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We study linear scaling relations in electron-phonon superconductors. By combining numerical and
analytical techniques, we find linear Homes scaling relations between the zero-temperature superfluid
density and the normal-state dc conductivity. This phenomenon arises via either a large impurity scattering
rate or inelastic scattering of electrons and Einstein phonons at large electron-phonon coupling. Thus, our
Letter shows that Homes scaling is more universal than either cuprate or BCS-like physics and is, instead, a
fundamental result in a wide class of superconductors.
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Introduction—Unconventional superconductors are
often characterized by exotic normal phases above a high
critical temperature Tc [1,2]. One notable example is the
cuprates [3–8], which exhibit a non-Fermi-liquid normal
state at optimal doping known as the “strange metal” [9–11].
The unique electronic transport observed in the strange-
metal phase [12–15] has been attributed to a linear scaling
relation between observables in the T ¼ 0 ground state
and the T ¼ Tc normal state [16,17]. The near-universal
linear scaling behavior seen in clean high-Tc superconduc-
tors was formally believed to be a hallmark of these quan-
tum critical compounds. Nevertheless, linear scaling
relationships have been generally considered within a wide
array of physical phenomena, such as in quantum Hall
physics [18], weak localization [19], and dirty BCS super-
conductors [20].
This Letter concerns universal scaling relations beyond

both high-Tc and BCS-like superconductors. In regard to
the latter, such scaling relationships are confined to the
dirty limit [20–26], where there is a linear relationship
between the T ¼ 0 superfluid density and the normal-state
electrical conductivity just above T ¼ Tc. As articulated by
de Gennes [21], this linear relationship is a fundamental
result for superconducting matter in the BCS limit, pro-
vided (i) there is a diffuse scattering mechanism, and
(ii) the theory is gauge invariant. Our Letter builds upon
de Gennes’ criteria by softening condition (i) to the less
restrictive constraints of Galilean noninvariance and
momentum relaxation.
Within the context of high-Tc superconductors, similar

linear scaling laws have been studied in the hope of
identifying a universal fingerprint for these materials [27].
The first attempt to formulate such a relation was provided
by Pimenov et al. [28], who suggested linear scaling

between the zero-temperature normalized superfluid den-
sity nsðτÞ=n≡ nsðτ; T ¼ 0Þ=n and σðτÞ · τ−1, where
σðτÞ≡ σðτ; T ¼ Tc

þÞ is the normal-state dc conductivity
at T ¼ Tc

þ ≡ Tc þ 0þ and τ is the scattering time. This
“Pimenov scaling” relation (which was partially motivated
by the earlier “Uemura scaling” relation between nsðτÞ=n
and Tc [29–32]) failed to serve as a universal hallmark for
high-Tc physics, since heavily doped samples of certain
YBaCuO species violated the proposed scaling law [33,34].
The work of both Uemura et al. and Pimenov et al. led to
the landmark result of Homes et al. [17], who identified that
the so-called “Homes scaling” relation between nsðτÞ=n
and σðτÞ · Tc was a more universal feature of high-Tc
superconductors.
Unlike Uemura and Pimenov scaling, Homes scaling is

obeyed in a wide class of compounds regardless of doping
and other sample details [17,28,35–44]. While it was
suggested by Zaanen [16] that Planckian dissipation in
the normal state of the cuprates (and, thus, strange-metal
physics itself) is fundamentally tied to Homes scaling,
both Zaanen and Homes pointed out that Homes scaling
is present in low-Tc compounds such as Pb and Nb
[16,17,45]. Therefore, the wide range of applicability of
such linear scaling relations may very well suggest certain
universal physics underlying a broad class of super-
conductors. Nevertheless, theoretical works which demon-
strate linear scaling beyond the BCS limit are quite
scarce [26,46–49].
In our Letter, we provide numerical evidence and

theoretical justification for Homes scaling in a strongly
correlated model of superconductivity distinct from both
BCS-type and high-Tc-like physics. Specifically, we study
a general family of scaling relations given by

nsðτ; λÞ
n

¼ ηðτ; λÞ σðτ; λÞ · ψ
ω2
p=ð8π2Þ
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where λ quantifies the interaction strength, ηðτ; λÞ is a
proportionality factor, ωp is the plasma frequency of the
free-electron gas, and ψ ¼ Tc (τ−1) for Homes (Pimenov)
scaling. (See Sec. IVA of the Supplemental Material [50]
for a distinction between linear proportionality and linear
scaling). We argue that BCS physics cannot explain such
scaling relations outside of a dirty, weak-coupling scenario.
In this Letter, we go beyond BCS theory and consider
scaling relations of the form given in Eq. (1) using the
framework of Eliashberg theory [51–71]. Electron-phonon
interactions provide an additional parameter (besides τ)
with which to “tune” the normal-state conductivity and
superfluid density. Likewise, strong electron-phonon cou-
pling results in a violation of the Planckian bound [72],
making Eliashberg theory an ideal setting to investigate the
universality of Homes scaling.
We find linear scaling behavior in the electron-phonon

system in both the clean and dirty limits [73–76], with a
fundamental ingredient for such scaling behavior being
Galilean noninvariance and momentum relaxation, either
via elastic impurity scattering or inelastic scattering
between electrons and Einstein phonons in an isotropic
system [77–79].
Numerical calculations on the imaginary frequency

axis—We consider the isotropic, single-band Eliashberg
equations on the imaginary Matsubara frequency axis
[70,80]. Eliashberg theory goes beyond BCS theory by
incorporating a dynamical electron-phonon interaction
[81], and thus, the gap function ΔðiωnÞ and renormaliza-
tion function ZðiωnÞ depend upon the fermionic Matsubara
frequencies ωn ¼ ð2nþ 1ÞπT. For simplicity, we assume
an Einstein (or Holstein) phonon model [65,70,82] with a
dimensionless electron-phonon coupling λ and an Einstein
phonon frequency ωE.
We iteratively solve the Eliashberg equations for a fixed

λ∈ ½0.3; 100�, with convergence criteria of the Matsubara
summation determined by an algorithm discussed in the
Supplemental Material [50]. The gap and the renormaliza-
tion functions follow a Lorentzian structure for all values
of λ, as already noted for λ ⪅ 0.5 [83]. While Eliashberg
theory remains valid for large coupling strengths as long as
ωE is much smaller than the Fermi energy ϵF [61,69,84], λ
is usually no more than 3.5–4 in most present-day materials
[60,85]. The motivation for considering the large-λ limit
follows from the formulation of asymptotically strong
Eliashberg theory [61,64,86,87], in which the Eliashberg
equations reduce to a universal theory characterized by an
Einstein phonon spectrum [64]. Therefore, our results for
an Einstein phonon model with λ ≫ 1 should remain
appropriate for other strongly coupled models of

Eliashberg superconductivity. Although several arguments
have been presented for a theoretical upper bound λc on the
electron-phonon coupling strength in realistic materials
[88–91], the motivation for considering arbitrary λ (and, in
particular, the asymptotically strong limit) is to explore the
universal behavior of the Homes slope, regardless of the
precise numerical value for λc.
After numerically obtaining the gap and renormalization

functions, we calculate the superfluid density for arbitrary
τ, λ, and T [26,62,92–98]

nsðτ; λ; TÞ
n

¼ πT
X∞
n¼−∞

Δ2ðiωnÞ
ω2
n þ Δ2ðiωnÞ

×
1

ZðiωnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ Δ2ðiωnÞ

p
þ 1=ð2τÞ : ð2Þ

In Fig. 1, we plot the T ¼ 0 superfluid density nsðτ; λÞ=n
versus λ. In the dirty limit 1=ðτωEÞ ≫ 1, severe suppression
of nsðτ; λÞ=n occurs regardless of the interaction strength
[20,23,98,99]. In the clean limit, we find that nsðτ; λÞ=n
goes as 1=Z0, where Z0 ≡ limT→0 Zðiω0Þ is the T ¼ 0
limit of the renormalization function. This is in stark
contrast to the clean BCS limit, where ns=n → 1 as
1=ðτωEÞ → 0 [20,26,98,100].
The localized Einstein phonon acts as an impurity [69]. As

a consequence, the dc conductivity for the T > Tc normal
state is modified from the Drude result [41,101,102].
Extending previous work done on the Einstein-phonon
model [103], we obtain σðτ; λ; TÞ≡ ½ω2

p=ð4πÞ� · ζðτ; λ; TÞ,
where we define [41,61,65,79,101–103]

ζðτ; λ; TÞ≡ 1

2πλT

Z
∞

0

sech2
�ωE
2T x

�
coth

�ωE
2T

�
− 1

2

�
tanh

�ωE
2T ð1 − xÞ�þ tanh

�ωE
2T ð1þ xÞ��þ 1

πλτωE

dx: ð3Þ

FIG. 1. Superfluid density nsðτ; λÞ=n versus λ for various
scattering rates. In the clean limit, nsðτ; λÞ=n ∼ 1=Z0 (green
dashed curve), while nsðτ; λÞ=n ∼ πτΔ0 (violet dashed curve)
in the dirty limit.
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In the dirty limit, the above expression reduces to
ζðτ; λ; TÞ ¼ τ, reproducing the Drude result [104]. In the
clean limit, Eq. (3) reduces to ζðλ; TÞ ¼ ½1=ð2πλωEÞ� ·
sinhðωE=TÞ, yielding a finite dc conductivity independent
of τ. At T ¼ Tc, we can simplify Eq. (3) further by recalling
the semianalytical formula for the Eliashberg critical
temperature derived by Combescot [105] for arbitrary λ
assuming an Einstein phonon model, given by Tc ¼
aωEðe2=λ − 1Þ−1=2 where a ≈ 0.256. As such, the dc con-
ductivity σðτ; λÞ for the T ¼ Tc normal state can be cast as a
function purely of τ and λ.
The previous result motivates us to consider scaling

relations between nsðτ; λÞ=n and σðτ; λÞ for a wide range of
τ and λ. We consider scaling relations of the form Eq. (1)
with ψ ¼ Tc (Homes), ψ ¼ τ−1 (Pimenov), and ψ ¼ ωE
(Holstein). Results for these scaling relations are shown in
Figs. 2(a), 2(b), and 2(c), respectively. The slope of the
superfluid density versus σðτ; λÞ · ψ=½ω2

p=ð8π2Þ� is plotted
on a grid of λ versus 1=ðτωEÞ, with the lack of a color
denoting a breakdown of scaling between nsðτ; λÞ=n and
σðτ; λÞ. In Fig. 2(a), we see that Homes scaling is obeyed in

the dirty weak-coupling limit, as predicted by BCS theory
[20,23]. In the clean strong-coupling limit, we see that
Homes scaling is obeyed for λ⪆2 × 101, with Holstein
scaling also emerging in a similar regime of the “phase
diagram.” Pimenov scaling appears to remain valid in the
strong-coupling regime, although strong λ dependence
emerges in the clean limit.
Our numerical results indicate that universal scaling

relations of the form given in Eq. (1) can be explained
within the framework of Eliashberg theory; namely, by
virtue of strong interactions between electrons and Einstein
phonons. Note that Homes scaling fails only in the clean
weak-coupling limit and for certain intermediate values of λ
and 1=ðτωEÞ. The former violation occurs due to the
superfluid density “flattening” to unity as both interactions
and the scattering rate are decreased. The latter violation of
Homes scaling is more nontrivial and is the result of
nonlinear “back-bending” phenomena [50]. Finally, the
work of Zaanen [16] argued that Homes scaling is a con-
sequence of Planckian dissipation in the normal state. In
Fig. 2(d), we plot the ratio of the total scattering time over

FIG. 2. (a)–(c) Phase diagrams for scaling relations of the form Eq. (1). The color denotes the value of the Homes, Pimenov, and
Holstein slopes. The white region is where the respective linear scaling relation breaks down, as determined by our numerical algorithm
(see Sec. VI B of the Supplemental Material [50]). In all instances, universal scaling exists in some regime of the strong-coupling limit.
(d) The ratio of the normal-state scattering time τel to the Planckian lifetime τPl ≡ ℏ=ðkBTcÞ on the λ versus 1=ðτωEÞ grid. We identify τel
as ζðτ; λÞ given in Eq. (3).
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the Planckian time and find no correlation between scaling
behavior and the onset of Planckian dissipation in the
normal state. Violation of the Planckian bound (and onset
of a “super-Planckian” timescale) in Fig. 2(d) agrees
with Ref. [72].
The origin of Homes scaling—To understand the physi-

cal origin of Homes scaling observed in our numerical
calculations, we perform a semianalytical calculation
of the T ¼ 0 superfluid density on the imaginary fre-
quency axis. Taking ΔðiωnÞ ≈ limT→0Δðiω0Þ≡ Δ0 and
ZðiωnÞ ≈ limT→0Zðiω0Þ≡ Z0, we find [50]

nsðτ; λÞ
n

¼ π

2Z0γ0

	
1þ 4

π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ20

p arctan



γ0 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ20

p
��

; ð4Þ

where γ0 ≡ 1=ð2τΔ0Z0Þ. A similar result may be derived
on the real frequency axis assuming a constant complex
gap [50,81,106–108]. In the dirty limit of Eq. (4), γ0 ≫ 1,
and thus, the above expression simplifies to ∼πτΔ0, in
analogy to Nam’s result for the dirty BCS superfluid
density [23,24]. We identify the Homes slope in this
scenario with the ratio Δ0=ð2TcÞ. Taking the clean limit
(γ0 ≪ 1), Eq. (4) reduces to ∼1=Z0. In the BCS limit,
Z0 ¼ 1, leading to a breakdown of Homes scaling in the
clean limit due to a vanishing Homes slope. However, for
finite λ, the superfluid density is suppressed below unity
and scales as the inverse of Zðiω0Þ. As such, our semi-
analytical estimate for the clean superfluid density agrees
with the results given in Fig. 1.
We emphasize that the renormalization Z0 is a crucial

ingredient for the realization of Homes scaling in the clean
strong-coupling limit. This can be seen by recalling Eq. (3),
from which a rough prediction of the clean Homes
proportionality factor may be calculated (up to a constant)
to be ηHðλÞ ∼ I−1ðλÞ · ðλ=Z0Þ, where IðλÞ is the dimension-
less integral introduced in Eq. (3) with T ¼ Tc. We note
that Z0 ∼

ffiffiffi
λ

p
and IðλÞ ∼ 1 as λ → ∞ [64,109]. As such, the

Homes proportionality factor ηHðτ; λÞ is found to be a
slowly varying function of λ in this limit. Such weak
dependence on λ is a hallmark of Homes scaling induced by
strong electron-phonon coupling, and sets it apart from
Homes scaling in the weakly coupled dirty system, where
the Homes slope is a constant set at Δ0=ð2TcÞ ∼ 0.8825
[23] and where Δ0 is the T ¼ 0 BCS gap. Weak λ
dependence in the Homes slope is similarly observed at
large λ and small 1=ðτωEÞ in Fig. 2(a).
If Z0 is set to unity, then ηHðτ; λÞ ∼ λ in the clean strong-

coupling limit, and thus, Homes scaling breaks down.
Homes scaling also breaks down in the case of clean
superconductors where superconductivity is mediated by
bosons with a finite momentum-dependent dispersion [110]
in which electromagnetic vertex corrections in the super-
fluid density cancel any dependence on the mass renorm-
alization. However, in the case of a dynamical gap mediated
by dispersionless Einstein bosons, this cancellation does

not occur [110]. This motivates us to propose that Homes
scaling, while a poor signature of high Tc and normal-
state Planckian dissipation, is instead a universal hallmark
of some general Galilean noninvariance and momentum
relaxation. The former ensures a nonunity superfluid
density [111], while the latter ensures a finite dc conduc-
tivity [112]. In the present Letter, both Galilean non-
invariance and momentum relaxation are achieved by
virtue of elastic scattering of electrons by impurities
or inelastic scattering of electrons by Einstein phonons.
Note that the opposite is not universally true; i.e.,
Galilean noninvariance and momentum relaxation does
not always result in a linear Homes slope, as evident from
Fig. 2(a) [113].
We emphasize that our main focus is not to explain

Homes scaling in high-Tc superconductors. Rather, we
demonstrate linear Homes scaling in a strongly interacting
model by virtue of a mechanism that is not solely due to
impurity scattering. Similarly, we note that the Coulomb
interaction should not have an appreciable effect on the
Homes slope in electron-phonon superconductors, as this
interaction does not significantly affect observables in the
weak-coupling limit [70,86] and is negligible compared
to the divergent electron-phonon coupling in the asymp-
totically strong limit [64]. In this way, Homes scaling can
be seen as a robust consequence of Cooper pairing and
some general disorder or dissipation.
The asymptotically strong limit—The consideration of an

Einstein model is important for the strong-coupling analy-
sis, as the λ → ∞ limit is universally described by an
Einstein spectrum satisfying λω2

E ¼ 2 [64]. For λ → ∞, the
Homes slope in the dirty limit reduces to a universal
constant given by ∼1=ð3aÞ ≠ Δ0=ð2TcÞ [50], where a ≈
0.256 [105]. However, in the clean limit, then,
σðλÞTc=½ω2

p=ð8π2Þ� ¼ λ−1 for all τ, while the superfluid
density scales as λ−1=2. This results in a diverging Homes

proportionality factor proportional to
ffiffiffi
λ

p
, and the

FIG. 3. Homes proportionality factor ηHðτ; λÞ in the dirty limit
plotted versus the electron-phonon coupling λ. As the system
becomes dirtier in the large-λ limit, the Homes proportionality
factor agrees with the asymptotic prediction.
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breakdown of Homes scaling as λ → ∞. Similar analysis
suggests that Pimenov and Holstein scaling break down in
the dirty and clean limits as λ → ∞.
In Fig. 3, we show the dirty limit of the Homes factor

plotted versus λ, from λ ¼ 0.3 to λ ¼ 100. Extrapolation of
the small-λ data to λ → 0 gives a Homes factor of ∼0.88, in
agreement with our theoretical BCS prediction. Extra-
polation of the large-λ data to τωE → 0 yields a dirty
Homes slope of ∼1.35 for λ ¼ 100 which is in agreement
with our prediction for λ → ∞ via the asymptotic
Eliashberg equations [50]. Once again, we note that our
main conclusions do not depend upon the precise value of
some upper cutoff λc. Rather, our value of ηH ∼ 1=ð3aÞ
should be interpreted as a universal upper limit to the dirty
Homes slope in Eliashberg theory, regardless of λc.
Conclusions—By combining numerical and analytical

techniques for electron-phonon superconductors at weak
and strong coupling and arbitrary scattering rates, we find
that Homes-like scaling relations are not solely correlated
with large Tc [17], normal-state Planckian dissipation [16],
or some large scattering rate [20]. Instead, we find that
Homes scaling is closely connected to Galilean noninvar-
iance and momentum relaxation and, thus, remains valid
in the clean limit for large electron-phonon coupling λ
assuming an Einstein phonon model [115]. Pimenov and
Holstein scaling are shown to emerge for strong enough
electron-phonon coupling for certain values of the scatter-
ing rate, while the Homes slope approaches a universal
constant for λ → ∞ in the dirty limit. Our numerical values
of the Homes slope for λ ∼ 0.3 and λ ∼ 100 are in agree-
ment with the theoretical predictions of BCS theory and
asymptotically strong Eliashberg theory, respectively.
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