entropy

Indexed in: CITESCORE
PubMed 4.9

Article

Quantum Physics-Informed Neural
Networks

Corey Trahan, Mark Loveland and Samuel Dent

Special Issue
Exploring the Horizon of Practical Utility in Near-Term Quantum Computing

Edited by
Dr. Daiwei Zhu, Dr. Jason laconis and Dr. Torin F. Stetina

https://www.mdpi.com/journal/entropy
https://www.scopus.com/sourceid/13715
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com/journal/entropy/special_issues/6I7KDT2M0A
https://www.mdpi.com
https://doi.org/10.3390/e26080649

Article
Quantum Physics-Informed Neural Networks

Corey Trahan *©), Mark Loveland

check for
updates

Citation: Trahan, C.; Loveland, M.;
Dent, S. Quantum Physics-Informed
Neural Networks. Entropy 2024, 26,
649. https://doi.org/10.3390/
€26080649

Academic Editors: Daiwei Zhu, Jason
Taconis, Torin F. Stetina and Giuliano

Benenti

Received: 25 April 2024
Revised: 15 July 2024
Accepted: 23 July 2024
Published: 30 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Samuel Dent

U.S. Army Engineer Research and Development Center, Information and Technology Laboratory, 3909 Halls Ferry
Rd., Vicksburg, MS 39180, USA
* Correspondence: corey,j.trahan@erdc.dren.mil

Abstract: In this study, the PennyLane quantum device simulator was used to investigate quantum
and hybrid, quantum/classical physics-informed neural networks (PINNSs) for solutions to both
transient and steady-state, 1D and 2D partial differential equations. The comparative expressibility
of the purely quantum, hybrid and classical neural networks is discussed, and hybrid configurations
are explored. The results show that (1) for some applications, quantum PINNs can obtain comparable
accuracy with less neural network parameters than classical PINNs, and (2) adding quantum nodes in
classical PINNs can increase model accuracy with less total network parameters for noiseless models.

Keywords: quantum computing; quantum variational algorithm; quantum machine learning; physics
informed neural networks; quantum data-derived methods; quantum algorithms

1. Introduction

Quantum computing is rising as an emergent technology with the potential to mitigate
hardware bottlenecks and solve problems previously unsolvable on classical computers [1].
We are approaching an era where theory is now transitioning into practice as quantum
hardware becomes more available to the scientific community. Quantum software develop-
ment kits such as Ocean [2], Qiskit [3,4], ProjectQ [5], Strawberry Fields [6], PennyLane [7],
and Cirq [8] have facilitated algorithmic design with easy-to-use Python interfaces and
quantum computer simulators. While these kits accelerate the design of quantum algo-
rithm prototypes, quantum hardware edges closer to practical use. Although the number
of qubits on today’s quantum computers are growing fast, they are still error-prone. How-
ever, fault-tolerant quantum computing may be on the horizon as neutral atom arrays
have emerged as a promising platform for quantum information processing with logical
qubits [9,10].

An area where quantum computing shows promise is in data-driven machine learning
applications [11-14]. Several recent efforts have targeted supervised neural networks
(NNSs) based on shallow parametrized quantum circuits, as they are prime candidates
for near-term applications on noisy quantum computers [15-19]. In supervised learning,
a dataset is comprised of inputs and outputs, and the supervised learning algorithm learns
how to best map examples of inputs to examples of outputs. In essence, these networks
seek to approximate a function represented by data through error minimization between
the predicted outputs and the expected outputs during a training process, acting as a
universal approximator. This is opposed to discrete classification, another traditional NN
implementation. Quantum systems are known to produce atypical patterns that classical
systems may not produce efficiently, so it is reasonable to postulate that quantum computers
may outperform classical computers on machine learning tasks [14]. Because of this, there
has been a surge in quantum machine learning (QML) applications of supervised neural
networks. Data-driven QML applications have been widespread, covering the areas of
biomedical research [20], computational fluid dynamics [21] and financial modeling [22],
for example. Investigations continue into the speed, precision and complexity of both

Entropy 2024, 26, 649. https:/ /doi.org/10.3390/e26080649

https:/ /www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26080649
https://doi.org/10.3390/e26080649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4366-8521
https://orcid.org/0000-0002-2164-2884
https://doi.org/10.3390/e26080649
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26080649?type=check_update&version=2

Entropy 2024, 26, 649

20f17

purely quantum and hybrid quantum/classical data-driven networks with respect to
potential advantages over classical neural networks (NNs).

While NN function approximation/regression has shown to be a valuable tool for
data-rich scenarios, data-only models are not constrained by physics and can perform
poorly in sparse- or no-data regions. To build reliable physical models in these regions,
physics-informed neural networks (PINNs) can be used [23-25]. The implementation of
PINNSs have led to a series of promising results across a range of problems in computational
science and engineering, including fluid mechanics [26-28], heat conduction [29], Earth
system science [30], power systems [31] and cyber security [32]. PINNs supplement the
data-driven loss with partial differential equation (PDE) residuals representing physical
conservation principles. For example, consider a time-dependent PDE of the form

u+Nu =0, t€0,T], xeQ (1)

subject to initial and boundary conditions
u(0,x) = g(x), x€ O 2
Blu] =u,, t €[0,T], x € Q) (3)

where N[-] is a differential operator, and B[] is a boundary operator corresponding to the
equation’s boundary conditions (Dirichlet, Neumann, etc.). If the neural network solution
is given by uy(t,x), where 6 denotes the tunable parameters of the network (e.g., weights
and biases), then the parameterized solution of (1) in residual form is given by

d
Ro(t,x) = Z + Nlug), @

and the PINN is trained on the composite loss function

Lo = Lic(0) + Lpc(0) + L4(0), (5)
where
1 Nic ; 2
'CZC(H) N |119<0, ch) g(xzc) ’ (6)
ic =1
1 W P2 P2
‘Chc(9> = N |B[u9](tbc'xbc) - u0| (7)
be =1
1 (- i iy |2
L,(6) = N. Z ’RQ(tw xr)| 8)

—

In these equations, {x;.} are N;. initial conditions, {f,., Xy} are Ny boundary condi-
tions and {t,, x, } are N, user-defined collocation points over which to evaluate the residual
during training. The only data supplied to the loss defined in (5) are the initial and bound-
ary conditions, information normally required for a unique solution to a PDE. External
data from field measurements, etc., can also be included in this loss. Figure 1 displays a
classical PINN setup for a 2D solution, ug, of an advection—-diffusion equation. For further
reading on PINN fundamentals, see [33].

Recently, hybrid physics-informed neural networks (HPINNSs) that include both quan-
tum and classical layers have been shown capable of increasing model accuracy when
compared to purely classical neural networks for computational fluid dynamics prob-
lems [21]. Also recently, HPINNSs for the 1D Poisson equation were shown to give good
results on continuous variable quantum computers [34]. In this study, we further these ef-
forts by investigating purely quantum physics-informed networks (QPINNS) and HPINNS
for solving 1D and 2D PDEs using qubit-based quantum computers and compare their
results to classical PINNs. Unlike the applications in [21,34], only the PDE boundary and

Entropy 2024, 26, 649

30f17

initial conditions are used for the losses in this study, and non-hybrid QPINNSs are investi-
gated. For each PDE, we compare the expressibility and accuracy of the quantum, hybrid
and classical networks.

Automatic
Differentiation

%/ @

BC and IC Loss

Deep Neural Network

Inputs
Physics

ou ou otw o
ot "%ox Yoz T

Residual Loss

'

o
S — — TOTAL LOSS
o

Figure 1. An example classical PINN setup for the solution of an advection—diffusion equation.
In this example, 2 and b are equation parameters, ¢ is a user-defined loss tolerance, x and t are the
independent variables (network features), and the neural network solution is given by .

2. Quantum and Hybrid PINN Methodology

Quantum machine learning (QML) methods are built on quantum neural network
nodes, each containing one or more variational layers (see Figure 2) which treat qubit
rotations as optimization parameters. For a typical QML setup, the user must specify the
number of qubits, quantum nodes and variational layers for each node along with a type of
feature encoding. Application results may be notably sensitive to these choices, as detailed
in Section 4. However, as can be seen from the three example QML setups given in Figure 3,
there are fundamental architectural components to any QML network.

2.1. Quantum Variational Layers

At the core of a quantum neural network are some number of quantum variational
layers (or blocks) which contain parameterized circuits. These circuits are comprised
of gates representing a combination of qubit rotations and entanglers. Note that unlike
classical neural networks with contain linear basis functions with nonlinear activations
functions, the basis of quantum networks are these trigonometric rotational functions.
Increasing the number of qubits on a variational layer not only increases the number
of parameters in a linear way, but also can enhance the quantum expressibility of the
layer through increasing entanglement via CNOT gates, for example. A common type
of entanglement, often called “strong entanglement”, is shown in Figure 2 and consists
of single qubit rotations and entanglers. This circuit was inspired by the circuit-centric
classifier design given in [15]. An alternative formulation is to replace the full 3D rotations
with one-parameter rotations on each qubit. Strongly entangled circuits were found optimal
for all but one case in this study. The hybrid Burger’s experiment gave optimal results
using single-parameter qubit rotations.

2.2. Quantum Neural Network Nodes

As shown in Figure 2, a quantum node contains one or more variational layers and
requires qubit measurements before feeding forward into the remaining neural network.
Quantum nodes can be placed anywhere in a hybrid network. Our studies have found that
number of nodes and their placement can influence the model’s results, particularly as the
dimensionality and complexity of the solution increases.

Figure 3a displays a QPINN with one quantum node comprised of four qubits and
some number of strongly-entangled variational layers (two are shown). Figure 3b, on the
other hand, gives a similar network with two nodes in serial. Although most of the PINN
applications in this study only contain one node, there were some QPINN cases where

Entropy 2024, 26, 649

40f17

multiple serial nodes converged better (see Section 4.2.2). It is noted that adding nodes
can significantly increase the wall-clock time, as encoding and measurements must occur
for each quantum node. A quantum node is created in Pennylane’s QML package [7] by
adding a QNode within a TensorFlow wrapper (see Appendix A).

A QUANTUM NODE (QNode)
Quantum Variational Layer 1 Quantum Variational Layer 2

[o | 147 A
—H R(8L6%,00) } [R(62,62,62) 2 //

\

l

\

—1 R(61.63,63)

LA J
A
11 A

{ R(67,03,08) —

R(63,62,63)

“ R(6o,6%1,6%,) [

7| R(610, 611, 612)

|
kS
E

Figure 2. A 4-qubit, strongly entangled, multi-variational layer quantum neural network node.
The strongly entangled layers in this network allow for 3D qubit rotational variation, whereas
PennyLane’s basic entangled layers replace the three parameter rotations with a single parameter/axis
rotation as defined by the user. Here, 9; represents the jth parameter on layer i, and R is called using
three parameter arguments for the qubit’s x, y and z rotations, respectively.

2.3. Input Space and Feature Encoding

The number of features for physics-informed machine learning of partial differen-
tial equations is equal to the Cartesian dimensionality, D, of the application. In PINN
applications, the physics residual is calculated at x collocation points on the equation
domain and added to the total loss. Evaluation of the D-feature QPINN /HPINN network
at the collocation points is performed in parallel. For quantum networks, encoding a
D-dimesional collocation point as D features can be performed by embedding the data
in the basis, amplitude or angle of a qubit. Embeddings impose minimum requirements
on the number of qubits in the QPINN along with potential constraints on the size and
sign of the feature values. For example, amplitude embedding encodes 2" features into the
amplitude vector of n qubits and requires normalized inputs. Angle embedding, on the the
other hand, encodes n features into the amplitude vector of n qubits.

Both amplitude and angle embedding were investigated for the QPINN and HPINN
applications herein, and very little difference was found between the two options. Angle
embedding was thus used for the results presented, as this type of embedding did not force
feature normalization and required less qubits. It is noted that the 1D and 2D experiments
investigated only required a minimum of 1 or 2 qubits for feature encoding and that qubit
counts were increased herein solely to study the scalability of network expressivity.

2.4. HPINN Design

In the case of hybrid quantum/classic PINNs, users have the same model parameters
as above with the added classical network parameters. Figure 3c gives an example of a
hybrid neural network. In this figure, the network begins with an input layer and proceeds
to the classical hidden layers first. The quantum node follows the hidden layers and
produces an output. Our experiments were not sensitive to the position of the quantum
nodes in the network; however, our hybrid investigation was limited to only the 2D
physics-informed Burger’s application. Placement of the hidden layers may make a notable
difference for other applications. Another notable hybrid structure, not shown in this
figure or investigated in this effort, is the implementation of parallel quantum/classical
networks [35]. For these hybid schemes, both networks process data simultaneously but
contribute to the total network loss.

Entropy 2024, 26, 649

50f 17

QML QNODE NETWORK
Quantum Variational Layer i Quantum Variational Layer i+1
i R4, 04,09 RO, 0%, 05
1 1 /=
ampltude/angle | | _|FCEC YR | | o M DSLT
Encoding — o [| R | V,‘Y,\
%
. coD > paon) | || =0 } }y—\kwr,ﬂ;,yﬂé,,) } 7,
L] '/
. —Hire!) L] R ooty v
DATA ENCODING o e
INPUT OUTPUT
LAYER LAYER
(a)
Amplitude/Angle QNN @ Amplitude/Angle QNN
Encoding M1 Encoding M
: €(0,1) - 1(/0), 1)) = €(0,1) - 1(|0), 1)) 2 .
L]
. DATA ENCODING 1 DATA ENCODING 2 .
INPUT OUTPUT
LAYER LAYER
(b)
QML QNODE NETWORK
Quantum Variational Layeri Quantum Variational Layer i+1
— R(6;.0565) RGO, 67,65
Amplitude/Angle _@ | W \
Encoding - 228 || e ‘
€(0,1) > %(10), 11)) _D } }m }
o | prp—— |
DATA ENCODING @)
INPUT CLASSICAL OUTPUT
HIDDEN LAYERS LAYER
LAYER

(0)

Figure 3. Machine learning model examples for quantum (a,b) and a hybrid (c) neural networks.
For each example, the input layers have neurons equal to the feature dimensionality. (a) A one-node,
multi-variational layer quantum network with strongly entangled qubits. (b) A two-quantum-node
network with strongly entangled qubits. (c) A one-quantum-node, multi-variational layer hybrid
network with strongly entangled qubits.

3. Quantum Simulator Device Details

TensorFlow v2.16 [36], developed by Google Brain team, Mountain View, California,
USA was used to create all the networks used in this study. Noiseless results were obtained
using Pennylane’s default.qubit device, a state simulator of qubit-based quantum circuit
architectures. To include noise in the QPINN experiments, a density matrix formalism was
used by implementing Pennylane’s default.mixed device. This device supports several noisy
channels that are used to describe experimental imperfections. A depolarizing channel
was used on this device for all qubits. This channel is modeled by Kraus matrices [37] and
requires a user-supplied depolarization probability, p € [0, 1], which is equally divided in
the application of all Pauli operations. Note that if p = 0, the channel is noiseless. A value
of p = 0.01 was used for all experiments that included this noise type.

Implementing Pennylane’s default.mixed device significantly slowed down the network
convergence, prohibitively so for the qubit counts investigated in the HPINN Burger’s equa-

Entropy 2024, 26, 649

6 of 17

tion application. For this case, simulated noise was implemented classically by randomly
perturbing the rotational parameters in the quantum variational circuits such that

1
6 =0+2p(c—3) ©)
where € is a random sample generated from a uniform distribution over [0,1). A value of
B = 0.03 was used for Burger’s noise simulation.

4. QPINN Applications

In order to test the expressibility and accuracy of QPINNSs, a 1D spring-mass and
2D Poisson equation was solved using only quantum network components. Solutions for
these equations were manufactured that are easily solved with classical PINNs without
having to implement sophisticated networks or complex hyper-parameter optimization.
Additionally, solutions were chosen that could be modeled with a variational parameter
count feasibly calculated with quantum simulators on classical workstations. For the PINN
benchmarks, all hyperparameters, such as learning rate, etc., were fully optimized through
a series of tests. To test the accuracy of HPINNS, the 2D space-time Burger’s equation was
solved with a more complex solution structure. The benchmark used for this study was the
optimal benchmark presented in [23-25].

4.1. Application 1: Spring-Mass System
In this section, QPINNs were used to solve the 1D spring-mass equation given by

d*u du)
W+5E+6u—10sm(t), 0<t<3 (10)
u(0) =0, u(0)=5 (11)

The solution to this equation is
u(x) = —6exp(—3t) + 7exp(—2t) + sin(t) — cos(t) (12)

For this application, the QPINN setup given in Figure 3 was used. Adam’s optimizer
with a learning rate of 0.02 was found optimal. Only the solution and first-order time-
derivative at t = 0 were used for the data-driven contribution to the total QPINN loss.
The physics-informed contribution was calculated by evaluating the residual of (10) at
nc = 11 equally distributed collection grid points over the solution domain. Strongly
entangled layers were used in the quantum variational circuit, and the max optimization
iterations was set to 600 epochs. Lastly, in order to investigate parameter sensitivities,
nr = 10 runs were used with randomized initial parameters, and the median predicted
values were used for the root mean squared error calculations, given by

ne (—ij)
RMSE — ¢ i1 (g — (%)) (13)
nc

In this equation, ﬁé’] is the median model output over the 10 runs at the x; collocation point
for the jth run.

To attempt to quantify differences between the QPINN and PINN, the spring-mass
problem was solved on a classical TensorFlow network with a similar parameter range,
and the root mean squared errors (RMSEs) over the collocation points were compared in
Figure 4. In this figure, the number of parameters was increased in the QPINN for a given
number of qubits by increasing the number of quantum variational layers in the quantum
node. For the classical PINN, the number of neurons per Keras layer was held constant
for each of the three plots, and the network parameters were increased by adding Keras
layers. We note that multiple classical configurations were investigated, which give the

Entropy 2024, 26, 649

7 of 17

PINN parameter counts listed, and the results shown in this figure were the classical model
setups with optimal RMSEs.

As can be seen in Figure 4, the RMSEs show good agreement between the physics-
informed results and the analytic solution. Adding quantum noise to the simulation
seemed to slightly increase the errors for low qubit counts, but in general, no trends
were found between the noise and noise-free experiments. While the accuracies for the
experiments notably improved as the number of qubits were increased, they were not seen
to depend as much on the number of variational layers in the quantum ansantz. Classical
PINNSs performed slightly better when compared to the 2-qubit experiments. However,
as the number of qubits was increased, QPINN accuracy was significantly better for a
given parameter size, showing promise for the entangled expressibility of the quantum
network over classical PINNs. Classical PINNs also had larger RMSE variances for all
cases considered.

1x10° 2 qubits 1x10° 3 qubits 1x10° 4 qubits
-%- QPINN w/o noise
8 8 —I- QPINN with noise
—— PINN
6 6
w w
[} 2}
s4 s4
4 o
2 2
0 0
24 30 36 42 48 54 60 66 72 45 60 75 90 105 120 135 45 60 75 90 105 120 135
nparams nparams nparams

Figure 4. Median and standard deviation RMSE results for the 1D spring-mass problem averaged
over 10 runs for a varying number of qubits and variational layers (parameters). QPINN results
are shown as black dashed lines with circles (noiseless) and dash-dotted lines with triangles (noise).
The solid, gray lines with stars are the classical PINN results. All RMSEs are calculated over the
physics-informed collocation points.

Some QPINN networks failed to converge for this problem, even as the maximum
epochs were increased. Figure 5 displays the convergence rates for each qubit for both
noise-free and noisy experiments as the number of layers was increased. Convergence was
achieved once the loss reached a user-specified value. These plots show that 2-qubit runs
were less successful than higher counts, particularly for noisy calculations. Convergence
rates were fairly consistent at about 80% for 3- and 4-qubit runs, and no trends between the
noisy and noise-free results were found for these qubit counts. This was the only example
where convergence success of the QPINN was this sensitive to the network’s variational
parameter initial conditions.

2 qubits

mmE QPINN w/o noise

7/ QPINN with noise
80 80

3 qubits 4 qubits

7

100

%

/ 80

60 60 60

40 40 40

percent of runs converged

20

%

5

5 7
layers

Figure 5. Solution convergence success rates for the 1D spring-mass QPINN problem with increasing
qubit and variational layer counts. A successful convergence was achieved when the loss for this
problem was less than 0.01 for up to 2000 epochs. Failure occurred more often on low qubit runs.

Entropy 2024, 26, 649

8of 17

4.2. Application 3: 2D Poisson Equation

In this section, QPINN results for two manufactured solutions for the Poisson equation
Viu(x,y) = f(x,y), 0<x<1, 0<y<1 (14)

are given. For both cases, only the 2D boundary conditions and (14) were supplied to the
neural network. The Adam’s optimizer was found to work best with a learning rate of 0.1
for both applications, and the solutions converged well within 500 epochs. A total of 40
equally spaced boundary points were used for the data-driven contribution to the network
loss, and the residual was evaluated over a uniform, 11 x 11 grid of collocation points.
Strongly entangled layers were used in the quantum variational circuits with varying qubits
and variational layers.

4.2.1. 2D Poisson Quadratic Solution
In the first test, QPINNs were used to solve for the manufactured Poisson quadratic
solution

) = (= 3P+ = 3+ - -) +1), (15

as shown in Figure 6. This solution gives f(x,y) = 1 in (14). The QPINN given in Figure 3a
was used for a total of 10 runs with varying initial parameters. The 10-run average RMSE
errors at the grid collocation points for a range of layers and qubits are shown in Figure 7.
The results in the figure include device depolarizing channel noise as described in Section 3.
The accuracy of the QPINN solutions were seen to increase with the number of variational
layers on the quantum node, as expected, but were not seen to be as sensitive to the number
of qubits for this application. This is likely due to the smooth, quadratic solution not
requiring high qubit-entangled expressibility.

Figure 6. The 2D Poisson quadratic manufactured solution used for QPINN solution. In this figure,
the black filled circles are the physics-informed collocation points, and the x’s are boundary data for
the data-driven loss contributions.

Figure 8 displays the mean and standard deviation of the collocation point RMSE
errors for increasing parameter counts using 2-, 3- and 4-qubit runs along with comparable
parameter size classical PINN runs. The classical PINN results for the parameter range
shown were obtained by adding 3 neuron layers with “tanh” activation functions between
layers. The classical and quantum results gave comparable errors and initial parameter
sensitivities for this simple application, though there was a general trend of slightly better
QPINN accuracies as the number of qubits was increased. As can be seen from this

Entropy 2024, 26, 649

9of 17

figure and Figure 9, adding QPINN channel noise slightly increased the accuracy of most
experiments. This was not too surprising, as it is well known that Adam’s optimizer
handles noise well, and the parameter landscape for this simple problem was likely smooth.
This trend is not expected in more complex QPINN applications.

2 qubits 3 qubits

4 qubits

J 0.040
0
g 0.035
=
—

r 0.030

T
) |
g 0.020
=
~ |

O -

r- ‘F 0.010
0
[
3 0.005
m
i sl o000

Figure 7. Single-node QPINN 10-run RMSEs at collocation points for the 2D Poisson equation with a
quadratic manufactured solution for a range of qubits and nodal variational layers.

2 qubits 3 qubits 4 qubits
-8~ PINN
0.04 B QPINN
—¥- QPINN/Noise
0.03
w
g
2 0.02
0.01
0.00
10 15 20 25 10 20 30 4@0 20 30 40 50
nparams nparams nparams

Figure 8. Mean and standard deviations of 10-run collocation point RMSEs for the 2D Poisson
quadratic solution versus parameter counts for noiseless QPINNs , QPINNs with noise, and classi-

cal PINNSs.

1X10° QPINN + Noise

QPINN

3.0
2.5
520
915
Z 1.0
0.5

0.0

layers

Figure 9. Noise (left) and noise-free

nqubits
CX 2
mm 3
ZA 4

layers

(right) QPINN mean 10-run collocation point RMSE results for

the 2D Poisson quadratic solution with increasing variational layer counts.

Entropy 2024, 26, 649

10 of 17

4.2.2. Two-Dimensional Poisson Cubic Solution

In the second Poisson test, the manufactured cubic solution

) = 35 (20— 3P 420 3P+ (1= PP+ = PP+ (k- =) +3) (19

was used so that f(x,y) = x+y — % In this application, the QPINN converged more
rapidly and accurately if the solution (and PDE) was scaled by 10. Classical PINNs
(shown in Figure 10a) began to converge reasonably well with ~51 parameters, which were
obtained in this figure using 2 layers of 5 neurons each with “tanh” activation functions.
A series of 10 runs with varying initial parameters were calculated, and the QPINN grid
RMSEs were calculated over the collocation points and averaged over the runs. Multiple
quantum node setups were explored in this application. Figure 10b,c display the results for
1 and 2 quantum node networks. From these figures, it can be seen that as quantum nodes
are added, the accuracy of the solution slightly improves, even though the total number of
network parameters are the same. Figure 11 more clearly shows this improvement. The 2
quantum node QPINN reduced the PINN run-averaged RMSEs by over a 75% with nearly
half the parameter counts for this application.

ug(X,y) u(x, y)

4.0

<
08 i
35
~
I
0.6
o
> P 3.0
0.4
©
o~ 2.5
0.2
©
N
0.0 2.0
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
X X X=y
(a)
4.0
<
"i
35
~
I
o
2 3.0
©
d 0
~ e 25
©o
N
2.0
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
X X X=y

Ug(X, u(x,
] 6(X, y) (X, y) 40
<
o
. 3.5
~
™
o
> 2 3.0
' @
o~ 2.5
: ©
IS
. 2.0
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
x X x=y
(c)

Figure 10. PINN (a) and QPINN (b,c) results for the 2D Poisson equation with a manufactured cubic
solution. The QPINN results include device depolarizing channel noise as described in Section 3. In
this figure, the left plots are the QML results, the center plots of the analytic solution for comparison,

Entropy 2024, 26, 649

11 of 17

and the right x = y diagonal cross sections of the analytic solution (solid black line) and QML
solutions (fill circles). (a) Classical PINN results using 2 layers with 5 neurons each for a total of
51 parameters. (b) Single quantum node QPINN results comprised of 2 qubits and 4 variational
layers for a total of 27 parameters. (¢) Two quantum node QPINN results comprised of 2 qubits and 2
variational layers for a total of 27 parameters.

X102

1 PINN
EEH QPINN + Noise

2.0 =1 QPINN

1.5

RMSE

1.0

27 parameters
27 parameters

/ 51 parameters \/

0.5

0.0

0 1 2
Quantum Nodes

Figure 11. QPINN vs. PINN RMSE:s for the Poisson equation with a cubic manufactured solution.
These results include device depolarizing channel noise as described in Section 3. The QPINN results
shown are for 1- and 2-quantum-node neural networks. The RMSEs calculated in this figure were
calculated over 10-run solution averages at the residual collocation points.

5. Hybrid QPINN Application—Burger’s Equation

Burgers’ equation describes the 1D velocity of a moving viscous fluid, and is given by
Ut + Ully = Vilyy

where u(x, t) is the velocity, and v is the viscosity of the fluid. For this HPINN application,
the spatial domain was set to [—1, 1], the temporal domain to [0,1], and v = 2% 5o that

0.01
up+ Uiy = =il (17)

along with the homogeneous Dirichlet boundary conditions

—-1,t) =
u(=1,t) =0 (18)
u(1,¢) =0
and initial condition
u(x,0) = —sin(mx), (19)

Note that with this initial condition, a shock is formed at x = 0.

The HPINN network used for this application can be seen in Figure 3c. Each of the
HPINN models had a structure comprised of TensorFlow Keras layers in a sequential layout,
with a model input of two parameters, x and ¢, and output of one value, a prediction of
u(x, t). The classical PINN model for the Burgers’ equation (taken from [23-25]) consisted
of an input layer expecting two inputs, nine hidden dense layers with 20 neurons per
layer and a hyperbolic tangent activation function, and a final dense output layer with 1
neuron and no activation function. The results from this model were sufficiently accurate
to consider it a benchmark model for comparisons. The benchmark model was also used as
a basis for adding and tuning the quantum network hyper-parameters. After investigation
of different HPINN setups, the final hybrid model utilized a sequential layout starting with
four classical dense layers, each with 20 neurons and the hyperbolic tangent activation

Entropy 2024, 26, 649

12 of 17

function. Layer 5 was a classical dense layer with the same number of neurons as the
subsequent quantum layer (layer 6), followed by a final dense output layer (layer 7) with
one neuron for predicting u(x, t).

All of the quantum layers tested employed one quantum node consisting of an angle
embedding, a basic entangling layer, and a measurement. It is noted that for this HPINN
experiment, strong entanglement was not optimal and basic entanglement was used in the
variational circuits. For experiments that included noise, the classical formulation given in
Section 3 was used, as channel noise implementation was prohibitively slow.

Following [23-25], each hybrid QPINN was trained using two components: (1) a
physics-informed loss based on Burger’s equation over collocation points and (2) a mean
squared error (MSE) loss on given data points along the boundaries. For the physics-
informed loss, 10, 000 random collocation points were generated using the LatinHypercube
from the scipy library on the domain. The loss was calculated using the mean squared

residual of (17), given by

0.01
R = Uy + UUy — 71/[3(;((20)

All first and second-order derivatives were calculated using TensorFlow’s gradients
and GradientTape. For the MSE loss, 50 initial data points at t = 0 and 25 data points each
on the boundaries located at x = —1 and x = 1 were generated with the LatinHypercube
routine. Data-driven losses were then calculated using the difference between the model’s
predictions and the function values at the generated data points on the boundaries using
(18) and (19). The Adam’s optimizer was used with a learning rate of 5 x 10~ and a
training loop of 2000 epochs.

Both the number of qubits and number of variational layers varied from 2 to 5, for a
total of 16 hybrid HPINN models tested. The same data and collocation points were used
for every model. For comparison, the “exact solution”, provided by [23-25], was used to
calculate the RMSE of the trained model results. Each model was calculated using five
training runs with random parameter intialization, and the run with the median RMSE
was recorded as the model for that combination. The noise-free results of these median
models are shown in Figure 12. In this figure, the portions of the bars below the classical
PINN benchmark are colored a darker gray, while the portions above the benchmark are
colored a lighter gray. Bars that fall below the benchmark RMSE are more accurate and
are only colored dark gray. The parameter combination with the best RMSE was 5 qubits
and 5 layers (5g-51), with 4g-31 having the second best. Generally, adding more qubits and
layers reduced the error, though a notable exception is 4q-31, which performed exceedingly
well compared to the surrounding models throughout the investigation. It should be noted
that while many of the hybrid models have a higher error than the benchmark, they were
comprised of significantly fewer parameters. For example, the benchmark model has 3441
parameters while the largest, 5q-51 hybrid model gave better results with only 1456 (less
than half) parameters. This is a significant improvement over the classical benchmark.

For further comparison, the neural network layout of the best hybrid model, 5g-51, was
implemented with only classical layers. The quantum layer was replaced with five classical
dense layers, each having five neurons. Note that the models do not perfectly align, as the
purely classical quantum-replaced model had 1581 trainable parameters as opposed to the 5q-
51 model’s 1456. However, the structure is similar enough for basic comparisons. Additionally,
to further show that the quantum layer adds accuracy to the model, a purely classical model
with the quantum layer removed was included. These two classical models were given the
same training data as the hybrid models and trained over five runs, with the median model
solution selected, as before. The predicted solutions from hybrid model 5g-51 and its two
derived classical models are shown in Figure 13. The noiseless, 5q-51 HPINN had the lowest
RMSE and most closely reflected the exact solution provided in [23-25], despite having
fewer parameters than the classical quantum-replaced model. Additionally, the accuracy is
significantly higher than the quantum-removed model, so there is confidence that the hybrid
layer is accurately contributing to the solution and enhancing the accuracy of the problem.

Entropy 2024, 26, 649 13 0f 17

The last plot in Figure 13 shows the HPINN, 5g-5I results with the non-channel,
classical noise formulation detailed in Section 3. For this case, the noisy HPINN RMSE was
notably worse than the noise-free HPINN calculations though still more accurate than the
classical PINNs with a similar parameter count.

mm Above Benchmark
B Below Benchmark

0.30
0.25
0.20 &
015 2
0.10
0.05
0.00

4
Yubigs 2

Figure 12. Hybrid QPINN RMSEs for Burger’s equation versus the number of qubits and variational
layers in the quantum network. For these results, 5 classical Keras layers preceded the quantum
node. The RMSEs were calculated over the residual collocation points solutions averaged over 5 runs.
In this figure, the portions of the bars below the classical PINN benchmark are colored a darker gray,
while the portions above the benchmark are colored a lighter gray. Bars that fall below the benchmark
RMSE are more accurate and are only colored dark gray.

Exact Solution

1.00
X 0
-1+ : : : : ! 0.75
5 Class. + 1 5Layer QNode
F0.50
X 0
RMSE: 0.052
1 Total Params: 1456
-1+ . — . . ! | 025
) 10 Classical Layers
> I 0.00
RMSE: 0.083
1 Total Params: 1581
N 5 Classical Layers r—0.25
x o -0.50
RMSE: 0.220
1 Total Params: 1431
5 Class. + 1 Noisy 5 Layer QNode —~0.75
x
RMSE: 0.155 -1.00
1 Total Params: 1456
0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 13. Burger’s equation exact (top plot) and predicted solutions (bottom four plots) for a series
of physics-informed models. All RMSEs were calculated over the residual collocation points. In the
bottom plot, noise device depolarizing channel noise as described in Section 3 has been added to
the HPINN.

Entropy 2024, 26, 649

14 of 17

6. Discussion

In this study, both quantum and quantum/classical, hybrid physics-informed neural
networks for PDE solutions were investigated. Four test cases were presented. For the first
test case, the 1D spring-mass problem, not only was a purely quantum neural network
capable of capturing the PDE solution for a wide range of qubits and variational layers,
but there was also an accuracy advantage per parameter over classical networks as the
number of qubits was increased. Additionally, less initial parameter sensitivity was found
over classical PINNs. For the 2D Poisson problem, manufactured quadratic and cubic
solutions were tested. In both cases, there was a greater sensitivity of the models to the
initial parameter choice, but classical layers were not required for the physics-informed
network to converge. For the quadratic case, only one quantum node was needed in the
QPINN and there was a slight accuracy advantage over PINNs for many runs. For the
cubic solution, two quantum node networks did show significant accuracy improvement
over classical PINNs. Multi-quantum node networks with lower qubit and variational
layer counts can help circumvent time-prohibitive and hardware issues when large param-
eters counts are required. For the cubic problem, greater expressibility was required to
capture the solution and higher accuracy was achieved with each quantum node addition.
Adding depolarization channel noise to the QPINNSs did not seem to significantly affect
their solutions.

In the last application, a space-time, hybrid physics-informed neural network was
used to solve Burger’s equation for viscous flow. It was found that noiseless hybrid PINNs
can notably increase the accuracy of classical PINNs. In the results presented herein, there
was a = 62% increase in accuracy of the noiseless HPINN over a PINN with more than
100 additional parameters. It is also noted that for this case, strongly-entangled variational
layers were not optimal. When classically simulated noise was included, the HPINN
advantage greatly diminished for this application. Future work will include investigating
different implementations of quantum noise and their affect on HPINN solutions.

The results presented herein show that in the context of physics-informed neural
networks, qubit-based quantum variational circuits can offer an accuracy advantage in
the near term. In some cases, QPINNs can be applied standalone, while in more complex
applications, hybrid or quantum co-processor NNs are still required. The focus of this study
was to investigate the expressibility of both QPINNs and HPINNs versus PINNs. Wall-clock
timings were not emphasized for these experiments, as the quantum network components
were significantly slower than their classical counterparts. For example, the noiseless
2D Poisson QPINN results, calculated by a Mac computer with a 12-core, 2.7 GHz Xeon
processor, took nearly four times as long as a classical PINN with a similar number of
parameters. For some experiments, this was prohibitively the case when device simulated
channel noise was included and/or as the number of quantum nodes was increased.
While measurement sampling will always slow-down quantum calculations, an era of
fault-tolerant quantum computing is likely to come. As these machines become available,
the computational overhead for dealing with decoherence related noise will diminish.
Additionally, there is no need to model noise on quantum hardware, even today, so this
calculation overhead is irrelevant. While fault-tolerant hardware advances work to close the
wall-clock gap between quantum and classical neural networks, it is uncertain as to whether
the potential parameter space savings offered by the enhanced quantum expressibility will
be substantial enough to make up for quantum to classical hardware connections, space
transformations and sampling times required by both QPINNs and HPINNSs.

Author Contributions: Conceptualization, C.T.; Methodology, C.T., S.D. and M.L.; Software, C.T.;
Validation, S.D. and M.L.; Investigation, S.D.; Writing—original draft, C.T., S.D. and M.L.; Project
administration, C.T. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the United States Army Engineer Research and Develop-
ment Center.

Entropy 2024, 26, 649 150f 17

Data Availability Statement: All source code used for the results found in this study can be found
online: https://github.com/trahancj/QPINNs.git, accessed on 22 July 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Example TensorFlow/QNode Setup

A basic TensorFlow /QML wrapper for a purely quantum network with two features
can be given as (Figure A1)

HARARUARRHARBARBHARHARBARBRARBARBHBRRARBRARHARBHRH

Quantum Device Preparation

HARRBRRBHBHAARRRRRRBRBHAARRRRRRBHAAARRRRBRBHAAHRARY

dev = gml.device("default.qubit", wires=n_qubits)

@qml.qgnode (dev, diff_method=’best’)

def qnode (inputs, weights):
qml.templates.AngleEmbedding (inputs, wires=range(n_qubits))
qml.templates.StronglyEntanglinglayers (weights, wires=range(

n_qubits))

return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)]

weight_shapes = {"weights": (mn_layers, n_qubits, 3)}

HUHBARBHRBHARBARBHAR B AR B RRBRAR B AR B HRRBHRBRRRH AR B HRH

Define 2 Feature TensorFlow Model

HABARUARBHARBARBHARHBARBHRBRARBARBHARRARBRRRH AR B HRH

input_layer = tf.keras.layers.Input(shape=(2,))

hiddenO = gqml.qnn.KerasLayer (qnode, weight_shapes, output_dim=
n_qubits) (input_layer)

output_layer = tf.keras.layers.Dense(l, activation=None) (hiddenO)

model = tf.keras.Model(input_layer, output_layer)

model. summary ()

Figure A1. Example TensorFlow wrapped QNN.

In this QML setup, only one quantum layer is used with no classical layers other than
the input and output layers, neither of which have parameters or activation functions.
For general solution ranges, an input layer tanh-activation may be required to scale the
solution. We note that Pennylane’s QML package can be implemented for pure quantum
networks without TensorFlow, and similar results were obtained when this was completed.
TensorFlow wrapping, on the other hand, allowed for easy extension to hybrid networks
and a closer comparison to classical networks.

In Figure A1, strongly-entangled layers over the user-supplied number of qubits are
used for the quantum variational circuit. The variational layers within the network are
comprised of 3D qubit rotational gates, as shown in Figure 2. This type of network requires
three variational parameters per qubit. An alternative is PennyLane’s basic-entangled layer,
where only one axis rotation is parameterized.

In Figure A1, the network features are angle-encoded. Because of this, it is necessary
that all feature values have a domain of 0 < x < 27t. Note that angle encoding requires 1
qubit per feature dimension.

References

1. Kieu, T. Quantum Hypercomputation. Minds Mach. 2002, 12, 541-561. Available online: https://api.semanticscholar.org/
CorpusID:10368720 (accessed on 5 March 2024). [CrossRef]

2. D-Wave Ocean Software Documentation. Available online: https://www.dwavesys.com/solutions-and-products/ocean (ac-
cessed on 1 January 2024).

3. Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.; Cabrera-Herndndez, FEJ.; Carballo-
Franquis, J.; Chen, A.; Chen, C. Qiskit: An Open-Source Framework for Quantum Computing. January 2019. Available online:
https://zenodo.org/records /2562111 (accessed on 13 August 2021).

4. IBM. Learning Quantum Computation Using Qiskit. Available online: http://qiskit.org/textbook (accessed on 1 June 2021).

5. Steiger, D.; Haner, T.; Troyer, M. ProjectQ: An open source software framework for quantum computing. Quantum 2018, 2, 49
[CrossRef]

6. Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry Fields: A Software Platform for Photonic

Quantum Computing. Quantum 2019, 3, 129. [CrossRef]

https://github.com/trahancj/QPINNs.git
https://api.semanticscholar.org/CorpusID:10368720
https://api.semanticscholar.org/CorpusID:10368720
http://doi.org/10.1023/A:1021130831101
https://www.dwavesys.com/solutions-and-products/ocean
https://zenodo.org/records/2562111
http://qiskit.org/textbook
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.22331/q-2019-03-11-129

Entropy 2024, 26, 649 16 of 17

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A ;
et al. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2022, arXiv:1811.04968.
Quantum Al Team and Collaborators ReCirq. (Zenodo, 2020, 10). Available online: https://zenodo.org/records/4091471
(accessed on 15 January 2024).

Cong, I.; Levine, H.; Keesling, A.; Bluvstein, D.; Wang, S.; Lukin, M. Hardware-Efficient, Fault-Tolerant Quantum Computation
with Rydberg Atoms. Phys. Rev. X 2022, 12, 021049. [CrossRef]

Bluvstein, D.; Evered, S.; Geim, A.; Li, S.; Zhou, H.; Manovitz, T.; Ebadi, S.; Cain, M.; Kalinowski, M.; Hangleiter, D.; et al. Logical
quantum processor based on reconfigurable atom arrays. Nature 2024, 626, 58-65. [CrossRef] [PubMed]

Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2014, 56, 172-185.
[CrossRef]

Cai, X.; Wu, D,; Su, Z; Chen, M.; Wang, X; Li, L.; Liu, N.; Lu, C.; Pan, J. Entanglement-Based Machine Learning on a Quantum
Computer. Phys. Rev. Lett. 2015, 114, 110504. [CrossRef] [PubMed]

Fastovets, D.; Bogdanov, Y.; Bantysh, B.; Lukichev, V. Machine learning methods in quantum computing theory. In Proceedings
of the International Conference On Micro- and Nano-Electronics 2018, Zvenigorod, Russia, 1-5 October 2018; Volume 11022.
[CrossRef]

Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195-202.
[CrossRef]

Schuld, M.; Bocharov, A.; Svore, K.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [CrossRef]
Farhi, E.; Neven, H. Classification with Quantum Neural Networks on Near Term Processors. arXiv 2018, arXiv:1802.06002.
Liu, J.; Wang, L. Differentiable learning of quantum circuit Born machines. Phys. Rev. A 2018, 98, 062324. [CrossRef]

Skolik, A.; Jerbi, S.; Dunjko, V. Quantum agents in the Gym: A variational quantum algorithm for deep Q-learning. Quantum
2022, 6, 720. [CrossRef]

Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci.
Technol. 2019, 4, 043001. [CrossRef]

Maheshwari, D.; Garcia-Zapirain, B.; Sierra-Sosa, D. Quantum Machine Learning Applications in the Biomedical Domain: A
Systematic Review. IEEE Access 2022, 10, 80463-80484. [CrossRef]

Sedykh, A.; Podapaka, M.; Sagingalieva, A.; Pinto, K.; Pflitsch, M.; Melnikov, A. Hybrid quantum physics-informed neural
networks for simulating computational fluid dynamics in complex shapes. Mach. Learn. Sci. Technol. 2023, 5, 025045. [CrossRef]
Pistoia, M.; Ahmad, S.; Ajagekar, A.; Buts, A.; Chakrabarti, S.; Herman, D.; Hu, S.; Jena, A.; Minssen, P; Niroula, P; et al. Quantum
Machine Learning for Finance. In Proceedings of the 2021 IEEE/ACM International Conference on Computer aided Design
(ICCAD), Munich, Germany, 1-4 November 2021.

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686-707. [CrossRef]

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial
Differential Equations. arXiv 2017, arXiv:1711.10561.

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial
Differential Equations. arXiv 2017, arXiv:1711.10566.

Raissi, M.; Yazdani, A.; Karniadakis, G. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.
Science 2020, 367, 1026-1030. [CrossRef]

Sun, L.; Gao, H.; Pan, S.; Wang, J. Surrogate modeling for fluid flows based on physics-constrained deep learning without
simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [CrossRef]

Mathews, A.; Francisquez, M.; Hughes, J.; Hatch, D.; Zhu, B.; Rogers, B. Uncovering turbulent plasma dynamics via deep learning
from partial observations. Phys. Rev. E 2021, 104, 025205. [CrossRef] [PubMed]

Zhang, B.; Wang, E; Qiu, L. Multi-domain physics-informed neural networks for solving transient heat conduction problems in
multilayer materials. J. Appl. Phys. 2023, 133, 245103. [CrossRef]

Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep learning and process understanding
for data-driven Earth system science. Nature 2019, 566, 195-204. [CrossRef] [PubMed]

Misyris, G.; Venzke, A.; Chatzivasileiadis, S. Physics-Informed Neural Networks for Power Systems. In Proceedings of the 2020
IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2-6 August 2020; pp. 1-5.

Ruben, C.; Dhulipala, S.; Nagaraj, K.; Zou, S.; Starke, A.; Bretas, A.; Zare, A.; McNair, J. Hybrid data-driven physics model-based
framework for enhanced cyber-physical smart grid security. IET Smart Grid 2020, 3, 445-453. [CrossRef]

Dagrada, M. Introduction to Physics-Informed Neural Networks. Available online: https://towardsdatascience.com/solving-
differential-equations-with-neural-networks-afdcf7b8bcc4,0 (accessed on 11 June 2024).

Markidis, S. On physics-informed neural networks for quantum computers. Front. Appl. Math. Stat. 2022, 8, 1036711. [CrossRef]
Quantum Zeitgeist. Efficient Parallel Hybrid Quantum Neural Network for Advanced Machine Learning. Available online:
https://quantumzeitgeist.com/efficient-parallel-hybrid-quantum-neural-network-for-advanced-machine-learning (accessed on
10 May 2022).

https://zenodo.org/records/4091471
http://dx.doi.org/10.1103/PhysRevX.12.021049
http://dx.doi.org/10.1038/s41586-023-06927-3
http://www.ncbi.nlm.nih.gov/pubmed/38056497
http://dx.doi.org/10.1080/00107514.2014.964942
http://dx.doi.org/10.1103/PhysRevLett.114.110504
http://www.ncbi.nlm.nih.gov/pubmed/25839250
http://dx.doi.org/10.1117/12.2522427
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1103/PhysRevA.101.032308
http://dx.doi.org/10.1103/PhysRevA.98.062324
http://dx.doi.org/10.22331/q-2022-05-24-720
http://dx.doi.org/10.1088/2058-9565/ab4eb5
http://dx.doi.org/10.1109/ACCESS.2022.3195044
http://dx.doi.org/10.1088/2632-2153/ad43b2
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1126/science.aaw4741
http://dx.doi.org/10.1016/j.cma.2019.112732
http://dx.doi.org/10.1103/PhysRevE.104.025205
http://www.ncbi.nlm.nih.gov/pubmed/34525532
http://dx.doi.org/10.1063/5.0153705
http://dx.doi.org/10.1038/s41586-019-0912-1
http://www.ncbi.nlm.nih.gov/pubmed/30760912
http://dx.doi.org/10.1049/iet-stg.2019.0272
https://towardsdatascience.com/solving-differential-equations-with-neural-networks-afdcf7b8bcc4,0
https://towardsdatascience.com/solving-differential-equations-with-neural-networks-afdcf7b8bcc4,0
http://dx.doi.org/10.3389/fams.2022.1036711
https://quantumzeitgeist.com/efficient-parallel-hybrid-quantum-neural-network-for-advanced-machine-learning

Entropy 2024, 26, 649 17 of 17

36. Abadi, M.; Agarwal, A.; Barham, P; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: http:/ /tensorflow.org/ (accessed on 2 March
2021).

37. Preskill, J. gbraid: Lecture Notes for Ph219: Quantum Information Chapter 3. Available online: http://theory.caltech.edu/
~preskill/ph219/chap3_15.pdf (accessed on 14 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://tensorflow.org/
http://theory.caltech.edu/~preskill/ph219/chap3_15.pdf
http://theory.caltech.edu/~preskill/ph219/chap3_15.pdf

	Introduction
	Quantum and Hybrid PINN Methodology
	Quantum Variational Layers
	Quantum Neural Network Nodes
	Input Space and Feature Encoding
	HPINN Design

	Quantum Simulator Device Details
	QPINN Applications
	Application 1: Spring-Mass System
	Application 3: 2D Poisson Equation
	2D Poisson Quadratic Solution
	Two-Dimensional Poisson Cubic Solution

	Hybrid QPINN Application—Burger's Equation
	Discussion
	Example TensorFlow/QNode Setup
	References

