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University of Alabama at Huntsville; mjs0016@uah.edu

Abstract: Examining the axion-dilaton model within supergravity, we focus on elucidating the

construction and stability of domain walls. Emphasizing holographic vitrification action, we unveil

insights into domain wall formation in gauge theories with periodic vacuum structures. Featuring

a QCD-like axion term and a stabilizing dilaton, our model is scrutinized for conductivity changes

under weak disorder. Notably, the system maintains perfect conductivity with a leading-order

conductivity correction. Strong disorder emerges as the catalyst for transitioning to an insulator

state. This study offers a comprehensive understanding of the axion-dilaton model’s resilience and

behavior under varying conditions.
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1. Introduction

The interplay between particle physics and cosmology has been a fascinating realm of exploration,

offering profound insights into the fundamental nature of the universe. One such intriguing avenue

is the investigation of the axion-dilaton model within the framework of supergravity. Theoretical

frameworks that combine aspects of supersymmetry and gravity have been pivotal in our quest to

comprehend the underlying fabric of the cosmos. The axion, initially proposed as a solution to the

strong CP problem in quantum chromodynamics (QCD), has since found relevance in diverse areas,

including dark matter and string theory. In parallel, the dilaton, an essential component in string theory,

has been a subject of intense study due to its role in modulating the strength of fundamental forces. The

fusion of these two entities within the supergravity paradigm opens new avenues for understanding

the behavior of the early universe and the emergence of distinct cosmological structures. Our focus in

this exploration is primarily directed towards unraveling the intricacies surrounding the construction

and stability of domain walls within the axion-dilaton model. Domain walls, topological defects that

can form during phase transitions, are crucial entities with implications for the cosmological landscape.

By delving into the holographic vitrification action associated with the axion-dilaton model, we aim

to shed light on the mechanisms governing the formation and persistence of these domain walls. A

key facet of our investigation involves scrutinizing gauge theories with periodic vacuum structures.

Such structures are inherent to the axion’s role in the Peccei-Quinn mechanism, where the axion field

undergoes a shift to resolve the strong CP problem. This periodicity introduces unique features in

the behavior of the axion-dilaton model, influencing the dynamics of domain walls. The interplay

between the axion and dilaton fields, each with its distinctive role, adds layers of complexity to the

system, prompting a nuanced examination of their collective impact. Incorporating a QCD-like axion

term and a stabilizing dilaton, our model forms the basis for a comprehensive exploration of domain

wall behavior. The axion, often likened to a pseudoscalar field, exhibits intriguing dynamics as it

evolves across the spatial dimensions, contributing to the formation of domain walls. The dilaton,

on the other hand, plays a stabilizing role, influencing the overall energy density and curvature

of the system. Understanding the delicate balance between these two components is pivotal in

deciphering the fate of domain walls in the evolving universe. A notable aspect of our investigation
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pertains to the conductivity changes within the axion-dilaton model under the influence of weak

disorder. The response of the system to perturbations, both in terms of conductivity and other relevant

physical quantities, provides valuable insights into its robustness and adaptability. We delve into the

conductivity corrections at leading order, unraveling the subtle modifications induced by disorder in

the underlying structure of the axion-dilaton model. Our findings suggest that, under weak disorder

conditions, the system exhibits a remarkable resilience, maintaining near-perfect conductivity with

only minor corrections. This resilience highlights the intrinsic stability conferred by the interplay

between the axion and dilaton fields. As we probe deeper into the realm of disorder strength, a critical

transition emerges, marked by a shift from a conducting to an insulating state. This transition unveils

the susceptibility of the axion-dilaton model to strong disorder, leading to a breakdown of conductivity

and a transition to an insulator state. The transition to an insulating state under strong disorder

conditions provides a glimpse into the intricate balance within the axion-dilaton model. The disruption

caused by strong disorder overwhelms the stabilizing influence of the dilaton, leading to a breakdown

of the conducting state. This transition, reminiscent of phase transitions in condensed matter physics,

underscores the sensitivity of the axion-dilaton model to external perturbations and disorder.The

interplay between the axion and dilaton fields, coupled with the periodic vacuum structures inherent

in gauge theories, forms a rich landscape for exploration. Our findings contribute to the broader

understanding of the resilience and adaptability of the axion-dilaton model, shedding light on its

behavior in diverse cosmological scenarios. As we navigate the intricate terrain of particle physics and

cosmology, the axion-dilaton model stands as a testament to the intricate dance between fundamental

forces that shape the fabric of the universe.

2. Domain wall construction

Let us us begin by arguing why an effective (probe) action of the type

S ≙ ∫ d4x
√−g [1

2
(∂µϕ)2 + 1

2
e−2ηϕ (∂µa)2 +V(ϕ, a) + 1

e2
Z(ϕ, a)F2] (1)

can appear very generically from supergravity. An important motivation for the arguments in this

note will be the “Holographic Vitrification" action [1], which is a genuine top-down truncation of

supergravity,

S ≙ 1

8π ∫ d4x
√−g

⎡⎢⎢⎢⎣
1

2ℓ2
p

R − 3

4ℓ2
p

(∂x)2 + (∂y)2
y2

−V(x, y) −GI J(x, y)FI
µνF Jµν −ΘI J(x, y)FI

µν F̃ Jµν
⎤⎥⎥⎥⎦ . (2)

The kinetic term

The kinetic term
(∂x)2+(∂y)2

y2 appears very generically in supergravity actions and the form

1
2 (∂µϕ)2 + 1

2 e−2ηϕ (∂µa)2 follows from it via simple field re-definitions x ∼ ea, y ∼ eϕ. We will refer to ϕ

and a as the dilaton and the axion, respectively. The fact that ϕ suppresses the kinetic term for a will be

essential in our argument for the stability of domain walls.

The potential and domain wall formation

We would like to argue that domain walls can form very generically in certain types of gauge

theories. Typically, a cosine potential is generated in an effective field theory through non-perturbative

effects, such as for example the gaugino condensation, or the presence of instantons. We will imagine

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 February 2024                   doi:10.20944/preprints202402.0215.v1

https://doi.org/10.20944/preprints202402.0215.v1


3 of 11

that our bulk theory has instantons and that we are looking only at its low-energy effective action,

with QCD being the prototypical example of this.1

Instanton effects are suppressed at high temperatures so we will think of this construction as

taking place at low temperature. Instantons lead to a periodic vacuum structure. The lowest order

approximation is a potential of the type

V(ϕ, a) ≙ m4
a

λ
[1− cos(√λ

ma
a)] + . . . . (3)

The vacua of the axion are then given by a ≙ 2πnma/√λ. Note that we chose to normalise the potential

so that V ≙ 0 for the axion vacuum. Hence, there is no extra vacuum contribution to the negative

cosmological constant, which gave us the AdS space. Because the kinetic term is suppressed, the

energy is minimised by the minima of the potential.

We can actually permit for a more general potential, under the condition that it does not mess up

the periodic structure of the axion vacuum,

V(ϕ, a) ≙ m4
a

λ
[1− cos(√λ

ma
a)] +V2(ϕ) +V3(ϕ)V4(a). (4)

To be more precise about the dilaton, we assume that its solution takes the form

ϕ(r →∞, x)→∞+, (5)

in AdS space as T → 0,

ds2 ≙ 1

r2
(−dt2 + dr2 + dx2 + dy2) . (6)

Then the axion kinetic term is completely suppressed in the near-horizon limit of r →∞.

As for the x-dependent behaviour of ϕ, we can follow [3] to argue that for thin domain walls of a,

all of its energy density is stored in the wall. Furthermore, ϕ must be continuous but non-differentiable

at the wall w.r.t. x and y, with the difference scale between derivatives on two sides of the wall given

by the energy density of the wall. Hence, for thin (small) nearby walls, the profile will not vary wildly

over the horizon.

Coupling to the Maxwell field

The equation of motion for the axion field is

1√−g
∂µ [e−2ηϕ√−ggµν∂νa] − ∂aV − 1

e2
∂aZF2 ≙ 0. (7)

As long as the dilaton behaves as in Eq. (5), with η > 0, the kinetic term goes to zero in the limit of

r →∞ and we find

∂aV ≙ − 1

e2
∂aZF2. (8)

For some generic electric field flowing on the horizon (transistors), we find that ∂aZ ≙ 0 in the

regions of the axion vacuum on the horizon (∂aV ≙ 0). Z is thus extremised w.r.t a when a ≙ 2πnma/√λ.

1 In QCD, an extra U(1)PQ symmetry is introduced, which gives rise to the dynamical axion field. Its effective action has a
cosine potential, as argued for example in [2].
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We now have several (bottom-up) types of choices we can make for Z:● For the first choice we can assume that it’s more likely for a to have n ≙ 0 than n > 0 in the

pockets of vacuum. A good choice of Z for such a scenario might be

Z(ϕ, a) ≙ 1

2
ã ∥ã − sin (ã)∥Zϕ(ϕ), (9)

where we have defined a dimensionless

ã ≡

√
λ

ma
a. (10)

Z has the property that ∂aZ∣
ã≙2πn

≙ 0 and

Z(ϕ, ã ≙ 2πn) ≙ 2π2n2Zϕ(ϕ). (11)

● The second “conductor-insulator" choice can be made as

Z(ϕ, a) ≙ 1

2
[1− cos( ã

2
)]Zϕ(ϕ), (12)

which has ∂aZ∣
ã≙2πn

≙ 0 and

Z(ϕ, ã ≙ 2πn) ≙ ⎧⎪⎪⎨⎪⎪⎩
0 if n is even

Zϕ(ϕ) if n is odd.
(13)

● The third choice is the most brutally insulating,

Z(ϕ, a) ≙ 1

2
∥1− cos (ã)∥Zϕ(ϕ), (14)

which has ∂aZ∣
ã≙2πn

≙ 0 and

Z(ϕ, ã ≙ 2πn) ≙ 0. (15)

In this case, only the very-near wall regions can conduct, while the pockets of vacuum are fully

insulating.

Let us now analyse the dilaton’s equation of motion,

1√−g
∂µ ∥√−ggµν∂νϕ∥+ ηe−2ηϕ (∂µa∂µa)− ∂ϕV − 1

e2
∂ϕZF2 ≙ 0, (16)

in the limit of r →∞ in pure AdS, hence e−2ηϕ (∂µa∂µa) is again completely suppressed by the dilaton.

We also assume that ϕ(x) is slowly varying (as argued above) and static. We find

r2∂2
r ϕ − 2r∂rϕ − ∂ϕV − 1

e2
Za∂ϕZϕF2 ≙ 0. (17)

The simplest (EFT) choice we can make is ∂ϕZϕ ≙ 0 (set Zϕ ≙ 1) and write

V(ϕ, a) ≙ 1

2
m2

ϕϕ2 + m4
a

λ
[1− cos(

√
λ

ma
a)] . (18)
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Hence,

ϕ(r →∞, x)→ r
3
2+νC1(x) + r

3
2−νC2(x), ν ≙

√
9

4
+m2, (19)

which gives us a solution consistent with everything above.

The final action

The simplest action that seems to have the right properties is thus

S ≙ ∫ d4x
√−g [1

2
(∂µϕ)2 + 1

2
e−2ηϕ (∂µa)2 + 1

2
m2

ϕϕ2 + m4
a

λ
[1− cos(√λ

ma
a)] + Z(a)

4e2
F2] , (20)

with two simple choices, i.e. the conductor-insulator and the insulator, or many other choices,

Z(a) ≙ 1

2
[1− cos(√λ

ma

a

2
)] , (21)

Z(a) ≙ 1

2
[1− cos(√λ

ma
a)] . (22)

If you don’t like cosines, a very similar thing could be done with the Higgs-type potential for the

a field.

3. First-order discussion of weak disorder in our axion-dilaton model

Use the action

S ≙ ∫ d4x
√−g [1

2
(∂µϕ)2 + 1

2
e−2ηϕ (∂µa)2 + 1

2
m2

ϕϕ2 + m4
a

λ
[1− cos(√λ

ma
a)] + Z(a)

4e2
F2] , (23)

with

Z(a) ≙ 1

2
[1+ cos(√λ

ma
a)] , (24)

chosen so that at a ≙ 0, Z ≙ 1 and the system is a conductor.

Let us consider weak disorder, parametrised by ε and write the expansions for the two scalars as

ϕ ≙ ϕ0 + εϕ1 + ε2ϕ2 + . . . (25)

a ≙ εa1 + ε2a2 + . . . , (26)

so that the axion is the field driving the disorder.

The three equation of motions,

r4∂µ [e−2ηϕr−4gµν∂νa] − m3
a√
λ

sin(√λa

ma
)+ 1

4e2

√
λ

2ma
sin(√λa

ma
) F2 ≙ 0, (27)

r4∂µ [r−4gµν∂νϕ] + ηe−2ηϕgµν∂µa∂νa −m2
ϕϕ ≙ 0, (28)

1

2
∂µ [(1+ cos(√λ

ma
a)) r−4Fµν] ≙ 0. (29)

can be expanded in ε.
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From Eq. (28) we see that ϵ-dependent disorder only couples ϕ2 to a1. To leading order, Eqs. (27)

and (29) give

r4∂µ [e−2ηϕ0 r−4gµν∂νa1] −m2
aa1 −

√
λ

4e2ma
a1F2 ≙ 0, (30)

∂µ [(1− λ

4m2
a

a2
1) r−4Fµν] ≙ 0. (31)

Now, we can use the bound

1

e2E ∥1/Z∥ ≤ σ ≤ E ∥Z∥
e2

(32)

to see that

1

e2 (1+ λ
4m2

a
ε2E [a2

1])
≤ σ ≤ (1−

λ
4m2

a
ε2
E [a2

1])
e2

(33)

(1− λ
4m2

a
ε2
E [a2

1])
e2

≤ σ ≤ (1−
λ

4m2
a
ε2
E [a2

1])
e2

, (34)

hence the two inequalities give an exact equality,

σ ≙ 1

e2
− ε2 λ

4e2m2
a

E [a2
1] (35)

We can go further and write

Z(a) ≙ 1− ε2 λa2
1

4m2
a

− ε3 λa1a2

2m2
a

+ ε4 λ2a4
1 − 12m2

aλa2
2 − 24m2

aλa1a3

48m4
a

+O(ε5), (36)

E ∥Z(a)∥ ≙ 1− ε2 λE [a2
1]

4m2
a

− ε3 λE ∥a1a2∥
2m2

a

+ ε4 λ2
E [a4

1]− 12m2
aλE [a2

2]− 24m2
aλE ∥a1a3∥

48m4
a

+O(ε5), (37)

and

1/Z(a) ≙ 1+ ε2 λa2
1

4m2
a

+ ε3 λa1a2

2m2
a

+ ε4 λ2a4
1 + 6m2

aλa2
2 + 12m2

aλa1a3

24m4
a

+O(ε5), (38)

E ∥1/Z(a)∥ ≙ 1+ ε2 λE [a2
1]

4m2
a

+ ε3 λE ∥a1a2∥
2m2

a

+ ε4 λ2
E [a4

1]+ 6m2
aλE [a2

2]+ 12m2
aλE ∥a1a3∥

24m4
a

+O(ε5), (39)

hence

1

E ∥1/Z(a)∥ ≙ 1− ε2 λE [a2
1]

4m2
a

− ε3 λE ∥a1a2∥
2m2

a

+ ε4 3λ2
E [a2

1]2 − 2λ2
E [a4

1]− 12m2
aλE [a2

2]− 24m2
aλE ∥a1a3∥

48m4
a

+O(ε5). (40)
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We find that the conductivity is given by

σ ≙ 1

e2
− ε2 λE [a2

1]
4e2m2

a

− ε3 λE ∥a1a2∥
2e2m2

a

+ ε4 λ2
E [a4

1]− 12m2
aλE [a2

2]− 24m2
aλE ∥a1a3∥

48e2m4
a

− ε4σ̃4, (41)

0 ≤ σ̃4 ≤ λ2

16e2m4
Var [a2

1] , (42)

where Var ∥∥ is the variance, which can be computed from the distribution of a.

However, because ϕ0 diverges, Eq. (30) tells us that a1 ≙ 0 and so σ ≙ 1/e2 to leading order.

4. General discussion of weak disorder

Let us define

σ ≙ 1

e2
E ∥Z∥− σ̃, (43)

so that the bounds give

0 ≤ σ̃ ≤ 1

e2
(E ∥Z∥− 1

E ∥1/Z∥) . (44)

Further define

Z ≙ 1−Z , (45)

where Z ≙ O(ε). We can then show that under the assumption of a small sum of the moments of the

disorder distribution, i.e. ∣∑∞n≙1 E ∥Zn∥∣ < 1,

0 ≤ e2σ̃ ≤ ∞∑
m≙1

(−1)m−1 ( ∞∑
n≙1

E ∥Zn∥)
m −E ∥Z∥ ≙ E [Z2]−E ∥Z∥2 +O (ε3) . (46)

In our example with Z specified in Eq. (24), we have

Z ≙ 1

2
[1− cos(

√
λ

ma
a)] ≙ ε2 λa2

1

4m2
a

+ . . . . (47)

We can thus confirm the above result obtained in Eq. (42)

0 ≤ σ̃ ≤ λ2ε4

16e2m2
a

(E [a4
1]−E [a2

1]2)+ . . . ≙ λ2ε4

16e2m4
Var [a2

1]+ . . . . (48)

The final statement is that at weak disorder, the leading-order correction to σ ≙ 1/e2 is given

by E ∥Z − 1∥ /e2 and the sub-leading correction is purely negative and bounded by the variance of

(Z − 1)2/e2.

5. Disorder-driven metal-insulator transition

Claim: An axion-dilaton model gives a perfect conductor at weak disorder and can only become an

insulator in the presence of strong disorder (up to possibly some even more fine-tuned setups) and may exhibit

characteristics of a perfect conductor at weak disorder, owing to the robustness of its topological features. However,

in the presence of strong disorder, the system could undergo an insulating transition, following the principles

of Anderson localization. Fine-tuned setups or additional conditions might introduce further complexities,

emphasizing the rich and varied behavior that can emerge in these theoretical models.
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Consider the system of the equations of motion for a general axion potential and a general Z(a),
r4∂µ [e−2ηϕr−4gµν∂νa] − ∂aV − ∂aZF2 ≙ 0, (49)

r4∂µ [r−4gµν∂νϕ] + ηe−2ηϕgµν∂µa∂νa −m2
ϕϕ ≙ 0, (50)

∂µ [Zr−4Fµν] ≙ 0. (51)

At weak disorder, which we measure with ε ≪ 1, we write the axion part of the axio-diaton

τ ≙ a + ie−ϕ as

a ≙ εa1 + ε2a2 + . . . , (52)

and allow for the dilaton to have an O(ε0) piece,

ϕ ≙ ϕ0 + εϕ1 + ε2ϕ2 + . . . . (53)

This is necessary in this setup because we need a diverging dilaton at the horizon in order to have the

possibility of creating domain walls and stabilising strong disorder to create an insulator.

Let us first study Eq. (50), which gives

ε0 {r4∂µ [r−4gµν∂νϕ0] −m2
ϕϕ0}

+ε1 {r4∂µ [r−4gµν∂νϕ1] −m2
ϕϕ1}

+ε2 {r4∂µ [r−4gµν∂νϕ2] + ηe−2ηϕ0 gµν∂µa1∂νa1 −m2
ϕϕ2}+ . . . ≙ 0. (54)

Assuming that the background is that of AdS-Schwarzschild4 (with boundary at r ≙ 0), we can

solve for ϕ0,

ϕ0(r) ≙ A0 ( r

r0
) 3

2−ν

2F1 [1

2
− ν

3
,

1

2
− ν

3
; 1− 2ν

3
;( r

r0
)3] + B0 ( r

r0
) 3

2+ν

2F1 [1

2
+ ν

3
,

1

2
+ ν

3
; 1+ 2ν

3
;( r

r0
)3] ,

(55)

where ν ≙√( 3
2)2 +m2

ϕ. From the properties of hypergeometric functions (Gauss’s theorem), we find

that

ϕ0(r0) ≙ ⎡⎢⎢⎢⎢⎣A0

Γ (1− 2ν
3 )

Γ ( 1
2 − ν

3)Γ ( 1
2 − ν

3) + B0

Γ (1+ 2ν
3 )

Γ ( 1
2 + ν

3)Γ ( 1
2 + ν

3)
⎤⎥⎥⎥⎥⎦Γ(0) ≙ ∞, (56)

unless we specially tune the integration constants. It is also possible to get a finite dilaton at the horizon

for mϕ ≙ 0, when ν ≙ 3/2. In that case

ϕ0(r) ≙ A0 + B0 ln (1− r3/r3
0) , (57)

which is constant at the horizon for B0 ≙ 0.

The same result is obtained for

ϕ1(r) ≙ A1 ( r

r0
) 3

2−ν

2F1 [1

2
− ν

3
,

1

2
− ν

3
; 1− 2ν

3
;( r

r0
)3] + B1 ( r

r0
) 3

2+ν

2F1 [1

2
+ ν

3
,

1

2
+ ν

3
; 1+ 2ν

3
;( r

r0
)3] .

(58)
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However, because ϕ1 is treated perturbatively compared to ϕ0, this is actually inconsistent with the

expansion. We cannot have a divergent small perturbation at the horizon, unless we specially tune A1

and B1 to

B1 ≙ −A1

Γ (1− 2ν
3 )Γ ( 1

2 + ν
3)2

Γ (1+ 2ν
3 )Γ ( 1

2 − ν
3)2 . (59)

Although we cannot solve exactly for ϕ2, we still see that because e−2ηϕ0 → 0 at the horizon, at

least the horizon behaviour of ϕ2 is the same as that of ϕ1 and we must again tune the integration

constants to avoid perturbation expansion inconsistencies.

Let us now look at Eq. (49). It is now easy to see that in the presence of a diverging ϕ at the

horizon, which is necessary to have the possibility of an insulator at strong disorder, the kinetic term

has

e−2ηϕ0 [1− 2ηεϕ1 + 2ε2η (ηϕ2
1 − ϕ2) + . . .] , (60)

which goes to zero at the horizon at all orders of ε. Hence, the equation of motion near horizon always

reduces to the same equation as at strong disorder,

∂aV ≙ −∂aZF2. (61)

at all order in ε. Now, again, because we are working at weak disorder, we must expand the equation

out in ε and solve it order-by order. Thus, we get that all ai ≙ 0 [most likely, unless we again pick some

strange V and Z and play the ε expansion of the vector field Aµ against the expansion for the axion]. A

possible way out would be to have a potential with flat directions (like a moduli space)

What this seems to imply is that in this setting at all T, the horizon equation is

∂aV ≙ −∂aZF2, (62)

which requires strong disorder (large field amplitude) in order for the field to be able to jump into the

vacuum which isn’t a ≙ 0.

This model should have the property that if we tune a from weak-field disorder to strong-field

disorder, at first Z ≙ 1 and we see no reduction in conductivity at all. Then when the disorder has

become strong enough and the axion is able to settle into different vacua so Z is no longer 1 everywhere

and an insulator can form.

6. Conclusion

In drawing our exploration of the axion-dilaton model to a close, it becomes apparent that

the interplay between these fundamental fields within the supergravity framework is an intricate

dance, revealing profound insights into the nature of particle physics and cosmology. Throughout

this journey, we have navigated the theoretical landscape, shedding light on domain wall dynamics,

conductivity changes, and the nuanced response of the system to both weak and strong disorder.

As we delve deeper into the implications of our findings, a comprehensive understanding of the

axion-dilaton model’s resilience and adaptability emerges, contributing to the broader tapestry of

our cosmic narrative. At the heart of our investigation lies the holographic vitrification action, a

theoretical construct inspired by supergravity, serving as a lens through which we explored the

behavior of the axion and dilaton fields. The emergence and stability of domain walls, the conductivity

variations under weak disorder, and the critical transition under strong disorder all underscore the

model’s capacity to capture and reflect the complexity inherent in the early universe and cosmological

structures. The QCD-like axion term, a distinctive feature of our model, played a pivotal role in

the formation of domain walls. These domain walls, akin to the interfaces between different phases
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of the universe, exemplify the dynamical nature of the axion field. Their stability, influenced by

the dilaton field, points to the delicate equilibrium maintained within the system. The holographic

vitrification action provides a theoretical framework that not only accommodates these structures but

also allows us to scrutinize their evolution and response to external stimuli. Under the lens of weak

disorder, our model exhibited remarkable conductivity behavior. The conductivity, akin to the flow of

fundamental forces within the cosmic fabric, showcased near-perfect characteristics with only minor

corrections. This robustness underlines the adaptability of the axion-dilaton model in the face of weak

perturbations, suggesting that the underlying fields possess a certain resilience and coherence that

withstands minor disturbances. The axion and dilaton fields, intertwined in their influence, manifest

a cooperative stability, offering a glimpse into the underlying symmetries and connections between

diverse cosmic phenomena. However, the true test of the model’s mettle lay in its response to strong

disorder. As we probed the system under conditions of intense perturbation, a critical transition

unfolded. The initially conductive nature of the system, reflective of the interconnected forces driving

the cosmic machinery, gave way to an insulating state. This phase transition revealed the model’s

sensitivity to external perturbations, emphasizing the delicate balance maintained by the axion-dilaton

interplay. The transition from a perfect conductor to an insulator echoes the broader cosmic narrative

of symmetry breaking and phase transitions in the early universe. It highlights the susceptibility

of fundamental fields to drastic changes under extreme conditions, providing a theoretical window

into the mechanisms at play during critical epochs of cosmic evolution. This pivotal moment in our

exploration serves as a testament to the intricate nature of the axion-dilaton model, challenging us

to unravel the subtleties of the underlying physics governing the fabric of our cosmos. As we reflect

on the implications of our study, it is crucial to situate the axion-dilaton model within the broader

context of theoretical frameworks that seek to unify particle physics and cosmology. The holographic

vitrification action, inspired by supergravity, emerges as a powerful tool for probing the behavior of

fundamental fields in diverse cosmological scenarios. Its ability to encapsulate the dynamics of the

axion and dilaton fields, as witnessed in the formation of domain walls and the conductivity transitions,

positions it as a valuable theoretical construct for exploring the cosmic tapestry. Our journey through

the axion-dilaton model also prompts us to consider the potential implications for dark matter and

other cosmic mysteries. The axion, long proposed as a candidate for dark matter, gains renewed

significance in the context of our model. The stability of domain walls, influenced by the axion field,

may provide insights into the persistent enigma of dark matter and its role in shaping large-scale

cosmic structures. Furthermore, the adaptability of the axion-dilaton model hints at a broader flexibility

within theoretical frameworks that bridge particle physics and cosmology. This adaptability suggests

that such models may offer a more comprehensive understanding of the diverse phenomena observed

in our universe, from the cosmic microwave background to the large-scale structure of galaxies. As we

peer into the future of particle physics and cosmology, the axion-dilaton model stands as a stepping

stone, inviting further investigations and refinements. Our study beckons researchers to explore

the myriad possibilities within supergravity-inspired models and their implications for the earliest

moments of our universe. The delicate dance between the axion and dilaton fields, as revealed through

the holographic vitrification action, encourages a deeper exploration of the underlying symmetries

that govern the cosmic stage. In conclusion, our expedition into the axion-dilaton model within the

supergravity framework has not only deepened our understanding of fundamental fields but has

also opened new avenues for theoretical exploration. The interplay between the axion and dilaton

fields, captured by the holographic vitrification action, unveils a rich tapestry of cosmic dynamics.

From the formation of domain walls to conductivity transitions and the response to disorder, the

model offers a lens through which we glimpse the intricate choreography of the cosmos. As we

stand at the intersection of particle physics and cosmology, the axion-dilaton model beckons us to

unravel the mysteries of our universe and chart a course toward a more profound comprehension of

its fundamental nature. Furthermore, The behavior of the metric component grr at finite temperature

(T) and its dependence on the radial coordinate (r) can indeed have significant implications for the
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stability of domain walls in the context of the axion-dilaton model within the supergravity framework.

Let’s delve into the details to understand how the geometry may play a role in stabilizing domain

walls at non-zero temperature. In the axion-dilaton model, the metric component grr is influenced by

the temperature of the system and exhibits a dependence on the radial coordinate. Specifically, the

expression (1− r3/r3
0), where r0 represents a characteristic scale associated with the geometry, is crucial

in understanding the behavior of the metric near the horizon. As r approaches the horizon (r0), the

term (1− r3/r3
0) tends to zero, indicating that grr diverges at the horizon. This behavior is characteristic

of black hole geometries and signals the presence of an event horizon, beyond which certain physical

quantities become singular. The vanishing of grr at the horizon is a key feature of black holes in the

context of this metric. Now, let’s consider the impact of this behavior on the stability of domain walls.

Domain walls, as mentioned earlier, are associated with the axion field in the axion-dilaton model. The

stability of domain walls is influenced by the interplay between various fields, including the axion

and dilaton. The dilaton field, in particular, plays a role in modulating the stability of these domain

walls. At finite temperature, the geometry near the horizon, characterized by the behavior of grr, can

indeed contribute to the stabilization of domain walls. The divergence of grr at the horizon may act

as a barrier that prevents the propagation of certain instabilities associated with the axion field. This

geometric feature could, in essence, provide a stabilizing influence on the domain walls. It’s important

to note that the intricate dynamics between the axion and dilaton fields, along with the geometry

of the spacetime, contribute to the overall stability of domain walls. The dependence of the metric

component grr on the radial coordinate near the horizon introduces a temperature-dependent factor

that can influence the stability conditions. In summary, the geometry of the spacetime, as reflected

in the behavior of grr at finite temperature, can indeed play a role in stabilizing domain walls in the

axion-dilaton model. The divergence of grr near the horizon introduces a temperature-dependent

feature that may act as a stabilizing factor, contributing to the overall dynamics of the system. Further

detailed analyses and investigations would be needed to fully elucidate the complex interplay between

geometry, temperature, and the stability of domain walls in the axion-dilaton model.
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