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Nature is the proof of dialectics, and it must be said
for modern science that it has furnished this proof with
very rich materials increasingly daily [...]

— Engels, Anti-Diihring

It is precisely the alteration of nature by men, not solely nature as such,
which is the most essential and immediate basis of human thought.

— Engels, Dialectics of Nature.



ABSTRACT

In contemporary particle physics, accurate results for Standard Model
(SM) observables are needed to improve the determination of its
fundamental parameters and to guide the search for the New Physics
(NP) by precise comparisons of SM predictions with the corresponding
experimental results. The quark-flavor sector of the Standard Model
constitutes a rich arena for such an endeavor. In a large class of
processes, the non-perturbative dynamics associated with the strong
interaction between quarks and gluons plays a fundamental role. These
hadronic effects are governed by Quantum Chromodynamics (QCD),
the gauge theory of the strong interaction within the SM framework.
The proper control of these effects is one of the main research fronts
in theoretical particle physics today. Lattice field theory provides a
first-principles method for studying strongly coupled theories such as
QCD.

In this work, we study a lattice QCD setup aimed at high-precision
calculations of light- and charm-quark physics. We employ a mixed ac-
tion approach, in which two different regularizations of the fermionic
action are used for the sea and valence sectors. More specifically, the
sea sector is based on Ny = 2 + 1 non-perturbatively O(a) improved
Wilson fermions, while up/down, strange and charm quarks are con-
sidered in the valence sector using Wilson twisted mass quarks at
maximal twist. By also considering the case where O(a) improved
Wilson fermions are used in the sea and valence sectors, we have
carried out a universality test in the up/down and strange quarks
sector. This provides strong evidence of proper control of the approach
to the continuum limit in these lattice QCD formulations.

We will describe a scale setting procedure and its impact on charm-
quark observables. The use of a mixed action requires an adjustment
of the quark masses of the sea and valence sectors to preserve the
unitarity of the continuum theory. The external input used in the
scale setting procedure corresponds to the use of the pion and kaon
masses and decay constants in the isospin symmetric limit of QCD.
The gradient flow scale ty is used as an intermediate scale, whose
physical value can be determined as a result of the scale setting. We
employ model variation techniques to evaluate all relevant systematic
uncertainties. Finally, the results of the scale setting are applied to
charm-quark sector in which accurate determinations of the charm
quark mass and of the decay constants of the D and D; mesons are
obtained. Our results are among the most precise in the community
for Wilson-like lattice regularizations.
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RESUMEN

En la fisica de particulas actual, resultados precisos de observables del
Modelo Estdndar (SM) son necesarios para mejorar la determinacién
de los parametros fundamentales del SM y guiar la bisqueda de la
Nueva Fisica (NP) mediante comparaciones precisas de las predic-
ciones del SM con los resultados experimentales correspondientes.
El sector de sabores de quarks del Modelo Estdndar constituye un
rico escenario para tal esfuerzo. En una gran clase de procesos, la
dindmica no-perturbativa asociada a la interaccion fuerte entre quarks
y gluones juega un papel fundamental. Estos efectos hadrénicos se
rigen por la Cromodinamica Cudantica (QCD), la teoria gauge de la
interaccion fuerte en el marco del SM. El control adecuado de estos
efectos es uno de los principales frentes de investigacion en la fisica
tedrica de particulas actual. La teoria de campos en el reticulo propor-
ciona un método basado en primeros principios para estudiar teorias
fuertemente acopladas como QCD.

En este trabajo, estudiamos un setup de QCD en el reticulo orientada
a célculos de alta precision de la fisica de quarks ligeros y del charm.
Empleamos un enfoque de accién mixta, en el que se utilizan dos
regularizaciones diferentes de la accién fermidnica para los sectores
mar y valencia. Mds concretamente, el sector mar se basaen Ny =2 +1
fermiones de Wilson no-perturbativamente O(a) improved, mientras
que en el sector de valencia se consideran los quarks up/down, strange y
charm utilizando una regularizacién de Wilson twisted mass a maximo
twist. Al considerar también el caso en el que se utilizan fermiones de
Wilson O(a) improved en los sectores mar y valencia, hemos llevado a
cabo una prueba de universalidad en el sector de los quarks up/down y
strange. Esto proporciona una fuerte evidencia de un control adecuado
de la aproximacién al limite al continuo en estas formulaciones de
QCD en el reticulo.

Describiremos un procedimiento de ajuste de escala o scale setting y
su impacto en los observables que involucran al quark charm. El uso
de una accién mixta requiere un ajuste de las masas de quarks de los
sectores mar y valencia para preservar la unitariedad de la teorfa en el
continuo. El input externo utilizado en el procedimiento de scale setting
corresponde al uso de las masas y constantes de desintegracién de
piones y kaones en el limite simétrico de isospin de QCD. La escala t
se utiliza como escala intermedia, cuyo valor fisico puede determinarse
como resultado del scale setting. Empleamos técnicas de variacién sobre
modelos para evaluar todas las incertidumbres sisteméticas relevantes.
Por ultimo, los resultados del scale setting se aplican al sector del quark
charm, en el que se obtienen determinaciones precisas de la masa del
quark charm y de las constantes de desintegracion de los mesones D
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y Ds. Nuestros resultados se encuentran entre los mas precisos de la
comunidad para regularizaciones reticulares tipo Wilson.
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INTRODUCTION

The Standard Model (SM) of particle physics is the theory that de-
scribes three of the four fundamental interactions in Nature: elec-
tromagnetism, the weak interaction, and the strong interaction. The
theoretical framework in which the SM is formulated is that of Quan-
tum Field Theory (QFT), and the particular theory that describes the
strong interaction is Quantum Chromodynamics or QCD".

QUANTUM FIELD THEORY AND THE STANDARD MODEL

The 20th century witnessed two pivotal developments in modern
physics and our comprehension of Nature: special relativity and quan-
tum mechanics.

On the one hand, the theory of special relativity presents a reformu-
lation of Galileo’s principle, which prescribes that the laws of physics
must remain unchanged in two different inertial frames. This refor-
mulation is consistent with the theory of electromagnetism developed
by Maxwell in the 19th century and posits that the speed of light
is a universal constant. This led to profound consequences, such as
time dilation and length contraction, according to which one observer
experiences time and distances differently from another, depending
on the relative speed of their inertial frames. Additionally, it implies
the equivalence of mass and energy, and led to the formulation of
the Universe as a 4-dimensional Lorentzian manifold, space-time, in
which there is a non-trivial interplay between time and space.

The principle of a constant speed of light and the upper bound
that it induces on the propagation speed of signals rendered the old
Newtonian view of interactions obsolete. According to the latter, the
force acting on a particle at a given time depends on the position
of all other particles at that moment. This implies an instantaneous
transfer of force from one particle to another, which is at odds with
the principles of special relativity. Field Theory is the framework that
allows to supersede this difficulty. It is based on the concept of fields,
which are dynamic objects that fill the whole of space-time. Mathe-
matically, they are simply functions of space and time. Treating fields
as the fundamental degrees of freedom allows to construct a Lorentz
invariant formulation of the theory which is thus compatible with spe-
cial relativity. One example is Maxwell’s theory of electromagnetism,
which describes the dynamics of the electric E (¥,t) and magnetic
B(X, t) fields.

The main discussion in this Introduction is based on the review [128], all other
relevant references can be found in Chapter 1



INTRODUCTION

On the other hand, quantum mechanics introduces the concept of
probability into our description of Nature. In this framework parti-
cles are described by wave functions that represent the probability
density of finding a particle at a given position in space at some time.
Position and momentum are promoted to conjugate operators that
do not commute, which gives rise to Heisenberg’s uncertainty prin-
ciple, according to which it is not possible to know the position and
momentum of a particle simultaneously

AxAp > h.

Quantum Field Theory is the framework that unifies quantum me-
chanics and special relativity. It entails promoting classical fields to
quantum operators in a manner analogous to the case of position
and momentum in quantum mechanics. This results in a plethora of
consequences, such as particles being regarded as excitations of an
underlying quantum field, the existence of antiparticles or the non-
conservation of particle number. The latter is of special importance for
any quantum description of a relativistic system, as high-energy colli-
sions can result in the creation and annihilation of particles. Moreover,
according to Heisenberg’s uncertainty principle, if a particle is placed
in a box of size L there will be an uncertainty in its momentum of

Ap > h/L.

This gives rise to an uncertainty in the energy of the particle of order
AE > hic/L. When the energy exceeds 2mc? we have enough energy to
create a particle-antiparticle pair from the vacuum, with m the mass
of the particle. This happens at distances of order
L=A= i,
mc

which is the reduced Compton wavelength. At this and smaller dis-
tances (or equivalently higher energies) one expects to detect particle-
antiparticle pairs in proximity to the original particle, breaking down
the very concept of a point-like particle.

Generalizing the concept of fields such that all particles are excita-
tions of some field solves another puzzle of Nature: how can e.g. two
electrons separated by a space-like distance (causally disconnected)
look exactly the same, like two perfect copies of one another? This is
naturally explained if there is a universal field of the electron, since all
electrons are simply excitations of this field filling all of space-time.

A key ingredient of QFTs are symmetries, which are defined in
the mathematical framework of group theory. Global symmetries are
of paramount importance in physics, as they provide conservation
laws through Noether’s Theorem, such as the conservation of energy
and momentum. In addition to global symmetries, local or gauge
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symmetries also play a crucial role. These can be regarded as a redun-
dancy in the theory, so that performing a local transformation of the
fundamental fields leaves physics unchanged. Although it may appear
impractical to write our theories of Nature in a redundant manner, it
is very useful since it allows us to write simple Lagrangians which
may have unphysical degrees of freedom that can be eliminated by
using gauge redundancy. This is exemplified by the case of the photon,
which has only two polarization states but in the SM is described by
a gauge field with 4 degrees of freedom. Thanks to gauge symmetry,
one can eliminate the two remaining unphysical degrees of freedom.
Another beautiful property of gauge symmetries is that they allow
for a geometric interpretation of interactions: gauge fields can be re-
garded as the connection in a principal G-bundle, with G the gauge
group, and the field strength tensor as the curvature. In this way, all
fundamental interactions of Nature can be understood in the light of
geometry, just as gravity is in General Relativity.
The gauge symmetry group of the SM is

SU(3)e x SU(2)y x U(1)y,

where SU(3). is the gauge group of the strong interaction (whose
charge is called color), SU(2)., is the gauge group of the weak interac-
tion and U(1)y is the gauge group of hypercharge. The Higgs mecha-
nism provides a description of the spontaneous symmetry breaking of
the electroweak sector SU(2)y, x U(1)y into that of electromagnetism
U(1)em, as well as a mechanism for the generation of masses for fun-
damental particles. The pure gauge interactions depend only on three
free parameters, which are the three coupling constants. Matter fields
do not introduce any further free parameter, while the addition of the
Higgs field introduces 22 new free parameters into the theory, which
govern the masses of the elementary particles, flavor mixing angles
and CP-violating phases.

Over the decades, the SM has proven extremely successful in pass-
ing experimental tests. Notable examples include the discovery of
neutral weak currents in 1973, the bottom quark in 1977, the Z and W
bosons in 1983 and the agreement of the ratio of their masses between
experiment and theory, the discovery of the top quark in 1995, and the
Higgs boson in 2012.

Despite the remarkable success of the SM, we know that it cannot
be the whole story. On the one hand, it does not explain one of the
four fundamental interactions of Nature, gravity. On the other hand,
there’s no candidate particle in the SM for dark matter, which is
estimated to comprise ~ 85% of the matter content in the Universe.
In addition, there are other theoretical puzzles, such as the hierarchy
problem of the Higgs mass, triviality of the Higgs coupling, the flavor
puzzle or the strong CP problem, which we will briefly discuss below.
The SM can thus be interpreted as an effective theory that describes

5
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extremely well the Universe at the energy scales probed by modern
day colliders, but that there must be some New Physics (NP) at work
at high energies, the search of which is the holy grail of modern day
particle physics.

One frontier of research for New Physics is the precision frontier.
Modern particle physics experiments continue to improve the accuracy
of a number of physical observables, and in order to detect possible
NP signals, it is of the utmost importance to achieve a similar level
of precision in theoretical predictions. One promising avenue for
exploration is the study of B meson physics. Semileptonic B decays
play a crucial role in the determination of the CKM matrix elements,
and long-standing tensions exist between the exclusive and inclusive
determinations of the elements V,;, and V, [115]. In addition, in
recent years some experimental anomalies have been observed in B
meson decays, suggesting potential signals of the violation of lepton
flavor universality. Currently, some prominent anomalies still persist
in the b — ctv charged current and in the b — s¢* ¢~ neutral current
decays [35]. Rare decays that in the SM are flavor-change-neutral-
current or GIM-suppressed constitute excellent probes of NP effects.
Yet another observable that has gained particular relevance in recent
years is the anomalous magnetic moment of the muon, which has
been measured experimentally with an unprecedented precision [2, 15].
However, theoretical consensus for this quantity is yet to be achieved:
a data-driven dispersive approach leads to a 4.2¢ tension with the
experimental value [7], while ab-initio SM calculations lead to a 1.5¢
difference [22, 78]. In all these processes QCD plays a crucial role, and
thus precise theoretical predictions in this sector of the SM are of the
utmost importance. The framework of Lattice Field Theory provides a
first-principles method for performing these calculations.

WHY LATTICE FIELD THEORY?

In the intermediate steps of a calculation of physical observables in
QFTs, there are often divergences that must be eliminated for the
theory to remain predictive. This is achieved through the implemen-
tation of the renormalization program, which entails the subtraction
of the divergences that emerge in physical quantities by means of
the redefinition of the parameters of the theory that are not observ-
ables, such as bare field normalizations, masses and couplings. This
renormalization program has been successfully applied to the three
fundamental interactions described by the SM.

The renormalization process introduces a dependence of the renor-
malized couplings and masses on the renormalization scale. This
dependence is constrained by the fact that the renormalization group
running must enforce that physical observables do not depend on
the renormalization scale. In the case of electromagnetism, the cou-
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pling (which is directly related to the electric charge of the electron)
decreases at low energies. However, in the case of Yang-Mills theo-
ries such as QCD, the opposite is true, with the coupling becoming
stronger at lower energies.

In the weak coupling regime, where the coupling of a Quantum
Field Theory is small, the theory can be studied through a perturbative
expansion in powers of the coupling. This is the case of Quantum
Electrodynamics at low energies, where high-order perturbative com-
putations have been carried out over the years for quantities such as
the charged lepton anomalous magnetic moment. In the case of QCD,
however, the coupling grows at low energies and perturbation theory
fails to perform theoretical predictions, as the system is governed by
non-perturbative phenomena. The only known first-principles method
for studying QFTs in the strong coupling regime is Lattice Field Theory.
It consists of discretizing space-time into a finite volume Euclidean
grid or lattice, with space-time points separated by a non-zero lattice
spacing a, whose inverse plays the role of an ultraviolet cutoff.

In Lattice Field Theory, the path integral formalism can be cast into a
statistical field theory system where a finite — but very large — number
of integrals over the fields can be carried out numerically via Markov
Chain Monte Carlo methods. This is a particularly suitable method
to compute expectation values in a strongly coupled theory such as
QCD, whose main distinguishing phenomena are non-perturbative.
For instance, in the theory of the strong interaction non-perturbative
effects are responsible for confinement, whereby no color charged
particles are observed in Nature at low energies as asymptotic states.
Spontaneous chiral symmetry breaking is yet another example of a
non-perturbative effect responsible for the small mass of the pions.
Additionally, the theory is expected to dynamically generate a mass
gap due to its non-perturbative nature. This implies that the spectrum
of QCD does not include any arbitrarily light particle. Even though
this is experimentally confirmed and supported by Lattice Field The-
ory numerical simulations, there is, at the moment, no conclusive
theoretical proof of the QCD mass gap. Obtaining a rigorous theoret-
ical proof of its existence constitutes one of the famous Millennium
Prize Problems [99]. Another important aspect of QCD is its vacuum
structure, the role of the 6-term and topology of the gauge group. In
order to advance in a comprehensive theoretical understanding of
these features of QCD, as well as to conduct high precision, reliable
calculations needed to improve the SM predictions and to contribute
to the search of NP in the precision frontier, it is essential to employ a
non-perturbative approach to the theory.

Non-perturbative treatment of QFT is also of great importance for
other theoretical reasons. In many popular Beyond the Standard Model
(BSM) scenarios, non-perturbative effects play a central role. For in-
stance, in supersymmetric theories (SUSY), non-perturbative effects are
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invoked to break supersymmetry at low energies. Nearly conformal
field theories and technicolor models (which retain some QCD-like
properties at higher energy scales) also require a non-perturbative
treatment. Moreover, the SM version of the Higgs potential suffers
from the triviality problem. This implies that the renormalized Higgs
coupling vanishes after perturbative renormalization, unless there is
a finite energy cutoff in the theory, implying that the SM is nothing
but an Effective Field Theory (EFT) valid up to some energy cutoff. In
this scenario, the Higgs mass is expected to receive large contributions
from the high-energy scales, rendering it naturally heavy, in contrast
to the observed value at CERN. This is referred to as the hierarchy
problem. Non-perturbative numerical approaches demonstrate trivial-
ity of scalar field theories with a quartic interaction term [84] (which is
the case of the Higgs potential in the SM). Nevertheless, the coupling
of the scalar field to other SM particles could potentially alter the triv-
iality behavior of the coupling. Once more, these issues can only be
addressed by employing a non-perturbative approach. Consequently,
Lattice Field Theory is a method for investigating a wide variety of
fundamental physics problems in the SM and in QFT in general.

A MIXED ACTION LATTICE APPROACH TO LIGHT AND CHARM
PHYSICS

Having motivated the need to study QCD in the context of Lattice Field
Theory, the purpose of this research work is to construct and probe a
lattice QCD approach that could contribute to improve the accuracy
of hadronic physics observables in the light- and charm-quark sectors.
This is a timely initiative in the current context, where there is a need
to improve the determination of the fundamental parameters of the
SM, as well as of a whole class of observables currently studied in
particle physics experiments.

More specifically, we will consider a mixed action approach where
different Dirac operators are employed in the sea and valence sectors.
This mixed action setup employs the Wilson fermion regularization
for quarks in the sea, with mass degenerate up/down quark flavors to-
gether with a strange quark, while Wilson twisted mass regularization
for quarks are used in the valence sector, with up/down, strange and
charm quarks. When the valence sector is tuned to the maximal twist,
symmetry properties of the Wilson twisted-mass Dirac operator imply
that the physical observables do not receive O(a) lattice artifacts, ex-
cept for residual cutoff effects proportional to the sum of the masses of
the sea quarks. This provides an alternative way of obtaining results
in the continuum limit, since lattice QCD calculations in this setup do
not require the explicit determination of the set of O(a) improvement
coefficients. This is particularly relevant for the study of charm quark
physics, since the leading O (am,) discretization effects associated with
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the charm quark can be sizeable due to the relatively large value of
the charm quark mass m,. It is therefore interesting to consider an
approach in which this source of lattice artifacts is absent.

In general, a mixed-action approach can induce unitarity violations
in the continuum theory if the masses of the quarks of a given flavor
are not correctly matched between the sea and valence sectors. This
matching procedure is thus an important step of the calculation. Since
the sea contains only up/down and strange quarks, it is necessary to
adjust the parameters of the mixed action in order to impose that the
valence up/down and strange physical quark masses coincide with
those in the sea. This requires precise calculations in the light and
strange sectors of QCD, which is one of the targets of this thesis.

In a lattice QCD calculation, the dimensional quantities are deter-
mined in units of the lattice spacing a. Physical input is required to
fix the values of the fundamental parameters corresponding to the
quark masses and the strong coupling. Such a scale setting procedure
enables the determination of the values of the lattice spacing used in
the simulations, and any dimensional quantity to be quoted in physi-
cal units. In this work we will describe the implementation of a scale
setting procedure based on the mixed action approach. As calculations
in Lattice Field Theory have become increasingly precise in recent
years, entering the “precision era” with uncertainties falling below 1%,
setting the scale with high accuracy has become a primary focus of
the community. This is because the uncertainty of the scale propagates
into the accuracy of any given lattice observable. For example, for the
hadronic vacuum polarization contribution to the anomalous magnetic
moment of the muon, which must be determined with a sub-percent
accuracy, a significant sensitivity to the scale setting uncertainty has
been established, requiring setting the scale with a precision of a few
permil [22].

The manuscript is structured as follows. In Chapter 1 we introduce
the continuum QCD action and its gauge structure. We then consider
how it can be formulated in a lattice with finite lattice spacing a. We
present the methodology for computing expectation values numeri-
cally, thereby bridging the gap between the path integral formalism
in Euclidean space-time and statistical mechanics. We establish the
theoretical basis underlying the process of taking the continuum limit
and its relation to renormalizability. We review the Symanzik im-
provement program, which is the effective field theory approach to
parameterizing and improving the lattice spacing dependence of lat-
tice observables. Finally, we elaborate on the scale setting program.
In Chapter 2 we define the relevant physical observables relevant in
this work and how they are extracted on the lattice. We also explain
how to extract the ground state signals of these observables, isolating
them from excited states, using model variation techniques. In Chap-
ter 3 we introduce our mixed action regularization. We describe the
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regularizations used in the sea and valence sectors, and perform the
matching procedure of the quark masses in both sectors. Simultane-
ously we tune the valence twisted mass Dirac operator to maximal
twist. Furthermore, we describe the employed chiral trajectory to-
wards the physical point and the mass-shift procedure used to correct
for small mistunings. In Chapter 4 we perform the scale setting of
our mixed action by computing the gradient flow scale ty in physical
units, using as external physical input the masses and decay constants
of the pion and kaon. We explore a number of different models to
perform the chiral extrapolation to the physical pion mass and the
continuum limit at vanishing lattice spacing a2 — 0. We use model
averaging techniques to compute a final average result of ( in physical
units, taking into account the systematic uncertainty due to the model
variation. Treating ty as an intermediate scale allows to extract the
lattice spacing in fermi (fm). In Chapter 5 we analyze the impact of our
scale setting procedure in the computation of hadronic observables
involving the charm quark: using our determination of the scale ty
we obtain results for the renormalized charm quark mass and Dy,
mesons decay constants based on our mixed action setup, following
our work in [33]. Finally, we present our conclusions in Section iv.

This thesis is accompanied by a number of appendices. In Appendix
A we introduce conventions regarding the Gamma matrices, quark
bilinears in the twisted and physical basis of the quark fields. In Ap-
pendix B we provide the expressions for the Gell-Mann matrices and
the su(3) structure constants. In Appendix C we review some basic
aspects of lattice simulations. In Appendix D we briefly discuss the
methods employed to compute the quark propagators through the
inversion of the Dirac operator. In Appendix E we describe the meth-
ods used for error propagation and treatment of (auto)correlations. In
Appendix F we give details on the fitting strategy followed throughout
this work. In Appendix G we give some brief details of the GEVP
method employed for the computation of lattice observables involving
the charm quark. In Appendix H we review the gauge ensembles
used in this work. We quote results for the relevant lattice observables
computed in these ensembles in Appendix I. In Appendix | we give
expressions for the finite volume effect corrections based on Chiral
Perturbation Theory. In Appendix K we report the results for t( in
physical units for each model considered for the chiral-continuum ex-
trapolation. Finally, in Appendix L we present a preliminary analysis
of the chiral-continuum extrapolation for the light and strange quark
masses.



INTRODUCCION

El Modelo Estandar (SM) de la fisica de particulas es la teoria que de-
scribe tres de las cuatro interacciones fundamentales de la Naturaleza:
el electromagnetismo, la interaccién débil y la interaccién fuerte. El
marco tedrico en el que se formula el SM es el de la Teorfa Cudntica
de Campos (QFT), y la teoria que describe la interaccién fuerte es la
Cromodindmica Cudntica o QCD?.

TEORIA CUANTICA DE CAMPOS Y EL MODELO ESTANDAR

El siglo XX fue testigo de dos desarrollos fundamentales en la fisica
moderna y en nuestra comprension de la Naturaleza: la relatividad
especial y la mecénica cudntica.

Por un lado, la teoria de la relatividad especial presenta una re-
formulacién del principio de Galileo, el cual prescribe que las leyes
de la fisica deben permanecer invariables en dos marcos de inercia
diferentes. Dicha reformulacion es coherente con la teoria del elec-
tromagnetismo desarrollada por Maxwell en el siglo XIX y postula
que la velocidad de la luz es una constante universal. Esto condujo
a profundas consecuencias, como la dilatacion temporal y la contrac-
cién espacial, de manera que un observador experimenta el tiempo y
las distancias de forma distinta a otro, dependiendo de la velocidad
relativa de sus marcos inerciales. Ademads, implica la equivalencia de
masa y energfa, y condujo a la formulacién del Universo como una
variedad Lorentziana de 4 dimensiones, el espacio-tiempo, en el que
existe una interrelacion no trivial entre tiempo y espacio.

El principio de la velocidad constante de la luz y el limite superior
que induce en la velocidad de propagacion de las sefiales dejaron
obsoleta la antigua visién newtoniana de las interacciones. Segin
esta tltima, la fuerza que acttia sobre una particula en un momento
dado depende de la posicién de todas las demads particulas en ese
momento. Esto implica una transferencia instantanea de las fuerzas de
una particula a otra, lo que contradice los principios de la relatividad
especial. La Teoria de Campos es el marco que permite superar esta
dificultad. Se basa en el concepto de campos, que son objetos dindmi-
cos que llenan la totalidad del espacio-tiempo. Matematicamente, un
campo es simplemente una funcién del espacio y del tiempo. Tratar
los campos como los grados de libertad fundamentales permite con-
struir una formulacién invariante de Lorentz de la teoria que, por
tanto, es compatible con la relatividad especial. Un ejemplo es la teoria

La discusién principal de esta Introduccién se basa en la review [128], el resto de
referencias relevantes se pueden encontrar en el Capitulo 1
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del electromagnetismo de Maxwell, que describe la dindmica de los
campos E (¥, t) eléctrico y B(¥,t) magnético.

Por otro lado, la mecanica cudntica introduce el concepto de prob-
abilidad en nuestra descripcién de la Naturaleza. En este marco, las
particulas son descritas mediante funciones de onda que representan
la densidad de probabilidad de encontrar una particula en una posi-
cién determinada del espacio en un momento dado. La posicién y el
momento se tratan como operadores conjugados que no conmutan, lo
que da lugar al principio de incertidumbre de Heisenberg, segtin el
cual no es posible conocer simultdneamente la posicion y el momento
de una particula

AxAp > h.

La Teoria Cuantica de Campos es el marco que unifica la mecénica
cuantica y la relatividad especial. Implica la promocién de campos
clasicos a operadores cudnticos de forma andloga al caso de la posicion
y el momento en la mecénica cudntica. De ello se derivan numerosas
consecuencias, como la consideracién de las particulas como excita-
ciones de un campo cuéntico subyacente, la existencia de antiparticulas
o la no conservacién del ntiimero de particulas. Esto tltimo es de es-
pecial importancia para cualquier descripcién cuantica de un sistema
relativista, ya que las colisiones de alta energia pueden dar lugar a la
creacion y aniquilacion de particulas. Ademads, segtn el principio de
incertidumbre de Heisenberg, si una particula se coloca en una caja
de tamafio L habra una incertidumbre en su momento de

Ap > nh/L.

Esto da lugar a una incertidumbre en la energia de la particula del
orden AE > hic/L. Cuando la energia supera 2mc? tenemos energia
suficiente para crear un par particula-antiparticula a partir del vacio,
siendo m la masa de la particula. Esto ocurre a distancias del orden
L=a=1,
mc
que es la longitud de onda Compton reducida. A esta distancia y a
distancias mds pequefias (o equivalentemente a energias mas altas)
uno espera detectar pares particula-antiparticula en proximidad de la
particula original, rompiendo el concepto mismo de particula puntual.
Generalizar el concepto de campo de tal manera que todas las
particulas sean excitaciones de algtin campo resuelve otro enigma
de la Naturaleza: ;como es posible, por ejemplo, que dos electrones
separados por una distancia space-like (causalmente desconectados)
parezcan exactamente iguales, como dos copias perfectas el uno del
otro? Esto queda resuelto si existe un campo universal del electrén
llenando todo el espacio-tiempo, ya que todos los electrones son
simplemente excitaciones de este campo.
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Un ingrediente clave de las QFT son las simetrias, que se definen
en el marco matemaético de la teoria de grupos. Las simetrias globales
son de vital importancia en fisica, ya que proporcionan leyes de con-
servacion a través del Teorema de Noether, como la conservacién de la
energia y el momento. Ademads de las simetrias globales, las simetrias
locales o gauge también desempefian un papel crucial. Estas pueden
considerarse una redundancia en la teoria, de modo que al realizar
una transformacién local de los campos fundamentales la fisica no
cambia. Aunque pueda parecer poco préctico escribir nuestras teorias
de la Naturaleza de forma redundante, es muy ttil ya que nos permite
escribir Lagrangianos simples con grados de libertad no fisicos, que
pueden eliminarse utilizando la redundancia gauge. Esto se ejempli-
fica con el caso del fotén, que sélo tiene dos estados de polarizacion
pero en el SM esta descrito por un campo gauge con 4 grados de liber-
tad. Gracias a la simetria gauge, se pueden eliminar los dos grados
de libertad no fisicos restantes. Otra propiedad de las simetrias gauge
es que permiten una interpretaciéon geométrica de las interacciones:
los campos gauge pueden considerarse como la conexién en un princi-
pal G-bundle, con G el grupo gauge, y el field-strenght tensor como la
curvatura. De este modo, todas las interacciones fundamentales de la
Naturaleza pueden interpretarse de manera geométrica, al igual que
la gravedad en la Relatividad General.

El grupo de simetria gauge del SM es

SU(3)e x SU(2)w x U(1)y,

donde SU(3). es el grupo gauge de la interaccion fuerte (cuya carga
se denomina color), SU(2),, es el grupo gauge de la interacciéon débil
y U(1)y es el grupo gauge de la hipercarga. El mecanismo de Higgs
proporciona una descripcién de la ruptura espontdnea de simetria del
sector electrodébil SU(2)y x U(1)y al del electromagnetismo U (1)em,
asi como un mecanismo para la generaciéon de masas para las particu-
las fundamentales. Las interacciones gauge puras dependen sélo de
tres parametros libres, que son las tres constantes de acoplamiento.
Los campos de materia no introducen ningtin otro parametro libre,
mientras que la adicién del campo de Higgs introduce 22 nuevos
parametros libres en la teoria, que gobiernan las masas de las particu-
las elementales, los angulos de mezcla de sabores y las fases de vio-
lacién CP.

A lo largo de las décadas, el SM ha superado con éxito las pruebas
experimentales. Ejemplos notables son el descubrimiento de las cor-
rientes débiles neutras en 1973, el quark bottom en 1977, los bosones
Zy W en 1983 y la concordancia de la relacién de sus masas entre el
experimento y la teoria, el descubrimiento del quark top en 1995 y el
bosén de Higgs en 2012.

A pesar del notable éxito del SM, sabemos que no puede ser el fin
de la historia. Por un lado, no explica una de las cuatro interacciones
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fundamentales de la Naturaleza, la gravedad. Por otro lado, no hay
ninguna particula candidata en el SM para la materia oscura, que se es-
tima que comprende el ~ 85% del contenido de materia en el Universo.
Ademads, existen otros enigmas tedricos, como el problema de jerar-
quia de la masa de Higgs, la trivialidad del acoplamiento de Higgs,
el enigma del sabor o el problema de CP fuerte, que discutiremos
brevemente a continuacién. Asi pues, el SM puede interpretarse como
una teoria efectiva que describe extremadamente bien el Universo a
las escalas de energfa sondeadas por los colisionadores actuales, pero
que debe haber Nueva Fisica (NP) trabajando a altas energias, cuya
blisqueda es el santo grial de la fisica de particulas actual.

Una de las fronteras de investigacion para la Nueva Fisica es la fron-
tera de precisién. Los experimentos modernos de fisica de particulas
siguen mejorando la precisién de una serie de observables fisicos y,
para detectar posibles sefiales de NP, es de suma importancia alcanzar
un nivel similar de precision en las predicciones tedricas. Una via de
exploraciéon prometedora es el estudio de la fisica del mesén B. Las
desintegraciones semilepténicas de B juegan un papel crucial en la
determinacién de los elementos de la matriz CKM, y existen tensiones
desde hace mucho tiempo entre las determinaciones exclusivas e in-
clusivas de los elementos V,,;, y V [115]. Ademads, en los dltimos afios
se han observado algunas anomalias experimentales en las desintegra-
ciones del mesén B, que sugieren sefiales potenciales de violacién de la
universalidad del sabor lepténico. Actualmente, atin persisten algunas
anomalias prominentes en la corriente cargada b — ctv y en las desin-
tegraciones de corriente neutra b — s¢* ¢~ [35]. Las desintegraciones
raras que en el SM estdn suprimidas por el cambio de sabor de la
corriente neutra o por el mecanismo de GIM constituyen excelentes
sondas de los efectos NP. Otro observable que ha cobrado especial
relevancia en los dltimos afios es el momento magnético anémalo del
muon, que se ha medido experimentalmente con una precisién sin
precedentes [2, 15]. Sin embargo, atin no se ha alcanzado un consenso
tedrico para esta cantidad: un enfoque basado en datos experimentales
conduce a una tensién de 4.2¢ con el valor experimental [7], mientras
que los célculos SM ab-initio conducen a una diferencia de 1.5¢ [22,
78]. En todos estos procesos QCD juega un papel crucial, por lo que
las predicciones tedricas precisas en este sector del SM son de suma
importancia. El marco de la Teoria de Campos en el Reticulo propor-
ciona un método basado en primeros principios para realizar estos
calculos.

(POR QUE LA TEORfA DE CAMPOS EN EL RETICULO?

En los pasos intermedios de los cdlculos de observables fisicos en
QFTs, a menudo hay divergencias que deben ser eliminadas para
que la teoria siga siendo predictiva. Esto se consigue mediante la
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implementacién del programa de renormalizacién, que implica la
sustraccion de las divergencias que surgen en las cantidades fisicas
mediante la redefinicién de los pardmetros de la teoria que no son
observables, tales como normalizaciones de campo, masas y constantes
de acoplo bare. Este programa de renormalizacién se ha aplicado con
éxito a las tres interacciones fundamentales descritas por el SM.

El proceso de renormalizacién introduce una dependencia de los
acoplamientos y masas renormalizados con respecto a la escala de
renormalizacién. Esta dependencia esta limitada por el hecho de que
el grupo de renormalizacién debe garantizar que los observables
fisicos no dependan de la escala de renormalizacién. En el caso del
electromagnetismo, la constante de acoplo (que estd directamente
relacionada con la carga eléctrica del electréon) disminuye a bajas
energias. Sin embargo, en el caso de las teorias de Yang-Mills como
QCD, ocurre lo contrario, y el acoplamiento se hace mds fuerte a bajas
energias.

En el régimen de acoplamiento débil, en el que la constante de
acoplo de una Teoria Cuédntica de Campos es pequefia, la teoria puede
estudiarse mediante una expansioén perturbativa en potencias de la
constante de acoplo. Este es el caso de la Electrodindmica Cudntica
a bajas energifas, donde a lo largo de los afios se han llevado a cabo
calculos perturbativos de alto orden para cantidades como el mo-
mento magnético anémalo del leptén cargado. En el caso de QCD,
sin embargo, la constante de acoplo crece a bajas energias y la teoria
de perturbaciones falla a la hora de realizar predicciones tedricas, ya
que el sistema estd gobernado por fenémenos no perturbativos. El
tnico método basado en primeros principios conocido para estudiar
QFTs en el régimen de acoplamiento fuerte es la Teoria de Campos
en el Reticulo. Esta consiste en discretizar el espacio-tiempo en un
reticulo Euclideo de volumen finito, con los puntos del espacio-tiempo
separados por un espaciado reticular a mayor que cero, cuyo inverso
desempena el papel de un cutoff ultravioleta.

En la teoria de campos en el reticulo, el formalismo de la integral de
caminos puede transformarse en un sistema estadistico de campos en
el que un ntimero finito -pero muy grande- de integrales sobre los cam-
pos puede llevarse a cabo numéricamente mediante métodos de Monte
Carlo de cadenas de Markov. Se trata de un método especialmente
adecuado para calcular valores esperados en una teoria fuertemente
acoplada como QCD, cuyos principales fenémenos distintivos son
no-perturbativos. Por ejemplo, en la teoria de la interaccién fuerte los
efectos no-perturbativos son responsables del confinamiento, por el
cual no se observan particulas con carga de color en la Naturaleza
a bajas energias como estados asint6ticos. La ruptura espontdnea de
simetria quiral es otro ejemplo de efecto no perturbativo, responsable
de la pequeiia masa de los piones. Ademas, se espera que la teoria
genere dindmicamente una brecha de masa debido a su naturaleza no-
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perturbativa. Esto implica que el espectro de QCD no incluye ninguna
particula arbitrariamente ligera. Aunque esto estd confirmado experi-
mentalmente y apoyado por simulaciones numéricas de la Teoria de
Campos en el Reticulo, no existe, por el momento, ninguna prueba
tedrica concluyente de la brecha de masa en QCD. Obtener una prueba
tedrica rigurosa de su existencia constituye uno de los famosos Proble-
mas del Premio del Milenio [99]. Otro aspecto importante de QCD es
su estructura de vacio, el papel del término 6 y la topologia del grupo
gauge. Para avanzar en una comprension tedrica exhaustiva de estas
caracteristicas de QCD, asi como para realizar célculos fiables de alta
precisién necesarios para mejorar las predicciones del SM y contribuir
a la busqueda de NP en la frontera de precision, es esencial emplear
un enfoque no-perturbativo de la teorfa.

El tratamiento no-perturbativo de las QFTs es también de gran im-
portancia por otras razones teéricas. En muchos escenarios populares
més alld del Modelo Estdndar (BSM), los efectos no-perturbativos
juegan un papel central. Por ejemplo, en las teorias supersimétricas
(SUSY), se invocan efectos no perturbativos para romper la super-
simetria a bajas energias. Las teorias de campos casi conformes y los
modelos technicolor (que conservan algunas propiedades similares a
QCD a escalas de energia mas altas) también requieren un tratamiento
no-perturbativo. Ademds, la version en el SM del potencial de Higgs
sufre el problema de la trivialidad. Esto implica que el acoplamiento
de Higgs renormalizado se anula tras la renormalizacién perturbativa,
a menos que exista un cutoff de energia finito en la teoria, lo que
implica que el SM no es mas que una Teoria de Campos Efectiva
(EFT) vélida hasta cierto cutoff de energfa. En este escenario, se espera
que la masa de Higgs reciba grandes contribuciones de las escalas
de alta energia, haciéndola naturalmente pesada, en contraste con el
valor observado en el CERN. Esto se conoce como el problema de la
jerarquia. Calculos numéricos no-perturbativos demuestran la trivial-
idad de las teorias de campo escalar con un término de interaccion
cudrtico [84] (que es el caso del potencial de Higgs en el SM). Sin
embargo, el acoplamiento del campo escalar a otras particulas del
SM podria alterar potencialmente el comportamiento de trivialidad.
Una vez més, estas cuestiones s6lo pueden abordarse empleando un
enfoque no-perturbativo. En consecuencia, la Teoria de Campos en
el Reticulo es un método para investigar una amplia variedad de
problemas de fisica fundamental en el SM y en el contexto de las QFTs
en general.

UNA ACCION MIXTA EN EL RETICULO PARA ESTUDIAR FISICA DE
QUARKS LIGEROS Y EL CHARM

Una vez motivada la necesidad del estudio de QCD en el contexto
de la Teoria de Campos en el Reticulo, el propésito de este trabajo de
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investigacion es construir y explorar una aproximaciéon a QCD en el
reticulo que pueda contribuir a mejorar la precisién de los observables
de la fisica hadrénica en los sectores de quarks ligeros y charm. Se trata
de una iniciativa oportuna en el contexto actual, en el que es necesario
mejorar la determinacion de los pardmetros fundamentales del SM,
asi como de toda una clase de observables estudiados actualmente en
experimentos de fisica de particulas.

Mas concretamente, consideraremos un enfoque de accién mixta
en el que se emplean diferentes operadores de Dirac en los sectores
mar y valencia. Este setup de accién mixta emplea la regularizacién
fermioénica de Wilson para los quarks en el mar, con sabores de quark
up/down con masa degenerada junto con un quark strange, mientras
que la regularizacion de Wilson twisted mass es utilizada en el sector
de valencia, con quarks up/down, strange y charm. Cuando el sector
de valencia se ajusta a maximo twist, las propiedades de simetria del
operador de Dirac de Wilson twisted mass implican que los observ-
ables fisicos no reciben artefactos reticulares O(a), excepto por efectos
residuales proporcionales a la suma de las masas de los quarks del
mar. Esto proporciona una forma alternativa de obtener resultados
en el limite del continuo, ya que los calculos de QCD en el reticulo
en este sefup no requieren la determinacién explicita del conjunto de
coeficientes de O(a) improvement. Esto es particularmente relevante
para el estudio de la fisica del quark charm, ya que los efectos de dis-
cretizacion O(am,) asociados al quark charm pueden ser considerables
debido al valor relativamente grande de la masa del quark charm m..
Por lo tanto, es interesante considerar un enfoque en el que esta fuente
de artefactos reticulares esté ausente.

En general, una accién mixta puede inducir violaciones de uni-
taridad en la teoria del continuo si las masas de los quarks de un
determinado sabor no coinciden entre los sectores mar y valencia.
Este procedimiento de matching es, por tanto, un paso importante del
célculo. Puesto que el mar sélo contiene quarks up/down y strange, es
necesario ajustar los pardmetros de la accién mixta para imponer que
las masas de los quarks fisicos up/down y strange de valencia coincidan
con las del mar. Esto requiere cdlculos precisos en los sectores ligero y
strange de QCD, que es uno de los objetivos de esta tesis.

En un célculo de QCD en el reticulo, las cantidades fisicas se de-
terminan en unidades del espaciado reticular a. Se requiere un input
fisico para fijar los valores de los pardmetros fundamentales corre-
spondientes a las masas de los quarks y a la constante de acoplo fuerte.
Este procedimiento de scale setting permite determinar los valores del
espaciado reticular utilizado en las simulaciones, y obtener cualquier
cantidad fisica en unidades fisicas. En este trabajo describiremos la
implementacién de un procedimiento de scale setting basado en el en-
foque de accién mixta. Dado que los calculos en la Teorfa de Campos
en el Reticulo se han vuelto cada vez mads precisos en los tltimos afios,
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entrando en la “era de la precisién” con incertidumbres que caen por
debajo de 1%, el establecimiento de la escala con alta precisién se
ha convertido en un objetivo primordial de la comunidad. Esto se
debe a que la incertidumbre de la escala se propaga en la precisiéon
de cualquier observable reticular. Por ejemplo, para la contribucién
hadrénica de la polarizacion del vacio al momento magnético anémalo
del muén, que debe determinarse con una precision inferior al 1%, se
ha establecido una sensibilidad significativa a la incertidumbre en el
scale setting, lo que requiere establecer la escala con una precision de
unos pocos permil [22].

El manuscrito estd estructurado como sigue. En el capitulo 1 in-
troducimos la acciéon QCD del continuo y su estructura gauge. A
continuacién consideramos cémo puede formularse en una red con
espaciado reticular finito a. Presentamos la metodologia para calcular
numéricamente valores esperados, salvando asf la distancia entre el
formalismo de la integral de caminos en el espacio-tiempo Euclideo
y la mecénica estadistica. Establecemos la base tedrica que subyace
al proceso de tomar el limite al continuo y su relacién con la renor-
malizabilidad. Revisamos el programa de improvement de Symanzik,
que es el enfoque de la Teoria de Campos Efectiva para parametrizar
y mejorar la dependencia del espaciado reticular de los observables
reticulares. Finalmente, elaboramos el programa de scale setting. En el
capitulo 2 definimos los observables fisicos relevantes en este trabajo
y como se extraen en el reticulo. También explicamos cémo extraer las
sefiales de estado de minima energia de estos observables, aislandolas
de los estados excitados, utilizando técnicas de variacién sobre mod-
elos. En el capitulo 3 introducimos nuestra regularizacién de accién
mixta. Describimos las regularizaciones utilizadas en los sectores mar
y valencia, y realizamos el procedimiento de ajuste de las masas de los
quarks en ambos sectores. Simultdneamente ajustamos el operador de
Dirac twisted mass de valencia a maximo twist. Ademaés, describimos
la trayectoria quiral empleada hacia el punto fisico y el procedimiento
para corregir pequefios mistunings. En el capitulo 4 realizamos el ajuste
de escala de nuestra acciéon mixta calculando la escala f; en unidades
fisicas, utilizando como input fisico externa las masas y constantes de
desintegracion del pién y el kaén. Exploramos una serie de modelos
diferentes para llevar a cabo la extrapolacién quiral a la masa fisica del
pioén y el limite al continuo a un espaciado de red a — 0. Utilizamos
técnicas de variacion sobre modelos para calcular un resultado medio
final de ty en unidades fisicas, teniendo en cuenta la incertidumbre
sistematica debida a la variaciéon de los modelos. Tratar f; como una
escala intermedia permite extraer el espaciado de red en fermi (fm).
En el capitulo 5 analizamos el impacto de nuestro procedimiento de
scale setting en el calculo de observables hadrénicos que involucran al
quark charm: utilizando nuestra determinacién de la escala ¢y obten-
emos resultados para la masa renormalizada del quark charm y las
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constantes de desintegracion de los mesones D(,) basados en nuestro
setup de accién mixta, siguiendo nuestro trabajo en [33]. Finalmente,
presentamos nuestras conclusiones en la seccién iv.

Esta tesis va acompafiada de una serie de apéndices. En el apéndice
A introducimos convenciones relativas a las matrices Gamma, bilin-
eales de quarks en la base fisica y twisted de los campos de quarks.
En el Apéndice B proporcionamos las expresiones para las matrices
de Gell-Mann y las constantes de estructura su(3). En el Apéndice C
revisamos algunos aspectos basicos de las simulaciones reticulares.
En el Apéndice D discutimos brevemente los métodos empleados
para calcular los propagadores de los quarks a través de la inversion
del operador de Dirac. En el Apéndice E describimos los métodos
utilizados para la propagacion de errores y el tratamiento de las
(auto)correlaciones. En el Apéndice F damos detalles sobre la estrate-
gia de fit seguida a lo largo de este trabajo. En el Apéndice G damos
unos breves detalles del método GEVP empleado para el cédlculo de los
observables reticulares que implican al quark charm. En el Apéndice
H revisamos los ensembles gauge utilizados en este trabajo. En el
Apéndice I citamos los resultados para los observables reticulares
relevantes calculados en estos ensembles. En el Apéndice ] damos ex-
presiones para las correcciones del efecto de volumen finito basadas en
la Teoria de Perturbaciones Quiral. En el Apéndice K presentamos los
resultados para ty en unidades fisicas para cada modelo considerado
para la extrapolacién quiral-continuo. Finalmente, en el Apéndice L
presentamos un andlisis preliminar de la extrapolacién quiral-continuo
para las masas de los quarks ligeros y strange.
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QCD ON THE LATTICE

1.1 INTRODUCTION

The gauge theory that describes the strong interaction between quarks
and gluons is called Quantum Chromodynamics or QCD.

The underlying symmetry of QCD is associated with the non-abelian
SU(N = 3) Lie group. The elements of this group are non-commuting,
traceless unitary matrices (2 with unit determinant det () = 1. When
considering a gauge theory the group elements must depend on space-
time coordinates. The map

Q(x) = e @1 (0.1)

provides a local parameterization of the group elements near the
identity with coordinates a(?) (x). Summation over a = 1,..., N> — 1 =
8 is implicit and T(?) are the 8 generators of the SU(3) Lie group.
These live in the Lie algebra su(3), which is the tangent space of the
group SU(3) at the identity I € SU(3). They satisfy the commutation
relations

{T(ﬂ), T(b)] — ifabcT(C)r (1.2)

where f,;. are the structure constants of the group, given in Ap-
pendix B. Unitarity of the group elements means that

O'a=1. (1.3)

The group elements () must be in some representation which deter-
mines how they act on a vector space where the degrees of freedom of
the theory live. In QCD these are quarks and gluons. The former are
described by spinor fields 1, ;, s ;. They carry a Dirac spinor index
«=1,2,3,4and a flavor indexi =1, ..., N £, to each flavor correspond-
ing a different mass (in Nature Ny = 6). They transform under SU(3)
in the fundamental representation,

P(x) = Q)P(x),  Plx) = Plx)Q(x)". (1.4)

In this representation the group generators T(?) are given by the
Gell-Mann matrices (see Appendix B), and quark fields live in a 3-
dimensional vector space, and therefore have an additional index
c = 1,2,3 referred to as color. As spinor fields, their dynamics is
governed by the Dirac fermionic action, which in Euclidean metric
guv = diag(+1,+1,+1, +1) reads

N/ ‘ .
Sp =Y. [ dx §(x) (1,0, +m) () (1.5)
i=1
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Here we have implicitly summed over the repeated y index and omit-
ted the spinor and color indices. This action is invariant under global
SU(3) transformations (Q) independent of x). In order to promote this
transformation into a local or gauge symmetry, we must replace the
derivative by a covariant one

Iup(x) = Dytp(x) = 9uip(x) + iAu(x)9p(x), (1.6)

with A, a new gauge field which must transform under SU(3) in the
adjoint representation

Au(x) = Q(x) Ay (x) Q' (x) +iQ(x)0, Q" (x), (1.7)

in order to ensure gauge invariance of the Dirac action. This field A,
lives in the su(3) algebra, and thus it is a hermitian, traceless matrix
which can be decomposed as a linear combination of the generators
T(2)

Ay = AT, (1.8)

where we again implicitly sum over the repeated index a. The gauge
or gluon fields must have a kinetic piece in the action for them to be
dynamical fields. This is given by the Yang-Mills action

1
;g%/d‘Lx tr(Fyuy (x) Fuw (x)), (1.9)

which describes dynamical gauge fields in the absence of matter fields.
The dimensionless parameter gy is the bare coupling constant and the
energy strength tensor F,, is given by

It lives in the su(3) algebra and can be expressed as
E, = F,%)T(”). (1.11)

From the transformation in eq. (1.7) we derive the gauge transforma-
tion relations of Fy,

Fu(x) = Q(x)Fu (x)QF(x). (1.12)

By collecting the various elements, the continuum QCD action can
thus be written as follows

Ny . .
Sacp = Y [ @*x §(x) (1D + m) ¢'(x) (113)
i=1
+ 2;% /d4x tr (Fuw (x)Fu (x)) . (1.14)

The only parameters of this action are the quark masses m; and the
dimensionless coupling constant go.



1.1 INTRODUCTION

As mentioned in the Introduction, QCD is a strongly coupled theory
at low energies or large distances. In this regime, perturbation theory
cannot be applied to calculate physical observables, since an expansion
in powers of the coupling does not converge. The only known first-
principles method to carry out non-perturbative calculations of a
Quantum Field Theory is Lattice Quantum Field Theory. For the
specific case of Quantum Chromodynamics, we will consider a Lattice
QCD formulation. This method is based on the discretization of space-
time into a hypercubic box or lattice

A = {ng,ny,ny,n3lng =0,..,T/a—1;n;=0,..,L/a—1;i=1,2,3},
(1.15)

where 7 is the lattice spacing between two adjacent sites, and L, T are
the spatial and temporal lattice extents (in physical units) respectively.
The discretization of space-time and the introduction of a finite lattice
spacing a provide a natural momentum cutoff ~ a1, regularizing UV
divergences. Similarly, the finite lattice extent can be interpreted as
in IR cutoff. This implies that the lattice formulation can be seen as
a way to regularize any particular Quantum Field Theory. However,
the presence of these cutoffs induces discretization and finite volume
effects that must be removed from any physical observable. This
procedure can be accomplished by defining a line of constant physics
in which all parameters, corresponding to the renormalized quark
masses, the renormalized coupling and the volume, are kept constant
while the lattice spacing a is reduced towards the continuum limit,
a — 0. Finite volume corrections to these continuum results can
then be studied — e.g. through dedicated lattice simulations or through
effective field theories — to extrapolate the results to the infinite volume
limit. For a renormalizable theory such as QCD, the extrapolation to
the continuum limit of the lattice formulation allows to obtain finite
results for physical observables, after having renormalized the bare
parameters of the Lagrangian.

After discretizing space-time, fermion fields are located at the lattice
sitesn € A

p(n),p(n), neA (1.16)

For the gauge fields, it will be helpful to use the definition of a parallel
transporter for SU(N). An N-component unit vector v is parallel
transported along a curve in space-time parameterized by z,(t) from
point z,(a) = x to z,(b) =y as

v(b) = P(y, x)v(a), (1.17)
P(y,x) = Pel i An@)z, (1.18)

with A, the SU(N) gauge field. This implies that a fermion in the
fundamental representation acquires a phase factor of P(y, x) when
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going from x to y. This parallel transporter is referred to as a gauge
link and its discrete version will be used for the gauge degrees of
freedom on the lattice. It is an element of the group and transforms as

P(x,y) = Q(x)P(x,y)Q" (y). (1.19)

Once the fields have been defined on the lattice, the next step is to
discretize the QCD action. This is done by formulating it in a finite
box A in terms of the aforementioned fields in such a way that in the
continuum limit 4 — 0 the continuum QCD action is recovered. We
discuss this in the following sections.

The Chapter is organized as follows. In Sec. 1.2 we present the
Wilson formulation of the gauge action on the lattice, expressed in
terms of the link variables. In Sec. 1.3 we present various methods for
discretizing the fermion action. In Sec. 1.3.1 we discuss the issue of
fermion doublers that arise with a naive fermion discretization and its
connection to the formulation of chiral symmetry on the lattice. We
also provide some brief comments on Ginsparg-Wilson fermions. In
Sec. 1.3.2 we present the solution to the doublers problem proposed by
Wilson, which consists in adding a term that explicitly breaks chiral
symmetry. This term gives an additional mass to the doublers that
grows with the inverse of the lattice spacing a, thus decoupling in the
continuum limit and helping to distinguish them from the true pole.
In Sec. 1.3.3 we discuss a modification of Wilson fermions which adds
a chirally rotated mass term. This regularization offers several features
that will be exploited in our work. In Sec. 1.4 we review some of the
fundamental concepts of the path integral formalism and how expec-
tation values are computed numerically on the lattice. In Sec. 1.5 we
review some concepts of renormalizability and the continuum limit on
the lattice. In Sec. 1.6 we discuss the Symanzik improvement program,
which allows to systematically subtract cutoff effects associated with
the lattice action and fields, thus facilitating the task of performing
the continuum limit. Finally, in Sec. 1.7 the procedure for setting the
scale on the lattice is discussed. This is a necessary step of the lattice
calculation that allows to obtain predictions in physical units.

1.2 PURE GAUGE SU(3) THEORY ON THE LATTICE

On the lattice, gluon fields can be defined by the link variables
U, (x) € SU(3) that act as a discrete version of the gauge transporters
connecting points x and x + I, with fI = {%o, £1, £2, £3}

Uy, (x) = exp (iaAu(x)). (1.20)
These fields transform as

Uy (x) — Q(x) U (x)Q (x + 1), (1.21)
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and they live on the links of the lattice that connect sites x and x + fi.
A common discretization of the gluonic action is the Wilson gauge
action [129], which is expressed in terms of the link variables U, (x)

Sg = lz Y.) Re tr(1—Uw(x)), (1.22)

gO X uv

where Uy, (x) is the plaquette centered on the lattice site x

Upw (x) = Uy (x)Uy (x + ﬁ)ll;(x + 17)”3(35)/ (1.23)
and where
Ul (x) = U_p(x+p). (1.24)

Using the Baker-Campbell-Hausdorff formula iteratively
1
exp (A)exp (B) = exp <A +B+ 5 [A, B] + > , (1.25)

and using eq. (1.20) we arrive at

Sg = P Y ) ot (Pﬁv(x)) +0(a?%), (1.26)
6 X v
where we introduced the inverse coupling
6
B=—. (1.27)
8

By taking the continuum limit a* Y, — [ d*x we recover the contin-
uum Yang-Mills action.

Eq. (1.26) shows that the effects associated with the discretization
of space-time are of order O(a?) for the Wilson gauge action. The
discretization of the SU(3) pure Yang-Mills action is not unique, and
different choices result in different cutoff effects.

The O(a?) cutoff effects present in the Wilson regularization of
the gauge action can be further reduced by adding additional terms
that respect the symmetries of the theory following the Symanzik im-
provement program. One such choice is the Liischer-Weisz action [83],
which we discuss in Sec. 1.6.

1.3 INTRODUCING FERMIONS ON THE LATTICE

After discretizing the SU(3) gauge action, we still need to find a
suitable discrete version of the fermion action in eq. (1.13) to fully
formulate QCD on the lattice. Theoretical challenges arise when con-
sidering a naive fermion discretization and we will describe how these
can be addressed with alternative formulations.
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1.3.1 Naive fermions

To discretize the continuum fermion action in the absence of gauge
fields, considering only one flavor with mass m,

Sp = /d‘*xz/?(x) (Yu0u +m) P(x), (1.28)
the derivative 9, takes a discrete form such as

() = () = oo (Pt )~ plx— ). (1.29)

In order to preserve the gauge symmetry of the action, the derivative
must be promoted to a covariant derivative, as in the case of the
continuum formulation. To this end, we note that terms such as

P)P(x+p), (1.30)
which arise from (x)d,(x), are not gauge invariant
PP+ 1) = P)Q" ()Qx + )y (x + ). (1.31)

The solution is to introduce the link variable or parallel transporter
U, (x) from site x to x + fi defined in eq. (1.20) which transforms as in
eq. (1.21). Thus, the discretized fermion action reads

S = 'Y §(x) (W Uy ()9 (x + ) —;jt(x— myx—p) +m¢(x)> |

(1.32)

However, this naive formulation of the fermion action exhibits the
doubling problem: despite the fact that we wrote our action to describe
one fermion of mass m, at finite lattice spacing a additional unphysical
poles appear with the same ground state energy. These additional
flavor species are known as doublers. To see how they appear, we
consider the massive Dirac operator D(x,y) in the continuum, defined
such that

Se = [ dtxdty §x)D(xy)p(y). (1.3
on the lattice this takes the form

Sp=a*)_ §(n)D(n,m)p(m), (1.34)

with the Dirac operator for the naive fermion formulation given by

Uy (1) pm — U (1 = )00 pm
2a

D(n,m) = v, + mby . (1.35)
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Considering the free theory,U, = 1, for a massless fermion, m = 0,
upon Fourier transform we get

D(Prﬂl) — lze—ipxnaD(n,m)eiqua (1.36)
4 n,m
_ Ly g (€T e
= V nZ,T:ne r)’y 2a (1'37)
=d(p—q)D(p), (1.38)
with V the 4-dimensional volume of the lattice and
3 i
D(p) =} - msin(pua), (1.39)
K

where we made explicit again the sum over p. The inverse of this
operator can be computed as

~ ia= 'Y, yusin(ppua)

D(p)=— 7L ()t (1.40)

We can see that in the continuum a — 0 we recover the correct form
of the Dirac operator

_Zr), ;
P (1.41)

D(p) "m0 — ;

with one single pole at p> = 0. However, at finite lattice spacing, the
denominator in eq. (1.40) vanishes not only for p = (0,0,0,0) but also
for

p=(m/a,0,0,0), (0,7t/a,0,0), ..., (7t/a,7t/a,t/a,t/a). (1.42)

These are 15 unwanted poles, the doublers, that only disappear in the
continuum, once they become infinitely heavy. These doublers have
the same ground energy as the true pole at p?> = 0 and they affect the
dynamics of the theory.

The problem of doublers is related to chiral symmetry and its
implementation on the lattice. Chiral symmetry in continuum QCD
can be expressed as

{D,75} =0, (1.43)

with D the Dirac operator. The Nielsen-Ninomiya [109, 110] Theorem
states that one cannot implement chiral symmetry in the way of
eq. (1.43) on the lattice without the appearance of doublers. Ginsparg
and Wilson [64] proposed a suitable version of chiral symmetry on
the lattice as

{D,vs} = aDvsD, (1-44)
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such that in the continuum eq. (1.43) is recovered. With this definition
of chiral symmetry on the lattice, it is possible to construct Dirac
operators that satisfy eq. (1.44) and that is free of doublers.

If one is not interested in studying physics related to chiral symme-
try, another choice is to build a Dirac operator that explicitly breaks
chiral symmetry but removes the doublers. Wilson fermions and Wil-
son twisted mass fermions are examples of such a choice, which we
will consider in the following.

1.3.2  Wilson fermions

Wilson proposed [129] to add an extra term to the naive fermion action
in eq. (1.32) to distinguish the doublers from the physical pole. The
Wilson fermion action reads

Sw = a 21/_1(3()% (7,4 (vy + v;;) +2m— avyv;) ¥(x), (1.45)

where we have defined the forward and backward discrete covariant
derivatives as

Vip(x) = ORETD 790 (1.46)
—Ul(x -1 -1
spio) < P U= Dy o

From the expression of Wilson fermion action in eq. (1.45), it follows
that the Wilson Dirac operator reads

D=Dw+m=7 (1 (V4 V3) ~aVuV;) bm (149)

where we have introduced the massless Wilson Dirac operator Dyy,
and the action can be written as

Sw = a* Y §(x) (Dyy + m) (). (1.49)

For Nf flavors, an additional sum over a flavor index i = 1,..., Ny
is required, and m is promoted to a diagonal matrix in flavor space,
whose diagonal elements are m;. The fermion mass m; is commonly
expressed in terms of the hopping parameter x

1

- 2am; + 8’ (1.50)

Ki

For the free case, the momentum space massless Dirac operator reads

Dw(p) = éz'hlsin(pya) + %Z (1 — cos(pya)) ) (1.51)
1 1
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The second summand in the right-hand side comes from the added
Wilson term 4V, V}, in the action, which is responsible for giving an
additional mass term to the doublers

21

- (152)

where [ is the number of momentum components with pu=T /a. This
additional mass term separates the doublers from the physical pole
and causes them to decouple as we approach the continuum limit.

The Wilson term 4V, V, in the Wilson Dirac operator manifestly
breaks chiral symmetry, even in the m; = 0 limit. Chiral symmetry
is however restored in the continuum limit. Consequently, the quark
mass receives an additive renormalization contribution,

m}z = Zp (m; — mer), (1.53)

since it is no longer protected against such a contribution by the axial
symmetry.

The Wilson fermion action receives leading cutoff effects of O(a)
cutoff effects, which can be systematically eliminated by using the
Symanzik improvement program detailed in Sec. 1.6.

1.3.3 Wilson twisted mass fermions

Wilson twisted mass (tm) fermions [57-60, 119] introduce an imaginary
mass term to the Wilson Dirac operator in eq. (1.48) of the form

i (x)pysyp(x), (1.54)

with u the twisted quark mass matrix in flavor space. More specifically,
the Wilson tm Dirac operator reads

D = Dy + m + ipys. (1.55)

We consider four quark flavors

p = diag (pu, —pa, — s, he) , (1.56)
m = diag (m,, my, ms, mc) . (1.57)

By rotating the fields

p - g = e#%ys%lp, P — P = 1/}g*i%75%, (1.58)
T = diag(1u, a, 15, 1c), (1.59)
with a; = 77; the so called twist angles. The latter can be defined

in the renomalized theory in terms of the ratio of the renormalized
standard and twisted quark masses as

m
cotaj = —, (1.60)
Hi
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one retrieves the usual physical (standard) formulation with real
fermionic mass

M; = \/m? + 13, (1.61)

and a chirally rotated Wilson term. The rotated fields ¢’, ¢ define
the so called physical basis, while the unrotated ones ¥, ¢ define the
twisted basis.

In practice we will be working with Wilson tm fermions at maximal
twist

Nu="MNc=—1s=—Na=1, (1.62)

which can be obtained by setting the renormalized standard masses
mX to zero. The procedure to achieve this is explained in Sec. 3.5.

Considering for simplicity the light sector of mass-degenerate light
up/down (1 and d) quarks, at maximal twist the symmetry group
SU(2)y x SU(2) 4 is broken into

SUR)y x SU(2)4 — [U(1)a]1 x [U(1)a]2 x [U(1)v]3, (1.63)

with
q)(x) N ei“fq'YSTZli’D(X) a=1,2
U _ ) , .6
Hwal, {lﬁ(x) — P(x)e"aT a=1,2 o

and

3 7 (165)

with 7 the Pauli matrices. This means that at maximal twist axial
symmetries are not completely broken, and thus the twisted mass is
protected against additive renormalization,

,qu - Zy (g%/ ,uren)]li/ (166)

with piren the renormalization scale.

An important role in our setup is played by the Ward-Takahashi
identities (WTI). They will be used to tune the Wilson twisted mass
parameters to ensure maximal twist. Furthermore, they allow to iden-
tify the renormalization constant of the twisted masses Z,. For the
non-singlet case (i # j) the WTI for the axial and vector currents, in
the continuum limit and in the twisted basis, read (see egs. (2.1-2.2)
for the definition of the currents)

8 Vil = (mi = my)S" + i(ipi — ) P, (1.67)
aﬂAZ = (m; + my)PT + (i + i) 7. (1.68)
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Note that at zero twist angle 1, = 175 = 17, = 1. = 0 the twisted and
physical basis coincide, and the standard WTIs are recovered. On the
other hand, at maximal twist the renormalized standard masses m}{
vanish, which in turn means that the current masses m; in egs. (1.67-
1.68) also vanish (up to cutoff effects). Moreover, the exact flavor
symmetry of massless Wilson fermions implies the existence of a
point-split vector current V;,] on the lattice such that the vector WTI
holds exactly. In the twisted basis, the conserved vector current thus

takes the form

0 = [ (5) = DU+ ) + x4+ )+ DU )]

(1.69)

The conservation of this WTI on the lattice for V,ij means that the
point-split vector current renormalizes trivially with

Zy = 1. (1.70)
From eq. (1.67) this implies that for all flavors

2 1,2
Zu(é’Or fren) = Zp (80, pren)- (1.71)
1.4 PATH INTEGRAL REGULARIZATION

Having formulated the QCD action on the lattice, we need to see
how physical quantities are computed. To do so, we review some
aspects of the path integral formulation in Euclidean space-time. In
this formalism, physical quantities are expressed as expectation values
of operators

(O(x1, ey X)) = ;/D[I]J, P, UjO(xq, ..., xn)e_sw'l/_"u}, (1.72)
z = / D[y, §, U]e~S¥dl, (1.73)

This is equivalent to expectation values in statistical mechanics with a
Boltzmann factor of e~5l¥#Ul, The action can be decomposed into its
gluon and fermion components S[y, P, U] = Sg[U] + Sg[y, ¥, U], and
fermion degrees of freedom can be integrated out as

(O(x1, ) = % [ pluesel 2
X [;}:/D[IP,IP]O(XL...,X”)@SF[w’lp] (1.74)

1
= z/D[U]e*SG[u]ZF (O(X1, e Xn) ) (1.75)
with

Zp = / DI, §leSH¥¥) = 11" det (D). (1.76)
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This fermionic determinant can be expressed as an effective action as

(O(x1, ey Xn)) = ;/D[U]esdu]se“[u] (O(x1, e Xn))g,  (1.77)

z /D[U]e—sc[u}—seff[ull (1.78)
Ny
SeU] = — Y log det (D). (179)

i=1

In order to compute meson observables we will use meson inter-
polators, which are composite fermionic observables that share the
same quantum numbers as the desired meson state. A generic meson
interpolator has the form

0 (x) = § (x)Tay/ (x), (1.80)

with I'y a Gamma matrix or product of matrices. This way, a meson
two-point function reads

(04 )0f(x2)) = 5 [ DlujeSel-Sal
< (F Al ()¢ () Tal () (180)
_ _% /D[u]e—sc[u]—seff[u]
X tr (FADi_l(xl,xz)l"BDj_l(xz, x1)> , (1.82)

where the trace is over spin indices and D; the massive Dirac opera-
tor for flavor i. In order to perform this integral numerically, using
the connection with statistical mechanics, a finite set of Neygg gauge
configurations is generated with Boltzmann distribution ¢~5c[Ul=Sex(U]
following a Markov process (see Appendices C, E). Then, measure-
ments of the quantity

P = —tr (rDi_l(xl,xz)rDj_l(xz, xl)) , (1.83)

are taken in each of these configurations, and the expectation value is
computed as

1 Ncnfg 1
pP) = P+ 0 . 1.8
< > Ncnfg ; l \ Ncnfg ( 4)

1.5 CONTINUUM LIMIT

For the discussion in this subsection we follow [70]. The lattice regu-
larization provides with a natural energy cutoff a1, ensuring that any
loop integral is finite in perturbation theory. In perturbative renormal-
ization, it is necessary to take the cutoff to infinity, which on the lattice
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means taking the lattice spacing to a — 0. If the theory is renormaliz-
able, any physical quantity (e.g. a mass mphys) in units of the lattice
spacing must vanish in the continuum limit

Mphysd — 0, (1.85)

since this means that #1,ys remains finite in this limit.

Physical quantities are dependent on the couplings of the theory,
Mphys(80), and accordingly change with them. In turn, one can study
how the couplings of the theory change on the lattice as one ap-
proaches the continuum limit by decreasing a. To do so and for sim-
plicity, we assume a single coupling go, and write the most general
local effective action at lattice spacing a;

S(a1) = go(a1) }_ O, (1.86)

where O; are all possible local operators respecting the lattice symme-
tries. At a finer lattice spacing a, < a; all the short-range extra degrees
of freedom can be integrated out and reabsorbed into a redefinition
of the coupling, obtaining an effective action at the original scale 4y,
5@ (ay), that has the same generic form but with different couplings

5@ (a1) = g(()z) (a1) ZOi, (1.87)

g8 (a1) = R(go(ar))- (1.88)

R here stands for the renormalization group (RG) transformation that
defines the change in the couplings when varying the lattice spacing.
It can be observed then that renormalizability corresponds to fixed
points g; of the RG transformation

R(g5) = go- (1.89)

In the context of SU(N) Yang-Mills theory, perturbation theory
shows that at a fixed value of the renormalized coupling gr the bare
coupling runs with the lattice spacing as

ﬂ% = B(80) = —Pogd — P180 + - (1.90)
where By are universal coefficients (do not depend on the renormal-
ization scheme) and positive for N = 3 colors and N = 6 flavors, as
in the case of QCD. This shows that gg = 0 is a fixed point of the RG
transformations and thus corresponds to the continuum limit. As the
fixed point is in the weak coupling regime, this perturbative argument
is expected to be valid. Therefore, the continuum limit corresponds to

g0 — 0, (1.91)
or in terms of the inverse coupling f

B — co. (1.92)
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In practice, one cannot numerically simulate at infinite inverse cou-
pling B. Therefore, physical observables are computed at several finite
values of B. This introduces O(a") cutoff effects in the results, with
some power 7. To obtain results in the continuum, one parameterizes
these cutoff effects with some function of the lattice spacing and ex-
trapolates to a — 0. However, this task is far from trivial, and it has
been shown that spectral quantities receive logarithmic corrections
on the lattice spacing [74] which could significantly complicate this
task. To help in the continuum limit extrapolation, one can system-
atically reduce lattice artifacts, e.g. from O(a) to O(a?) following the
Symanzik improvement program.

1.6 SYMANZIK IMPROVEMENT PROGRAM

Symanzik improvement requires improving both the action of the
theory and the lattice interpolators that enter the different correlators.

In order to improve a lattice action, one can describe the target
continuum theory in terms of an effective action in powers of the
lattice spacing a

Seff = /d4xzckﬁk(x)ﬂk_4~ (1.93)
k

Here Ly(x) is the discretized lattice Lagrangian unimproved, the
higher-dimension terms L(x) are all possible Lagrangians built from
fermion and gluon field operators that preserve the symmetries of the
regularized theory, i.e. the lattice theory, with mass dimension 4 + k,
and ¢, are numerical coefficients.

In the case of Lattice QCD, we saw that in the Wilson gauge ac-
tion in eq. (1.26) lattice artifacts appear at O(a?), and therefore no
O(a) improvement is required. However, these O(a?) effects can be
further reduced by adding all possible dimension 4 + k = 6 operators
that preserve the underlying symmetries of the gauge action. These
dimension-6 operators are all three possible ways of writing a closed
path in a rectangular lattice with 6 gauge links: planar, twisted and
L-shaped rectangles. The action then reads

p ) ‘
Sc = L yzv CO;RG (tr (1= Uu(p))) + ;ci;Re (tr (1 - u(ﬂ(ﬂ))] ,
(1.94)

with U said dimension-6 operators. Tuning the coefficients ¢; prop-
erly leads to O(a?) improvement. The CLS ensembles that we employ
in this thesis (see Sec. 3.2) use the so called Liischer-Weisz gauge
action [82, 83], with these coefficients computed at tree-level

¢ =c3=0. (1.95)
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Thus, in the Liischer-Weisz gauge action the only dimension-6 opera-
tors that survive are planar rectangles um,

We also need to improve the fermion action. Wilson fermions have
O(a) cutoff effects. In order to improve the Wilson fermion action
to O(a?) we need to look for all possible operators with dimension
4 + k = 5 that preserve the lattice symmetries. These are

L) = i(x)o B (x)p(x), (1.96)
El(ci)l = mtr (ﬁW<x>ﬁw(x)) , (1.97)
L) = m*p(x)p(x), (1.08)
with
O = [,)/VZ’Z'IYV] ’ (1.99)
Fun(2) = 55 (Qu(%) = Quu()) , (1.100)

Quv = Upw(x) + Uy, (x) + U—py,—v(x) + U—yp(x). (1.101)

ﬁ,gzz)’l(?’) are already present (up to numerical factors) in the original
Wilson fermion action and can therefore be reabsorbed in those terms.
The O(a) improved Wilson Dirac operator appearing in the improved
fermion action reads

Dw +m + cswa% E Uwﬁw, (1.102)
u<v
with cgy the Sheikholeslami-Wohlert coefficient determined non per-
turbatively in [118].

Improving the lattice action ensures improvement of on-shell quan-
tities such as meson masses. However, if one is interested in matrix
elements mediated by some current 7,, it is also necessary to improve
the lattice interpolators that enter into the definition of those currents.
In analogy with the improvement of the action, a local operator O is
expressed in the Symanzik effective theory as

Oeft(x) = Y cxOp(x)a". (1.103)
P

Again, Oy are gauge invariant local operators with the right mass
dimensions and c some parameter properly tuned to cancel a* cutoff
effects. Following this, a generic n-point function reads

(@) = (@) —a [ d*y (@Li(y)) +a (1) + ., (1.109)
with

(@g) = (Op(x1)..00(xn)), (1.105)

(@) = Z (Op(x1)...01(x;)..00(xn)), (1.106)

1

Il
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and vacuum expectation values taken in the continuum. In Sec 2 we
discuss the details of operator improvement for the observables of
interest.

The O(a) improved Wilson tm fermion action is analogous to the
Wilson case, with the improved Dirac operator given by

. 1 N
Dw + m + iysp + Cowll Y oE. (1.107)

p<v

The advantage of Wilson tm fermions is that at maximal twist (vanish-
ing renormalized standard quark mass) one achieves automatic O(a)
improvement [57, 119]. This means that physical quantities are auto-
matically improved without the need of any improvement coefficients
for lattice operators. The following argument is based on the original
work [57] to which we refer for a complete proof.

At maximal twist, the Wilson tm Dirac operator reads

Dyw + ipys. (1.108)

Working in the twisted basis, this action in the continuum is invariant
under a discrete chiral symmetry

1,2
Ré’z = {l/_)(x) - Z:YST ‘ lp(f; , (1.109)
p(x) = Pp(x)ivsT
while El((lz)l in eq. (1.96) is not
'Cl(clz)l - _ﬁz(clz)l- (1.110)

This is key for automatic O(a) improvement. For correlation functions
like eq. (1.104), we have that operators may be even or odd under Rs,
(Pp) and (Pq) having opposite Rs-chirality

(Do) = £ (D), (P1) = F (D). (1.111)
This means that for even ()

(@g) = (Py), <q>o,c,<}:>1> - <q>o,c,<}:>1> -0, (1.112)

(P1) = —(Pq) =0, (1.113)

and thus even operators are automatically O(a) improved. On the
other hand, for odd operators what we have is

(Pg) = — (Do) =0, <q)0£;(c1:)1> = <<Doﬁ,(<1:)1> , (1.114)
(1) = (P1), (1.115)

and thus they vanish in the continuum. Summing up, the only tuning
required for Wilson tm fermions to achieve O(a) improvement is to
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set the bare quark mass m to its critical value m., in order to obtain
maximal twist.

In our particular case, we will be working with a mixed action setup
employing standard Wilson quarks in the sea and fully twisted Wilson
tm quarks in the valence (see Sec 3). This means valence observables
still get residual O(a) cutoff effects from the sea sector, and thus
improvement is still needed. However, these effects are expected to be
O(g¢) in perturbation theory.

Finally, we also need to improve the bare gauge coupling, which at
O(a) reads

%= (1 + abgtr (ngs)» , (1.116)

with ME,S) the sea quark mass matrix (see Sec. 3), and b, the improve-
ment coefficient, whose value at one-loop is given in [90].

1.7 SCALE SETTING

on the lattice, all physical observables are computed in units of the
lattice spacing a. Consequently, in order to make any prediction, it is
necessary to determine a in physical units. This task is called scale
setting. It involves the precise determination of a reference observable,
called the scale, in physical units, to which any other observable is
compared to in order to extract the value of the latter in physical
units. As mentioned in the introduction, in “precision era” lattice
calculations, high precision scale setting is of the utmost importance
in order to extract predictions whose uncertainty is not dominated by
the scale.

As an example of the scale setting procedure, we could use the
proton mass Mproton as a reference scale, and calculate the ratio of it to
a given mass m;
R = —

Mproton

(1.117)

After computing the continuum limit of R;, we can extract the physical
mass 1m; as
h

m" = Ri(a = 0) X Myoion- (1.118)
Here, the proton mass is used as a reference scale, and comparing any
lattice observable to it allows to extract the latter in physical units,
once the continuum limit is performed. This procedure is equivalent
to finding the value of the lattice spacing in physical units, since it can
be extracted as

latt
am
( proton)
1= —gp (1.119)
mproton
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From eq. (1.118) it is clear that when aiming for precise lattice calcula-
tions of any physical observable like m;, a reliable and precise scale
setting is of the utmost importance. In this example this means being
able to determine proton With high accuracy on the lattice in order
to compute the ratios R;, controlling the continuum limit of R; and
having a high precision determination of mggton.

In this context, baryon masses like the proton, the & or the () baryon
mass are popular choices to set the scale [11, 23, 100]. The former is
determined with high accuracy experimentally [133] but suffers from
the signal-to-noise problem [80, 85] on the lattice determination. This
problem is also present in the () baryon mass, but the statistical
precision is better there [23, 100]. Furthermore, the () baryon mass has
a weak dependence on the light quark masses and a strong one in the
strange quark mass. This makes it an interesting scale for trajectories
with constant strange quark mass. Another choice is using meson
masses. The pion and kaon meson masses are used to define the line
of constant physics along which the continuum limit is taken, and
therefore are not available to set the scale. In the past, the p meson
mass was used to set the scale of quenched simulations [20, 75, 96], but
it is not suited for dynamical quarks simulations. The Y meson mass
is also used [54, 66] thanks to its precise experimental determination.
However, large discretization effects due to the b quark are expected.

Instead of using a phenomenological scale like the ones listed above,
another choice is to use intermediate scales, like the gradient flow
scale tg [86, 93] this thesis is based on and that we introduce in Sec. 2.6.
This quantity is a popular choice [11, 14, 29, 73, 77, 123] since it can
be computed to a very high precision on the lattice, though it is not
a physical quantity and as such cannot be measured experimentally.
To obtain its value in the continuum and physical quark masses, one
builds a dimensionless quantity (1/fpA)"#® with some phenomenolog-
ical quantity A on the lattice. After performing the continuum limit,
the physical value of ¢y can be extracted as

— latt
\/ ph _ ( toA) a=0

In addition to the continuum limit, on the lattice often unphysical
quark masses are simulated since they are computationally cheaper.
This means one needs to perform chiral extrapolations/interpolations
of lattice observables to reach physical quark masses. Both chiral
and continuum limits are discussed in Sec. 4 for the scale setting we
perform in this thesis.

Once the physical value of f( is found, it can be used as an in-
termediate scale against which any other quantity A’ on the lattice
can be compared in order to extract the latter in physical units. For
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this purpose, one performs a continuum extrapolation of 1/fyA" and
obtains the physical value of A’ as

(\/EA/)latt
h
Vo

This quantity is already a prediction of the lattice.

A popular choice [23, 26, 29, 123] for A in eq. (1.120) and the
one used in this work is a linear combination of the pion and kaon
decay constants. These exhibit large plateaux on the lattice, indicating
that excited states contributions decay fast and therefore they can be
determined to a high precision on the lattice. On the other hand, their
experimental values are extracted from the weak processes 7w/K — v,
which leads to the measurement of V) fr(x), With Vig,s CKM
matrix elements. This leads to an increase in the uncertainty of the
experimental values of f;x coming from the determination of said
CKM matrix elements [6].

Finally, other popular intermediate scales to t are wy [14, 23, 77]
which is closely related to ty, and the force scale ¢ [16, 106, 120] which
is derived from the static quark-antiquark potential extracted from the
evaluation of Wilson loops. This potential shows early plateaux [121]
which again indicates that excited states contributions are small.

A'Ph = a=0 (1.121)
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ON THE EXTRACTION OF PHYSICAL OBSERVABLES

2.1 INTRODUCTION

In this Chapter we discuss the technical details on the extraction
of physical observables from the lattice. In Sec. 2.2 we define the
two-point functions required for extracting the physical observables
needed in the analysis of the scale setting. In Sec. 2.3 we discuss
how to extract meson masses while Sec. 2.4 covers the extraction of
decay constants, their improvement and renormalization. In Sec. 2.5
we define the PCAC quark masses which will be used to tune Wilson
tm quarks at maximal twist. In Sec. 2.6 we discuss the gradient flow
scale ty) which we will use as the reference scale for the scale setting.
Finally, in Sec. 2.7 we discuss the model averaging technology which
we employ in order to find the ground state signals from all these
lattice observables.

2.2 CORRELATION FUNCTIONS

For the extraction of the physical observables of interest for this work
we need two-point functions involving the pseudoscalar and axial
currents, defined as

PU(x) = §' (x) 59/ (x), (2.1)
AZ (x) lpi(x)')’y'YSl/Jj(x)/ (2.2)

where i, j are flavor indices. The Wilson term in the Wilson and Wilson
tm fermion action breaks chiral symmetry explicitly, and as a result
the Noether currents of the theory are no longer protected against
renormalization. This means that both the pseudoscalar and axial
currents get renormalized as

PIR = 7p(43, thren) (1+ aEpmi]' + abptr (M,)) P, (2.3)
iR _ ~ .

AZ = ZA(g%) (1 + abAmij + abtr (Mq)) AZ, (2.4)
where the b-counterterms are improvement coefficients for the renor-
malization constants. The renormalization constants are shown in
Table 2.1, while the improvement coefficients are in Table 2.2. For our

purposes, we will only need the differences by —Dbp, by —Dp and by,
the latter given in perturbation theory by [125]

ba =1+0.0472¢5 + O(g3). (2.5)
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B Za(85)  Zp(85 Phad)
3.40 0.75642(72)  0.35121(56)
3.46  0.76169(93)  0.34941(44)
3.55 0.76979(43)  0.34767(55)
3.70 0.78378(47)  0.34732(63)
3.85 0.79667(47) 0.35014(73)

Table 2.1: Renormalization constants Z4(g3) and Zp(g3, jiren) for different
values of B. Z4, which does not depend on the energy scale but
only on the bare coupling g3, is calculated non-perturbatively
in [48] using the chirally rotated Schrodinger functional. Zp is
calculated non-perturbatively at the renormalization scale pren =
Mhad = 233(8) MeV in [34].

B ba—bp ba—Dbp by
340 -0324(17)  O(g5) 1.2684
3.46 -0.265(14) O(gs) 1.2638
355 -0.196(14) O(g5) 1.2571
370 -0.119(14) O(g}) 1.2467
385 -0.073(12) O(g}) 12371

Table 2.2: Summary of improvement coefficients at CLS 8 values. b4 — bp is
taken from LCP-1 results in [52], while b4 — bp are computed in
perturbation theory. b4 is computed in perturbation theory in [125]
and given by eq. (2.5)

To achieve O(a) improvement in the Wilson regularization, we need
to improve the axial current as part of the Symanzik improvement
program as follows

A;{(x) — Ag(x) + ac 40, P (x), (2.6)
where we defined the symmetric discrete time derivative

dxy = éx"géj“), (27)

def(x) = LEHD =) (28)

01 () = (WS =) &)

The improvement coefficient c 4 is given non-perturbatively by [32]

(2.10)

13.9847
c(g8) = —0.006033g3 [1+exp <9.2056_ 3.98 )}

85



2.2 CORRELATION FUNCTIONS

The two-point functions that we will focus on, projected to zero-
momentum are given by

y P y ,
Chlxoy0) = 73 L (P10PI(y) ), (2.11)
XY
.. 6 . y
C(xo,0) = 75 L (AJ ()P (y) ) (2.12)
Xy

When only light and strange flavors are involved, the measurements
of the two-point functions (see Appendix D) are taken at fixed source
times yo, T — yo, with yo = a, and evaluated at all sink times xg. In
order to increase statistics the average

Cx(x0,y0) £ Cx(T — x0, T — yo)
2 7

Cx(x0,y0) — (2.13)

is taken, with the 4 sign for the X = P case and — sign for the X = A
case. On the other hand, when heavy flavors are involved (see Sec. 5),
the source position is fixed at yo = T/2 in order to maximize the
distance from the boundaries: when dealing with heavy-light and
heavy-heavy flavor contents in the correlators, we observe that the
region in which the signal for the considered two-point function is
accessible lies entirely within the lattice bulk, and that the boundary
effects are strongly suppressed’.

The spectral decomposition of the two-point functions Cx allows to
extract relevant hadronic observables such as the meson masses and
decay constants. In what follows we restrict to the case of the pion, but
the same applies to any other flavor content. Using the Transfer Matrix
formalism and imposing as boundary conditions that the initial and
final states are given by

9(0,%)) = |¢i), |9(T, %)) = |¢f), (2.14)

we can express a generic two-point function by

(O(x)0()) = Z7 1 (gf| e~ T IO (R)e~ (o WHO(F)e 10 |9,

(2.15)
Z = {(¢sle ™ |¢y). (2.16)
Inserting a complete set of states |p, n)
1= S ) (o) (2.17)
REGIEE R 7
pn

The numerical inversion of the quark propagator in the charm region is performed us-
ing distance preconditioning techniques [41, 51] in order to reduce signal deterioration
and enhance accuracy at large Euclidean times.
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this becomes

(O(x)O(y) L9 Zl Z 23E,.(P) 1 En(7)E(3)

ﬁﬁﬂ

X <¢f"7’ > (T x0)En ()
x (,m| O(%) |, n) e~ o v0)EnlP)

< (B, OF) 5,1y e B (5,1]gy) (2.18)
The partition function reads
<(Pf‘ e |9i) = 13 £ Z 2E ¢f|p' > TR <P,n|¢z>
<4’f’0> e T <0|4>i>, (2.19)

with the notation

10) (0 =

We assume that the boundary states |¢; ¢) are the same and denoted
by |Q)), and share the same quantum numbers of the vacuum |0). This

is true when using open boundary conditions (OBC) in time, which
will be the case for most of the ensembles under study (see Table H.1).

T L3 (2.20)

We will label the quantum states as ﬁ, , >, with n labeling the

energy level and « the other quantum numbers, and using the fact that
we are projecting to zero momentum p = 0 we employ the shorthand
notation

loe, n) (a, n| =

> <6, a, n‘ . (2.21)

1 =
2E:L3 |7

With all this, the two-point function can be written as

<O(X)O(y)> _ Z 2 <<(())||:[é 7(7)1>>€ (T- xo)Eﬁ

B,y nm,l
% (B, m| O(F) |, n) e~ (oW
e Vo 7<’le|0>
x (&, 1| O(F) |,1) e " E] 0,0[0)" (2.22)

where we absorbed the e~ 75 term coming from the partition function
into the energy levels

E;, — E;, — Ey, (2.23)

such that E8 =0.
For sufficiently large source-sink separation xo — o — oo, only the
pion state |77,0) propagates between O(x) and O(y). On the other
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hand, we made the assumption that the boundary states only overlap
with the vacuum, so we are left with

. _ {0 () (0 al O(F) 7
OWOW) = g (0,m] O(%)|%,0)

(0,710)

—(x0—Yo)mx (17 —yoE)
X e (11,01 O(¥) |0,1) e~ Yo% 0,0[0)°

(224)

Finally, far away from the boundaries T — xo, yo — oo the first relevant
contribution from them is the one with energy E?

(0(x)O(y)) = (0,0] O(F) |, 0) e~ 0= (7,0] O(7) |0, 0)

8 [1 e (T WyeiyoE? + } ’ (2.25)
with
_ (0]0,1) (0,1] O(x) |, 0)
* 7 10]0,0) (0,0/ O(x) |77,0)" (2.26)
_ {9[0,1) {7,0]O(y) |0, 1)
= (©]0,0) (7r,0/O(y) |0,0) (2.27)

So far we have assumed OBC in time. In the case with periodic
boundary conditions (PBC), the pseudoscalar and axial correlators are
periodic in time and identical (up to a relative minus sign for the axial)
in xg and T — xg. Considering the first excited state we can write them
as

Cx(x0,y0) = (&0 =) & grT=30%30)

by (e—m’(xo—yo) + e—m’(T—X[H-yo)) , (2.28)

where the 4 sign corresponds to the pseudoscalar correlator X = P
and the — sign for the axial X = A, ap = |(0,0| P*|r,0) |*> and
as = (0,0] A4? |7, 0) (0,0| P* |7t,0), bx the same matrix elements for
the first excited state.

2.3 MESON MASSES

Meson masses involving the light and strange quarks can be extracted
from the pseudoscalar two-point function Cp(xo, o) in eq. (2.11) with
the effective mass, defined as

Cp(x0, Yo) ) .

Cp(xo +a,0) (2.29)

amegt(xo) = log (
For sufficiently large source-sink separation xo > 1 this effective
mass Meg(xo) tends to a plateau as can be seen from the spectral
decomposition of the two-point function eq. (2.25).

47



48

ON THE EXTRACTION OF PHYSICAL OBSERVABLES

In the case of PBC, to extract the pion mass one can alternatively
build the quantity

Cp(xo,y0)  cosh(amy(xo/a—yo/a—T/2a))

Cp(xo+a,y0) cosh(am(xo/a—yo/a+a—T/2a)) (2.30)
and fit am.
The pion mass for one of the ensembles under study is shown in
Fig. 2.1.

For the study of mesons involving heavy flavors (see Sec. 5), we will
employ a generalized eigenvalue problem (GEVP) variational method,
the details of which we give in Appendix G.

2.4 DECAY CONSTANTS

Meson decay constants are given by the vacuum-to-meson matrix
elements. The matrix element we are interested in is the vacuum-to-
pion mediated by the axial current

[m
(0,0[ Aj? [7,0) = fx 275, (2.31)

where f is the bare pion decay constant. To extract this matrix element,
we must remove the matrix element (0, 0| P*4 |77,0) from the axial two-
point function C4(xo,yo) in eq. (2.11). To achieve this, when only light
and strange flavors are involved, we compute the ratio

[Ca(x0,40)Calxo, T — o)
R(xg) = , 2.32
( 0) \/ CP(XOZT_a/yO) ( 3 )
from which we extract the decay constant as
B 2
fr(x0) = LgmnR<x0)- (2.33)

In the PBC case, in order to isolate the matrix element (0,0| A4? |7t,0)
we fit the axial and pseudoscalar correlators in eq. (2.28) to extract the
fit parameters ap 4. This allows to compute the decay constant as

2 aa
fﬂ-’ - L3mn \/@ (234)

Following eq. (2.3), the pion decay constant in the Wilson regular-
ization renormalizes as

fR=2Z4(g5) [L+abatr (My) + abamyg| fr. (2.35)

We assumed improvement of the axial current according to eq. (2.6).

In the Wilson tm regularization at maximal twist, the chiral rotation
in eq. (1.58) rotates the axial to the vector current when going from
the physical to the twisted basis

Al — iV, (2.36)
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which allows to compute the decay constant from the vector current
in the twisted basis following

. m
(0,0] Vi | ,0) = —if ) 275 (237)

The advantage of this is that the vector current is protected against
renormalization (see eq. (1.70)) and thus so is f;. Furthermore, in
the twisted basis we can use the PCVC Ward-Takahashi identity in

eq. (1.67)
(V) 07 ) = i (miws = mypy) (PT(x)O7 (), (2:38)

where O is any interpolator chosen such that (P (x)O/(y)) does not
vanish and #; are given by the maximal twist condition in eq. (1.62),
in order to write the decay constant as

213 y
fr= )55 (Il + [nal) [ 0,01 P |2,0) (2.39)
7T

Different choices of the interpolator O will lead to different values
of the decay constants due to cutoff effects. We choose to use the
pseudoscalar density P/ since it enhances the signal. To extract the
matrix element (0,0| P*/ |7, 0), analogously to the Wilson case, when
only light and strange flavors are involved we can estimate it by the
plateau value of the ratio

(2.40)

| Cp(x0,y0)Cp(x0, T — o)

For PBC, using again the PCVC relation, the decay constant reads

[573
fr= %\/ﬁ (2.41)

Since working at maximal twist, no improvement is needed in the
computation of egs. (2.39-2.41).

The ratios defined in this section for the extraction of decay constants
are shown for the case of one of the ensembles under study in Fig. 2.3.

In the case of meson decay constants involving heavy quarks (see
Sec. 5), we employ again the GEVP method to extract the ground state
signal of the relevant matrix elements (see Appendix G).

2.5 QUARK MASSES

For the quark masses we use the Partially Conserved Axial Current
(PCAC) Ward-Takahashi identity

(34 (x)) O () ) = 2my (P(x)O" (1)), (2.42)
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where O is any interpolator chosen such that (P (x)O/(y)) does not
vanish, and m;; is the so called PCAC quark mass, where the flavor
indices indicate combinations of the individual quark masses

mﬁ—mj

mij = ———. (2.43)

The subtracted quark mass m; — m must agree, up to cutoff effects,
with the corresponding PCAC quark mass for flavor i after renormal-
ization, so by using the latter we do not need to know a priori the
additive mass renormalization. As in the decay constants case, we take
Ol = P since we find the signal to be enhanced. Thus, the PCAC
quark masses read

éxo CZ (XO, yO)
2Cp(x0,y0)

As seen above, the axial current needs to be improved, and the numer-
ator in eq. (2.44) becomes

m,-]-(x()) = (2-44)

éXOCZ(XO/yO) + HCAé‘xoéing(xO,yo) (2.45)

with the discrete second derivative given by

A Ay x+a)+ f(x—a)—2f(x

g0 f(x) = [N 2210y o2) (2.46)
Finally, from eq. (2.3) we see that the PCAC quark mass renormalizes
as

R Za (g%) 7 i i 2
(2.47)

In the Wilson regularization, physical quark masses are determined
from the PCAC masses, while in the Wilson tm regularization at
maximal twist, the latter vanish and the former are given by the
renormalized twisted masses in eq. (1.66).

In Fig. 2.2 we show the dependence of the PCAC quark mass for
one of the ensembles under study.

2.6 GRADIENT FLOW

For the scale setting, we will use the gradient flow scale #; as an inter-
mediate scale. The gradient flow is defined by the partial differential
equation [86, 93]

dB(x,t)

T =Dy,Guu(x,t), Bu(x,t=0)=A,(x), (2.48)
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with A, the usual algebra-valued gauge fields. In this equation ¢ is a
new fictitious dimension called flow time. The associated field strength
tensor Gy, is defined by

Guv(x,t) = 9By (x,t) — 9yBu(x,t) +1 [Bu(x,t), By(x,t)], (2.49)
with the covariant derivative acting on it in the adjoint representation

DyGuy = 0yGuy +1 [By, G - (2.50)
The flow equation can be rewritten as

dB,(x,t)  6Sym[B]
dt  0Bu(x,t)’

Bu(x,t =0) = Au(x), (2.51)

with Syy the continuum Yang-Mills action in eq. (1.9) in terms of
the flow fields B,. From this we can see that the effect of integrating
this equation of motion is to flow the gauge fields towards the local
minima of the Yang-Mills action. By solving the flow equation to
leading order in the bare coupling go

0 (12
By(x,t) = ﬁ_{—ﬂ/d‘Lye (x=y) " AL(®y). (2.52)
The flow field B, is thus smoothed over space-time with smearing
radius rsmear = 20 = V8L, being the variance of the distribution in
eq. (2.52), 0% = 2t.

on the lattice, eq. (2.48) can be expressed as

av,(x,t 05c|V
azﬂéf ) - _gchVMG(EC,E) Vi(x,t), (2.53)
Viu(x, t =0) = Uyu(x), (2.54)

with U, the gauge links in eq. (1.20) and Sg the Wilson gauge action
in eq. (1.22).

After integrating the flow equation eq. (2.48), the action density at
flow time t can be defined as

1
E(x,t) = Str (G (x,1) Gy (x, 1)) . (2.55)
on the lattice, this can be computed by

E(x,t) =) Retr(1—Vyu(x,t)), (2.56)
ITE%

which is just eq. (1.22) but with the plaquette U, (x) of gauge links
U, (x) replaced by the plaquette V},, (x,t) of flow fields V,,(x, t). After
averaging over the 4-dimensional volume

E(t) = (E(x,1)),, (2.57)
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we are left with an average energy density that depends only on
the flow time. This average is computed using the model averaging
technique detailed in Sec. 2.7. The quantity t*E(t) can be precisely
calculated on the lattice, making it a suitable choice for setting the
scale (see Sec. 4). To this end, the scale ¢ is defined as the flow time
which satisfies

PE(t)|1=1, = 0.3. (2.58)

It will be this gradient flow scale ty which we will use as an interme-
diate scale to convert lattice results to physical units. Fig. 2.4 shows
the extraction of ty/a? for one of the ensembles under study.

2.7 GROUND STATE SIGNALS AND MODEL AVERAGE

So far, we have expressed all physical observables under study as
functions of the Euclidean time xj. As discussed in Sec. 2.2, these
quantities are affected by boundary effects and excited states. In or-
der to extract the ground state contribution of each observable, it is
necessary to go to large source-sink separations and ensure sufficient
distance from the boundaries. However, it is not clear how to decide
when these conditions are met, and on the lattice community there are
different approaches to address this issue, see e.g. [11, 29, 123]. Our
choice is to employ model averaging techniques as proposed in [61,
107, 108].

The idea is to investigate multiple fit functions and/or several fit
ranges and assign an Information Criterion IC to each choice, which
allows to compute a weight

W; « exp (—;IQ) , (2.59)

for each choice i of the “model”, which refers to a specific fit function
and fit range. Then one can compute a weighted average for a fit
parameter p that is common to all models as

(Phva = Z piWi, (2.60)

where p; is the fit parameter result for model i, and add a systematic
uncertainty related to the model variation as

Us2yst[p] = <P2>MA - <p>§/[A : (2.61)

For fitting we use a least-squares method that seeks to minimize a x>
function by finding the best values of the fit parameters (for details see
Appendix F). As proposed in [61] we use the Takeuchi’s Information
Criterion (TIC)

TIC = x> —2(x*), (2.62)



2.7 GROUND STATE SIGNALS AND MODEL AVERAGE

where (x?) is a measure of the expected value of the x? [30]. This
IC is well-behaved for cases where fully correlated fits cannot be
performed (see Appendix F for details), which is our case when fitting
observables along the Euclidean time direction. For a fully correlated
fit, (x*) = dof, and thus the TIC reduces to the proposal in [108]

TIC = x* + 2param + 2Mcut, (2.63)

with 7param the number of parameters of the fit and 7yt the number
of points left out of the fit. We see that this Information Criterion
penalizes models with large number of parameters and big cuts in
data, provided the minimization of the X2 succeeds.

In practice, for the extraction of the ground state signals of lattice
observables, the data is fitted to a constant plus two exponential
signals for the OBC ensembles

flxo) = A+ Be €% 4 De~E(T—x0), (2.64)
or for PBC ensembles
f(x0) = A+ Be™ 0 4 Be=C(T—%), (2.65)

and we investigate the effects of varying the fit range. The result for the
fit parameter A corresponds to the ground state signal. An illustration
of the method for the extraction of the ground state signal in the pion
effective mass in Fig. 2.1 is shown in Fig. 2.5, where we selected only
a subset of the fit ranges explored for visualization purposes.

This model averaging technique will also be used for the chiral and
continuum extrapolations needed to set the scale, but there we will
also consider the variation of the fit functions and not only cutting
data (variation of the fit range), see Sec. 4.
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(a): pion effective mass meg in eq. (2.29) for ensemble H1o1 in
the Wilson regularization. (b): the same but for the mixed action
regularization for one point in our valence parameters grid, see
Sec. 3.
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Figure 2.2: (a): up/down PCAC quark mass in eq. (2.42) for ensemble Hio1
in the Wilson regularization. (b): the same but for the mixed
action regularization for one point in our valence parameters grid,
see Sec. 3. At maximal twist this quantity must vanish.
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Figure 2.3: (a): vacuum-to-pion axial matrix element R, from eq. (2.32) for

ensemble H1o1 in the Wilson regularization. (b): vacuum-to-pion
pseudoscalar matrix element Ry from eq. (2.40) in the mixed
action regularization for one point in our valence parameters grid,
see Sec. 3.
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(): t*E(xq, t) for one value of the flow time t/a” near ty/a® as
a function of the Euclidean time x/a, with E(x, ) the space

volume averaged energy density. The latter is defined in eq. (2.56).

(b): Euclidean-time averaged values of > (E(xo,t)) , for several

X
flow times t/a? (blue points) near ty/a? (defined in eq. (2.58))
and the interpolated result for ty/a® (orange point). Results for
ensemble Hio1.
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Model variation for the extraction of the ground state signal of
the pion effective mass of ensemble Hio1 in the Wilson regu-
larization, shown in Fig. 2.1. From top to bottom we show the
ground state signal result from a fit to eq. (2.64) for each fit in-
terval choice, the weight associated to each choice according to
eq. (2.59), and the goodness of fit measured through the p-values
defined in [30]. We see that the highest weights are associated to
a compromise between good fits (in terms of p-values) and fits
with large number of points. The right-most models in the plot
are heavily penalized even though they have the best p-values,
since they cut a large number of points and models with not so
severe cuts get also good p-values. The band in the top figure
indicates the final weighted average result with the systematic
uncertainty in eq. (2.61) included.
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MIXED ACTION SETUP

3.1 MOTIVATION

The lattice setup used in this thesis is based on a mixed action with
Wilson O(a) improved quarks (see Sec. 1.3.2) in the sea and fully
twisted Wilson tm quarks (see Sec. 1.3.3) in the valence, whose goal
is to control cutoff effects in the context of studies of flavor physics
in the charm sector. These effects are of order O(am,) with m. the
mass of the charm quark. The use of Wilson tm fermions at maximal
twist allows to remove such O(am,) lattice artifacts without the need
of computing specific improvement coefficients proportional to the
charm quark mass, thus providing an alternative way to control the
continuum limit extrapolations. Furthermore, the mixed action is yet
another valid lattice regularization which provides an independent
way of measuring physical observables on the lattice. In this respect,
it will allow us to quote independent results for the gradient flow
scale £y (see Sec. 4), the charm quark mass and the D ;) mesons decay
constants [33] (see Sec. 5). In the future, we also plan to extend this
setup to the determination of the light and strange quark masses.
For the definition of the mixed action approach, we recall eq. (1.81)

<oif(x1)oﬁ(x2)> _ _;/D[U]E_SG[U]_Seff[u]

X tr (FD;l(xl,xz)l"D]-_l(xz, x1)> , (3.1)
Ny
See[U] = — Zlog det(D;). (3.2)

We see that the Dirac operator D appears first in the Boltzmann factor
e—SclUl=Se[U] which characterizes the fields of the sea sector, with
which the set of gauge ensembles is generated (see Appendix C),
and then in the fermionic observable whose expectation value we are
interested in, depending on fields of the valence sector. The calculation
is thus divided in two separate stages of the analysis: the first one
corresponds to the generation of gauge ensembles, and the other to
the inversion of the Dirac operator on those gauge configurations
(see Appendix D). This procedure in principle allows for the use of
different regularizations of the Dirac operator in these two steps or
sectors of the theory. In general, a mixed action approach can introduce
unitarity violations even once the continuum limit is taken, unless
the physical quark masses in both sea and valence coincide. This
means that our setup will require a tuning procedure in which the
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values of the Wilson twisted mass parameters are chosen such that
the physical values of quark masses in the valence sector are matched
to the corresponding ones in the sea sector.

The flavor content of our setup is as follows: on the one hand, the
sea sector has Ny = 2 + 1 flavors, i.e. two mass-degenerate light quarks
(corresponding to the u and d flavors) with mass m; and one strange
quark with mass ms. On the other hand, the valence sector consists
of Ny =2+ 1+ 1 flavors, thus adding a charm quark. Since we have
Ny =2+ 1 in the sea and Ny = 2+ 1+ 1 in the valence, the flavors
we need to match are those of the light and strange quarks, treating
the charm quark in the valence as a partially quenched flavor.

In order to perform the matching of the theory, we need to know
beforehand the value of the quark masses in the sea sector. This
means that we need lattice measurements in the fully unitary Wilson
fermions setup (using the Wilson regularization in the sea and valence)
in addition to the mixed action regularization. We therefore consider
two sets of data: those coming from the Wilson unitary setup, which
we refer to as sea or Wilson results, and those coming from the mixed
action itself. The use of these two sets of data will further improve the
control of the scale setting analysis, as we will see in Sec. 4. In addition
to the matching of the sea and valence sectors, we also need to tune
the valence action parameters to enforce full twist and automatic O(a)
improvement.

The Chapter is structured as follows. In Sec. 3.2 we discuss the sea
sector details: ensembles under study, lattice actions and boundary
conditions. In Sec. 3.3 we discuss the valence sector, which employs
Wilson tm quarks. In Sec. 3.4 we discuss the line of constant physics
along which the ensembles under study were generated. They follow
a chiral trajectory towards the physical point that suffers small mistun-
ings and that must be corrected by performing small mass corrections.
We discuss the details of a mass shifting procedure to account for
these effects. Finally, in Sec. 3.5 we deal with the matching of sea and
valence sectors though pseudoscalar masses in order to impose equal
physical quark masses in both sectors and to recover unitarity in the
continuum. We also explain the procedure to tune Wilson tm valence
quarks to maximal twist.

3.2 SEA SECTOR

The gauge ensembles that we employ are CLS ensembles [31, 102] with
N¢ = 2+ 1 non-perturbatively O(a) improved Wilson fermions (see
eq. (1.102)). They use the Liischer-Weisz gauge action [82] defined in
egs. (1.94-1.95) which, following the Symanzik improvement program,
is tree-level improved at O(a?).

For most of the ensembles, open boundary conditions (OBC) in time
are used for the gauge fields, since it has been observed that the use of



3.3 VALENCE SECTOR

periodic boundary conditions (PBC) leads to a steep dependence in the
scaling of the autocorrelation times as one approaches the continuum
limit, a problem known as critical slowing down. This is related to the
existence of topologically disconnected sectors in gauge field space,
which prevents the algorithm to sample correctly different topological
sectors. In contrast to this, OBC let the topological charge flow through
the boundaries and thus improves the sampling of topological sectors.
All ensembles use PBC in the spatial directions.

The ensembles we consider have 5 different values of the lattice
spacing, and for each of them there is one ensemble at the symmetric
point, which is defined as m; = ms, or equivalently for the hopping
parameter x (see eq. (1.50)) as x; = k5. As we will see, all the ensembles,
reported in Table H.1, follow the chiral trajectory defined in eq. (3.6)
below.

3.3 VALENCE SECTOR

In the valence sector, we employ an Ny = 2+ 1+ 1 fully-twisted
Wilson tm fermion action (see Sec. 1.3.3), whose Dirac operator reads

Dw +m™ 4 igMes, (3.3)
with

) = diag(p, —p, —ps, o)™, ™) = diag(my, my, ms, me) ™.

(3-4)

In particular, we use the same standard quark mass for all flavors
5 RO R 0 N

;] — Ms o =M = .

As discussed in Sec. 1.3.3, imposing full twist means that the twist
angles a; fulfill

=

cot a; = m—f{ =0. (3-5)

Hi

To do so, it is enough to impose that the PCAC quark masses in

eq. (2.42) vanish. When this is the case, automatic O(a) improvement

of valence observables is obtained, up to O(atr (M,)) cutoff effects

due to the sea quark masses. However, these effects are expected to
appear at O(g¢) in perturbation theory.

In order to set the valence parameters for which sea and valence
physical quark masses are matched while simultaneously ensuring
that the maximal twist condition is met, we employ a grid of valence
parameter values (x, y, ys)(v) around an estimate of the target point in
order to perform small interpolations that allow us to reach the target

point (x, j, ys)(v)*.
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3.4 CHIRAL TRAJECTORY

The set of CLS ensembles that we use are generated along the trajectory
in the quark mass plane defined by a constant trace of the bare sea
“(s)” quark mass matrix

tr (M‘(f)) = mes) +m® = cnst. (3.6)

This trajectory ensures that at a given value of the lattice spacing, the
improved bare coupling

=g (1 + abgtr (M(S >> (3.7)

remains constant as we vary the sea quark masses to approach the
physical point. Note that for the Wilson unitary setup, sea and valence
quark masses are the same, but not for the mixed action setup. To
ensure that this trajectory crosses the physical point, we define the
dimensionless quantities

¢r = Stom?, (3-8)

1
¢4 = 8t <m%< + 2’”%) , (3.9

which at leading order (LO) ChPT are proportional to the renormalized
quark masses

4)2 & m?, (3'10)

Py Zm}{ + mE =tr (M};) . (3.11)

The trace of the renormalized quark mass matrix tr (M}f) is in turn

proportional to the bare quark mass matrix up to O(a) cutoff effects
tr (M};) =Zmlm {(1 + adytr (My)) tr (My) + adpytr (M?)} . (3.12)

Thus, setting the sea value of ¢4 to its physical value for all ensembles
ensures that eq. (3.6) holds and goes through the physical point, up to
small mistunings due to higher terms in the chiral expansion and to
cutoff effects.

To correct for these mistunings, we perform small mass shifts [29]
in the bare sea quark masses by Taylor expanding lattice observables
at first order as follows

O (m}s) ,mgs)) =0 (m mgs)> + Z( —— ) dd(?s)/ (3.13)
m

q

with the total derivative given by

oP; S dS
() (5] o
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Here O = O ({P;}) is an arbitrary lattice observable and {P;};_1, .
is the set of primary observables on which it depends, in our case
the corresponding mesonic two-point functions and the flow action
density. The first term within the square brackets in the right-hand
side of this equation corresponds to the valence contribution to the
derivative, while the two subsequent terms involving the action S
correspond to the sea contributions. Note that for the Wilson unitary
setup, all terms contribute in fermionic observables, while for the
mixed action setup, since the two-point functions {P;} do not depend
explicitly on m,(f), the first term in the right-hand side of eq. (3.14)
vanishes in fermionic observables. For the gradient flow scale t(, only
the terms involving the action S in eq. (3.14) contribute.

In particular, the sum over g in eq. (3.13) can be done in any direction
of the quark mass plane, and following [124] we choose to mass shift
only the strange quark. For practical purposes, since for each ensemble
we mass shift all relevant observables to the physical value of ¢4 in the
sea sector ([)ff) = qbffh = const., following [123] we rewrite the Taylor
expansion at first order as

O (47 =8") =0 (42) + (9"~ o) d‘;f;s), (.15)
with
d0  dO/dm® (.16

by agD fan®

Note that the sea value 4)55’) is given by ¢4 computed in the Wilson
unitary setup, and its derivative has both sea and valence contribu-
tions. On the other hand, as previously commented, 4O/ dmgs) receives
valence and sea contributions when O is a fermionic observable com-
puted in the Wilson unitary setup, and only sea contributions when
computed in the mixed action regularization. The mass shift to (pgh
can be carried out simultaneously in the sea and valence sectors by
imposing qbff) = (pffh and simply selecting the same values for the
sea and valence hopping parameters x, which is the case of the fully
unitary Wilson setup. On the other hand, the mass shift in the mixed
action requires to first mass shift the sea quark masses to impose

ff) = cp}fh and then tune the valence value of ¢4 to its physical value,
which is done through the matching between sea and valence sectors
(see Sec. 3.5). This furthermore implies the equality of the values of ¢4
in the unitary and mixed action setups.

The observables we will be interested in for the scale setting (see
Sec. 4) are v/tofr, Vtofk and /fo frk, the latter defined in eq. (4.1). All
these quantities are physical and so are their derivatives with respect
to <pff). Thus, one can measure these derivatives for each ensemble
and then fit them as a function of ¢, and the lattice spacing. The
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resulting parametrization can then be used to perform the mass shifts
as an alternative to using the dedicated measurements of dO/ dgbff) on
each ensemble. This has the advantage of improving the precision for
observables whose mass derivatives are noisy or missing, which is
particularly relevant for the finest lattice spacing and the most chiral
ensembles under study. We also include the derivatives of \/fom},
with respect to 4)515) in the mixed action setup since we will need to
mass shift this quantity in order to tune to full twist (see Sec. 3.5).
The dependence on the light-quark mass and lattice spacing of the

derivatives can be described by the following fit form

2
F=A+B¢+ D”ti, (3.17)
0

for all choices of O except for the light PCAC quark mass in the mixed
action setup, for which we require additional parameters to properly
describe the lattice data

2
F= A+ By +C3+ (D+E<p2):—. (3.18)
0

In the case of d¢,/ d¢ff) in the Wilson unitary setup, we exclude the

symmetric point ensembles from the fit to eq. (3.17) since in this setup

o = %¢4 by construction. Thus, in this case we will use this relation
directly to mass shift ¢,.

Results for the fit parameters of eqs. (3.17-3.18) are presented in
Table 3.1, while plots are shown in Figs. 3.1-3.6.

The mass shifts have to be performed to the physical value of
¢4 in eq. (3.9). However, in order to determine it we first need to
input the physical value of the intermediate scale ty, which is the
target of the analysis. Thus, we start the process with an educated
guess of t*" which provides an initial guess for 4)5}1. Once the scale
setting procedure is carried out and a new determination of f is thus
obtained, the analysis is iterated by updating the value of ¢4 to which
the ensembles are mass shifted, until convergence in the determination
of tg is observed. The initial guess used for tgh’ U can be selected as
a value without error. After a few iterative steps of the analysis, we

obtain the new estimate

\ B — 0.1445(6) fm, (3.19)

where the uncertainty keeps all the correlations with the lattice data
entering the analysis. Eq. (3.19) determines the value of cpgh to which
we perform the mass shifts in the subsequent sections, the input values
for physical m, and mg given in eq. (4.3).
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Figure 3.1: Derivative d (/fofrx) / d¢>ff) for the Wilson unitary setup. For the
fit eq. (3.17) was used. Results for the fit parameters are presented

in Table 3.1.

(@) A B C D E
Viofyx | 0.017(8) -0.007(10) - 0.024(26) -
ViofW 0.006(8)  0.008(9) - 0.020(26) -
ViofY | 0.024(10) -0.016(11) - 0.022(27) -

¢¥ | 0.004(36) 0.131(92) - 0.874(129) -
Vi fik | -0.009(7)  0.011(8) - -0.014(18) -
Viofit | -0.007(6)  0.013(8) - -0.028(18) -
Vioff | -0.009(8) 0.010(10) - -0.006(18) a
\/ﬁmﬁ? R -0.004(3) 0.035(10) -0.041(9) 0.020(16)  0.026(24)

m 0.031(17) -0.032(23) - -0.102(73) -

om 0.006(37)  0.050(47) - -0.298(126) -

Table 3.1: Results for the fit parameters in eqs. (3.17-3.18) for derivatives in

eq. (3.16) of the lattice observables that will be used in the analysis.

The superscript “W” refers to the observable being computed in
the Wilson unitary setup, while “tm” refers to the mixed action

setup.
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Figure 3.2: Derivative d¢,/ d(,bff) for the Wilson unitary setup. For the fit

eq. (3.17) was used. Results for the fit parameters are presented in
Table 3.1. The points around ¢-.0.7 correspond to the symmetric
point at which by construction ¢ = 3¢s.
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Figure 3.3: Derivative d (v/fofrk) / dgbff) for the mixed action setup. For the
fit eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.
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Figure 3.4: Derivative d (y/fom,) / dgl)ff) for the mixed action setup. For the
fit eq. (3.18) was used. Results for the fit parameters are presented
in Table 3.1.
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Figure 3.5: Derivative d¢,/ dqbfls) for the mixed action setup. For the fit

eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.
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Figure 3.6: Derivative d¢,/ dqbf) for the mixed action setup. For the fit
eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.

3.5 MATCHING AND TUNING TO FULL TWIST

As explained in Sec. 3.3, when working with a mixed action, after
performing the mass shifts in Sec. 3.4, we need to match the physical
quark masses of the sea and valence sectors. To do this, we use a grid
of valence parameter values to find the target point through small
interpolations. In order to know the values of the relevant observables
in the sea, we use measurements in the fully Wilson unitary setup. In
practice, to compute the physical values (renormalized and improved)
of quark masses we need the relevant improvement coefficients. In
order not to rely on these for the matching procedure, instead of
matching the physical quark masses we choose to use the pion and
kaon masses in units of the gradient flow scale fg

éS) —_= éV), (3‘20)
4’4(15) = (PA(LV)‘ (3.21)

since these quantities are proportional to the physical quark masses at
LO ChPT (see egs. (3.8-3.9)).

Furthermore, we need to tune the Wilson tm action to full twist,
which means setting the valence light PCAC quark mass to zero

g = ) = my = 0. (3:22)

Setting the maximal twist condition through a vanishing value of the
light valence PCAC quark mass, as in eq (3.22), is sufficient to guaran-



3.5 MATCHING AND TUNING TO FULL TWIST

tee the absence of lattice artifacts of O(a) in physical observables [24,

571-
To impose egs. (3.20- 3 22) we perform interpolations of the valence
observables mg‘;), gv)’ ) in the (%, 1, ys)( v) hyperplane, using as fit

functions the following expressions motivated by ChPT

11 .
miy = pi <K<v> K(V>*> pa (1 = 1f”"), (3.23)
2
\% 3 1 1 \% v
9y = :@) (K(V) - K(V)> T P4 (V? = ( : ) + 95, (3-24)
I
w_ps (11N pe (1 1Y
4 V§V) k) W) y(v) k) gV)*
o7 (1 = 1)+ ps (1 = ) + 9. (3.25)

In this way, the target point values (x, y;, ‘us)(v)* are found as fit param-
eters of a simultaneous fit of these three quantities. The interpolation
is shown in Fig. 3.7.

The mixed action results for the quark masses are given by the
target twist mass parameters ygj;)*, while the extraction of the pion
and kaon decay constants in the mixed action setup requires an addi-
tional interpolation along the valence grid to the target point. The fit
functions for this interpolation are

2
v) _ 1 1 1 1
fr'=n (K(V) - K(V)*> + g2 <K(V) 7 + 43}4 (3.26)
(V):r L_i 2_|_r L 1 + 7 (V)+r v)
K 1 K(V) K(V)* 2 K(V) (V)* 3,” ,u .
(327)

The interpolation for the decay constants combination f,x defined in
eq. (4.1) is shown in Fig. 3.8.
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Figure 3.7: Matching of sea (gray horizontal band) and valence values of ¢»
(lower panels) and tuning to full twist am(lvz) = 0 (upper panels)
along the grid of valence parameters values for the ensemble H1os.
Each point represents a different measurement in the valence
along the grid, and the orange band represents the interpolation.
The black point is the target result (x, j;, ys)(v)*. Here we only
show the matching of ¢\ and am'}), though the matching of ¢
is done simultaneously.
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Figure 3.8: Interpolation of /Iy frk (see eq. (4.1)) along the valence grid to
the target point (, y;, ys)(v)* for the ensemble H1o5. The points
with different colors represent measurements at different values
of the valence parameters.



SCALE SETTING

4.1 MOTIVATION

The scale setting involves the precise determination of one reference
observable, the scale, in physical units, to which any other observable
is compared in order to extract the value of the latter in physical units.

We will use the gradient flow scale t introduced in Sec. 2.6 as an
intermediate reference scale since it can be computed on the lattice
with high precision. Following the discussion in Sec. 1.7, we choose
for the phenomenological input the linear combination of the decay
constants of the pion and kaon [29]

A= fr=2 (fK " ;f> . (4.1

After measuring /f frk for each ensemble, one must perform a chiral-
continuum extrapolation in order to extract its value at physical values
of the quark masses and in the continuum. To define the physical
point we use the pion and kaon physical masses, or equivalently the
dimensionless quantities ¢, and ¢4 in egs. (3.8-3.9). Thanks to the
mass shifting procedure in Sec. 3.4, the value of ¢, is kept fixed to
its physical value along our trajectory in the quark mass plane, and
as a result the chiral extrapolation needs to be done in ¢, only. For
the determination of the physical value of the latter we use the initial
guess in eq. (3.19) and the physical input in eq. (4.3). As commented
in Sec. 3.4, once a new determination of ty at the physical point is
obtained, the analysis is iterated updating the value in eq. (3.19) until
convergence is observed. Thus, with each iterative step both the values
of ¢ to which we perform the chiral extrapolation and the value of ¢4
to which we shift our observables are updated.

We employ an O(a) improved lattice action. Furthermore, in the cal-
culation of /8t frx we employ the relevant improvement coefficients
to remove O(a) lattice artifacts for the Wilson unitary setup. On the
other hand, in the mixed action setup, we employ all known improve-
ment coefficients in addition to relying on the O(a) improvement
mechanism at maximal twist. Therefore, we expect lattice artifacts to
start at O(a?) for v/t frk.

In order to perform the chiral-continuum limit, we explore different
ways of parameterizing the dependence on ¢, (¢4 is constant thanks
to the mass shifting procedure of Sec. 3.4) and on the lattice spacing a,
and employ the model averaging techniques introduced in Sec. 2.7.
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After performing the chiral-continuum limit, using as external phys-
ical input the values of the pion and kaon decay constants we can
determine the value of the scale ¢, as

( \/% fr:K)latt
VB = e
f K
Specifically, we consider ensembles with N F=2+1 dynamical
quarks, and thus assume isospin symmetry for the up and down
flavors. Since we work in the limit of isosymmetric QCD (isoQCD), in
which electromagnetic and strong isospin corrections are not explicitly
included, we need to use a prescription to define the physical inputs
in this limit. We opt for the values proposed in [6]

mi*QP = 134.9768(5) MeV,  mi™P = 497.611(13) MeV,

gh", a=0

(4.2)

(4-3)
Fi20QCD — 130,56 (2)exp (13)Qen (2) 1, MeV, (4-4)
K% = 1572(2)exp (2)gED(4) 1| MeV. 45)

The kaon decay constant receives a large contribution to its uncer-
tainty from the determination of the |V,s| CKM matrix element. QED
corrections are also more significant in the kaon decay constant as
compared to the pion case. Although not relying on the kaon decay
constant seems a desirable option, controlling the systematic uncer-
tainties of the chiral-continuum extrapolation of f is at present more
challenging than that of fx.

4.2 DETERMINATION OF \/5 AT THE PHYSICAL POINT

The choice of the combination of decay constants f.x in eq. (4.1) to
set the scale is motivated by its chiral behavior, since at fixed value
of ¢4 its next-to-leading order (NLO) SU(3) ChPT expression only
depends on ¢, through chiral logarithms. To this order we have, using
my, = myg = my [5, 12]

2m% + m?
to = toch (1 + k1(47'ff)2> , (4.6)
[ 16ByL 16ByL
fr=f11+ fg 5m1+%(2m1+m5)—2L(m%)
—L(m%)] ’ (4-7)
[ 8ByL 16ByL
fx=f|1+ ;2 2 (my + ms) + fg 2 (2my + my)
3 3 3
—EL(T’EZT) - EL(m%() - EL(W%) , (4.8)

where L(x) are chiral logarithms, defined as

L(x) = (4;f)210g (47:[)2, (4.9)
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and f, toch, k1, Bo, L; are low energy constants (LECs). The quark masses
can be related to meson masses using the LO expressions

% = 2Bymy, (4.10)

my = Bo(my + ms), (4.11)
4 1

m% = gm%( = gmi (4.12)

This way, the combination /8t fx reads

Fidtia) ni (92) = (VBIofrx) ™ =

Al 7 () 4 (P
-5l (A2> ~ 3k <Az>
ips—¢2\ | B
2L< v 2>+Az¢4

with modified chiral logarithms given by

L(x) = xlog (), (4.14)

and where we absorbed the LECs into the definition of the parameters
A, B as

= 471\/8tonf, (4.15)

(16;) (Ls + 3Lg) + ky. (4.16)

We use the expression in eq. (4.13) to perform the chiral-continuum
extrapolation of /8ty fx. We will use the label [SU(3)xPT] for this
continuum mass-dependence.

To probe the systematic effects associated with chiral extrapolation,
in addition to the SU(3) ChPT expressions, we also consider SU(2) for-
mulae in which the mass dependence of the strange quark is absorbed
in the corresponding LECs. The expressions at NLO reads [4]

, (4.13)

B =

fr=f [1 + WW% - 2L(Mi)] / (4-17)
fic= 500 me) [1+ S S nd). (4.19

More specifically, we either consider the case in which f () and
c(m;) follow a linear dependence on m; or in which they remain
constant. Since in the expression of f, in eq. (4.17), the dependence on
ms appears only through sea quark loop effects, we assume that the
LECs f and L45 are independent of ms. After some algebra, we arrive
at

Fidii), (#2) = B+ Cg2 + Dgy — EL (‘ji) (4.19)
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With the fit parameters A, B, C, D, E combinations of the LECs appear-
ing in eqs. (4.17-4.18). Since we mass shifted to a constant value of
¢4, the fit cannot distinguish between B and D¢y, and we may group
these two terms into a single term in order to reduce the number of fit
parameters. A term of type D¢, may arise from the chiral expansion
of to in eq. (4.6) even when f(X) (1) and c(m;) are considered to be
independent of m;.

Another possibility for the extrapolation to the physical point is
to use Taylor expansions in ¢, around the symmetric point. We have
considered Taylor expansions to the second and fourth order as follows

2
Figosx(¢2) = VB fs¥' = A+ B (¢ — ¢5™)", (4.20)
or
2 4
Figax(@2) = A+ B (g2 —¢7 ") +C (=93, (4.21)

labeling these models as [Tay] and [Tay4]. Due to symmetry rea-
sons [17], there are no terms with odd powers of ¢, — ;ym.

In addition to the extrapolation in the pion mass, we need to sup-
plement these fit functions with cutoff effects in order to describe our

lattice data. To this end, we will explore three possibilities

2

FR(g2) = F () + W (422)
2
P (92) = " (92) + W) (423)
2
F(g2) = FOY(¢2) + (W + Zgn) gTo' (4-24)

We assign the labels [a%], [a%aL] and [a? 4 a?¢»] to characterize the
lattice artifacts of these models, respectively. The lattice artifact in
eq. (4.23) is motivated by [74] where logarithmic corrections in the
lattice spacing a are analyzed. In particular, a set of possible powers
I'; are found to contribute.

Since it is not feasible to include several independent fitting param-
eters to characterize these logarithmic corrections, we chose to include
a single such term. We vary the choice of I'; by monitoring its impact
on the extracted value of tghys after averaging over the set of models.

As tlghys is observed to be independent of the choice of I';, we restrict
ourselves to the smallest value, I' = —0.111, in the model average.

The systematic uncertainty in the extraction of \/1,‘1571 is assessed by
the model variation using the TIC introduced in Sec. 2.7. We vary
over the different ways of performing the chiral-continuum limits
introduced above, as well as over the possibility of performing data
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cuts. In particular, we consider the following cuts (in addition to the
“no cut” choice)

B > 3.40, (4.25)

B > 3.46, (4.26)
my < 420 MeV, (4-27)
my < 350 MeV, (4.28)
B > 3.40 & ¢, < 0.6, (4.29)
myzL > 4.1, (4-30)

meaning that for each cut we keep only ensembles satisfying the
corresponding condition above. With these cut choices, we explore the
systematic uncertainty associated with performing lattice simulations
at coarse lattice spacings, pion masses significantly heavier than in
Nature, and small volumes that may introduce finite volume effects.
In general, the models included in the model average correspond to
good fits in terms of their p-values (see Tables K.2-K.4). This means
that the TIC will tend to heavily penalize any cut in the data, since
the lattice data can be well described by the fit functions explored
without performing any cuts. As a result, we observe that data points
with the coarsest value of lattice spacing and/or with heavier pion
masses — which tend to have smaller uncertainties than those closer
to the continuum and the physical point — strongly constrain the
model selection based on the TIC. In addition, the systematic effects
associated with, for instance, the removal of the coarsest lattice spacing
or of heaviest pion mass data are not always satisfactorily explored
in such a model averaging framework. We therefore wish to extend
the model averaging approach to introduce information on the regime
of parameters in which the effective theories involved in the chiral-
continuum extrapolations are known to perform best. For the case of
the Symanzik expansion, this corresponds to the regime of smaller
values of the lattice spacing, while for chiral perturbation theory it
corresponds to the smaller values of the pion mass. The idea [46] is to
supplement the weight matrix ¥V appearing in the definition of the
X* of the fit (see Appendix F) with a systematic error penalization for
small values of the inverse coupling B and heavy pions, according to

Wl.]—.l =Cij xy/1+ ¢2/Ciiy/1+ c]Z/C]-]-, (4-31)

where C;; is the element of the covariance matrix of the lattice data
of \/8tyfrk for the ensembles i and j, and ¢; is a penalization factor
given by
a2 \*
2 2 2 4
Ci =Cp <8t0> + Cp, P2, (4-32)

which is motivated by the fact that at coarse lattice spacings we expect
O(a*) cutoff effects to be relevant, and for heavy pions we expect that
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higher order effects of O(m%) in the chiral expansion could play a role.
More specifically, the penalization in § will only be applied in f = 3.40
ensembles, while the penalization in ¢, acts only on symmetric point
ensembles ¢, ~ 0.73. The coefficients c¢g 4, in eq. (4.32) are chosen
such that the elements of the weight matrix JV appearing in the x>
function (see Appendix F) for ensembles at the symmetric point or at
the coarsest lattice spacing, are no longer significantly enhanced with
respect to those lying closer to the continuum or at the physical pion
mass. We remark that the determination of the expectation value of the
x* allows to determine the p-value of a fit based on a generic weight
matrix W [30] such as that in eq. (4.31). As expected, in the presence
of an additional term in the x? that suppresses the relative weights of
the coarsest lattice spacing and the heaviest pion masses, we observe
that the p-values of the fits without cuts are similar to those of the
tits implementing the cuts p > 3.40 and m, < 420 MeV. Moreover, the
weights in the model average are more evenly distributed compared
to the case in which we do not include systematic effects in the x>
function. Setting any of the cg 4, coefficients to infinity is equivalent to
performing the cut g > 3.40 or m, < 420 MeV, while setting them to
zero corresponds to the absence of cut.

As anticipated, we will carry out the chiral-continuum extrapola-
tions using two sets of lattice data: the Wilson unitary setup and the
mixed action. Universality arguments imply that the two regulariza-
tions should approach a common continuum limit value with different
lattice artifacts. We can thus perform the continuum-chiral extrapo-
lations for the Wilson data, for the mixed action, or for a combined
data set, parameterizing the data with the same continuum limit mass-
dependence F(¢,) but different cutoff effects (parameterized by
different W, Z fit parameters for Wilson and mixed action data). We
observe that by combining the Wilson and mixed action calculations,
an increase in statistical precision and in the control of the contin-
uum limit extrapolation of /8%y fx can be achieved. As a universality
check, we performed the continuum limit extrapolation of the Wilson
and mixed action determinations of \/8f)frx using only symmetric
point ensembles, without imposing a common value in the continuum.
Since all these points have the same value of ¢, they follow a line of
constant physics as we approach towards the continuum limit. The
extrapolation shown in Fig. 4.1 shows that both data sets agree per-
fectly well in the continuum. For this quantity, the mixed action data
appears to receive milder discretization effects

Once the various models to extrapolate to the continuum and phys-
ical point have been explored, we use the model averaging technique
introduced in Sec. 2.7 to assign a normalized weight to each model

W « exp <—; (X2—2<)(2>)>, (4-33)
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that allows us to compute a weighted average for 1/ tgh, as well as the
associated systematic uncertainty

<\/f5>h > =Y/ Iw, (4.34)
2
st = <\/ t§h2> — <\/t§7h > : (435)

In Figs. 4.3-4.5 we show the model average results for the Wilson
unitary setup, for the mixed action and for the combined analysis. In

Appendix K we show the numerical results of \/tg»h for each model
considered, together with their weights and p-values, for the Wilson,
mixed action and combined analysis. In Fig. 4.2 we show the pion
mass dependence of the continuum-chiral extrapolation for model
[SU(3)xPT][a?] and the combined data set (no cuts), together with the
lattice spacing dependence for the same model, projecting all points
to the physical pion mass 4>2ph using the fit result for the continuum
dependence F™(¢,).

The results for 4/ tgh in physical units as computed from the model

average for the different data sets, using jf;QCD as physical input, are

\/tl(Th = 0.1433(9)stat (4)syst fm, Wilson, (4.36)
\/tgfh = 0.1442(10)stat(4)syst fm, Mixed action, (4.37)
\/tl(?h = 0.1438(7)stat (4)syst fm, Combined. (4.38)

We show a comparison of these results with other determinations in
the literature using Ny = 2 + 1 flavors of dynamical quarks in Fig. 4.7.

We tested the impact of varying over the choice of the coefficients cg
and cgp, in eq. (4.32) and found that the central values of the physical
value of v/t in egs. (4.36-4.38) move always well within 10, and not
a big impact in the final uncertainty is found. More specifically, for
the Combined analysis case if one removes altogether the g = 3.40
and m, = 420 MeV ensembles from the analysis, the statistical and
systematic uncertainties found are the same as in eq. (4.38). Addition-
ally, one finds a statistical uncertainty of 6 x 10~% fm and a systematic
uncertainty of 3 x 10~* fm for the Combined analysis result by setting
cg = ¢y, = 0 and including the f = 3.40 and m, = 420 MeV ensem-
bles into the analysis. Finally, we tested the impact of using [5] for
the physical input of m,, mg, fr, fk instead of using the input in [6]
quoted in egs. (4.3-4.5). This comparison is shown in Fig. 4.6.

The statistical uncertainty in eqs. (4.36-4.38) stems from the gauge
noise of the CLS configurations, the uncertainties in the renormal-
ization constants and improvement coefficients in Tables 2.1-2.2, and
the physical inputs in egs. (4.3-4.5). We show the splitting of these
contributions for the combined analysis case in Table 4.1.
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Figure 4.1: Continuum limit extrapolation of symmetric point ensembles for
the Wilson unitary results (empty points) and for the mixed action
results (filled points). In order to perform a universality check and
verify that both regularizations share the same continuum limit, a
common result at vanishing lattice spacing is not imposed. Cutoff
effects are parameterized as pure O(a?) artifacts independent for
each regularization.

Contributions to total error squared of /f; [Combined]

Model variation (systematic) 25.42%
Gauge ensembles 55.72%
Renormalization and improvement 0.82%
1 0.01%
| Vius| 11.7%
QED corrections to f, 0.32%
QED corrections to fx 3%
Experimental input for f, 0.01%
Experimental input for fx 3%
IsoQCD pion and kaon meson masses < 0.01%

Table 4.1: Different contributions to total uncertainty for /o for the com-
bined analysis of both Wilson and mixed action lattice data in

eq. (4.38).
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Figure 4.2: Top: Light quark mass-dependence of /8tyf x for the SU(3)
ChPT model with pure O(a?) cutoff effects and absence of cuts
in data, corresponding to the label: [SU(3)xPT][a?][—]. We show
the result of the combined fit of both Wilson (empty) and mixed
action (filled) results. The colored bands represent the pion mass
dependence for each lattice spacing for the Wilson results, while
the dashed lines represent the dependence for the mixed action
results. In the latter case we only plot the central value of the
corresponding bands for visualization purposes. Bottom: the same
model, with points projected to the physical pion mass ¢§h using
the fit result for the continuum mass dependence F(¢, ). In this
plot we show the lattice spacing dependence of our ensembles.
The additional systematic effect terms in the x? (see eq. (4.32))
were included. The p-value of this fit is 0.5532.
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Figure 4.3: Model average results for the determination of /% at the physical
point based only on Wilson lattice data and fx as physical
input. Top: model average over cuts in the data, the model weight
defined in eq. (4.33). For each label of the cut performed to
the data displayed in the panel, an average according to the
model weights was taken over the various fit forms employed
to perform the chiral-continuum extrapolation. The label “[-]”
refers to the case in which no cuts are applied to the data. In
all models the penalization of eq. (4.32) was included, so even
in the “[-]” models points at f = 3.40 and m,; = 420 MeV are
penalized in the fit. Bottom: model average over different fit forms
employed in the chiral-continuum extrapolation. For each label
of the fit form displayed in the panel, an average was taken
over the various data cuts according to the model weights. The
blue vertical band shows the result of the model average over
the full set of considered models with systematic and statistical
uncertainties added in quadrature. We provide Tables connecting
each label to the corresponding fit models in Appendix K, as well
as results of \/fy, model weight and p-value for each individual
model.
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Figure 4.4: Model average results for the determination of 1/ at the physical
point based only on mixed action lattice data and fx as physical
input. Top: model average over cuts in the data, the model weight
defined in eq. (4.33). For each label of the cut performed to
the data displayed in the panel, an average according to the
model weights was taken over the various fit forms employed
to perform the chiral-continuum extrapolation. The label “[-]”
refers to the case in which no cuts are applied to the data. In
all models the penalization of eq. (4.32) was included, so even
in the “[-]” models points at f = 3.40 and m; = 420 MeV are
penalized in the fit. Bottom: model average over different fit forms
employed in the chiral-continuum extrapolation. For each label
of the fit form displayed in the panel, an average was taken
over the various data cuts according to the model weights. The
blue vertical band shows the result of the model average over
the full set of considered models with systematic and statistical
uncertainties added in quadrature. We provide Tables connecting
each label to the corresponding fit models in Appendix K, as well
as results of \/fy, model weight and p-value for each individual
model.
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Figure 4.5: Model average results for the determination of /# at the physical
point based on the combination of Wilson and mixed action lattice
data and frx as physical input. Top: model average over cuts in
the data, the model weight defined in eq. (4.33). For each label of
the cut performed to the data displayed in the panel, an average
according to the model weights was taken over the various fit
forms employed to perform the chiral-continuum extrapolation.
The label “[-]” refers to the case in which no cuts are applied to
the data. In all models the penalization of eq. (4.32) was included,
so even in the “[-]” models points at B = 3.40 and m, = 420 MeV
are penalized in the fit. Bottom: model average over different fit
forms employed in the chiral-continuum extrapolation. For each
label of the fit form displayed in the panel, an average was taken
over the various data cuts according to the model weights. The
blue vertical band shows the result of the model average over
the full set of considered models with systematic and statistical
uncertainties added in quadrature. We provide Tables connecting
each label to the corresponding fit models in Appendix K, as well
as results of \/fy, model weight and p-value for each individual
model.
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Figure 4.6: Comparison of our determination of /f; at the physical point
with Bruno et al. ‘16 [29]. For our determination, in each label of
the panel we show three variations, from top to bottom: using
the complete set of ensembles listed in Table H.1, with physical
input from [6] quoted in egs. (4.3-4.5), and the systematic term in
eq. (4.31) added when doing the model average (results quoted in
eqs. (4.36)-4.38); using the complete set of ensembles but removing
the systematic term in eq. (4.31) from the analysis, and using
physical input from [5]; and using the set of ensembles that is
common between the ones listed in Table H.1 and the ones in [29],
without the systematic term in eq. (4.31), and using physical input
from [5]. The latest variation corresponds to an analysis following
what was done in Bruno et al. [29], and we observe an upwards
drift of the central values in \/fy in our results, approaching the
determination of /fj in [29]. The remaining difference between
our determination and that of [29] might be explained by our
use of the model average technique and by the higher amount
of statistics available for ensembles D20oo and J303 with respect

to [29].
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Figure 4.7: Comparison of our results in eqgs. (4.36-4.38) with other deter-
minations of \/f in the literature using Ny = 2+ 1 flavors of
dynamical quarks. We specify between brackets the physical in-
put used in each case to set the scale. BMW ‘12 refers to [23].
RBC/UKQCD ‘14 refers to [19] and QCDSF/UKQCD ‘15 to [21].
Bruno et al. ‘16 refers to [29], Bali et al. 22 to [11], Strassberger
‘23 to [123], and FLAG ‘21 to [6].

4.3 DETERMINATION OF \/% AT THE SYMMETRIC POINT

The symmetric point is defined as the point in the quark mass plane
at which the symmetric line defined by

Myg = My = ms, (4-39)

and the chiral trajectory in eq. (3.6) intersect. In terms of our usual
quantities ¢y, ¢4, the symmetric point satisfies

P2 = %<P4, (4-40)

where ¢4 is given by its physical value after the iterative procedure
to find tgh and after mass shifting (see Sec. 3.4). In order to extract

™ = to (93, (p}fh), following [123] we build the ratio

vV to/ﬂlz

T e (4.41)
/tzy /az

where +/ty/a? is the measurement of the gradient flow scale in each

ensemble while 4/ tgym/ a? is the corresponding lattice determination,
at the same value of the inverse coupling B, but using a symmetric
point ensemble. Following [123] we fit this ratio to

E(g2) = \/1+ pl2 — 95™). (442)
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Figure 4.8: Fit to eq. (4.42) in order to extract ¢y at the symmetric point.

We find this fit form to properly describe the lattice data. More specifi-
cally, no lattice artifacts are discerned from fits with O(a?), O(a*¢,)
and/or O(a%al) cutoff effects. The result of this fit is shown in Fig. 4.8.
Once the data is fitted, we extract t(s)ym in physical units as

\/fzﬁ \/t? (4-43)

For tgh and cpg we can use our determination for the Wilson, mixed
action or combined data sets. The result for the scale at the symmetric
point is, depending on this choice

Vig T = 0.1429(9)sat(4)syst fm, Wilson, (4.44)
Vg = 0.1439(10)stat (4)syst fm, Mixed action, (4.45)
ty’™ = 0.1435(7 ) stat (4)syst fm, Combined. (4.46)

4.4 DETERMINATION OF THE LATTICE SPACING FOR CLS ENSEM-
BLES

2
VT 46 compute

Just as in the previous section, we can use the fit to NG
0 a

ph sym
( to) — /O (g™, (4-47)
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Then, the lattice spacing is extracted as

ph
V tO

a=——— (4-48)

(V)"

For 4)2ph we can either use our determinations of tgh for the Wilson,
mixed action or combined data sets. Results for the lattice spacing are
shown in Table 4.2.

B a [fm] Wilson a [fm] mixed action a [fm] combined
340 0.0842(6)stat(2)syst  0.0848(6)stat(3)syst  0.0845(5)stat(2)syst
3.46  0.0747(5)stat(2)syst  0.0752(5)stat(2)syst  0.0750(4)stat(2)syst
3.55 0.0629(4)stat(2)syst  0.0633(4)stat(2)syst  0.0631(3)stat (2)syst
3.70  0.0488(3)stat(1)syst  0.0491(3)stat(2)syst  0.0490(3)stat(1)syst
3.85 0.0382(2)stat(1)syst  0.0385(3)stat(1)syst  0.0384(2)stat(1)syst

Table 4.2: Values of the lattice spacing a in physical units extracted from the
determination of the gradient flow scale ¢y with the Wilson, mixed
action and combined analysis. The lattice spacing is extracted from
measures of both ty at the physical and symmetric points using
eq. (4.48).

*
4.5 DETERMINATION OF f

Yet another point in the (¢, ¢4) plane of interest corresponds to the
reference point in [29]

¢s =111, ¢o= f4>4 2 (4-49)
The scale ty evaluated at this point is
ty=to (¢3 ", ¢a = 1.11), (4.50)

and its ratio to tgh enters in the computation of the strong coupling
in [47]. To compute t;, we repeat the analysis by mass shifting our
ensembles to the value ¢4 = 1.11 without error and compute the
gradient flow scale at the symmetric point as explained in the Sec. 4.4.

The values we find for ,/tj in physical units for the Wilson, mixed

action and combined cases are

\/% = 0.1432(9)stat(4)syst fm, Wilson, (4.51)
\/% — 0.1439(9)stat (4)syst fm, Mixed action, (4.52)

\/% = 0.1436(7)stat (4)syst fm, Combined. (4-53)



IMPACT OF THE SCALE SETTING IN LATTICE QCD
COMPUTATIONS

In this Chapter we will discuss the role of the determination of f,
described in Chapter 4, in lattice QCD calculations of other observables.
In particular, we will see that the precision of the result quoted in
eq. (4.38) leads to determinations of the renormalized charm quark
mass and D) charmed mesons decay constants for which the scale ty
is not the dominant source of uncertainty.

For the extraction of charmed observables we rely entirely on the
mixed-action approach with Wilson twisted mass fermions at maximal
twist, as reported in Sec. 3.5, exploiting the absence of leading lattice
artifacts of O(ap.) that would otherwise play a dominant role at the
scale of the charm quark mass ji.. This provides a way to approach
the continuum limit of charmed observables complementary to that
based on Wilson fermions that require explicit inclusion of Symanzik
improvement counterterms.

In Sec. 5.1 we discuss the details of our strategy to match the
charm quark mass to its physical value. In Sec. 5.2 we discuss chiral-
continuum extrapolations of the renormalized charm quark mass and
present our results for this quantity at the physical point after perform-
ing a model average over the set of considered functional forms. In
Sec. 5.3 we summarize our results for the charmed mesons D, decay
constants, showing the contribution to the final uncertainty coming
from the determination of the scale ty. For a complete discussion of
these results we refer to [33].

In addition to these charmed mesons computations, in Appendix L
we report about the status of an analysis of the light and strange quark
masses.

5.1 MATCHING OF THE CHARM QUARK MASS

In Sec. 3 we performed the matching of the sea and valence sectors
of our mixed action for the light and strange quark flavors, in addi-
tion to tuning to maximal twist. Once the valence parameters were
determined to ensure these conditions, an independent set of compu-
tations of heavy propagators was performed for the study of charm
physics. Heavy propagators are computed at three different values of
the twisted mass yﬁl) around the physical charm region for most of
the considered ensembles, while for a subset of them two masses have
been used, so that in all cases observables are interpolated at the phys-
ical value of the charm quark mass. In order to fix the charm quark
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mass to its physical value, we use different combinations of mesons
masses my matched to their physical values. Since the charm quark
is partially quenched, this matching procedure involves observables
with only charm quarks in the valence sector.

We study two different charm quark matching conditions based on

(i)

two choices of my;, i = 1,2, and will often be expressed in units of

v/ 8ty as 4)}? = \/Stomg).
The first possibility we explore, corresponding to (,bg), consists in
using the flavor average meson mass combination

my,’ = mg = —my+ ~my,, (5.1)

built from heavy-light H and heavy-strange H; pseudoscalar meson
masses with heavy-quark masses in the neighborhood of the charm.
Since we mass shifted® the considered CLS ensembles in order to
impose a constant value of ¢4 (see eq. (3.9)), we expect the flavor
average combination gbg) to remain fairly constant along the chiral
trajectory. The physical value of mg)’ph is obtained by setting mp
to the following prescription for the isoQCD values of D) meson
masses,

my 9P = 1867.1(2.6) MeV,  m?2® =1967.1(1.3) MeV. (5.2)

The uncertainties in these isoQCD values are chosen to cover the devi-
ation with respect to the experimental values [131] of the D* and DF
meson masses, mpt = 1869.66(5) MeV and m ¥ = 1968.35(7) MeV,
respectively. We observe that the larger uncertzainty in the isoQCD
inputs of the D and Ds; meson masses in eq. (5.2) — as compared to the
corresponding experimental values — does not induce a significant
increase in the uncertainties of our target results. The input values in

eq. (5.2) lead to the following flavor averaged meson mass,
m VPP = o = 1900.4(1.8) MeV . (5.3)

The second strategy, corresponding to (pg), is to consider the mass-
degenerate pseudoscalar meson mass m;"™" extracted from the quark-
connected two-point correlation function made of heavy quark propa-

gators with a mass in the neighborhood of the charm mass,
my = my, " (5-4)

The physical value for this mass, m 2P " is set from the experimental
value of the 7, meson mass [131], m%ﬁp = 2983.9(4) MeV, from which

In the case of the charmed observables considered in this Chapter, the mass shift
was performed in a similar manner to that discussed in Sec. 3.4, but this time using
the dedicated measurements of the mass derivatives for each ensemble, instead of
parametrizing them as a function of ¢, and of the lattice spacing.
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a correction of about 6 MeV, with 100% error, is subtracted to account
for the absence of quark-disconnected diagrams and QED effects [42,
43, 53, 56, 68]. Specifically, we employ,

mip P = oM = 2978(6) MeV . (5.5)

One potential advantage of this choice of matching observable is that
the statistical precision of the 7.°™ meson mass is substantially better
than the one for heavy-light meson masses, as it does not suffer from
the increase in noise-to-signal ratio with Euclidean time.

Any of these matching conditions can in principle be imposed en-
semble by ensemble, even away from the physical point. However,
by doing so we would as a result build in the charm quark mass a
dependence on the value of the reference scale P! as well as O(a?)
effects coming from the specific choice of mpy. To avoid this, we have
opted instead for setting the physical charm quark mass jointly with
the chiral-continuum extrapolation, in a similar way as the one we
employed to reach the physical point in the light and strange sector.
What this means in practice is that the charm quark mass dependence

of any given observable is parameterized as O(a, ¢, cpg) ), and we per-

form a global fit to obtain its physical value O(0, cpgh, cpg)’ph). This will
be the procedure applied below in the determination of the physical
value of the charm quark mass and of the decay constants fp and fp..

5.2 DETERMINATION OF THE CHARM QUARK MASS
5.2.1 Renormalized charm quark masses

As discussed in Sec. 1.3.3, in the Wilson tm regularization, renormal-
ized quark masses can be retrieved from bare Lagrangian twisted
masses through a multiplicative renormalization. In our mixed-action
setup, due to residual effects coming from the sea, the resulting O(a)
improved expression for the renormalized charm mass uX reads

He = Zp ' (80, pren) [1 + abytr (Mff))] e (5.6)

where Zp is the renormalization constant for the non-singlet pseu-

doscalar density at some renormalization scale jiren as discussed in

Sec. 1.3.3. The term depending on the improvement coefficient will be

neglected since it is expected to induce a small correction as it is a sea

quark mass effect such that b, = O(g¢) in perturbation theory and,
(s)

moreover, the sea quark mass matrix tr (Mq ) depends only on the
relatively light (u,d,s) quark masses. Thus, renormalized quark masses
can be obtained by simply applying the renormalization constants Zp
to the twisted masses p; in the Lagrangian.

The values of Zp are listed in Table 2.1 and were computed at a
fixed renormalization scale pp.g = 233(8) MeV in the Schrodinger
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functional renormalization scheme [34]. They allow to obtain the renor-
malized quark masses on each of the ensembles considered in the
chiral continuum extrapolation used to determine the physical value of
the charm quark mass. The conversion into the renormalization group
invariant (RGI) quark mass MR¢! is performed by means of the con-
tinuum (flavor-independent) ratio also computed non-perturbatively

in [34]

M

) = 0.9148(88).. (5.7)

The renormalized quark masses in other renormalization schemes —
such as the MS scheme - are obtained by a perturbative running from
the RGI mass down to the desired renormalization scale piren.

5.2.2  Charm quark mass chiral-continuum fits

Having determined the renormalized charm quark masses in the
Schrodinger Functional scheme at the hadronic renormalization scale
Hhad- ;tf, for all the ensembles listed in Table H.1, we can perform
the chiral-continuum fits to obtain results in the continuum limit
and at the physical point. The matching procedure of the light and
strange sectors is already devised so that the physical value of the
kaon mass is recovered at ¢, = gbgh, where the physical value of
¢ is computed with the isoQCD values of the pion mass quoted
in [6] (see egs. (4.3)), and the physical scale tgh is the one determined
in eq. (4.38). The charm scale is matched through the two different
prescriptions described in Sec. 5.1. All quantities entering the fit are
made dimensionless through the appropriate power of the factor /8f,
and physical units for the final result are restored by using our value
for tgh.

We parameterize the continuum dependence of the renormalized
charm quark mass on ¢, and any of the gbg) with the functional form

VB8to g (a = 0,2, ¢u) = po+ prop2 + p2dh - (5.8)

Based on the heavy quark effective theory expansion [63] at lowest
order, we expect a linear dependence of the charmed meson masses as
a function of the charm quark mass, hence the latter term in the ansatz.
This assumption is supported by our data that show indeed a linear
behavior in the charmed meson masses, as illustrated in Figure 5.3.
Note that this functional form is used to interpolate the dependence
within a small interval around the physical value of the charm quark
mass. When considering the pion dependence of the charm quark
mass, we assume that the leading order contributions exhibit a linear
behavior in ¢». As illustrated in Fig. 5.2, we observe a mild light-quark
mass dependence which is well characterized by a linear term in phij.
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Regarding the lattice spacing dependence of the charm quark mass,
we assume the leading cutoff effects to be O(a?), as discussed above.
Higher order lattice artifacts are explored by including terms of O (a*),
as expected when employing twisted mass fermions at maximal twist.
The impact of lattice artifacts of O(a®) arising from the sea sector
and/or from the renormalization factors will be incorporated in a
forthcoming version of the analysis. Finally, we allow for lattice arti-
facts proportional to m2 and to various powers of the charm mass.
The generic ansatz to parameterize lattice spacing dependence thus
take the following form

a? 2 at 2 4
Cuc(a, 2, PH) = 8to (c1+ cogp +cagfy) + (8to)2 (ca + csppy + codiyr) -

(5.9)

In order to estimate the systematic effects arising from the model
variation, we consider all the possible combinations where some of
the c; coefficients vanish, save for c; which is always kept in the fits.
Furthermore, following [69], we allow for cutoff effects to enter either
linearly or non-linearly, viz.,

V8touRRr (g, 4o ppy) = /BlouS ™ + ¢ (a, 42, ¢1),  (5.10)
V8t u& NN (g, o, pry) = VBRSO x (14 ¢y, (a, ¢2, P11)),

where /8fouX ™" = \/8tg uR(a = 0,¢, pn). We thus end up with
a total of 64 functional forms for each of the two charm matching
conditions, i.e., a total of 128 models.

As in the analysis of the scale setting in Chapter 4, we perform a
model average as introduced in Sec. 2.7 in order to study the different
choices for the chiral-continuum limit extrapolations, assigning to
each fit a model weight through the Takeuchi’s Information Criterion
(TIC), obtaining thus a final weighted average result, as well as a sys-
tematic uncertainty coming from the model variation. For a complete
discussion of the models considered and their relative weight we refer
to [33].

In Table 5.1 we report the results for uX in units of /8t obtained
with each of the two matching conditions independently, as well as
for the combined model average.
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‘ 4>§}) cpg) combined

VBEouR | 3.349(24)(6)  3.366(22)(6)  3.365(23)(7)

Table 5.1: Preliminary results of the model average for the renormalized
charm quark mass in units of /8ty based on the two charm quark
mass matching conditions — ¢S) denotes the flavor-averaged
matching condition in eq. (5.1) and qbg) the 7,°"™ matching pre-
scription in eq. (5.4). The last column reports the combined result
from these two matching procedures according to our model aver-
age prescription. The first error is statistical, while the second is
the systematic uncertainty arising from the model variation.

Figure 5.1 illustrates typical fits for each of the matching conditions,
chosen among those with higher weights according to the TIC pre-
scription. The plot shows the continuum limit behavior of the charm
quark mass in units of 1/8fy. Results coming from the two matching
strategies coincide in the continuum, in spite of displaying a qualita-
tively different structure regarding cutoff effects. We observe that the
linear dependence of O(a?) has to be supplemented by higher order
terms to properly describe the lattice data.

Note also the overall small size of scaling violations, which are at the
few percent level. Finally, Figure 5.2 shows the pion mass dependence
of the charm quark mass, while Figure 5.3 shows the heavy-quark
mass dependence of the charm quark mass. As expected, we observe
a mild dependence of the charm mass on the light quark masses and
a smooth linear interpolation in the heavy-quark mass.

5.2.3 Results for the charm quark mass

The renormalized charm quark mass uX can be obtained once we
combine the results collected in Table 5.1 with our determination of

\/tl(?h in eq. (4.38). As discussed at the beginning of this section, the
knowledge of the renormalization group running factors allows to
quote results for the RGI and MS values of the charm quark mass.
After combining the results from our 128 fitting models through the
model average procedure, and using the running factor in eq. (5.7),
we quote for the three-flavor theory the value for the RGI quark mass

M (Nf = 3) = 1.486(8)stat (3)syst(14)rcr GeV, (5.11)

where the first error is statistical, including the uncertainty from tph,
the second accounts for the systematic uncertainty, derived from the
model average, and the third is the error contribution from the RGI
running factor in eq. (5.7).

Figure 5.4 illustrates the relative contribution of various sources of
error to the uncertainty of our determination of MRS!. The dominant
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Figure 5.1: Comparison of the continuum limit approach for the two charm
matching prescriptions. Shown are two of the fits with the highest
weights from the TIC, projected onto the lattice spacing dimension.
In yellow we show results for the qﬁom matching condition, while
the blue points illustrate the flavor-averaged matching. Each data-
point in this plot is projected to the physical pion mass and the
physical charm quark mass, in order to properly visualize the
lattice spacing dependence.

3.40

,,,,,,,, ¢y = @E}‘VH K a ~0.065 fm
3.389 @ ~0.087 fm B a~0.05 fm
4 a~0.077 fm @4 a ~0.039 fm

3.26 %
A

3.22

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

b2

Figure 5.2: Pion mass dependence of the charm quark mass for one of the
best fits according to the TIC criteria. Results are shown for the
flavor-averaged matching condition. Each point corresponds to
the value for a given ensemble, projected to the physical charm
quark mass. The dashed lines represent the chiral trajectories at
finite lattice spacing, while the blue shaded band is a projection to
the continuum limit. The red point shows the result extrapolated
at the physical point in the continuum.
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Figure 5.3: Heavy-quark mass dependence of the renormalized charm quark

mass uR in units of /8f; for one of the fits with larger weights ac-
cording to the TIC criteria. Results shown for the flavor-averaged
matching condition (,bg) = /8tgmy. Dependencies other than 4)9
in the chiral-continuum extrapolation have been projected to the
physical point. The red square symbols indicate the continuum
results at the physical value (/)%h. We observe a linear dependence
of the charm quark mass on (,bg) = /8tgmy in the neighborhood
of the physical point.
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mBSI(Ny = 3)

BN RG running to RGI mass
EEE Stat. +)-cont. limit
BN Scale setting

Model av.

Figure 5.4: Relative contributions to the total variance of our result for
MfGI(Nf = 3). The dominant piece comes from the error in
the non-perturbative determination of the renormalization group
running factor to the RGI mass quoted in eq. (5.7). The label statis-
tical plus x-continuum limit stands for the error arising from the
statistical accuracy of our data and the chiral-continuum extrapo-
lation, while the scale setting piece comes from the physical value

of the gradient flow scale tgh. Finally, the model average piece
illustrates the systematic error arising from the set of models
considered in this work.

source of error comes from the renormalization group running of
eq. (5.7), while the second most relevant contribution arises from
the statistical error of the correlation functions computed in each
ensemble. The error coming from the uncertainty on tlgh based on our
scale setting procedure, as well as the systematic error from the model
average are subleading contributions. We therefore expect that the
inclusion in this charm quark mass analysis of further ensembles or
increased statistics will only have a significant impact if combined
with improved determinations of the RGI running factor.

In order to quote results in the MS scheme, we use five-loop per-
turbation theory for the quark mass anomalous dimension [8, 10, 92]
and the beta function [9, 72, 91]. The matching between the N =3
and Ny = 4 theories uses the four-loop decoupling effects [81] incor-
porated into the RunDec package [37, 71, 117]. Renormalization group
equations are solved using as input the value A% = 341(12) MeV
from [28]. The correlation arising from the fact that a common subset
of gauge field configuration ensembles were employed in the compu-
tation of A% and the non-perturbative running factor in eq. (5.7) is
taken into account. Our result is shown in Figure 5.5, where we com-
pare our determination of the charm quark mass in the MS scheme
with the results from other lattice QCD calculations also based on
Ny =2+ 1 dynamical simulations and with the corresponding FLAG
average [6]. We observe in particular a good agreement with the results

97



98 IMPACT OF THE SCALE SETTING IN LATTICE QCD COMPUTATIONS
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Figure 5.5: Comparison of our charm quark mass determinations in the
MS scheme with the FLAG average [6] and the results from
other lattice QCD calculations based on Ny = 2 + 1 dynamical
simulations. In our results, shown in blue, we indicate both the
total uncertainty and the error when excluding the uncertainty

arising from AL Starting from the bottom, results are taken
from: PDG [131], HPQCD 08B [3], HPQCD 10 [97], xXQCD [132],
JLQCD 16 [104], Maezawa 16 [95], Petreczky 19 [112], ALPHA 21
[69].

from [69] which are also based on CLS ensembles but employ Wilson
fermions in the valence sector.

5.3 DETERMINATION OF DECAY CONSTANTS OF CHARMED MESONS

For the determination of the decay constants of the charmed mesons
D(;) we employ a similar methodology to the one for the renormalized
charm quark mass. We match the charm quark mass to its physical
value following the same prescription as in Sec. 5.1, and we explore
different ways of performing the chiral-continuum limit extrapolations
in order to obtain fp  at the physical point. For a detailed discussion
we refer to our work [33], here we will only show our main results
emphasizing the impact on these of our determination of the scale f
in Chapter 4.

5.3.1 Computation of decay constants

The quantity we employ to extract fp in the continuum and at
physical quark masses is

qDD(S) = (8t0)3/4fD(5) \/ mD(s)/ (5'12)
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for which a Heavy Quark Effective Theory (HQET) scaling law in
powers of the inverse heavy quark mass exists. The general continuum
heavy and light quark mass dependence can be expressed as the prod-
uct of the individual contributions to arrive at the generic expression

op,, = Dy [1+5<b§1§ﬂ [1+5<1>f<5>} . (5.13)

Here ®, governs the heavy-quark mass dependence while 5@?;%
controls the light quark behavior as approaching the physical point.
Finally, the lattice spacing dependence describing cut-off effects is

D)

regulated by é®, .
For an analysis of each of the terms appearing in eq. (5.13) we refer
to our work [33]. In particular, we refer to eq. (5.13) in the previously
cited work. For ®, we use expressions motivated by HQET, while

the light-quark dependence in 5(1351(,5% admits an expression in Heavy
Meson xPT (HMxPT). For cutoff effects, we consider O(a?), O(a*¢,)
and O(a’py) terms.

Similarly to the case of the charm quark mass, we scan over various
functional forms by including/excluding some of the fit parameters.
We furthermore match the charm scale using the two different proce-
dures described in Sec. 5.1. The result is a total of 57 different models
for each matching condition, and we use the TIC criterion to estimate
the systematic uncertainty associated to the variation within the full
set of fits.

In Table 5.2 we show our determinations of ®p and ®p, for each of
the two procedures to match the charm scale, as well as the result from
their combination. Using this combination we arrive at the following
results for the D(;) meson decay constants,

b = 211.1(1.8)5tat(0.5)syst MeV, (5.14)
fp, = 248.1(1.5)5tat (0.3)syst MeV, (5.15)

where the first error is statistical and the second the systematic un-
certainty from the model average. The different contributions to the
variance of D(;) meson decay constants are shown in Figure 5.6. Fi-
nally, in Figure 5.7 we show a comparison between our results and
other Ny = 2 + 1 lattice QCD determinations.

99



100

IMPACT OF THE SCALE SETTING IN LATTICE QCD COMPUTATIONS

‘ 4)8) cpg) combined

®p | 0.8625(60)(16) 0.8641(68)(48) 0.8627(58)(19)
®p, | 1.0373(52)(6) 1.0375(59)(34) 1.0373(48)(10)

Table 5.2: Preliminary model average results for the observables ®p and ®p,
— defined in eq. (5.12) — which are related to the fp and fp, decay
constants, respectively, for the two different matching quantities

4)9. The last column reports the result of the combination of these
two matching conditions. The first error is statistical while the
second is the estimate of systematic uncertainty arising from the
model averaging procedure.

5.3.2  Direct determination of fp./ fp

In addition to the determination of fp and fp, we investigate the
direct determination of the ratio fp_/fp from a dedicated fit. This
allows for a consistency check, since the ratio is dimensionless and
thus does not require normalization with a reference scale such as
V/8ty. In this ratio, the scale setting dependence is therefore mainly
associated to the matching of the quark masses to their physical values.
Another advantage is that the ratio is exactly 1 by construction when
ms = m;y, i.e., at the symmetric point of our ¢4 = const. trajectory. We
can thus perform a fit that is highly constrained in the unphysical
masses region, at the cost of reducing the total number of ensembles
entering in the study of the approach to the physical point.

A first set of fit ansitze is derived from HMXPT expressions as in
the case for ®p . The generic form is

ZI;S - [1 + (‘SCD;E()ET - 5¢?PT)} {1 + (M)ES - M’ESH . (5.16)

Here 5@?1?% labels the light quark mass dependence of the ratio, while

(5@,? ) controls the continuum limit approach. For more details we
refer to eq. (5.18) in [33]. In the expression for %’;" we consider all the
possible combinations of non-vanishing fit parameters, and perform
our TIC-weighted model average among the different functional forms
tested to quote a systematic uncertainty.

We further explore the systematic uncertainties by considering also
functional forms based on a Taylor expansion of ®p . The generic
expression then reads

D)
m,Taylor

] [1+5<1>f<5>} )
(5.17)

®py, = (¢D<s>> . [1+ 6Dy, Taylor] [1 + 6P
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B Scale setting
W Stat. +x-cont. limit
B Model av.

B Scale setting
B Stat. +x-cont. limit
B Model av.

Figure 5.6: Relative contributions to the total error of our determinations of
fp (top) and fp, (bottom). The label statistical plus x-continuum
limit represents the error arising from the statistical accuracy
of our data and the chiral-continuum extrapolations. The scale

setting label denotes the error coming from the physical value tgh
as determined in Chapter 4, while the model average represents
the systematic error arising from the model variation according
to the TIC procedure.
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Figure 5.7: Comparison of our results for fp and fp, with those from lattice
QCD collaborations based on simulations with Ny = 2+1 dynam-
ical flavors as well as with FLAG21 averages [6]. Only data points
with filled symbols contribute to the FLAG averages. Starting
from the bottom, results are taken from: HPQCD 10 [49], PACS-
CS 11 [105], ENAL/MILC 11 [13], HPQCD 12A [103], YQCD 14
[132], RBC/UKQCD 17 [25], xYQCD 20A [36], ROCD/ALPHA
24 [79]-
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where (@D(S)) is the value in the chiral limit and at the physical
X

value of the heavy-quark mass. More concretely, we refer to eq. (5.21)
in [33].

Then, in order to arrive at our determination of fp /fp we perform
a model average among all the HMxPT and Taylor functional forms,
considering all the possible combinations of non-vanishing fit param-
eters, for the two different matching conditions simultaneously. In
Table 5.3 we report our results for the ratio of decay constants from the
model average separately for each charm matching condition, as well
as their combination. Also for the ratio we observe good agreement

for the two different cpg) tested in this work.

‘ o1 e combined

fo./fp ‘ 1.1651(91)(15)  1.1650(91)(16)  1.1649(90)(16)

Table 5.3: Preliminary results of the model average for fp,/fp for the two
charm-quark matching conditions. The last column reports the
combined result. The first error is statistical while the second is the
systematic uncertainty arising from the model variation procedure.

In Figure 5.8 we show the major error sources contributing to our
final determination of the ratio, where we notice that the major contri-
bution is given by the statistical and chiral-continuum error.
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fp,/fp

W Stat. +x-cont. limit
B Scale Setting
EEE  Model av.

Figure 5.8: Top: Relative contributions to the total error on the determination
of the ratio fp,/ fp. The label statistical plus x-continuum limit
represents the error arising from the statistical accuracy of our
data and the chiral-continuum extrapolation. The scale setting

label denotes the error coming from the physical value ", while
the model average represents the systematic error arising from the
model variation according to the TIC procedure. Bottom: Details of
the relative contributions to the statistical and chiral-continuum
extrapolation error arising from specific gauge field configuration
ensembles.
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CONCLUSIONS AND OUTLOOK

In this Ph.D. thesis we have reported on a scale setting procedure that
provides a new lattice QCD determination of the gradient flow scale
to and the lattice spacing for CLS ensembles. Accurate scale setting
determinations are paramount to reach the sub-percent precision level
required for some of the lattice QCD calculations aimed at improv-
ing the precision of Standard Model predictions. The results of the
scale setting procedure are being used in an ongoing study aimed
at improving the determination of quark masses and D,y decay con-
stants. These quantities are necessary to improve the determination of
some of the fundamental parameters of the Standard Model and to
strengthen the consistency checks of its validity.

In this work we employed lattice gauge field configurations gen-
erated by the CLS initiative [31, 102] with lattice spacings ranging
from a ~ 0.085 fm to a ~ 0.038 fm, and pion masses from m, ~ 420
MeV down to the physical point m,; ~ 130 MeV. We have used a
mixed action lattice regularization based on CLS gauge ensembles
with Ny =2 +1 O(a) improved sea Wilson quarks and Ny =2 +1+1
valence Wilson twisted mass quarks. We performed the matching of
the mixed action through the pseudoscalar pion and kaon masses,
which equates physical masses for the up/down and strange quarks
in the sea and valence sectors, treating the additional charm quark as
a partially quenched flavor. This ensures the unitarity of the theory
in the continuum limit. Furthermore, we tuned the parameters of
the Wilson twisted mass Dirac operator in order to impose maximal
twist, ensuring automatic O(a) improvement [57, 119] for valence
observables up to subleading effects coming from the sea sector.

We employ the I'-method to compute the errors of the Monte Carlo
data together with automatic differentiation to perform error propa-
gation that is accurate to machine precision. This allows arbitrarily
complex derived observables to be considered while retaining ade-
quate control of autocorrelations. These techniques are implemented
within the ADerrors.jl Julia library [113, 114].

For the scale setting procedure based on a combination of the Wilson
and Wilson twisted mass quark regularizations we employed the pion
and kaon decay constants as physical input. We obtain the following

result for \/ty

V'to = 0.1438(7 ) stat (4) syst fm, [frk]. (5.18)

Using the kaon decay constant to set the scale relies on the determi-
nation of the CKM matrix element V,; which has a larger uncertainty
than V,,;. The uncertainty from |V,;s| amounts to about 11% of the total
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squared error of v/f. In addition, fk receives larger QED corrections
than f,;, whose uncertainty amounts to a ~ 3% contribution to the
total squared error. It is therefore desirable to consider also the case
where only the pion decay constant is used as an external input in
the scale setting procedure. The use of physical point ensembles with
various values of the lattice spacing is expected to play a decisive
role in such an analysis. This would be a natural extension of the
analysis presented in this work, together with the determination of
the up/down and strange quark masses from a combination of the
Wilson unitary and mixed action regularizations, of which we provide
a preliminary analysis in Appendix L.

Furthermore, following our work in [33] we have presented the
current status of the determination of the physical charm quark mass
and charmed mesons decay constants based on this mixed action setup,
exploiting automatic O(a) improvement to reduce lattice artifacts
associated with the heavy quark mass. Using our determination of the
scale top we quote as result for the RGI charm quark mass in the three
flavor theory

MEC! (N = 3) = 1.486(8)stat(3)syst (14)rG1 GeV . (5.19)

The error of the RGI quark mass is completely dominated by the
computation of the non-perturbative renormalization group running
factor, and therefore, no substantial improvement can be achieved until
a more precise calculation of this quantity is obtained. In particular,
the uncertainty in the scale ty accounts for ~ 3% of the squared total
error in MEC!(Ny = 3).

For the D) decay constants we quote

fp = 211.1(1.8)stat(0.5)syst MeV, (5.20)
o, = 248.1(1.5) 0t (0.3)syst MeV. (5.21)

In this case, the error is completely dominated by the statistical uncer-
tainty of the gauge ensembles and the chiral-continuum extrapolations,
and the scale setting accounts for the second largest contribution.

The results quoted in this work were obtained in the isosymmetric
limit of QCD, defined in [6]. As the accuracy of lattice results continues
to improve, the inclusion of QED and strong isospin breaking effects
will become increasingly relevant for constraining precision physics
observables. Another avenue for future developments consists in the
extension of a setup combining Wilson and twisted Wilson mass
fermions to approach the b-quark sector, following a step-scaling
strategy [122].



CONCLUSIONES Y PERSPECTIVAS

En esta tesis doctoral hemos presentado un procedimiento de ajuste
de escala o scale setting en el contexto de QCD en el reticulo que
proporciona una nueva determinacién de la escala f( y del espaciado
reticular para configuraciones de campo gauge CLS. Una determi-
nacién precisa de la escala en el reticulo es fundamental para alcanzar
el nivel de precisiéon por debajo del 1% requerido para algunos de los
célculos de QCD en el reticulo destinados a mejorar la precision de las
predicciones del Modelo Estandar. Los resultados del scale setting se
estdn utilizando en un estudio en curso destinado a mejorar la determi-
nacién de las masas de los quarks y las constantes de desintegracion
de los mesones D). Estas cantidades son necesarias para mejorar
la determinacién de algunos de los pardmetros fundamentales del
Modelo Estdndar y para reforzar las comprobaciones de consistencia
de su validez.

En este trabajo hemos empleado configuraciones de campo gauge
en el reticulo generadas por la iniciativa CLS [31, 102] con espaciados
reticulares que van desde a ~ 0.085 fm a a ~ 0.038 fm, y masas de
piones desde m, ~ 420 MeV hasta el punto fisico m, ~ 130 MeV.
Hemos utilizado una regularizacién reticular con una accién mixta
basada en configuraciones gauge CLS con Ny = 2+ 1 sabores de
quarks Wilson O(a) improved en el mar y Ny = 2+ 1+ 1 sabores de
quarks Wilson twisted mass en la valencia. Realizamos el ajuste de
la accién mixta a través de las masas pseudoescalares de piones y
kaones, igualando las masas fisicas para los quarks up/down y strange
en los sectores mar y valencia, tratando el quark charm adicional como
un sabor parcialmente quenched. Esto asegura la unitariedad de la
teoria en el limite al continuo. Ademads, ajustamos los pardmetros
del operador de Dirac Wilson twisted mass para imponer maximal
twist, asegurando asi un O(a) improvement automatico [57, 119] para
observables de valencia, salvo efectos de orden superior procedentes
del mar.

Empleamos el método-I para calcular los errores de los datos Monte
Carlo junto con herramientas de diferenciacién automatica para re-
alizar una propagacion de errores exacta a precisiéon de maquina. Esto
permite considerar observables derivados arbitrariamente complejos,
manteniendo un control adecuado de las autocorrelaciones. Estas téc-
nicas se implementan dentro de la librerfa de Julia ADerrors.jl [113,
114].

Para el procedimiento de scale setting basado en una combinacién
de las regularizaciones de Wilson y Wilson twisted mass empleamos
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las constantes de desintegracion del pioén y el kaén como input fisico.
Obtenemos el siguiente resultado para /f

Vo = 0.1438(7 ) sgat (4) syst fm, [frk]. (5.22)

El uso de la constante de desintegracion del kaén para establecer la
escala ty depende de la determinacién del elemento de la matriz CKM
Vis, que tiene una incertidumbre mayor que V4. La incertidumbre de
|Vis| asciende a aproximadamente 11% del error total al cuadrado de
Vto. Ademas, fx recibe mayores correcciones provenientes de QED
que f, cuya incertidumbre asciende a una contribucién de ~ 3% al
error total al cuadrado. Por lo tanto, es deseable considerar también el
caso en el que solo la constante de desintegracién del pién se utiliza
como input externo en el procedimiento de ajuste de escala. Se espera
que el uso de configuraciones gauge simuladas a la masa fisica del
pioén con varios valores del espaciado reticular desempefie un papel
decisivo en dicho analisis. Esta seria una extensién natural del andlisis
presentado en este trabajo, junto con la determinacién de las masas
de los quarks up/down y strange a partir de una combinacién de las
regularizaciones unitaria y de accién mixta de Wilson, de las que
proporcionamos un andlisis preliminar en el Apéndice L.

Ademads, siguiendo nuestro trabajo en [33] hemos presentado el
estado actual de la determinacion de la masa fisica del quark charm
y las constantes de decaimiento de los mesones D,y basados en esta
accién mixta, explotando el O(a) improvement automatico para reducir
los artefactos reticulares asociados a la masa del quark pesado. Uti-
lizando nuestra determinacién de la escala t(y citamos como resultado
para la masa del quark charm RGI en la teorfa de tres sabores

MECY (N = 3) = 1.486(8)stat(3)syst (14)rar GeV . (5.23)

El error de la masa de quark RGI estd completamente dominado por
el célculo no-perturbativo del factor de running del grupo de renormal-
izacién, y por lo tanto, no se puede conseguir una mejora sustancial
hasta que se obtenga un calculo més preciso de esta cantidad. En
particular, la incertidumbre en la escala ty representa ~ 3% del error
total al cuadrado en MXC!(Ny = 3).

Para las constantes de desintegracion Dy citamos

fD = 211-1(1-8)stat(0-5)syst MeV, (524)
b, = 248.1(1.5)5tat(0.3)syst MeV. (5.25)

En este caso, el error estd completamente dominado por la incertidum-
bre estadistica de las configuraciones gauge y las extrapolaciones al
punto fisico y el limite al continuo, y la escala ty supone la segunda
mayor contribucién.

Los resultados obtenidos en este trabajo se obtuvieron en el limite
de simetria de isospin de QCD, definido en [6]. A medida que la pre-
cision de los resultados de QCD en el reticulo contintie mejorando, la
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inclusién de interacciones de QED vy los efectos de ruptura del isospin
fuerte serdn cada vez mds relevantes para restringir los observables de
la fisica de precisién. Otra via para futuros desarrollos consiste en la
extension de la combinacién de la regularizacion Wilson y de accion
mixta para aproximarse al sector de quarks b, siguiendo una estrategia
de step-scaling [122].
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CONVENTIONS

In this Appendix we set some useful notation used throughout this
work. We begin with the Dirac Gamma matrices -y, which are 4 x 4
complex matrices defined by the anticommutator relation

{7 v} = 28 laxa, (A1)

with ¢, the metric tensor of 4-dimensional space-time. We will work
in the Euclidean and flat space, so

guv = diag(+1,+1,+1,+1). (A.2)
Some useful properties of the Gamma matrices are
¢ Hermiticity: ’y;j = Y-
* They are traceless: tr(7y,) = 0.
* Involutory: 7, = Yu-
A fifth Gamma matrix can be defined as

T5 = Y0r17273, (A.3)

which fulfills the same properties as above, and anticommutes with
all other Gamma matrices

{rs,mu} =0. (A-4)

These matrices control the flavor content of hadrons, and as such
appear in the definition of the lattice hadron interpolators. The relevant
quark bilinears needed for this work are

Scalar density: S/ = iy,

Pseudoscalar density: P/ = piysil.

Axial current: AZ = Plyursyl.
* Vector current: V;ij = Py,

These bilinears are defined in the physical basis {¢, ¢ }. By the change
of variables

p = T2y, o e, (A5)

we define the twisted basis, with T a diagonal matrix in flavor space.
With this change of variables and at full twist with Ny =2 +1+1

T = diag(+1,—1,—1,+1), (A.6)
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the bilinears are rotated as
Sl — S,
Pl — pi,
Al — iV,
ij i
Vi — —ZAV,
for (i,j) = (u,d), (u,s),(c,d),(c,s), and
Sil — —ip,
Pl — iSH,
ij ij
Ay — Aw

P
v, =V,

for (i,j) = (u,u),(u,c),(d,d),(d,s),(s,s),(c,c).

A.7)
A.8)

A.9)
(A.

o~ o~

>
uny
o

N

(A.11)
(A.12)
(A.13)
(A.14)



GELL-MANN MATRICES AND STRUCTURE
CONSTANTS

In this Appendix we give the expressions for the SU(3) group gen-

erators in the fundamental representation, given by the Gell-Mann

matrices, and the values for the su(3) algebra structure constants.
The Gell-Mann matrices are given by

010 0 —i 1 0 0

T™W=1100| T%=]i , T =10 -1 0],
000 0 0 0 0
00 1 00 —i 00 0

TW=100 0|, T® =10 0], T®=1|0 0 1],
10 i 0 010
00 0 L (rooo

T77) — i, ™® =~ 1 B.1
0 0 —i 7 0 0 (B.1)
0i 0 00 —

The structure constants of the group f,,. are obtained from the
commutators of group generators

[T(a), T(b)] = ife T, (B.2)

and they are universal, not depending on the choice of the representa-
tion. They are totally antisymmetric and given by

fiz =1, (B.3)
f1a7 = —fi56 = foae = fo57 = faa5 = —fae7 = %, (B.4)
fass = fers = \f, (B.5)

and all other f;,. not related to the ones above by permuting indices
are zero.
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In this Appendix we briefly describe the steps involved in the gen-
eration of gauge field configurations with dynamical quarks in the
framework of Lattice QCD simulations.

After discretizing QCD in a finite volume and Euclidean spacetime,
a very large number of degrees of freedom have to be integrated
over in the path integral formulation, including the contribution of
the fermionic determinant of the dynamical quarks. In recent years,
important advances in lattice QCD computations have allowed to
incorporate the effects of dynamical quarks in the vicinity of their
physical values.

The CLS ensembles employed in this work have been generated
with the openQCD package [85, 89]. In the following we will provide a
brief account of some of the algorithms incorporated in the openQCD
simulation programs.

As outlined in Sec. 1.4, the expectation value of a composite operator
O can be computed on the lattice as

cnfg 1
(0) = /'D —SG[U] 5eff[u]o o[U, () ,
Z cnfg 121 AV4 Ncnfg

(C.1)

where the gauge fields U; are sampled from the probability density

e—Scll]=Se[U]
PUT = o e s

(C.2)

The central idea is to perform an importance sampling of the distri-
bution in eq. (C.2), such that regions of field space with high probabil-
ity are highly populated with gauge configurations U;. Markov chain
Monte Carlo algorithms are a suitable tool to carry out such a config-
uration space sampling. The Markov chain is defined as a sequence

{U} 2 C“ﬁ’ such that the k-th element is generated from the previous
one, Wlth k labeling the Monte Carlo (MC) time. The Markov Chain
is generated from an initial state U; and the transition probability
T(Ux_1 — Uy). As a result, the autocorrelations between successive
gauge field configurations of a given Markov chain have to be an-
alyzed, see Appendix E. The transition probabilities must obey the
following conditions:

e Ergodicity: given a subset of states S from the Markov Chain,
there are always at least two states s € S and s’ ¢ S with T(s —
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s') > 0. This is of particular importance in the context of Lattice
QCD and Lattice Yang-Mills theories in order to ensure that the
simulation algorithm is sampling correctly all topological sectors
of the theory.

¢ Equilibrium: normalizing the transition probability as

Y T(s—s)=1 Vs, (C.3)

then it must hold that

EP T(s —s§)=P(s) Vs, (C.4)

where P(s) is the equilibrium distribution in eq. (C.2). This
ensures that starting from a random configuration, after applying
iteratively the transition probability, we asymptotically reach the
target equilibrium distribution in eq. (C.2).

Different choices for the transition probability T(s — s’) satisfying
the above conditions define the different sampling algorithms which
we will now briefly review.

C.1 METROPOLIS ALGORITHM

The Metropolis algorithm [98] is commonly employed for generating
a Markov Chain of gauge field configurations for pure gauge theories,
for which the target distribution is

e—SalU]

P[U] fD —SG

(C.5)
The idea is to define an a priori selection probability To(U; — Uj) to
update a single gauge link. One such choice is to take a random ele-
ment ¢ of the SU(N) group close to the identity and update the gauge
link Uy (n) as Uy, (n)" = gU,(n) such that the new gauge configuration
U; is close to the original one U;. In order for the transition to be
symmetric, group elements ¢ and ¢~! have to be selected with equal
probability. After updating with this a priori transition probability,
one supplements the updating process with an accept-reject step, such
that the new proposed gauge link is accepted with probability

Pace(i, j) = min (1,e*AS) , AS = s[uj] —s[uy). (C.6)
Then the total transition probability is given by
T(U; — Uj) = To(U; — Uj) Pacc(i, ) +6i Y To(Ui — U;) (1 — Pace(i, )
k

(C.7)



C.2 HYBRID MONTE CARLO

This T satisfies all the desired properties for a transition probability
and asymptotically reaches the target distribution probability for pure
gauge theories.

The drawback of this algorithm is that it only updates a single gauge
link at each step and as such it becomes inefficient, particularly for
large volume simulations. Over the years new alternatives for pure
gauge simulations have been proposed, such as the heat bath [44] and
overrelaxation [1, 45] algorithms.

C.2 HYBRID MONTE CARLO

In the pure gauge theory, the probability distribution can be inter-
preted as being composed of infinitely heavy sea quarks. In order
to simulate full QCD, one needs to incorporate dynamical quarks in
the sea through the probability distribution in eq. (C.2), where S¢
introduces non-local dependencies in the gauge links due to the quark
determinant. Therefore, algorithms such as the Metropolis algorithm,
based on a link-by-link update scheme of the gauge field configura-
tions, experience a significant increase in computational cost as the
volume is increased, which renders them impractical for large-scale
dynamical simulations. The Hybrid Monte Carlo (HMC) algorithm [55,
65] significantly improves the efficiency of the simulations by doing
global updates of the gauge configurations.

The HMC uses the classical equations of motion to propose new
gauge field configurations. To this purpose, the field space is extended
with the introduction of the conjugate momenta 77, (x) of the link
variables U, (x). The Hamiltonian of the system is

Hir, U] = % Yt ()7 (x) + S [U] + Seq[U]. (C9)
x,p

The expectation values can be computed using

_ /DI, Ule~HImUlO[U]

(©) [ D[r, Ue~HlmU]

Now the classical equations of motion read

~0S[e“U]
 dw

7u(x) = —Fu(x), Fu(x) ) w € su(N), (C.10)

Uy (x) = mu(x)Uy(x), (C.11)

"7

where the dot notation “4” stands for the derivative with respect to
MC time. By starting from an initial configuration and a randomly
generated momentum field 77, — following a Gaussian probability
density — the integration of the equations of motion leads to a new
gauge configuration to be used as proposal for the global update of

121



122

SIMULATION DETAILS

the gauge links. This proposal is subject to an accept-reject step like in
the Metropolis algorithm

Pacc = min (Le‘AH) , AH = H[7, U] - H[m, U]. (C.12)

In practice, this basic formulation of the HMC algorithm has to
be complemented by efficient techniques to accurately integrate the
equations of motion in simulations involving, for instance, light quark
masses and large volumes [67, 111, 127].

We now briefly discuss the methods used to compute the effective
fermion action

Ny
Seit[U] = — ) _ log det(D;). (C.13)

i=1

The fermionic determinant can be evaluated through the introduction
of pseudofermion fields ®(x) [126], which are auxiliary fields that
carry color and spinor indices ¢, « but that are complex valued instead
of Grassmann numbers. Restricting to the mass-degenerate doublet of
light quarks, where the effective action takes the form

e~ = det(D;)det(D;) = det(D{Dy), (C.14)

in the pseudo-fermion representation this becomes up to an irrelevant
normalization factor ¢

det(DIDy) = ¢ / Did]e 5w, (C.15)
with the pseudo-fermion action given by
t(ptp )
SpeU, @] = @ (Dl D,) . (C.16)

We have listed the basic ingredients needed for HMC sampling with
dynamical fermions. First, one samples randomly a set of conjugate
momenta 77, and pseudo-fermion fields ® with Gaussian distribution
xexp (—im,m, — Spf)- Together with an initial gauge field configura-
tion U;, the classical equations of motion are integrated up to some
later time. At this point one implements the accept-reject step and
updates the gauge configuration to U;.

This far we assumed two degenerate flavors of quarks to compute
the effective fermion action. The inclusion of a strange quark, as
in the case of the CLS ensembles we use in this work, requires the
computation of det(Ds). Contrary to the case of two degenerate quark
flavors, det(Ds) is not ensured to remain positive, since the breaking
of chiral symmetry by the Wilson term implies that the low-lying
spectrum of the Wilson Dirac operator does not have a strict gap,
associated to the quark mass, at finite values of the lattice spacing. This
is of particular relevance because if the strange quark determinant gets
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a negative value one cannot interpret the factor e~5¢ %« appearing in

the path integral as a probability. Therefore, possible changes in the
sign of the strange quark determinant must be monitored throughout
the Monte Carlo simulation. In the generation of CLS ensembles,
the strange quark determinant is evaluated by the Rational Hybrid
Monte Carlo algorithm [38, 76]. In [101] it was found that on some
ensembles, a subset of the gauge field configurations were affected
by a negative sign of the strange quark determinant. A reweighting
procedure, discussed in the following section, can be used to correct
for this effect.

C.3 REWEIGHTING

In [87] it was proposed to perform a reweighting procedure in order
to deal with exceptional gauge configurations in the HMC algorithm.
These are gauge configurations with near to zero eigenvalues for the
Dirac operator, which can appear due to the explicit chiral symmetry
breaking induced by the Wilson term in the Wilson fermionic action.

In the context of CLS ensembles, a small twisted mass term yj is
included in the light quark determinant as [89]

det (Q'Q) » det ('@ +48) (20 +28) ), (€ap

with the Hermitian Dirac operator given by Q = sD. This provides
an infrared cutoff for the low-lying eigenvalues. Using Hasenbusch’s
mass factorization [67]

det ((Q*Q +13)” (Q'Q+21) _1> (C18)

t 2
= det (Q+Q + y%) det (M) x T, det (QQJFVM> ,

QtQ +u?
(C.19)

where the twisted mass factors are ordered as po < p1 < ... < py.
The values of the twisted mass factors have to be properly selected
to improve the stability of the simulations. To remove the unphysical
effect of the auxiliary terms depending on the twisted mass param-
eters, a reweighting procedure is applied consisting in computing
reweighted expectation values over gauge configurations as
(OW)

(O)rw = Wy (C.20)

QtQ + 243

where on the right-hand-side the expectation values are evaluated
with a lattice action including the twisted mass parameters and W is
the corresponding reweighting factor

W = det (Q*Q (Q'Q+23) (Q'Q + 1) _2> - (C.21)
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In addition to twisted mass reweighting, a reweighting procedure
is also applied to remove the rational approximation introduced by
the use of the RHMC algorithm to simulate the strange quark de-
terminant [38, 76]. As mentioned in the previous section, in [101] it
was found that a subset of the gauge configurations of some of the
ensembles considered in this work have negative values of the strange
quark determinant. This effect can corrected by the application of
a reweighting factor that flips the sign of the configurations which
were identified to have a negative sign of strange quark fermionic
determinant.
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D.1 STOCHASTIC METHODS

For the computation of correlation functions of fermions on the lattice
(e.g. a two-point function, see eq. (1.81)) the inversion of the Dirac
operator D is required. In particular, it is desirable to compute the
inverse of D(x,y) from all the spatial points i/ on a given time yyo, to
all points x. This is referred to as computing a time-slice-to-all quark
propagator. An exact calculation would be prohibitively expensive
but stochastic methods can be employed to reduce the computational
cost [85]. A set of stochastic noise sources # are introduced such that

(), =0, (1 @), = beadis (D.1)

with (), corresponding to average over the N, samples of some
noise distribution. Some common choices are Gaussian, Z, or U(1)
stochastic noise vectors. The Dirac operator can the be inverted using
1 as part of the source in the following way

ZD (x, )n:(F ZD (x, y)vsThmi(§),
(D.2)

with I'p some Gamma matrix. The two-point functions in eq. (1.81)
can be expressed as

[e)}

L
N,

(0 (x0)O¥ (o)) ~ —

Mz

LY (Tanstip(0)'el),
(D.3)

where the requirement to invert the Dirac operator at every spatial
point i has been traded by N, inversions over the stochastic noise
vectors at the cost of introducing an additional contribution to the
statistical uncertainty.

~

D.2 ITERATIVE SOLVERS

The inversion of the Dirac operator is still needed to compute correla-
tion functions. This means solving the Dirac equation

D(x,y)y(y) = n(x), (D.4)
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for some source 7. This is usually done by an iterative procedure. The
basic idea is to start from an initial approximate solution ¢y and define
the residue p (we suppress indices for simplicity)

Then, one solves
Dl/)1 = p, (D6)

finds the new residue and iterates the process. The algorithm stops
when some convergence criterion is met

ol <e (D.7)

with the final approximate solution given by

p=v¢o+1+.. (D.8)

The difference between the true and approximate solutions is

[ — Ytrue| < €x(D)[Wtruel, (D.9)

with «(D) the condition number of matrix D
k(D) = |D||[D7!. (D.10)

The main solvers used in modern lattice simulations to compute
eq. (D.6) are based on the Krylov subspace method and belong to the
class of conjugate gradient solvers. Some popular choices are the CG,
BiCGstab and GCR algorithms. For a pedagogical introduction we
refer to [62, 85].

D.3 PRECONDITIONING

The smaller the condition number of the Dirac operator, the less
iterative steps one needs to perform in order to find the solution to
the Dirac equation. Thus, convergence can be improved by suitably
transforming the system into one with a smaller x(D). This can be
done through a preconditioning procedure consisting in finding some
easily invertible similarity transformations such that

LDRy' =Ly, v =Ry (D.11)

There are multiple types of preconditionings. One of the most com-
monly used is even-odd preconditioning [50]. Lattice sites can be
categorized as even or odd depending on the sum of their space-time
coordinates. If the points are ordered such that all the even ones come
first, the Dirac operator takes the block form

D= (Dee Deo) , (D.12)
Doe DOO
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where D,, captures the terms which couple the odd to the even sites.
For operators involving only nearest-neighbor interactions, the diag-
onal blocks D, and D,, are diagonal matrices which are therefore
easily invertible. Choosing as preconditioners

N -1
p— (1 “DaDa')  p_ 1 0 ’ (D.13)
0 1 —Dy'Dye 1
we get
D o A _
LDR = , D =Dy — DeyD,;' Dy (D.14)
0 Dyo

The condition number of D is usually less than half that of D, and thus
even-odd preconditioning can lead to an acceleration of the solver by
a factor > 2.

As described in [51], a different type of preconditioning method
called distance preconditioning was used in the computation of charm-
quark propagators to address loss of accuracy of the solvers at large
Euclidean time separations.
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In this Appendix we describe the methods employed for the data
analysis of observables extracted from the lattice QCD Monte Carlo
simulations.

As described in Appendix C, lattice data stems from a Markov chain
Monte Carlo process. Expectation values of physical observables are
defined in terms of functions depending on estimators of primary
observables, obtained by averaging over measurements performed on
the gauge field configurations of the Markov chain. A central aspect of
the analysis is to properly take into account the statistical correlations
and autocorrelations present in the lattice data, and to estimate the
various sources of systematic uncertainties. As discussed in a previous
section, autocorrelations arise from the fact that in a Markov chain,
any subsequent configuration is obtained from the previous one. A
popular method to deal with autocorrelations consists in binning
the elements of the Markov chain, in combination with resampling
methods such as bootstrap or the jack-knife.

The analysis of the observables considered in this work is based on
the I'-method [113, 116, 130], which explicitly computes the autocorre-
lation function to estimate the statistical uncertainty.

In a lattice calculation, one considers a primary observable p; deter-
mined on a set of ensembles (characterized by the simulation parame-
ters such as the inverse coupling f and x parameter)

p?(k)lk = 1/"'/ Now (EI)

where « labels the ensemble and k is the MC time spanning the total
number of gauge configurations N, of the given ensemble. Specifically,
the primary observable can correspond to a correlation function at a
given Euclidean time. An unbiased estimator of the true value P! is
given by the mean value

1 &
Pt = — a4 o
P, LR o (E2)

Fluctuations over the MC time can be computed as

5; (k) = pi (k) — pi- (E.3)

The Central Limit theorem ensures that the distribution of pf con-
verges to a Gaussian distribution independently of the distribution
of p¥(k), and so the statistical uncertainty associated to p¢ is given by
the standard deviation ¢,

P = pf + ot (E.g)
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This standard deviation can be computed from the autocorrelation I
function

Z Iy (E5)

D‘ k=—o0

where the I' function is defined as

P (k) =

N,—k
i Y S (k+K)SE(K). (E.6)

N —k o=

From the primary observable P{* we can compute derived observ-
ables F = f(P{), such as meson masses coming from pseudoscalar
two point functions. An estimator of the derived observable can be
written as follows

= f(p7)- (E.7)

To compute the statistical uncertainty, we can expand f around the
true value P}

f(PE+ef) = f(P) + flef + O((ef)?), (E.8)
with

2 _ 9f (%)

fi - ox pe : (E9)

It follows that the autocorrelation function of the derived observable
F for ensemble « can be defined as

Zfz“f] rm (E.10)
from which the standard deviation of F can be derived
I'¢(0
it = ¥ W% (p), (Ea)
[

o

where the sum ), is over the subset of ensembles contributing to F.
The integrated autocorrelation time 5, (F) is defined as

— 3+ 21

k=1

(k)
(0)

—
"n&

(E.12)

N\H

mt

=
m=

To estimate it, a truncation in the sum over the index k, spanning over
the separations in MC time, is needed. The autocorrelation function
admits the following expansion [88, 116]

k)~ ) e (E.13)
n=0
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The slowest mode Tp = Texp is called the exponential autocorrela-
tion time and it gives the asymptotic decay rate of I'(k). Truncating
eq. (E.12) at a MC time separation k = Wy introduces an estimated sys-
tematic uncertainty of O(exp(—W¢/1gy)). The I-method proposes as
optimal window that which minimizes the sum of statistical (estimated
in [94]) and systematic contributions

202W +1)

N T e Witee | (E.14)

Wg = miny

In [130] it was proposed to use Texp = StTint, With S some value
between 2 and 5. One can also vary W} until observing a stability
regime of T},. Finally, it was also proposed to add an exponential
tail [116]

TE(WE+1)

exp W/ (E15)

to eq. (E.12) to account for the systematic effect of truncating the sum
over MC time. An estimate of 7g,, is needed for each ensemble. In the
case of CLS ensembles the following estimate has been considered [31]

t
e = 14(3);2. (E.16)

In this work we have used the I'method explained above as imple-
mented in the ADerrors.jl julia package [114].
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We employ a least-squares method to fit our data to some fit function.
This method is based on finding the minimum of the x? function

N, dat

X=Y (vi—fxuP) Wi (v — f(x B)), (F.1)

i,j=1

.....

independent variable and y the abscissa. VV is a matrix which gives
different weights to the different data points entering the fit. When W
is chosen to be the inverse of the covariance matrix of the y-data, C -U
the fit is said to be fully correlated. For fits employing a large number
of data points, inverting the covariance matrix can be challenging.
Alternatively, an uncorrelated fit corresponds to the case in which the
weight matrix W is set to the inverse of the matrix including only
the diagonal part of C. f(x; p) is the fit function with fit parameters
P = (P1, - PNoaram)- FOT @ given fit function f(x; f), the method finds
the parameters values that minimize eq. (F.1) for given data points

In our case we perform fits to extract the ground state signal of
lattice observables, fitting e.g. an effective mass to a constant plus
exponential signals along the lattice time extent. In this case, Euclidean
time plays the role of the x. The Euclidean-time fit intervals may
include O(100) correlated data points, which in general precludes the
possibility of inverting the covariance matrix. We therefore have to rely
on uncorrelated fits. With the exception of the definition of the chi?
function, correlations present in the data are retained in the statistical
analysis and propagated to the target observables.

In [30] a method to measure the goodness of fits was proposed in
terms of p-values, irrespective of the choice of the weight matrix W.
Also a definition of the expected value of the minimum of x?, (x?) is
provided. In the case of a fully correlated fit it holds that (x*) = dof
(number of degrees of freedom).

We also perform fits for the chiral-continuum extrapolation of
/8t frk to set the scale. In this case, the y variable is /8t fx while
the x is ¢, and thus the latter has its own uncertainty. In this situation,
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a generalized x? function can be defined to include uncertainties of x

as

2I\]dat

=Y (Yi—F(XaBD) Wy (Y; — F(X;5.7), (F.2)
ij=1

Y = (xl,..., XNgarr Y17 -+ yNdat)’ X = (xl,..., XNgarr X17 -1 deat),

(F.3)

. ; if1<i<N

F(Xi;p,q) = g o Sdat (F.4)

f(xi; ) if Ngar +1 < i < 2Ngay

A fully correlated fit in this context corresponds to setting W to the
inverse covariance matrix of the generalized data vector Y, C. In prac-
tice, the dimension of the full covariance matrix C can reach O(50)
and, in general it is therefore not possible to invert it. We consider,
however, a block structure for C. The block corresponding to the corre-
lation among the /8t fx data is maintained while the correlations
associated to the other blocks are neglected in the definition of the
x? function. However, all other steps in the analysis chain take full
account of the correlations and, in particular, those associated with
¢2, to/a* and /8t frk. Including only the correlations from /8t f,x
in the chi? of the fits leads to an expectation value of the chi? that
deviates only slightly from the number of degrees of freedom

2
gcog ~ 0.98. (E.5)

This indicates that the bulk of the correlations are effectively incorpo-
rated in the fit.



GEVP METHOD

For the extraction of meson masses involving heavy quark flavors
(see Sec. 5), we employ a generalized eigenvalue problem (GEVP)
variational method defined as

CX(t)Un<t1 tref) = /\n(t/ tref>CX(tref)Un(tr tref) n = 0/ ceey N — 11
(G.1)

with > t.f and where C(t)x is a N x N matrix of Euclidean correla-
tion functions Cy. In particular we use

. Cp(t) Cp(t+T) 5
Cp(t) = <Cp(t+T) Cp(t+2T>> , (G.2)

where Cp(t) = Cp(t +yo,Y0), t = x0 — Yo and T is the value of the
time shift. Several values of the time shift have been tested, and we
observe a mild dependence on small values of T for the extraction
of eigenvalues and eigenvectors. Specifically, the value T = 3a was
selected. The GEVP is solved in the regime t..s > t/2, where a better
control over excited state contributions is achieved [18]. We refer to [33]
for a detailed discussion of our setup, together with sanity checks
on the GEVP. The ground state meson mass m is extracted from the
eigenvalues of the GEVP using

i) )

G.
/\O(t +a, tref) ( 3)

ameff(tr tref) = 10% <
An example of a GEVP plateau for the heavy-light pseudoscalar mass
is shown in Figure G.1.

In the case of meson decay constants involving heavy quarks (see
Sec. 5), we employ again the GEVP method to extract the ground
state signal of the matrix element (0|P|P'(p = 0)). This is done by
considering the normalized eigenvector v, (¢, tef) in eq. (G.1), where
|Pii(p = 0)) stands for the ground state of the meson with flavor
content 7, j. Namely, we define for each state n the number [18]

Rn - (Un (t/ tref)/ CP(t)Un (t/ tref))il/2 eEnt/Zl (G4)

where (-, -) is the usual scalar product and Cp is the GEVP matrix
from eq. (G.2). Then, the ground state matrix element is given by

Peti(t, tref) = (vo(t, tref), Cpo)Ro, (Cpo)k = (Cp)ro (G.5)
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Figure G.1: [llustration of the extraction of the ground-state mass after ap-

plying a GEVP analysis, illustrated for the ensemble J303. We
show the heavy-light pseudoscalar meson mass plateau with
the two fit intervals with higher weights W contributing to the
model average introduced in Sec. 2.7. We also indicate the range
of variations allowed for the interval in Euclidean time where the
plateau is taken. The shaded blue and green bands corresponds
to two specific plateau choices.

The large distance behavior of the effective matrix element is governed

by

Peit(t, trer) = po+O(e~Evri=Eoltet) o = (0|PY| Pl (p = 0)), (G.6)

in the regime where the condition t,f > t/2 is satisfied, where Ej is
the ground state meson mass. In Figure G.2 we show a representative
plateau for a heavy-light decay constant.
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Figure G.2: Illustration of the extraction of the heavy-light pseudoscalar

decay constants, after applying a GEVP analysis, for ensemble
J303. We show the plateau for the heavy-light pseudoscalar decay
constant for the two fit intervals with higher weights in the model
average introduced in Sec. 2.7. The shaded blue and green bands
corresponds to two specific plateau choices.
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LATTICE ENSEMBLES

id B my[MeV] mg[MeV] T/a L/a m;L cnfg BC charm
Hio1 3.40 421 421 96 32 58 1001,1009 OBC  yes
Hio2roo1 3.40 355 442 96 32 4.9 997 OBC  yes
H1o2roo2 3.40 360 445 96 32 5.0 1008 OBC  yes
Hios 3.40 284 471 96 32 3.9 947,1042 OBC  yes
Hiosroos  3.40 286 467 96 32 3.9 837 OBC  yes
Hgo0 3.46 426 426 96 32 5.2 505,540 OBC  yes
D450 3.46 222 480 128 64 54 1000 PBC no
N2o02 3.55 416 416 128 48 64 899 OBC  yes
N203 3.55 348 446 128 48 54 756,787 OBC  yes
N2oo 3.55 287 468 128 48 44 856,856 OBC  yes
D200 3.55 203 486 128 64 4.2 2001 OBC  yes
E250 3.55 130 497 192 96 4.0 1009 PBC yes
N3o00roo2 3.70 424 424 128 48 5.1 1521 OBC  yes
N3o02 3.70 348 453 128 48 4.2 2201 OBC  yes
J303 3.70 259 480 192 64 4.1 1073 OBC  yes
E300 3.70 176 496 192 96 4.2 1139 OBC  yes
J500 3.85 417 417 192 64 5.2 789,655,431  OBC  yes
Js01 3.85 340 453 192 64 4.3 1635,1142,1150 OBC  yes
Table H.1: List of CLS ensembles [31, 102] under study. They use the Liischer-

Weisz gauge action defined in eq. (1.95) and non-perturbatively
O(a) improved Ny = 2 + 1 Wilson fermions (see eq. (1.102)). All
ensembles use open boundary conditions (OBC) in time except
for E250 and D450 (periodic), and periodic boundary conditions
for all spatial directions. The last column refers to whether the
corresponding ensemble is included or not in the analysis of
charm physics in Chapter 5.
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id to/a® P2 ¢4 amyy anti3 afn afk
Hio1  2.8619(99) 0.7664(39) 1.1496(59) 0.009206(49) 0.009206(49) 0.06353(33) 0.06353(33)
Hio2  2.8855(75) 0.5512(40) 1.1234(60) 0.006509(54) 0.010178(51) 0.06080(25) 0.06412(22)
Hios5 2.8875(80) 0.3475(46) 1.1153(63) 0.004007(51) 0.011385(70) 0.05729(48) 0.06474(26)
Hgo0 3.6356(101) 0.7775(52) 1.1662(79) 0.008284(64) 0.008284(64) 0.05685(25) 0.05685(25)
D450  3.6942(69) 0.2108(22) 1.1034(62) 0.002134(24) 0.010788(23) 0.05000(34) 0.05722(32)
N202 5.1662(194) 0.7409(54) 1.1113(81) 0.006854(16) 0.006854(16) 0.04829(21) 0.04829(21)
N203  5.1519(55) 0.5191(31) 1.1106(52) 0.004743(18) 0.007907(17) 0.04645(15) 0.04909(15)
N2oo 5.1601(59) 0.3524(21) 1.1123(33) 0.003157(12) 0.008649(12) 0.04433(14) 0.04909(15)
D200  5.1789(56) 0.1767(13) 1.1040(18) 0.001542(9) 0.009385(8) 0.0423(14) 0.04914(10)
E250  5.2075(45)  0.0738(16) 1.0958(37) 0.000643(15) 0.009754(11) 0.0396(52)  0.04826(47)
N300 8.5665(247) 0.7730(51) 1.1595(77) 0.005509(7)  0.005509(7) 0.03802(18) 0.03802(18)
N3o02 8.5212(207) 0.5184(42) 1.1372(68) 0.003719(9) 0.006407(12) 0.03651(18) 0.03865(24)
J303  8.6189(127) 0.2915(17) 1.1332(35) 0.002048(7) 0.007196(7) 0.03415(22) 0.03873(15)
E300 8.6283(213) 0.1335(10) 1.1292(23) 0.000934(5) 0.007724(6) 0.03233(19) 0.03816(37)
Js00  13.9802(319) 0.7376(54) 1.1063(81) 0.004219(5) 0.004219(5) 0.02976(23) 0.02976(23)
J501  14.0241(637) 0.4907(31) 1.1194(49) 0.002740(4) 0.004959(3) 0.02829(21) 0.03010(20)

Table I.1: Unshifted determinations of the lattice observables entering the scale setting analysis for the Wilson unitary setup. We quote the improved and
renormalized decay constants, while for the PCAC quark masses the bare unimproved determinations are reported. The ensembles (H1o2roo1,
Hio2roo2) and (H1o5, H1o5r005) have been averaged in the analysis as they are not composed of replicas (i.e. the ensembles share the same

physical parameters but do not have the same algorithmic parameters).
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id to/a® ¢2 ¢4 ap1p ap13 afq afx

Hio1 2.8796(113) 0.7339(60) 1.1009(89) 0.006442(6) 0.006442(6) 0.06683(295) 0.06683(295)
H1o2  2.8946(91) 0.5422(37) 1.1009(89) 0.004721(4) 0.007411(5) 0.06456(220) 0.06822(171)
Hio5 2.8941(68) 0.3424(42) 1.1009(89) 0.00292(4) 0.008155(7) 0.06197(246) 0.06855(198)
Hgo0 3.6579(101) 0.7339(60) 1.1009(89) 0.005839(6) 0.005839(6) 0.05921(267) 0.05921(267)
D450 3.6953(95) 0.2101(32) 1.1009(89) 0.001535(2) 0.008004(7) 0.05330(360) 0.06052(313)
N202 5.1606(204) 0.7339(60) 1.1009(89) 0.005151(5) 0.005151(5) 0.04980(224) 0.04980(224)
N203 5.1556(69) 0.5166(29) 1.1009(89) 0.003583(2) 0.005928(6) 0.04817(203) 0.05086(180)
N20oo 5.1647(69) 0.3497(24) 1.1009(89) 0.002392(2) 0.006532(6) 0.04617(267) 0.05092(154)
D2oo  5.1803(75) 0.1760(20) 1.1009(89) 0.001208(1) 0.007135(7) 0.04461(144) 0.05073(156)
E250  5.2051(60) 0.0747(22) 1.1009(89) 0.000484(2) 0.007465(7) 0.04197(409) 0.05002(442)
N300 8.5874(260) 0.7339(60) 1.1009(89) 0.004104(5) 0.004104(5) 0.03848(231) 0.03848(231)
N302  8.534(206) 0.5116(36) 1.1009(89) 0.002825(2) 0.004906(6) 0.03733(234) 0.03956(232)
J303  8.6319(150) 0.2866(20) 1.1009(89) 0.001591(1) 0.005435(5) 0.03552(185) 0.03959(224)
E300 8.6407(236) 0.1300(16) 1.1009(89) 0.000712(1) 0.006125(5) 0.0336(218) 0.03938(538)
J500  13.9817(332) 0.7339(60) 1.1009(89) 0.003293(3) 0.003293(3) 0.03028(233) 0.03028(233)
Js01  14.0304(656) 0.4878(27) 1.1009(89) 0.002171(1) 0.003928(5) 0.02874(184) 0.03054(195)

Table I.3: Determinations of the lattice observables entering the scale setting analysis for the mixed action setup. All results are mass shifted to impose
eq. (3.19) as explained in Sec. 3.4 and matched though pseudoscalar masses as explained in Sec. 3.5. Values of ty/ a2, ¢ and ¢, are identical to
those in Table 1.2 by construction. The bare quark masses are given by the bare twist parameters ay; = apq and ay;s = apis. The ensembles
(H1o2roo1, H1o2rooz2) and (H1o5, Hio5ro05) have been averaged in the analysis as they are not composed of replicas (i.e. the ensembles share

the same physical parameters but do not have the same algorithmic parameters).



FINITE VOLUME EFFECTS

Simulating QCD in a finite box introduces finite volume effects which
can be a source of systematic uncertainties. In Table H.1 we show
the volume of each ensemble in terms of m L. In lattice QCD, for
quantities that only receive exponential finite volume corrections in
mz kL, it is customary to opt for the condition, mL > 4, while
also employing lattice sizes L larger than ~ 2 fm. This constraint can
be complemented by explicit checks of residual finite volume effects
through simulations in several volumes or by applying effective field
theory corrections.

ChPT can be used to study finite volume effects on certain class
of observables. In particular, to NLO the pion and kaon masses and
decay constants receive the following corrections [39, 40]

o 1
X = x0 L, 0.1)

where X(®) is observable X at infinite volume and X(L) is said observ-
able at a finite volume L3, with X = m, mg, fr fx

R, = 38n81(hr) — 138181 (), 0.2
R = £Epa(Ay), 03
Rp = —Cn&1(Ax) — %é‘xgH(AK), (J.4)
Ry, = —28x81 (M) — SEx&1(AK) — 2E@1(Ay), 0
@m:=(4:§iy, 16)
Aps = mpsL, J.7)
8 = ¥ k(i) 08)
mizgmﬁ—émz 19)

where Kj(x) is a Bessel function of the second kind, and the multi-
plicities m(n) [39] are listed in Table J.1. It is manifest that the lighter
the pion mass and the smaller the volume, the stronger the volume
corrections. We find these corrections to be less than half a standard de-
viation for the ensembles with the smallest volumes and lightest pion
masses. We nonetheless apply the corrections to all the ensembles.

PCAC quark masses being short distance observables and are less
sensitive to finite volume effects.
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n 1 2 3 4 5 6 7 8 9 10
mn) 6 12 8 6 24 24 0 12 30 24

n 11 12 13 14 15 16 17 18 19 20

m(n) 24 8 24 48 o 6 48 36 24 24

Table J.1: Multiplicities m(n) calculated in [39] for n < 20.
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Wilson analysis
[SU(3)xPT] Eq. (4.13)
[Tay] Eq. (4.20)
[Tay4] Eq. (4.21)
[SU(2)xPT] Eq. (4.19)
[2°] Eq. (4.22)
|a%as] Eq. (4.23)
[a® + a’¢s)] Eq. (4.24)
[—] No cut in data
[ > 3.40] Remove B = 3.40 ensembles
(B > 3.46] Remove B = 3.40 and B = 3.46 ensembles
[my; < 420 MeV] Remove symmetric point ensembles
[my < 350 MeV] Remove ¢, > 0.4 ensembles
[B > 3.40 & m; < 420 MeV| | Remove symmetric point and f = 3.40 ensembles
[m-L > 4.1] Remove ensembles with volumes m,L < 4.1

Table K.1: Correspondence between each fit model for the chiral-continuum
extrapolation of \/8f)f;x and the labels used in Tables K.2-K.4
and Figs. 4.3-4.5. For the combined analysis, we are dealing with
two independent cutoff effects, those of the Wilson results and
those of the mixed action. In this case we will use two labels for
these effects, the first referring to the lattice artifacts explored for
the Wilson results, the second one for the mixed action results.
If only one label is used it means the same dependence for the
lattice artifacts were explored for both regularizations but with
independent parameters.

Wilson analysis
Model ‘ p-value ‘ 4% ‘ Vo [fm]
[xsu(3)][a*][-] 0.537 | 0.0768 | 0.1434(7)
[xSU(3)][a*][p > 3.40] 0437 | 0.0279 | 0.1432(9)
[xSU(3)][a?][B > 3.46] 0.4048 | 0.0122 | 0.1427(10)
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[xSU(3)][a?][mr < 420 MeV]
[(xSU(3)][a?][B > 3.40 & m; < 420 MeV]
[xSU(3)][a?][mr < 350 MeV]
[(xSU3)][a?][mAL > 4.1]

(xSUG)][aa; ][]
xSU(3)][a*a] [ > 3.40]
XSU(3)][a%l][B > 3.46]
[xSU(3)][a2al][m, < 420 MeV]
[xSU(3)][a%al][B > 3.40 & m, < 420 MeV]
[xSU(3)][a%al][m; < 350 MeV]
[xSU(3)][a2al] [myL > 4.1]
(xSU(3)][a* + a*¢o] [~ ]
[(xSU(3)][a® + a>¢o][B > 3.40]
[XSU(3)][a* + a*¢2] [B > 3.46]
[xSU(3)][a? + a?¢p][mr < 420 MeV]
[xSU(3)][a? + a*¢p][m L > 4.1]
[Tay][a?][~]

[Tay)[a?][B > 3.40]
[Tay)[a?][B > 3.46]
[Tay][a?][m; < 420 MeV]
[Tay][a?][B > 3.40 & m, < 420 MeV|
[Tay][a?][m; < 350 MeV]

[Tay] [az][mnP > 4.1]

[Tay] [a%a; ][]

[Tay| [azzxg] (B > 3.40]

[Tay] [a*; ][ > 3.46]
[Tay][a?al][m, < 420 MeV]
[Tay][a2al][B > 3.40 & m, < 420 MeV]
[Tay][a%al][m, < 350 MeV]
[Tay][a2al][m L > 4.1]
[Tay)[a® + a¢a][—]

[Tay)[a® + a*¢2][B > 3.40]
[Tay)[a® + a*¢o][B > 3.46]
[Tay][a® + a®¢s][mr < 420 MeV]
[Tay][a® + a?¢a][m L > 4.1]
[Tay4][a][-]

[Tay4][a?][B > 3.40]
[Tay4][a2][B > 3.46]

—

0.391
0.2832

0.187

0.4492
0.5334
0.4256
0.4068
0.3806
0.2792
0.189
0.4362
0.5014
0.3868
0.3306
0.3134
0.3628
0.4376
0.3396
0.3132
0.3298
0.2058
0.1098
0.4644
0.4386
0.3374
0.3152
0.32
0.2132
0.1144
0.4534
0.4392
0.3244
0.2656
0.275
0.43
0.4258
0.3196

0.2582

0.0178
0.004
0.0014
0.0158
0.0729
0.0271
0.0122
0.0169
0.004
0.0014
0.0148
0.0518
0.0165
0.0004
0.0093
0.0084
0.0463
0.0172
0.008
0.0121
0.0027
0.0008
0.0173
0.0436
0.0166
0.008
0.0114
0.0027
0.0008
0.0166
0.0379
0.0121
0.0047
0.0068
0.0107
0.0287
0.0094

0.0042

0.1433(7)
0.1427(11)
0.1434(9)
0.1436(8)
0.1435(7)
0.1432(9)
0.1428(11)
0.1434(7)
0.1427(11)
0.1436(9)
0.1437(8)
0.1429(11)
0.1427(14)
0.1423(17)
0.1430(15)
0.1433(14)
0.1438(8)
0.1436(10)
0.1431(11)
0.1437(8)
0.1431(11)
0.1438(9)
0.1440(8)
0.1439(8)
0.1436(10)
0.1432(11)
0.1438(8)
0.1432(11)
0.1439(10)
0.1441(8)
0.1431(11)
0.1428(14)
0.1423(18)
0.1431(15)
0.1433(14)
0.1433(9)
0.1431(11)
0.1427(12)



[Tay4][a?][m, < 420 MeV]
[Tay4][a?][B > 3.40 & my < 420 MeV|
[Tay4][a?][m~ < 350 MeV]
[Tay4][a?][msL > 4.1]
(Tayd] @ + ][
[Tay4][a? + a*¢,][B > 3.40]
[Tay4][a® + a®¢,][B > 3.46]
[Tay4][a? + a*¢p][m < 420 MeV]
[Tay4][a® + a*¢y] [mrL > 4.1]
xSU@)) ][]
[xSU(2)][a*][B > 3.40]

[xSU(2)][a*][B > 3.46]
[(xSU(2)][a?][mr < 420 MeV]

[xSU(2)][a?][B > 3.40 & m, < 420 MeV]
[(xSU(2)][a?][mr < 350 MeV]
[xSU(2)][a*][m=L > 4.1]
[xsu(2)][a*af][~]
xSU(2)][a2a] B > 3.40]
(xSU2)][a%a; ][ > 3.46]

(2
[xSU(2)][a%al][m, < 420 MeV)]
[xSU(2)][a%al][B > 3.40 & m, < 420 MeV]
[xSU(2)][a2al] [y < 350 MeV]

(XSU(2)][a?al][mAL > 4.1]
(xSU(2)][a* + a*¢a][—]
[xSU(2)][a® + a?¢,][B > 3.40]
(xSU(2)][a* + a*¢2][B > 3.46]
[(xSU(2)][a? + a?¢p][mr < 420 MeV]
[xSU(2)][a® + a*¢y|[m L > 4.1]
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0.265
0.1566
0.4866
0.3784
0.3604
0.2508
0.1896
0.2086
0.4362

0.498
0.3802
0.3546
0.3046
0.2054

0.4776
0.3668

0.493
0.3816
0.3508
0.3104

0.197
0.4662
0.3552

0.4598
0.3206

0.2796

0.2512

0.3214

0.006
0.0013
0.0031
0.0082
0.0176
0.0054
0.0022
0.0029
0.0074
0.0481
0.0158
0.0073
0.0078
0.0017

0.003
0.0087
0.0443
0.0153
0.0072
0.0076
0.0017

0.003
0.0082
0.0283
0.0085
0.0037
0.0041

0.0053

0.1433(10)
0.1426(13)
0.1417(13)
0.1442(12)
0.1430(11)
0.1428(14)
0.1425(18)
0.1431(15)
0.1431(14)
0.1432(9)
0.1430(11)
0.1426(11)
0.1433(10)
0.1427(13)
0.1417(14)
0.1436(10)
0.1433(9)
0.1431(11)
0.1427(12)
0.1434(10)
0.1427(13)
0.1418(14)
0.1437(10)
0.1427(13)
0.1425(16)
0.1418(21)
0.1427(16)
0.1427(17)

Table K.2: Model average results for the determination of /#( at the physical
point using the Wilson results. In the first column we label the
fit model and data cuts considered according to Table K.1. In
the second and third columns we report the quality of fits as
measured by the p-value [30] and the assigned weight to each
model according to eq. (4.33), respectively. Finally, the fourth
column corresponds to the value of /fp coming from each fit
model. In all models the penalization of eq. (4.32) was included, so
that for all models the contribution of the data at the largest lattice
spacing (B = 3.40) and pion mass (m,; = 420 MeV) is suppressed.
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Mixed action analysis
Model ‘ p-value ‘ 14% ‘ V1o [fm]
(xSU(3)][a*][] 0.595 | 0.0471 | 0.1445(9)
[xSU(3)][a?][B > 3.40] 0.5118 | 0.0193 | 0.1445(12)
[xSU(3)][a?][B > 3.46] 0.438 | 0.0072 | 0.1445(14)
[xSU(3)][a?][mr < 420 MeV] 0.5452 | 0.0176 | 0.1443(9)
[xSU(3)][a?][B > 3.40 & m; < 420 MeV] | 0.3486 | 0.003 | 0.1445(15)
[xSU(3)][a?][mr < 350 MeV] 0.351 | 0.0018 | 0.1447(10)
[xSU(3)][a?][mL > 4.1] 0.8106 | 0.0305 | 0.1445(10)
(xSU(3)][a%al][-] 0.5874 | 0.0473 | 0.1445(9)
[xSU(3)][a? s][ﬁ > 3.40] 0.5098 | 0.0193 | 0.1445(12)
(xsu(3)][a? of][B > 3.46] 0.4412 | 0.0072 | 0.1445(14)
[xSU(3)][a%al][my < 420 MeV] 0.5372 | 0.0176 | 0.1443(9)
[xSU(3)][a%al][B > 3.40 & m, < 420 MeV] | 0.3444 | 0.0029 | 0.1445(15)
[xSU(3)][a%al] [mn < 350 MeV| 0.3514 | 0.0018 | 0.1447(10)
[xSU(3)][a%al][m L > 4.1] 0.8182 | 0.0304 | 0.1445(10)
(xSU(3)][a® + a>¢a][—] 0.6046 | 0.0358 | 0.1438(12)
(xSU(3)][a® + a>¢a][B > 3.40] 0.5048 | 0.0146 | 0.1435(17)
[xSU(3)][a + a>¢2][B > 3.46] 0.3632 | 0.0041 | 0.1441(21)
[xSU(3)][a? + a*¢p][mr < 420 MeV] 0.4612 | 0.0092 | 0.1443(16)
[xSU(3)][a? + a*¢p][m L > 4.1] 0.8084 | 0.0202 | 0.1435(17)
[Tay][a?][—] 0.4208 | 0.022 | 0.1449(7)
[Tay][a?][B > 3.40] 0.3316 | 0.0087 | 0.1449(10)
[Tay][a?][B > 3.46] 0.2732 | 0.0035 | 0.1449(12)
[Tay][a?][m, < 420 MeV| 0.388 | 0.0091 | 0.1447(8)
[Tay][a?][B > 3.40 & m, < 420 MeV| 0.235 | 0.0016 | 0.1449(14)
[Tay][a?][m, < 350 MeV] 0.2366 | 0.0011 | 0.1450(9)
[Tay][a®][m.L > 4.1] 0.8136 | 0.031 | 0.1449(8)
(Tay][a*af][~] 04196 | 0.021 | 0.1449(7)
[Tay][a®al][B > 3.40] 0.337 | 0.0088 | 0.1449(11)
[Tay][ 2 f] [ > 3.46] 0.281 | 0.0036 | 0.1449(13)
[Tay][a%a Dimy < 420 MeV] 0.3906 | 0.0091 | 0.1447(8)
[Tay][a2al][B > 3.40 & m, < 420 MeV] 0.2346 | 0.0016 | 0.1449(14)
[Tay][a?al][m, < 350 MeV] 0.241 | 0.001 | 0.1450(9)
[Tay][a2al][m L > 4.1] 0.8228 | 0.0306 | 0.1449(8)
[Tay][a® + a®¢][—] 0.4362 | 0.0185 | 0.1441(11)
[Tay][a® + a®¢][B > 3.40] 0.3482 | 0.0071 | 0.1438(16)
[Tay][a® + a®¢,][B > 3.46] 0.225 | 0.002 | 0.1446(21)




[Tay][a® + a®¢][my < 420 MeV]
[Tay][a® + a®¢o][m L > 4.1]
(Tay4] 2]
[Tay4][a?][B > 3.40]
[Tay4][a?][B > 3.46]
[Tay4][a?][my < 420 MeV]
[Tay4][a?][B > 3.40 & m, < 420 MeV]
[Tay4][a?][m, < 350 MeV]
[Tay4][a®][m-L > 4.1]
(Tayd] [ + ][]
[Tay4][a® + a®¢,][B > 3.40]
[Tay4][a® + a*¢,][B > 3.46]
[Tay4][a? + a*¢p][m < 420 MeV]
[Tay4][a? + a*¢y][m L > 4.1]
[xSU(2)][a?][—]
(xSU(2)][a*][B > 3.40]
SUQ))[][B > 3.46]
[(xSU(2)][a?][mr < 420 MeV]
[XSU(2)][2][B > 3.40 & my < 420 MeV]
(xSU(2)][a?][mr < 350 MeV]
XSU@)][e] oL > 4.1]
xSU))[aal] [

(xSU(2)][a*{][p > 3.40]
(xSU(2)][aa{][p > 3.46]
[xSU(2)][a2al][m, < 420 MeV]

)]

[xSU(2)][a%al][B > 3.40 & m, < 420 MeV]
[xSU(2)][aa r][m,r < 350 MeV]
[(xSU(2)][a%al][m7L > 4.1]
XSU(R)][a2 + 23] -]
XSUQ)][@ + ’s][B > 3.40]
XSU(R)][a2 + o] B > 3.46]
(xSU(2)][a® + a’¢y][m < 420 MeV|
[xSU(2)][a? + a*¢y][m L > 4.1]
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0.3198
0.8716
0.6728
0.6106
0-447

0.5022
0.292

0.7832
0.739

0.6244
0.5074
0.4372
0.4972
0.8872
0.7174
0.6384
0.4706
0.5222
0.2878
0.7764
0.7592
0.7204
0.6196
0.4916
0.5264
0.3014
0.7714
0.7468
0.6492
0.5466
0.445

0.452
0.7178

0.005
0.0252
0.042
0.0182
0.0053
0.0098
0.0016
0.0031
0.0143
0.0246
0.0098
0.0036
0.0066
0.015
0.0543
0.0228
0.0067
0.0101
0.0016
0.0031
0.0178
0.0545
0.0231
0.0067
0.0101
0.0016
0.0031
0.0177
0.0334
0.0119
0.0041
0.0058

0.0102

0.1447(15)
0.1436(16)
0.1438(10)
0.1438(13)
0.1439(14)
0.1438(11)
0.1439(16)
0.1432(14)
0.1443(14)
0.1439(12)
0.1439(16)
0.1453(21)
0.1443(15)
0.1437(16)
0.1439(8)
0.1439(11)
0.1441(13)
0.1438(10)
0.1440(16)
0.1432(13)
0.1442(10)
0.1439(8)
0.1439(12)
0.1441(13)
0.1438(10)
0.1439(16)
0.1432(13)
0.1441(10)
0.1441(13)
0.1440(18)
0.1458(26)
0.1446(16)
0.1433(19)
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Table K.3: Model average results for the determination of /f( at the physical

point using the mixed actions results. In the first column we label

the fit model and data cuts considered according to Table K.1.

In the second and third columns we report the quality of fits as
measured by the p-value [30] and the assigned weight to each
model according to eq. (4.33), respectively. Finally, the fourth
column corresponds to the value of \/f; coming from each fit
model. In all models the penalization of eq. (4.32) was included, so
that for all models the contribution of the data at the largest lattice
spacing (B = 3.40) and pion mass (m,; = 420 MeV) is suppressed.

Combined analysis
Model ‘ p-value ‘ 4% ‘ Vto [fm]
(xSU(3)][a*][] 0.5532 | 0.0643 | 0.1440(6)
[xSU(3)][a?][B > 3.40] 0.5048 | 0.0144 | 0.1438(8)
[xSU(3)][a?][B > 3.46] 0.563 | 0.0023 | 0.1435(10)
[xSU(3)][a?][mr < 420 MeV] 0.5018 | 0.0069 | 0.1438(6)
[xSU(3)][a?][B > 3.40 & m; < 420 MeV] 0.4848 | 0.0004 | 0.1434(10)
[xSU(3)][a?][mr < 350 MeV] 02552 | 0.0 | 0.1441(8)
[xSU(3)][a?|[m~L > 4.1] 0.5842 | 0.0051 | 0.1441(7)
xsu))aaf][-] 0.5544 | 0.0624 | 0.1441(6)
[xSU(3)][a?al][B > 3.40] 0.4846 | 0.0125 | 0.1439(8)
[(xsu(@)][a* af][B > 3.46] 0.5774 | 0.0025 | 0.1435(10)
[xSu(3 )][ Nimy < 420 MeV] 0.509 | 0.0068 | 0.1438(6)
[xSU(3)][a« ][ > 3.40 & m, < 420 MeV| 0.5004 | 0.0004 | 0.1435(10)
[xSU(3)][aa ][mn < 350 MeV] 0.256 0.0 0.1441(8)
(xSU(3)][a%al][mrL > 4.1] 0.5732 | 0.0047 | 0.1441(7)
[xSU(3)][a?][a® + a>¢a][—] 0.6826 | 0.0662 | 0.1436(6)
[xSU(3)][a?][a® + a>¢,][B > 3.40] 0.6092 | 0.0131 | 0.1435(9)
[xSU(3)][a?][a® + a>¢o][B > 3.46] 0.5142 | 0.0011 | 0.1434(10)
[xSU(3)][a?][a® + a>¢a][mr < 420 MeV] 0.5646 | 0.0045 | 0.1435(7)
[xSU(3)][a?][a® + a?¢o][B > 3.40 & m, < 420 MeV] | 0.4148 | 0.0001 | 0.1433(10)
[xSU(3)][a?][a® + a*¢o][mr < 350 MeV] 0.196 0.0 0.1439(8)
[xSU(3)][a?][a® + a®¢a][mrL > 4.1] 0.728 | 0.0045 | 0.1436(7)
[xSU(3)][a* + a*¢2][a?][[] 0.5918 | 0.0382 | 0.1443(7)
[xSU(3)][a? + a*¢,][a%][B > 3.40] 0.5262 | 0.0074 | 0.1441(10)
[xSU(3)][a? + a*¢,][a%][B > 3.46] 0.5056 | 0.001 | 0.1436(11)
[xSU(3)][a? + a*¢,][a%][mr < 420 MeV] 0.5566 | 0.0039 | 0.1441(8)
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[xSU(3)][a? + a*¢,][a%][B > 3.40 & m, < 420 MeV] | 0.3996 | 0.0001 | 0.1435(11)
[xSU(3)][a? + a*¢,][a%][m~ < 350 MeV] 0.1814 | 0.0 | 0.1440(9)
[xSU(3)][a? + a’¢o][a?] [mr L > 4.1] 0.6358 | 0.0029 | 0.1444(9)
(xSU(3)][a* + a*¢2] [~] 0.6618 | 0.0449 | 0.1433(9)
[xSU(3)][a® + a>¢,][B > 3.40] 0.5704 | 0.0078 | 0.1430(13)
[(xSU(3)][a® + a>¢o] [B > 3.46] 0.4598 | 0.0005 | 0.1430(16)
[xSU(3)][a? + a?¢,][my < 420 MeV] 0.5206 | 0.0019 | 0.1435(13)
[xSU(3)][a? + a*¢p][mL > 4.1] 0.6816 | 0.0026 | 0.1432(13)
[Tay][a?][—] 0.4414 | 0.0288 | 0.1445(6)

[Tay][a?][B > 3.40] 0.3932 | 0.0066 | 0.1443(8)
[Tay][a?][B > 3.46] 0.4464 | 0.0011 | 0.1439(9)
[Tay][a®][m, < 420 MeV| 0.4204 | 0.0033 | 0.1442(6)
[Tay][a?][B > 3.40 & m, < 420 MeV| 0.3812 | 0.0002 | 0.1439(10)
[Tay][a?][m, < 350 MeV| 0.1684 0.0 | 0.1444(7)
[Tay][a?][m,L > 4.1] 0.5902 | 0.005 | 0.1445(6)

[Tay] [{12065 ][] 0.4354 | 0.0282 | 0.1445(6)
[Tay][a*al][B > 3.40] 0.376 | 0.0058 | 0.1443(8)
[Tay][a2af][B > 3.46] 0.4536 | 0.0012 | 0.1440(9)

[Tay] [azocf] [my, < 420 MeV| 0.4206 | 0.0034 | 0.1443(6)
[Tay][a2al][B > 3.40 & m, < 420 MeV] 0.3834 | 0.0002 | 0.1439(10)
[Tay][a2al][m, < 350 MeV] 0.1644 0.0 0.1444(7)
[Tay][a2al] [m L > 4.1] 0.5768 | 0.005 | 0.1445(6)
[Tay][a*][a* + a*¢][~] 0.5704 | 0.0351 | 0.1441(6)
[Tay][a?][a® + a®¢s][B > 3.40] 0.4726 | 0.0063 | 0.1439(8)
[Tay][a?][a® + a®¢»][B > 3.46] 0.3966 | 0.0005 | 0.1438(10)
[Tay][a?][a® + a®¢][my < 420 MeV] 0.4516 | 0.0024 | 0.1440(6)
[Tay][a?][a® + a®¢][B > 3.40 & m, < 420 MeV| 0.3102 | 0.0001 | 0.1438(10)
[Tay][a?][a® + a®¢y][m~ < 350 MeV| 0.127 0.0 | 0.1442(8)
[Tay][a?][a® + a®¢)[m L > 4.1] 0.749 | 0.0052 | 0.1441(7)
[Tay][a* + a*¢o][a?][~] 0.4672 | 0.0163 | 0.1447(6)

[Tay][a® + a®¢7][a?][B > 3.40] 0.3892 | 0.0032 | 0.1445(8)
[Tay][a® + a®¢7][a?][B > 3.46] 0.382 | 0.0005 | 0.1440(10)
[Tay][a® + a®¢s][a®][my < 420 MeV] 0.4404 | 0.0019 | 0.1445(7)
[Tay][a® + a®¢7][a?][B > 3.40 & m, < 420 MeV] 0.3142 | 0.0001 | 0.1439(10)
[Tay][a® + a®¢s][a®][mr < 350 MeV] 0.1104 | 0.0 | 0.1444(8)
[Tay][a® + a®¢s][a?][m L > 4.1] 0.6274 | 0.0028 | 0.1448(7)
[Tay][a* + a*¢2] [~] 0.5658 | 0.0256 | 0.1435(9)

[Tay][a® + a®¢][B > 3.40] 0.4734 | 0.0043 | 0.1432(12)



154 V/t0: MODEL VARIATIONS

[Tay][a® + a*¢2][B > 3.46]
[Tay][a® + a®¢s] [mr < 420 MeV]
[Tay][a® + a?¢s][m L > 4.1]
[Tay4] [a?][]
[Tay4][a?][B > 3.40]
[Tay4][a*][B > 3.46]
[Tay4][a?][m, < 420 MeV]
[Tay4][a?][m-L > 4.1]
[Tay4] [a?][a* + a>¢o][-]
[Tay4][a?][a* + a*¢,][B > 3.40]
[Tay4][a?][a* + a*¢,][B > 3.46]
[Tay4][a*][a* + a>¢po][m 7 < 420 MeV]
[Tay4][a®][a* + a®¢y][mrL > 4.1]
[Tay4][a® + a*¢o][a?] -]
[Tay4][a® 4 a2¢,][a?][B > 3.40]
[Tay4][a® + a’¢,][a?][B > 3.46]
[Tay4][a® + a2y [a?][mr < 420 MeV|
[Tay4][a® + a>¢][a%][mL > 4.1]
[Tay4][a® + a*¢»] (-]
[Tay4][a® + a*¢,][B > 3.40]
[Tay4)[a? + a¢,][B > 3.46]
[Tay4][a® + a*¢s][my < 420 MeV]
[Tay4][a? + a®s][m-L > 4.1]
(xsu(2)][a’][-]
[xSU(2)][a%][B > 3.40]
[xSU(2)][a*][B > 3.46]
(XxSU(2)][a?][mr < 420 MeV|
(xSU@)][a?][mzL > 4.1]
(xSU(2)][a2al] (]
[(XSU(2)][a%al][B > 3.40]
[(XSU(2)][a%al][B > 3.46]
2
]

[a
[a
[

[xSU(2)][a*a ][mn < 420 MeV]
[xSU(2)][a2al)[m L > 4.1]
(xSU(2)][a%][a* + a>¢o][ ]
[xSU(2)][a*][a* + a*¢][B > 3.40]
(xSU(2)][a*][a* + a*¢o][B > 3.46]
[xSU(2)][a%][a* + a®a] [mr < 420 MeV]
[a

[xSU(2)][a?][a® + a®¢a][mrL > 4.1]

0.366
0.4296
0.7382
0.5152
0.4556
0.4954

0.421

0.526
0.6136
0.5278
0-4324
0.4832

0.684
0.5848
0.4926
0.4322
0.4808

0.569
0.5774
0.4794
0.3748

0.429
0.7878
0.5694
0.5146
0.5484
0.4556
0.5296
0.5572
0.4862

0.548
0-4534
0.5098
0.6798
0.5846
0.4866
0.5148
0.6726

0.0003
0.0011
0.0038
0.0326
0.0075
0.0009
0.0025
0.0019
0.0278
0.0053
0.0004
0.0015
0.0022
0.0271
0.0044
0.0004
0.0016
0.0012
0.0166
0.0027
0.0002
0.0008
0.0027
0.0484
0.0115
0.0014
0.0031
0.0027
0.0497
0.01
0.0015
0.0029
0.0025
0.0475
0.0086
0.0007
0.0018

0.0022

0.1432(16)
0.1437(12)
0.1432(12)
0.1437(8)
0.1435(10)
0.1433(11)
0.1436(9)
0.1444(11)
0.1434(8)
0.1432(10)
0.1432(11)
0.1434(9)
0.1442(11)
0.1438(8)
0.1437(10)
0.1434(11)
0.1438(9)
0.1446(11)
0.1434(9)
0.1432(12)
0.1436(16)
0.1438(12)
0.1432(12)
0.1436(7)
0.1434(9)
0.1433(10)
0.1437(8)
0.1439(8)
0.1437(7)
0.1435(9)
0.1434(10)
0.1437(8)
0.1439(8)
0.1434(7)
0.1432(9)
0.1432(10)
0.1434(9)
0.1436(8)
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[xSU(2)][a* + a*¢2][a?][-]
XSU())[a* + o)) [ > 340
XSU)a + o] a2][B > 3.46

[xSU(2)][a? + a*¢,][a%] [mr < 420 MeV]
[(xSU(2)][a® + a>¢o][a?][mrL > 4.1]
XSU)@ + o))
(xSU(2)][a? + a>¢2][B > 3.40]
XSU(R)][e? + a2 [6 > 3.46
[xSU(2)][a? + a*¢p][mr < 420 MeV]
(xSU(2)][a® + a®¢][mrL > 4.1]

0.6388
0.5476
0.4886
0.5146
0.5846
0.635
0.5424
0.416
0.4556
0.6594

0.0394
0.0059

0.0006
0.0019
0.0016
0.0275
0.0039
0.0003
0.0009
0.0016
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0.1438(7)
0.1437(10)
0.1434(10)
0.1438(9)
0.1441(8)
0.1432(10)
0.1429(14)
0.1430(19)
0.1435(13)
0.1426(15)

Table K.4: Model average results for the determination of /f( at the physical
point using the combined analysis of both Wilson and mixed
action results. In the first column we label the fit model and
data cuts considered according to Table K.1. In the second and
third columns we report the quality of fits as measured by the
p-value [30] and the assigned weight to each model according to
eq- (4.33), respectively. Finally, the fourth column corresponds to
the value of \/f; coming from each fit model. In all models the
penalization of eq. (4.32) was included, so that for all models the
contribution of the data at the largest lattice spacing (f = 3.40)
and pion mass (m; = 420 MeV) is suppressed.



LIGHT AND STRANGE QUARK MASSES

In this Appendix, report about an ongoing study of the light and
strange quark masses as determined from our mixed action setup. We
use the notation

mi]- = 5 , (LI)
g = & 2 ‘u] (LZ)

As mentioned in Chapter 4, in the light sector we have carried out
lattice measurements in the fully unitary Wilson setup and in the
mixed action setup. In the former, renormalized quark masses m? can
be determined from the PCAC relation in eq. (2.47), while in the latter,
after the matching to maximal twist in Sec. 3.5 is performed, they are

simply determined from the bare twisted masses y; as
m}; = Zl;l (g%, Vren) |:1 + ﬂEytr (MlgS))} Hijs (LB)

where the improvement coefficient b, arises from residual cutoff effects
from the sea sector. Since they only appear in perturbation theory at
O(g?), they have been considered as negligible. Then, the light quark
mass is given by m} = m¥,, while the strange quark mass can be
obtained through

mg = 2mis — mgy. (L.g)

To obtain results for the renormalized quark masses at the physical
point and in the continuum, following [27] we consider the dimen-
sionless combinations

9ij = v/Btom, (L.5)

and simultaneously fit

zii ;’IZ( [ < q) ¢4> —Ps3 (i(¢2) - 1(47;7))

*(2474 —3¢2)(Do + D1¢2), (L.6)
23 | P2 _ = 3p1 +2p2¢s + pa(L(¢2) + L(¢y))
Pk <P
2
+ 8T(Go + Gl(Pz), (L.7)
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Figure L.1: Chiral-continuum extrapolation fit to extract the quantities ¢ 13
defined in eq. (L.5) at the physical point and in the continuum.
Empty point are obtained from our mixed action regularization,
while filled points are obtained from the Wilson unitary setup.
Purple squared symbols are § = 3.40 ensembles, green circle
symbols are § = 3.46, blue left triangles are p = 3.55 and orange
right triangles are = 3.70. Only a subset of the available ensem-
bles listed in Table H.1 are included in this preliminary analysis.
The colored bands represent the mass-dependence for each lattice
spacing: the darker bands corresponding to the Wilson unitary
setup and the lighter ones to the mixed action setup. The gray
band represents the continuum limit, and the black cross symbol
is the physical point result.

with
L(x) = xlog(x), (L.8)
Px =93~ 30, L9)
I =595~ b, (L0

in order to extract the values of ¢y 13 at the physical point and in the
continuum limit. Subsequently, from the physical value of ty reported
in Chapter 4, the physical values of the masses of the light and strange
quarks can be extracted.

In Fig. L.1 we show a preliminary analysis of these quantities com-
bining the Wilson unitary and mixed action regularizations, for a
subset of the ensembles in Table H.1.
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