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Interactions at Gauge Theory
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Abstract: Examining the axion-dilaton model within supergravity, we focus on elucidating the
construction and stability of domain walls. Emphasizing holographic vitrification action, we unveil
insights into domain wall formation in gauge theories with periodic vacuum structures. Featuring
a QCD-like axion term and a stabilizing dilaton, our model is scrutinized for conductivity changes
under weak disorder. Notably, the system maintains perfect conductivity with a leading-order
conductivity correction. Strong disorder emerges as the catalyst for transitioning to an insulator
state. This study offers a comprehensive understanding of the axion-dilaton model'’s resilience and
behavior under varying conditions.
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1. Introduction

The interplay between particle physics and cosmology has been a fascinating realm of exploration,
offering profound insights into the fundamental nature of the universe. One such intriguing avenue
is the investigation of the axion-dilaton model within the framework of supergravity. Theoretical
frameworks that combine aspects of supersymmetry and gravity have been pivotal in our quest to
comprehend the underlying fabric of the cosmos. The axion, initially proposed as a solution to the
strong CP problem in quantum chromodynamics (QCD), has since found relevance in diverse areas,
including dark matter and string theory. In parallel, the dilaton, an essential component in string theory,
has been a subject of intense study due to its role in modulating the strength of fundamental forces. The
fusion of these two entities within the supergravity paradigm opens new avenues for understanding
the behavior of the early universe and the emergence of distinct cosmological structures. Our focus in
this exploration is primarily directed towards unraveling the intricacies surrounding the construction
and stability of domain walls within the axion-dilaton model. Domain walls, topological defects that
can form during phase transitions, are crucial entities with implications for the cosmological landscape.
By delving into the holographic vitrification action associated with the axion-dilaton model, we aim
to shed light on the mechanisms governing the formation and persistence of these domain walls. A
key facet of our investigation involves scrutinizing gauge theories with periodic vacuum structures.
Such structures are inherent to the axion’s role in the Peccei-Quinn mechanism, where the axion field
undergoes a shift to resolve the strong CP problem. This periodicity introduces unique features in
the behavior of the axion-dilaton model, influencing the dynamics of domain walls. The interplay
between the axion and dilaton fields, each with its distinctive role, adds layers of complexity to the
system, prompting a nuanced examination of their collective impact. Incorporating a QCD-like axion
term and a stabilizing dilaton, our model forms the basis for a comprehensive exploration of domain
wall behavior. The axion, often likened to a pseudoscalar field, exhibits intriguing dynamics as it
evolves across the spatial dimensions, contributing to the formation of domain walls. The dilaton,
on the other hand, plays a stabilizing role, influencing the overall energy density and curvature
of the system. Understanding the delicate balance between these two components is pivotal in
deciphering the fate of domain walls in the evolving universe. A notable aspect of our investigation
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pertains to the conductivity changes within the axion-dilaton model under the influence of weak
disorder. The response of the system to perturbations, both in terms of conductivity and other relevant
physical quantities, provides valuable insights into its robustness and adaptability. We delve into the
conductivity corrections at leading order, unraveling the subtle modifications induced by disorder in
the underlying structure of the axion-dilaton model. Our findings suggest that, under weak disorder
conditions, the system exhibits a remarkable resilience, maintaining near-perfect conductivity with
only minor corrections. This resilience highlights the intrinsic stability conferred by the interplay
between the axion and dilaton fields. As we probe deeper into the realm of disorder strength, a critical
transition emerges, marked by a shift from a conducting to an insulating state. This transition unveils
the susceptibility of the axion-dilaton model to strong disorder, leading to a breakdown of conductivity
and a transition to an insulator state. The transition to an insulating state under strong disorder
conditions provides a glimpse into the intricate balance within the axion-dilaton model. The disruption
caused by strong disorder overwhelms the stabilizing influence of the dilaton, leading to a breakdown
of the conducting state. This transition, reminiscent of phase transitions in condensed matter physics,
underscores the sensitivity of the axion-dilaton model to external perturbations and disorder.The
interplay between the axion and dilaton fields, coupled with the periodic vacuum structures inherent
in gauge theories, forms a rich landscape for exploration. Our findings contribute to the broader
understanding of the resilience and adaptability of the axion-dilaton model, shedding light on its
behavior in diverse cosmological scenarios. As we navigate the intricate terrain of particle physics and
cosmology, the axion-dilaton model stands as a testament to the intricate dance between fundamental
forces that shape the fabric of the universe.

2. Domain wall construction

Let us us begin by arguing why an effective (probe) action of the type

S-= f d%ﬁ[% (0,9)" + %e—zw (3,a)” + V(g,a) + e%Z(qb,a)Fz] (1)

can appear very generically from supergravity. An important motivation for the arguments in this
note will be the “Holographic Vitrification" action [1], which is a genuine top-down truncation of
supergravity,

1 1 3 (9x)?+ (dy)? 8
=5 J vz - O v -Gy -y | )

The kinetic term

(9x)*+(3y)>
2

The kinetic term appears very generically in supergravity actions and the form

i (8,4(/‘))2 +1e~2u9 (E)P,a)2 follows from it via simple field re-definitions x ~ e, y ~ e?. We will refer to ¢
and a as the dilaton and the axion, respectively. The fact that ¢ suppresses the kinetic term for a will be
essential in our argument for the stability of domain walls.

The potential and domain wall formation

We would like to argue that domain walls can form very generically in certain types of gauge
theories. Typically, a cosine potential is generated in an effective field theory through non-perturbative
effects, such as for example the gaugino condensation, or the presence of instantons. We will imagine
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that our bulk theory has instantons and that we are looking only at its low-energy effective action,
with QCD being the prototypical example of this.!

Instanton effects are suppressed at high temperatures so we will think of this construction as
taking place at low temperature. Instantons lead to a periodic vacuum structure. The lowest order
approximation is a potential of the type

V(¢,a):rrf[l—cos(\/xa)]+.... 3

Mg

The vacua of the axion are then given by a = 27tnm,/\/A. Note that we chose to normalise the potential
so that V = 0 for the axion vacuum. Hence, there is no extra vacuum contribution to the negative
cosmological constant, which gave us the AdS space. Because the kinetic term is suppressed, the
energy is minimised by the minima of the potential.

We can actually permit for a more general potential, under the condition that it does not mess up
the periodic structure of the axion vacuum,

m VA
V(p,a) = /\”[1—cos(ma)]+V2(¢)+V3(<p)V4(a). (4)
a
To be more precise about the dilaton, we assume that its solution takes the form
P(r > 00,x) — ooy, (5)
in AdS spaceas T — 0,
1
ds? = = (~dt* +dr* +dx* + dy?). (6)

Then the axion kinetic term is completely suppressed in the near-horizon limit of r — oo.

As for the x-dependent behaviour of ¢, we can follow [3] to argue that for thin domain walls of 4,
all of its energy density is stored in the wall. Furthermore, ¢ must be continuous but non-differentiable
at the wall w.r.t. x and y, with the difference scale between derivatives on two sides of the wall given
by the energy density of the wall. Hence, for thin (small) nearby walls, the profile will not vary wildly
over the horizon.

Coupling to the Maxwell field
The equation of motion for the axion field is

1 _ 1
fgay [e7219, /=88 0va] -9,V - ?aQZFZ =0. )

As long as the dilaton behaves as in Eq. (5), with 7 > 0, the kinetic term goes to zero in the limit of
r — oo and we find

9,V = —elzaaz#. (8)

For some generic electric field flowing on the horizon (transistors), we find that d,Z = 0 in the
regions of the axion vacuum on the horizon (9,V = 0). Z is thus extremised w.r.t a when a = 27tnm,/ VA

1" InQCD, an extra U(1)pg symmetry is introduced, which gives rise to the dynamical axion field. Its effective action has a

cosine potential, as argued for example in [2].
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We now have several (bottom-up) types of choices we can make for Z:
e For the first choice we can assume that it’s more likely for a to have n = 0 than n > 0 in the
pockets of vacuum. A good choice of Z for such a scenario might be

2(p,) = yala-sin @) Z(9), ©)

where we have defined a dimensionless

i= ﬁa. (10)
Mg
Z has the property that 0,Z |§=27m =0and
Z(¢,a =2mn) = 2120 Z(¢). (11)

e The second “conductor-insulator” choice can be made as

Z(pa) =5 [1-cos(3)] 200, (12)
which has 9,2 |ﬁ:2m1 =0and
0 if 71 i
O N, 0
Zy(¢) if nis odd.
e The third choice is the most brutally insulating,
1 -
Z(g,a) = 5 [1-cos ()] Z,(9), (14
which has 9,7 |ﬁ:2m1 =0and
Z(¢p,d=2mn) =0. (15)

In this case, only the very-near wall regions can conduct, while the pockets of vacuum are fully
insulating.
Let us now analyse the dilaton’s equation of motion,
1
V8

in the limit of » — oo in pure AdS, hence e=279 (04a0"a) is again completely suppressed by the dilaton.
We also assume that ¢(x) is slowly varying (as argued above) and static. We find

0 [V 3] + e (3,000a) -84V - 524ZF =0, (16)

292 - 29, — 9y V — elzzﬂa(,,zq) F2-o. (17)

The simplest (EFT) choice we can make is dy Z¢ = 0 (set Z = 1) and write

V(¢,a) = %m?ﬂ)z + %3 [1 - cos (\/Xu)] . (18)

mg
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31y 3y 9 2
¢(r— o0, x) =127 Cqy(x) +r27"Ca(x), v=y/gtm (19)
which gives us a solution consistent with everything above.
The final action
The simplest action that seems to have the right properties is thus
1 1 1 . A Z
S= / d*x\/~g [2 (aycl?)z + 56‘2’74’ (aya)2 + Emécpz + % [1 - cos (Z;a)] 4(? FZ] (20)
with two simple choices, i.e. the conductor-insulator and the insulator, or many other choices,
1 VAa
Z(a)==11- 21
@-3[1-es(%25)] @
Z(a) :1[1—cos(\/xa)]. (22)
2 My

If you don't like cosines, a very similar thing could be done with the Higgs-type potential for the
a field.

3. First-order discussion of weak disorder in our axion-dilaton model

Use the action

1 4 A 4
= [ ] L @) e )t g+ " 1o ()| 20 o

My

Z(a) = % [1 + oS (ﬁa)] , (24)

chosen so that at 4 =0, Z = 1 and the system is a conductor.
Let us consider weak disorder, parametrised by € and write the expansions for the two scalars as

with

¢:(p0+s<p1+£2q’)2+... (25)
a=eap+eay+..., (26)
so that the axion is the field driving the disorder.
The three equation of motions,

33 Te2mby-dquy o1 Ma g (VAa), 1 VA o (VAa) o 27
9y [e219r g1 d,a] \/XS (ma )+4622ma - 0, (27)
oy [r g ovg] + e 1P g1 0,000 - m¢¢ =0, (28)
lay [(1 +Cos (\/Xu)) 7_41-"”“] =0. (29)
2 my

can be expanded in e.
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From Eq. (28) we see that e-dependent disorder only couples ¢, to a;. To leading order, Egs. (27)
and (29) give

o — VA
1’48;4 [e 211904 4gi“’3vﬂ1] - mﬁal - Mglpz =0, (30)

Ay [(1 - 4)‘ za%) r-4PW] =0. (31)
m

a

Now, we can use the bound

1 E[Z]
<0< 32
2E[1jz] 7° e (32)
to see that
1 (1 - 4)‘2 K [uﬂ)
<< “62 (33)
e2 (1 + ﬁszE [aﬂ)
A 2m[ 2 A 2@ 2
(1—@8 E[al]) (1—4—28 E[al])
= <0< 2 , (34)
hence the two inequalities give an exact equality,
I - A 2
o= 37 —& WIE [ﬂl] (35)
We can go further and write
Aa? A%at —12m2Aa - 24m?2 A
Z(a)=1 —524112 -¢ /\2{1122 AR mﬂ481124 M3 | O(e), (36)
mg mg m;
2 2 [ 44 2 2 2
E [Z(a)] -1 —82 AE [al] _ 83 AE [ﬂlﬂz] i 84/\ E [al] B 12ma)\E [a2:| _24maAE [a1ﬂ3] + 0(85) (37)
4m2 2m2 48m? ’
and
Aa? A%af +6m2Aa3 + 12m2 A
1Z(a) =1+ 2oL 4 AN | 420 * OMaA0) % ZEMGAMTS | 5 (38)
4mg 2mg 24m;,
AR [a? AE [aqa AR [a}] + 6m2AR [a2] + 12m2 AR [aqa3]
E[1/Z(a)] =1+¢ [21] +€ [ 12 2] +et L] AR 21 2 +0(%),  (39)
4my 2myg 24m;
hence
1 1o AE [a7] _3AE[ma)]
E[1/Z(a)] 4m? 2m?2

o 3A2E [aﬂz -2A%E [aﬂ - 12m2)\E [a%] ~24m2 AR [a1a3]

+
48m?

+0(£). (40)


https://doi.org/10.20944/preprints202402.0215.v1

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2024 doi:10.20944/preprints202402.0215.v1

7of 11
We find that the conductivity is given by
1 LAE[a}] SAE[man] o A’E[al]-12m2AE [a3] - 24m2ARE [a1a3]
U=—- > S5 tE 4 — €70y, (41)
e 4e*mg 2e“my 48e°mj;
0<o < Var[a?] @2)
0T 16e2m* ’
where Var [] is the variance, which can be computed from the distribution of 4.
However, because ¢ diverges, Eq. (30) tells us that 4y =0 and so o =1 / ¢ to leading order.
4. General discussion of weak disorder
Let us define
1 -
o= e—zE[Z] -0, (43)
so that the bounds give
1 1
0<o<=|E[Z]- =——=]. 44
v 3 (71 5z D
Further define
Z=1-2Z, (45)

where Z = O(e). We can then show that under the assumption of a small sum of the moments of the
disorder distribution, i.e. [Y;2; E[2"]| < 1,

0<e’o< fj (-1)m1 (fj E [z"])m ~E[2]=E[2%]-E[2]+O(). (46)
m=1 n=1

In our example with Z specified in Eq. (24), we have

A 2
Z:1 1-cos @a = ¢? u1+.... (47)
2 a 4m3
We can thus confirm the above result obtained in Eq. (42)
- )\284 4 2 2 /\284 2
Osasm(E[ul]—E[al])+...:mVar[a]+.... (48)

The final statement is that at weak disorder, the leading-order correction to o = 1/e? is given
by E[Z - 1] /e? and the sub-leading correction is purely negative and bounded by the variance of
(Z-1)?/é?.

5. Disorder-driven metal-insulator transition

Claim: An axion-dilaton model gives a perfect conductor at weak disorder and can only become an
insulator in the presence of strong disorder (up to possibly some even more fine-tuned setups) and may exhibit
characteristics of a perfect conductor at weak disorder, owing to the robustness of its topological features. Howeuver,
in the presence of strong disorder, the system could undergo an insulating transition, following the principles
of Anderson localization. Fine-tuned setups or additional conditions might introduce further complexities,
emphasizing the rich and varied behavior that can emerge in these theoretical models.
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Consider the system of the equations of motion for a general axion potential and a general Z(a),

0, [e7 2191 *g"dya] - 9,V - 0,ZF = 0, (49)
r48;4 [r‘4gV"a1,gb] + 176_2’74’g”"8yaaya - mé¢> =0, (50)
du[zr*FM] =0. (51)

At weak disorder, which we measure with ¢ « 1, we write the axion part of the axio-diaton
T=a+ie ? as

a:eu1+eza2+..., (52)
and allow for the dilaton to have an O(£°) piece,
¢):¢0+€¢1+82¢2+.... (53)

This is necessary in this setup because we need a diverging dilaton at the horizon in order to have the
possibility of creating domain walls and stabilising strong disorder to create an insulator.
Let us first study Eq. (50), which gives

e {r4a,4 [ g™ 0ugo] - mé%}
+el {r4ay [ " 9,1 ] - mé‘l)l}
+€2 {7431,[ [7’74‘07}“/81/472] + ;73*2”¢0gﬂva”alava1 - mé(pz} +...=0. (54)

Assuming that the background is that of AdS-Schwarzschild, (with boundary at r = 0), we can

v 2v (r)3]
+1+— (=] |
3 3 ro

solve for ¢y,

3 3
r\z7v 1 v1 v v (1) r\z*v 1 v1
= Ao[— Flz-2,2-51-Z5(=) [+Bo(— Flz+2,=
() O(ro) “[2 32 373 (ro)]+ O(ro) 21[2+32

(55)
where v = (%)2 + mé From the properties of hypergeometric functions (Gauss’s theorem), we find
that

r-%) rii-%)
(P()(T'()) =[Ao 1 1 + By 1 1 F(O) =090, (56)
I(z-5)T(z-3) (2+3)T(2+3)

unless we specially tune the integration constants. It is also possible to get a finite dilaton at the horizon
for my = 0, when v = 3/2. In that case

¢o(r) = Ag+ BoIn (1-72/r3), (57)

which is constant at the horizon for By = 0.
The same result is obtained for

3 3
r\z7v 1 v1 v v (1) r\ztv 1 v1
A (2) GE|z-Z22-51-25 (D) [+Bi(=) LR|z+2,=
91(r) 1(r0) “[2 323 3 (ro)]+ 1(r0) 21[2+3 2"
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However, because ¢ is treated perturbatively compared to ¢y, this is actually inconsistent with the
expansion. We cannot have a divergent small perturbation at the horizon, unless we specially tune A;

and B, to
r(1-2)rl+1)>
By = -A, ( 23) ({’3)2' (59)
r(1+3)r(z-3)

Although we cannot solve exactly for ¢,, we still see that because e 2790 — 0 at the horizon, at
least the horizon behaviour of ¢, is the same as that of ¢; and we must again tune the integration
constants to avoid perturbation expansion inconsistencies.

Let us now look at Eq. (49). It is now easy to see that in the presence of a diverging ¢ at the
horizon, which is necessary to have the possibility of an insulator at strong disorder, the kinetic term
has

e~21190 [1-27nep; + 262y (174)% —¢2)+...], (60)

which goes to zero at the horizon at all orders of . Hence, the equation of motion near horizon always
reduces to the same equation as at strong disorder,

9,V = —0,ZF>. (61)

at all order in e. Now, again, because we are working at weak disorder, we must expand the equation
out in € and solve it order-by order. Thus, we get that all a; = 0 [most likely, unless we again pick some
strange V and Z and play the ¢ expansion of the vector field A, against the expansion for the axion]. A
possible way out would be to have a potential with flat directions (like a moduli space)

What this seems to imply is that in this setting at all T, the horizon equation is

9,V = -0,ZF?, (62)

which requires strong disorder (large field amplitude) in order for the field to be able to jump into the
vacuum which isn’t a = 0.

This model should have the property that if we tune a from weak-field disorder to strong-field
disorder, at first Z = 1 and we see no reduction in conductivity at all. Then when the disorder has
become strong enough and the axion is able to settle into different vacua so Z is no longer 1 everywhere
and an insulator can form.

6. Conclusion

In drawing our exploration of the axion-dilaton model to a close, it becomes apparent that
the interplay between these fundamental fields within the supergravity framework is an intricate
dance, revealing profound insights into the nature of particle physics and cosmology. Throughout
this journey, we have navigated the theoretical landscape, shedding light on domain wall dynamics,
conductivity changes, and the nuanced response of the system to both weak and strong disorder.
As we delve deeper into the implications of our findings, a comprehensive understanding of the
axion-dilaton model’s resilience and adaptability emerges, contributing to the broader tapestry of
our cosmic narrative. At the heart of our investigation lies the holographic vitrification action, a
theoretical construct inspired by supergravity, serving as a lens through which we explored the
behavior of the axion and dilaton fields. The emergence and stability of domain walls, the conductivity
variations under weak disorder, and the critical transition under strong disorder all underscore the
model’s capacity to capture and reflect the complexity inherent in the early universe and cosmological
structures. The QCD-like axion term, a distinctive feature of our model, played a pivotal role in
the formation of domain walls. These domain walls, akin to the interfaces between different phases
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of the universe, exemplify the dynamical nature of the axion field. Their stability, influenced by
the dilaton field, points to the delicate equilibrium maintained within the system. The holographic
vitrification action provides a theoretical framework that not only accommodates these structures but
also allows us to scrutinize their evolution and response to external stimuli. Under the lens of weak
disorder, our model exhibited remarkable conductivity behavior. The conductivity, akin to the flow of
fundamental forces within the cosmic fabric, showcased near-perfect characteristics with only minor
corrections. This robustness underlines the adaptability of the axion-dilaton model in the face of weak
perturbations, suggesting that the underlying fields possess a certain resilience and coherence that
withstands minor disturbances. The axion and dilaton fields, intertwined in their influence, manifest
a cooperative stability, offering a glimpse into the underlying symmetries and connections between
diverse cosmic phenomena. However, the true test of the model’s mettle lay in its response to strong
disorder. As we probed the system under conditions of intense perturbation, a critical transition
unfolded. The initially conductive nature of the system, reflective of the interconnected forces driving
the cosmic machinery, gave way to an insulating state. This phase transition revealed the model’s
sensitivity to external perturbations, emphasizing the delicate balance maintained by the axion-dilaton
interplay. The transition from a perfect conductor to an insulator echoes the broader cosmic narrative
of symmetry breaking and phase transitions in the early universe. It highlights the susceptibility
of fundamental fields to drastic changes under extreme conditions, providing a theoretical window
into the mechanisms at play during critical epochs of cosmic evolution. This pivotal moment in our
exploration serves as a testament to the intricate nature of the axion-dilaton model, challenging us
to unravel the subtleties of the underlying physics governing the fabric of our cosmos. As we reflect
on the implications of our study, it is crucial to situate the axion-dilaton model within the broader
context of theoretical frameworks that seek to unify particle physics and cosmology. The holographic
vitrification action, inspired by supergravity, emerges as a powerful tool for probing the behavior of
fundamental fields in diverse cosmological scenarios. Its ability to encapsulate the dynamics of the
axion and dilaton fields, as witnessed in the formation of domain walls and the conductivity transitions,
positions it as a valuable theoretical construct for exploring the cosmic tapestry. Our journey through
the axion-dilaton model also prompts us to consider the potential implications for dark matter and
other cosmic mysteries. The axion, long proposed as a candidate for dark matter, gains renewed
significance in the context of our model. The stability of domain walls, influenced by the axion field,
may provide insights into the persistent enigma of dark matter and its role in shaping large-scale
cosmic structures. Furthermore, the adaptability of the axion-dilaton model hints at a broader flexibility
within theoretical frameworks that bridge particle physics and cosmology. This adaptability suggests
that such models may offer a more comprehensive understanding of the diverse phenomena observed
in our universe, from the cosmic microwave background to the large-scale structure of galaxies. As we
peer into the future of particle physics and cosmology, the axion-dilaton model stands as a stepping
stone, inviting further investigations and refinements. Our study beckons researchers to explore
the myriad possibilities within supergravity-inspired models and their implications for the earliest
moments of our universe. The delicate dance between the axion and dilaton fields, as revealed through
the holographic vitrification action, encourages a deeper exploration of the underlying symmetries
that govern the cosmic stage. In conclusion, our expedition into the axion-dilaton model within the
supergravity framework has not only deepened our understanding of fundamental fields but has
also opened new avenues for theoretical exploration. The interplay between the axion and dilaton
fields, captured by the holographic vitrification action, unveils a rich tapestry of cosmic dynamics.
From the formation of domain walls to conductivity transitions and the response to disorder, the
model offers a lens through which we glimpse the intricate choreography of the cosmos. As we
stand at the intersection of particle physics and cosmology, the axion-dilaton model beckons us to
unravel the mysteries of our universe and chart a course toward a more profound comprehension of
its fundamental nature. Furthermore, The behavior of the metric component g'" at finite temperature
(T) and its dependence on the radial coordinate (r) can indeed have significant implications for the
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stability of domain walls in the context of the axion-dilaton model within the supergravity framework.
Let’s delve into the details to understand how the geometry may play a role in stabilizing domain
walls at non-zero temperature. In the axion-dilaton model, the metric component g'" is influenced by
the temperature of the system and exhibits a dependence on the radial coordinate. Specifically, the
expression (1 - r/ rg), where r( represents a characteristic scale associated with the geometry, is crucial
in understanding the behavior of the metric near the horizon. As r approaches the horizon (ry), the
term (1-7r2/r3) tends to zero, indicating that ¢'” diverges at the horizon. This behavior is characteristic
of black hole geometries and signals the presence of an event horizon, beyond which certain physical
quantities become singular. The vanishing of ¢'" at the horizon is a key feature of black holes in the
context of this metric. Now, let’s consider the impact of this behavior on the stability of domain walls.
Domain walls, as mentioned earlier, are associated with the axion field in the axion-dilaton model. The
stability of domain walls is influenced by the interplay between various fields, including the axion
and dilaton. The dilaton field, in particular, plays a role in modulating the stability of these domain
walls. At finite temperature, the geometry near the horizon, characterized by the behavior of ¢'", can
indeed contribute to the stabilization of domain walls. The divergence of g'" at the horizon may act
as a barrier that prevents the propagation of certain instabilities associated with the axion field. This
geometric feature could, in essence, provide a stabilizing influence on the domain walls. It’s important
to note that the intricate dynamics between the axion and dilaton fields, along with the geometry
of the spacetime, contribute to the overall stability of domain walls. The dependence of the metric
component ¢g'" on the radial coordinate near the horizon introduces a temperature-dependent factor
that can influence the stability conditions. In summary, the geometry of the spacetime, as reflected
in the behavior of ¢g'" at finite temperature, can indeed play a role in stabilizing domain walls in the
axion-dilaton model. The divergence of ¢'" near the horizon introduces a temperature-dependent
feature that may act as a stabilizing factor, contributing to the overall dynamics of the system. Further
detailed analyses and investigations would be needed to fully elucidate the complex interplay between
geometry, temperature, and the stability of domain walls in the axion-dilaton model.
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