

Effect of shell closure and N/Z parameters on pre-scission neutron multiplicity

Punit Dubey^{1,*}, A. Gandhi¹, Mahima Upadhyay¹,
 Aman Sharma¹, Mahesh Choudhary¹, Namrata Singh¹,
 Utkarsha Mishra¹, Nitin Dubey¹, and Ajay Kumar^{1†}

¹Department of Physics, Institute of Science,
 Banaras Hindu University, Varanasi - 221005, INDIA

1. Introduction

It is evident from the published research work that the nuclear fusion-fission dynamics critically based on the entrance channel mass asymmetry (α), shell effect and N/Z. To find the impact of these parameters in case of fusion-fission dynamics many researchers have done experimental and theoretical studies [1–8]. In fission dynamics, pre-scission neutron multiplicity (ν_{pre}) is the best way to understand the dependence of these parameters. It was also found in previous study, that with an increase in N/Z ratio of the system, the neutron multiplicity increases [9]. Experimental studies show that neutron multiplicity decreases for the shell closed nucleus comparative to the non shell closed nucleus [10]. In our previous studies, we have observed that nuclear dissipation decreases with an increase in the entrance channel mass asymmetry and increases with an increase in the Coulomb factor ($Z_p Z_t$). It was also noticed that at high excitation energy larger number of neutrons are evaporated which shall stabilize the system against fission [11, 12]. Pre-scission neutron multiplicity also depends heavily on entrance channel mass asymmetry (α), as it was found that less asymmetric entrance channel ($\alpha < \alpha_{BG}$) takes larger formation time than higher asymmetric entrance channel ($\alpha > \alpha_{BG}$) as larger nuclear dissipation was found in less

asymmetric reactions than higher asymmetric reactions [13, 14].

2. Systematics

In our calculation the systematics used by us to find the pre-scission neutron multiplicity ($\tilde{\nu}_{pre}$) is based on Ref. [15]. We have added the shell correction energy δW to excitation energy by using NRV JINR web application.

$$\tilde{E}^* = E^* + \delta W \quad (1)$$

Where \tilde{E}^* is the liquid-drop excitation energy, E^* is the excitation energy and δW is the shell correction which is a function of Z and A. The $\tilde{\nu}_{pre}$ (A, \tilde{E}^*) dependence is described by the expression:

$$\begin{aligned} \tilde{\nu}_{pre}(A, \tilde{E}^*) = & -10.64 + 0.0979A - 0.0154\tilde{E}^* \\ & - 0.000234A^2 + 0.000305A\tilde{E}^* \end{aligned} \quad (2)$$

By using equation (2) we can find ν_{pre} and add error of $\Delta \tilde{\nu}_{pre} = \pm 6\%$ which we have taken from Ref.[13].

TABLE I: Calculated results of $\tilde{\nu}_{pre}$ and $\Delta \tilde{\nu}_{pre}$ at different excitation energy for compound nucleus Rn^{206} .

CN	E*	$\tilde{\nu}_{pre}(A, \tilde{E}^*)$	$\Delta \tilde{\nu}_{pre}(A, \tilde{E}^*)$
Rn^{206}	68.00	2.790	0.1674
	71.70	2.965	0.1780
	79.00	3.312	0.1987

*Electronic address: punitdubey@bhu.ac.in

†Electronic address: atyagi44@yahoo.co.in

TABLE II: Calculated results of $\tilde{\nu}_{pre}$ and $\Delta \tilde{\nu}_{pre}$ at different excitation energy for compound nucleus Rn^{212} .

CN	E*	$\tilde{\nu}_{pre}(A, \tilde{E}^*)$	$\Delta \tilde{\nu}_{pre}(A, \tilde{E}^*)$
Rn^{212}	68.00	2.725	0.1635
	71.70	2.9076	0.1744
	79.00	3.2672	0.1960

TABLE III: Calculated results of $\tilde{\nu}_{pre}$ and $\Delta \tilde{\nu}_{pre}$ at different excitation energy for compound nucleus Rn^{216} .

CN	E*	$\tilde{\nu}_{pre}(A, \tilde{E}^*)$	$\Delta \tilde{\nu}_{pre}(A, \tilde{E}^*)$
Rn^{216}	68.00	3.0107	0.1806
	71.70	3.1976	0.1918
	79.00	3.5660	0.2139

3. Theoretical Studies

In the present work, we have calculated the $\tilde{\nu}_{pre}$ for three different compound systems $\text{Rn}^{206,212,216}$ by using the systematic given by Ref. [15]. In these three systems, the Rn^{212} compound system is a shell closed system ($N=126$). Here, we investigated the effect of N/Z after adding shell correction in all three systems and observed that with an increase in N/Z, $\tilde{\nu}_{pre}$ also increases, this happens when system is away from shell closure. In figure 1, we can clearly see that $\tilde{\nu}_{pre}$ for $\text{Rn}^{212} < \text{Rn}^{206}$ due to shell closure but as we go to higher

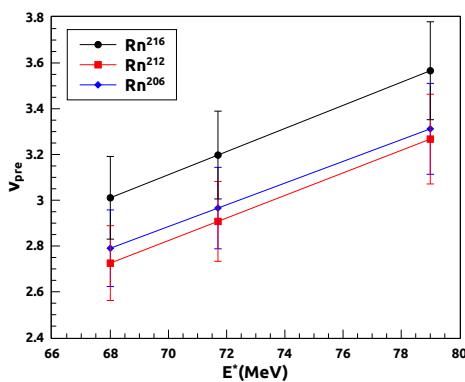


FIG. 1: A plot between pre-scission neutron multiplicity w.r.t Excitation energy for different N/Z of Rn.

N/Z value as $\text{Rn}^{216} > \text{Rn}^{206}$, we found an increase in $\tilde{\nu}_{pre}$ value. Calculations done by us are given in Table I, II and III.

4. Conclusion

From our present study, it is observed that both the shell closure and N/Z play a crucial role in fission dynamics. Neutron multiplicity decreases significantly in case of shell closed nuclei and increases with an increase in N/Z ratio. More experimental data are required to see the combined effects of these parameters. We are expecting to see these effects in our sanctioned beam time at IUAC.

References

- [1] J. Kaur *et al.*, Phys. Rev. C **66**, 034601 (2002).
- [2] J. Kaur *et al.*, Phys. Rev. C **70**, 017601 (2004).
- [3] A. Kumar *et al.*, Phys. Rev. C **68**, 034603 (2003).
- [4] Ajay Kumar *et al.*, Phys. Rev. C **70**, 044607 (2004).
- [5] A. Kumar *et al.*, Nucl. Phys. A **798**, 1 (2008).
- [6] N. K. Rai *et al.*, Phys. Rev. C **98**, 024626 (2018).
- [7] EE Peters *et al.*, Phys. Rev. C **99**, 064321 (2019).
- [8] S. Mukhopadhyay *et al.*, Phys. Rev. C **99**, 014313 (2019).
- [9] W. Ye, Eur. Phys. J. A **18**, 571-575 (2003).
- [10] Varinderjit Singh *et al.*, Phys. Rev. C **86**, 014609 (2012).
- [11] N.K. Rai *et al.*, Phys. Rev. C **100**, 014614 (2019).
- [12] N.K. Rai *et al.*, J. Phys. G: Nucl. Part. Phys. **49**, 035103 (2022).
- [13] Hardev Singh *et al.*, Phys. Rev. C **76**, 044610 (2007).
- [14] Hardev Singh *et al.*, Phys. Rev. C **78**, 024609 (2008).
- [15] E.M. Kozulin *et al.*, Yad. Fiz. **56**, 37-54 (1993).