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In this work we show how to complete some Hamilton–Jacobi solutions of linear, nonconserva-
tive classical oscillatory systems which appeared in the literature, and we extend these complete
solutions to the quantum mechanical case. In addition, we obtain the solution of the quantum
Hamilton–Jacobi equation for an electric charge in an oscillating pulsing magnetic field. We
also argue that for the case where a charged particle is under the action of an oscillating mag-
netic field, one can apply nuclear magnetic resonance techniques in order to find experimental
results regarding this problem. We obtain all results analytically, showing that the quantum
Hamilton–Jacobi formalism is a powerful tool to describe quantum mechanics.
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1. Introduction

In 1924 the physicist Max Born put forward for the first time the name “quantum mechanics” in the
literature [1]. In that work, quantum mechanics denoted a theoretical framework of atomic and elec-
tronic motion, which was understood in the same level of generality and consistency as the classical
mechanics laws. Approximately one year after that work, in 1925, the historic paper presented
by Heisenberg and entitled “Quantum-theoretical reinterpretation of kinematic and mechanical
relations” [2] showed a new quantum-theoretical quantity which contains information about the
measurable line spectrum of an atom. Motivated by Heisenberg’s work, Born, Jordan, and Heisen-
berg published the articles “On quantum mechanics” [3] and “On quantum mechanics II” [4], which
were the first comprehensive explanations of quantum mechanics. It is worth mentioning that those
works used a matrix framework.

On the other hand, Dirac independently formulated a consistent algebraic framework for quantum
mechanics [5], where the equations were obtained with no use of matrix theory.

However, it was only in 1926 that the Schrödinger formalism (SF) appeared in the literature. Since
then, day after day, numerous problems linked to quantum mechanics have been analyzed rigorously
in the literature [6–10]. Formal developments have arisen, in particular to deepen comprehension
of quantum fields. Quantum canonical transformations have attracted interest since the incipient
development of the theory about a century ago.

Although the SF is the prevailing framework, alternative formalisms emerged. For instance, the
path integral formulation plays a prominent role in quantum field theory [12].
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The basic postulates of a third version for the study of quantum mechanics have also been proposed,
namely a quantum version of the Hamilton–Jacobi formalism [13], where a better understanding of
the quantum Hamilton–Jacobi theory and its consequences was presented. Moreover, in that work the
authors showed applications of the quantum Hamilton–Jacobi formalism (QHJF) for the calculation
of the propagators of the harmonic oscillator potential and of the same potential with time-dependent
parameters. Here, it is important to highlight that Leacock and Padgett (LP) [14] and, independently,
Gozzi [15] are a few names who have worked this formalism out. For instance, LP developed the
QHJF for the case of conservative systems, where the main feature of their theory is the definition
of the quantum action variable which permits the determination of the bound-state energy levels
without solving the dynamic equation [14]. On the other hand, Castro and Dutra (CD) have obtained
the QHJF through basic postulates similar to the case of the Heisenberg picture [13]. An important
feature in CD’s work is the straightforward equivalence of the QHJF with both the Feynman and
Schrödinger formalisms.

Currently we can find in several areas of physics a considerable amount of work dedicated to
studying the QHJF. Among the different research areas, we can find an interesting connection of
quantum Hamilton–Jacobi theory with supersymmetric quantum mechanics (SUSYQM) [16,17].
In this case, the quantum momenta of supersymmetric partner potentials are connected via linear
fractional transformations. Moreover, in the SUSYQM context, a connection between fractional
and ordinary SUSYQM has been shown by Dauod and Kibler [18]. Another line of investigation
comes from one-dimensional scattering problems in the framework of the QHJF [19]. In addition,
Roncadelli and Schulman solved the quantum Hamilton–Jacobi equation, by a prescription based
on the propagator of the Schrödinger equation [20]. It provided the use of quantum Hamilton–
Jacobi theory, developing an unexpected relation between operator ordering and the density of paths
around a semiclassical trajectory. Related to it, black hole tunneling procedures have been placed as
prominent methods to calculate the temperature of black holes using the Hamilton–Jacobi technique
in the Wentzel, Kramers, and Brillouin (WKB) approximation [21–23]. Various types of black holes
have been studied in the context of tunneling of fermions and bosons as well [21–24]. Tunneling
procedures are used to investigate black hole radiation, by taking into account classically forbidden
paths that particles go through, from the inside to the outside of black holes. Moreover, quantum
WKB approaches were employed to calculate corrections to the Bekenstein–Hawking entropy for
the Schwarzschild black hole [25].

As can be seen in [26], the problem of the electron quantum dynamics in the hydrogen atom has
been modeled exactly by QHJF, where the quantization of energy, angular momentum, and the action
variable originate from the electron complex motion. In addition, the shell structure observed in the
hydrogen atom arises from the structure of the complex quantum potential, from which the quantum
forces acting upon the electron can be uniquely determined.

Moreover, much has been learned regarding the QHJF in recent years, when several developments
have been accomplished in the literature. These include the definability of time parameterization of
trajectories [27], corrections for any soliton equation for which action–angle variables are known [28],
lattice theories [29], gauge invariance in loop quantum cosmology [30], treatment of the relativistic
double ring-shaped Kratzer potential [31], shape-invariant potentials in higher dimensions [32],
application to the photodissociation dynamics of NOCl [33], and Dirac–Klein–Gordon systems
[34].

Furthermore, Vujanovic and Strauss [35] developed a series of calculations using the classical
Hamilton–Jacobi method to study linear nonconservative systems. In order to obtain solutions for
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the cases studied, the authors used an expression for the classical action that contains only the
quadratic term, which reads:

SVS(x, t) = α(t)

2
x2. (1)

Despite the fact that this term does not alter the classical solution, we shall show here that it does
not hold for the quantum mechanical case. In fact, when quantum systems are approached, we shall
study Hamilton’s principal function S given by a polynomial of x, which is written in the form

S(x, t) = α(t)x2

2
+ ξ(t)x + ζ(t). (2)

In fact, the linear term is necessary for the development of the quantum propagator. Hence, this term
cannot be neglected when quantum solutions are regarded. In addition, in order to deal with a more
interesting application from the point of view of QHJF, we will study the problem of an electric
charge in an oscillating pulsed magnetic field [38,39].

This paper is organized as follows. In the next section, we present a complete review of the QHJF
and its basic postulates. In Sect. 3, we show an illustration of the QHJF for the standard case of the
harmonic oscillator. In Sect. 4, we apply the ideas to analyze the driven oscillator case. Section 5
is devoted to the resonance example. In Sect. 6, we show an application of the Hamilton–Jacobi
formalism to the problem related to the quantum dynamics of an electric charge in an oscillating
pulsing magnetic field. We end with some general remarks and conclusions in Sect. 7.

2. A brief review of the Hamilton–Jacobi formalism

In this section we will present a review of the QHJF and its basic postulates. We present a prescription
for obtaining the quantum Hamilton–Jacobi equation from the classical one. At this point, it is
important to remark that this approach is analogous to the Heisenberg prescription, which makes a
link between the Poisson brackets and quantum commutation relations. Here, we follow the work
presented by CD [13], and revisit the QHJF as well.

Let us start by remembering that the Hamilton principal function, or action, Scl, is a generating
function of the canonical transformation (�r, �p) �→ (�r′, �p′), which generates new time-dependent
variables �r′ and �p′ with a null Hamiltonian. In this case, the classical Hamilton–Jacobi equation
reads

H (�r, �∇Scl, t)+ ∂Scl

∂t
= 0, (3)

where �∇Scl = �p. It is worth pointing out that the above classical Hamilton–Jacobi equation provides
a successful form for establishing the equations of motion of a mechanical system.

Following the approach given in [13], where the authors used classical mechanics as a short
wavelength limit of wave mechanics, and by taking into consideration the similarity with the elec-
tromagnetic quantities and their limits to geometrical optics, it was postulated that the quantum wave
amplitude has the form

� = 2−1/2 exp (iS/�) , (4)
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where S is the quantum Hamilton principal function, or complex action, � represents the Planck
constant, and 2−1/2 is a factor introduced for convenience. In order to accomplish the transition
from the classical Hamilton–Jacobi equation to the quantum case, one defines the momentum in the
operatorial form, given by

�pop = �∇S − i� �∇. (5)

Hence the classical momentum is obtained in the limit � → 0, where the commutation relations are
established. Thus, when the Hamiltonian has the standard form

H = �p2

2m
+ V , (6)

one can find, using (3) and (5), the following quantum Hamilton–Jacobi equation (QHJE):

1

2m
( �∇S)2 + ∂S

∂t
+ V = i�

2m
∇2S, (7)

where the Hamiltonian operator coming from (5) was applied in the identity, so that

1

2m

[
�∇S.

(
�

i

)
�∇ − �

2∇2
]

+ 1 = 0. (8)

In the next sections we will show how linear, strictly nonconservative, oscillatory systems with one
degree of freedom may be analyzed within the quantum Hamilton–Jacobi framework. The motivation
for this study is that linear dissipative systems, possessing even one degree of freedom, have not been
analyzed in the context of the quantum Hamilton–Jacobi method, despite their practical, theoretical,
and pedagogical interest. Moreover, using a complete solution of the Hamilton–Jacobi equation, we
find in a more pedagogical form the propagators. In this case, the method does not use path integral
or eigenfunction techniques. Furthermore, our approach avoids the difficulties found in the usual
methods such as finding a recurrence formula to calculate the infinite integrals or manipulating the
special functions that in general appear in the eigenvalue problem.

3. Harmonic oscillator

A particularly important physical system is the harmonic oscillator. There exist a large number of
important physical applications for it, such as the vibrations of the atoms of a molecule about their
equilibrium position, or even an electromagnetic field, for instance. In fact, whenever the behavior
of a physical system in the neighborhood of a stable equilibrium position is studied, one obtains
equations which, in the limit of small oscillations, are those of a harmonic oscillator.

Let us start our study with a straightforward example of the harmonic oscillator. The associated
quantum Hamilton–Jacobi equation is provided by [13]:

∂S

∂t
+ 1

2

(
∂S

∂x

)2

+ ω2x2

2
= i�

2

∂2S

∂x2 . (9)

The substitution of (2) into the QHJE (9) generates a polynomial equation leading to a system of first-
order coupled differential equations for the arbitrary coefficients introduced in (2). The polynomial
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equations can be split into the following set of first-order nonlinear differential equations:

α̇(t)+ α2(t)+ ω2 = 0,

ξ̇ (t)+ α(t)ξ(t) = 0,

ζ̇ (t)+ ξ2(t)

2
− i�

2
α(t) = 0, (10)

yielding the general solutions

α(t) = −ω tan(ωt + c1),

ξ(t) = c2 sec(ωt + c1),

ζ(t) = − c2
2

2ω
tan(ωt + c1)+ i�

2
ln[cos(ωt + c1)] + c3, (11)

where c1, c2, and c3 are arbitrary integration constants. Hence, a complete solution of (1) is given
by

S(x, t) = −ω
2

tan(ωt + c1)x
2 + c2 sec(ωt + c1)x − c2

2

2ω
tan(ωt + c1)+ i�

2
ln[cos(ωt + c1)] + c3.

(12)
It is worth emphasizing that in the limit � → 0, the classical Hamilton principal function is reobtained.
The general solution for the classical case of the Hamilton–Jacobi equation can be obtained from
the constraint ∂S

∂c1
= B, where B is a constant. Furthermore, it is straightforward to verify that the

classical solution is given by

x±(t) = c2 sin(ω0t + c1)

ω0
±
[
− c2

2

ω2
0

− 2B

ω0

]1/2

cos(ω0t + c1). (13)

By analyzing the classical case for Eq. (12), the solution can also be immediately determined by
∂S
∂c2

= B. Thus, in this case the classical solution contains two integration constants, as should be
expected, since the equation of motion is a second-order one.

Moreover, by using Eq. (12), the solution for the problem consists in obtaining the quantum
propagator, by imposing the following boundary condition: [13]

S(x, 0) = �kx. (14)

Therefore, c1 = 0, c2 = �k , and c3 = 0.
The concept of propagators is of great importance in quantum physics, and in Feynman’s formula-

tion, particularly. All the time evolution of a given system may be obtained through the propagators
[13]. They are used mostly to calculate the probability amplitude for particle interactions using
Feynman diagrams.

The propagator can be obtained by considering a physical wave packet

�(x, t) = 1√
2π

∫
dk	(k) exp

[
i

�
Sk(x, t)

]
, (15)

where Sk(x, t) denotes the quantum Hamilton principal function Eq. (12) if the boundary condition

Sk(x, 0) ≡ S(x, 0) = �kx (16)
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is taken into account. Inserting the Fourier transform 	(k) = 1√
2π

∫
dx �(x, 0) exp(−ikx) into

Eq. (15) yields

�(x, t) =
∫

dk K(x, t; x̃, 0) �(x̃, 0) , (17)

where the propagator reads

K(x, t, x̃, 0) = 1

2π

∫
dk exp

{
i

�
[S(x, t)− �kx̃]

}
. (18)

We observe that the constant c2 is related to the term that generates the quantum propagator. It is
important to remark that this constant appears in the linear term of Eq. (2). Hence, we conclude that
the linear term must also compose the principal Hamilton function, in order to construct the quantum
propagator.

By substituting the solution (12) and imposing the initial conditions (16) on the expression of the
propagator and integrating in k , one gets

K(x, t, x̃, 0) =
(

ω

2π i� sin(ωt)

)1/2

exp
{

iω

2� sin(ωt)

[
(x2 + x̃2) cos(ωt)− 2xx̃

]}
. (19)

The quantum propagator can be alternatively constructed [13], by imposing that

K(x, t; x̃, 0) = exp
[

i

�
S(x, t; x̃, 0)

]
, (20)

where S represents the quantum solution of the Hamilton–Jacobi equation.
The propagator must satisfy the condition

lim
t→0+ K(x, t; x̃, 0) = δ(x − x̃), (21)

where δ(x − x̃) represents the Dirac delta function. For our purposes it is useful to employ the

following representation:

δ(x − x̃) = lim
t→0+(πλt)−

1
2 exp

[
−(x − x̃)2

λt

]
. (22)

By using Eqs. (20)–(22), we determine

c1 = π

2
, c2 = ωx̃, c3 = −i

�

2
ln
(

iω

2π�

)
. (23)

By substituting Eq. (23) in Eq. (20), the propagator is reduced to the form presented in (19).
We emphasize that the linear term in S is quite necessary. We are now going to implement this

approach in similar cases which, to our knowledge, have not been taken into account in the literature,
at least from the point of view of the quantum Hamilton–Jacobi formalism.

4. Driven oscillator

Driven harmonic oscillators are damped oscillators further affected by an externally applied force.
The potential of a driven harmonic oscillator can describe many phenomena in physics, such as
superconducting quantum-interference devices [36] and magnetohydrodynamics [37].
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Its classical equation of motion reads

ẍ + ωx2 = h cos(�t), (24)

and the corresponding Lagrangian can be written as

L = 1

2

[(
ẋ − ḟ (t)

)2 − ω2 (x − f (t))2
]

, (25)

where f (t) =
(

h cos(�t)
ω2−�2

)
. The following Hamiltonian is then derived:

H = p2

2
+ ḟ (t)p + ω2

2
[x − f (t)]2. (26)

Hence, the Hamilton–Jacobi equation assumes the form

∂S

∂t
+ 1

2

(
∂S

∂x

)2

−
[

h� sin(�t)

ω2 −�2

]
∂S

∂x
+ 1

2
ω2
[

x −
(

h cos(�t)

ω2 −�2

)]2

= i�

2

∂2S

∂x2 , (27)

and the principal Hamilton function is represented by

S(x, t) = 1

2
α(t) [x − f (t)]2 + ξ(t) [x − f (t)] + ζ(t). (28)

By substituting Eq. (28) into Eq. (27), the quantum Hamilton principal function reads

S(x, t) = −1

2
ω tan(ωt + c1)

[
x −

(
h cos(�t)

ω2 −�2

)]2

+ c2 sec(ωt + c1)

[
x −

(
h cos(�t)

ω2 −�2

)]

− c2
2

2ω
tan(ωt + c1)+ i�

2
ln [cos(ωt + c1)] + c3. (29)

The limit � → 0 leads to the classical case, and the solution is obtained by imposing ∂S
∂c1

= B,
implying that

x±(t) = c2 sin(ωt + c1)

ω
±
[
− c2

2

ω2 − 2B

ω

]1/2

cos(ωt + c1)+
(

h cos(�t)

ω2 −�2

)
. (30)

Our result can lead to the one in [35], with some mathematical manipulations. The above solution
can also be obtained by imposing ∂S

∂c2
= B.

For the quantum case, once again the condition

S(x, 0) = �kx (31)

is imposed, which implies that

c1 = 0, c2 = �k , c3 = �kh

ω2 −�2 . (32)

Remembering that f (t) =
(

h cos(�t)
ω2−�2

)
, and imposing the described conditions in (31) and (32), the

propagator reads

K(x, t, x̃, 0) =
(

ω

2π i� sin(ωt)

)1/2

exp

{
iω

2� sin(ωt)

[((
x − h cos(�t)

ω2 −�2

)2

+
(

x̃ − h cos(�t)

ω2 −�2

)2
)

cos(ωt)− 2
(

x − h cos(�t)

ω2 −�2

)(
x̃ − h cos(�t)

ω2 −�2

)]}
. (33)
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From the initial condition of the second method, the propagator can be obtained if we choose

c1 = π

2
, c2 = ω (x̃ − f (t)) , c3 = −i

�

2
ln
(

iω

2π�

)
, (34)

which leads to the result in (33).

5. Resonances

Resonance occurs when a given system is driven to oscillate by another vibrating system with greater
amplitude at a specific preferential frequency. This occurs with all types of waves, such as mechanical,
electromagnetic, and quantum wave functions.

Let us consider the following equation:

ẍ + ω2x = h cos(ωt). (35)

The Lagrangian reads

L = 1

2

[
ẋ − 1

2
ht cos(ωt)− h

2ω
sin(ωt)

]2

− 1

2
ω2
[

x − ht

2ω
sin(ωt)

]
, (36)

whereas the Hamiltonian is given by

H = 1

2
p2 +

[
1

2
ht cos(ωt)+ ht

2ω
sin(ωt)

]
p + 1

2
ω2
[

x − ht

2ω
sin(ωt)

]2

. (37)

Hence the corresponding quantum Hamilton–Jacobi equation becomes

∂S

∂t
+ 1

2

(
∂S

∂x

)2

+ f (̇t)

(
∂S

∂x

)
+ 1

2
ω2 [x − f (t)]2 = i�

2

(
∂2S

∂x2

)
. (38)

Considering Eq. (28), where f (t) =
(

ht
2ω sin(ωt)

)
, and applying it in Eq. (38), it follows that

S(x, t) = −1

2
ω tan(ωt + c1)

[
x −

(
ht

2ω
sin(ωt)

)]2

+ c2 sec(ωt + c1) [x

−
(

ht

2ω
sin(ωt)

)]
− c2

2

2ω
tan(ωt + c1)+ i�

2
ln [cos(ωt + c1)] + c3. (39)

In the classical case we have the solutions

x±(t) = c2 sin(ωt + c1)

ω
±
[
− c2

2

ω2 − 2B

ω

]1/2

cos(ωt + c1)+
(

ht

2ω
sin(ωt)

)
. (40)

By imposing the condition

S(x, 0) = �kx − �kf (t), (41)

the quantum propagator for the resonance reads

K(x, t; x̃, 0) =
(

ω

2π i� sin(ωt)

)1/2

exp

{
iω

2� sin(ωt)

[((
x − ht

2ω
sin(ωt)

)2

+

+
(

x̃ − ht

2ω
sin(ωt)

)2
)

cos(ωt)− 2
(

x − ht

2ω
sin(ωt)

)(
x̃ − ht

2ω
sin(ωt)

)]}
. (42)
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On the other hand, if we try to construct the propagator from the initial conditions procedure, we
find

c1=
π

2
, c2 = ω [x̃ − f (t)] , c3 = −i

�

2
ln
(

iω

2π�

)
. (43)

With these values, the propagator (20) leads to the form given by Eq. (42).

6. Electric charge in an oscillating pulsed magnetic field

In this section, we show an application of the Hamilton–Jacobi formalism to a problem related to
the quantum dynamics of an electric charge in an oscillating pulsed magnetic field [38]. It becomes
important then to analyze, through a parallel formalism, the validity of the solutions presented, since
the systems can describe experimental measurements in nuclear magnetic resonance techniques [39].

We consider an electric charge e in an oscillating pulsed magnetic field given by

�B(t) = B1 cos(ωt)ı̂ + B2 sin(ωt)ĵ + B0k̂ . (44)

The Lagrangian for a charge in an electromagnetic field reads

L = m�v2

2
+ e

c
�A · �v − eφ(�r) , (45)

where �A = −1
2

(
�r × �B

)
and φ(�r) denotes the scalar potential. The Hamiltonian is usually written as

H = 1

2m

(
�p − e

c
�A
)2 + eφ(�r) , (46)

or explicitly, as

H = p2
x + p2

y + p2
z

2m
+ mγ 2B2

0

8c2 (x2 + y2)+ mγ 2B2
1

8c2

[
z2 + (x sin(ωt)− y cos(ωt))2

]
−mγ 2B0B1

4c2 z(y sin(ωt)− x cos(ωt))+ γB1

2c
cos(ωt)Lx − γB1

2c
sin(ωt)Ly + γB0

2c
Lz + eφ(�r),

(47)

where γ ≡ e
m . Substituting �p = �∇S + �

i and H = − ∂S
∂t yields

1

2m

( �∇S
)2 + mγ 2B2

0

8c2 (x2 + y2)+ mγ 2B2
1

8c2

[
z2 + (x sin(ωt)− y cos(ωt))2

]
−mγ 2B0B1

4c2 z(y sin(ωt)− x cos(ωt))+ γB1

2c
cos(ωt)Lx − γB1

2c
sin(ωt)Ly

+γB0

2c
Lz + eφ(�r)+ ∂S

∂t
= i�

2m
∇2S, (48)

where the Hamilton principal function reads

S(x, y, z, t) = 1

2

[
α1(t)x

2 + α2(t)y
2 + α2(t)z

2]+ ξ1(t)x + ξ2(t)y + ξ3(t)z

+ ζ1(t)xy + ζ2(t)xz + ζ3(t)yz + λ1(t)+ λ2(t)+ λ3(t). (49)
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It is worth realizing that in the limit when � goes to zero we obtain the respective classical Hamilton–
Jacobi equation and solution. In the particular case where B1 = 0, φ(�r) = 0, and α3(t) = ζ1(t) =
ζ2(t) = ζ3(t) = 0, we find Eq. (49) with the Hamilton–Jacobi equation. Thus, the substitution of
(49) into Eq. (48) generates a polynomial equation leading to a set of first-order ordinary differential
equations.

Therefore, after resolving the corresponding set of nonlinear differential equations, the quantum
Hamilton principal function reads

S(x, y, z, t) = −mω tan(ωt + c1)

2
(x2 + y2)+

(σ
m

− c2 tan(ωt + c1)
)

x

+
(σ

m
tan(ωt + c1)+ c2

)
y + i� ln[cos(ωt + c1)] − 1

2m
tan(ωt + c1)

[
c2

2

ω
+ 1

ω

(σ
ω

)2
]

−c2
3t

2m
+ c3z + c4 + c5 + c6. (50)

The solution consists in obtaining the quantum propagator if we impose the following boundary
condition [13]:

S(x, y, z, 0) = �kxx + �kyy + �kzz. (51)

Hence we obtain

c1 = 0, c2 = �ky, c3 = �kz, σ = ω�kx, c4 + c5 + c6 = 0. (52)

Now, using

K(x, y, z, t; x̃, ỹ, z̃, 0) = (2π)−3
∫

d3k exp
{

i

�
[Sk(x, y, z, t)− S(x̃, ỹ, z̃, 0)]

}
, (53)

substituting the solution which is in accordance with the initial conditions imposed into the expression
of the propagator and integrating in k , we arrive at

K(x, y, z, t; x̃, ỹ, z̃, 0) =
(

mω

2π i� sin(ωt)

)( m

2π i�t

)1/2
exp

{
im

2�

[
ω cot(ωt)

(
(x − x̃)2 + (y − ỹ)2

)

+2ω (xỹ − x̃y)+ (z − z̃)

t

2
]}

. (54)

This leads to a two-dimensional oscillator in the xy plane and a free particle in the direction 0z.
On the other hand, the problem of an electric charge in an oscillating pulsed magnetic field can be

approached through SF. In fact, the Schrödinger equation reads

i�
∂ψ

∂t
= −�μ · �B(t)ψ , (55)

where μ is a magnetic moment and is represented, according to Ref. [39], by �μ = γ �L, where �L
represents the angular momentum. Now, we perform a rotation in the reference system where the
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z axis is stationary, namely

x = x̄ cos(δt)− ȳ sin(δt),

y = x̄ sin(δt)+ ȳ cos(δt),

z = z̄. (56)

Hence, the Schrödinger equation reads

i�
∂ψ

∂τ
= −γ

[(
B0 + ω

γ

)
Lz̄ + B1Lx̄

]
ψ . (57)

For an effective static field,

Bef =
(

B0 + ω

γ

)
k̂ + B1ı̂. (58)

Therefore, the possibility suggested by the authors of [38] is not valid for the studied system, although
it is correct for a differential equation of first order.

Rewriting the expression of the magnetic field (44) only with the part oscillating in the x direction,

B(t) = B1 cos(ωt)ı̂, (59)

implies that

�A = B1 cos(ωt)

2
k̂ − B1 cos(ωt)

2
ĵ . (60)

Now, applying this result to Eq. (46), the Hamiltonian reads

H = 1

2m

( �∇p
)2 + mγ 2

8c2 (y
2 + z2)B2

1 cos2(ωt)− γB1 cos(ωt)

2c
Lx + eφ. (61)

Using the Schrödinger equation

i�
∂ψ

∂t
= Hψ , (62)

and the Hamiltonian given by (61), yields

− �
2

2m

(
∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2

)
+ mγ 2

8c2 (y
2 + z2)B2

1 cos2(ωt)ψ

−γB1 cos(ωt)

2c
Lxψ + eφψ = i�

∂ψ

∂t
. (63)

Now we make a rotation in the coordinate system around the x axis (x = x̄) to cancel the angular
momentum operator Lx. Equation (63) then reads

− �
2

2m

(
∂2ψ

∂ x̄2 + ∂2ψ

∂ ȳ2 + ∂2ψ

∂ z̄2

)
+ mγ 2

8c2 (ȳ
2 + z̄2)B2

1 cos2(ωt)ψ

−
[
γB1 cos(ωt)

2c
+ α̇

]
Lx̄ψ + eφψ = i�

∂ψ

∂τ
. (64)
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We choose the arbitrary angle α conveniently to guarantee that the coefficient of the term Lx̄ vanishes
identically, implying that

α̇ = −γB1 cos(ωt)

2c
. (65)

Substituting this value into Eq. (64), we can rewrite it as

− �
2

2m

(
∂2ψ

∂ x̄2 + ∂2ψ

∂ ȳ2 + ∂2ψ

∂ z̄2

)
+ α̇m

2
(ȳ2 + z̄2)ψ + eφψ = i�

∂ψ

∂τ
. (66)

Now, taking the separation of variables

ψ(x̄, ȳ, z̄, τ) = ϕ1(x̄, τ)ϕ2(ȳ, τ)ϕ3(z̄, τ) (67)

yields

i�

(
ϕ̇1

ϕ1
+ ϕ̇2

ϕ2
+ ϕ̇3

ϕ3

)
= − �

2

2m

(
1

ϕ1

∂2ϕ1

∂ x̄2 + 1

ϕ2

∂2ϕ2

∂ ȳ2 + 1

ϕ3

∂2ϕ3

∂ z̄2

)
+ α̇2m

2
(ȳ2 + z̄2)+ eφ. (68)

Making φ(x̄, ȳ, z̄) = φ1(x̄)+ φ(ȳ)+ φ(z̄) = 0, and organizing the terms, it follows that[
�

2

2m

(
∂2ϕ1

∂ x̄2

)
+ i�ϕ̇1

]
1

ϕ1
= Q1, (69)

[
�

2

2m

(
∂2ϕ2

∂ ȳ2

)
+ i�ϕ̇2

]
1

ϕ2
− α̇2m

2
ȳ2 = Q2, (70)

[
�

2

2m

(
∂2ϕ3

∂ z̄2

)
+ i�ϕ̇3

]
1

ϕ3
− α̇2m

2
z̄2 = Q3. (71)

By writing

ϕ3(z̄, τ) = χ3(z̄, τ) exp
(

− iQ3τ

�

)
, (72)

Eq. (71) reads

− �
2

2m

(
∂2χ3

∂ z̄2

)
+ α̇2mz̄2

2
χ3 = i�

∂χ3

∂τ
. (73)

Moreover, by performing the transformation

χ3(z̄, τ) �→ χ3(z̃, T ), z̄ = s(T )z̃, (74)

one obtains

− �
2

2m

(
∂2χ3

∂ z̄2

)
+ mα̇2s2z̃2

2
χ3 = i�μ

(
∂χ3

∂T
− ṡ

s
z̃
∂χ3

∂ z̃

)
, (75)

where μ = dT
dτ .
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We redefine

χ3(z̃, T ) = σ3(z̃, T ) exp[if (z̃, T )], (76)

which, once substituted in the previous equation, yields{
iμ

∂

∂T
+ 1

2ms2

∂2

∂ z̃2 − mα̇2s2z̃2

2
+ 1

2ms2

[
i
∂2f

∂ z̃2 −
(
∂f

∂ z̃

)2
]

+μ�
ṡ

s
z̃
∂f

∂ z̃
− μ�ḟ

}
σ +

{
�

2ms2

(
2i
∂f

∂ z̃

)
− iμ

ṡ

s
z̃

}
∂σ

∂ z̃
= 0. (77)

In addition, making ∂f
∂ z̃ = mμsṡz̃ implies that

f (z̃, T ) = mμsṡz̃2

2
+ fT (T ), (78)

where fT (T ) is an arbitrary function of the rescaled time T . Substituting this function into Eq. (77),
one can rewrite it as{

iμ
∂

∂T
+ 1

2ms2

∂2

∂ z̃2 − μ

2

[
mα̇2s2

μ
− μmṡ2 + d

dT
(mμsṡ)

]
z̃2 + i

2
μ

ṡ

s
− μḟT

}
σ = 0. (79)

Now, we choose the arbitrary function fT (T ) to guarantee that the two last terms on the left-hand
side above are eliminated, by setting

df

dT
= iṡ

2s
. (80)

Integrating this equation yields

fT (T ) = i ln s1/2. (81)

On the other hand, defining

�2 ≡ μ

ms2

d

dT
(mμsṡ)− μ2

(
ṡ

s

)2

, (82)

and substituting Eqs. (81) and (82) into Eq. (79), a compact form is achieved:

μ

{
i
∂

∂T
+ 1

2μms2

∂2

∂ z̃2 − ms2

2μ

[
α̇2 +�2] z̃2

}
σ(z̃, T ) = 0. (83)

Now, making the identification

m0 ≡ ms2μ = const,
ms2

μ
(α̇2 +�2) ≡ m0ω

2
0, (84)

with m = m0, and substituting these values into (83), we obtain

μ

(
i
∂

∂T
+ 1

2m0

∂2

∂ z̃2 − 1

2
m0ω

2
0 z̃2
)
σ(z̃, T ) = 0. (85)
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For this, we make the transformation s = v−1 in (85) so that it can be rewritten as

v̈ + ω2
0v = α̇2

v3 , (86)

and consequently we get

v̈ + ξ2v = 0, (87)

where ξ2 =
(
ω2

0 − α̇2

μ2

)
. In this form the problem has been transformed into a classical harmonic

oscillator with time-dependent frequency. We can particularize this problem by requiring that ξ =
const, thus obtaining the solution

v = A cos(ηT + δ), (88)

so that

μ = α̇(ω2
0 − η2)−1/2, (89)

and

s = A−1 sec(ηT + δ). (90)

Therefore, it is easy to check that the conditions (84) are true and, therefore, the problem is reduced
when a particular case is required.

7. Conclusion

We have studied classical and quantum solutions for harmonic oscillator-like systems, further encom-
passing the driven case and with resonances as well, by using the Hamilton–Jacobi method. For the
quantum case, the propagator allows the study of the time evolution of the system, if we take into
account the Hamilton principal function with a linear term. This term is shown to be essential to
obtain the respective quantum propagators of the systems studied. Therefore, it can be verified
that the Hamilton–Jacobi quantum formalism is an alternative version for the quantum mechanical
formulation, obtaining the classical limit when � → 0.

After that, we computed, through this approach, the propagator for an electric charge in a oscillating
magnetic field. Since we observed that the Schrödinger approach to this problem in the literature
presents a technical flaw, we computed its solutions also through the SF.
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