracy on transient redshift, transient-host angular offset, transient type, and host optical-NIR magnitudes in four separate panels. Except for the panel of transient
type, we divide the sample into equal-sized bins over the axis of interest and plot the per-bin accuracy at the median value of each bin. Each curve shows the accuracy
of a feature set. For clarity, the accuracy curves of redshift-dependent feature sets (with “_z” suffix) and redshift-independent feature sets are grouped into two
separate subpanels. Some feature sets rely on certain source properties that are not always available for those known hosts. We estimate the accuracy using the subset
of known hosts with the relevant features available and outline the fraction of true hosts with relevant parameters available in the bottom subpanels. Specifically, in the
panel of transient redshift, we plot the accuracy of events without redshift in the gray shaded area, if applicable.

46

The Astrophysical Journal Supplement Series, 259:13 (57pp), 2022 March Qin et al.



We also notice that when using DESI-LS-relevant para-
meters alone (LSsub/LSsub_z), one can reach comparable
accuracy to our default ranking functions (i.e., “basic” feature
sets). Also, LSsub/LSsub_z feature sets have a reasonable
fraction of availability in the survey footprint (Figure 20),
clearly higher than the coverage of PS1-relevant parameters.
This implies that the training framework would also work for
single-catalog host matching if the catalog and input para-
meters are properly chosen. On the contrary, PS1-relevant
parameters improve the accuracy of the default feature sets, but
using these parameters alone leads to low accuracy of
around 90%.

Finally, ranking cross-matched groups by dDLR, the accuracy
is about 90%, lower than the DLR-only accuracy in Gagliano
et al. (2021), and close to the DLR-only mock sample
performance of Gupta et al. (2016). Choosing the nearest
group to the transient position as the host, only about half of the
true hosts are successfully recovered. The ranking function
method we present here significantly outperforms these
methods.

Appendix J
Visual Inspection of Cross-identified Host Galaxies

We rely on existing name-resolved or as-reported host
coordinates to create training sets for ranking functions, where
the quality of input data may affect the training results.
Meanwhile, the trained ranking functions, although achieving
good accuracy in known transient-host pairs, have not been tested
for performance on newly identified hosts. A comprehensive
visual inspection of cross-identified hosts, in either case, can
serve as a subjective yet independent test of data quality.

To inspect the cross-identified hosts, we obtained image
cutouts of their fields, including DESI-LS grz color composite
images from the Sky Viewer52 and PS1 gri color composite

and g-band FITS images from the Hierarchical Progressive
Survey (HiPS) data sets hosted at Centre de Données
astronomiques de Strasbourg (CDS),53 as well as DSS2 color
composite and red-band FITS images from the HiPS data sets
at CDS. Image cutouts are centered at the queried coordinates
(i.e., known host coordinates or transient coordinates). The box
size is set to 2.5 times the queried radius, rounded up to the
nearest multiplicity of 15. Preferably we use DESI-LS images
for visual inspection for their better sensitivity over PS1
images. DSS2 images, on the contrary, are only used when
neither DESI-LS images nor PS1 images are available due to
their lower sensitivities and resolutions compared to modern
digital sky surveys.
We developed specialized software to facilitate the inspec-

tion, which overlays symbols and markers of transient
coordinates, cross-matched groups, possible stellar objects,
and projected distance scales (5, 10, and 20 kpc) onto the
background image. We indicate the cross-matched catalogs of
each group using color bands on these symbols. Furthermore,
for groups with DESI-LS sources cross-matched, we also use
upward or downward arrows to indicate if transient redshift is
below or above the 95% confidence interval of their
photometric redshift estimates in Zhou et al. (2021).
We conducted the visual inspection separately for the

samples of known hosts and new hosts. We summarize the
workflow in Figure 21. Below we describe the detailed
procedure and the results.

J.1. Inspection of Known Hosts

We group cross-identified hosts with known coordinates into
three cases: “OK,” “Failed,” or “Unclear.” We focus on
whether the known host coordinate successfully matches the
galaxy it indicates.
First, we check the image cutout and cross-matched groups

to find the galaxy indicated by the host coordinate. We consider

Table 9
Average Accuracy of Ranking Functions from Cross-validation

Name Basic(_z) AnyMag(_z) PS1(_z) LS(_z) PS1sub(_z) LSsub(_z)

With redshift-dependent parameters

Logistic 97.5 ± 0.6 98.6 ± 0.3 99.3 ± 0.1 98.8 ± 0.4 90.7 ± 1.1 97.6 ± 0.4
SVM 97.4 ± 0.7 98.6 ± 0.3 99.3 ± 0.1 98.7 ± 0.4 90.3 ± 1.1 97.5 ± 0.4
RF 97.3 ± 0.6 98.4 ± 0.3 99.3 ± 0.1 98.6 ± 0.5 87.6 ± 1.5 96.1 ± 0.5
AdaBoost 97.0 ± 0.4 98.4 ± 0.2 99.0 ± 0.4 98.6 ± 0.3 89.8 ± 1.0 97.1 ± 0.4
SGD 96.9 ± 0.6 98.1 ± 0.2 99.2 ± 0.2 98.5 ± 0.4 91.0 ± 1.6 96.6 ± 0.4
MLP 96.8 ± 0.6 97.9 ± 0.3 99.1 ± 0.2 98.3 ± 0.6 89.9 ± 1.3 94.5 ± 0.8

Only redshift-independent parameters

Logistic 97.3 ± 0.3 98.3 ± 0.3 99.0 ± 0.3 98.5 ± 0.3 89.0 ± 0.8 95.7 ± 0.5
SVM 97.4 ± 0.4 98.2 ± 0.3 99.0 ± 0.3 98.5 ± 0.3 88.2 ± 0.7 95.6 ± 0.6
RF 97.1 ± 0.3 98.1 ± 0.4 99.0 ± 0.3 98.3 ± 0.3 88.5 ± 0.8 95.0 ± 0.5
AdaBoost 96.7 ± 0.4 98.0 ± 0.3 98.9 ± 0.3 98.3 ± 0.3 90.4 ± 0.8 95.6 ± 0.4
SGD 96.9 ± 0.5 97.8 ± 0.4 99.0 ± 0.3 98.2 ± 0.3 88.7 ± 0.7 94.8 ± 0.6
MLP 96.4 ± 0.4 97.6 ± 0.4 99.0 ± 0.3 97.9 ± 0.5 89.1 ± 0.8 93.6 ± 0.8

Other methods

Naive Nearest 53.2 ± 1.0 L L L L L
Simple DLR L L L L L 89.8 ± 0.4

Note. Each row represents the accuracy of a classifier using the input feature set indicated in each column. The upper and lower parts show the results for redshift-
dependent feature sets (with “_z” suffix) and redshift-independent feature sets. The last two rows show the accuracy of two special ranking functions for comparison.

52 www.legacysurvey.org/viewer 53 alasky.u-strasbg.fr/hips-image-services/hips2fits
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the case “OK” if the known host coordinate matched the core
of the galaxy or the most prominent main component of an
irregular galaxy. If the known host coordinate failed to
match the core or the main component of the galaxy, we
consider this a “Failed” case. Such a situation occurs when
the reported coordinate has large offsets from the actual
central component cross-matched from multiple external
catalogs (e.g., irregular galaxies, nearby large galaxies). We
then mark the correct group manually. Host properties, in
this case, will be updated with our manual correction.

Generally, we do not judge the correctness of reported hosts
during this inspection. When there are more than one equally
possible host as we see, and the input host coordinate points to
any of them, we accept the galaxy as the true host.
Occasionally, the known host coordinate points to a galaxy,
but there is an obviously better choice of the host, not just
equally possible, from our visual inspection. We consider the
case “OK” if the known host coordinate matched the galaxy it
indicates, but at the same time, we set an “alternative host” flag
to indicate that we prefer another host. We manually mark the
preferred host when it has been cross-matched in external
catalogs. If the preferred host lies beyond the search radius and
is therefore not cross-matched, we set an “alternative host
beyond radius” flag to indicate the situation and then mark the
position of the alternative host (R.A., decl. offsets from mouse
click) if its core is visible.

In some cases, we cannot distinguish the indicated galaxy in
the image, and hence the robustness of cross-matching and the
existence (or not) of any better host. We consider these cases as
“Unclear.” Fields can be marked “Unclear” for various reasons.

Still, image sensitivity or resolution issues, for which we set the
“image quality issue” flag, is a primary cause. High-redshift
hosts outside the coverage of DESI-LS and PS1 sometimes fall
in this category.
Furthermore, if the transient position is likely inaccurate, due

to either an equinox conversion issue of historical coordinates
or a possible mistake in upstream data sources, we set an
additional “possible error in metadata” flag. If matched by
name-resolved coordinates, their host properties remain usable,
but transient-host offsets could be wrong. Other uncommon
cases are grouped under “Other” with appropriate descrip-
tive flags.

J.2. Inspection of Newly Identified Hosts

Newly identified hosts are grouped into four major cases:
OK, Failed, Confusing, or Unclear. Cases including “Other”
and “No Group” are also used when applicable.
First, we visually identify the galaxy that appears to be the

most likely host in the field. Then we reveal the host identified
by the default ranking function. Revealing the choice of the
algorithm later may reduce the confirmation bias in this
inspection. If the default ranking function chose the most likely
host as we see in the image, we consider the case “OK.”
Similar to the inspection of known hosts, we require that the
center or the main component of the galaxy is selected.
Otherwise, this would be considered as a “Failed” case, with
manual reassignment of the host.
Occasionally, there could be more than one visually

identified, equally possible host (for example, the transient is

Figure 21. The decision tree of visual inspection for transients with known and properly cross-matched hosts (Appendix J.1) and transients with newly identified hosts
(Appendix J.2). For transients with known hosts, we assign “OK” or “Failed” based on the results of cross-matching. If there is clearly a better host than the reported
one, we also flag the case and mark the “alternative host” in the image. If we cannot determine if the indicated host is successfully cross-matched and if any better host
exists, we consider this an “Unclear” case and set flags for the detailed reasons. For events with new hosts, if the algorithm chose the unique best host in the images,
we consider the case “OK.” If the algorithm chose one likely host while there are other equally possible hosts, we consider this a “Confusing” case. If the algorithm
missed the best host in the radius, we consider the case a “Failed” one and then manually reassign the host if we can. However, if the best host is outside the radius, we
group the case under “Other.” If no group has been cross-matched near the event, the case falls into “No Group.” Finally, similar to the case of known hosts, if we
cannot determine the best host from the image, we consider the case “Unclear” with appropriate flags indicating the detailed reason.
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in a group or cluster environment but not clearly associated
with a specific member), and the default ranking function could
choose any of them, so we consider the case a “Confusing” one
and then manually mark other possible hosts. If any possible
host is beyond the search radius and is, therefore, not cross-
matched into a group, we set a “host beyond radius” flag and
then mark the galaxy (R.A., decl. offsets) in the image when
possible.

If the ranking function missed the most likely host, or rarely,
all possible hosts when there are multiple, we consider this a
“Failed” case and then manually mark the most likely host(s).
This also includes the situation in which the ranking function
chose some substructure of the most likely host rather than the
main component. However, if the most likely host lies beyond

the search radius, or if it is marginally visible but not cataloged
and cross-matched, we group the case into “Other” instead of
“Failed,” because this is a failure in the source accessing and
cross-matching process, rather than the ranking function itself.
When there is no cross-matched group for the ranking

function to choose from, a possible situation for high-redshift
transients such as GRBs, we mark the case with “No Group.” If
the sensitivity of the background image is fairly good (DESI-
LS image, or PS1 image without stacking artifacts) and there is
no possible host near the transient position, we further flag the
case as “hostless.”
For any reason, if the most likely host is not clearly visible in

the image, we consider the case as “Unclear.” This includes,
but is not limited to, the following situations as we flagged: (1)

Figure 22. The empirical accuracy of new hosts from visual inspection. Here the accuracy is the fraction of correctly identified hosts in cases where the host, either
correctly identified or not, is clearly visible and unambiguous. We show the dependence of accuracy on transient redshift, transient-host angular distance, transient
type, and host optical-NIR magnitude in four separate panels. Except for the panel of transient type, we divide the sample into bins of equal sample size over the axis
of interest and plot the per-bin accuracy and mean value there. Each colored accuracy curve represents the performance of an input feature set using the default
Logistic Regression classifier. Redshift-dependent and redshift-independent feature sets are grouped into two subpanels for clarity. We calculate the accuracy for
feature sets using detailed source properties with the subset of events whose best hosts (either correctly identified or not) have the catalogs cross-matched. Since these
properties are not universally available, we further plot the fraction of best hosts with the required features available in the bottom subpanels to indicate the possible
loss of accuracy. Furthermore, as transient type and redshift are independent of the best host, we also estimated the uncertainty of accuracy contributed by indecisive
cases (“Unclear” and “Confusing” cases). The optimistic and pessimistic limits of accuracy are indicated as “error bars” of these points. Similar to Figure 7, for events
without redshift, we plot their accuracy in the rightmost gray shaded area of the redshift panel.
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the transient is likely hostless (“hostless”) in images of fairly
good sensitivity (see also 3.7); (2) the field is overly crowded
(“crowded,” e.g., low-galactic latitude regions), hindering the
visual identification of the host; (3) there are multiple faint
sources, likely background galaxies, in the vicinity (“multiple
faint sources”), in which no one appears to be a better host than
others, yet possible association with the transient cannot be
fully excluded; (4) low-resolution, low-sensitivity, or corrupted
images (“image quality issue”). When possible, we also
comment with the detailed reason if the case does not fit in
these typical reasons.

J.3. Empirical Accuracy from Visual Inspection

We summarize the results of visual inspection in Table 10,
Figure 7, and Figure 22.

We use empirical accuracy (Section 3.6.2) to evaluate the
performance of ranking functions in new hosts. The empirical
accuracy here refers to the fraction of clearly visible and
unambiguous hosts that the ranking function has successfully
recovered. Assuming that the best host is inside the search
radius, our default ranking functions achieve 97.4% when
redshift-dependent parameters are used for ranking, and 96.8%
when only redshift-independent parameters are used
(Table 10).

There are a considerable fraction of indecisive cases
(“Unclear,” “Confusing”) in which the best host is unidentifi-
able, ambiguous, or even absent. The empirical accuracy must
take this potential source of uncertainty into account. We quote
the range of empirical accuracy by making assumptions about
the performance of ranking functions in these indecisive cases.
Assuming that these indecisive cases are all successfully
identified, we may estimate an optimistic upper limit of
accuracy; on the other hand, in the improbable worst situation
where all their hosts are misidentified, we can estimate a
pessimistic lower limit of accuracy. The upper and lower limits
of accuracy are also listed in Table 10. Considering the
uncertainty due to these indecisive cases, the accuracy of the
redshift-dependent default ranking function ranges from an
optimistic case of 97.5% to an unlikely pessimistic case of
92.5%. For the redshift-independent default ranking function,
the limits are 97.0% and 88.9%, respectively. These indecisive
cases are more relevant to high-redshift events (Figure 7,
Figure 22) and are less of a concern for mid- and low-redshift
transients.

We checked the accuracy of the default ranking functions,
while the accuracy of other ranking functions can be derived
once the visually identified most likely host is known in each
field. We noticed that the inclusion of detailed source
properties in PS1 or DESI-LS catalogs could clearly improve
the results, as we pointed out earlier in Section I.3. The
improved accuracy has similar dependence on key transient and
host parameters as the default ranking functions due to the
overlap in their input parameters or training sets. Any percent-
level improvement of accuracy in this range implies a
significant reduction of misassociation rates compared to the
default ranking functions. However, the improvement comes
with the cost that the algorithm could ignore some true hosts if
they do not have the required parameters measured. For
example, PS1/PS1_z feature sets, which rely on source
properties in PS1 catalog, have close to 99% accuracy.
However, the sensitivity of the PS1 catalog may not detect
some fainter hosts, which leads to a decreased feature
availability toward higher redshift. Higher-redshift transients
will likely not benefit from the improved accuracy here.

Appendix K
Confidence Scores of Host Candidates

To evaluate the reliability of individual newly identified
hosts, besides visual inspection, we also derived a separate set
of numeric metrics for each cross-matched group, which we
refer to as the confidence score.
The confidence score is a metric for outliers or anomalies,

which distinguish likely host galaxies from the bulk of nearby
non-host objects by comparing their ranking scores. We create a
reference sample of nearby non-host objects by generating
16,384 mock transients with randomized positions (i.e., without
association with any galaxies). Galaxies and stars near these
mock transients are always nearby non-host objects rather than
their “true hosts.” The highest-ranking “host candidates” of these
mock transients then outline the possible range of ranking scores,
represented as a baseline distribution, that a nearby non-host
object may reach by chance under the best cases. For a true
transient, if the ranking score of a host candidate is at the higher-
value tail of the baseline distribution, then this candidate is likely
an outlier among nearby non-host objects, and we can be more
confident about this new candidate. Conversely, if the ranking
score of this host candidate is inside or even below the range of
the baseline distribution, then this candidate could be a nearby
non-host object that ranked high in the field simply by chance.
When no host candidate in a field achieves an outstanding
ranking score compared to the baseline distribution, the transient
itself could be a hostless one.
We use the same source searching and cross-matching

workflow for these mock transients under a constant search
radius of 45″, where the ranking scores are calculated using the
same trained ranking functions as we used for those true
transients. For each feature set and classifier combination, we
construct the baseline distribution using the highest-ranking
score of each mock transient. The confidence score is defined
as the percentile rank of a new ranking score in the baseline
distribution of the same feature set and classifier. A value closer
to 100% indicates a more outstanding and possibly more
reliable candidate. Clearly, if the ranking scores depend on the
transient redshift and catalog coverage, then the baseline
distributions should also be adjusted for these factors. To
compensate the redshift dependence of some feature sets (with

Table 10
Empirical Accuracy of Ranking Functions

Name Basic(_z) AnyMag(_z) PS1(_z) LS(_z)

With redshift-dependent parameters

Accuracy 97.4 98.0 98.8 98.6
Upper Limit 97.5 98.1 98.9 98.7
Lower Limit 92.5 93.5 95.6 95.0

Only redshift-independent parameters

Accuracy 96.8 97.5 98.7 97.9
Upper Limit 97.0 97.6 98.7 98.0
Lower Limit 88.9 90.7 93.9 93.2

Note. The empirical accuracy is estimated for the default ranking functions
(Appendix I). We use the fraction of clearly visible and unambiguous hosts that
have been successfully recovered as the accuracy here. The upper and lower
limits of accuracy due to indecisive cases are also quoted.
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“_z” suffix), we generate a series of baseline distributions by
setting these mock transients at some fixed redshifts on a
predefined axis so that we can choose the nearest baseline
distribution on the axis later. To ensure similar catalog
coverage of mock transients as our existing true transients,
we generate mock transients following the density of true
transients on the celestial sphere, represented in a healpix
grid smoothed by a Gaussian kernel of FWHM ∼1 degree.
Furthermore, we also calculate local confidence scores using
only the nearest 1024 mock transients, rather than the entire
sample of 16384 mock transients, for baseline distributions.
Despite being noisy due to smaller sample sizes, this localized
version of confidence scores may better offset the dependence
of baseline distributions on the coverage of external catalogs.

In Figure 23, we show examples of baseline distributions,
ranking scores of newly identified hosts, and their derived
confidence scores with our default ranking functions. For the
redshift-dependent ranking function, we also show the results
in several redshift bins. The baseline distributions are clearly
redshift-dependent. Toward higher redshift, although angular
distance-related parameters may still distinguish true hosts
from other objects, other properties of hosts become similar to
those ubiquitous galaxies in the field. However, the ranking

scores of true hosts remain well above the ranges of baseline
distributions, and the behavior of confidence scores remains
stable. In Figure 24, we show the cumulative distributions of
confidence scores for a few kinds of host candidates identified
during our visual inspection. Successfully identified new hosts
(“OK”), as expected, have confidence scores close to 100%.
Misidentified hosts (“Failed: Identified”), as a comparison,
have lower confidence scores than successful cases. Higher
confidence scores usually, but not always, mean better
candidates. The manually reassigned hosts (“Failed: Manual
Fix”) of “Failed” cases have lower confidence scores than
galaxies misidentified in the same field (“Failed: Identified”).
Similarly, in “Confusing” cases, the equally possible hosts
(“Confusing: Lowest”) have lower confidence scores than the
ones chosen by the ranking functions in the same field
(“Confusing: Highest”). There are “Unclear” cases with
multiple faint sources in the vicinity of transient coordinates,
in which no one appears to be a clearly visible and
unambiguous host, while any transient-host association cannot
be fully excluded. Their highest-ranking “hosts” (“Multiple
Faint”) have much lower confidence scores, although the
distribution overlaps with manually reassigned hosts (“Failed:
Manual Fix”). Finally, the primary candidates of possible
hostless transients (“Hostless”) have very low confidence
scores, following the baseline distributions.
As a summary, the confidence score here serves as a

quantitative metric for the reliability of host candidates, which
clearly differentiates robust hosts from those less reliable ones.
However, the confidence score is based on the same training
framework as our ranking algorithm, which does not directly
indicate the correctness of individual host identifications.
Cross-checking with visual inspection is encouraged.

Figure 23. Examples of estimating confidence scores from baseline
distributions. We compare the ranking scores of new host candidates (orange)
to a baseline distribution (blue), i.e., the highest-ranking scores that nearby
non-host objects can achieve by chance in a randomized mock transient
sample. We use the cumulative percentage curve of the baseline distribution
(red) to quote the ranking scores of new host candidates. True hosts, ideally,
should have ranking scores at the positive tail of the baseline distribution. Their
confidence scores are closer to 100%. Here we show the case for the redshift-
independent default ranking function (top panel) and the redshift-dependent
default ranking function in several redshift intervals (centered at z, with bin
width Δz).

Figure 24. The cumulative distribution of confidence scores for some host
candidates identified during our visual inspection of new hosts (Appendix J).
Successfully identified hosts (“OK”) usually have very high confidence scores.
However, higher confidence scores do not guarantee more reliable hosts;
misidentified hosts (“Failed: Identified”) still have higher confidence scores
than the manually reassigned hosts in the same field (“Failed: Manual Fix”).
When there are multiple possible hosts, the other equally possible host
(“Confusing: Lowest”) also has high confidence scores, although not as high as
the best host selected by the algorithm in the same field (“Confusing:
Highest”). We see much lower confidence scores for the selected “host” when
the vicinity contains multiple faint sources, yet no one stands out to be a clear
and unambiguous host (“Multiple Faint”). Finally, the best candidate of
possible hostless transients (“Hostless”) has much lower confidence scores than
other candidates. They basically follow the baseline distribution. Results here
are global confidence scores using the default ranking function in each field.
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Appendix L
Database Schema

Here we show the schema of host collection using an example with comments. The output is abbreviated for clarity.

# transient info
"event_name": "SN2011fe", # preferred name
"event_alias": ["SN2011fe", "PTF11kly", ...], # other alternative names
"event_ra": 210.7737, # RA of event (degree)
"event_dec": 54.2736, # Dec of event (degree)
"event_z": 0.0008, # reported transient or host redshift
"event_dxy": [-59.8553, -270.9878], # event position in the field center (arcsec)
"revised_type": ["_SN", "Ia", ...], # curated type labels

# as-reported host info
"reported_host": {
"name": ["M101", "NGC 5457"], # reported host name(s)
"ra": 210.8042, # reported host RA (degree)
"dec": 54.3492, # reported host Dec (degree)
},

# summary of host name resolving,
"resolved_host_coord" : {
"valid_names" : ["M101", "NGC 5457"], # list of valid host names
"resolved_names" : { # resolved host coord. of valid names
# ** key: input host name; value: results of name resolving
"M101" : {
# selected coord. for this name
"vac" : "NED", # selected reference for host coord
"ra" : "14:03:12.5448", # resolved RA
"dec" : "+54:20:56.22", # resolved Dec
"ra_deg" : 210.8022, # resolved RA (degree)
"dec_deg" : 54.3489 # resolved Dec (degree)
"src" : "MESSIER 101/PREC:1.20e-01,1.20e-01", # resolved name and coord. precision

"SIMBAD" : { # results from SIMBAD
"src" : "M 101/QUAL:C", "ra" : "14:03:12.583", "dec" : "+54:20:55.50",
"ra_deg" : 210.8024, "dec_deg" : 54.3487, "raw_rec" : [...] # raw results in SIMBAD
},
"NED" : {...}, # results from NED
},
"NGC 5457": {...},
...
}

# consistency check of name-resolved coord.
"resolved_coord_inconsistent" : False, # flag for any inconsistent pairs
"inconsistent_pairs" : [...], # list of inconsistent pairs, if any
# ** list of tuple: (name, the other host name, distance in arcsecond)

# best name-resolved coord., same structure as values under "resolved_names"
"resolved_coord_best" : {
"vac" : "...", "ra" : "14:03:12.5448", "dec" : "+54:20:56.22",
"ra_deg" : 210.8022, "dec_deg" : 54.3489, "src" : "MESSIER 101/PREC:1.20e-01,1.20e-01",
"SIMBAD" : {...}, "NED" : {...},
}
}

# flags for input host coord.
"host_coord_known" : True, # host coord known or not
"host_coord_matched" : True, # host coord cross-matched or not
"host_coord_type" : "name_resolved", # type of host coord
# "name_resolved" or "reported_host_coord"

# queried coordinates and projection
"field_coord": {
"ra": 210.8022, # field center RA (degree)
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(Continued)

"dec": 54.3489, # field center Dec (degree)
# field centers at the queried coordinate (host or transient).

"coord_src": "name_resolved", # source of queried coordinate
# "name_resolved", "reported_host_coord", "event_coord"

"coord_comm" : ["NED", "MESSIER 101", ...], # flags for provided coordinates

"radius": 15.0, # search radius (arcsec
"radius_src" : "name_resolved_default", # source of search radius
# "name_resolved_default", "reported_host_coord_default",
# "redshift", "grb_err_circle", "event_coord_default"

# unit vectors in Cartesian frame
"cvec": [-0.5006, -0.2984, 0.8125], # queried coordinate, or field center
"vn_ra": [0.5120, -0.8589, 0.0000], # unit vector in RA direction
"vn_dec": [0.6979, 0.4161, 0.5828], # unit vector in Dec direction
},

# cross-matched groups.
"N_groups": 2, # Number of cross-matched groups
"groups": [
# ** list of dictionaries, one for each cross-matched group
# confirmed host or primary candidate comes the first, followed by other groups
{
# ** key: catalog name or ancillary info (begin with underscore)
"TwoMASSXSC": { # sources matched in 2MASS XSC catalog (example)
"srcs": [
# ** list of dictionaries, one for each source
# the representative comes the first, followed by others, if any
{
# ** key: name of source property; value: measured value
"2MASX": "14031258+5420555"
"J.ext": 6.517,
"H.ext": 5.805,
...
},
...
],
"_confusion": False # flag for confusion in this catalog
},
"MPAJHU": { # sources matched in MPA-JHU catalog (example)
"srcs": [{...}, ...], # detailed source properties
"_confusion": False,
},
... # other catalogs, and cross-matched sources

"_xid_flag": "confirmed", # type of cross-matched group
# "confirmed", "primary", "secondary", "event", "other"

# summary of cross-matched sources
"_group_uid" : "2ebb53f01d24345f...", # unique group id from cross-mateched sources
"_includes_queried_coord" : True, # queried coord cross-matched this group or not
"_group_srcid" : {
# ** key: catalog; value: list of source names
"HyperLEDA" : ["NGC5457"],
"TwoMASSXSC" : ["14031258+5420555"],
...
}
"_confusion": True, # flag for confusion in this group
"_confusion_cats": ["LS8pz", "Gaia2"], # list of catalogs with confusion

# source positions
"_avr_radec": [210.8023, 54.3489], # mean RA/Dec of sources (degree)
"_avr_dxy": [0.1064, -0.0938], # mean offsets w.r.t. the field center (arcsec)
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(Continued)

"_std_dxy": [0.3033, 0.3943], # std. dev. of offsets (arcsec)
"_cov_dxy": [[0.0991, 0.0429], [0.0429, 0.1674]], # covariance of offsets (arcsec2)

# quality metrics for cross-matching
"_shape_r": 0.3332, # Pearson’s r
"_shape_q": 0.6455, # q=sigma_b / sigma_a
"_shape_p": 0.2154, # p=(1—q) / (1 + q)
"_shape_e": 0.7637, # "eccentricity"
"_avr_dist": 0.4288, # "average distance" or "mean offset" (arcsec)
"_N_max_conn": 87.0, # maximal possible number of connections
"_N_conn": 82.0, # actual number of connections
"_F_conn": 0.9318, # degree of connectivity

# star-galaxy separation
"_is_stellar": False, # flag, any representative source is a star
"_stellar_srcs": [# stellar sources
# ** list of (catalog, index) pairs; index in the "srcs" list of each catalog.
["LS8n", 2], ...
],
"_stellar_frac_all" : 0.0, # fraction of sources marked as stars
"_stellar_frac_repr" : 0.0, # fraction of representative sources marked as stars
# denominator does not include sources in catalogs without star-galaxy separation metrics

# summary of host candidate ranking
"_rank_score" : { # ranking scores
# ** key: feature set or ancillar info.
"Basic8Z" : {
# ** key: classifier; value: results
"Logistic_v3" : {
"score" : -0.6959, # raw ranking score
"rank" : 0, # rank in the field
"cs_global" : 98.3947, # global confidence score
"cs_local" : 98.3398, # local confidence score
},
"LSVM_v3": {...}, "RF_v3": {...}, # other classifiers and results
"_X" : [...], # raw input parameters
}
"LSZ" : {...}, "PS1Z": {...}, ... # other feature sets and results

"_default" : { # results from default ranking function
"score" : -0.6959, # raw ranking score
"rank" : 0, # rank in the field
"features" : "Basic8Z", # feature set used
"ranker" : "Logistic_v3", # classifier used
"cs_global" : 98.3947, # global confidence score
"cs_local" : 98.3398, # local confidence score
},
"_cscore_local" : { # ancillary info. for local confidence score
"avr_dist" : 11.5686, # average distance to mock transients (degrees)
"max_dist" : 18.8843, # maximal distance to mock transients (degrees)
"N" : 1024 # number of mock transients used
}
},
"_rank_features" : { # input parameters for ranking functions
# ** key: group features; value: list of values
"object_count" : [...], "angular_distance" : [...], "ls8_size_dRe" : [...], ...
}
}, ...
],

# coordinate of confirmed host or primary candidate, after cross-identification
"host_ra": 210.8024, # cross-matched host RA (degree)
"host_dec": 54.3487, # cross-matched host Dec (degree)
"host_dist": 84.6571, # distance to transient position (arcsec)
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(Continued)

"host_dxy": [0.1064, -0.0938], # position w.r.t. field center (arcsec)
"host_offset": [59.8684, 270.7856], # position w.r.t. transient (arcsec)
"host_srcid" : ["NED", "object_name", "MESSIER 101"], # source id of cross-matched host
# ** (catalog, column name, source name)

# results from visual inspection, if applicable (copied from another event for example)
"vis_insp" : {
# flags and comments
"status" : "Other", # status: "OK", "Failed", "Confusing", "Unclear", "Other"
"flags" : ["H", ...], #
"comment" : "possible_host_beyond_radius prefer_alternative_host",
# other flags and comments besides the "status" above

# manual reassignment
"reassigned" : { # reassigned host, if within the radius
# ** key: host name ("G0", "G1", "G2", ...)
"G0": {
# ** key: index of cross-matched group
"1": [
1, # index of selected group under "groups"
[-5.4725, 9.2440], # marked position in the image, RA Dec offset in arcsec
[-6.0513, 8.9101] # ’_avr_dxy’ of selected group
], ...
},
# each host may contain multiple cross-matched groups
},
"pin_pos" : [(-38.8769, -30.1731), ...], # manually marked host(s), if outside the radius
# ** list of (delta_RA, delta_Dec) pairs, w.r.t. field center, in arcseconds

# summary of visual inspection
"resolved_by" : "use_existing", # source of compiled host data
"case_kind" : ["known_host", "ok", ...], # automatically generated descriptive flags
"case_code" : "D1" # automatically generated case code
}

# cross-matching threshold
"xid_thres": {
"N_cps": 3, # number of groups under optimal threshold,
"thres_axis": [...], # trial values of matching threshold,
"conn_score": [...], # number of valid pairs under each trial value
"thres": 1.0 # the optimal matching threshold
},

# coverage of catalogs.
"coverage": {
"field": ["NED", "MPAJHU", ...], # names of catalogs covering this field
"primary": ["NED", "MPAJHU", ...], # catalogs matched in the primary group
"primary_unmatched": { # catalogs not matched in the primary group
# key: catalog name, value: list, [group_id, source_id, dist]
"GALEXAIS67" : [
1, # zero-indexed id of the group including source in this catalog
0, # index of the source in that group
2.9453 # distance of primary group to that source (arcsec)
],
... # ... other unmatched catalogs
}
}

# excluded sources in the field
"excluded_sources": {
# ** key: catalog or ancillary info (begin with underscore)
"PS1v2": { # excluded sources in PS1 DR2
"N_src": 3, # N of sources in this catalog
"N_excl": 3, # N excluded
"excl_srcs": [# info of excluded source,
# ** list of dictionaries, one for each excluded source
{
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(Continued)

"src": {...}, # source info
"reason": "FILTER FUNC" # reason, "FILTER FUNC" or "BEYOND RADIUS"
}, ...
]
}, ...
"_N_src": 21, # Number of sources in the field
"_N_excl": 3, # N of excluded sources.
},

"last_update": "2021-03-06T02:04:36.303Z", # time stamp for last update
"vcc": { # version control code for each data source
# ** key: data source ("tde", "grb", "rare"); value: version control code
"sn": "d147bb8861a7e838..."
},
"rand_id": 0.1157, # random number within (0, 1)
"_id": "vtdrakibitozjnpg", # global unique id of this event
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