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Abstract

The primordial cosmic plasma holds a wealth of information about the origins and fundamental

laws of the Universe. By refining our theoretical understanding and observational techniques,

cosmologists have successfully uncovered and verified key principles of the Universe through

the study of this plasma. Investigating the imprints of fundamental physics on the primordial

cosmic plasma remains one of the most effective methods in cosmological research today. This

thesis demonstrates how such approaches extend our understanding of the Universe.

Significant portion of this thesis is related to cosmological recombination, the process dur-

ing which electrons and protons combined for the first time, allowing light to decouple from the

plasma and propagate freely. The thesis details advancements in computations of recombination

history, which are critical for analyzing cosmic microwave background (CMB) anisotropies. Fur-

thermore, it explores how cosmological recombination can be applied to probe the Universe’s

initial conditions, and address tensions in modern cosmological data particularly by studying the

role of fundamental constants such as electron mass in the primordial plasma.

Beyond recombination, this thesis covers a diverse range of cosmological topics, including

cosmic birefringence, the polarized Sunyaev-Zel’dovich effect, 21-cm fluctuations from cosmic

dawn, and magnetic fields generated by primordial perturbations. Each of these topics offers a

unique lens through which the imprints of fundamental physics on the primordial cosmic plasma

can be observed and analyzed, contributing to a deeper understanding of the early Universe.
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1 | Introduction

Cosmology, the study of the Universe’s origin, evolution, and large-scale structure, continuously

advances our understanding of fundamental physics and the cosmos. A deeper understanding of

the primordial cosmic plasma has been pivotal in this progress, as it carries imprints from the

early Universe, offering profound insights into its underlying nature.

The journey into modern cosmology began with the formulation of the Big Bang theory in

the early 20th century. Edwin Hubble’s observations of the expanding Universe [195] provided

critical evidence supporting the notion that the Universe originated from a hot, dense state and

has been expanding ever since. This theory was further reinforced by the discovery of cosmic

microwave background (CMB) radiation, the light freed from the primordial plasma, by Arno

Penzias and RobertWilson in 1965 [290], which provided crucial observational support for the Big

Bang model and laid the groundwork for our understanding of the early Universe. In the decades

following, the Λ Cold Dark Matter (ΛCDM) model emerged as the most successful framework to

describe the Universe’s evolution, combining both dark matter and dark energy [287; 311; 292].

The precision measurements of the CMB by the Planck satellite, launched in 2009, further refined

this model, providing a detailed understanding of the early Universe [14]. The significant strides

made in cosmology have largely been enabled by the study of the primordial cosmic plasma and

the imprints of fundamental physics on this plasma, which continue to provide new avenues to

probe the Universe.

While the concordance ΛCDMmodel of cosmology provides accurate predictions for various
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cosmological observables, it is essential to acknowledge that it may not represent the ultimate

theory we cosmologists seek as it still has some unknowns in itself. Within the realm of this

elegant model lie unresolved mysteries such as properties of dark matter and dark energy, and

significant discrepancies in the analysis of observational data. The dark matter, a kind of mass

not emitting light, was first introduced to explain observational discrepancy between the total

mass of galaxy cluster and the luminous matter in the cluster [380], and also observed rotation

curves of galaxies [319]. Its existence has been further supported by its gravitational lensing

effect and the observations of CMB anisotropies. While the evidences supporting its existence

are robust, we have very little understanding about its properties, which has led efforts to build

theoretical models for dark matter. This includes weakly interacting massive particles (WIMPs),

axions, ultra-light dark matter, and primordial back holes. Their effects on predictions for various

cosmological observables have been studied with currently available cosmological data and also

upcoming future surveys. On the other hand, the dark energy, which has negative pressure, was

proposed to contribute to two thirds of the energy density in the Universe in order to explain

the observed acceleration of the Universe. While there have been observational efforts to unveil

properties of the dark energy since then, we do not know its detailed properties yet. These

two components are what gave the name of current standard cosmological model (Λ implies the

cosmological constant which is a certain type of dark energy, and CDM stands for cold dark

matter). In addition to these two mysterious components, this standard cosmological model is

currently facing a severe challenge of explaining discrepancies in measured values of a very basic

parameter of the model from different cosmological data, the Hubble constant 𝐻0 which is the

expansion rate of the Universe today. This so-called Hubble tension notably stands as one of the

most pressing issues in modern cosmology.

In light of these challenges, a key approach in modern cosmology is the detailed study of the

primordial cosmic plasma, which carries imprints of fundamental physics. These imprints offer

invaluable insights into the early Universe, allowing cosmologists to probe its conditions and
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test theoretical predictions. This thesis explores the intricate relationship between fundamental

physics and cosmological observables, focusing on how the imprints left on the primordial plasma

can be detected and studied to advance our understanding of the Universe.

The rest of this thesis consists of six chapters. Each chapter is based on a single publication.

One significant research area of this thesis is cosmological recombination, a pivotal process that

occurred when the Universe cooled enough for electrons and protons to form neutral hydrogen.

This epoch significantly impacts the CMB, influencing its anisotropies and providing insights

into early Universe conditions. In Ch. 2 we describe the new recombination code hyrec-2, which

holds the same accuracy as the state-of-the-art codes hyrec and cosmorec and at the same time

surpasses the computational speed of the code recfast commonly used for CMB anisotropy

data analyses. Ch. 3 shows how perturbed recombination on small scales due to baryon density

fluctuations can be formulated and used to probe the initial conditions of the Universe using CMB

anisotropy data. Wemodify the standard recombination history to resolve theHubble tension and

discuss its implications in Ch. 5. In addition to cosmological recombination, this thesis explores

various different sub-fields in cosmology. In Ch. 4, we show how CMB anisotropy and galaxy

survey data in near future can be used to probe particle physics models (e.g., axion-like particles)

proposed to describe possible forms of dark matter and dark energy, through their effect on CMB

polarization, so-called cosmic birefringence. Another promising cosmological observable, 21-cm

fluctuations, is considered in Ch. 6 focusing on prospects of such observations in near future

to provide additional information constraining the effective number of relativistic species, hence

probing various light particle models. In Ch. 7, we provide the calculations of the power spectrum

ofmagnetic fields produced by the Biermann-batterymechanism, and show that these can be used

to probe the initial conditions of the Universe.
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2 | A Highly Accurate Sub-Millisecond

Recombination Code: hyrec-2

This chapter is based on N. Lee and Y. Ali-Haïmoud “hyrec-2: a highly accurate sub-millisecond

recombination code” Phys.Rev.D 102, 083517 (2020) [227].

2.1 Introduction

The recombination history of the Universe is a key part of the physics of Cosmic Microwave

Background (CMB) anisotropies, the epoch of the dark ages leading to the formation of the first

stars, as well as the formation of cosmic structure. When exactly free electrons got bound in the

first helium and hydrogen atoms determines, first, the epoch of photon last scattering, thus the

sound horizon. This scale is imprinted into CMB power spectra and the correlation function of

galaxies, and serves as a standard ruler [124]. The abundance of free electrons also sets the photon

diffusion scale, hence the damping of small-scale CMB anisotropies [341]. Lastly, the free-electron

fraction determines the epochs of kinematic and kinetic decoupling of baryons from photons,

hence the thermal history of the gas, as well as the formation of the first stars and structures.

The basic physics of hydrogen recombination were laid out in the late sixties in the semi-

nal works of Peebles [286] and Zeldovich, Kurt, and Sunyaev [378]. Their simple but physically

accurate effective 3-level model was largely unchanged until the late nineties (see Ref. [194] for
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an overview of recombination studies till then), except for improvements in the atomic-physics

calculations of case-B recombination coefficients [291]. In 1999, motivated by the approval of

the WMAP [57] and Planck [359] satellites, Seager, Sasselov & Scott conducted the first mod-

ern, detailed recombination calculation [329], explicitly accounting for the non-equilibrium of

highly excited hydrogen energy levels (but assuming equilibrium amongst angular momentum

substates). They found that the result of their 300-level calculation could be accurately repro-

duced by an effective 3-level atom model, with the case-B recombination coefficient multiplied

by a “fudge factor" 𝐹 = 1.14 [328]. This model was implemented in the code recfast, which was

used for cosmological analyses of WMAP data [173], for which it was sufficiently accurate.

It was realized in the mid-2000’s that the recfast model for hydrogen recombination would

not be sufficiently accurate for the analysis of Planck data, as it neglected a variety of physical

effects that matter at the required sub-percent level of accuracy (see Ref. [316] for an overview

of progress by the end of that decade). On the one hand, the angular momentum substates of

the excited states of hydrogen are out of equilibrium, which leads to an overall slow-down of

recombination [317; 84; 164; 91]. On the other hand, a variety of radiative transfer effects have

to be accounted for, such as feedback from higher-order Lyman transitions, frequency diffusion

due to resonant scattering, and two photon transition from higher levels [97; 215; 96; 117; 87; 158;

175; 86].

While conceptually straightforward, the inclusion of hydrogen’s angular momentum sub-

states presented a considerable computational challenge with the standard multilevel method.

Indeed, Refs. [164; 91] showed that a recombination history converged at the level needed for

Planck requires accounting for at least 100 shells of hydrogen energy levels, corresponding to

about 5000 separate states. The standard multilevel approach required solving large linear sys-

tems at each time step, and even the fastest codes took several hours per recombination history on

a standard single-processor machine [91]. This aspect of the recombination problem was solved

conclusively a decade ago in Ref. [28], where it was shown that the non-equilibrium dynamics of
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the excited states can be accounted for exactly with an effective few-level atom model (in prac-

tice, 4 levels are enough), with effective recombination coefficients to the lowest excited states

accounting for intermediate transitions through the highly excited states (see also [73; 74] for an

independent discovery of themethod). In contrast with recfast’s fudged case-B coefficient, these

effective rates are exact, temperature-dependent atomic physics functions. Once this computa-

tional hurdle was cleared, efficient methods to solve the radiative transfer problem were devel-

oped shortly after, leading to the fast state-of-the-art public recombination codes hyrec [29] and

cosmorec [90], in excellent agreement with one another despite their different radiative transfer

algorithms. The residual theoretical uncertainty of these codes is estimated at the level of a few

times 10−4 during hydrogen recombination, due to the neglect of subtle radiative transfer effects

[27] and collisional transitions [91], whose rates are uncertain.

The accuracy requirement for helium recombination is not as stringent as it is for hydro-

gen, given that it recombines well before the time at which most CMB photons last scattered.

Still, a variety of important radiative transfer effects must be accounted for at the level of accu-

racy required for Planck, such as the photoionization of neutral hydrogen atoms by resonant 584

Å photons and the emission of intercombination-line photons at 591 Å [354; 176; 355; 318; 214].

These effects are included numerically in cosmorec and through fast analytic approximations in

hyrec, accurate within 0.3%, which is sufficient for Planck. In the rest of this work, we focus on

hydrogen recombination. We defer the task of extending our approach to helium to future work.

Both hyrec and cosmorec are interfaced with the commonly used Boltzmann codes camb

[239; 190] and class [233], and are able to compute a recombination history in about half a sec-

ond on a standard laptop. Still, the default code for the cosmological analysis of Planck data has

remained recfast [14], further modified to approximately reproduce the output of hyrec and

cosmorec. The non-equilibrium of angular momentum substates is approximately accounted for

by lowering the case-B coefficient fudge factor from 1.14 to 1.125. Radiative transfer physics are

approximately mimicked by introducing a double-Gaussian “fudge function", correcting the net
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