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A Joaquín.



Nature is the proof of dialectics, and it must be said
for modern science that it has furnished this proof with

very rich materials increasingly daily [...]

— Engels, Anti-Dühring

It is precisely the alteration of nature by men, not solely nature as such,
which is the most essential and immediate basis of human thought.

— Engels, Dialectics of Nature.



A B S T R A C T

In contemporary particle physics, accurate results for Standard Model
(SM) observables are needed to improve the determination of its
fundamental parameters and to guide the search for the New Physics
(NP) by precise comparisons of SM predictions with the corresponding
experimental results. The quark-flavor sector of the Standard Model
constitutes a rich arena for such an endeavor. In a large class of
processes, the non-perturbative dynamics associated with the strong
interaction between quarks and gluons plays a fundamental role. These
hadronic effects are governed by Quantum Chromodynamics (QCD),
the gauge theory of the strong interaction within the SM framework.
The proper control of these effects is one of the main research fronts
in theoretical particle physics today. Lattice field theory provides a
first-principles method for studying strongly coupled theories such as
QCD.

In this work, we study a lattice QCD setup aimed at high-precision
calculations of light- and charm-quark physics. We employ a mixed ac-
tion approach, in which two different regularizations of the fermionic
action are used for the sea and valence sectors. More specifically, the
sea sector is based on N f = 2 + 1 non-perturbatively O(a) improved
Wilson fermions, while up/down, strange and charm quarks are con-
sidered in the valence sector using Wilson twisted mass quarks at
maximal twist. By also considering the case where O(a) improved
Wilson fermions are used in the sea and valence sectors, we have
carried out a universality test in the up/down and strange quarks
sector. This provides strong evidence of proper control of the approach
to the continuum limit in these lattice QCD formulations.

We will describe a scale setting procedure and its impact on charm-
quark observables. The use of a mixed action requires an adjustment
of the quark masses of the sea and valence sectors to preserve the
unitarity of the continuum theory. The external input used in the
scale setting procedure corresponds to the use of the pion and kaon
masses and decay constants in the isospin symmetric limit of QCD.
The gradient flow scale t0 is used as an intermediate scale, whose
physical value can be determined as a result of the scale setting. We
employ model variation techniques to evaluate all relevant systematic
uncertainties. Finally, the results of the scale setting are applied to
charm-quark sector in which accurate determinations of the charm
quark mass and of the decay constants of the D and Ds mesons are
obtained. Our results are among the most precise in the community
for Wilson-like lattice regularizations.
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R E S U M E N

En la física de partículas actual, resultados precisos de observables del
Modelo Estándar (SM) son necesarios para mejorar la determinación
de los parámetros fundamentales del SM y guiar la búsqueda de la
Nueva Física (NP) mediante comparaciones precisas de las predic-
ciones del SM con los resultados experimentales correspondientes.
El sector de sabores de quarks del Modelo Estándar constituye un
rico escenario para tal esfuerzo. En una gran clase de procesos, la
dinámica no-perturbativa asociada a la interacción fuerte entre quarks
y gluones juega un papel fundamental. Estos efectos hadrónicos se
rigen por la Cromodinámica Cuántica (QCD), la teoría gauge de la
interacción fuerte en el marco del SM. El control adecuado de estos
efectos es uno de los principales frentes de investigación en la física
teórica de partículas actual. La teoría de campos en el retículo propor-
ciona un método basado en primeros principios para estudiar teorías
fuertemente acopladas como QCD.

En este trabajo, estudiamos un setup de QCD en el retículo orientada
a cálculos de alta precisión de la física de quarks ligeros y del charm.
Empleamos un enfoque de acción mixta, en el que se utilizan dos
regularizaciones diferentes de la acción fermiónica para los sectores
mar y valencia. Más concretamente, el sector mar se basa en N f = 2+ 1
fermiones de Wilson no-perturbativamente O(a) improved, mientras
que en el sector de valencia se consideran los quarks up/down, strange y
charm utilizando una regularización de Wilson twisted mass a máximo
twist. Al considerar también el caso en el que se utilizan fermiones de
Wilson O(a) improved en los sectores mar y valencia, hemos llevado a
cabo una prueba de universalidad en el sector de los quarks up/down y
strange. Esto proporciona una fuerte evidencia de un control adecuado
de la aproximación al límite al continuo en estas formulaciones de
QCD en el retículo.

Describiremos un procedimiento de ajuste de escala o scale setting y
su impacto en los observables que involucran al quark charm. El uso
de una acción mixta requiere un ajuste de las masas de quarks de los
sectores mar y valencia para preservar la unitariedad de la teoría en el
continuo. El input externo utilizado en el procedimiento de scale setting
corresponde al uso de las masas y constantes de desintegración de
piones y kaones en el límite simétrico de isospín de QCD. La escala t0

se utiliza como escala intermedia, cuyo valor físico puede determinarse
como resultado del scale setting. Empleamos técnicas de variación sobre
modelos para evaluar todas las incertidumbres sistemáticas relevantes.
Por último, los resultados del scale setting se aplican al sector del quark
charm, en el que se obtienen determinaciones precisas de la masa del
quark charm y de las constantes de desintegración de los mesones D
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y Ds. Nuestros resultados se encuentran entre los más precisos de la
comunidad para regularizaciones reticulares tipo Wilson.
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I N T R O D U C T I O N

The Standard Model (SM) of particle physics is the theory that de-
scribes three of the four fundamental interactions in Nature: elec-
tromagnetism, the weak interaction, and the strong interaction. The
theoretical framework in which the SM is formulated is that of Quan-
tum Field Theory (QFT), and the particular theory that describes the
strong interaction is Quantum Chromodynamics or QCD1.

quantum field theory and the standard model

The 20th century witnessed two pivotal developments in modern
physics and our comprehension of Nature: special relativity and quan-
tum mechanics.

On the one hand, the theory of special relativity presents a reformu-
lation of Galileo’s principle, which prescribes that the laws of physics
must remain unchanged in two different inertial frames. This refor-
mulation is consistent with the theory of electromagnetism developed
by Maxwell in the 19th century and posits that the speed of light
is a universal constant. This led to profound consequences, such as
time dilation and length contraction, according to which one observer
experiences time and distances differently from another, depending
on the relative speed of their inertial frames. Additionally, it implies
the equivalence of mass and energy, and led to the formulation of
the Universe as a 4-dimensional Lorentzian manifold, space-time, in
which there is a non-trivial interplay between time and space.

The principle of a constant speed of light and the upper bound
that it induces on the propagation speed of signals rendered the old
Newtonian view of interactions obsolete. According to the latter, the
force acting on a particle at a given time depends on the position
of all other particles at that moment. This implies an instantaneous
transfer of force from one particle to another, which is at odds with
the principles of special relativity. Field Theory is the framework that
allows to supersede this difficulty. It is based on the concept of fields,
which are dynamic objects that fill the whole of space-time. Mathe-
matically, they are simply functions of space and time. Treating fields
as the fundamental degrees of freedom allows to construct a Lorentz
invariant formulation of the theory which is thus compatible with spe-
cial relativity. One example is Maxwell’s theory of electromagnetism,
which describes the dynamics of the electric E⃗(x⃗, t) and magnetic
B⃗(x⃗, t) fields.

1 The main discussion in this Introduction is based on the review [128], all other
relevant references can be found in Chapter 1
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4 INTRODUCTION

On the other hand, quantum mechanics introduces the concept of
probability into our description of Nature. In this framework parti-
cles are described by wave functions that represent the probability
density of finding a particle at a given position in space at some time.
Position and momentum are promoted to conjugate operators that
do not commute, which gives rise to Heisenberg’s uncertainty prin-
ciple, according to which it is not possible to know the position and
momentum of a particle simultaneously

∆x∆p ≥ h̄.

Quantum Field Theory is the framework that unifies quantum me-
chanics and special relativity. It entails promoting classical fields to
quantum operators in a manner analogous to the case of position
and momentum in quantum mechanics. This results in a plethora of
consequences, such as particles being regarded as excitations of an
underlying quantum field, the existence of antiparticles or the non-
conservation of particle number. The latter is of special importance for
any quantum description of a relativistic system, as high-energy colli-
sions can result in the creation and annihilation of particles. Moreover,
according to Heisenberg’s uncertainty principle, if a particle is placed
in a box of size L there will be an uncertainty in its momentum of

∆p ≥ h̄/L.

This gives rise to an uncertainty in the energy of the particle of order
∆E ≥ h̄c/L. When the energy exceeds 2mc2 we have enough energy to
create a particle-antiparticle pair from the vacuum, with m the mass
of the particle. This happens at distances of order

L = λ =
h̄

mc
,

which is the reduced Compton wavelength. At this and smaller dis-
tances (or equivalently higher energies) one expects to detect particle-
antiparticle pairs in proximity to the original particle, breaking down
the very concept of a point-like particle.

Generalizing the concept of fields such that all particles are excita-
tions of some field solves another puzzle of Nature: how can e.g. two
electrons separated by a space-like distance (causally disconnected)
look exactly the same, like two perfect copies of one another? This is
naturally explained if there is a universal field of the electron, since all
electrons are simply excitations of this field filling all of space-time.

A key ingredient of QFTs are symmetries, which are defined in
the mathematical framework of group theory. Global symmetries are
of paramount importance in physics, as they provide conservation
laws through Noether’s Theorem, such as the conservation of energy
and momentum. In addition to global symmetries, local or gauge
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symmetries also play a crucial role. These can be regarded as a redun-
dancy in the theory, so that performing a local transformation of the
fundamental fields leaves physics unchanged. Although it may appear
impractical to write our theories of Nature in a redundant manner, it
is very useful since it allows us to write simple Lagrangians which
may have unphysical degrees of freedom that can be eliminated by
using gauge redundancy. This is exemplified by the case of the photon,
which has only two polarization states but in the SM is described by
a gauge field with 4 degrees of freedom. Thanks to gauge symmetry,
one can eliminate the two remaining unphysical degrees of freedom.
Another beautiful property of gauge symmetries is that they allow
for a geometric interpretation of interactions: gauge fields can be re-
garded as the connection in a principal G-bundle, with G the gauge
group, and the field strength tensor as the curvature. In this way, all
fundamental interactions of Nature can be understood in the light of
geometry, just as gravity is in General Relativity.

The gauge symmetry group of the SM is

SU(3)c × SU(2)w × U(1)Y,

where SU(3)c is the gauge group of the strong interaction (whose
charge is called color), SU(2)w is the gauge group of the weak interac-
tion and U(1)Y is the gauge group of hypercharge. The Higgs mecha-
nism provides a description of the spontaneous symmetry breaking of
the electroweak sector SU(2)w × U(1)Y into that of electromagnetism
U(1)em, as well as a mechanism for the generation of masses for fun-
damental particles. The pure gauge interactions depend only on three
free parameters, which are the three coupling constants. Matter fields
do not introduce any further free parameter, while the addition of the
Higgs field introduces 22 new free parameters into the theory, which
govern the masses of the elementary particles, flavor mixing angles
and CP-violating phases.

Over the decades, the SM has proven extremely successful in pass-
ing experimental tests. Notable examples include the discovery of
neutral weak currents in 1973, the bottom quark in 1977, the Z and W
bosons in 1983 and the agreement of the ratio of their masses between
experiment and theory, the discovery of the top quark in 1995, and the
Higgs boson in 2012.

Despite the remarkable success of the SM, we know that it cannot
be the whole story. On the one hand, it does not explain one of the
four fundamental interactions of Nature, gravity. On the other hand,
there’s no candidate particle in the SM for dark matter, which is
estimated to comprise ∼ 85% of the matter content in the Universe.
In addition, there are other theoretical puzzles, such as the hierarchy
problem of the Higgs mass, triviality of the Higgs coupling, the flavor
puzzle or the strong CP problem, which we will briefly discuss below.
The SM can thus be interpreted as an effective theory that describes
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extremely well the Universe at the energy scales probed by modern
day colliders, but that there must be some New Physics (NP) at work
at high energies, the search of which is the holy grail of modern day
particle physics.

One frontier of research for New Physics is the precision frontier.
Modern particle physics experiments continue to improve the accuracy
of a number of physical observables, and in order to detect possible
NP signals, it is of the utmost importance to achieve a similar level
of precision in theoretical predictions. One promising avenue for
exploration is the study of B meson physics. Semileptonic B decays
play a crucial role in the determination of the CKM matrix elements,
and long-standing tensions exist between the exclusive and inclusive
determinations of the elements Vub and Vcb [115]. In addition, in
recent years some experimental anomalies have been observed in B
meson decays, suggesting potential signals of the violation of lepton
flavor universality. Currently, some prominent anomalies still persist
in the b → cτν charged current and in the b → sℓ+ℓ− neutral current
decays [35]. Rare decays that in the SM are flavor-change-neutral-
current or GIM-suppressed constitute excellent probes of NP effects.
Yet another observable that has gained particular relevance in recent
years is the anomalous magnetic moment of the muon, which has
been measured experimentally with an unprecedented precision [2, 15].
However, theoretical consensus for this quantity is yet to be achieved:
a data-driven dispersive approach leads to a 4.2σ tension with the
experimental value [7], while ab-initio SM calculations lead to a 1.5σ

difference [22, 78]. In all these processes QCD plays a crucial role, and
thus precise theoretical predictions in this sector of the SM are of the
utmost importance. The framework of Lattice Field Theory provides a
first-principles method for performing these calculations.

why lattice field theory?

In the intermediate steps of a calculation of physical observables in
QFTs, there are often divergences that must be eliminated for the
theory to remain predictive. This is achieved through the implemen-
tation of the renormalization program, which entails the subtraction
of the divergences that emerge in physical quantities by means of
the redefinition of the parameters of the theory that are not observ-
ables, such as bare field normalizations, masses and couplings. This
renormalization program has been successfully applied to the three
fundamental interactions described by the SM.

The renormalization process introduces a dependence of the renor-
malized couplings and masses on the renormalization scale. This
dependence is constrained by the fact that the renormalization group
running must enforce that physical observables do not depend on
the renormalization scale. In the case of electromagnetism, the cou-



INTRODUCTION 7

pling (which is directly related to the electric charge of the electron)
decreases at low energies. However, in the case of Yang-Mills theo-
ries such as QCD, the opposite is true, with the coupling becoming
stronger at lower energies.

In the weak coupling regime, where the coupling of a Quantum
Field Theory is small, the theory can be studied through a perturbative
expansion in powers of the coupling. This is the case of Quantum
Electrodynamics at low energies, where high-order perturbative com-
putations have been carried out over the years for quantities such as
the charged lepton anomalous magnetic moment. In the case of QCD,
however, the coupling grows at low energies and perturbation theory
fails to perform theoretical predictions, as the system is governed by
non-perturbative phenomena. The only known first-principles method
for studying QFTs in the strong coupling regime is Lattice Field Theory.
It consists of discretizing space-time into a finite volume Euclidean
grid or lattice, with space-time points separated by a non-zero lattice
spacing a, whose inverse plays the role of an ultraviolet cutoff.

In Lattice Field Theory, the path integral formalism can be cast into a
statistical field theory system where a finite – but very large – number
of integrals over the fields can be carried out numerically via Markov
Chain Monte Carlo methods. This is a particularly suitable method
to compute expectation values in a strongly coupled theory such as
QCD, whose main distinguishing phenomena are non-perturbative.
For instance, in the theory of the strong interaction non-perturbative
effects are responsible for confinement, whereby no color charged
particles are observed in Nature at low energies as asymptotic states.
Spontaneous chiral symmetry breaking is yet another example of a
non-perturbative effect responsible for the small mass of the pions.
Additionally, the theory is expected to dynamically generate a mass
gap due to its non-perturbative nature. This implies that the spectrum
of QCD does not include any arbitrarily light particle. Even though
this is experimentally confirmed and supported by Lattice Field The-
ory numerical simulations, there is, at the moment, no conclusive
theoretical proof of the QCD mass gap. Obtaining a rigorous theoret-
ical proof of its existence constitutes one of the famous Millennium
Prize Problems [99]. Another important aspect of QCD is its vacuum
structure, the role of the θ-term and topology of the gauge group. In
order to advance in a comprehensive theoretical understanding of
these features of QCD, as well as to conduct high precision, reliable
calculations needed to improve the SM predictions and to contribute
to the search of NP in the precision frontier, it is essential to employ a
non-perturbative approach to the theory.

Non-perturbative treatment of QFT is also of great importance for
other theoretical reasons. In many popular Beyond the Standard Model
(BSM) scenarios, non-perturbative effects play a central role. For in-
stance, in supersymmetric theories (SUSY), non-perturbative effects are
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invoked to break supersymmetry at low energies. Nearly conformal
field theories and technicolor models (which retain some QCD-like
properties at higher energy scales) also require a non-perturbative
treatment. Moreover, the SM version of the Higgs potential suffers
from the triviality problem. This implies that the renormalized Higgs
coupling vanishes after perturbative renormalization, unless there is
a finite energy cutoff in the theory, implying that the SM is nothing
but an Effective Field Theory (EFT) valid up to some energy cutoff. In
this scenario, the Higgs mass is expected to receive large contributions
from the high-energy scales, rendering it naturally heavy, in contrast
to the observed value at CERN. This is referred to as the hierarchy
problem. Non-perturbative numerical approaches demonstrate trivial-
ity of scalar field theories with a quartic interaction term [84] (which is
the case of the Higgs potential in the SM). Nevertheless, the coupling
of the scalar field to other SM particles could potentially alter the triv-
iality behavior of the coupling. Once more, these issues can only be
addressed by employing a non-perturbative approach. Consequently,
Lattice Field Theory is a method for investigating a wide variety of
fundamental physics problems in the SM and in QFT in general.

a mixed action lattice approach to light and charm

physics

Having motivated the need to study QCD in the context of Lattice Field
Theory, the purpose of this research work is to construct and probe a
lattice QCD approach that could contribute to improve the accuracy
of hadronic physics observables in the light- and charm-quark sectors.
This is a timely initiative in the current context, where there is a need
to improve the determination of the fundamental parameters of the
SM, as well as of a whole class of observables currently studied in
particle physics experiments.

More specifically, we will consider a mixed action approach where
different Dirac operators are employed in the sea and valence sectors.
This mixed action setup employs the Wilson fermion regularization
for quarks in the sea, with mass degenerate up/down quark flavors to-
gether with a strange quark, while Wilson twisted mass regularization
for quarks are used in the valence sector, with up/down, strange and
charm quarks. When the valence sector is tuned to the maximal twist,
symmetry properties of the Wilson twisted-mass Dirac operator imply
that the physical observables do not receive O(a) lattice artifacts, ex-
cept for residual cutoff effects proportional to the sum of the masses of
the sea quarks. This provides an alternative way of obtaining results
in the continuum limit, since lattice QCD calculations in this setup do
not require the explicit determination of the set of O(a) improvement
coefficients. This is particularly relevant for the study of charm quark
physics, since the leading O(amc) discretization effects associated with
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the charm quark can be sizeable due to the relatively large value of
the charm quark mass mc. It is therefore interesting to consider an
approach in which this source of lattice artifacts is absent.

In general, a mixed-action approach can induce unitarity violations
in the continuum theory if the masses of the quarks of a given flavor
are not correctly matched between the sea and valence sectors. This
matching procedure is thus an important step of the calculation. Since
the sea contains only up/down and strange quarks, it is necessary to
adjust the parameters of the mixed action in order to impose that the
valence up/down and strange physical quark masses coincide with
those in the sea. This requires precise calculations in the light and
strange sectors of QCD, which is one of the targets of this thesis.

In a lattice QCD calculation, the dimensional quantities are deter-
mined in units of the lattice spacing a. Physical input is required to
fix the values of the fundamental parameters corresponding to the
quark masses and the strong coupling. Such a scale setting procedure
enables the determination of the values of the lattice spacing used in
the simulations, and any dimensional quantity to be quoted in physi-
cal units. In this work we will describe the implementation of a scale
setting procedure based on the mixed action approach. As calculations
in Lattice Field Theory have become increasingly precise in recent
years, entering the “precision era” with uncertainties falling below 1%,
setting the scale with high accuracy has become a primary focus of
the community. This is because the uncertainty of the scale propagates
into the accuracy of any given lattice observable. For example, for the
hadronic vacuum polarization contribution to the anomalous magnetic
moment of the muon, which must be determined with a sub-percent
accuracy, a significant sensitivity to the scale setting uncertainty has
been established, requiring setting the scale with a precision of a few
permil [22].

The manuscript is structured as follows. In Chapter 1 we introduce
the continuum QCD action and its gauge structure. We then consider
how it can be formulated in a lattice with finite lattice spacing a. We
present the methodology for computing expectation values numeri-
cally, thereby bridging the gap between the path integral formalism
in Euclidean space-time and statistical mechanics. We establish the
theoretical basis underlying the process of taking the continuum limit
and its relation to renormalizability. We review the Symanzik im-
provement program, which is the effective field theory approach to
parameterizing and improving the lattice spacing dependence of lat-
tice observables. Finally, we elaborate on the scale setting program.
In Chapter 2 we define the relevant physical observables relevant in
this work and how they are extracted on the lattice. We also explain
how to extract the ground state signals of these observables, isolating
them from excited states, using model variation techniques. In Chap-
ter 3 we introduce our mixed action regularization. We describe the
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regularizations used in the sea and valence sectors, and perform the
matching procedure of the quark masses in both sectors. Simultane-
ously we tune the valence twisted mass Dirac operator to maximal
twist. Furthermore, we describe the employed chiral trajectory to-
wards the physical point and the mass-shift procedure used to correct
for small mistunings. In Chapter 4 we perform the scale setting of
our mixed action by computing the gradient flow scale t0 in physical
units, using as external physical input the masses and decay constants
of the pion and kaon. We explore a number of different models to
perform the chiral extrapolation to the physical pion mass and the
continuum limit at vanishing lattice spacing a → 0. We use model
averaging techniques to compute a final average result of t0 in physical
units, taking into account the systematic uncertainty due to the model
variation. Treating t0 as an intermediate scale allows to extract the
lattice spacing in fermi (fm). In Chapter 5 we analyze the impact of our
scale setting procedure in the computation of hadronic observables
involving the charm quark: using our determination of the scale t0

we obtain results for the renormalized charm quark mass and D(s)
mesons decay constants based on our mixed action setup, following
our work in [33]. Finally, we present our conclusions in Section iv.

This thesis is accompanied by a number of appendices. In Appendix
A we introduce conventions regarding the Gamma matrices, quark
bilinears in the twisted and physical basis of the quark fields. In Ap-
pendix B we provide the expressions for the Gell-Mann matrices and
the su(3) structure constants. In Appendix C we review some basic
aspects of lattice simulations. In Appendix D we briefly discuss the
methods employed to compute the quark propagators through the
inversion of the Dirac operator. In Appendix E we describe the meth-
ods used for error propagation and treatment of (auto)correlations. In
Appendix F we give details on the fitting strategy followed throughout
this work. In Appendix G we give some brief details of the GEVP
method employed for the computation of lattice observables involving
the charm quark. In Appendix H we review the gauge ensembles
used in this work. We quote results for the relevant lattice observables
computed in these ensembles in Appendix I. In Appendix J we give
expressions for the finite volume effect corrections based on Chiral
Perturbation Theory. In Appendix K we report the results for t0 in
physical units for each model considered for the chiral-continuum ex-
trapolation. Finally, in Appendix L we present a preliminary analysis
of the chiral-continuum extrapolation for the light and strange quark
masses.



I N T R O D U C C I Ó N

El Modelo Estándar (SM) de la física de partículas es la teoría que de-
scribe tres de las cuatro interacciones fundamentales de la Naturaleza:
el electromagnetismo, la interacción débil y la interacción fuerte. El
marco teórico en el que se formula el SM es el de la Teoría Cuántica
de Campos (QFT), y la teoría que describe la interacción fuerte es la
Cromodinámica Cuántica o QCD2.

teoría cuántica de campos y el modelo estándar

El siglo XX fue testigo de dos desarrollos fundamentales en la física
moderna y en nuestra comprensión de la Naturaleza: la relatividad
especial y la mecánica cuántica.

Por un lado, la teoría de la relatividad especial presenta una re-
formulación del principio de Galileo, el cual prescribe que las leyes
de la física deben permanecer invariables en dos marcos de inercia
diferentes. Dicha reformulación es coherente con la teoría del elec-
tromagnetismo desarrollada por Maxwell en el siglo XIX y postula
que la velocidad de la luz es una constante universal. Esto condujo
a profundas consecuencias, como la dilatación temporal y la contrac-
ción espacial, de manera que un observador experimenta el tiempo y
las distancias de forma distinta a otro, dependiendo de la velocidad
relativa de sus marcos inerciales. Además, implica la equivalencia de
masa y energía, y condujo a la formulación del Universo como una
variedad Lorentziana de 4 dimensiones, el espacio-tiempo, en el que
existe una interrelación no trivial entre tiempo y espacio.

El principio de la velocidad constante de la luz y el límite superior
que induce en la velocidad de propagación de las señales dejaron
obsoleta la antigua visión newtoniana de las interacciones. Según
esta última, la fuerza que actúa sobre una partícula en un momento
dado depende de la posición de todas las demás partículas en ese
momento. Esto implica una transferencia instantánea de las fuerzas de
una partícula a otra, lo que contradice los principios de la relatividad
especial. La Teoría de Campos es el marco que permite superar esta
dificultad. Se basa en el concepto de campos, que son objetos dinámi-
cos que llenan la totalidad del espacio-tiempo. Matemáticamente, un
campo es simplemente una función del espacio y del tiempo. Tratar
los campos como los grados de libertad fundamentales permite con-
struir una formulación invariante de Lorentz de la teoría que, por
tanto, es compatible con la relatividad especial. Un ejemplo es la teoría

2 La discusión principal de esta Introducción se basa en la review [128], el resto de
referencias relevantes se pueden encontrar en el Capítulo 1
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del electromagnetismo de Maxwell, que describe la dinámica de los
campos E⃗(x⃗, t) eléctrico y B⃗(x⃗, t) magnético.

Por otro lado, la mecánica cuántica introduce el concepto de prob-
abilidad en nuestra descripción de la Naturaleza. En este marco, las
partículas son descritas mediante funciones de onda que representan
la densidad de probabilidad de encontrar una partícula en una posi-
ción determinada del espacio en un momento dado. La posición y el
momento se tratan como operadores conjugados que no conmutan, lo
que da lugar al principio de incertidumbre de Heisenberg, según el
cual no es posible conocer simultáneamente la posición y el momento
de una partícula

∆x∆p ≥ h̄.

La Teoría Cuántica de Campos es el marco que unifica la mecánica
cuántica y la relatividad especial. Implica la promoción de campos
clásicos a operadores cuánticos de forma análoga al caso de la posición
y el momento en la mecánica cuántica. De ello se derivan numerosas
consecuencias, como la consideración de las partículas como excita-
ciones de un campo cuántico subyacente, la existencia de antipartículas
o la no conservación del número de partículas. Esto último es de es-
pecial importancia para cualquier descripción cuántica de un sistema
relativista, ya que las colisiones de alta energía pueden dar lugar a la
creación y aniquilación de partículas. Además, según el principio de
incertidumbre de Heisenberg, si una partícula se coloca en una caja
de tamaño L habrá una incertidumbre en su momento de

∆p ≥ h̄/L.

Esto da lugar a una incertidumbre en la energía de la partícula del
orden ∆E ≥ h̄c/L. Cuando la energía supera 2mc2 tenemos energía
suficiente para crear un par partícula-antipartícula a partir del vacío,
siendo m la masa de la partícula. Esto ocurre a distancias del orden

L = λ =
h̄

mc
,

que es la longitud de onda Compton reducida. A esta distancia y a
distancias más pequeñas (o equivalentemente a energías más altas)
uno espera detectar pares partícula-antipartícula en proximidad de la
partícula original, rompiendo el concepto mismo de partícula puntual.

Generalizar el concepto de campo de tal manera que todas las
partículas sean excitaciones de algún campo resuelve otro enigma
de la Naturaleza: ¿cómo es posible, por ejemplo, que dos electrones
separados por una distancia space-like (causalmente desconectados)
parezcan exactamente iguales, como dos copias perfectas el uno del
otro? Esto queda resuelto si existe un campo universal del electrón
llenando todo el espacio-tiempo, ya que todos los electrones son
simplemente excitaciones de este campo.
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Un ingrediente clave de las QFT son las simetrías, que se definen
en el marco matemático de la teoría de grupos. Las simetrías globales
son de vital importancia en física, ya que proporcionan leyes de con-
servación a través del Teorema de Noether, como la conservación de la
energía y el momento. Además de las simetrías globales, las simetrías
locales o gauge también desempeñan un papel crucial. Estas pueden
considerarse una redundancia en la teoría, de modo que al realizar
una transformación local de los campos fundamentales la física no
cambia. Aunque pueda parecer poco práctico escribir nuestras teorías
de la Naturaleza de forma redundante, es muy útil ya que nos permite
escribir Lagrangianos simples con grados de libertad no físicos, que
pueden eliminarse utilizando la redundancia gauge. Esto se ejempli-
fica con el caso del fotón, que sólo tiene dos estados de polarización
pero en el SM está descrito por un campo gauge con 4 grados de liber-
tad. Gracias a la simetría gauge, se pueden eliminar los dos grados
de libertad no físicos restantes. Otra propiedad de las simetrías gauge
es que permiten una interpretación geométrica de las interacciones:
los campos gauge pueden considerarse como la conexión en un princi-
pal G-bundle, con G el grupo gauge, y el field-strenght tensor como la
curvatura. De este modo, todas las interacciones fundamentales de la
Naturaleza pueden interpretarse de manera geométrica, al igual que
la gravedad en la Relatividad General.

El grupo de simetría gauge del SM es

SU(3)c × SU(2)w × U(1)Y,

donde SU(3)c es el grupo gauge de la interacción fuerte (cuya carga
se denomina color), SU(2)w es el grupo gauge de la interacción débil
y U(1)Y es el grupo gauge de la hipercarga. El mecanismo de Higgs
proporciona una descripción de la ruptura espontánea de simetría del
sector electrodébil SU(2)w × U(1)Y al del electromagnetismo U(1)em,
así como un mecanismo para la generación de masas para las partícu-
las fundamentales. Las interacciones gauge puras dependen sólo de
tres parámetros libres, que son las tres constantes de acoplamiento.
Los campos de materia no introducen ningún otro parámetro libre,
mientras que la adición del campo de Higgs introduce 22 nuevos
parámetros libres en la teoría, que gobiernan las masas de las partícu-
las elementales, los ángulos de mezcla de sabores y las fases de vio-
lación CP.

A lo largo de las décadas, el SM ha superado con éxito las pruebas
experimentales. Ejemplos notables son el descubrimiento de las cor-
rientes débiles neutras en 1973, el quark bottom en 1977, los bosones
Z y W en 1983 y la concordancia de la relación de sus masas entre el
experimento y la teoría, el descubrimiento del quark top en 1995 y el
bosón de Higgs en 2012.

A pesar del notable éxito del SM, sabemos que no puede ser el fin
de la historia. Por un lado, no explica una de las cuatro interacciones
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fundamentales de la Naturaleza, la gravedad. Por otro lado, no hay
ninguna partícula candidata en el SM para la materia oscura, que se es-
tima que comprende el ∼ 85% del contenido de materia en el Universo.
Además, existen otros enigmas teóricos, como el problema de jerar-
quía de la masa de Higgs, la trivialidad del acoplamiento de Higgs,
el enigma del sabor o el problema de CP fuerte, que discutiremos
brevemente a continuación. Así pues, el SM puede interpretarse como
una teoría efectiva que describe extremadamente bien el Universo a
las escalas de energía sondeadas por los colisionadores actuales, pero
que debe haber Nueva Física (NP) trabajando a altas energías, cuya
búsqueda es el santo grial de la física de partículas actual.

Una de las fronteras de investigación para la Nueva Física es la fron-
tera de precisión. Los experimentos modernos de física de partículas
siguen mejorando la precisión de una serie de observables físicos y,
para detectar posibles señales de NP, es de suma importancia alcanzar
un nivel similar de precisión en las predicciones teóricas. Una vía de
exploración prometedora es el estudio de la física del mesón B. Las
desintegraciones semileptónicas de B juegan un papel crucial en la
determinación de los elementos de la matriz CKM, y existen tensiones
desde hace mucho tiempo entre las determinaciones exclusivas e in-
clusivas de los elementos Vub y Vcb [115]. Además, en los últimos años
se han observado algunas anomalías experimentales en las desintegra-
ciones del mesón B, que sugieren señales potenciales de violación de la
universalidad del sabor leptónico. Actualmente, aún persisten algunas
anomalías prominentes en la corriente cargada b → cτν y en las desin-
tegraciones de corriente neutra b → sℓ+ℓ− [35]. Las desintegraciones
raras que en el SM están suprimidas por el cambio de sabor de la
corriente neutra o por el mecanismo de GIM constituyen excelentes
sondas de los efectos NP. Otro observable que ha cobrado especial
relevancia en los últimos años es el momento magnético anómalo del
muón, que se ha medido experimentalmente con una precisión sin
precedentes [2, 15]. Sin embargo, aún no se ha alcanzado un consenso
teórico para esta cantidad: un enfoque basado en datos experimentales
conduce a una tensión de 4.2σ con el valor experimental [7], mientras
que los cálculos SM ab-initio conducen a una diferencia de 1.5σ [22,
78]. En todos estos procesos QCD juega un papel crucial, por lo que
las predicciones teóricas precisas en este sector del SM son de suma
importancia. El marco de la Teoría de Campos en el Retículo propor-
ciona un método basado en primeros principios para realizar estos
cálculos.

¿por qué la teoría de campos en el retículo?

En los pasos intermedios de los cálculos de observables físicos en
QFTs, a menudo hay divergencias que deben ser eliminadas para
que la teoría siga siendo predictiva. Esto se consigue mediante la
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implementación del programa de renormalización, que implica la
sustracción de las divergencias que surgen en las cantidades físicas
mediante la redefinición de los parámetros de la teoría que no son
observables, tales como normalizaciones de campo, masas y constantes
de acoplo bare. Este programa de renormalización se ha aplicado con
éxito a las tres interacciones fundamentales descritas por el SM.

El proceso de renormalización introduce una dependencia de los
acoplamientos y masas renormalizados con respecto a la escala de
renormalización. Esta dependencia está limitada por el hecho de que
el grupo de renormalización debe garantizar que los observables
físicos no dependan de la escala de renormalización. En el caso del
electromagnetismo, la constante de acoplo (que está directamente
relacionada con la carga eléctrica del electrón) disminuye a bajas
energías. Sin embargo, en el caso de las teorías de Yang-Mills como
QCD, ocurre lo contrario, y el acoplamiento se hace más fuerte a bajas
energías.

En el régimen de acoplamiento débil, en el que la constante de
acoplo de una Teoría Cuántica de Campos es pequeña, la teoría puede
estudiarse mediante una expansión perturbativa en potencias de la
constante de acoplo. Este es el caso de la Electrodinámica Cuántica
a bajas energías, donde a lo largo de los años se han llevado a cabo
cálculos perturbativos de alto orden para cantidades como el mo-
mento magnético anómalo del leptón cargado. En el caso de QCD,
sin embargo, la constante de acoplo crece a bajas energías y la teoría
de perturbaciones falla a la hora de realizar predicciones teóricas, ya
que el sistema está gobernado por fenómenos no perturbativos. El
único método basado en primeros principios conocido para estudiar
QFTs en el régimen de acoplamiento fuerte es la Teoría de Campos
en el Retículo. Esta consiste en discretizar el espacio-tiempo en un
retículo Euclídeo de volumen finito, con los puntos del espacio-tiempo
separados por un espaciado reticular a mayor que cero, cuyo inverso
desempeña el papel de un cutoff ultravioleta.

En la teoría de campos en el retículo, el formalismo de la integral de
caminos puede transformarse en un sistema estadístico de campos en
el que un número finito -pero muy grande- de integrales sobre los cam-
pos puede llevarse a cabo numéricamente mediante métodos de Monte
Carlo de cadenas de Markov. Se trata de un método especialmente
adecuado para calcular valores esperados en una teoría fuertemente
acoplada como QCD, cuyos principales fenómenos distintivos son
no-perturbativos. Por ejemplo, en la teoría de la interacción fuerte los
efectos no-perturbativos son responsables del confinamiento, por el
cual no se observan partículas con carga de color en la Naturaleza
a bajas energías como estados asintóticos. La ruptura espontánea de
simetría quiral es otro ejemplo de efecto no perturbativo, responsable
de la pequeña masa de los piones. Además, se espera que la teoría
genere dinámicamente una brecha de masa debido a su naturaleza no-
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perturbativa. Esto implica que el espectro de QCD no incluye ninguna
partícula arbitrariamente ligera. Aunque esto está confirmado experi-
mentalmente y apoyado por simulaciones numéricas de la Teoría de
Campos en el Retículo, no existe, por el momento, ninguna prueba
teórica concluyente de la brecha de masa en QCD. Obtener una prueba
teórica rigurosa de su existencia constituye uno de los famosos Proble-
mas del Premio del Milenio [99]. Otro aspecto importante de QCD es
su estructura de vacío, el papel del término θ y la topología del grupo
gauge. Para avanzar en una comprensión teórica exhaustiva de estas
características de QCD, así como para realizar cálculos fiables de alta
precisión necesarios para mejorar las predicciones del SM y contribuir
a la búsqueda de NP en la frontera de precisión, es esencial emplear
un enfoque no-perturbativo de la teoría.

El tratamiento no-perturbativo de las QFTs es también de gran im-
portancia por otras razones teóricas. En muchos escenarios populares
más allá del Modelo Estándar (BSM), los efectos no-perturbativos
juegan un papel central. Por ejemplo, en las teorías supersimétricas
(SUSY), se invocan efectos no perturbativos para romper la super-
simetría a bajas energías. Las teorías de campos casi conformes y los
modelos technicolor (que conservan algunas propiedades similares a
QCD a escalas de energía más altas) también requieren un tratamiento
no-perturbativo. Además, la versión en el SM del potencial de Higgs
sufre el problema de la trivialidad. Esto implica que el acoplamiento
de Higgs renormalizado se anula tras la renormalización perturbativa,
a menos que exista un cutoff de energía finito en la teoría, lo que
implica que el SM no es más que una Teoría de Campos Efectiva
(EFT) válida hasta cierto cutoff de energía. En este escenario, se espera
que la masa de Higgs reciba grandes contribuciones de las escalas
de alta energía, haciéndola naturalmente pesada, en contraste con el
valor observado en el CERN. Esto se conoce como el problema de la
jerarquía. Cálculos numéricos no-perturbativos demuestran la trivial-
idad de las teorías de campo escalar con un término de interacción
cuártico [84] (que es el caso del potencial de Higgs en el SM). Sin
embargo, el acoplamiento del campo escalar a otras partículas del
SM podría alterar potencialmente el comportamiento de trivialidad.
Una vez más, estas cuestiones sólo pueden abordarse empleando un
enfoque no-perturbativo. En consecuencia, la Teoría de Campos en
el Retículo es un método para investigar una amplia variedad de
problemas de física fundamental en el SM y en el contexto de las QFTs
en general.

una acción mixta en el retículo para estudiar física de

quarks ligeros y el charm

Una vez motivada la necesidad del estudio de QCD en el contexto
de la Teoría de Campos en el Retículo, el propósito de este trabajo de
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investigación es construir y explorar una aproximación a QCD en el
retículo que pueda contribuir a mejorar la precisión de los observables
de la física hadrónica en los sectores de quarks ligeros y charm. Se trata
de una iniciativa oportuna en el contexto actual, en el que es necesario
mejorar la determinación de los parámetros fundamentales del SM,
así como de toda una clase de observables estudiados actualmente en
experimentos de física de partículas.

Más concretamente, consideraremos un enfoque de acción mixta
en el que se emplean diferentes operadores de Dirac en los sectores
mar y valencia. Este setup de acción mixta emplea la regularización
fermiónica de Wilson para los quarks en el mar, con sabores de quark
up/down con masa degenerada junto con un quark strange, mientras
que la regularización de Wilson twisted mass es utilizada en el sector
de valencia, con quarks up/down, strange y charm. Cuando el sector
de valencia se ajusta a máximo twist, las propiedades de simetría del
operador de Dirac de Wilson twisted mass implican que los observ-
ables físicos no reciben artefactos reticulares O(a), excepto por efectos
residuales proporcionales a la suma de las masas de los quarks del
mar. Esto proporciona una forma alternativa de obtener resultados
en el límite del continuo, ya que los cálculos de QCD en el retículo
en este setup no requieren la determinación explícita del conjunto de
coeficientes de O(a) improvement. Esto es particularmente relevante
para el estudio de la física del quark charm, ya que los efectos de dis-
cretización O(amc) asociados al quark charm pueden ser considerables
debido al valor relativamente grande de la masa del quark charm mc.
Por lo tanto, es interesante considerar un enfoque en el que esta fuente
de artefactos reticulares esté ausente.

En general, una acción mixta puede inducir violaciones de uni-
taridad en la teoría del continuo si las masas de los quarks de un
determinado sabor no coinciden entre los sectores mar y valencia.
Este procedimiento de matching es, por tanto, un paso importante del
cálculo. Puesto que el mar sólo contiene quarks up/down y strange, es
necesario ajustar los parámetros de la acción mixta para imponer que
las masas de los quarks físicos up/down y strange de valencia coincidan
con las del mar. Esto requiere cálculos precisos en los sectores ligero y
strange de QCD, que es uno de los objetivos de esta tesis.

En un cálculo de QCD en el retículo, las cantidades físicas se de-
terminan en unidades del espaciado reticular a. Se requiere un input
físico para fijar los valores de los parámetros fundamentales corre-
spondientes a las masas de los quarks y a la constante de acoplo fuerte.
Este procedimiento de scale setting permite determinar los valores del
espaciado reticular utilizado en las simulaciones, y obtener cualquier
cantidad física en unidades físicas. En este trabajo describiremos la
implementación de un procedimiento de scale setting basado en el en-
foque de acción mixta. Dado que los cálculos en la Teoría de Campos
en el Retículo se han vuelto cada vez más precisos en los últimos años,
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entrando en la “era de la precisión” con incertidumbres que caen por
debajo de 1%, el establecimiento de la escala con alta precisión se
ha convertido en un objetivo primordial de la comunidad. Esto se
debe a que la incertidumbre de la escala se propaga en la precisión
de cualquier observable reticular. Por ejemplo, para la contribución
hadrónica de la polarización del vacío al momento magnético anómalo
del muón, que debe determinarse con una precisión inferior al 1%, se
ha establecido una sensibilidad significativa a la incertidumbre en el
scale setting, lo que requiere establecer la escala con una precisión de
unos pocos permil [22].

El manuscrito está estructurado como sigue. En el capítulo 1 in-
troducimos la acción QCD del continuo y su estructura gauge. A
continuación consideramos cómo puede formularse en una red con
espaciado reticular finito a. Presentamos la metodología para calcular
numéricamente valores esperados, salvando así la distancia entre el
formalismo de la integral de caminos en el espacio-tiempo Euclideo
y la mecánica estadística. Establecemos la base teórica que subyace
al proceso de tomar el límite al continuo y su relación con la renor-
malizabilidad. Revisamos el programa de improvement de Symanzik,
que es el enfoque de la Teoría de Campos Efectiva para parametrizar
y mejorar la dependencia del espaciado reticular de los observables
reticulares. Finalmente, elaboramos el programa de scale setting. En el
capítulo 2 definimos los observables físicos relevantes en este trabajo
y cómo se extraen en el retículo. También explicamos cómo extraer las
señales de estado de mínima energía de estos observables, aislándolas
de los estados excitados, utilizando técnicas de variación sobre mod-
elos. En el capítulo 3 introducimos nuestra regularización de acción
mixta. Describimos las regularizaciones utilizadas en los sectores mar
y valencia, y realizamos el procedimiento de ajuste de las masas de los
quarks en ambos sectores. Simultáneamente ajustamos el operador de
Dirac twisted mass de valencia a máximo twist. Además, describimos
la trayectoria quiral empleada hacia el punto físico y el procedimiento
para corregir pequeños mistunings. En el capítulo 4 realizamos el ajuste
de escala de nuestra acción mixta calculando la escala t0 en unidades
físicas, utilizando como input físico externa las masas y constantes de
desintegración del pión y el kaón. Exploramos una serie de modelos
diferentes para llevar a cabo la extrapolación quiral a la masa física del
pión y el límite al continuo a un espaciado de red a → 0. Utilizamos
técnicas de variación sobre modelos para calcular un resultado medio
final de t0 en unidades físicas, teniendo en cuenta la incertidumbre
sistemática debida a la variación de los modelos. Tratar t0 como una
escala intermedia permite extraer el espaciado de red en fermi (fm).
En el capítulo 5 analizamos el impacto de nuestro procedimiento de
scale setting en el cálculo de observables hadrónicos que involucran al
quark charm: utilizando nuestra determinación de la escala t0 obten-
emos resultados para la masa renormalizada del quark charm y las
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constantes de desintegración de los mesones D(s) basados en nuestro
setup de acción mixta, siguiendo nuestro trabajo en [33]. Finalmente,
presentamos nuestras conclusiones en la sección iv.

Esta tesis va acompañada de una serie de apéndices. En el apéndice
A introducimos convenciones relativas a las matrices Gamma, bilin-
eales de quarks en la base física y twisted de los campos de quarks.
En el Apéndice B proporcionamos las expresiones para las matrices
de Gell-Mann y las constantes de estructura su(3). En el Apéndice C
revisamos algunos aspectos básicos de las simulaciones reticulares.
En el Apéndice D discutimos brevemente los métodos empleados
para calcular los propagadores de los quarks a través de la inversión
del operador de Dirac. En el Apéndice E describimos los métodos
utilizados para la propagación de errores y el tratamiento de las
(auto)correlaciones. En el Apéndice F damos detalles sobre la estrate-
gia de fit seguida a lo largo de este trabajo. En el Apéndice G damos
unos breves detalles del método GEVP empleado para el cálculo de los
observables reticulares que implican al quark charm. En el Apéndice
H revisamos los ensembles gauge utilizados en este trabajo. En el
Apéndice I citamos los resultados para los observables reticulares
relevantes calculados en estos ensembles. En el Apéndice J damos ex-
presiones para las correcciones del efecto de volumen finito basadas en
la Teoría de Perturbaciones Quiral. En el Apéndice K presentamos los
resultados para t0 en unidades físicas para cada modelo considerado
para la extrapolación quiral-continuo. Finalmente, en el Apéndice L
presentamos un análisis preliminar de la extrapolación quiral-continuo
para las masas de los quarks ligeros y strange.



Part II

F O U N D AT I O N S



1
Q C D O N T H E L AT T I C E

1.1 introduction

The gauge theory that describes the strong interaction between quarks
and gluons is called Quantum Chromodynamics or QCD.

The underlying symmetry of QCD is associated with the non-abelian
SU(N = 3) Lie group. The elements of this group are non-commuting,
traceless unitary matrices Ω with unit determinant det Ω = 1. When
considering a gauge theory the group elements must depend on space-
time coordinates. The map

Ω(x) = eiα(a)(x)T(a)
, (1.1)

provides a local parameterization of the group elements near the
identity with coordinates α(a)(x). Summation over a = 1, ..., N2 − 1 =

8 is implicit and T(a) are the 8 generators of the SU(3) Lie group.
These live in the Lie algebra su(3), which is the tangent space of the
group SU(3) at the identity I ∈ SU(3). They satisfy the commutation
relations[

T(a), T(b)
]
= i fabcT(c), (1.2)

where fabc are the structure constants of the group, given in Ap-
pendix B. Unitarity of the group elements means that

Ω†Ω = 1. (1.3)

The group elements Ω must be in some representation which deter-
mines how they act on a vector space where the degrees of freedom of
the theory live. In QCD these are quarks and gluons. The former are
described by spinor fields ψα,i, ψ̄α,i. They carry a Dirac spinor index
α = 1, 2, 3, 4 and a flavor index i = 1, ..., N f , to each flavor correspond-
ing a different mass (in Nature N f = 6). They transform under SU(3)
in the fundamental representation,

ψ(x) → Ω(x)ψ(x), ψ̄(x) → ψ̄(x)Ω(x)†. (1.4)

In this representation the group generators T(a) are given by the
Gell-Mann matrices (see Appendix B), and quark fields live in a 3-
dimensional vector space, and therefore have an additional index
c = 1, 2, 3 referred to as color. As spinor fields, their dynamics is
governed by the Dirac fermionic action, which in Euclidean metric
gµν = diag(+1,+1,+1,+1) reads

SF =
N f

∑
i=1

∫
d4x ψ̄i(x)

(
γµ∂µ + mi

)
ψi(x). (1.5)

23
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Here we have implicitly summed over the repeated µ index and omit-
ted the spinor and color indices. This action is invariant under global
SU(3) transformations (Ω independent of x). In order to promote this
transformation into a local or gauge symmetry, we must replace the
derivative by a covariant one

∂µψ(x) → Dµψ(x) = ∂µψ(x) + iAµ(x)ψ(x), (1.6)

with Aµ a new gauge field which must transform under SU(3) in the
adjoint representation

Aµ(x) → Ω(x)Aµ(x)Ω†(x) + iΩ(x)∂µΩ†(x), (1.7)

in order to ensure gauge invariance of the Dirac action. This field Aµ

lives in the su(3) algebra, and thus it is a hermitian, traceless matrix
which can be decomposed as a linear combination of the generators
T(a)

Aµ = A(a)
µ T(a), (1.8)

where we again implicitly sum over the repeated index a. The gauge
or gluon fields must have a kinetic piece in the action for them to be
dynamical fields. This is given by the Yang-Mills action

1
2g2

0

∫
d4x tr(Fµν(x)Fµν(x)), (1.9)

which describes dynamical gauge fields in the absence of matter fields.
The dimensionless parameter g0 is the bare coupling constant and the
energy strength tensor Fµν is given by

Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x) + i
[
Aµ(x), Aν(x)

]
. (1.10)

It lives in the su(3) algebra and can be expressed as

Fµν = F(a)
µν T(a). (1.11)

From the transformation in eq. (1.7) we derive the gauge transforma-
tion relations of Fµν

Fµν(x) → Ω(x)Fµν(x)Ω†(x). (1.12)

By collecting the various elements, the continuum QCD action can
thus be written as follows

SQCD =
N f

∑
i=1

∫
d4x ψ̄i(x)

(
γµDµ + mi

)
ψi(x) (1.13)

+
1

2g2
0

∫
d4x tr

(
Fµν(x)Fµν(x)

)
. (1.14)

The only parameters of this action are the quark masses mi and the
dimensionless coupling constant g0.
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As mentioned in the Introduction, QCD is a strongly coupled theory
at low energies or large distances. In this regime, perturbation theory
cannot be applied to calculate physical observables, since an expansion
in powers of the coupling does not converge. The only known first-
principles method to carry out non-perturbative calculations of a
Quantum Field Theory is Lattice Quantum Field Theory. For the
specific case of Quantum Chromodynamics, we will consider a Lattice
QCD formulation. This method is based on the discretization of space-
time into a hypercubic box or lattice

Λ = {n0, n1, n2, n3|n0 = 0, ..., T/a− 1; ni = 0, ..., L/a− 1; i = 1, 2, 3},

(1.15)

where a is the lattice spacing between two adjacent sites, and L, T are
the spatial and temporal lattice extents (in physical units) respectively.
The discretization of space-time and the introduction of a finite lattice
spacing a provide a natural momentum cutoff ∼ a−1, regularizing UV
divergences. Similarly, the finite lattice extent can be interpreted as
in IR cutoff. This implies that the lattice formulation can be seen as
a way to regularize any particular Quantum Field Theory. However,
the presence of these cutoffs induces discretization and finite volume
effects that must be removed from any physical observable. This
procedure can be accomplished by defining a line of constant physics
in which all parameters, corresponding to the renormalized quark
masses, the renormalized coupling and the volume, are kept constant
while the lattice spacing a is reduced towards the continuum limit,
a → 0. Finite volume corrections to these continuum results can
then be studied – e.g. through dedicated lattice simulations or through
effective field theories – to extrapolate the results to the infinite volume
limit. For a renormalizable theory such as QCD, the extrapolation to
the continuum limit of the lattice formulation allows to obtain finite
results for physical observables, after having renormalized the bare
parameters of the Lagrangian.

After discretizing space-time, fermion fields are located at the lattice
sites n ∈ Λ

ψ(n), ψ̄(n), n ∈ Λ. (1.16)

For the gauge fields, it will be helpful to use the definition of a parallel
transporter for SU(N). An N-component unit vector v is parallel
transported along a curve in space-time parameterized by zµ(t) from
point zµ(a) = x to zµ(b) = y as

v(b) = P(y, x)v(a), (1.17)

P(y, x) = Pei
∫ y

x Aµ(z)dzµ , (1.18)

with Aµ the SU(N) gauge field. This implies that a fermion in the
fundamental representation acquires a phase factor of P(y, x) when
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going from x to y. This parallel transporter is referred to as a gauge
link and its discrete version will be used for the gauge degrees of
freedom on the lattice. It is an element of the group and transforms as

P(x, y) → Ω(x)P(x, y)Ω†(y). (1.19)

Once the fields have been defined on the lattice, the next step is to
discretize the QCD action. This is done by formulating it in a finite
box Λ in terms of the aforementioned fields in such a way that in the
continuum limit a → 0 the continuum QCD action is recovered. We
discuss this in the following sections.

The Chapter is organized as follows. In Sec. 1.2 we present the
Wilson formulation of the gauge action on the lattice, expressed in
terms of the link variables. In Sec. 1.3 we present various methods for
discretizing the fermion action. In Sec. 1.3.1 we discuss the issue of
fermion doublers that arise with a naive fermion discretization and its
connection to the formulation of chiral symmetry on the lattice. We
also provide some brief comments on Ginsparg-Wilson fermions. In
Sec. 1.3.2 we present the solution to the doublers problem proposed by
Wilson, which consists in adding a term that explicitly breaks chiral
symmetry. This term gives an additional mass to the doublers that
grows with the inverse of the lattice spacing a, thus decoupling in the
continuum limit and helping to distinguish them from the true pole.
In Sec. 1.3.3 we discuss a modification of Wilson fermions which adds
a chirally rotated mass term. This regularization offers several features
that will be exploited in our work. In Sec. 1.4 we review some of the
fundamental concepts of the path integral formalism and how expec-
tation values are computed numerically on the lattice. In Sec. 1.5 we
review some concepts of renormalizability and the continuum limit on
the lattice. In Sec. 1.6 we discuss the Symanzik improvement program,
which allows to systematically subtract cutoff effects associated with
the lattice action and fields, thus facilitating the task of performing
the continuum limit. Finally, in Sec. 1.7 the procedure for setting the
scale on the lattice is discussed. This is a necessary step of the lattice
calculation that allows to obtain predictions in physical units.

1.2 pure gauge su(3) theory on the lattice

On the lattice, gluon fields can be defined by the link variables
Uµ(x) ∈ SU(3) that act as a discrete version of the gauge transporters
connecting points x and x + µ̂, with µ̂ = {x̂0, x̂1, x̂2, x̂3}

Uµ(x) = exp
(
iaAµ(x)

)
. (1.20)

These fields transform as

Uµ(x) → Ω(x)Uµ(x)Ω†(x + µ̂), (1.21)
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and they live on the links of the lattice that connect sites x and x + µ̂.
A common discretization of the gluonic action is the Wilson gauge

action [129], which is expressed in terms of the link variables Uµ(x)

SG =
1
g2

0
∑
x

∑
µ,ν

Re tr
(
1 − Uµν(x)

)
, (1.22)

where Uµν(x) is the plaquette centered on the lattice site x

Uµν(x) = Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x), (1.23)

and where

U†
µ(x) = U−µ(x + µ̂). (1.24)

Using the Baker-Campbell-Hausdorff formula iteratively

exp (A) exp (B) = exp
(

A + B +
1
2
[A, B] + ...

)
, (1.25)

and using eq. (1.20) we arrive at

SG = a4 β

6 ∑
x

∑
µ,ν

tr
(

F2
µν(x)

)
+O(a2), (1.26)

where we introduced the inverse coupling

β =
6
g2

0
. (1.27)

By taking the continuum limit a4 ∑x →
∫

d4x we recover the contin-
uum Yang-Mills action.

Eq. (1.26) shows that the effects associated with the discretization
of space-time are of order O(a2) for the Wilson gauge action. The
discretization of the SU(3) pure Yang-Mills action is not unique, and
different choices result in different cutoff effects.

The O(a2) cutoff effects present in the Wilson regularization of
the gauge action can be further reduced by adding additional terms
that respect the symmetries of the theory following the Symanzik im-
provement program. One such choice is the Lüscher-Weisz action [83],
which we discuss in Sec. 1.6.

1.3 introducing fermions on the lattice

After discretizing the SU(3) gauge action, we still need to find a
suitable discrete version of the fermion action in eq. (1.13) to fully
formulate QCD on the lattice. Theoretical challenges arise when con-
sidering a naive fermion discretization and we will describe how these
can be addressed with alternative formulations.
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1.3.1 Naive fermions

To discretize the continuum fermion action in the absence of gauge
fields, considering only one flavor with mass m,

SF =
∫

d4xψ̄(x)
(
γµ∂µ + m

)
ψ(x), (1.28)

the derivative ∂µ takes a discrete form such as

∂µψ(x) → ∂̂µψ(x) =
1
2a

(ψ(x + µ̂)− ψ(x − µ̂)) . (1.29)

In order to preserve the gauge symmetry of the action, the derivative
must be promoted to a covariant derivative, as in the case of the
continuum formulation. To this end, we note that terms such as

ψ̄(x)ψ(x + µ̂), (1.30)

which arise from ψ̄(x)∂̂µψ(x), are not gauge invariant

ψ̄(x)ψ(x + µ̂) → ψ̄(x)Ω†(x)Ω(x + µ̂)ψ(x + µ̂). (1.31)

The solution is to introduce the link variable or parallel transporter
Uµ(x) from site x to x + µ̂ defined in eq. (1.20) which transforms as in
eq. (1.21). Thus, the discretized fermion action reads

SF = a4 ∑
x

ψ̄(x)

(
γµ

Uµ(x)ψ(x + µ̂)− U†
µ(x − µ̂)ψ(x − µ̂)

2a
+ mψ(x)

)
.

(1.32)

However, this naive formulation of the fermion action exhibits the
doubling problem: despite the fact that we wrote our action to describe
one fermion of mass m, at finite lattice spacing a additional unphysical
poles appear with the same ground state energy. These additional
flavor species are known as doublers. To see how they appear, we
consider the massive Dirac operator D(x, y) in the continuum, defined
such that

SF =
∫

d4xd4y ψ̄(x)D(x, y)ψ(y). (1.33)

on the lattice this takes the form

SF = a4 ∑
n,m

ψ̄(n)D(n, m)ψ(m), (1.34)

with the Dirac operator for the naive fermion formulation given by

D(n, m) = γµ

Uµ(n)δn+µ̂,m − U†
µ(n − µ̂)δn−µ̂,m

2a
+ mδn,m. (1.35)
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Considering the free theory,Uµ = 1, for a massless fermion, m = 0,
upon Fourier transform we get

D̃(p, q) =
1
V ∑

n,m
e−ip×naD(n, m)eiq×ma (1.36)

=
1
V ∑

n,m
e−i(p−q)na

(
γµ

eiqµa − e−iqµa

2a

)
(1.37)

= δ(p − q)D̃(p), (1.38)

with V the 4-dimensional volume of the lattice and

D̃(p) = ∑
µ

i
a

γµsin(pµa), (1.39)

where we made explicit again the sum over µ. The inverse of this
operator can be computed as

D̃−1(p) = −
ia−1 ∑µ γµ sin(pµa)

a−2 ∑µ sin(pµa)2 . (1.40)

We can see that in the continuum a → 0 we recover the correct form
of the Dirac operator

D̃(p)−1|m=0 → −iγµ pµ

p2 (1.41)

with one single pole at p2 = 0. However, at finite lattice spacing, the
denominator in eq. (1.40) vanishes not only for p = (0, 0, 0, 0) but also
for

p = (π/a, 0, 0, 0), (0, π/a, 0, 0), ..., (π/a, π/a, π/a, π/a). (1.42)

These are 15 unwanted poles, the doublers, that only disappear in the
continuum, once they become infinitely heavy. These doublers have
the same ground energy as the true pole at p2 = 0 and they affect the
dynamics of the theory.

The problem of doublers is related to chiral symmetry and its
implementation on the lattice. Chiral symmetry in continuum QCD
can be expressed as

{D, γ5} = 0, (1.43)

with D the Dirac operator. The Nielsen-Ninomiya [109, 110] Theorem
states that one cannot implement chiral symmetry in the way of
eq. (1.43) on the lattice without the appearance of doublers. Ginsparg
and Wilson [64] proposed a suitable version of chiral symmetry on
the lattice as

{D, γ5} = aDγ5D, (1.44)
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such that in the continuum eq. (1.43) is recovered. With this definition
of chiral symmetry on the lattice, it is possible to construct Dirac
operators that satisfy eq. (1.44) and that is free of doublers.

If one is not interested in studying physics related to chiral symme-
try, another choice is to build a Dirac operator that explicitly breaks
chiral symmetry but removes the doublers. Wilson fermions and Wil-
son twisted mass fermions are examples of such a choice, which we
will consider in the following.

1.3.2 Wilson fermions

Wilson proposed [129] to add an extra term to the naive fermion action
in eq. (1.32) to distinguish the doublers from the physical pole. The
Wilson fermion action reads

SW = a4 ∑
x

ψ̄(x)
1
2

(
γµ

(
∇µ +∇∗

µ

)
+ 2m − a∇µ∇∗

µ

)
ψ(x), (1.45)

where we have defined the forward and backward discrete covariant
derivatives as

∇µψ(x) =
Uµ(x)ψ(x + µ̂)− ψ(x)

a
, (1.46)

∇∗
µψ(x) =

ψ(x)− U†
µ(x − µ̂)ψ(x − µ̂)

a
. (1.47)

From the expression of Wilson fermion action in eq. (1.45), it follows
that the Wilson Dirac operator reads

D = DW + m =
1
2

(
γµ

(
∇µ +∇∗

µ

)
− a∇µ∇∗

µ

)
+ m, (1.48)

where we have introduced the massless Wilson Dirac operator DW,
and the action can be written as

SW = a4 ∑
x

ψ̄(x) (DW + m)ψ(x). (1.49)

For N f flavors, an additional sum over a flavor index i = 1, ..., N f
is required, and m is promoted to a diagonal matrix in flavor space,
whose diagonal elements are mi. The fermion mass mi is commonly
expressed in terms of the hopping parameter κ

κi =
1

2ami + 8
. (1.50)

For the free case, the momentum space massless Dirac operator reads

D̃W(p) =
i
a ∑

µ

γµsin(pµa) +
1
a ∑

µ

(
1 − cos(pµa)

)
. (1.51)
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The second summand in the right-hand side comes from the added
Wilson term a∇µ∇∗

µ in the action, which is responsible for giving an
additional mass term to the doublers

2l
a

, (1.52)

where l is the number of momentum components with pµ = π/a. This
additional mass term separates the doublers from the physical pole
and causes them to decouple as we approach the continuum limit.

The Wilson term a∇µ∇∗
µ in the Wilson Dirac operator manifestly

breaks chiral symmetry, even in the mi = 0 limit. Chiral symmetry
is however restored in the continuum limit. Consequently, the quark
mass receives an additive renormalization contribution,

mR
i = Zm (mi − mcr) , (1.53)

since it is no longer protected against such a contribution by the axial
symmetry.

The Wilson fermion action receives leading cutoff effects of O(a)
cutoff effects, which can be systematically eliminated by using the
Symanzik improvement program detailed in Sec. 1.6.

1.3.3 Wilson twisted mass fermions

Wilson twisted mass (tm) fermions [57–60, 119] introduce an imaginary
mass term to the Wilson Dirac operator in eq. (1.48) of the form

iψ̄(x)µγ5ψ(x), (1.54)

with µ the twisted quark mass matrix in flavor space. More specifically,
the Wilson tm Dirac operator reads

D = DW + m + iµγ5. (1.55)

We consider four quark flavors

µ = diag (µu,−µd,−µs, µc) , (1.56)

m = diag (mu, md, ms, mc) . (1.57)

By rotating the fields

ψ → ψ′ = e−i π
2 γ5

T
2 ψ, ψ̄ → ψ̄′ = ψ̄e−i π

2 γ5
T
2 , (1.58)

T = diag(ηu, ηd, ηs, ηc), (1.59)

with αi ≡ π
2 ηi the so called twist angles. The latter can be defined

in the renomalized theory in terms of the ratio of the renormalized
standard and twisted quark masses as

cot αi =
mR

i

µR
i

, (1.60)
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one retrieves the usual physical (standard) formulation with real
fermionic mass

Mi =
√

m2
i + µ2

i , (1.61)

and a chirally rotated Wilson term. The rotated fields ψ′, ψ̄′ define
the so called physical basis, while the unrotated ones ψ, ψ̄ define the
twisted basis.

In practice we will be working with Wilson tm fermions at maximal
twist

ηu = ηc = −ηs = −ηd = 1, (1.62)

which can be obtained by setting the renormalized standard masses
mR

i to zero. The procedure to achieve this is explained in Sec. 3.5.
Considering for simplicity the light sector of mass-degenerate light

up/down (u and d) quarks, at maximal twist the symmetry group
SU(2)V × SU(2)A is broken into

SU(2)V × SU(2)A → [U(1)A]1 × [U(1)A]2 × [U(1)V ]3, (1.63)

with

[U(1)A]a =

{
ψ(x) → eiαa

Aγ5
τa
2 ψ(x) a = 1, 2

ψ̄(x) → ψ̄(x)eiαa
Aγ5

τa
2 a = 1, 2

, (1.64)

and

[U(1)V ]3 =

{
ψ(x) → eiα3

A
τ3
2 ψ(x)

ψ̄(x) → ψ̄(x)e−iα3
A

τ3
2

, (1.65)

with τa the Pauli matrices. This means that at maximal twist axial
symmetries are not completely broken, and thus the twisted mass is
protected against additive renormalization,

µR
i = Zµ(g2

0, µren)µi, (1.66)

with µren the renormalization scale.
An important role in our setup is played by the Ward-Takahashi

identities (WTI). They will be used to tune the Wilson twisted mass
parameters to ensure maximal twist. Furthermore, they allow to iden-
tify the renormalization constant of the twisted masses Zµ. For the
non-singlet case (i ̸= j) the WTI for the axial and vector currents, in
the continuum limit and in the twisted basis, read (see eqs. (2.1-2.2)
for the definition of the currents)

∂µVij
µ = (mi − mj)Sij + i(ηiµi − ηjµj)Pij, (1.67)

∂µ Aij
µ = (mi + mj)Pij + i(ηiµi + ηjµj)Sij. (1.68)
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Note that at zero twist angle ηu = ηd = ηs = ηc = 0 the twisted and
physical basis coincide, and the standard WTIs are recovered. On the
other hand, at maximal twist the renormalized standard masses mR

i
vanish, which in turn means that the current masses mi in eqs. (1.67-
1.68) also vanish (up to cutoff effects). Moreover, the exact flavor
symmetry of massless Wilson fermions implies the existence of a
point-split vector current Ṽij

µ on the lattice such that the vector WTI
holds exactly. In the twisted basis, the conserved vector current thus
takes the form

Ṽij
µ =

1
2

[
ψ̄i(x)(γµ − 1)Uµ(x)ψj(x + µ̂) + ψ̄i(x + µ̂)(γµ + 1)U†

µ(x)ψj(x)
]

.

(1.69)

The conservation of this WTI on the lattice for Ṽij
µ means that the

point-split vector current renormalizes trivially with

ZṼ = 1. (1.70)

From eq. (1.67) this implies that for all flavors

Zµ(g2
0, µren) = Z−1

P (g2
0, µren). (1.71)

1.4 path integral regularization

Having formulated the QCD action on the lattice, we need to see
how physical quantities are computed. To do so, we review some
aspects of the path integral formulation in Euclidean space-time. In
this formalism, physical quantities are expressed as expectation values
of operators

⟨O(x1, ..., xn)⟩ =
1
Z
∫

D[ψ, ψ̄, U]O(x1, ..., xn)e−S[ψ,ψ̄,U], (1.72)

Z =
∫

D[ψ, ψ̄, U]e−S[ψ,ψ̄,U]. (1.73)

This is equivalent to expectation values in statistical mechanics with a
Boltzmann factor of e−S[ψ,ψ̄,U]. The action can be decomposed into its
gluon and fermion components S[ψ, ψ̄, U] = SG[U] + SF[ψ, ψ̄, U], and
fermion degrees of freedom can be integrated out as

⟨O(x1, ..., xn)⟩ =
1
Z
∫

D[U]e−SG[U]ZF

×
[

1
ZF

∫
D[ψ, ψ̄]O(x1, ..., xn)e−SF[ψ,ψ̄]

]
(1.74)

=
1
Z
∫

D[U]e−SG[U]ZF ⟨O(x1, ..., xn)⟩F , (1.75)

with

ZF =
∫

D[ψ, ψ̄]e−SF[ψ,ψ̄] = Π
N f
i=1det (D) . (1.76)
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This fermionic determinant can be expressed as an effective action as

⟨O(x1, ..., xn)⟩ =
1
Z
∫

D[U]e−SG[U]−Seff[U] ⟨O(x1, ..., xn)⟩F , (1.77)

Z =
∫

D[U]e−SG[U]−Seff[U], (1.78)

Seff[U] = −
N f

∑
i=1

log det (D) . (1.79)

In order to compute meson observables we will use meson inter-
polators, which are composite fermionic observables that share the
same quantum numbers as the desired meson state. A generic meson
interpolator has the form

Oij
A(x) = ψ̄i(x)ΓAψj(x), (1.80)

with ΓA a Gamma matrix or product of matrices. This way, a meson
two-point function reads〈

Oij
A(x1)O

ji
B(x2)

〉
=

1
Z
∫

D[U]e−SG[U]−Seff[U]

×
〈

ψ̄i(x1)ΓAψj(x1)ψ
i(x2)ΓBψ̄j(x2)

〉
F

(1.81)

= − 1
Z
∫

D[U]e−SG[U]−Seff[U]

× tr
(

ΓAD−1
i (x1, x2)ΓBD−1

j (x2, x1)
)

, (1.82)

where the trace is over spin indices and Di the massive Dirac opera-
tor for flavor i. In order to perform this integral numerically, using
the connection with statistical mechanics, a finite set of Ncnfg gauge
configurations is generated with Boltzmann distribution e−SG[U]−Seff[U]

following a Markov process (see Appendices C, E). Then, measure-
ments of the quantity

P = −tr
(

ΓD−1
i (x1, x2)ΓD−1

j (x2, x1)
)

, (1.83)

are taken in each of these configurations, and the expectation value is
computed as

⟨P⟩ = 1
Ncnfg

Ncnfg

∑
i

Pi +O
(

1√
Ncnfg

)
. (1.84)

1.5 continuum limit

For the discussion in this subsection we follow [70]. The lattice regu-
larization provides with a natural energy cutoff a−1, ensuring that any
loop integral is finite in perturbation theory. In perturbative renormal-
ization, it is necessary to take the cutoff to infinity, which on the lattice
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means taking the lattice spacing to a → 0. If the theory is renormaliz-
able, any physical quantity (e.g. a mass mphys) in units of the lattice
spacing must vanish in the continuum limit

mphysa → 0, (1.85)

since this means that mphys remains finite in this limit.
Physical quantities are dependent on the couplings of the theory,

mphys(g0), and accordingly change with them. In turn, one can study
how the couplings of the theory change on the lattice as one ap-
proaches the continuum limit by decreasing a. To do so and for sim-
plicity, we assume a single coupling g0, and write the most general
local effective action at lattice spacing a1

S(a1) = g0(a1)∑
i

Oi, (1.86)

where Oi are all possible local operators respecting the lattice symme-
tries. At a finer lattice spacing a2 < a1 all the short-range extra degrees
of freedom can be integrated out and reabsorbed into a redefinition
of the coupling, obtaining an effective action at the original scale a1,
S(2)(a1), that has the same generic form but with different couplings

S(2)(a1) = g(2)0 (a1)∑
i

Oi, (1.87)

g(2)0 (a1) = R(g0(a1)). (1.88)

R here stands for the renormalization group (RG) transformation that
defines the change in the couplings when varying the lattice spacing.
It can be observed then that renormalizability corresponds to fixed
points g∗0 of the RG transformation

R(g∗0) = g∗0 . (1.89)

In the context of SU(N) Yang-Mills theory, perturbation theory
shows that at a fixed value of the renormalized coupling gR the bare
coupling runs with the lattice spacing as

a
∂g0

∂a
≡ β(g0) = −β0g3

0 − β1g5
0 + ..., (1.90)

where β0,1 are universal coefficients (do not depend on the renormal-
ization scheme) and positive for N = 3 colors and N f = 6 flavors, as
in the case of QCD. This shows that g0 = 0 is a fixed point of the RG
transformations and thus corresponds to the continuum limit. As the
fixed point is in the weak coupling regime, this perturbative argument
is expected to be valid. Therefore, the continuum limit corresponds to

g0 → 0, (1.91)

or in terms of the inverse coupling β

β → ∞. (1.92)



36 qcd on the lattice

In practice, one cannot numerically simulate at infinite inverse cou-
pling β. Therefore, physical observables are computed at several finite
values of β. This introduces O(an) cutoff effects in the results, with
some power n. To obtain results in the continuum, one parameterizes
these cutoff effects with some function of the lattice spacing and ex-
trapolates to a → 0. However, this task is far from trivial, and it has
been shown that spectral quantities receive logarithmic corrections
on the lattice spacing [74] which could significantly complicate this
task. To help in the continuum limit extrapolation, one can system-
atically reduce lattice artifacts, e.g. from O(a) to O(a2) following the
Symanzik improvement program.

1.6 symanzik improvement program

Symanzik improvement requires improving both the action of the
theory and the lattice interpolators that enter the different correlators.

In order to improve a lattice action, one can describe the target
continuum theory in terms of an effective action in powers of the
lattice spacing a

Seff =
∫

d4x ∑
k

ckLk(x)ak−4. (1.93)

Here L0(x) is the discretized lattice Lagrangian unimproved, the
higher-dimension terms Lk(x) are all possible Lagrangians built from
fermion and gluon field operators that preserve the symmetries of the
regularized theory, i.e. the lattice theory, with mass dimension 4 + k,
and ck are numerical coefficients.

In the case of Lattice QCD, we saw that in the Wilson gauge ac-
tion in eq. (1.26) lattice artifacts appear at O(a2), and therefore no
O(a) improvement is required. However, these O(a2) effects can be
further reduced by adding all possible dimension 4 + k = 6 operators
that preserve the underlying symmetries of the gauge action. These
dimension-6 operators are all three possible ways of writing a closed
path in a rectangular lattice with 6 gauge links: planar, twisted and
L-shaped rectangles. The action then reads

SG =
β

3 ∑
µν

[
c0 ∑

p
Re
(
tr
(
1 − Uµν(p)

))
+

3

∑
i=1

ci ∑
r

Re
(

tr
(

1 − U(i)(r)
))]

,

(1.94)

with U(i) said dimension-6 operators. Tuning the coefficients ci prop-
erly leads to O(a2) improvement. The CLS ensembles that we employ
in this thesis (see Sec. 3.2) use the so called Lüscher-Weisz gauge
action [82, 83], with these coefficients computed at tree-level

c0 =
5
3

, c1 = − 1
12

, c2 = c3 = 0. (1.95)
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Thus, in the Lüscher-Weisz gauge action the only dimension-6 opera-
tors that survive are planar rectangles U(1).

We also need to improve the fermion action. Wilson fermions have
O(a) cutoff effects. In order to improve the Wilson fermion action
to O(a2) we need to look for all possible operators with dimension
4 + k = 5 that preserve the lattice symmetries. These are

L(1)
k=1 = iψ̄(x)σµν F̂µν(x)ψ(x), (1.96)

L(2)
k=1 = mtr

(
F̂µν(x)F̂µν(x)

)
, (1.97)

L(3)
k=1 = m2ψ̄(x)ψ(x), (1.98)

with

σµν =

[
γµ, γν

]
2i

, (1.99)

F̂µν(x) =
−i
8a2

(
Qµν(x)− Qνµ(x)

)
, (1.100)

Qµν = Uµν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x). (1.101)

L(2),(3)
k=1 are already present (up to numerical factors) in the original

Wilson fermion action and can therefore be reabsorbed in those terms.
The O(a) improved Wilson Dirac operator appearing in the improved
fermion action reads

DW + m + cswa
1
2 ∑

µ<ν

σµν F̂µν, (1.102)

with csw the Sheikholeslami-Wohlert coefficient determined non per-
turbatively in [118].

Improving the lattice action ensures improvement of on-shell quan-
tities such as meson masses. However, if one is interested in matrix
elements mediated by some current Jµ, it is also necessary to improve
the lattice interpolators that enter into the definition of those currents.
In analogy with the improvement of the action, a local operator O is
expressed in the Symanzik effective theory as

Oeff(x) = ∑
k

ckOk(x)ak. (1.103)

Again, Ok are gauge invariant local operators with the right mass
dimensions and ck some parameter properly tuned to cancel ak cutoff
effects. Following this, a generic n-point function reads

⟨Φ⟩ = ⟨Φ0⟩ − a
∫

d4y ⟨Φ0L1(y)⟩+ a ⟨Φ1⟩+ ..., (1.104)

with

⟨Φ0⟩ = ⟨O0(x1)...O0(xn)⟩ , (1.105)

⟨Φ1⟩ =
n

∑
i=1

⟨O0(x1)...O1(xi)...O0(xn)⟩ , (1.106)
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and vacuum expectation values taken in the continuum. In Sec 2 we
discuss the details of operator improvement for the observables of
interest.

The O(a) improved Wilson tm fermion action is analogous to the
Wilson case, with the improved Dirac operator given by

DW + m + iγ5µ + cswa
1
2 ∑

µ<ν

σµν F̂µν. (1.107)

The advantage of Wilson tm fermions is that at maximal twist (vanish-
ing renormalized standard quark mass) one achieves automatic O(a)
improvement [57, 119]. This means that physical quantities are auto-
matically improved without the need of any improvement coefficients
for lattice operators. The following argument is based on the original
work [57] to which we refer for a complete proof.

At maximal twist, the Wilson tm Dirac operator reads

DW + iµγ5. (1.108)

Working in the twisted basis, this action in the continuum is invariant
under a discrete chiral symmetry

R1,2
5 =

{
ψ(x) → iγ5τ1,2ψ(x)

ψ̄(x) → ψ̄(x)iγ5τ1,2
, (1.109)

while L(1)
k=1 in eq. (1.96) is not

L(1)
k=1 → −L(1)

k=1. (1.110)

This is key for automatic O(a) improvement. For correlation functions
like eq. (1.104), we have that operators may be even or odd under R5,
⟨Φ0⟩ and ⟨Φ1⟩ having opposite R5-chirality

⟨Φ0⟩ → ± ⟨Φ0⟩ , ⟨Φ1⟩ → ∓ ⟨Φ1⟩ . (1.111)

This means that for even ⟨Φ0⟩

⟨Φ0⟩ = ⟨Φ0⟩ ,
〈

Φ0L(1)
k=1

〉
= −

〈
Φ0L(1)

k=1

〉
= 0, (1.112)

⟨Φ1⟩ = − ⟨Φ1⟩ = 0, (1.113)

and thus even operators are automatically O(a) improved. On the
other hand, for odd operators what we have is

⟨Φ0⟩ = − ⟨Φ0⟩ = 0,
〈

Φ0L(1)
k=1

〉
=
〈

Φ0L(1)
k=1

〉
, (1.114)

⟨Φ1⟩ = ⟨Φ1⟩ , (1.115)

and thus they vanish in the continuum. Summing up, the only tuning
required for Wilson tm fermions to achieve O(a) improvement is to
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set the bare quark mass m to its critical value mcr in order to obtain
maximal twist.

In our particular case, we will be working with a mixed action setup
employing standard Wilson quarks in the sea and fully twisted Wilson
tm quarks in the valence (see Sec 3). This means valence observables
still get residual O(a) cutoff effects from the sea sector, and thus
improvement is still needed. However, these effects are expected to be
O(g4

0) in perturbation theory.
Finally, we also need to improve the bare gauge coupling, which at

O(a) reads

g̃2
0 = g2

0

(
1 + abgtr

(
M(s)

q

))
, (1.116)

with M(s)
q the sea quark mass matrix (see Sec. 3), and bg the improve-

ment coefficient, whose value at one-loop is given in [90].

1.7 scale setting

on the lattice, all physical observables are computed in units of the
lattice spacing a. Consequently, in order to make any prediction, it is
necessary to determine a in physical units. This task is called scale
setting. It involves the precise determination of a reference observable,
called the scale, in physical units, to which any other observable is
compared to in order to extract the value of the latter in physical
units. As mentioned in the introduction, in “precision era” lattice
calculations, high precision scale setting is of the utmost importance
in order to extract predictions whose uncertainty is not dominated by
the scale.

As an example of the scale setting procedure, we could use the
proton mass mproton as a reference scale, and calculate the ratio of it to
a given mass mi

Ri =
mi

mproton
. (1.117)

After computing the continuum limit of Ri, we can extract the physical
mass mi as

mph
i = Ri(a = 0)× mexp

proton. (1.118)

Here, the proton mass is used as a reference scale, and comparing any
lattice observable to it allows to extract the latter in physical units,
once the continuum limit is performed. This procedure is equivalent
to finding the value of the lattice spacing in physical units, since it can
be extracted as

a =
(amproton)latt

mexp
proton

. (1.119)
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From eq. (1.118) it is clear that when aiming for precise lattice calcula-
tions of any physical observable like mi, a reliable and precise scale
setting is of the utmost importance. In this example this means being
able to determine mproton with high accuracy on the lattice in order
to compute the ratios Ri, controlling the continuum limit of Ri and
having a high precision determination of mexp

proton.
In this context, baryon masses like the proton, the Ξ or the Ω baryon

mass are popular choices to set the scale [11, 23, 100]. The former is
determined with high accuracy experimentally [133] but suffers from
the signal-to-noise problem [80, 85] on the lattice determination. This
problem is also present in the Ω baryon mass, but the statistical
precision is better there [23, 100]. Furthermore, the Ω baryon mass has
a weak dependence on the light quark masses and a strong one in the
strange quark mass. This makes it an interesting scale for trajectories
with constant strange quark mass. Another choice is using meson
masses. The pion and kaon meson masses are used to define the line
of constant physics along which the continuum limit is taken, and
therefore are not available to set the scale. In the past, the ρ meson
mass was used to set the scale of quenched simulations [20, 75, 96], but
it is not suited for dynamical quarks simulations. The Υ meson mass
is also used [54, 66] thanks to its precise experimental determination.
However, large discretization effects due to the b quark are expected.

Instead of using a phenomenological scale like the ones listed above,
another choice is to use intermediate scales, like the gradient flow
scale t0 [86, 93] this thesis is based on and that we introduce in Sec. 2.6.
This quantity is a popular choice [11, 14, 29, 73, 77, 123] since it can
be computed to a very high precision on the lattice, though it is not
a physical quantity and as such cannot be measured experimentally.
To obtain its value in the continuum and physical quark masses, one
builds a dimensionless quantity (

√
t0Λ)latt with some phenomenolog-

ical quantity Λ on the lattice. After performing the continuum limit,
the physical value of t0 can be extracted as

√
tph
0 =

(√
t0Λ
)latt

∣∣∣
a=0

Λexp . (1.120)

In addition to the continuum limit, on the lattice often unphysical
quark masses are simulated since they are computationally cheaper.
This means one needs to perform chiral extrapolations/interpolations
of lattice observables to reach physical quark masses. Both chiral
and continuum limits are discussed in Sec. 4 for the scale setting we
perform in this thesis.

Once the physical value of t0 is found, it can be used as an in-
termediate scale against which any other quantity Λ′ on the lattice
can be compared in order to extract the latter in physical units. For
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this purpose, one performs a continuum extrapolation of
√

t0Λ′ and
obtains the physical value of Λ′ as

Λ’ ph =

(√
t0Λ′)latt

∣∣∣
a=0√

tph
0

. (1.121)

This quantity is already a prediction of the lattice.
A popular choice [23, 26, 29, 123] for Λ in eq. (1.120) and the

one used in this work is a linear combination of the pion and kaon
decay constants. These exhibit large plateaux on the lattice, indicating
that excited states contributions decay fast and therefore they can be
determined to a high precision on the lattice. On the other hand, their
experimental values are extracted from the weak processes π/K → lν,
which leads to the measurement of Vud(us) fπ(K), with Vud,us CKM
matrix elements. This leads to an increase in the uncertainty of the
experimental values of fπ,K coming from the determination of said
CKM matrix elements [6].

Finally, other popular intermediate scales to t0 are ω0 [14, 23, 77]
which is closely related to t0, and the force scale r0 [16, 106, 120] which
is derived from the static quark-antiquark potential extracted from the
evaluation of Wilson loops. This potential shows early plateaux [121]
which again indicates that excited states contributions are small.





2
O N T H E E X T R A C T I O N O F P H Y S I C A L O B S E RVA B L E S

2.1 introduction

In this Chapter we discuss the technical details on the extraction
of physical observables from the lattice. In Sec. 2.2 we define the
two-point functions required for extracting the physical observables
needed in the analysis of the scale setting. In Sec. 2.3 we discuss
how to extract meson masses while Sec. 2.4 covers the extraction of
decay constants, their improvement and renormalization. In Sec. 2.5
we define the PCAC quark masses which will be used to tune Wilson
tm quarks at maximal twist. In Sec. 2.6 we discuss the gradient flow
scale t0 which we will use as the reference scale for the scale setting.
Finally, in Sec. 2.7 we discuss the model averaging technology which
we employ in order to find the ground state signals from all these
lattice observables.

2.2 correlation functions

For the extraction of the physical observables of interest for this work
we need two-point functions involving the pseudoscalar and axial
currents, defined as

Pij(x) = ψ̄i(x)γ5ψj(x), (2.1)

Aij
µ(x) = ψ̄i(x)γµγ5ψj(x), (2.2)

where i, j are flavor indices. The Wilson term in the Wilson and Wilson
tm fermion action breaks chiral symmetry explicitly, and as a result
the Noether currents of the theory are no longer protected against
renormalization. This means that both the pseudoscalar and axial
currents get renormalized as

Pij,R = ZP(g2
0, µren)

(
1 + ab̃Pmij + ab̄Ptr

(
Mq
))

Pij, (2.3)

Aij,R
µ = ZA(g2

0)
(
1 + ab̃Amij + ab̄Atr

(
Mq
))

Aij
µ , (2.4)

where the b-counterterms are improvement coefficients for the renor-
malization constants. The renormalization constants are shown in
Table 2.1, while the improvement coefficients are in Table 2.2. For our
purposes, we will only need the differences b̃A − b̃P, b̄A − b̄P and b̃A,
the latter given in perturbation theory by [125]

b̃A = 1 + 0.0472g2
0 +O(g4

0). (2.5)

43
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β ZA(g2
0) ZP(g2

0, µhad)

3.40 0.75642(72) 0.35121(56)

3.46 0.76169(93) 0.34941(44)

3.55 0.76979(43) 0.34767(55)

3.70 0.78378(47) 0.34732(63)

3.85 0.79667(47) 0.35014(73)

Table 2.1: Renormalization constants ZA(g2
0) and ZP(g2

0, µren) for different
values of β. ZA, which does not depend on the energy scale but
only on the bare coupling g2

0, is calculated non-perturbatively
in [48] using the chirally rotated Schrödinger functional. ZP is
calculated non-perturbatively at the renormalization scale µren =
µhad = 233(8) MeV in [34].

β b̃A − b̃P b̄A − b̄P b̃A

3.40 -0.324(17) O(g4
0) 1.2684

3.46 -0.265(14) O(g4
0) 1.2638

3.55 -0.196(14) O(g4
0) 1.2571

3.70 -0.119(14) O(g4
0) 1.2467

3.85 -0.073(12) O(g4
0) 1.2371

Table 2.2: Summary of improvement coefficients at CLS β values. b̃A − b̃P is
taken from LCP-1 results in [52], while b̄A − b̄P are computed in
perturbation theory. b̃A is computed in perturbation theory in [125]
and given by eq. (2.5)

To achieve O(a) improvement in the Wilson regularization, we need
to improve the axial current as part of the Symanzik improvement
program as follows

Aij
µ(x) → Aij

µ(x) + acA∂̃x0 Pij(x), (2.6)

where we defined the symmetric discrete time derivative

∂̃x0 =
∂̂x0 − ∂̂∗x0

2
, (2.7)

∂̂x f (x) =
f (x + a)− f (x)

a
, (2.8)

∂̂∗x f (x) =
f (x)− f (x − a)

a
. (2.9)

The improvement coefficient cA is given non-perturbatively by [32]

cA(g2
0) = −0.006033g2

0

[
1 + exp

(
9.2056 − 13.9847

g2
0

)]
. (2.10)
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The two-point functions that we will focus on, projected to zero-
momentum are given by

Cij
P(x0, y0) =

a6

L3 ∑
x⃗,⃗y

〈
Pij(x)Pji(y)

〉
, (2.11)

Cij
A(x0, y0) =

a6

L3 ∑
x⃗,⃗y

〈
Aij

0 (x)Pji(y)
〉

. (2.12)

When only light and strange flavors are involved, the measurements
of the two-point functions (see Appendix D) are taken at fixed source
times y0, T − y0, with y0 = a, and evaluated at all sink times x0. In
order to increase statistics the average

CX(x0, y0) →
CX(x0, y0)± CX(T − x0, T − y0)

2
, (2.13)

is taken, with the + sign for the X = P case and − sign for the X = A
case. On the other hand, when heavy flavors are involved (see Sec. 5),
the source position is fixed at y0 = T/2 in order to maximize the
distance from the boundaries: when dealing with heavy-light and
heavy-heavy flavor contents in the correlators, we observe that the
region in which the signal for the considered two-point function is
accessible lies entirely within the lattice bulk, and that the boundary
effects are strongly suppressed1.

The spectral decomposition of the two-point functions CX allows to
extract relevant hadronic observables such as the meson masses and
decay constants. In what follows we restrict to the case of the pion, but
the same applies to any other flavor content. Using the Transfer Matrix
formalism and imposing as boundary conditions that the initial and
final states are given by

|ϕ(0, x⃗)⟩ = |ϕi⟩ , |ϕ(T, x⃗)⟩ =
∣∣ϕ f
〉

, (2.14)

we can express a generic two-point function by

⟨O(x)O(y)⟩ = Z−1 〈ϕ f
∣∣ e−(T−x0)ĤÔ(x⃗)e−(x0−y0)ĤÔ(⃗y)e−y0 Ĥ |ϕi⟩ ,

(2.15)

Z =
〈
ϕ f
∣∣ e−TĤ |ϕi⟩ . (2.16)

Inserting a complete set of states | p⃗, n⟩

1 =
1

2En( p⃗)L3 ∑
p⃗,n

| p⃗, n⟩ ⟨ p⃗, n| , (2.17)

1 The numerical inversion of the quark propagator in the charm region is performed us-
ing distance preconditioning techniques [41, 51] in order to reduce signal deterioration
and enhance accuracy at large Euclidean times.
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this becomes

⟨O(x)O(y)⟩ = Z−1 1
L9 ∑

n,m,l
∑
p⃗,⃗q,⃗s

1
23En( p⃗)Em (⃗q)El (⃗s)

×
〈
ϕ f |⃗q, m

〉
e−(T−x0)Em (⃗q)

× ⟨⃗q, m| Ô(x⃗) | p⃗, n⟩ e−(x0−y0)En( p⃗)

× ⟨ p⃗, n| Ô(⃗y) |⃗s, l⟩ e−y0Es (⃗l) ⟨⃗s, l|ϕi⟩ . (2.18)

The partition function reads

Z =
〈
ϕ f
∣∣ e−TĤ |ϕi⟩ =

1
L3 ∑

p⃗,n

1
2En( p⃗)

〈
ϕ f | p⃗, n

〉
e−TEn( p⃗) ⟨ p⃗, n|ϕi⟩

→
〈
ϕ f |0

〉
e−TE0 ⟨0|ϕi⟩ , (2.19)

with the notation

|0⟩ ⟨0| ≡ 1
2E0L3

∣∣∣⃗0, 0
〉 〈⃗

0, 0
∣∣∣ . (2.20)

We assume that the boundary states
∣∣ϕi, f

〉
are the same and denoted

by |Ω⟩, and share the same quantum numbers of the vacuum |0⟩. This
is true when using open boundary conditions (OBC) in time, which
will be the case for most of the ensembles under study (see Table H.1).

We will label the quantum states as
∣∣∣⃗0, α, n

〉
, with n labeling the

energy level and α the other quantum numbers, and using the fact that
we are projecting to zero momentum p⃗ = 0⃗ we employ the shorthand
notation

|α, n⟩ ⟨α, n| ≡ 1
2Eα

nL3

∣∣∣⃗0, α, n
〉 〈⃗

0, α, n
∣∣∣ . (2.21)

With all this, the two-point function can be written as

⟨O(x)O(y)⟩ = ∑
α,β,γ

∑
n,m,l

⟨Ω|β, m⟩
⟨Ω|0, 0⟩ e−(T−x0)Eβ

m

× ⟨β, m| Ô(x⃗) |α, n⟩ e−(x0−y0)Eα
n

× ⟨α, n| Ô(⃗y) |γ, l⟩ e−y0 Eγ
s
⟨γ, l|Ω⟩
⟨0, 0|Ω⟩ , (2.22)

where we absorbed the e−TE0 term coming from the partition function
into the energy levels

Eα
n → Eα

n − E0, (2.23)

such that E0
0 = 0.

For sufficiently large source-sink separation x0 − y0 → ∞, only the
pion state |π, 0⟩ propagates between O(x) and O(y). On the other



2.3 meson masses 47

hand, we made the assumption that the boundary states only overlap
with the vacuum, so we are left with

⟨O(x)O(y)⟩ = ∑
m,l

⟨Ω|0, m⟩
⟨Ω|0, 0⟩ e−(T−x0)E0

m ⟨0, m| Ô(x⃗) |π, 0⟩

× e−(x0−y0)mπ ⟨π, 0| Ô(⃗y) |0, l⟩ e−y0E0
l
⟨0, l|Ω⟩
⟨0, 0|Ω⟩ . (2.24)

Finally, far away from the boundaries T − x0, y0 → ∞ the first relevant
contribution from them is the one with energy E0

1

⟨O(x)O(y)⟩ = ⟨0, 0| Ô(x⃗) |π, 0⟩ e−(x0−y0)mπ ⟨π, 0| Ô(⃗y) |0, 0⟩
×
[
1 + ηxe−(T−x0)E0

1 + ηye−y0E0
1 + ...

]
, (2.25)

with

ηx =
⟨Ω|0, 1⟩ ⟨0, 1|O(x) |π, 0⟩
⟨Ω|0, 0⟩ ⟨0, 0|O(x) |π, 0⟩ , (2.26)

ηy =
⟨Ω|0, 1⟩ ⟨π, 0|O(y) |0, 1⟩
⟨Ω|0, 0⟩ ⟨π, 0|O(y) |0, 0⟩ . (2.27)

So far we have assumed OBC in time. In the case with periodic
boundary conditions (PBC), the pseudoscalar and axial correlators are
periodic in time and identical (up to a relative minus sign for the axial)
in x0 and T − x0. Considering the first excited state we can write them
as

CX(x0, y0) = aX

(
e−mπ(x0−y0) ± e−mπ(T−x0+y0)

)
+ bX

(
e−m′(x0−y0) ± e−m′(T−x0+y0)

)
, (2.28)

where the + sign corresponds to the pseudoscalar correlator X = P
and the − sign for the axial X = A, aP = | ⟨0, 0| Pud |π, 0⟩ |2 and
aA = ⟨0, 0| Aud

0 |π, 0⟩ ⟨0, 0| Pud |π, 0⟩, bX the same matrix elements for
the first excited state.

2.3 meson masses

Meson masses involving the light and strange quarks can be extracted
from the pseudoscalar two-point function CP(x0, y0) in eq. (2.11) with
the effective mass, defined as

ameff(x0) = log
(

CP(x0, y0)

CP(x0 + a, y0)

)
. (2.29)

For sufficiently large source-sink separation x0 ≫ 1 this effective
mass meff(x0) tends to a plateau as can be seen from the spectral
decomposition of the two-point function eq. (2.25).
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In the case of PBC, to extract the pion mass one can alternatively
build the quantity

CP(x0, y0)

CP(x0 + a, y0)
=

cosh(amπ(x0/a − y0/a − T/2a))
cosh(amπ(x0/a − y0/a + a − T/2a))

, (2.30)

and fit amπ.
The pion mass for one of the ensembles under study is shown in

Fig. 2.1.
For the study of mesons involving heavy flavors (see Sec. 5), we will

employ a generalized eigenvalue problem (GEVP) variational method,
the details of which we give in Appendix G.

2.4 decay constants

Meson decay constants are given by the vacuum-to-meson matrix
elements. The matrix element we are interested in is the vacuum-to-
pion mediated by the axial current

⟨0, 0| Aud
0 |π, 0⟩ = fπ

√
mπ

2L3 , (2.31)

where fπ is the bare pion decay constant. To extract this matrix element,
we must remove the matrix element ⟨0, 0| Pud |π, 0⟩ from the axial two-
point function CA(x0, y0) in eq. (2.11). To achieve this, when only light
and strange flavors are involved, we compute the ratio

R(x0) =

√
|CA(x0, y0)CA(x0, T − y0)|

CP(x0 = T − a, y0)
, (2.32)

from which we extract the decay constant as

fπ(x0) =

√
2

L3mπ
R(x0). (2.33)

In the PBC case, in order to isolate the matrix element ⟨0, 0| Aud
0 |π, 0⟩

we fit the axial and pseudoscalar correlators in eq. (2.28) to extract the
fit parameters aP,A. This allows to compute the decay constant as

fπ =
2

L3mπ

aA√
aP

. (2.34)

Following eq. (2.3), the pion decay constant in the Wilson regular-
ization renormalizes as

f R
π = ZA(g2

0)
[
1 + ab̄Atr

(
Mq
)
+ ab̃Amud

]
fπ. (2.35)

We assumed improvement of the axial current according to eq. (2.6).
In the Wilson tm regularization at maximal twist, the chiral rotation

in eq. (1.58) rotates the axial to the vector current when going from
the physical to the twisted basis

Aij
µ → iVij

µ , (2.36)
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which allows to compute the decay constant from the vector current
in the twisted basis following

⟨0, 0|Vud
0 |π, 0⟩ = −i fπ

√
mπ

2L3 . (2.37)

The advantage of this is that the vector current is protected against
renormalization (see eq. (1.70)) and thus so is fπ. Furthermore, in
the twisted basis we can use the PCVC Ward-Takahashi identity in
eq. (1.67)〈(

∂∗0Vij
0 (x)

)
Oji(y)

〉
= i

(
ηiµi − ηjµj

) 〈
Pij(x)Oji(y)

〉
, (2.38)

where O is any interpolator chosen such that
〈

Pij(x)Oji(y)
〉

does not
vanish and ηi are given by the maximal twist condition in eq. (1.62),
in order to write the decay constant as

fπ =

√
2L3

m3
π

(|µu|+ |µd|)
∣∣∣⟨0, 0| Pud |π, 0⟩

∣∣∣ . (2.39)

Different choices of the interpolator O will lead to different values
of the decay constants due to cutoff effects. We choose to use the
pseudoscalar density Pij since it enhances the signal. To extract the
matrix element ⟨0, 0| Pud |π, 0⟩, analogously to the Wilson case, when
only light and strange flavors are involved we can estimate it by the
plateau value of the ratio

R(x0) =

√
CP(x0, y0)CP(x0, T − y0)

CP(x0 = T − a, y0)
. (2.40)

For PBC, using again the PCVC relation, the decay constant reads

fπ =

√
2L3

m3
π

√
aP. (2.41)

Since working at maximal twist, no improvement is needed in the
computation of eqs. (2.39-2.41).

The ratios defined in this section for the extraction of decay constants
are shown for the case of one of the ensembles under study in Fig. 2.3.

In the case of meson decay constants involving heavy quarks (see
Sec. 5), we employ again the GEVP method to extract the ground state
signal of the relevant matrix elements (see Appendix G).

2.5 quark masses

For the quark masses we use the Partially Conserved Axial Current
(PCAC) Ward-Takahashi identity〈(

∂µ Aij
µ(x)

)
Oji(y)

〉
= 2mij

〈
Pij(x)Oji(y)

〉
, (2.42)
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where O is any interpolator chosen such that
〈

Pij(x)Oji(y)
〉

does not
vanish, and mij is the so called PCAC quark mass, where the flavor
indices indicate combinations of the individual quark masses

mij =
mi + mj

2
. (2.43)

The subtracted quark mass mi − mcr must agree, up to cutoff effects,
with the corresponding PCAC quark mass for flavor i after renormal-
ization, so by using the latter we do not need to know a priori the
additive mass renormalization. As in the decay constants case, we take
Oij = Pij since we find the signal to be enhanced. Thus, the PCAC
quark masses read

mij(x0) =
∂̃x0 Cij

A(x0, y0)

2CP(x0, y0)
. (2.44)

As seen above, the axial current needs to be improved, and the numer-
ator in eq. (2.44) becomes

∂̃x0 Cij
A(x0, y0) + acA∂̂x0 ∂̂∗x0

Cij
P(x0, y0) (2.45)

with the discrete second derivative given by

∂̂x ∂̂∗x f (x) =
f (x + a) + f (x − a)− 2 f (x)

a2 +O(a2). (2.46)

Finally, from eq. (2.3) we see that the PCAC quark mass renormalizes
as

mR
ij =

ZA(g2
0)

ZP(g2
0, µren)

[
1 + a

(
b̄A − b̄P

)
tr
(

Mq
)
+ a

(
b̃A − b̃P

)
mij
]

mij.

(2.47)

In the Wilson regularization, physical quark masses are determined
from the PCAC masses, while in the Wilson tm regularization at
maximal twist, the latter vanish and the former are given by the
renormalized twisted masses in eq. (1.66).

In Fig. 2.2 we show the dependence of the PCAC quark mass for
one of the ensembles under study.

2.6 gradient flow

For the scale setting, we will use the gradient flow scale t0 as an inter-
mediate scale. The gradient flow is defined by the partial differential
equation [86, 93]

dBµ(x, t)
dt

= DνGµν(x, t), Bµ(x, t = 0) = Aµ(x), (2.48)
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with Aµ the usual algebra-valued gauge fields. In this equation t is a
new fictitious dimension called flow time. The associated field strength
tensor Gµν is defined by

Gµν(x, t) = ∂µBν(x, t)− ∂νBµ(x, t) + i
[
Bµ(x, t), Bν(x, t)

]
, (2.49)

with the covariant derivative acting on it in the adjoint representation

DνGµν = ∂νGµν + i
[
Bµ, Gµν

]
. (2.50)

The flow equation can be rewritten as

dBµ(x, t)
dt

=
δSYM[B]
δBµ(x, t)

, Bµ(x, t = 0) = Aµ(x), (2.51)

with SYM the continuum Yang-Mills action in eq. (1.9) in terms of
the flow fields Bµ. From this we can see that the effect of integrating
this equation of motion is to flow the gauge fields towards the local
minima of the Yang-Mills action. By solving the flow equation to
leading order in the bare coupling g0

Bµ(x, t) =
g0

4πt2

∫
d4y e−(x−y)2/4t Aµ(y). (2.52)

The flow field Bµ is thus smoothed over space-time with smearing
radius rsmear = 2σ =

√
8t, σ being the variance of the distribution in

eq. (2.52), σ2 = 2t.
on the lattice, eq. (2.48) can be expressed as

a2 dVµ(x, t)
dt

= −g2
0

δSG[V]

δVµ(x, t)
Vµ(x, t), (2.53)

Vµ(x, t = 0) = Uµ(x), (2.54)

with Uµ the gauge links in eq. (1.20) and SG the Wilson gauge action
in eq. (1.22).

After integrating the flow equation eq. (2.48), the action density at
flow time t can be defined as

E(x, t) =
1
2

tr
(
Gµν(x, t)Gµν(x, t)

)
. (2.55)

on the lattice, this can be computed by

E(x, t) = ∑
µ,ν

Re tr
(
1 − Vµν(x, t)

)
, (2.56)

which is just eq. (1.22) but with the plaquette Uµν(x) of gauge links
Uµ(x) replaced by the plaquette Vµν(x, t) of flow fields Vµ(x, t). After
averaging over the 4-dimensional volume

E(t) = ⟨E(x, t)⟩x , (2.57)
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we are left with an average energy density that depends only on
the flow time. This average is computed using the model averaging
technique detailed in Sec. 2.7. The quantity t2E(t) can be precisely
calculated on the lattice, making it a suitable choice for setting the
scale (see Sec. 4). To this end, the scale t0 is defined as the flow time
which satisfies

t2E(t)|t=t0 ≡ 0.3. (2.58)

It will be this gradient flow scale t0 which we will use as an interme-
diate scale to convert lattice results to physical units. Fig. 2.4 shows
the extraction of t0/a2 for one of the ensembles under study.

2.7 ground state signals and model average

So far, we have expressed all physical observables under study as
functions of the Euclidean time x0. As discussed in Sec. 2.2, these
quantities are affected by boundary effects and excited states. In or-
der to extract the ground state contribution of each observable, it is
necessary to go to large source-sink separations and ensure sufficient
distance from the boundaries. However, it is not clear how to decide
when these conditions are met, and on the lattice community there are
different approaches to address this issue, see e.g. [11, 29, 123]. Our
choice is to employ model averaging techniques as proposed in [61,
107, 108].

The idea is to investigate multiple fit functions and/or several fit
ranges and assign an Information Criterion IC to each choice, which
allows to compute a weight

Wi ∝ exp
(
−1

2
ICi

)
, (2.59)

for each choice i of the “model”, which refers to a specific fit function
and fit range. Then one can compute a weighted average for a fit
parameter p that is common to all models as

⟨p⟩MA = ∑
i

piWi, (2.60)

where pi is the fit parameter result for model i, and add a systematic
uncertainty related to the model variation as

σ2
syst[p] =

〈
p2〉

MA − ⟨p⟩2
MA . (2.61)

For fitting we use a least-squares method that seeks to minimize a χ2

function by finding the best values of the fit parameters (for details see
Appendix F). As proposed in [61] we use the Takeuchi’s Information
Criterion (TIC)

TIC = χ2 − 2
〈
χ2〉 , (2.62)
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where
〈
χ2〉 is a measure of the expected value of the χ2 [30]. This

IC is well-behaved for cases where fully correlated fits cannot be
performed (see Appendix F for details), which is our case when fitting
observables along the Euclidean time direction. For a fully correlated
fit,
〈
χ2〉 = dof, and thus the TIC reduces to the proposal in [108]

TIC = χ2 + 2nparam + 2ncut, (2.63)

with nparam the number of parameters of the fit and ncut the number
of points left out of the fit. We see that this Information Criterion
penalizes models with large number of parameters and big cuts in
data, provided the minimization of the χ2 succeeds.

In practice, for the extraction of the ground state signals of lattice
observables, the data is fitted to a constant plus two exponential
signals for the OBC ensembles

f (x0) = A + Be−Cx0 + De−E(T−x0), (2.64)

or for PBC ensembles

f (x0) = A + Be−Cx0 + Be−C(T−x0), (2.65)

and we investigate the effects of varying the fit range. The result for the
fit parameter A corresponds to the ground state signal. An illustration
of the method for the extraction of the ground state signal in the pion
effective mass in Fig. 2.1 is shown in Fig. 2.5, where we selected only
a subset of the fit ranges explored for visualization purposes.

This model averaging technique will also be used for the chiral and
continuum extrapolations needed to set the scale, but there we will
also consider the variation of the fit functions and not only cutting
data (variation of the fit range), see Sec. 4.
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Figure 2.1: (a): pion effective mass meff in eq. (2.29) for ensemble H101 in
the Wilson regularization. (b): the same but for the mixed action
regularization for one point in our valence parameters grid, see
Sec. 3.
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Figure 2.2: (a): up/down PCAC quark mass in eq. (2.42) for ensemble H101

in the Wilson regularization. (b): the same but for the mixed
action regularization for one point in our valence parameters grid,
see Sec. 3. At maximal twist this quantity must vanish.
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Figure 2.3: (a): vacuum-to-pion axial matrix element Rπ from eq. (2.32) for
ensemble H101 in the Wilson regularization. (b): vacuum-to-pion
pseudoscalar matrix element Rπ from eq. (2.40) in the mixed
action regularization for one point in our valence parameters grid,
see Sec. 3.
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Figure 2.4: (a): t2E(x0, t) for one value of the flow time t/a2 near t0/a2 as
a function of the Euclidean time x0/a, with E(x0, t) the space
volume averaged energy density. The latter is defined in eq. (2.56).
(b): Euclidean-time averaged values of t2 ⟨E(x0, t)⟩x0

for several
flow times t/a2 (blue points) near t0/a2 (defined in eq. (2.58))
and the interpolated result for t0/a2 (orange point). Results for
ensemble H101.
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Figure 2.5: Model variation for the extraction of the ground state signal of
the pion effective mass of ensemble H101 in the Wilson regu-
larization, shown in Fig. 2.1. From top to bottom we show the
ground state signal result from a fit to eq. (2.64) for each fit in-
terval choice, the weight associated to each choice according to
eq. (2.59), and the goodness of fit measured through the p-values
defined in [30]. We see that the highest weights are associated to
a compromise between good fits (in terms of p-values) and fits
with large number of points. The right-most models in the plot
are heavily penalized even though they have the best p-values,
since they cut a large number of points and models with not so
severe cuts get also good p-values. The band in the top figure
indicates the final weighted average result with the systematic
uncertainty in eq. (2.61) included.
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3
M I X E D A C T I O N S E T U P

3.1 motivation

The lattice setup used in this thesis is based on a mixed action with
Wilson O(a) improved quarks (see Sec. 1.3.2) in the sea and fully
twisted Wilson tm quarks (see Sec. 1.3.3) in the valence, whose goal
is to control cutoff effects in the context of studies of flavor physics
in the charm sector. These effects are of order O(amc) with mc the
mass of the charm quark. The use of Wilson tm fermions at maximal
twist allows to remove such O(amc) lattice artifacts without the need
of computing specific improvement coefficients proportional to the
charm quark mass, thus providing an alternative way to control the
continuum limit extrapolations. Furthermore, the mixed action is yet
another valid lattice regularization which provides an independent
way of measuring physical observables on the lattice. In this respect,
it will allow us to quote independent results for the gradient flow
scale t0 (see Sec. 4), the charm quark mass and the D(s) mesons decay
constants [33] (see Sec. 5). In the future, we also plan to extend this
setup to the determination of the light and strange quark masses.

For the definition of the mixed action approach, we recall eq. (1.81)〈
Oij(x1)Oji(x2)

〉
= − 1

Z
∫

D[U]e−SG[U]−Seff[U]

× tr
(

ΓD−1
i (x1, x2)ΓD−1

j (x2, x1)
)

, (3.1)

Seff[U] = −
N f

∑
i

log det(Di). (3.2)

We see that the Dirac operator D appears first in the Boltzmann factor
e−SG[U]−Seff[U], which characterizes the fields of the sea sector, with
which the set of gauge ensembles is generated (see Appendix C),
and then in the fermionic observable whose expectation value we are
interested in, depending on fields of the valence sector. The calculation
is thus divided in two separate stages of the analysis: the first one
corresponds to the generation of gauge ensembles, and the other to
the inversion of the Dirac operator on those gauge configurations
(see Appendix D). This procedure in principle allows for the use of
different regularizations of the Dirac operator in these two steps or
sectors of the theory. In general, a mixed action approach can introduce
unitarity violations even once the continuum limit is taken, unless
the physical quark masses in both sea and valence coincide. This
means that our setup will require a tuning procedure in which the
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values of the Wilson twisted mass parameters are chosen such that
the physical values of quark masses in the valence sector are matched
to the corresponding ones in the sea sector.

The flavor content of our setup is as follows: on the one hand, the
sea sector has N f = 2+ 1 flavors, i.e. two mass-degenerate light quarks
(corresponding to the u and d flavors) with mass ml and one strange
quark with mass ms. On the other hand, the valence sector consists
of N f = 2 + 1 + 1 flavors, thus adding a charm quark. Since we have
N f = 2 + 1 in the sea and N f = 2 + 1 + 1 in the valence, the flavors
we need to match are those of the light and strange quarks, treating
the charm quark in the valence as a partially quenched flavor.

In order to perform the matching of the theory, we need to know
beforehand the value of the quark masses in the sea sector. This
means that we need lattice measurements in the fully unitary Wilson
fermions setup (using the Wilson regularization in the sea and valence)
in addition to the mixed action regularization. We therefore consider
two sets of data: those coming from the Wilson unitary setup, which
we refer to as sea or Wilson results, and those coming from the mixed
action itself. The use of these two sets of data will further improve the
control of the scale setting analysis, as we will see in Sec. 4. In addition
to the matching of the sea and valence sectors, we also need to tune
the valence action parameters to enforce full twist and automatic O(a)
improvement.

The Chapter is structured as follows. In Sec. 3.2 we discuss the sea
sector details: ensembles under study, lattice actions and boundary
conditions. In Sec. 3.3 we discuss the valence sector, which employs
Wilson tm quarks. In Sec. 3.4 we discuss the line of constant physics
along which the ensembles under study were generated. They follow
a chiral trajectory towards the physical point that suffers small mistun-
ings and that must be corrected by performing small mass corrections.
We discuss the details of a mass shifting procedure to account for
these effects. Finally, in Sec. 3.5 we deal with the matching of sea and
valence sectors though pseudoscalar masses in order to impose equal
physical quark masses in both sectors and to recover unitarity in the
continuum. We also explain the procedure to tune Wilson tm valence
quarks to maximal twist.

3.2 sea sector

The gauge ensembles that we employ are CLS ensembles [31, 102] with
N f = 2 + 1 non-perturbatively O(a) improved Wilson fermions (see
eq. (1.102)). They use the Lüscher-Weisz gauge action [82] defined in
eqs. (1.94-1.95) which, following the Symanzik improvement program,
is tree-level improved at O(a2).

For most of the ensembles, open boundary conditions (OBC) in time
are used for the gauge fields, since it has been observed that the use of
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periodic boundary conditions (PBC) leads to a steep dependence in the
scaling of the autocorrelation times as one approaches the continuum
limit, a problem known as critical slowing down. This is related to the
existence of topologically disconnected sectors in gauge field space,
which prevents the algorithm to sample correctly different topological
sectors. In contrast to this, OBC let the topological charge flow through
the boundaries and thus improves the sampling of topological sectors.
All ensembles use PBC in the spatial directions.

The ensembles we consider have 5 different values of the lattice
spacing, and for each of them there is one ensemble at the symmetric
point, which is defined as ml = ms, or equivalently for the hopping
parameter κ (see eq. (1.50)) as κl = κs. As we will see, all the ensembles,
reported in Table H.1, follow the chiral trajectory defined in eq. (3.6)
below.

3.3 valence sector

In the valence sector, we employ an N f = 2 + 1 + 1 fully-twisted
Wilson tm fermion action (see Sec. 1.3.3), whose Dirac operator reads

DW + m(v) + iµ(v)γ5, (3.3)

with

µ(v) = diag(µl ,−µl ,−µs, µc)
(v), m(v) = diag(ml , ml , ms, mc)

(v).
(3.4)

In particular, we use the same standard quark mass for all flavors
m(v)

l = m(v)
s = m(v)

c ≡ m(v).
As discussed in Sec. 1.3.3, imposing full twist means that the twist

angles αi fulfill

cot αi =
mR

i

µR
i
= 0. (3.5)

To do so, it is enough to impose that the PCAC quark masses in
eq. (2.42) vanish. When this is the case, automatic O(a) improvement
of valence observables is obtained, up to O(atr

(
Mq
)
) cutoff effects

due to the sea quark masses. However, these effects are expected to
appear at O(g4

0) in perturbation theory.
In order to set the valence parameters for which sea and valence

physical quark masses are matched while simultaneously ensuring
that the maximal twist condition is met, we employ a grid of valence
parameter values (κ, µl , µs)

(v) around an estimate of the target point in
order to perform small interpolations that allow us to reach the target
point (κ, µl , µs)

(v)*.
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3.4 chiral trajectory

The set of CLS ensembles that we use are generated along the trajectory
in the quark mass plane defined by a constant trace of the bare sea
“(s)” quark mass matrix

tr
(

M(s)
q

)
= 2m(s)

l + m(s)
s = cnst. (3.6)

This trajectory ensures that at a given value of the lattice spacing, the
improved bare coupling

g̃2
0 = g2

0

(
1 + abgtr

(
M(s)

q

))
, (3.7)

remains constant as we vary the sea quark masses to approach the
physical point. Note that for the Wilson unitary setup, sea and valence
quark masses are the same, but not for the mixed action setup. To
ensure that this trajectory crosses the physical point, we define the
dimensionless quantities

ϕ2 = 8t0m2
π, (3.8)

ϕ4 = 8t0

(
m2

K +
1
2

m2
π

)
, (3.9)

which at leading order (LO) ChPT are proportional to the renormalized
quark masses

ϕ2 ∝ mR
l , (3.10)

ϕ4 ∝ 2mR
l + mR

s = tr
(

MR
q

)
. (3.11)

The trace of the renormalized quark mass matrix tr
(

MR
q

)
is in turn

proportional to the bare quark mass matrix up to O(a) cutoff effects

tr
(

MR
q

)
= Zmrm

[(
1 + ad̄mtr

(
Mq
))

tr
(

Mq
)
+ admtr

(
M2

q

)]
. (3.12)

Thus, setting the sea value of ϕ4 to its physical value for all ensembles
ensures that eq. (3.6) holds and goes through the physical point, up to
small mistunings due to higher terms in the chiral expansion and to
cutoff effects.

To correct for these mistunings, we perform small mass shifts [29]
in the bare sea quark masses by Taylor expanding lattice observables
at first order as follows

O
(

m(s)’
l , m(s)’

s

)
= O

(
m(s)

l , m(s)
s

)
+ ∑

q

(
m(s)’

q − m(s)
q

) dO

dm(s)
q

, (3.13)

with the total derivative given by

dO

dm(s)
q

= ∑
i

∂O
∂ ⟨Pi⟩

[〈
∂Pi

∂m(s)
q

〉
−
〈

Pi
∂S

∂m(s)
q

〉
+ ⟨Pi⟩

〈
∂S

∂m(s)
q

〉]
. (3.14)



3.4 chiral trajectory 65

Here O = O ({Pi}) is an arbitrary lattice observable and {Pi}i=1,2,...

is the set of primary observables on which it depends, in our case
the corresponding mesonic two-point functions and the flow action
density. The first term within the square brackets in the right-hand
side of this equation corresponds to the valence contribution to the
derivative, while the two subsequent terms involving the action S
correspond to the sea contributions. Note that for the Wilson unitary
setup, all terms contribute in fermionic observables, while for the
mixed action setup, since the two-point functions {Pi} do not depend
explicitly on m(s)

q , the first term in the right-hand side of eq. (3.14)
vanishes in fermionic observables. For the gradient flow scale t0, only
the terms involving the action S in eq. (3.14) contribute.

In particular, the sum over q in eq. (3.13) can be done in any direction
of the quark mass plane, and following [124] we choose to mass shift
only the strange quark. For practical purposes, since for each ensemble
we mass shift all relevant observables to the physical value of ϕ4 in the
sea sector ϕ

(s)
4 = ϕ

ph
4 = const., following [123] we rewrite the Taylor

expansion at first order as

O
(

ϕ
(s)’
4 = ϕ

ph
4

)
= O

(
ϕ

(s)
4

)
+
(

ϕ
ph
4 − ϕ

(s)
4

) dO

dϕ
(s)
4

, (3.15)

with

dO

dϕ
(s)
4

=
dO/dm(s)

s

dϕ
(s)
4 /dm(s)

s
. (3.16)

Note that the sea value ϕ
(s)
4 is given by ϕ4 computed in the Wilson

unitary setup, and its derivative has both sea and valence contribu-
tions. On the other hand, as previously commented, dO/dm(s)

s receives
valence and sea contributions when O is a fermionic observable com-
puted in the Wilson unitary setup, and only sea contributions when
computed in the mixed action regularization. The mass shift to ϕ

ph
4

can be carried out simultaneously in the sea and valence sectors by
imposing ϕ

(s)
4 = ϕ

ph
4 and simply selecting the same values for the

sea and valence hopping parameters κ, which is the case of the fully
unitary Wilson setup. On the other hand, the mass shift in the mixed
action requires to first mass shift the sea quark masses to impose
ϕ

(s)
4 = ϕ

ph
4 and then tune the valence value of ϕ4 to its physical value,

which is done through the matching between sea and valence sectors
(see Sec. 3.5). This furthermore implies the equality of the values of ϕ4

in the unitary and mixed action setups.
The observables we will be interested in for the scale setting (see

Sec. 4) are
√

t0 fπ,
√

t0 fK and
√

t0 fπK, the latter defined in eq. (4.1). All
these quantities are physical and so are their derivatives with respect
to ϕ

(s)
4 . Thus, one can measure these derivatives for each ensemble

and then fit them as a function of ϕ2 and the lattice spacing. The
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resulting parametrization can then be used to perform the mass shifts
as an alternative to using the dedicated measurements of dO/dϕ

(s)
4 on

each ensemble. This has the advantage of improving the precision for
observables whose mass derivatives are noisy or missing, which is
particularly relevant for the finest lattice spacing and the most chiral
ensembles under study. We also include the derivatives of

√
t0mR

12

with respect to ϕ
(s)
4 in the mixed action setup since we will need to

mass shift this quantity in order to tune to full twist (see Sec. 3.5).
The dependence on the light-quark mass and lattice spacing of the

derivatives can be described by the following fit form

F = A + Bϕ2 + D
a2

t0
, (3.17)

for all choices of O except for the light PCAC quark mass in the mixed
action setup, for which we require additional parameters to properly
describe the lattice data

F = A + Bϕ2 + Cϕ2
2 + (D + Eϕ2)

a2

t0
. (3.18)

In the case of dϕ2/dϕ
(s)
4 in the Wilson unitary setup, we exclude the

symmetric point ensembles from the fit to eq. (3.17) since in this setup
ϕ

sym
2 = 2

3 ϕ4 by construction. Thus, in this case we will use this relation
directly to mass shift ϕ2.

Results for the fit parameters of eqs. (3.17-3.18) are presented in
Table 3.1, while plots are shown in Figs. 3.1-3.6.

The mass shifts have to be performed to the physical value of
ϕ4 in eq. (3.9). However, in order to determine it we first need to
input the physical value of the intermediate scale t0, which is the
target of the analysis. Thus, we start the process with an educated
guess of tph

0 , which provides an initial guess for ϕ
ph
4 . Once the scale

setting procedure is carried out and a new determination of t0 is thus
obtained, the analysis is iterated by updating the value of ϕ4 to which
the ensembles are mass shifted, until convergence in the determination
of t0 is observed. The initial guess used for tph, guess

0 can be selected as
a value without error. After a few iterative steps of the analysis, we
obtain the new estimate√

tph, guess
0 = 0.1445(6) fm, (3.19)

where the uncertainty keeps all the correlations with the lattice data
entering the analysis. Eq. (3.19) determines the value of ϕ

ph
4 to which

we perform the mass shifts in the subsequent sections, the input values
for physical mπ and mK given in eq. (4.3).
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Figure 3.1: Derivative d
(√

t0 fπK
)

/dϕ
(s)
4 for the Wilson unitary setup. For the

fit eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.

O A B C D E
√

t0 f W
πK 0.017(8) -0.007(10) - 0.024(26) -

√
t0 f W

π 0.006(8) 0.008(9) - 0.020(26) -
√

t0 f W
K 0.024(10) -0.016(11) - 0.022(27) -

ϕW
2 0.004(36) 0.131(92) - 0.874(129) -

√
t0 f tm

πK -0.009(7) 0.011(8) - -0.014(18) -
√

t0 f tm
π -0.007(6) 0.013(8) - -0.028(18) -

√
t0 f tm

K -0.009(8) 0.010(10) - -0.006(18) -
√

t0mtm, R
12 -0.004(3) 0.035(10) -0.041(9) 0.020(16) 0.026(24)

ϕtm
2 0.031(17) -0.032(23) - -0.102(73) -

ϕtm
4 0.006(37) 0.050(47) - -0.298(126) -

Table 3.1: Results for the fit parameters in eqs. (3.17-3.18) for derivatives in
eq. (3.16) of the lattice observables that will be used in the analysis.
The superscript “W” refers to the observable being computed in
the Wilson unitary setup, while “tm” refers to the mixed action
setup.
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Figure 3.2: Derivative dϕ2/dϕ
(s)
4 for the Wilson unitary setup. For the fit

eq. (3.17) was used. Results for the fit parameters are presented in
Table 3.1. The points around ϕ∼0.7 correspond to the symmetric
point at which by construction ϕ2 = 2

3 ϕ4.
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Figure 3.3: Derivative d
(√

t0 fπK
)

/dϕ
(s)
4 for the mixed action setup. For the

fit eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.
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4 for the mixed action setup. For the

fit eq. (3.18) was used. Results for the fit parameters are presented
in Table 3.1.
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Figure 3.5: Derivative dϕ2/dϕ
(s)
4 for the mixed action setup. For the fit

eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.
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Figure 3.6: Derivative dϕ4/dϕ
(s)
4 for the mixed action setup. For the fit

eq. (3.17) was used. Results for the fit parameters are presented
in Table 3.1.

3.5 matching and tuning to full twist

As explained in Sec. 3.3, when working with a mixed action, after
performing the mass shifts in Sec. 3.4, we need to match the physical
quark masses of the sea and valence sectors. To do this, we use a grid
of valence parameter values to find the target point through small
interpolations. In order to know the values of the relevant observables
in the sea, we use measurements in the fully Wilson unitary setup. In
practice, to compute the physical values (renormalized and improved)
of quark masses we need the relevant improvement coefficients. In
order not to rely on these for the matching procedure, instead of
matching the physical quark masses we choose to use the pion and
kaon masses in units of the gradient flow scale t0

ϕ
(s)
2 = ϕ

(v)
2 , (3.20)

ϕ
(s)
4 = ϕ

(v)
4 . (3.21)

since these quantities are proportional to the physical quark masses at
LO ChPT (see eqs. (3.8-3.9)).

Furthermore, we need to tune the Wilson tm action to full twist,
which means setting the valence light PCAC quark mass to zero

m(v)
ud ≡ m(v)

ll′ ≡ m(v)
12 = 0. (3.22)

Setting the maximal twist condition through a vanishing value of the
light valence PCAC quark mass, as in eq (3.22), is sufficient to guaran-
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tee the absence of lattice artifacts of O(a) in physical observables [24,
57].

To impose eqs. (3.20-3.22), we perform interpolations of the valence
observables m(v)

12 , ϕ
(v)
2 , ϕ

(v)
4 in the (κ, µl , µs)

(v) hyperplane, using as fit
functions the following expressions motivated by ChPT

m(v)
12 = p1

(
1

κ(v) −
1

κ(v)*

)
+ p2

(
µ

(v)
l − µ

(v)*
l

)
, (3.23)

ϕ
(v)
2 =

p3

µ
(v)
l

(
1

κ(v) −
1

κ(v)*

)2

+ p4

(
µ

(v)
l − µ

(v)*
l

)
+ ϕ

(s)
2 , (3.24)

ϕ
(v)
4 =

p5

µ
(v)
l

(
1

κ(v) −
1

κ(v)*

)2

+
p6

µ
(v)
s

(
1

κ(v) −
1

κ(v)*

)2

+ p7

(
µ

(v)
l − µ

(v)*
l

)
+ p8

(
µ

(v)
s − µ

(v)*
s

)
+ ϕ

(s)
4 . (3.25)

In this way, the target point values (κ, µl , µs)
(v)* are found as fit param-

eters of a simultaneous fit of these three quantities. The interpolation
is shown in Fig. 3.7.

The mixed action results for the quark masses are given by the
target twist mass parameters µ

(v)*
l,s , while the extraction of the pion

and kaon decay constants in the mixed action setup requires an addi-
tional interpolation along the valence grid to the target point. The fit
functions for this interpolation are

f (v)
π = q1

(
1

κ(v) −
1

κ(v)*

)2

+ q2

(
1

κ(v) −
1

κ(v)*

)
+ q3µ

(v)
l , (3.26)

f (v)
K = r1

(
1

κ(v) −
1

κ(v)*

)2

+ r2

(
1

κ(v) −
1

κ(v)*

)
+ r3µ

(v)
l + r4µ

(v)
s .

(3.27)

The interpolation for the decay constants combination fπK defined in
eq. (4.1) is shown in Fig. 3.8.
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(lower panels) and tuning to full twist am(v)
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along the grid of valence parameters values for the ensemble H105.
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Figure 3.8: Interpolation of
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(v)* for the ensemble H105. The points
with different colors represent measurements at different values
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S C A L E S E T T I N G

4.1 motivation

The scale setting involves the precise determination of one reference
observable, the scale, in physical units, to which any other observable
is compared in order to extract the value of the latter in physical units.

We will use the gradient flow scale t0 introduced in Sec. 2.6 as an
intermediate reference scale since it can be computed on the lattice
with high precision. Following the discussion in Sec. 1.7, we choose
for the phenomenological input the linear combination of the decay
constants of the pion and kaon [29]

Λ ≡ fπK =
2
3

(
fK +

1
2

fπ

)
. (4.1)

After measuring
√

t0 fπK for each ensemble, one must perform a chiral-
continuum extrapolation in order to extract its value at physical values
of the quark masses and in the continuum. To define the physical
point we use the pion and kaon physical masses, or equivalently the
dimensionless quantities ϕ2 and ϕ4 in eqs. (3.8-3.9). Thanks to the
mass shifting procedure in Sec. 3.4, the value of ϕ4 is kept fixed to
its physical value along our trajectory in the quark mass plane, and
as a result the chiral extrapolation needs to be done in ϕ2 only. For
the determination of the physical value of the latter we use the initial
guess in eq. (3.19) and the physical input in eq. (4.3). As commented
in Sec. 3.4, once a new determination of t0 at the physical point is
obtained, the analysis is iterated updating the value in eq. (3.19) until
convergence is observed. Thus, with each iterative step both the values
of ϕ2 to which we perform the chiral extrapolation and the value of ϕ4

to which we shift our observables are updated.
We employ an O(a) improved lattice action. Furthermore, in the cal-

culation of
√

8t0 fπK we employ the relevant improvement coefficients
to remove O(a) lattice artifacts for the Wilson unitary setup. On the
other hand, in the mixed action setup, we employ all known improve-
ment coefficients in addition to relying on the O(a) improvement
mechanism at maximal twist. Therefore, we expect lattice artifacts to
start at O(a2) for

√
t0 fπK.

In order to perform the chiral-continuum limit, we explore different
ways of parameterizing the dependence on ϕ2 (ϕ4 is constant thanks
to the mass shifting procedure of Sec. 3.4) and on the lattice spacing a,
and employ the model averaging techniques introduced in Sec. 2.7.

73
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After performing the chiral-continuum limit, using as external phys-
ical input the values of the pion and kaon decay constants we can
determine the value of the scale t0 as

√
tph
0 =

(√
t0 fπK

)latt
∣∣∣
ϕ

ph
2 , a=0

f exp
πK

. (4.2)

Specifically, we consider ensembles with N f = 2 + 1 dynamical
quarks, and thus assume isospin symmetry for the up and down
flavors. Since we work in the limit of isosymmetric QCD (isoQCD), in
which electromagnetic and strong isospin corrections are not explicitly
included, we need to use a prescription to define the physical inputs
in this limit. We opt for the values proposed in [6]

misoQCD
π = 134.9768(5) MeV, misoQCD

K = 497.611(13) MeV,
(4.3)

f isoQCD
π = 130.56(2)exp(13)QED(2)|Vud| MeV, (4.4)

f isoQCD
K = 157.2(2)exp(2)QED(4)|Vus| MeV. (4.5)

The kaon decay constant receives a large contribution to its uncer-
tainty from the determination of the |Vus| CKM matrix element. QED
corrections are also more significant in the kaon decay constant as
compared to the pion case. Although not relying on the kaon decay
constant seems a desirable option, controlling the systematic uncer-
tainties of the chiral-continuum extrapolation of fπ is at present more
challenging than that of fK.

4.2 determination of

√
t0 at the physical point

The choice of the combination of decay constants fπK in eq. (4.1) to
set the scale is motivated by its chiral behavior, since at fixed value
of ϕ4 its next-to-leading order (NLO) SU(3) ChPT expression only
depends on ϕ2 through chiral logarithms. To this order we have, using
mu = md ≡ ml [5, 12]

t0 = t0,ch

(
1 + k1

2m2
K + m2

π

(4π f )2

)
, (4.6)

fπ = f
[

1 +
16B0L5

f 2 ml +
16B0L4

f 2 (2ml + ms)− 2L(m2
π)

−L(m2
K)
]

, (4.7)

fK = f
[

1 +
8B0L5

f 2 (ml + ms) +
16B0L4

f 2 (2ml + ms)

−3
4

L(m2
π)−

3
2

L(m2
K)−

3
4

L(m2
η)

]
, (4.8)

where L(x) are chiral logarithms, defined as

L(x) =
x

(4π f )2 log
x

(4π f )2 , (4.9)
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and f , t0,ch, k1, B0, Li are low energy constants (LECs). The quark masses
can be related to meson masses using the LO expressions

m2
π = 2B0ml , (4.10)

m2
K = B0(ml + ms), (4.11)

m2
η =

4
3

m2
K − 1

3
m2

π. (4.12)

This way, the combination
√

8t0 fπK reads

Fcont
χSU(3),πK(ϕ2) ≡

(√
8t0 fπK

)cont
=

=
A

4π

[
1 − 7

6
L̃
(

ϕ2

A2

)
− 4

3
L̃

(
ϕ4 − 1

2 ϕ2

A2

)

−1
2

L̃

(
4
3 ϕ4 − ϕ2

A2

)
+

B
A2 ϕ4

]
, (4.13)

with modified chiral logarithms given by

L̃(x) = xlog (x) , (4.14)

and where we absorbed the LECs into the definition of the parameters
A, B as

A = 4π
√

8t0,ch f , (4.15)

B =
(16π)2

3
(L5 + 3L4) + k1. (4.16)

We use the expression in eq. (4.13) to perform the chiral-continuum
extrapolation of

√
8t0 fπK. We will use the label [SU(3)χPT] for this

continuum mass-dependence.
To probe the systematic effects associated with chiral extrapolation,

in addition to the SU(3) ChPT expressions, we also consider SU(2) for-
mulae in which the mass dependence of the strange quark is absorbed
in the corresponding LECs. The expressions at NLO reads [4]

fπ = f
[

1 +
8(2L4 + L5)

f 2 m2
π − 2L(m2

π)

]
, (4.17)

fK = f (K)(ms)

[
1 +

c(ms)

f 2 m2
π − 3

4
L(m2

π)

]
. (4.18)

More specifically, we either consider the case in which f (K)(ms) and
c(ms) follow a linear dependence on ms or in which they remain
constant. Since in the expression of fπ in eq. (4.17), the dependence on
ms appears only through sea quark loop effects, we assume that the
LECs f and L4,5 are independent of ms. After some algebra, we arrive
at

Fcont
χSU(2),(ϕ2) = B + Cϕ2 + Dϕ4 − EL̃

(
ϕ2

A2

)
, (4.19)
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With the fit parameters A, B, C, D, E combinations of the LECs appear-
ing in eqs. (4.17-4.18). Since we mass shifted to a constant value of
ϕ4, the fit cannot distinguish between B and Dϕ4, and we may group
these two terms into a single term in order to reduce the number of fit
parameters. A term of type Dϕ4 may arise from the chiral expansion
of t0 in eq. (4.6) even when f (K)(ms) and c(ms) are considered to be
independent of ms.

Another possibility for the extrapolation to the physical point is
to use Taylor expansions in ϕ2 around the symmetric point. We have
considered Taylor expansions to the second and fourth order as follows

Fcont
Tay,πK(ϕ2) ≡

√
8t0 f cont

πK = A + B
(
ϕ2 − ϕ

sym
2

)2
, (4.20)

or

Fcont
Tay,πK(ϕ2) = A + B

(
ϕ2 − ϕ

sym
2

)2
+ C

(
ϕ2 − ϕ

sym
2

)4
, (4.21)

labeling these models as [Tay] and [Tay4]. Due to symmetry rea-
sons [17], there are no terms with odd powers of ϕ2 − ϕ

sym
2 .

In addition to the extrapolation in the pion mass, we need to sup-
plement these fit functions with cutoff effects in order to describe our
lattice data. To this end, we will explore three possibilities

Flatt(ϕ2) = Fcont(ϕ2) + W
a2

8t0
, (4.22)

Flatt(ϕ2) = Fcont(ϕ2) + W
a2

8t0
αΓ

S(a), (4.23)

Flatt(ϕ2) = Fcont(ϕ2) + (W + Zϕ2)
a2

8t0
. (4.24)

We assign the labels [a2], [a2αΓ
S] and [a2 + a2ϕ2] to characterize the

lattice artifacts of these models, respectively. The lattice artifact in
eq. (4.23) is motivated by [74] where logarithmic corrections in the
lattice spacing a are analyzed. In particular, a set of possible powers
Γi are found to contribute.

Since it is not feasible to include several independent fitting param-
eters to characterize these logarithmic corrections, we chose to include
a single such term. We vary the choice of Γi by monitoring its impact
on the extracted value of tphys

0 after averaging over the set of models.
As tphys

0 is observed to be independent of the choice of Γi, we restrict
ourselves to the smallest value, Γi = −0.111, in the model average.

The systematic uncertainty in the extraction of
√

tph
0 is assessed by

the model variation using the TIC introduced in Sec. 2.7. We vary
over the different ways of performing the chiral-continuum limits
introduced above, as well as over the possibility of performing data
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cuts. In particular, we consider the following cuts (in addition to the
“no cut” choice)

β > 3.40, (4.25)

β > 3.46, (4.26)

mπ < 420 MeV, (4.27)

mπ < 350 MeV, (4.28)

β > 3.40 & ϕ2 < 0.6, (4.29)

mπ L > 4.1, (4.30)

meaning that for each cut we keep only ensembles satisfying the
corresponding condition above. With these cut choices, we explore the
systematic uncertainty associated with performing lattice simulations
at coarse lattice spacings, pion masses significantly heavier than in
Nature, and small volumes that may introduce finite volume effects.

In general, the models included in the model average correspond to
good fits in terms of their p-values (see Tables K.2-K.4). This means
that the TIC will tend to heavily penalize any cut in the data, since
the lattice data can be well described by the fit functions explored
without performing any cuts. As a result, we observe that data points
with the coarsest value of lattice spacing and/or with heavier pion
masses – which tend to have smaller uncertainties than those closer
to the continuum and the physical point – strongly constrain the
model selection based on the TIC. In addition, the systematic effects
associated with, for instance, the removal of the coarsest lattice spacing
or of heaviest pion mass data are not always satisfactorily explored
in such a model averaging framework. We therefore wish to extend
the model averaging approach to introduce information on the regime
of parameters in which the effective theories involved in the chiral-
continuum extrapolations are known to perform best. For the case of
the Symanzik expansion, this corresponds to the regime of smaller
values of the lattice spacing, while for chiral perturbation theory it
corresponds to the smaller values of the pion mass. The idea [46] is to
supplement the weight matrix W appearing in the definition of the
χ2 of the fit (see Appendix F) with a systematic error penalization for
small values of the inverse coupling β and heavy pions, according to

W−1
ij = Cij ×

√
1 + c2

i /Cii

√
1 + c2

j /Cjj, (4.31)

where Cij is the element of the covariance matrix of the lattice data
of

√
8t0 fπK for the ensembles i and j, and ci is a penalization factor

given by

c2
i = c2

β

(
a2

8t0

)4

+ c2
ϕ2

ϕ4
2, (4.32)

which is motivated by the fact that at coarse lattice spacings we expect
O(a4) cutoff effects to be relevant, and for heavy pions we expect that
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higher order effects of O(m4
π) in the chiral expansion could play a role.

More specifically, the penalization in β will only be applied in β = 3.40
ensembles, while the penalization in ϕ2 acts only on symmetric point
ensembles ϕ2 ∼ 0.73. The coefficients cβ,ϕ2 in eq. (4.32) are chosen
such that the elements of the weight matrix W appearing in the χ2

function (see Appendix F) for ensembles at the symmetric point or at
the coarsest lattice spacing, are no longer significantly enhanced with
respect to those lying closer to the continuum or at the physical pion
mass. We remark that the determination of the expectation value of the
χ2 allows to determine the p-value of a fit based on a generic weight
matrix W [30] such as that in eq. (4.31). As expected, in the presence
of an additional term in the χ2 that suppresses the relative weights of
the coarsest lattice spacing and the heaviest pion masses, we observe
that the p-values of the fits without cuts are similar to those of the
fits implementing the cuts β > 3.40 and mπ < 420 MeV. Moreover, the
weights in the model average are more evenly distributed compared
to the case in which we do not include systematic effects in the χ2

function. Setting any of the cβ,ϕ2 coefficients to infinity is equivalent to
performing the cut β > 3.40 or mπ < 420 MeV, while setting them to
zero corresponds to the absence of cut.

As anticipated, we will carry out the chiral-continuum extrapola-
tions using two sets of lattice data: the Wilson unitary setup and the
mixed action. Universality arguments imply that the two regulariza-
tions should approach a common continuum limit value with different
lattice artifacts. We can thus perform the continuum-chiral extrapo-
lations for the Wilson data, for the mixed action, or for a combined
data set, parameterizing the data with the same continuum limit mass-
dependence Fcont(ϕ2) but different cutoff effects (parameterized by
different W, Z fit parameters for Wilson and mixed action data). We
observe that by combining the Wilson and mixed action calculations,
an increase in statistical precision and in the control of the contin-
uum limit extrapolation of

√
8t0 fπK can be achieved. As a universality

check, we performed the continuum limit extrapolation of the Wilson
and mixed action determinations of

√
8t0 fπK using only symmetric

point ensembles, without imposing a common value in the continuum.
Since all these points have the same value of ϕ2, they follow a line of
constant physics as we approach towards the continuum limit. The
extrapolation shown in Fig. 4.1 shows that both data sets agree per-
fectly well in the continuum. For this quantity, the mixed action data
appears to receive milder discretization effects

Once the various models to extrapolate to the continuum and phys-
ical point have been explored, we use the model averaging technique
introduced in Sec. 2.7 to assign a normalized weight to each model

W ∝ exp
(
−1

2
(
χ2 − 2

〈
χ2〉)) , (4.33)
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that allows us to compute a weighted average for
√

tph
0 , as well as the

associated systematic uncertainty〈√
tph
0

〉
= ∑

i

√
tph,(i)
0 W(i), (4.34)

σ2
syst =

〈√
tph
0

2
〉
−
〈√

tph
0

〉2

. (4.35)

In Figs. 4.3-4.5 we show the model average results for the Wilson
unitary setup, for the mixed action and for the combined analysis. In

Appendix K we show the numerical results of
√

tph
0 for each model

considered, together with their weights and p-values, for the Wilson,
mixed action and combined analysis. In Fig. 4.2 we show the pion
mass dependence of the continuum-chiral extrapolation for model
[SU(3)χPT][a2] and the combined data set (no cuts), together with the
lattice spacing dependence for the same model, projecting all points
to the physical pion mass ϕ

ph
2 using the fit result for the continuum

dependence Fcont(ϕ2).

The results for
√

tph
0 in physical units as computed from the model

average for the different data sets, using f isoQCD
πK as physical input, are√

tph
0 = 0.1433(9)stat(4)syst fm, Wilson, (4.36)√

tph
0 = 0.1442(10)stat(4)syst fm, Mixed action, (4.37)√

tph
0 = 0.1438(7)stat(4)syst fm, Combined. (4.38)

We show a comparison of these results with other determinations in
the literature using N f = 2 + 1 flavors of dynamical quarks in Fig. 4.7.

We tested the impact of varying over the choice of the coefficients cβ

and cϕ2 in eq. (4.32) and found that the central values of the physical
value of

√
t0 in eqs. (4.36-4.38) move always well within 1σ, and not

a big impact in the final uncertainty is found. More specifically, for
the Combined analysis case if one removes altogether the β = 3.40
and mπ = 420 MeV ensembles from the analysis, the statistical and
systematic uncertainties found are the same as in eq. (4.38). Addition-
ally, one finds a statistical uncertainty of 6 × 10−4 fm and a systematic
uncertainty of 3 × 10−4 fm for the Combined analysis result by setting
cβ = cϕ2 = 0 and including the β = 3.40 and mπ = 420 MeV ensem-
bles into the analysis. Finally, we tested the impact of using [5] for
the physical input of mπ, mK, fπ, fK instead of using the input in [6]
quoted in eqs. (4.3-4.5). This comparison is shown in Fig. 4.6.

The statistical uncertainty in eqs. (4.36-4.38) stems from the gauge
noise of the CLS configurations, the uncertainties in the renormal-
ization constants and improvement coefficients in Tables 2.1-2.2, and
the physical inputs in eqs. (4.3-4.5). We show the splitting of these
contributions for the combined analysis case in Table 4.1.
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Figure 4.1: Continuum limit extrapolation of symmetric point ensembles for
the Wilson unitary results (empty points) and for the mixed action
results (filled points). In order to perform a universality check and
verify that both regularizations share the same continuum limit, a
common result at vanishing lattice spacing is not imposed. Cutoff
effects are parameterized as pure O(a2) artifacts independent for
each regularization.

Contributions to total error squared of
√

t0 [Combined]

Model variation (systematic) 25.42%

Gauge ensembles 55.72%

Renormalization and improvement 0.82%

|Vud| 0.01%

|Vus| 11.7%

QED corrections to fπ 0.32%

QED corrections to fK 3%

Experimental input for fπ 0.01%

Experimental input for fK 3%

IsoQCD pion and kaon meson masses < 0.01%

Table 4.1: Different contributions to total uncertainty for
√

t0 for the com-
bined analysis of both Wilson and mixed action lattice data in
eq. (4.38).
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ph. point

Figure 4.2: Top: Light quark mass-dependence of
√

8t0 fπK for the SU(3)
ChPT model with pure O(a2) cutoff effects and absence of cuts
in data, corresponding to the label: [SU(3)χPT][a2][−]. We show
the result of the combined fit of both Wilson (empty) and mixed
action (filled) results. The colored bands represent the pion mass
dependence for each lattice spacing for the Wilson results, while
the dashed lines represent the dependence for the mixed action
results. In the latter case we only plot the central value of the
corresponding bands for visualization purposes. Bottom: the same
model, with points projected to the physical pion mass ϕ

ph
2 using

the fit result for the continuum mass dependence F(ϕ2)
cont. In this

plot we show the lattice spacing dependence of our ensembles.
The additional systematic effect terms in the χ2 (see eq. (4.32))
were included. The p-value of this fit is 0.5532.
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[m L > 4.1]
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Figure 4.3: Model average results for the determination of
√

t0 at the physical
point based only on Wilson lattice data and fπK as physical
input. Top: model average over cuts in the data, the model weight
defined in eq. (4.33). For each label of the cut performed to
the data displayed in the panel, an average according to the
model weights was taken over the various fit forms employed
to perform the chiral-continuum extrapolation. The label “[-]”
refers to the case in which no cuts are applied to the data. In
all models the penalization of eq. (4.32) was included, so even
in the “[-]” models points at β = 3.40 and mπ = 420 MeV are
penalized in the fit. Bottom: model average over different fit forms
employed in the chiral-continuum extrapolation. For each label
of the fit form displayed in the panel, an average was taken
over the various data cuts according to the model weights. The
blue vertical band shows the result of the model average over
the full set of considered models with systematic and statistical
uncertainties added in quadrature. We provide Tables connecting
each label to the corresponding fit models in Appendix K, as well
as results of

√
t0, model weight and p-value for each individual

model.



4.2 determination of

√
t0 at the physical point 83
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Figure 4.4: Model average results for the determination of
√

t0 at the physical
point based only on mixed action lattice data and fπK as physical
input. Top: model average over cuts in the data, the model weight
defined in eq. (4.33). For each label of the cut performed to
the data displayed in the panel, an average according to the
model weights was taken over the various fit forms employed
to perform the chiral-continuum extrapolation. The label “[-]”
refers to the case in which no cuts are applied to the data. In
all models the penalization of eq. (4.32) was included, so even
in the “[-]” models points at β = 3.40 and mπ = 420 MeV are
penalized in the fit. Bottom: model average over different fit forms
employed in the chiral-continuum extrapolation. For each label
of the fit form displayed in the panel, an average was taken
over the various data cuts according to the model weights. The
blue vertical band shows the result of the model average over
the full set of considered models with systematic and statistical
uncertainties added in quadrature. We provide Tables connecting
each label to the corresponding fit models in Appendix K, as well
as results of

√
t0, model weight and p-value for each individual

model.
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Figure 4.5: Model average results for the determination of
√

t0 at the physical
point based on the combination of Wilson and mixed action lattice
data and fπK as physical input. Top: model average over cuts in
the data, the model weight defined in eq. (4.33). For each label of
the cut performed to the data displayed in the panel, an average
according to the model weights was taken over the various fit
forms employed to perform the chiral-continuum extrapolation.
The label “[-]” refers to the case in which no cuts are applied to
the data. In all models the penalization of eq. (4.32) was included,
so even in the “[-]” models points at β = 3.40 and mπ = 420 MeV
are penalized in the fit. Bottom: model average over different fit
forms employed in the chiral-continuum extrapolation. For each
label of the fit form displayed in the panel, an average was taken
over the various data cuts according to the model weights. The
blue vertical band shows the result of the model average over
the full set of considered models with systematic and statistical
uncertainties added in quadrature. We provide Tables connecting
each label to the corresponding fit models in Appendix K, as well
as results of

√
t0, model weight and p-value for each individual

model.
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Figure 4.6: Comparison of our determination of
√

t0 at the physical point
with Bruno et al. ‘16 [29]. For our determination, in each label of
the panel we show three variations, from top to bottom: using
the complete set of ensembles listed in Table H.1, with physical
input from [6] quoted in eqs. (4.3-4.5), and the systematic term in
eq. (4.31) added when doing the model average (results quoted in
eqs. (4.36)-4.38); using the complete set of ensembles but removing
the systematic term in eq. (4.31) from the analysis, and using
physical input from [5]; and using the set of ensembles that is
common between the ones listed in Table H.1 and the ones in [29],
without the systematic term in eq. (4.31), and using physical input
from [5]. The latest variation corresponds to an analysis following
what was done in Bruno et al. [29], and we observe an upwards
drift of the central values in

√
t0 in our results, approaching the

determination of
√

t0 in [29]. The remaining difference between
our determination and that of [29] might be explained by our
use of the model average technique and by the higher amount
of statistics available for ensembles D200 and J303 with respect
to [29].
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Figure 4.7: Comparison of our results in eqs. (4.36-4.38) with other deter-
minations of

√
t0 in the literature using N f = 2 + 1 flavors of

dynamical quarks. We specify between brackets the physical in-
put used in each case to set the scale. BMW ‘12 refers to [23].
RBC/UKQCD ‘14 refers to [19] and QCDSF/UKQCD ‘15 to [21].
Bruno et al. ‘16 refers to [29], Bali et al. ‘22 to [11], Strassberger
‘23 to [123], and FLAG ‘21 to [6].

4.3 determination of

√
t0 at the symmetric point

The symmetric point is defined as the point in the quark mass plane
at which the symmetric line defined by

mud ≡ ml = ms, (4.39)

and the chiral trajectory in eq. (3.6) intersect. In terms of our usual
quantities ϕ2, ϕ4, the symmetric point satisfies

ϕ2 =
2
3

ϕ4, (4.40)

where ϕ4 is given by its physical value after the iterative procedure
to find tph

0 and after mass shifting (see Sec. 3.4). In order to extract
tsym
0 = t0(ϕ

sym
2 , ϕ

ph
4 ), following [123] we build the ratio√

t0/a2√
tsym
0 /a2

, (4.41)

where
√

t0/a2 is the measurement of the gradient flow scale in each

ensemble while
√

tsym
0 /a2 is the corresponding lattice determination,

at the same value of the inverse coupling β, but using a symmetric
point ensemble. Following [123] we fit this ratio to

F(ϕ2) =
√

1 + p(ϕ2 − ϕ
sym
2 ). (4.42)
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Figure 4.8: Fit to eq. (4.42) in order to extract t0 at the symmetric point.

We find this fit form to properly describe the lattice data. More specifi-
cally, no lattice artifacts are discerned from fits with O(a2), O(a2ϕ2)

and/or O(a2αΓ
S) cutoff effects. The result of this fit is shown in Fig. 4.8.

Once the data is fitted, we extract tsym
0 in physical units as

√
tsym
0 =

√
tph
0

F(ϕph
2 )

. (4.43)

For tph
0 and ϕ

ph
2 we can use our determination for the Wilson, mixed

action or combined data sets. The result for the scale at the symmetric
point is, depending on this choice√

tsym
0 = 0.1429(9)stat(4)syst fm, Wilson, (4.44)√

tsym
0 = 0.1439(10)stat(4)syst fm, Mixed action, (4.45)√

tsym
0 = 0.1435(7)stat(4)syst fm, Combined. (4.46)

4.4 determination of the lattice spacing for cls ensem-
bles

Just as in the previous section, we can use the fit to
√

t0/a2√
tsym
0 /a2

to compute

(√
t0

a2

)ph

=

√
tsym
0
a2 F(ϕph

2 ). (4.47)
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Then, the lattice spacing is extracted as

a =

√
tph
0(√

t0
a2

)ph . (4.48)

For ϕ
ph
2 we can either use our determinations of tph

0 for the Wilson,
mixed action or combined data sets. Results for the lattice spacing are
shown in Table 4.2.

β a [fm] Wilson a [fm] mixed action a [fm] combined

3.40 0.0842(6)stat(2)syst 0.0848(6)stat(3)syst 0.0845(5)stat(2)syst

3.46 0.0747(5)stat(2)syst 0.0752(5)stat(2)syst 0.0750(4)stat(2)syst

3.55 0.0629(4)stat(2)syst 0.0633(4)stat(2)syst 0.0631(3)stat(2)syst

3.70 0.0488(3)stat(1)syst 0.0491(3)stat(2)syst 0.0490(3)stat(1)syst

3.85 0.0382(2)stat(1)syst 0.0385(3)stat(1)syst 0.0384(2)stat(1)syst

Table 4.2: Values of the lattice spacing a in physical units extracted from the
determination of the gradient flow scale t0 with the Wilson, mixed
action and combined analysis. The lattice spacing is extracted from
measures of both t0 at the physical and symmetric points using
eq. (4.48).

4.5 determination of t∗0

Yet another point in the (ϕ2, ϕ4) plane of interest corresponds to the
reference point in [29]

ϕ4 = 1.11, ϕ2 =
2
3

ϕ4 ≡ ϕ
sym
2 . (4.49)

The scale t0 evaluated at this point is

t∗0 = t0
(
ϕ

sym
2 , ϕ4 = 1.11

)
, (4.50)

and its ratio to
√

tph
0 enters in the computation of the strong coupling

in [47]. To compute t∗0 , we repeat the analysis by mass shifting our
ensembles to the value ϕ4 = 1.11 without error and compute the
gradient flow scale at the symmetric point as explained in the Sec. 4.4.

The values we find for
√

t∗0 in physical units for the Wilson, mixed
action and combined cases are√

t∗0 = 0.1432(9)stat(4)syst fm, Wilson, (4.51)√
t∗0 = 0.1439(9)stat(4)syst fm, Mixed action, (4.52)√
t∗0 = 0.1436(7)stat(4)syst fm, Combined. (4.53)
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I M PA C T O F T H E S C A L E S E T T I N G I N L AT T I C E Q C D
C O M P U TAT I O N S

In this Chapter we will discuss the role of the determination of t0,
described in Chapter 4, in lattice QCD calculations of other observables.
In particular, we will see that the precision of the result quoted in
eq. (4.38) leads to determinations of the renormalized charm quark
mass and D(s) charmed mesons decay constants for which the scale t0

is not the dominant source of uncertainty.
For the extraction of charmed observables we rely entirely on the

mixed-action approach with Wilson twisted mass fermions at maximal
twist, as reported in Sec. 3.5, exploiting the absence of leading lattice
artifacts of O(aµc) that would otherwise play a dominant role at the
scale of the charm quark mass µc. This provides a way to approach
the continuum limit of charmed observables complementary to that
based on Wilson fermions that require explicit inclusion of Symanzik
improvement counterterms.

In Sec. 5.1 we discuss the details of our strategy to match the
charm quark mass to its physical value. In Sec. 5.2 we discuss chiral-
continuum extrapolations of the renormalized charm quark mass and
present our results for this quantity at the physical point after perform-
ing a model average over the set of considered functional forms. In
Sec. 5.3 we summarize our results for the charmed mesons D(s) decay
constants, showing the contribution to the final uncertainty coming
from the determination of the scale t0. For a complete discussion of
these results we refer to [33].

In addition to these charmed mesons computations, in Appendix L
we report about the status of an analysis of the light and strange quark
masses.

5.1 matching of the charm quark mass

In Sec. 3 we performed the matching of the sea and valence sectors
of our mixed action for the light and strange quark flavors, in addi-
tion to tuning to maximal twist. Once the valence parameters were
determined to ensure these conditions, an independent set of compu-
tations of heavy propagators was performed for the study of charm
physics. Heavy propagators are computed at three different values of
the twisted mass µ

(i)
c around the physical charm region for most of

the considered ensembles, while for a subset of them two masses have
been used, so that in all cases observables are interpolated at the phys-
ical value of the charm quark mass. In order to fix the charm quark

89
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mass to its physical value, we use different combinations of mesons
masses mH matched to their physical values. Since the charm quark
is partially quenched, this matching procedure involves observables
with only charm quarks in the valence sector.

We study two different charm quark matching conditions based on
two choices of m(i)

H , i = 1, 2, and will often be expressed in units of√
8t0 as ϕ

(i)
H =

√
8t0m(i)

H .
The first possibility we explore, corresponding to ϕ

(1)
H , consists in

using the flavor average meson mass combination

m(1)
H = mH ≡ 2

3
mH +

1
3

mHs , (5.1)

built from heavy-light H and heavy-strange Hs pseudoscalar meson
masses with heavy-quark masses in the neighborhood of the charm.
Since we mass shifted1 the considered CLS ensembles in order to
impose a constant value of ϕ4 (see eq. (3.9)), we expect the flavor
average combination ϕ

(1)
H to remain fairly constant along the chiral

trajectory. The physical value of m(1),ph
H is obtained by setting mH(s)

to the following prescription for the isoQCD values of D(s) meson
masses,

misoQCD
D = 1867.1(2.6) MeV, misoQCD

Ds
= 1967.1(1.3) MeV. (5.2)

The uncertainties in these isoQCD values are chosen to cover the devi-
ation with respect to the experimental values [131] of the D± and D±

s
meson masses, mexp

D± = 1869.66(5) MeV and mexp
D±

s
= 1968.35(7) MeV,

respectively. We observe that the larger uncertainty in the isoQCD
inputs of the D and Ds meson masses in eq. (5.2) — as compared to the
corresponding experimental values — does not induce a significant
increase in the uncertainties of our target results. The input values in
eq. (5.2) lead to the following flavor averaged meson mass,

m(1),ph
H = mD = 1900.4(1.8) MeV . (5.3)

The second strategy, corresponding to ϕ
(2)
H , is to consider the mass-

degenerate pseudoscalar meson mass mconn
ηh

extracted from the quark-
connected two-point correlation function made of heavy quark propa-
gators with a mass in the neighborhood of the charm mass,

m(2)
H = mconn

ηh
. (5.4)

The physical value for this mass, m(2),ph
H , is set from the experimental

value of the ηc meson mass [131], mexp
ηc = 2983.9(4) MeV, from which

1 In the case of the charmed observables considered in this Chapter, the mass shift
was performed in a similar manner to that discussed in Sec. 3.4, but this time using
the dedicated measurements of the mass derivatives for each ensemble, instead of
parametrizing them as a function of ϕ2 and of the lattice spacing.
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a correction of about 6 MeV, with 100% error, is subtracted to account
for the absence of quark-disconnected diagrams and QED effects [42,
43, 53, 56, 68]. Specifically, we employ,

m(2),ph
H = mconn

ηc
= 2978(6) MeV . (5.5)

One potential advantage of this choice of matching observable is that
the statistical precision of the ηconn

c meson mass is substantially better
than the one for heavy-light meson masses, as it does not suffer from
the increase in noise-to-signal ratio with Euclidean time.

Any of these matching conditions can in principle be imposed en-
semble by ensemble, even away from the physical point. However,
by doing so we would as a result build in the charm quark mass a
dependence on the value of the reference scale tph

0 , as well as O(a2)

effects coming from the specific choice of mH. To avoid this, we have
opted instead for setting the physical charm quark mass jointly with
the chiral-continuum extrapolation, in a similar way as the one we
employed to reach the physical point in the light and strange sector.
What this means in practice is that the charm quark mass dependence
of any given observable is parameterized as O(a, ϕ2, ϕ

(i)
H ), and we per-

form a global fit to obtain its physical value O(0, ϕ
ph
2 , ϕ

(i),ph
H ). This will

be the procedure applied below in the determination of the physical
value of the charm quark mass and of the decay constants fD and fDs .

5.2 determination of the charm quark mass

5.2.1 Renormalized charm quark masses

As discussed in Sec. 1.3.3, in the Wilson tm regularization, renormal-
ized quark masses can be retrieved from bare Lagrangian twisted
masses through a multiplicative renormalization. In our mixed-action
setup, due to residual effects coming from the sea, the resulting O(a)
improved expression for the renormalized charm mass µR

c reads

µR
c = Z−1

P (g2
0, µren)

[
1 + abµtr

(
M(s)

q

)]
µc , (5.6)

where ZP is the renormalization constant for the non-singlet pseu-
doscalar density at some renormalization scale µren as discussed in
Sec. 1.3.3. The term depending on the improvement coefficient will be
neglected since it is expected to induce a small correction as it is a sea
quark mass effect such that bµ = O(g4

0) in perturbation theory and,

moreover, the sea quark mass matrix tr
(

M(s)
q

)
depends only on the

relatively light (u,d,s) quark masses. Thus, renormalized quark masses
can be obtained by simply applying the renormalization constants ZP

to the twisted masses µi in the Lagrangian.
The values of ZP are listed in Table 2.1 and were computed at a

fixed renormalization scale µhad = 233(8) MeV in the Schrödinger
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functional renormalization scheme [34]. They allow to obtain the renor-
malized quark masses on each of the ensembles considered in the
chiral continuum extrapolation used to determine the physical value of
the charm quark mass. The conversion into the renormalization group
invariant (RGI) quark mass MRGI

c is performed by means of the con-
tinuum (flavor-independent) ratio also computed non-perturbatively
in [34]

M
m(µhad)

= 0.9148(88) . (5.7)

The renormalized quark masses in other renormalization schemes –
such as the MS scheme – are obtained by a perturbative running from
the RGI mass down to the desired renormalization scale µren.

5.2.2 Charm quark mass chiral-continuum fits

Having determined the renormalized charm quark masses in the
Schrödinger Functional scheme at the hadronic renormalization scale
µhad, µR

c , for all the ensembles listed in Table H.1, we can perform
the chiral-continuum fits to obtain results in the continuum limit
and at the physical point. The matching procedure of the light and
strange sectors is already devised so that the physical value of the
kaon mass is recovered at ϕ2 = ϕ

ph
2 , where the physical value of

ϕ2 is computed with the isoQCD values of the pion mass quoted
in [6] (see eqs. (4.3)), and the physical scale tph

0 is the one determined
in eq. (4.38). The charm scale is matched through the two different
prescriptions described in Sec. 5.1. All quantities entering the fit are
made dimensionless through the appropriate power of the factor

√
8t0,

and physical units for the final result are restored by using our value
for tph

0 .
We parameterize the continuum dependence of the renormalized

charm quark mass on ϕ2 and any of the ϕ
(i)
H with the functional form

√
8t0 µR

c (a = 0, ϕ2, ϕH) = p0 + p1ϕ2 + p2ϕH . (5.8)

Based on the heavy quark effective theory expansion [63] at lowest
order, we expect a linear dependence of the charmed meson masses as
a function of the charm quark mass, hence the latter term in the ansatz.
This assumption is supported by our data that show indeed a linear
behavior in the charmed meson masses, as illustrated in Figure 5.3.
Note that this functional form is used to interpolate the dependence
within a small interval around the physical value of the charm quark
mass. When considering the pion dependence of the charm quark
mass, we assume that the leading order contributions exhibit a linear
behavior in ϕ2. As illustrated in Fig. 5.2, we observe a mild light-quark
mass dependence which is well characterized by a linear term in phi2.
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Regarding the lattice spacing dependence of the charm quark mass,
we assume the leading cutoff effects to be O(a2), as discussed above.
Higher order lattice artifacts are explored by including terms of O(a4),
as expected when employing twisted mass fermions at maximal twist.
The impact of lattice artifacts of O(a3) arising from the sea sector
and/or from the renormalization factors will be incorporated in a
forthcoming version of the analysis. Finally, we allow for lattice arti-
facts proportional to m2

π and to various powers of the charm mass.
The generic ansatz to parameterize lattice spacing dependence thus
take the following form

cµc(a, ϕ2, ϕH) =
a2

8t0

(
c1 + c2ϕ2 + c3ϕ2

H
)
+

a4

(8t0)2

(
c4 + c5ϕ2

H + c6ϕ4
H
)
.

(5.9)

In order to estimate the systematic effects arising from the model
variation, we consider all the possible combinations where some of
the ci coefficients vanish, save for c1 which is always kept in the fits.
Furthermore, following [69], we allow for cutoff effects to enter either
linearly or non-linearly, viz.,

√
8t0µR,linear

c (a, ϕ2, ϕH) =
√

8t0µR,cont
c + cµc(a, ϕ2, ϕH), (5.10)

√
8t0µR,non-lin

c (a, ϕ2, ϕH) =
√

8t0µR,cont
c ×

(
1 + cµc(a, ϕ2, ϕH)

)
,

where
√

8t0µR,cont
c =

√
8t0 µR

c (a = 0, ϕ2, ϕH). We thus end up with
a total of 64 functional forms for each of the two charm matching
conditions, i.e., a total of 128 models.

As in the analysis of the scale setting in Chapter 4, we perform a
model average as introduced in Sec. 2.7 in order to study the different
choices for the chiral-continuum limit extrapolations, assigning to
each fit a model weight through the Takeuchi’s Information Criterion
(TIC), obtaining thus a final weighted average result, as well as a sys-
tematic uncertainty coming from the model variation. For a complete
discussion of the models considered and their relative weight we refer
to [33].

In Table 5.1 we report the results for µR
c in units of

√
8t0 obtained

with each of the two matching conditions independently, as well as
for the combined model average.
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ϕ
(1)
H ϕ

(2)
H combined

√
8t0µR

c 3.349(24)(6) 3.366(22)(6) 3.365(23)(7)

Table 5.1: Preliminary results of the model average for the renormalized
charm quark mass in units of

√
8t0 based on the two charm quark

mass matching conditions — ϕ
(1)
H denotes the flavor-averaged

matching condition in eq. (5.1) and ϕ
(2)
H the ηconn

h matching pre-
scription in eq. (5.4). The last column reports the combined result
from these two matching procedures according to our model aver-
age prescription. The first error is statistical, while the second is
the systematic uncertainty arising from the model variation.

Figure 5.1 illustrates typical fits for each of the matching conditions,
chosen among those with higher weights according to the TIC pre-
scription. The plot shows the continuum limit behavior of the charm
quark mass in units of

√
8t0. Results coming from the two matching

strategies coincide in the continuum, in spite of displaying a qualita-
tively different structure regarding cutoff effects. We observe that the
linear dependence of O(a2) has to be supplemented by higher order
terms to properly describe the lattice data.

Note also the overall small size of scaling violations, which are at the
few percent level. Finally, Figure 5.2 shows the pion mass dependence
of the charm quark mass, while Figure 5.3 shows the heavy-quark
mass dependence of the charm quark mass. As expected, we observe
a mild dependence of the charm mass on the light quark masses and
a smooth linear interpolation in the heavy-quark mass.

5.2.3 Results for the charm quark mass

The renormalized charm quark mass µR
c can be obtained once we

combine the results collected in Table 5.1 with our determination of√
tph
0 in eq. (4.38). As discussed at the beginning of this section, the

knowledge of the renormalization group running factors allows to
quote results for the RGI and MS values of the charm quark mass.

After combining the results from our 128 fitting models through the
model average procedure, and using the running factor in eq. (5.7),
we quote for the three-flavor theory the value for the RGI quark mass

MRGI
c (N f = 3) = 1.486(8)stat(3)syst(14)RGI GeV , (5.11)

where the first error is statistical, including the uncertainty from tph
0 ,

the second accounts for the systematic uncertainty, derived from the
model average, and the third is the error contribution from the RGI
running factor in eq. (5.7).

Figure 5.4 illustrates the relative contribution of various sources of
error to the uncertainty of our determination of MRGI

c . The dominant
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Figure 5.1: Comparison of the continuum limit approach for the two charm
matching prescriptions. Shown are two of the fits with the highest
weights from the TIC, projected onto the lattice spacing dimension.
In yellow we show results for the ηconn

h matching condition, while
the blue points illustrate the flavor-averaged matching. Each data-
point in this plot is projected to the physical pion mass and the
physical charm quark mass, in order to properly visualize the
lattice spacing dependence.
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Figure 5.2: Pion mass dependence of the charm quark mass for one of the
best fits according to the TIC criteria. Results are shown for the
flavor-averaged matching condition. Each point corresponds to
the value for a given ensemble, projected to the physical charm
quark mass. The dashed lines represent the chiral trajectories at
finite lattice spacing, while the blue shaded band is a projection to
the continuum limit. The red point shows the result extrapolated
at the physical point in the continuum.
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Figure 5.3: Heavy-quark mass dependence of the renormalized charm quark
mass µR

c in units of
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8t0 for one of the fits with larger weights ac-
cording to the TIC criteria. Results shown for the flavor-averaged
matching condition ϕ

(1)
H =

√
8t0mH . Dependencies other than ϕ

(i)
H

in the chiral-continuum extrapolation have been projected to the
physical point. The red square symbols indicate the continuum
results at the physical value ϕ

ph
H . We observe a linear dependence

of the charm quark mass on ϕ
(1)
H =

√
8t0mH in the neighborhood

of the physical point.
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mRGI
c (Nf = 3)

RG running to RGI mass

Stat. +χ-cont. limit

Scale setting

Model av.

Figure 5.4: Relative contributions to the total variance of our result for
MRGI

c (N f = 3). The dominant piece comes from the error in
the non-perturbative determination of the renormalization group
running factor to the RGI mass quoted in eq. (5.7). The label statis-
tical plus χ-continuum limit stands for the error arising from the
statistical accuracy of our data and the chiral-continuum extrapo-
lation, while the scale setting piece comes from the physical value
of the gradient flow scale tph

0 . Finally, the model average piece
illustrates the systematic error arising from the set of models
considered in this work.

source of error comes from the renormalization group running of
eq. (5.7), while the second most relevant contribution arises from
the statistical error of the correlation functions computed in each
ensemble. The error coming from the uncertainty on tph

0 based on our
scale setting procedure, as well as the systematic error from the model
average are subleading contributions. We therefore expect that the
inclusion in this charm quark mass analysis of further ensembles or
increased statistics will only have a significant impact if combined
with improved determinations of the RGI running factor.

In order to quote results in the MS scheme, we use five-loop per-
turbation theory for the quark mass anomalous dimension [8, 10, 92]
and the beta function [9, 72, 91]. The matching between the N f = 3
and N f = 4 theories uses the four-loop decoupling effects [81] incor-
porated into the RunDec package [37, 71, 117]. Renormalization group
equations are solved using as input the value Λ(3)

MS
= 341(12) MeV

from [28]. The correlation arising from the fact that a common subset
of gauge field configuration ensembles were employed in the compu-
tation of Λ(3)

MS
and the non-perturbative running factor in eq. (5.7) is

taken into account. Our result is shown in Figure 5.5, where we com-
pare our determination of the charm quark mass in the MS scheme
with the results from other lattice QCD calculations also based on
N f = 2 + 1 dynamical simulations and with the corresponding FLAG
average [6]. We observe in particular a good agreement with the results
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Figure 5.5: Comparison of our charm quark mass determinations in the
MS scheme with the FLAG average [6] and the results from
other lattice QCD calculations based on N f = 2 + 1 dynamical
simulations. In our results, shown in blue, we indicate both the
total uncertainty and the error when excluding the uncertainty
arising from Λ(3)

MS
. Starting from the bottom, results are taken

from: PDG [131], HPQCD 08B [3], HPQCD 10 [97], χQCD [132],
JLQCD 16 [104], Maezawa 16 [95], Petreczky 19 [112], ALPHA 21

[69].

from [69] which are also based on CLS ensembles but employ Wilson
fermions in the valence sector.

5.3 determination of decay constants of charmed mesons

For the determination of the decay constants of the charmed mesons
D(s) we employ a similar methodology to the one for the renormalized
charm quark mass. We match the charm quark mass to its physical
value following the same prescription as in Sec. 5.1, and we explore
different ways of performing the chiral-continuum limit extrapolations
in order to obtain fD(s) at the physical point. For a detailed discussion
we refer to our work [33], here we will only show our main results
emphasizing the impact on these of our determination of the scale t0

in Chapter 4.

5.3.1 Computation of decay constants

The quantity we employ to extract fD(s) in the continuum and at
physical quark masses is

ΦD(s) = (8t0)
3/4 fD(s)

√
mD(s) , (5.12)
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for which a Heavy Quark Effective Theory (HQET) scaling law in
powers of the inverse heavy quark mass exists. The general continuum
heavy and light quark mass dependence can be expressed as the prod-
uct of the individual contributions to arrive at the generic expression

ΦD(s) = Φχ

[
1 + δΦ

D(s)
χPT

] [
1 + δΦ

D(s)
a

]
. (5.13)

Here Φχ governs the heavy-quark mass dependence while δΦ
D(s)
χPT

controls the light quark behavior as approaching the physical point.
Finally, the lattice spacing dependence describing cut-off effects is

regulated by δΦ
D(s)
a .

For an analysis of each of the terms appearing in eq. (5.13) we refer
to our work [33]. In particular, we refer to eq. (5.13) in the previously
cited work. For Φχ we use expressions motivated by HQET, while

the light-quark dependence in δΦ
D(s)
χPT admits an expression in Heavy

Meson χPT (HMχPT). For cutoff effects, we consider O(a2), O(a2ϕ2)

and O(a2ϕH) terms.
Similarly to the case of the charm quark mass, we scan over various

functional forms by including/excluding some of the fit parameters.
We furthermore match the charm scale using the two different proce-
dures described in Sec. 5.1. The result is a total of 57 different models
for each matching condition, and we use the TIC criterion to estimate
the systematic uncertainty associated to the variation within the full
set of fits.

In Table 5.2 we show our determinations of ΦD and ΦDs for each of
the two procedures to match the charm scale, as well as the result from
their combination. Using this combination we arrive at the following
results for the D(s) meson decay constants,

fD = 211.1(1.8)stat(0.5)syst MeV, (5.14)

fDs = 248.1(1.5)stat(0.3)syst MeV, (5.15)

where the first error is statistical and the second the systematic un-
certainty from the model average. The different contributions to the
variance of D(s) meson decay constants are shown in Figure 5.6. Fi-
nally, in Figure 5.7 we show a comparison between our results and
other N f = 2 + 1 lattice QCD determinations.
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ϕ
(1)
H ϕ

(2)
H combined

ΦD 0.8625(60)(16) 0.8641(68)(48) 0.8627(58)(19)

ΦDs 1.0373(52)(6) 1.0375(59)(34) 1.0373(48)(10)

Table 5.2: Preliminary model average results for the observables ΦD and ΦDs

— defined in eq. (5.12) — which are related to the fD and fDs decay
constants, respectively, for the two different matching quantities
ϕ
(i)
H . The last column reports the result of the combination of these

two matching conditions. The first error is statistical while the
second is the estimate of systematic uncertainty arising from the
model averaging procedure.

5.3.2 Direct determination of fDs / fD

In addition to the determination of fD and fDs , we investigate the
direct determination of the ratio fDs / fD from a dedicated fit. This
allows for a consistency check, since the ratio is dimensionless and
thus does not require normalization with a reference scale such as√

8t0. In this ratio, the scale setting dependence is therefore mainly
associated to the matching of the quark masses to their physical values.
Another advantage is that the ratio is exactly 1 by construction when
ms = ml , i.e., at the symmetric point of our ϕ4 = const. trajectory. We
can thus perform a fit that is highly constrained in the unphysical
masses region, at the cost of reducing the total number of ensembles
entering in the study of the approach to the physical point.

A first set of fit ansätze is derived from HMχPT expressions as in
the case for ΦD(s) . The generic form is

ΦDs

ΦD
=
[
1 +

(
δΦDs

χPT − δΦD
χPT

)] [
1 +

(
δΦDs

a − δΦDs
a

)]
. (5.16)

Here δΦ
D(s)
χPT labels the light quark mass dependence of the ratio, while

δΦ
D(s)
a controls the continuum limit approach. For more details we

refer to eq. (5.18) in [33]. In the expression for ΦDs
ΦD

we consider all the
possible combinations of non-vanishing fit parameters, and perform
our TIC-weighted model average among the different functional forms
tested to quote a systematic uncertainty.

We further explore the systematic uncertainties by considering also
functional forms based on a Taylor expansion of ΦD(s) . The generic
expression then reads

ΦD(s) =
(

ΦD(s)

)
χ

[
1 + δΦh,Taylor

] [
1 + δΦ

D(s)
m,Taylor

] [
1 + δΦ

D(s)
a

]
,

(5.17)
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fD

Scale setting

Stat. +χ-cont. limit

Model av.

fDs

Scale setting

Stat. +χ-cont. limit

Model av.

Figure 5.6: Relative contributions to the total error of our determinations of
fD (top) and fDs (bottom). The label statistical plus χ-continuum
limit represents the error arising from the statistical accuracy
of our data and the chiral-continuum extrapolations. The scale
setting label denotes the error coming from the physical value tph

0
as determined in Chapter 4, while the model average represents
the systematic error arising from the model variation according
to the TIC procedure.
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200 220 240 230 250 270

MeVfD fDs

FLAG21 Nf = 2 + 1 + 1

FLAG21 Nf = 2 + 1

This work

ALPHA 24

χQCD 20A

RBC/UKQCD 17

χQCD 14

HPQCD 12A

FNAL/MILC 11

PACS-CS 11

HPQCD 10A

Figure 5.7: Comparison of our results for fD and fDs with those from lattice
QCD collaborations based on simulations with N f = 2+ 1 dynam-
ical flavors as well as with FLAG21 averages [6]. Only data points
with filled symbols contribute to the FLAG averages. Starting
from the bottom, results are taken from: HPQCD 10 [49], PACS-
CS 11 [105], FNAL/MILC 11 [13], HPQCD 12A [103], χQCD 14

[132], RBC/UKQCD 17 [25], χQCD 20A [36], RQCD/ALPHA
24 [79].
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where
(

ΦD(s)

)
χ

is the value in the chiral limit and at the physical

value of the heavy-quark mass. More concretely, we refer to eq. (5.21)
in [33].

Then, in order to arrive at our determination of fDs / fD we perform
a model average among all the HMχPT and Taylor functional forms,
considering all the possible combinations of non-vanishing fit param-
eters, for the two different matching conditions simultaneously. In
Table 5.3 we report our results for the ratio of decay constants from the
model average separately for each charm matching condition, as well
as their combination. Also for the ratio we observe good agreement
for the two different ϕ

(i)
H tested in this work.

ϕ
(1)
H ϕ

(2)
H combined

fDs / fD 1.1651(91)(15) 1.1650(91)(16) 1.1649(90)(16)

Table 5.3: Preliminary results of the model average for fDs / fD for the two
charm-quark matching conditions. The last column reports the
combined result. The first error is statistical while the second is the
systematic uncertainty arising from the model variation procedure.

In Figure 5.8 we show the major error sources contributing to our
final determination of the ratio, where we notice that the major contri-
bution is given by the statistical and chiral-continuum error.
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fDs/fD

Stat. +¬-cont. limit

Scale Setting

Model av.

fDs/fD

H105

E300

E250

J303

D200

J501

H102

Other

Figure 5.8: Top: Relative contributions to the total error on the determination
of the ratio fDs / fD. The label statistical plus χ-continuum limit
represents the error arising from the statistical accuracy of our
data and the chiral-continuum extrapolation. The scale setting
label denotes the error coming from the physical value tph

0 , while
the model average represents the systematic error arising from the
model variation according to the TIC procedure. Bottom: Details of
the relative contributions to the statistical and chiral-continuum
extrapolation error arising from specific gauge field configuration
ensembles.
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C O N C L U S I O N S A N D O U T L O O K

In this Ph.D. thesis we have reported on a scale setting procedure that
provides a new lattice QCD determination of the gradient flow scale
t0 and the lattice spacing for CLS ensembles. Accurate scale setting
determinations are paramount to reach the sub-percent precision level
required for some of the lattice QCD calculations aimed at improv-
ing the precision of Standard Model predictions. The results of the
scale setting procedure are being used in an ongoing study aimed
at improving the determination of quark masses and D(s) decay con-
stants. These quantities are necessary to improve the determination of
some of the fundamental parameters of the Standard Model and to
strengthen the consistency checks of its validity.

In this work we employed lattice gauge field configurations gen-
erated by the CLS initiative [31, 102] with lattice spacings ranging
from a ≈ 0.085 fm to a ≈ 0.038 fm, and pion masses from mπ ≈ 420
MeV down to the physical point mπ ≈ 130 MeV. We have used a
mixed action lattice regularization based on CLS gauge ensembles
with N f = 2+ 1 O(a) improved sea Wilson quarks and N f = 2+ 1+ 1
valence Wilson twisted mass quarks. We performed the matching of
the mixed action through the pseudoscalar pion and kaon masses,
which equates physical masses for the up/down and strange quarks
in the sea and valence sectors, treating the additional charm quark as
a partially quenched flavor. This ensures the unitarity of the theory
in the continuum limit. Furthermore, we tuned the parameters of
the Wilson twisted mass Dirac operator in order to impose maximal
twist, ensuring automatic O(a) improvement [57, 119] for valence
observables up to subleading effects coming from the sea sector.

We employ the Γ–method to compute the errors of the Monte Carlo
data together with automatic differentiation to perform error propa-
gation that is accurate to machine precision. This allows arbitrarily
complex derived observables to be considered while retaining ade-
quate control of autocorrelations. These techniques are implemented
within the ADerrors.jl Julia library [113, 114].

For the scale setting procedure based on a combination of the Wilson
and Wilson twisted mass quark regularizations we employed the pion
and kaon decay constants as physical input. We obtain the following
result for

√
t0

√
t0 = 0.1438(7)stat(4)syst fm, [ fπK]. (5.18)

Using the kaon decay constant to set the scale relies on the determi-
nation of the CKM matrix element Vus which has a larger uncertainty
than Vud. The uncertainty from |Vus| amounts to about 11% of the total
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squared error of
√

t0. In addition, fK receives larger QED corrections
than fπ, whose uncertainty amounts to a ∼ 3% contribution to the
total squared error. It is therefore desirable to consider also the case
where only the pion decay constant is used as an external input in
the scale setting procedure. The use of physical point ensembles with
various values of the lattice spacing is expected to play a decisive
role in such an analysis. This would be a natural extension of the
analysis presented in this work, together with the determination of
the up/down and strange quark masses from a combination of the
Wilson unitary and mixed action regularizations, of which we provide
a preliminary analysis in Appendix L.

Furthermore, following our work in [33] we have presented the
current status of the determination of the physical charm quark mass
and charmed mesons decay constants based on this mixed action setup,
exploiting automatic O(a) improvement to reduce lattice artifacts
associated with the heavy quark mass. Using our determination of the
scale t0 we quote as result for the RGI charm quark mass in the three
flavor theory

MRGI
c (N f = 3) = 1.486(8)stat(3)syst(14)RGI GeV . (5.19)

The error of the RGI quark mass is completely dominated by the
computation of the non-perturbative renormalization group running
factor, and therefore, no substantial improvement can be achieved until
a more precise calculation of this quantity is obtained. In particular,
the uncertainty in the scale t0 accounts for ∼ 3% of the squared total
error in MRGI

c (N f = 3).
For the D(s) decay constants we quote

fD = 211.1(1.8)stat(0.5)syst MeV, (5.20)

fDs = 248.1(1.5)stat(0.3)syst MeV. (5.21)

In this case, the error is completely dominated by the statistical uncer-
tainty of the gauge ensembles and the chiral-continuum extrapolations,
and the scale setting accounts for the second largest contribution.

The results quoted in this work were obtained in the isosymmetric
limit of QCD, defined in [6]. As the accuracy of lattice results continues
to improve, the inclusion of QED and strong isospin breaking effects
will become increasingly relevant for constraining precision physics
observables. Another avenue for future developments consists in the
extension of a setup combining Wilson and twisted Wilson mass
fermions to approach the b-quark sector, following a step-scaling
strategy [122].



C O N C L U S I O N E S Y P E R S P E C T I VA S

En esta tesis doctoral hemos presentado un procedimiento de ajuste
de escala o scale setting en el contexto de QCD en el retículo que
proporciona una nueva determinación de la escala t0 y del espaciado
reticular para configuraciones de campo gauge CLS. Una determi-
nación precisa de la escala en el retículo es fundamental para alcanzar
el nivel de precisión por debajo del 1% requerido para algunos de los
cálculos de QCD en el retículo destinados a mejorar la precisión de las
predicciones del Modelo Estándar. Los resultados del scale setting se
están utilizando en un estudio en curso destinado a mejorar la determi-
nación de las masas de los quarks y las constantes de desintegración
de los mesones D(s). Estas cantidades son necesarias para mejorar
la determinación de algunos de los parámetros fundamentales del
Modelo Estándar y para reforzar las comprobaciones de consistencia
de su validez.

En este trabajo hemos empleado configuraciones de campo gauge
en el retículo generadas por la iniciativa CLS [31, 102] con espaciados
reticulares que van desde a ≈ 0.085 fm a a ≈ 0.038 fm, y masas de
piones desde mπ ≈ 420 MeV hasta el punto físico mπ ≈ 130 MeV.
Hemos utilizado una regularización reticular con una acción mixta
basada en configuraciones gauge CLS con N f = 2 + 1 sabores de
quarks Wilson O(a) improved en el mar y N f = 2 + 1 + 1 sabores de
quarks Wilson twisted mass en la valencia. Realizamos el ajuste de
la acción mixta a través de las masas pseudoescalares de piones y
kaones, igualando las masas físicas para los quarks up/down y strange
en los sectores mar y valencia, tratando el quark charm adicional como
un sabor parcialmente quenched. Esto asegura la unitariedad de la
teoría en el límite al continuo. Además, ajustamos los parámetros
del operador de Dirac Wilson twisted mass para imponer maximal
twist, asegurando así un O(a) improvement automático [57, 119] para
observables de valencia, salvo efectos de orden superior procedentes
del mar.

Empleamos el método–Γ para calcular los errores de los datos Monte
Carlo junto con herramientas de diferenciación automática para re-
alizar una propagación de errores exacta a precisión de máquina. Esto
permite considerar observables derivados arbitrariamente complejos,
manteniendo un control adecuado de las autocorrelaciones. Estas téc-
nicas se implementan dentro de la librería de Julia ADerrors.jl [113,
114].

Para el procedimiento de scale setting basado en una combinación
de las regularizaciones de Wilson y Wilson twisted mass empleamos
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las constantes de desintegración del pión y el kaón como input físico.
Obtenemos el siguiente resultado para

√
t0

√
t0 = 0.1438(7)stat(4)syst fm, [ fπK]. (5.22)

El uso de la constante de desintegración del kaón para establecer la
escala t0 depende de la determinación del elemento de la matriz CKM
Vus, que tiene una incertidumbre mayor que Vud. La incertidumbre de
|Vus| asciende a aproximadamente 11% del error total al cuadrado de√

t0. Además, fK recibe mayores correcciones provenientes de QED
que fπ, cuya incertidumbre asciende a una contribución de ∼ 3% al
error total al cuadrado. Por lo tanto, es deseable considerar también el
caso en el que solo la constante de desintegración del pión se utiliza
como input externo en el procedimiento de ajuste de escala. Se espera
que el uso de configuraciones gauge simuladas a la masa física del
pión con varios valores del espaciado reticular desempeñe un papel
decisivo en dicho análisis. Esta sería una extensión natural del análisis
presentado en este trabajo, junto con la determinación de las masas
de los quarks up/down y strange a partir de una combinación de las
regularizaciones unitaria y de acción mixta de Wilson, de las que
proporcionamos un análisis preliminar en el Apéndice L.

Además, siguiendo nuestro trabajo en [33] hemos presentado el
estado actual de la determinación de la masa física del quark charm
y las constantes de decaimiento de los mesones D(s) basados en esta
acción mixta, explotando el O(a) improvement automático para reducir
los artefactos reticulares asociados a la masa del quark pesado. Uti-
lizando nuestra determinación de la escala t0 citamos como resultado
para la masa del quark charm RGI en la teoría de tres sabores

MRGI
c (N f = 3) = 1.486(8)stat(3)syst(14)RGI GeV . (5.23)

El error de la masa de quark RGI está completamente dominado por
el cálculo no-perturbativo del factor de running del grupo de renormal-
ización, y por lo tanto, no se puede conseguir una mejora sustancial
hasta que se obtenga un cálculo más preciso de esta cantidad. En
particular, la incertidumbre en la escala t0 representa ∼ 3% del error
total al cuadrado en MRGI

c (N f = 3).
Para las constantes de desintegración D(s) citamos

fD = 211.1(1.8)stat(0.5)syst MeV, (5.24)

fDs = 248.1(1.5)stat(0.3)syst MeV. (5.25)

En este caso, el error está completamente dominado por la incertidum-
bre estadística de las configuraciones gauge y las extrapolaciones al
punto físico y el límite al continuo, y la escala t0 supone la segunda
mayor contribución.

Los resultados obtenidos en este trabajo se obtuvieron en el límite
de simetría de isospín de QCD, definido en [6]. A medida que la pre-
cisión de los resultados de QCD en el retículo continúe mejorando, la
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inclusión de interacciones de QED y los efectos de ruptura del isospín
fuerte serán cada vez más relevantes para restringir los observables de
la física de precisión. Otra vía para futuros desarrollos consiste en la
extensión de la combinación de la regularización Wilson y de acción
mixta para aproximarse al sector de quarks b, siguiendo una estrategia
de step-scaling [122].
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A P P E N D I C E S



A
C O N V E N T I O N S

In this Appendix we set some useful notation used throughout this
work. We begin with the Dirac Gamma matrices γµ, which are 4 × 4
complex matrices defined by the anticommutator relation

{γµ, γν} = 2gµν14×4, (A.1)

with gµν the metric tensor of 4-dimensional space-time. We will work
in the Euclidean and flat space, so

gµν = diag(+1,+1,+1,+1). (A.2)

Some useful properties of the Gamma matrices are

• Hermiticity: γ†
µ = γµ.

• They are traceless: tr(γµ) = 0.

• Involutory: γ−1
µ = γµ.

A fifth Gamma matrix can be defined as

γ5 = γ0γ1γ2γ3, (A.3)

which fulfills the same properties as above, and anticommutes with
all other Gamma matrices

{γ5, γµ} = 0. (A.4)

These matrices control the flavor content of hadrons, and as such
appear in the definition of the lattice hadron interpolators. The relevant
quark bilinears needed for this work are

• Scalar density: Sij = ψ̄iψj.

• Pseudoscalar density: Pij = ψ̄iγ5ψj.

• Axial current: Aij
µ = ψ̄iγµγ5ψj.

• Vector current: Vij
µ = ψ̄iγµψj.

These bilinears are defined in the physical basis {ψ, ψ̄}. By the change
of variables

ψ → ei π
2 γ5T/2ψ, ψ̄ → ψ̄ei π

2 γ5T/2, (A.5)

we define the twisted basis, with T a diagonal matrix in flavor space.
With this change of variables and at full twist with N f = 2 + 1 + 1

T = diag(+1,−1,−1,+1), (A.6)
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the bilinears are rotated as

Sij → Sij, (A.7)

Pij → Pij, (A.8)

Aij
µ → iVij

µ , (A.9)

Vij
µ → −iAij

µ , (A.10)

for (i, j) = (u, d), (u, s), (c, d), (c, s), and

Sij → −iPij, (A.11)

Pij → iSij, (A.12)

Aij
µ → Aij

µ , (A.13)

Vij
µ → Vij

µ , (A.14)

for (i, j) = (u, u), (u, c), (d, d), (d, s), (s, s), (c, c).



B
G E L L - M A N N M AT R I C E S A N D S T R U C T U R E
C O N S TA N T S

In this Appendix we give the expressions for the SU(3) group gen-
erators in the fundamental representation, given by the Gell-Mann
matrices, and the values for the su(3) algebra structure constants.

The Gell-Mann matrices are given by

T(1) =

0 1 0

1 0 0

0 0 0

 , T(2) =

0 −i 0

i 0 0

0 0 0

 , T(3) =

1 0 0

0 −1 0

0 0 0

 ,

T(4) =

0 0 1

0 0 0

1 0 0

 , T(5) =

0 0 −i

0 0 0

i 0 0

 , T(6) =

0 0 0

0 0 1

0 1 0

 ,

T(7) =

0 0 0

0 0 −i

0 i 0

 , T(8) =
1√
3

1 0 0

0 1 0

0 0 −2

 . (B.1)

The structure constants of the group fabc are obtained from the
commutators of group generators[

T(a), T(b)
]
= i fabcT(c), (B.2)

and they are universal, not depending on the choice of the representa-
tion. They are totally antisymmetric and given by

f123 = 1, (B.3)

f147 = − f156 = f246 = f257 = f345 = − f367 =
1
2

, (B.4)

f458 = f678 =

√
3

2
, (B.5)

and all other fabc not related to the ones above by permuting indices
are zero.
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S I M U L AT I O N D E TA I L S

In this Appendix we briefly describe the steps involved in the gen-
eration of gauge field configurations with dynamical quarks in the
framework of Lattice QCD simulations.

After discretizing QCD in a finite volume and Euclidean spacetime,
a very large number of degrees of freedom have to be integrated
over in the path integral formulation, including the contribution of
the fermionic determinant of the dynamical quarks. In recent years,
important advances in lattice QCD computations have allowed to
incorporate the effects of dynamical quarks in the vicinity of their
physical values.

The CLS ensembles employed in this work have been generated
with the openQCD package [85, 89]. In the following we will provide a
brief account of some of the algorithms incorporated in the openQCD
simulation programs.

As outlined in Sec. 1.4, the expectation value of a composite operator
O can be computed on the lattice as

⟨O⟩ = 1
Z
∫

D[U]e−SG[U]−Seff[U]O[U] ≈ 1
Ncnfg

Ncnfg

∑
i=1

O[Ui]+O
(

1√
Ncnfg

)
,

(C.1)

where the gauge fields Ui are sampled from the probability density

P[U] =
e−SG[U]−Seff[U]∫

D[U]e−SG[U]−Seff[U]
. (C.2)

The central idea is to perform an importance sampling of the distri-
bution in eq. (C.2), such that regions of field space with high probabil-
ity are highly populated with gauge configurations Ui. Markov chain
Monte Carlo algorithms are a suitable tool to carry out such a config-
uration space sampling. The Markov chain is defined as a sequence
{Uk}

Ncnfg

k=1 such that the k-th element is generated from the previous
one, with k labeling the Monte Carlo (MC) time. The Markov Chain
is generated from an initial state U1 and the transition probability
T(Uk−1 → Uk). As a result, the autocorrelations between successive
gauge field configurations of a given Markov chain have to be an-
alyzed, see Appendix E. The transition probabilities must obey the
following conditions:

• Ergodicity: given a subset of states S from the Markov Chain,
there are always at least two states s ∈ S and s′ /∈ S with T(s →
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s′) > 0. This is of particular importance in the context of Lattice
QCD and Lattice Yang-Mills theories in order to ensure that the
simulation algorithm is sampling correctly all topological sectors
of the theory.

• Equilibrium: normalizing the transition probability as

∑
s

T(s → s′) = 1 ∀s, (C.3)

then it must hold that

∑
s

P(s)T(s → s′) = P(s′) ∀s′, (C.4)

where P(s) is the equilibrium distribution in eq. (C.2). This
ensures that starting from a random configuration, after applying
iteratively the transition probability, we asymptotically reach the
target equilibrium distribution in eq. (C.2).

Different choices for the transition probability T(s → s′) satisfying
the above conditions define the different sampling algorithms which
we will now briefly review.

c.1 metropolis algorithm

The Metropolis algorithm [98] is commonly employed for generating
a Markov Chain of gauge field configurations for pure gauge theories,
for which the target distribution is

P[U] =
e−SG[U]∫

D[U]e−SG[U]
. (C.5)

The idea is to define an a priori selection probability T0(Ui → Uj) to
update a single gauge link. One such choice is to take a random ele-
ment g of the SU(N) group close to the identity and update the gauge
link Uµ(n) as Uµ(n)′ = gUµ(n) such that the new gauge configuration
Uj is close to the original one Ui. In order for the transition to be
symmetric, group elements g and g−1 have to be selected with equal
probability. After updating with this a priori transition probability,
one supplements the updating process with an accept-reject step, such
that the new proposed gauge link is accepted with probability

Pacc(i, j) = min
(

1, e−∆S
)

, ∆S = S[Uj]− S[Ui]. (C.6)

Then the total transition probability is given by

T(Ui → Uj) = T0(Ui → Uj)Pacc(i, j)+ δij ∑
k

T0(Ui → Uj)(1− Pacc(i, j)).

(C.7)
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This T satisfies all the desired properties for a transition probability
and asymptotically reaches the target distribution probability for pure
gauge theories.

The drawback of this algorithm is that it only updates a single gauge
link at each step and as such it becomes inefficient, particularly for
large volume simulations. Over the years new alternatives for pure
gauge simulations have been proposed, such as the heat bath [44] and
overrelaxation [1, 45] algorithms.

c.2 hybrid monte carlo

In the pure gauge theory, the probability distribution can be inter-
preted as being composed of infinitely heavy sea quarks. In order
to simulate full QCD, one needs to incorporate dynamical quarks in
the sea through the probability distribution in eq. (C.2), where Seff
introduces non-local dependencies in the gauge links due to the quark
determinant. Therefore, algorithms such as the Metropolis algorithm,
based on a link-by-link update scheme of the gauge field configura-
tions, experience a significant increase in computational cost as the
volume is increased, which renders them impractical for large-scale
dynamical simulations. The Hybrid Monte Carlo (HMC) algorithm [55,
65] significantly improves the efficiency of the simulations by doing
global updates of the gauge configurations.

The HMC uses the classical equations of motion to propose new
gauge field configurations. To this purpose, the field space is extended
with the introduction of the conjugate momenta πµ(x) of the link
variables Uµ(x). The Hamiltonian of the system is

H[π, U] =
1
2 ∑

x,µ
πa

µ(x)πa
µ(x) + SG[U] + Seff[U]. (C.8)

The expectation values can be computed using

⟨O⟩ =
∫
D[π, U]e−H[π,U]O[U]∫

D[π, U]e−H[π,U]
. (C.9)

Now the classical equations of motion read

π̇µ(x) = −Fµ(x), Fµ(x) =
∂S[eωU]

∂ω

∣∣∣∣
ω=0

, ω ∈ su(N), (C.10)

U̇µ(x) = πµ(x)Uµ(x), (C.11)

where the dot notation “ȧ” stands for the derivative with respect to
MC time. By starting from an initial configuration and a randomly
generated momentum field πµ – following a Gaussian probability
density – the integration of the equations of motion leads to a new
gauge configuration to be used as proposal for the global update of
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the gauge links. This proposal is subject to an accept-reject step like in
the Metropolis algorithm

Pacc = min
(

1, e−∆H
)

, ∆H = H[π′, U′]− H[π, U]. (C.12)

In practice, this basic formulation of the HMC algorithm has to
be complemented by efficient techniques to accurately integrate the
equations of motion in simulations involving, for instance, light quark
masses and large volumes [67, 111, 127].

We now briefly discuss the methods used to compute the effective
fermion action

Seff[U] = −
N f

∑
i=1

log det(Di). (C.13)

The fermionic determinant can be evaluated through the introduction
of pseudofermion fields Φ(x) [126], which are auxiliary fields that
carry color and spinor indices c, α but that are complex valued instead
of Grassmann numbers. Restricting to the mass-degenerate doublet of
light quarks, where the effective action takes the form

e−Seff = det(Dl)det(Dl) = det(D†
l Dl), (C.14)

in the pseudo-fermion representation this becomes up to an irrelevant
normalization factor c

det(D†
l Dl) = c

∫
D[Φ]e−Spf[U,Φ], (C.15)

with the pseudo-fermion action given by

Spf[U, Φ] = Φ†
(

D†
l Dl

)−1
Φ. (C.16)

We have listed the basic ingredients needed for HMC sampling with
dynamical fermions. First, one samples randomly a set of conjugate
momenta πµ and pseudo-fermion fields Φ with Gaussian distribution
∝ exp

(
− 1

2 πµπµ − Spf
)
. Together with an initial gauge field configura-

tion Ui, the classical equations of motion are integrated up to some
later time. At this point one implements the accept-reject step and
updates the gauge configuration to Ui+1.

This far we assumed two degenerate flavors of quarks to compute
the effective fermion action. The inclusion of a strange quark, as
in the case of the CLS ensembles we use in this work, requires the
computation of det(Ds). Contrary to the case of two degenerate quark
flavors, det(Ds) is not ensured to remain positive, since the breaking
of chiral symmetry by the Wilson term implies that the low-lying
spectrum of the Wilson Dirac operator does not have a strict gap,
associated to the quark mass, at finite values of the lattice spacing. This
is of particular relevance because if the strange quark determinant gets
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a negative value one cannot interpret the factor e−SG−Seff appearing in
the path integral as a probability. Therefore, possible changes in the
sign of the strange quark determinant must be monitored throughout
the Monte Carlo simulation. In the generation of CLS ensembles,
the strange quark determinant is evaluated by the Rational Hybrid
Monte Carlo algorithm [38, 76]. In [101] it was found that on some
ensembles, a subset of the gauge field configurations were affected
by a negative sign of the strange quark determinant. A reweighting
procedure, discussed in the following section, can be used to correct
for this effect.

c.3 reweighting

In [87] it was proposed to perform a reweighting procedure in order
to deal with exceptional gauge configurations in the HMC algorithm.
These are gauge configurations with near to zero eigenvalues for the
Dirac operator, which can appear due to the explicit chiral symmetry
breaking induced by the Wilson term in the Wilson fermionic action.

In the context of CLS ensembles, a small twisted mass term µ0 is
included in the light quark determinant as [89]

det
(

Q†Q
)
→ det

((
Q†Q + µ2

0

)2 (
Q†Q + 2µ2

0

)−1
)

, (C.17)

with the Hermitian Dirac operator given by Q = γ5D. This provides
an infrared cutoff for the low-lying eigenvalues. Using Hasenbusch’s
mass factorization [67]

det
((

Q†Q + µ2
0

)2 (
Q†Q + 2µ2

0

)−1
)

(C.18)

= det
(

Q†Q + µ2
n

)
det

(
Q†Q + µ2

0

Q†Q + 2µ2
0

)
× Πn

i=1det

(
Q†Q + µ2

i−1

Q†Q + µ2
i

)
,

(C.19)

where the twisted mass factors are ordered as µ0 < µ1 < ... < µn.
The values of the twisted mass factors have to be properly selected

to improve the stability of the simulations. To remove the unphysical
effect of the auxiliary terms depending on the twisted mass param-
eters, a reweighting procedure is applied consisting in computing
reweighted expectation values over gauge configurations as

⟨O⟩rw =
⟨OW⟩
⟨W⟩ , (C.20)

where on the right-hand-side the expectation values are evaluated
with a lattice action including the twisted mass parameters and W is
the corresponding reweighting factor

W = det
(

Q†Q
(

Q†Q + 2µ2
0

) (
Q†Q + µ2

0

)−2
)

. (C.21)
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In addition to twisted mass reweighting, a reweighting procedure
is also applied to remove the rational approximation introduced by
the use of the RHMC algorithm to simulate the strange quark de-
terminant [38, 76]. As mentioned in the previous section, in [101] it
was found that a subset of the gauge configurations of some of the
ensembles considered in this work have negative values of the strange
quark determinant. This effect can corrected by the application of
a reweighting factor that flips the sign of the configurations which
were identified to have a negative sign of strange quark fermionic
determinant.



D
S O LV E R S

d.1 stochastic methods

For the computation of correlation functions of fermions on the lattice
(e.g. a two-point function, see eq. (1.81)) the inversion of the Dirac
operator D is required. In particular, it is desirable to compute the
inverse of D(x, y) from all the spatial points y⃗ on a given time y0, to
all points x. This is referred to as computing a time-slice-to-all quark
propagator. An exact calculation would be prohibitively expensive
but stochastic methods can be employed to reduce the computational
cost [85]. A set of stochastic noise sources η are introduced such that

⟨ηi(x)⟩η = 0,
〈

η†
i (x)ηj(y)

〉
η
= δx,yδi,j, (D.1)

with ⟨.⟩η corresponding to average over the Nη samples of some
noise distribution. Some common choices are Gaussian, Z2 or U(1)
stochastic noise vectors. The Dirac operator can the be inverted using
η as part of the source in the following way

ξ
q
i (x) = ∑

y⃗
D−1

q (x, y)ηi (⃗y), ζr
i,B(x) = ∑

y⃗
D−1

r (x, y)γ5Γ†
Bηi (⃗y),

(D.2)

with ΓB some Gamma matrix. The two-point functions in eq. (1.81)
can be expressed as

〈
Orq

A (x0)O
qr
B (y0)

〉
≈ − a6

L3
1

Nη

Nη

∑
i=1

∑
x⃗

〈
(ΓAγ5ζr

i,B(x))†ξ
q
i (x)

〉
,

(D.3)

where the requirement to invert the Dirac operator at every spatial
point y⃗ has been traded by Nη inversions over the stochastic noise
vectors at the cost of introducing an additional contribution to the
statistical uncertainty.

d.2 iterative solvers

The inversion of the Dirac operator is still needed to compute correla-
tion functions. This means solving the Dirac equation

D(x, y)ψ(y) = η(x), (D.4)
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for some source η. This is usually done by an iterative procedure. The
basic idea is to start from an initial approximate solution ψ0 and define
the residue ρ (we suppress indices for simplicity)

ρ = Dψ0 − η. (D.5)

Then, one solves

Dψ1 = ρ, (D.6)

finds the new residue and iterates the process. The algorithm stops
when some convergence criterion is met

|ρ| < ϵ, (D.7)

with the final approximate solution given by

ψ = ψ0 + ψ1 + ... (D.8)

The difference between the true and approximate solutions is

|ψ − ψtrue| < ϵκ(D)|ψtrue|, (D.9)

with κ(D) the condition number of matrix D

κ(D) = |D||D−1|. (D.10)

The main solvers used in modern lattice simulations to compute
eq. (D.6) are based on the Krylov subspace method and belong to the
class of conjugate gradient solvers. Some popular choices are the CG,
BiCGstab and GCR algorithms. For a pedagogical introduction we
refer to [62, 85].

d.3 preconditioning

The smaller the condition number of the Dirac operator, the less
iterative steps one needs to perform in order to find the solution to
the Dirac equation. Thus, convergence can be improved by suitably
transforming the system into one with a smaller κ(D). This can be
done through a preconditioning procedure consisting in finding some
easily invertible similarity transformations such that

LDRψ′ = Lη, ψ = Rψ′. (D.11)

There are multiple types of preconditionings. One of the most com-
monly used is even-odd preconditioning [50]. Lattice sites can be
categorized as even or odd depending on the sum of their space-time
coordinates. If the points are ordered such that all the even ones come
first, the Dirac operator takes the block form

D =

(
Dee Deo

Doe Doo

)
, (D.12)
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where Deo captures the terms which couple the odd to the even sites.
For operators involving only nearest-neighbor interactions, the diag-
onal blocks Dee and Doo are diagonal matrices which are therefore
easily invertible. Choosing as preconditioners

L =

(
1 −DeoD−1

oo

0 1

)
, R =

(
1 0

−D−1
oo Doe 1

)
, (D.13)

we get

LDR =

(
D̂ 0

0 Doo

)
, D̂ = Dee − DeoD−1

oo Doe. (D.14)

The condition number of D̂ is usually less than half that of D, and thus
even-odd preconditioning can lead to an acceleration of the solver by
a factor ≥ 2.

As described in [51], a different type of preconditioning method
called distance preconditioning was used in the computation of charm-
quark propagators to address loss of accuracy of the solvers at large
Euclidean time separations.



E
E R R O R A N A LY S I S

In this Appendix we describe the methods employed for the data
analysis of observables extracted from the lattice QCD Monte Carlo
simulations.

As described in Appendix C, lattice data stems from a Markov chain
Monte Carlo process. Expectation values of physical observables are
defined in terms of functions depending on estimators of primary
observables, obtained by averaging over measurements performed on
the gauge field configurations of the Markov chain. A central aspect of
the analysis is to properly take into account the statistical correlations
and autocorrelations present in the lattice data, and to estimate the
various sources of systematic uncertainties. As discussed in a previous
section, autocorrelations arise from the fact that in a Markov chain,
any subsequent configuration is obtained from the previous one. A
popular method to deal with autocorrelations consists in binning
the elements of the Markov chain, in combination with resampling
methods such as bootstrap or the jack-knife.

The analysis of the observables considered in this work is based on
the Γ-method [113, 116, 130], which explicitly computes the autocorre-
lation function to estimate the statistical uncertainty.

In a lattice calculation, one considers a primary observable pi deter-
mined on a set of ensembles (characterized by the simulation parame-
ters such as the inverse coupling β and κ parameter)

pα
i (k), k = 1, ..., Nα, (E.1)

where α labels the ensemble and k is the MC time spanning the total
number of gauge configurations Nα of the given ensemble. Specifically,
the primary observable can correspond to a correlation function at a
given Euclidean time. An unbiased estimator of the true value Pα

i is
given by the mean value

p̄α
i =

1
Nα

Nα

∑
k=1

pα
i (k) −−−→Nα→∞

Pα
i . (E.2)

Fluctuations over the MC time can be computed as

δα
i (k) = pα

i (k)− p̄α
i . (E.3)

The Central Limit theorem ensures that the distribution of p̄α
i con-

verges to a Gaussian distribution independently of the distribution
of pα

i (k), and so the statistical uncertainty associated to p̄α
i is given by

the standard deviation σα
i ,

Pα
i ≈ p̄α

i ± σα
i . (E.4)
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This standard deviation can be computed from the autocorrelation Γ
function

(σα
i )

2 =
1

Nα

∞

∑
k=−∞

Γαα
ii (k), (E.5)

where the Γ function is defined as

Γαβ
ij (k) =

δαβ

Nα − k

Nα−k

∑
k′=1

δα
i (k + k′)δα

j (k
′). (E.6)

From the primary observable Pα
i we can compute derived observ-

ables F = f (Pα
i ), such as meson masses coming from pseudoscalar

two point functions. An estimator of the derived observable can be
written as follows

F̄ = f ( p̄α
i ). (E.7)

To compute the statistical uncertainty, we can expand f around the
true value Pα

i

f (Pα
i + ϵα

i ) = f (Pα
i ) + f̄ α

i ϵα
i +O((ϵα

i )
2), (E.8)

with

f̄ α
i =

∂ f (x)
∂x

∣∣∣∣
x=Pα

i

. (E.9)

It follows that the autocorrelation function of the derived observable
F for ensemble α can be defined as

Γα
F(k) = ∑

ij
f̄ α
i f̄ α

j Γαα
ij (k), (E.10)

from which the standard deviation of F can be derived

σ2
F = ∑

α

Γα
F(0)
Nα

2τα
int(F), (E.11)

where the sum ∑α is over the subset of ensembles contributing to F.
The integrated autocorrelation time τα

int(F) is defined as

τα
int(F) =

1
2
+

∞

∑
k=1

Γα
F(k)

Γα
F(0)

. (E.12)

To estimate it, a truncation in the sum over the index k, spanning over
the separations in MC time, is needed. The autocorrelation function
admits the following expansion [88, 116]

Γ(k) ≈
∞

∑
n=0

ane−k/τn . (E.13)
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The slowest mode τ0 ≡ τexp is called the exponential autocorrela-
tion time and it gives the asymptotic decay rate of Γ(k). Truncating
eq. (E.12) at a MC time separation k = Wα

F introduces an estimated sys-
tematic uncertainty of O(exp(−Wα

F /τα
exp)). The Γ-method proposes as

optimal window that which minimizes the sum of statistical (estimated
in [94]) and systematic contributions

Wα
F = minW

√2(2W + 1)
Nα

+ e−W/τα
exp

 . (E.14)

In [130] it was proposed to use τexp = Sττint, with Sτ some value
between 2 and 5. One can also vary Wα

F until observing a stability
regime of τα

int. Finally, it was also proposed to add an exponential
tail [116]

τα
exp

Γα
F(W

α
F + 1)

Γα
F(0)

, (E.15)

to eq. (E.12) to account for the systematic effect of truncating the sum
over MC time. An estimate of τα

exp is needed for each ensemble. In the
case of CLS ensembles the following estimate has been considered [31]

τα
exp = 14(3)

t0

a2 . (E.16)

In this work we have used the Γ-method explained above as imple-
mented in the ADerrors.jl julia package [114].
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L E A S T- S Q UA R E S F I T T I N G

We employ a least-squares method to fit our data to some fit function.
This method is based on finding the minimum of the χ2 function

χ2 =
Ndat

∑
i,j=1

(yi − f (xi; p⃗))Wij
(
yj − f (xj; p⃗)

)
, (F.1)

where {xi, yi}i=1,...,Ndat are the data points we want to fit, x being the
independent variable and y the abscissa. W is a matrix which gives
different weights to the different data points entering the fit. When W
is chosen to be the inverse of the covariance matrix of the y-data, C−1,
the fit is said to be fully correlated. For fits employing a large number
of data points, inverting the covariance matrix can be challenging.
Alternatively, an uncorrelated fit corresponds to the case in which the
weight matrix W is set to the inverse of the matrix including only
the diagonal part of C. f (x; p⃗) is the fit function with fit parameters
p⃗ = (p1, ..., pNparam). For a given fit function f (x; p⃗), the method finds
the parameters values that minimize eq. (F.1) for given data points
{xi, yi}i=1,...,Ndat .

In our case we perform fits to extract the ground state signal of
lattice observables, fitting e.g. an effective mass to a constant plus
exponential signals along the lattice time extent. In this case, Euclidean
time plays the role of the x. The Euclidean-time fit intervals may
include O(100) correlated data points, which in general precludes the
possibility of inverting the covariance matrix. We therefore have to rely
on uncorrelated fits. With the exception of the definition of the chi2

function, correlations present in the data are retained in the statistical
analysis and propagated to the target observables.

In [30] a method to measure the goodness of fits was proposed in
terms of p-values, irrespective of the choice of the weight matrix W .
Also a definition of the expected value of the minimum of χ2,

〈
χ2〉 is

provided. In the case of a fully correlated fit it holds that
〈
χ2〉 = dof

(number of degrees of freedom).
We also perform fits for the chiral-continuum extrapolation of√
8t0 fπK to set the scale. In this case, the y variable is

√
8t0 fπK while

the x is ϕ2, and thus the latter has its own uncertainty. In this situation,
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a generalized χ2 function can be defined to include uncertainties of x
as

χ2 =
2Ndat

∑
i,j=1

(Yi − F(Xi; p⃗, q⃗))Wij
(
Yj − F(Xj; p⃗, q⃗)

)
, (F.2)

Y = (x1, ..., xNdat , y1, ..., yNdat), X = (x1, ..., xNdat , x1, ..., xNdat),
(F.3)

F(Xi; p⃗, q⃗) =

{
qi if 1 ≤ i ≤ Ndat

f (xi; p⃗) if Ndat + 1 ≤ i ≤ 2Ndat

. (F.4)

A fully correlated fit in this context corresponds to setting W to the
inverse covariance matrix of the generalized data vector Y, C. In prac-
tice, the dimension of the full covariance matrix C can reach O(50)
and, in general it is therefore not possible to invert it. We consider,
however, a block structure for C. The block corresponding to the corre-
lation among the

√
8t0 fπK data is maintained while the correlations

associated to the other blocks are neglected in the definition of the
χ2 function. However, all other steps in the analysis chain take full
account of the correlations and, in particular, those associated with
ϕ2, t0/a2 and

√
8t0 fπK. Including only the correlations from

√
8t0 fπK

in the chi2 of the fits leads to an expectation value of the chi2 that
deviates only slightly from the number of degrees of freedom〈

χ2〉
dof

∼ 0.98. (F.5)

This indicates that the bulk of the correlations are effectively incorpo-
rated in the fit.
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G E V P M E T H O D

For the extraction of meson masses involving heavy quark flavors
(see Sec. 5), we employ a generalized eigenvalue problem (GEVP)
variational method defined as

CX(t)vn(t, tref) = λn(t, tref)CX(tref)vn(t, tref) n = 0, . . . , N − 1,

(G.1)

with t > tref and where C(t)X is a N × N matrix of Euclidean correla-
tion functions CX. In particular we use

CP(t) =

(
CP(t) CP(t + τ)

CP(t + τ) CP(t + 2τ)

)
, (G.2)

where CP(t) ≡ CP(t + y0, y0), t = x0 − y0 and τ is the value of the
time shift. Several values of the time shift have been tested, and we
observe a mild dependence on small values of τ for the extraction
of eigenvalues and eigenvectors. Specifically, the value τ = 3a was
selected. The GEVP is solved in the regime tref ≥ t/2, where a better
control over excited state contributions is achieved [18]. We refer to [33]
for a detailed discussion of our setup, together with sanity checks
on the GEVP. The ground state meson mass m is extracted from the
eigenvalues of the GEVP using

ameff(t, tref) = log
(

λ0(t, tref)

λ0(t + a, tref)

)
. (G.3)

An example of a GEVP plateau for the heavy-light pseudoscalar mass
is shown in Figure G.1.

In the case of meson decay constants involving heavy quarks (see
Sec. 5), we employ again the GEVP method to extract the ground
state signal of the matrix element ⟨0|Pij|Pij(p = 0)⟩. This is done by
considering the normalized eigenvector vn(t, tref) in eq. (G.1), where
|Pij(p = 0)⟩ stands for the ground state of the meson with flavor
content i, j. Namely, we define for each state n the number [18]

Rn = (vn(t, tref), CP(t)vn(t, tref))
−1/2 eEnt/2, (G.4)

where (·, ·) is the usual scalar product and CP is the GEVP matrix
from eq. (G.2). Then, the ground state matrix element is given by

peff(t, tref) = (v0(t, tref), CP,0)R0, (CP,0)k = (CP)k0 (G.5)
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Figure G.1: Illustration of the extraction of the ground-state mass after ap-
plying a GEVP analysis, illustrated for the ensemble J303. We
show the heavy-light pseudoscalar meson mass plateau with
the two fit intervals with higher weights W contributing to the
model average introduced in Sec. 2.7. We also indicate the range
of variations allowed for the interval in Euclidean time where the
plateau is taken. The shaded blue and green bands corresponds
to two specific plateau choices.

The large distance behavior of the effective matrix element is governed
by

peff(t, tref) = p0 +O(e−(EN+1−E0)tref), p0 = ⟨0|Pij|Pij(p = 0)⟩, (G.6)

in the regime where the condition tref ≥ t/2 is satisfied, where E0 is
the ground state meson mass. In Figure G.2 we show a representative
plateau for a heavy-light decay constant.
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Figure G.2: Illustration of the extraction of the heavy-light pseudoscalar
decay constants, after applying a GEVP analysis, for ensemble
J303. We show the plateau for the heavy-light pseudoscalar decay
constant for the two fit intervals with higher weights in the model
average introduced in Sec. 2.7. The shaded blue and green bands
corresponds to two specific plateau choices.
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L AT T I C E E N S E M B L E S

id β mπ [MeV] mK [MeV] T/a L/a mπ L cnfg BC charm

H101 3.40 421 421 96 32 5.8 1001,1009 OBC yes

H102r001 3.40 355 442 96 32 4.9 997 OBC yes

H102r002 3.40 360 445 96 32 5.0 1008 OBC yes

H105 3.40 284 471 96 32 3.9 947,1042 OBC yes

H105r005 3.40 286 467 96 32 3.9 837 OBC yes

H400 3.46 426 426 96 32 5.2 505,540 OBC yes

D450 3.46 222 480 128 64 5.4 1000 PBC no

N202 3.55 416 416 128 48 6.4 899 OBC yes

N203 3.55 348 446 128 48 5.4 756,787 OBC yes

N200 3.55 287 468 128 48 4.4 856,856 OBC yes

D200 3.55 203 486 128 64 4.2 2001 OBC yes

E250 3.55 130 497 192 96 4.0 1009 PBC yes

N300r002 3.70 424 424 128 48 5.1 1521 OBC yes

N302 3.70 348 453 128 48 4.2 2201 OBC yes

J303 3.70 259 480 192 64 4.1 1073 OBC yes

E300 3.70 176 496 192 96 4.2 1139 OBC yes

J500 3.85 417 417 192 64 5.2 789,655,431 OBC yes

J501 3.85 340 453 192 64 4.3 1635,1142,1150 OBC yes

Table H.1: List of CLS ensembles [31, 102] under study. They use the Lüscher-
Weisz gauge action defined in eq. (1.95) and non-perturbatively
O(a) improved N f = 2 + 1 Wilson fermions (see eq. (1.102)). All
ensembles use open boundary conditions (OBC) in time except
for E250 and D450 (periodic), and periodic boundary conditions
for all spatial directions. The last column refers to whether the
corresponding ensemble is included or not in the analysis of
charm physics in Chapter 5.
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id
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Simulating QCD in a finite box introduces finite volume effects which
can be a source of systematic uncertainties. In Table H.1 we show
the volume of each ensemble in terms of mπ L. In lattice QCD, for
quantities that only receive exponential finite volume corrections in
mπ,K,η L, it is customary to opt for the condition, mπ L ≥ 4, while
also employing lattice sizes L larger than ∼ 2 fm. This constraint can
be complemented by explicit checks of residual finite volume effects
through simulations in several volumes or by applying effective field
theory corrections.

ChPT can be used to study finite volume effects on certain class
of observables. In particular, to NLO the pion and kaon masses and
decay constants receive the following corrections [39, 40]

X(∞) = X(L) 1
1 + RX

, (J.1)

where X(∞) is observable X at infinite volume and X(L) is said observ-
able at a finite volume L3, with X = mπ, mK, fπ, fK,

Rmπ =
1
4

ξπ g̃1(λπ)−
1
12

ξη g̃1(λη), (J.2)

RmK =
1
6

ξη g̃1(λη), (J.3)

R fK = −ξπ g̃1(λπ)−
1
2

ξK g̃1(λK), (J.4)

R fπ
= −3

8
ξπ g̃1(λπ)−

3
4

ξK g̃1(λK)−
3
8

ξη g̃1(λη), (J.5)

ξPS =
m2

PS
(4π fπ)2 , (J.6)

λPS = mPSL, (J.7)

g̃1(x) =
∞

∑
n=1

4m(n)√
nx

K1(
√

nx), (J.8)

m2
η =

4
3

m2
K − 1

3
m2

π, (J.9)

where K1(x) is a Bessel function of the second kind, and the multi-
plicities m(n) [39] are listed in Table J.1. It is manifest that the lighter
the pion mass and the smaller the volume, the stronger the volume
corrections. We find these corrections to be less than half a standard de-
viation for the ensembles with the smallest volumes and lightest pion
masses. We nonetheless apply the corrections to all the ensembles.

PCAC quark masses being short distance observables and are less
sensitive to finite volume effects.
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n 1 2 3 4 5 6 7 8 9 10

m(n) 6 12 8 6 24 24 0 12 30 24

n 11 12 13 14 15 16 17 18 19 20

m(n) 24 8 24 48 0 6 48 36 24 24

Table J.1: Multiplicities m(n) calculated in [39] for n ≤ 20.



K√
t 0 : M O D E L VA R I AT I O N S

Wilson analysis

[SU(3)χPT] Eq. (4.13)

[Tay] Eq. (4.20)

[Tay4] Eq. (4.21)

[SU(2)χPT] Eq. (4.19)

[a2] Eq. (4.22)

[a2αΓ
S] Eq. (4.23)

[a2 + a2ϕ2] Eq. (4.24)

[−] No cut in data

[β > 3.40] Remove β = 3.40 ensembles

[β > 3.46] Remove β = 3.40 and β = 3.46 ensembles

[mπ < 420 MeV] Remove symmetric point ensembles

[mπ < 350 MeV] Remove ϕ2 > 0.4 ensembles

[β > 3.40 & mπ < 420 MeV] Remove symmetric point and β = 3.40 ensembles

[mπ L > 4.1] Remove ensembles with volumes mπ L ≤ 4.1

Table K.1: Correspondence between each fit model for the chiral-continuum
extrapolation of

√
8t0 fπK and the labels used in Tables K.2-K.4

and Figs. 4.3-4.5. For the combined analysis, we are dealing with
two independent cutoff effects, those of the Wilson results and
those of the mixed action. In this case we will use two labels for
these effects, the first referring to the lattice artifacts explored for
the Wilson results, the second one for the mixed action results.
If only one label is used it means the same dependence for the
lattice artifacts were explored for both regularizations but with
independent parameters.

Wilson analysis

Model p-value W
√

t0 [fm]

[χSU(3)][a2][−] 0.537 0.0768 0.1434(7)

[χSU(3)][a2][β > 3.40] 0.437 0.0279 0.1432(9)

[χSU(3)][a2][β > 3.46] 0.4048 0.0122 0.1427(10)
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[χSU(3)][a2][mπ < 420 MeV] 0.391 0.0178 0.1433(7)

[χSU(3)][a2][β > 3.40 & mπ < 420 MeV] 0.2832 0.004 0.1427(11)

[χSU(3)][a2][mπ < 350 MeV] 0.187 0.0014 0.1434(9)

[χSU(3)][a2][mπ L > 4.1] 0.4492 0.0158 0.1436(8)

[χSU(3)][a2αΓ̂
s ][−] 0.5334 0.0729 0.1435(7)

[χSU(3)][a2αΓ̂
s ][β > 3.40] 0.4256 0.0271 0.1432(9)

[χSU(3)][a2αΓ̂
s ][β > 3.46] 0.4068 0.0122 0.1428(11)

[χSU(3)][a2αΓ̂
s ][mπ < 420 MeV] 0.3806 0.0169 0.1434(7)

[χSU(3)][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.2792 0.004 0.1427(11)

[χSU(3)][a2αΓ̂
s ][mπ < 350 MeV] 0.189 0.0014 0.1436(9)

[χSU(3)][a2αΓ̂
s ][mπ L > 4.1] 0.4362 0.0148 0.1437(8)

[χSU(3)][a2 + a2ϕ2][−] 0.5014 0.0518 0.1429(11)

[χSU(3)][a2 + a2ϕ2][β > 3.40] 0.3868 0.0165 0.1427(14)

[χSU(3)][a2 + a2ϕ2][β > 3.46] 0.3306 0.0064 0.1423(17)

[χSU(3)][a2 + a2ϕ2][mπ < 420 MeV] 0.3134 0.0093 0.1430(15)

[χSU(3)][a2 + a2ϕ2][mπ L > 4.1] 0.3628 0.0084 0.1433(14)

[Tay][a2][−] 0.4376 0.0463 0.1438(8)

[Tay][a2][β > 3.40] 0.3396 0.0172 0.1436(10)

[Tay][a2][β > 3.46] 0.3132 0.008 0.1431(11)

[Tay][a2][mπ < 420 MeV] 0.3298 0.0121 0.1437(8)

[Tay][a2][β > 3.40 & mπ < 420 MeV] 0.2058 0.0027 0.1431(11)

[Tay][a2][mπ < 350 MeV] 0.1098 0.0008 0.1438(9)

[Tay][a2][mπ L > 4.1] 0.4644 0.0173 0.1440(8)

[Tay][a2αΓ̂
s ][−] 0.4386 0.0436 0.1439(8)

[Tay][a2αΓ̂
s ][β > 3.40] 0.3374 0.0166 0.1436(10)

[Tay][a2αΓ̂
s ][β > 3.46] 0.3152 0.008 0.1432(11)

[Tay][a2αΓ̂
s ][mπ < 420 MeV] 0.32 0.0114 0.1438(8)

[Tay][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.2132 0.0027 0.1432(11)

[Tay][a2αΓ̂
s ][mπ < 350 MeV] 0.1144 0.0008 0.1439(10)

[Tay][a2αΓ̂
s ][mπ L > 4.1] 0.4534 0.0166 0.1441(8)

[Tay][a2 + a2ϕ2][−] 0.4392 0.0379 0.1431(11)

[Tay][a2 + a2ϕ2][β > 3.40] 0.3244 0.0121 0.1428(14)

[Tay][a2 + a2ϕ2][β > 3.46] 0.2656 0.0047 0.1423(18)

[Tay][a2 + a2ϕ2][mπ < 420 MeV] 0.275 0.0068 0.1431(15)

[Tay][a2 + a2ϕ2][mπ L > 4.1] 0.43 0.0107 0.1433(14)

[Tay4][a2][−] 0.4258 0.0287 0.1433(9)

[Tay4][a2][β > 3.40] 0.3196 0.0094 0.1431(11)

[Tay4][a2][β > 3.46] 0.2582 0.0042 0.1427(12)
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[Tay4][a2][mπ < 420 MeV] 0.265 0.006 0.1433(10)

[Tay4][a2][β > 3.40 & mπ < 420 MeV] 0.1566 0.0013 0.1426(13)

[Tay4][a2][mπ < 350 MeV] 0.4866 0.0031 0.1417(13)

[Tay4][a2][mπ L > 4.1] 0.3784 0.0082 0.1442(12)

[Tay4][a2 + a2ϕ2][−] 0.3604 0.0176 0.1430(11)

[Tay4][a2 + a2ϕ2][β > 3.40] 0.2508 0.0054 0.1428(14)

[Tay4][a2 + a2ϕ2][β > 3.46] 0.1896 0.0022 0.1425(18)

[Tay4][a2 + a2ϕ2][mπ < 420 MeV] 0.2086 0.0029 0.1431(15)

[Tay4][a2 + a2ϕ2][mπ L > 4.1] 0.4362 0.0074 0.1431(14)

[χSU(2)][a2][−] 0.498 0.0481 0.1432(9)

[χSU(2)][a2][β > 3.40] 0.3802 0.0158 0.1430(11)

[χSU(2)][a2][β > 3.46] 0.3546 0.0073 0.1426(11)

[χSU(2)][a2][mπ < 420 MeV] 0.3046 0.0078 0.1433(10)

[χSU(2)][a2][β > 3.40 & mπ < 420 MeV] 0.2054 0.0017 0.1427(13)

[χSU(2)][a2][mπ < 350 MeV] 0.4776 0.003 0.1417(14)

[χSU(2)][a2][mπ L > 4.1] 0.3668 0.0087 0.1436(10)

[χSU(2)][a2αΓ̂
s ][−] 0.493 0.0443 0.1433(9)

[χSU(2)][a2αΓ̂
s ][β > 3.40] 0.3816 0.0153 0.1431(11)

[χSU(2)][a2αΓ̂
s ][β > 3.46] 0.3508 0.0072 0.1427(12)

[χSU(2)][a2αΓ̂
s ][mπ < 420 MeV] 0.3104 0.0076 0.1434(10)

[χSU(2)][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.197 0.0017 0.1427(13)

[χSU(2)][a2αΓ̂
s ][mπ < 350 MeV] 0.4662 0.003 0.1418(14)

[χSU(2)][a2αΓ̂
s ][mπ L > 4.1] 0.3552 0.0082 0.1437(10)

[χSU(2)][a2 + a2ϕ2][−] 0.4598 0.0283 0.1427(13)

[χSU(2)][a2 + a2ϕ2][β > 3.40] 0.3206 0.0085 0.1425(16)

[χSU(2)][a2 + a2ϕ2][β > 3.46] 0.2796 0.0037 0.1418(21)

[χSU(2)][a2 + a2ϕ2][mπ < 420 MeV] 0.2512 0.0041 0.1427(16)

[χSU(2)][a2 + a2ϕ2][mπ L > 4.1] 0.3214 0.0053 0.1427(17)

Table K.2: Model average results for the determination of
√

t0 at the physical
point using the Wilson results. In the first column we label the
fit model and data cuts considered according to Table K.1. In
the second and third columns we report the quality of fits as
measured by the p-value [30] and the assigned weight to each
model according to eq. (4.33), respectively. Finally, the fourth
column corresponds to the value of

√
t0 coming from each fit

model. In all models the penalization of eq. (4.32) was included, so
that for all models the contribution of the data at the largest lattice
spacing (β = 3.40) and pion mass (mπ = 420 MeV) is suppressed.
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Mixed action analysis

Model p-value W
√

t0 [fm]

[χSU(3)][a2][−] 0.595 0.0471 0.1445(9)

[χSU(3)][a2][β > 3.40] 0.5118 0.0193 0.1445(12)

[χSU(3)][a2][β > 3.46] 0.438 0.0072 0.1445(14)

[χSU(3)][a2][mπ < 420 MeV] 0.5452 0.0176 0.1443(9)

[χSU(3)][a2][β > 3.40 & mπ < 420 MeV] 0.3486 0.003 0.1445(15)

[χSU(3)][a2][mπ < 350 MeV] 0.351 0.0018 0.1447(10)

[χSU(3)][a2][mπ L > 4.1] 0.8106 0.0305 0.1445(10)

[χSU(3)][a2αΓ̂
s ][−] 0.5874 0.0473 0.1445(9)

[χSU(3)][a2αΓ̂
s ][β > 3.40] 0.5098 0.0193 0.1445(12)

[χSU(3)][a2αΓ̂
s ][β > 3.46] 0.4412 0.0072 0.1445(14)

[χSU(3)][a2αΓ̂
s ][mπ < 420 MeV] 0.5372 0.0176 0.1443(9)

[χSU(3)][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.3444 0.0029 0.1445(15)

[χSU(3)][a2αΓ̂
s ][mπ < 350 MeV] 0.3514 0.0018 0.1447(10)

[χSU(3)][a2αΓ̂
s ][mπ L > 4.1] 0.8182 0.0304 0.1445(10)

[χSU(3)][a2 + a2ϕ2][−] 0.6046 0.0358 0.1438(12)

[χSU(3)][a2 + a2ϕ2][β > 3.40] 0.5048 0.0146 0.1435(17)

[χSU(3)][a2 + a2ϕ2][β > 3.46] 0.3632 0.0041 0.1441(21)

[χSU(3)][a2 + a2ϕ2][mπ < 420 MeV] 0.4612 0.0092 0.1443(16)

[χSU(3)][a2 + a2ϕ2][mπ L > 4.1] 0.8084 0.0202 0.1435(17)

[Tay][a2][−] 0.4208 0.022 0.1449(7)

[Tay][a2][β > 3.40] 0.3316 0.0087 0.1449(10)

[Tay][a2][β > 3.46] 0.2732 0.0035 0.1449(12)

[Tay][a2][mπ < 420 MeV] 0.388 0.0091 0.1447(8)

[Tay][a2][β > 3.40 & mπ < 420 MeV] 0.235 0.0016 0.1449(14)

[Tay][a2][mπ < 350 MeV] 0.2366 0.0011 0.1450(9)

[Tay][a2][mπ L > 4.1] 0.8136 0.031 0.1449(8)

[Tay][a2αΓ̂
s ][−] 0.4196 0.021 0.1449(7)

[Tay][a2αΓ̂
s ][β > 3.40] 0.337 0.0088 0.1449(11)

[Tay][a2αΓ̂
s ][β > 3.46] 0.281 0.0036 0.1449(13)

[Tay][a2αΓ̂
s ][mπ < 420 MeV] 0.3906 0.0091 0.1447(8)

[Tay][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.2346 0.0016 0.1449(14)

[Tay][a2αΓ̂
s ][mπ < 350 MeV] 0.241 0.001 0.1450(9)

[Tay][a2αΓ̂
s ][mπ L > 4.1] 0.8228 0.0306 0.1449(8)

[Tay][a2 + a2ϕ2][−] 0.4362 0.0185 0.1441(11)

[Tay][a2 + a2ϕ2][β > 3.40] 0.3482 0.0071 0.1438(16)

[Tay][a2 + a2ϕ2][β > 3.46] 0.225 0.002 0.1446(21)
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[Tay][a2 + a2ϕ2][mπ < 420 MeV] 0.3198 0.005 0.1447(15)

[Tay][a2 + a2ϕ2][mπ L > 4.1] 0.8716 0.0252 0.1436(16)

[Tay4][a2][−] 0.6728 0.042 0.1438(10)

[Tay4][a2][β > 3.40] 0.6106 0.0182 0.1438(13)

[Tay4][a2][β > 3.46] 0.447 0.0053 0.1439(14)

[Tay4][a2][mπ < 420 MeV] 0.5022 0.0098 0.1438(11)

[Tay4][a2][β > 3.40 & mπ < 420 MeV] 0.292 0.0016 0.1439(16)

[Tay4][a2][mπ < 350 MeV] 0.7832 0.0031 0.1432(14)

[Tay4][a2][mπ L > 4.1] 0.739 0.0143 0.1448(14)

[Tay4][a2 + a2ϕ2][−] 0.6244 0.0246 0.1439(12)

[Tay4][a2 + a2ϕ2][β > 3.40] 0.5074 0.0098 0.1439(16)

[Tay4][a2 + a2ϕ2][β > 3.46] 0.4372 0.0036 0.1453(21)

[Tay4][a2 + a2ϕ2][mπ < 420 MeV] 0.4972 0.0066 0.1448(15)

[Tay4][a2 + a2ϕ2][mπ L > 4.1] 0.8872 0.015 0.1437(16)

[χSU(2)][a2][−] 0.7174 0.0543 0.1439(8)

[χSU(2)][a2][β > 3.40] 0.6384 0.0228 0.1439(11)

[χSU(2)][a2][β > 3.46] 0.4706 0.0067 0.1441(13)

[χSU(2)][a2][mπ < 420 MeV] 0.5222 0.0101 0.1438(10)

[χSU(2)][a2][β > 3.40 & mπ < 420 MeV] 0.2878 0.0016 0.1440(16)

[χSU(2)][a2][mπ < 350 MeV] 0.7764 0.0031 0.1432(13)

[χSU(2)][a2][mπ L > 4.1] 0.7592 0.0178 0.1442(10)

[χSU(2)][a2αΓ̂
s ][−] 0.7204 0.0545 0.1439(8)

[χSU(2)][a2αΓ̂
s ][β > 3.40] 0.6196 0.0231 0.1439(12)

[χSU(2)][a2αΓ̂
s ][β > 3.46] 0.4916 0.0067 0.1441(13)

[χSU(2)][a2αΓ̂
s ][mπ < 420 MeV] 0.5264 0.0101 0.1438(10)

[χSU(2)][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.3014 0.0016 0.1439(16)

[χSU(2)][a2αΓ̂
s ][mπ < 350 MeV] 0.7714 0.0031 0.1432(13)

[χSU(2)][a2αΓ̂
s ][mπ L > 4.1] 0.7468 0.0177 0.1441(10)

[χSU(2)][a2 + a2ϕ2][−] 0.6492 0.0334 0.1441(13)

[χSU(2)][a2 + a2ϕ2][β > 3.40] 0.5466 0.0119 0.1440(18)

[χSU(2)][a2 + a2ϕ2][β > 3.46] 0.445 0.0041 0.1458(26)

[χSU(2)][a2 + a2ϕ2][mπ < 420 MeV] 0.452 0.0058 0.1446(16)

[χSU(2)][a2 + a2ϕ2][mπ L > 4.1] 0.7178 0.0102 0.1433(19)
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Table K.3: Model average results for the determination of
√

t0 at the physical
point using the mixed actions results. In the first column we label
the fit model and data cuts considered according to Table K.1.
In the second and third columns we report the quality of fits as
measured by the p-value [30] and the assigned weight to each
model according to eq. (4.33), respectively. Finally, the fourth
column corresponds to the value of

√
t0 coming from each fit

model. In all models the penalization of eq. (4.32) was included, so
that for all models the contribution of the data at the largest lattice
spacing (β = 3.40) and pion mass (mπ = 420 MeV) is suppressed.

Combined analysis

Model p-value W
√

t0 [fm]

[χSU(3)][a2][−] 0.5532 0.0643 0.1440(6)

[χSU(3)][a2][β > 3.40] 0.5048 0.0144 0.1438(8)

[χSU(3)][a2][β > 3.46] 0.563 0.0023 0.1435(10)

[χSU(3)][a2][mπ < 420 MeV] 0.5018 0.0069 0.1438(6)

[χSU(3)][a2][β > 3.40 & mπ < 420 MeV] 0.4848 0.0004 0.1434(10)

[χSU(3)][a2][mπ < 350 MeV] 0.2552 0.0 0.1441(8)

[χSU(3)][a2][mπ L > 4.1] 0.5842 0.0051 0.1441(7)

[χSU(3)][a2αΓ̂
s ][−] 0.5544 0.0624 0.1441(6)

[χSU(3)][a2αΓ̂
s ][β > 3.40] 0.4846 0.0125 0.1439(8)

[χSU(3)][a2αΓ̂
s ][β > 3.46] 0.5774 0.0025 0.1435(10)

[χSU(3)][a2αΓ̂
s ][mπ < 420 MeV] 0.509 0.0068 0.1438(6)

[χSU(3)][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.5004 0.0004 0.1435(10)

[χSU(3)][a2αΓ̂
s ][mπ < 350 MeV] 0.256 0.0 0.1441(8)

[χSU(3)][a2αΓ̂
s ][mπ L > 4.1] 0.5732 0.0047 0.1441(7)

[χSU(3)][a2][a2 + a2ϕ2][−] 0.6826 0.0662 0.1436(6)

[χSU(3)][a2][a2 + a2ϕ2][β > 3.40] 0.6092 0.0131 0.1435(9)

[χSU(3)][a2][a2 + a2ϕ2][β > 3.46] 0.5142 0.0011 0.1434(10)

[χSU(3)][a2][a2 + a2ϕ2][mπ < 420 MeV] 0.5646 0.0045 0.1435(7)

[χSU(3)][a2][a2 + a2ϕ2][β > 3.40 & mπ < 420 MeV] 0.4148 0.0001 0.1433(10)

[χSU(3)][a2][a2 + a2ϕ2][mπ < 350 MeV] 0.196 0.0 0.1439(8)

[χSU(3)][a2][a2 + a2ϕ2][mπ L > 4.1] 0.728 0.0045 0.1436(7)

[χSU(3)][a2 + a2ϕ2][a2][[−] 0.5918 0.0382 0.1443(7)

[χSU(3)][a2 + a2ϕ2][a2][β > 3.40] 0.5262 0.0074 0.1441(10)

[χSU(3)][a2 + a2ϕ2][a2][β > 3.46] 0.5056 0.001 0.1436(11)

[χSU(3)][a2 + a2ϕ2][a2][mπ < 420 MeV] 0.5566 0.0039 0.1441(8)
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[χSU(3)][a2 + a2ϕ2][a2][β > 3.40 & mπ < 420 MeV] 0.3996 0.0001 0.1435(11)

[χSU(3)][a2 + a2ϕ2][a2][mπ < 350 MeV] 0.1814 0.0 0.1440(9)

[χSU(3)][a2 + a2ϕ2][a2][mπ L > 4.1] 0.6358 0.0029 0.1444(9)

[χSU(3)][a2 + a2ϕ2][−] 0.6618 0.0449 0.1433(9)

[χSU(3)][a2 + a2ϕ2][β > 3.40] 0.5704 0.0078 0.1430(13)

[χSU(3)][a2 + a2ϕ2][β > 3.46] 0.4598 0.0005 0.1430(16)

[χSU(3)][a2 + a2ϕ2][mπ < 420 MeV] 0.5206 0.0019 0.1435(13)

[χSU(3)][a2 + a2ϕ2][mπ L > 4.1] 0.6816 0.0026 0.1432(13)

[Tay][a2][−] 0.4414 0.0288 0.1445(6)

[Tay][a2][β > 3.40] 0.3932 0.0066 0.1443(8)

[Tay][a2][β > 3.46] 0.4464 0.0011 0.1439(9)

[Tay][a2][mπ < 420 MeV] 0.4204 0.0033 0.1442(6)

[Tay][a2][β > 3.40 & mπ < 420 MeV] 0.3812 0.0002 0.1439(10)

[Tay][a2][mπ < 350 MeV] 0.1684 0.0 0.1444(7)

[Tay][a2][mπ L > 4.1] 0.5902 0.005 0.1445(6)

[Tay][a2αΓ̂
s ][−] 0.4354 0.0282 0.1445(6)

[Tay][a2αΓ̂
s ][β > 3.40] 0.376 0.0058 0.1443(8)

[Tay][a2αΓ̂
s ][β > 3.46] 0.4536 0.0012 0.1440(9)

[Tay][a2αΓ̂
s ][mπ < 420 MeV] 0.4206 0.0034 0.1443(6)

[Tay][a2αΓ̂
s ][β > 3.40 & mπ < 420 MeV] 0.3834 0.0002 0.1439(10)

[Tay][a2αΓ̂
s ][mπ < 350 MeV] 0.1644 0.0 0.1444(7)

[Tay][a2αΓ̂
s ][mπ L > 4.1] 0.5768 0.005 0.1445(6)

[Tay][a2][a2 + a2ϕ2][−] 0.5704 0.0351 0.1441(6)

[Tay][a2][a2 + a2ϕ2][β > 3.40] 0.4726 0.0063 0.1439(8)

[Tay][a2][a2 + a2ϕ2][β > 3.46] 0.3966 0.0005 0.1438(10)

[Tay][a2][a2 + a2ϕ2][mπ < 420 MeV] 0.4516 0.0024 0.1440(6)

[Tay][a2][a2 + a2ϕ2][β > 3.40 & mπ < 420 MeV] 0.3102 0.0001 0.1438(10)

[Tay][a2][a2 + a2ϕ2][mπ < 350 MeV] 0.127 0.0 0.1442(8)

[Tay][a2][a2 + a2ϕ2][mπ L > 4.1] 0.749 0.0052 0.1441(7)

[Tay][a2 + a2ϕ2][a2][−] 0.4672 0.0163 0.1447(6)

[Tay][a2 + a2ϕ2][a2][β > 3.40] 0.3892 0.0032 0.1445(8)

[Tay][a2 + a2ϕ2][a2][β > 3.46] 0.382 0.0005 0.1440(10)

[Tay][a2 + a2ϕ2][a2][mπ < 420 MeV] 0.4404 0.0019 0.1445(7)

[Tay][a2 + a2ϕ2][a2][β > 3.40 & mπ < 420 MeV] 0.3142 0.0001 0.1439(10)

[Tay][a2 + a2ϕ2][a2][mπ < 350 MeV] 0.1104 0.0 0.1444(8)

[Tay][a2 + a2ϕ2][a2][mπ L > 4.1] 0.6274 0.0028 0.1448(7)

[Tay][a2 + a2ϕ2][−] 0.5658 0.0256 0.1435(9)

[Tay][a2 + a2ϕ2][β > 3.40] 0.4734 0.0043 0.1432(12)
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[Tay][a2 + a2ϕ2][β > 3.46] 0.366 0.0003 0.1432(16)

[Tay][a2 + a2ϕ2][mπ < 420 MeV] 0.4296 0.0011 0.1437(12)

[Tay][a2 + a2ϕ2][mπ L > 4.1] 0.7382 0.0038 0.1432(12)

[Tay4][a2][−] 0.5152 0.0326 0.1437(8)

[Tay4][a2][β > 3.40] 0.4556 0.0075 0.1435(10)

[Tay4][a2][β > 3.46] 0.4954 0.0009 0.1433(11)

[Tay4][a2][mπ < 420 MeV] 0.421 0.0025 0.1436(9)

[Tay4][a2][mπ L > 4.1] 0.526 0.0019 0.1444(11)

[Tay4][a2][a2 + a2ϕ2][−] 0.6136 0.0278 0.1434(8)

[Tay4][a2][a2 + a2ϕ2][β > 3.40] 0.5278 0.0053 0.1432(10)

[Tay4][a2][a2 + a2ϕ2][β > 3.46] 0.4324 0.0004 0.1432(11)

[Tay4][a2][a2 + a2ϕ2][mπ < 420 MeV] 0.4832 0.0015 0.1434(9)

[Tay4][a2][a2 + a2ϕ2][mπ L > 4.1] 0.684 0.0022 0.1442(11)

[Tay4][a2 + a2ϕ2][a2][−] 0.5848 0.0271 0.1438(8)

[Tay4][a2 + a2ϕ2][a2][β > 3.40] 0.4926 0.0044 0.1437(10)

[Tay4][a2 + a2ϕ2][a2][β > 3.46] 0.4322 0.0004 0.1434(11)

[Tay4][a2 + a2ϕ2][a2][mπ < 420 MeV] 0.4808 0.0016 0.1438(9)

[Tay4][a2 + a2ϕ2][a2][mπ L > 4.1] 0.569 0.0012 0.1446(11)

[Tay4][a2 + a2ϕ2][−] 0.5774 0.0166 0.1434(9)

[Tay4][a2 + a2ϕ2][β > 3.40] 0.4794 0.0027 0.1432(12)

[Tay4][a2 + a2ϕ2][β > 3.46] 0.3748 0.0002 0.1436(16)

[Tay4][a2 + a2ϕ2][mπ < 420 MeV] 0.429 0.0008 0.1438(12)

[Tay4][a2 + a2ϕ2][mπ L > 4.1] 0.7878 0.0027 0.1432(12)

[χSU(2)][a2][−] 0.5694 0.0484 0.1436(7)

[χSU(2)][a2][β > 3.40] 0.5146 0.0115 0.1434(9)

[χSU(2)][a2][β > 3.46] 0.5484 0.0014 0.1433(10)

[χSU(2)][a2][mπ < 420 MeV] 0.4556 0.0031 0.1437(8)

[χSU(2)][a2][mπ L > 4.1] 0.5296 0.0027 0.1439(8)

[χSU(2)][a2αΓ̂
s ][−] 0.5572 0.0497 0.1437(7)

[χSU(2)][a2αΓ̂
s ][β > 3.40] 0.4862 0.01 0.1435(9)

[χSU(2)][a2αΓ̂
s ][β > 3.46] 0.548 0.0015 0.1434(10)

[χSU(2)][a2αΓ̂
s ][mπ < 420 MeV] 0.4534 0.0029 0.1437(8)

[χSU(2)][a2αΓ̂
s ][mπ L > 4.1] 0.5098 0.0025 0.1439(8)

[χSU(2)][a2][a2 + a2ϕ2][−] 0.6798 0.0475 0.1434(7)

[χSU(2)][a2][a2 + a2ϕ2][β > 3.40] 0.5846 0.0086 0.1432(9)

[χSU(2)][a2][a2 + a2ϕ2][β > 3.46] 0.4866 0.0007 0.1432(10)

[χSU(2)][a2][a2 + a2ϕ2][mπ < 420 MeV] 0.5148 0.0018 0.1434(9)

[χSU(2)][a2][a2 + a2ϕ2][mπ L > 4.1] 0.6726 0.0022 0.1436(8)
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[χSU(2)][a2 + a2ϕ2][a2][−] 0.6388 0.0394 0.1438(7)

[χSU(2)][a2 + a2ϕ2][a2][β > 3.40] 0.5476 0.0059 0.1437(10)

[χSU(2)][a2 + a2ϕ2][a2][β > 3.46] 0.4886 0.0006 0.1434(10)

[χSU(2)][a2 + a2ϕ2][a2][mπ < 420 MeV] 0.5146 0.0019 0.1438(9)

[χSU(2)][a2 + a2ϕ2][a2][mπ L > 4.1] 0.5846 0.0016 0.1441(8)

[χSU(2)][a2 + a2ϕ2][−] 0.635 0.0275 0.1432(10)

[χSU(2)][a2 + a2ϕ2][β > 3.40] 0.5424 0.0039 0.1429(14)

[χSU(2)][a2 + a2ϕ2][β > 3.46] 0.416 0.0003 0.1430(19)

[χSU(2)][a2 + a2ϕ2][mπ < 420 MeV] 0.4556 0.0009 0.1435(13)

[χSU(2)][a2 + a2ϕ2][mπ L > 4.1] 0.6594 0.0016 0.1426(15)

Table K.4: Model average results for the determination of
√

t0 at the physical
point using the combined analysis of both Wilson and mixed
action results. In the first column we label the fit model and
data cuts considered according to Table K.1. In the second and
third columns we report the quality of fits as measured by the
p-value [30] and the assigned weight to each model according to
eq. (4.33), respectively. Finally, the fourth column corresponds to
the value of

√
t0 coming from each fit model. In all models the

penalization of eq. (4.32) was included, so that for all models the
contribution of the data at the largest lattice spacing (β = 3.40)
and pion mass (mπ = 420 MeV) is suppressed.
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In this Appendix, report about an ongoing study of the light and
strange quark masses as determined from our mixed action setup. We
use the notation

mij ≡
mi + mj

2
, (L.1)

µij ≡
µi + µj

2
. (L.2)

As mentioned in Chapter 4, in the light sector we have carried out
lattice measurements in the fully unitary Wilson setup and in the
mixed action setup. In the former, renormalized quark masses mR

ij can
be determined from the PCAC relation in eq. (2.47), while in the latter,
after the matching to maximal twist in Sec. 3.5 is performed, they are
simply determined from the bare twisted masses µi as

mR
ij = Z−1

P (g2
0, µren)

[
1 + abµtr

(
M(s)

q

)]
µij, (L.3)

where the improvement coefficient bµ arises from residual cutoff effects
from the sea sector. Since they only appear in perturbation theory at
O(g4

0), they have been considered as negligible. Then, the light quark
mass is given by mR

l = mR
12, while the strange quark mass can be

obtained through

mR
s = 2mR

13 − mR
12. (L.4)

To obtain results for the renormalized quark masses at the physical
point and in the continuum, following [27] we consider the dimen-
sionless combinations

ϕij =
√

8t0mR
ij, (L.5)

and simultaneously fit

ϕ12

ϕ13
=

ϕ2

ϕK

[
1 +

p2

p1

(
3
2

ϕ2 − ϕ4

)
− p3

(
L̃(ϕ2)− L̃(ϕη)

)]
+

a2

8t0
(2ϕ4 − 3ϕ2)(D0 + D1ϕ2), (L.6)

2ϕ13

ϕK
+

ϕ12

ϕ2
= 3p1 + 2p2ϕ4 + p4(L̃(ϕ2) + L̃(ϕη))

+
a2

8t0
(G0 + G1ϕ2), (L.7)
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Figure L.1: Chiral-continuum extrapolation fit to extract the quantities ϕ12,13
defined in eq. (L.5) at the physical point and in the continuum.
Empty point are obtained from our mixed action regularization,
while filled points are obtained from the Wilson unitary setup.
Purple squared symbols are β = 3.40 ensembles, green circle
symbols are β = 3.46, blue left triangles are β = 3.55 and orange
right triangles are β = 3.70. Only a subset of the available ensem-
bles listed in Table H.1 are included in this preliminary analysis.
The colored bands represent the mass-dependence for each lattice
spacing: the darker bands corresponding to the Wilson unitary
setup and the lighter ones to the mixed action setup. The gray
band represents the continuum limit, and the black cross symbol
is the physical point result.

with

L̃(x) = x log(x), (L.8)

ϕK = ϕ4 −
1
2

ϕ2, (L.9)

ϕη =
4
3

ϕ4 − ϕ2, (L.10)

in order to extract the values of ϕ12,13 at the physical point and in the
continuum limit. Subsequently, from the physical value of t0 reported
in Chapter 4, the physical values of the masses of the light and strange
quarks can be extracted.

In Fig. L.1 we show a preliminary analysis of these quantities com-
bining the Wilson unitary and mixed action regularizations, for a
subset of the ensembles in Table H.1.
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