
Matter without matter: pure gravitational creation

a,b,cHideki Maeda1 and dNaresh Dadhich2

aGraduate School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
bDepartment of Physics, Rikkyo University, Tokyo 171-8501, Japan

cDepartment of Physics, International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo
181-8585, Japan

dInter-University Centre for Astronomy & Astrophysics, Post Bag 4, Pune 411 007, India

Abstract
We obtain a new exact black-hole solution in Einstein-Gauss-Bonnet gravity with a
cosmological constant which bears a specific relation to the Gauss-Bonnet coupling
constant. The spacetime is a product of the usual 4-dimensional manifold with a (n−
4)-dimensional space of constant negative curvature, i.e., its topology is locally Mn ≈
M4 × Hn−4. The solution has two parameters and asymptotically approximates to
the field of a charged black hole in anti-de Sitter spacetime. The most interesting and
remarkable feature is that the Gauss-Bonnet term acts like a Maxwell source for large
r while at the other end it regularizes the metric and weakens the central singularity.
It is a pure gravitational creation including Maxwell field in four-dimensional vacuum
spacetime. The solution has been generalized to make it radially radiate null radiation
representing gravitational creation of charged null dust. This paper is based on the
results in [1].

1 Model and basic equation

Throughout this paper we use units such that c = 1. The Greek indices run μ = 0, 1, · · · , n− 1. We write
action of Einstein-Gauss-Bonnet gravity with a cosmological constant for n ≥ 5,

S =
∫

dnx
√−g

[
1

2κ2n
(R− 2Λ + αLGB)

]
+ Smatter, (1)

where α is the Gauss-Bonnet (GB) coupling constant and all other symbols having their usual meaning.
The GB Lagrangian is given by

LGB = R2 − 4RμνR
μν + RμνρσR

μνρσ. (2)

This form of action follows from low-energy limit of heterotic superstring theory [2]. In that case, α is
identified with the inverse string tension and is positive definite, so we assume α ≥ 0 in this paper. It
should be noted that LGB makes no contribution in the field equations for n ≤ 4.

The gravitational equation following from the action (1) is given by

Gμ
ν ≡ Gμ

ν + αHμ
ν + Λδμ

ν = κ2nT
μ

ν , (3)

where

Gμν ≡ Rμν − 1
2
gμνR, (4)

Hμν ≡ 2
[
RRμν − 2RμαR

α
ν − 2RαβRμανβ + R αβγ

μ Rναβγ

]
− 1

2
gμνLGB. (5)

We consider the n-dimensional spacetime locally homeomorphic to M4 × Kn−4 with the metric,
gμν = diag(gAB, r

2
0γab), A,B = 0, · · · , 3; a, b = 4, · · · , n− 1. Here gAB is an arbitrary Lorentz metric on
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M4, r0 is a constant and γab is the unit metric on the (n − 4)-dimensional space of constant curvature
Kn−4 with its curvature k̄ = ±1, 0. Then Gμ

ν gets decomposed as follows:

GA
B =

[
1 +

2k̄α(n− 4)(n− 5)
r20

]
(4)GA

B

+
[
Λ− k̄(n− 4)(n− 5)

2r20
− k̄2α(n− 4)(n− 5)(n− 6)(n− 7)

2r40

]
δA

B, (6)

Ga
b = δa

b

[
−1

2
(4)R + Λ− (n− 5)(n− 6)k̄

2r20

−α
{
k̄(n− 5)(n− 6)

r20

(4)R +
1
2
(4)LGB +

(n− 5)(n− 6)(n− 7)(n− 8)k̄2

2r40

}]
, (7)

where the superscript (4) means the geometrical quantity on M4.
The decomposition leads to a general result in terms of the following no-go theorem on M4:

Theorem 1 If (i) r20 = −2k̄α(n−4)(n−5) and (ii) αΛ = −(n2−5n−2)/[8(n−4)(n−5)], then GA
B = 0

for n ≥ 6 and k̄ and Λ being non-zero.

The proof simply follows from substitution of the conditions (i) and (ii) in Eq. (6).
These conditions also imply for α > 0, k̄ = −1 and Λ < 0. Hereafter we set k̄ = −1, i.e., the local

topology of the extra dimensions is Hn−4, and obtain the vacuum solution (T μ
ν ≡ 0) satisfying the

conditions (i) and (ii). The governing equation is then a single scalar equation on M4, Ga
b = 0, which

is given by

1
n− 4

(4)R +
α

2
(4)LGB +

2n− 11
α(n− 4)2(n− 5)

= 0. (8)

2 Exact solutions

2.1 Schwarzschild-like solution

We seek a static solution with the metric on M4 reading as:

gABdx
AdxB = −f(r)dt2 +

1
f(r)

dr2 + r2dΣ2
2(k), (9)

where dΣ2
2(k) is the unit metric on K2 and k = ±1, 0. Then, Eq. (8) yields the general solution for the

function f(r):

f(r) = k +
r2

2(n− 4)α

[
1∓

√
1− 2n− 11

3(n− 5)
+

4(n− 4)2α3/2μ

r3
− 4(n− 4)2α2q

r4

]
, (10)

where μ and q are arbitrary dimensionless constants. The solution does not have the general relativistic
limit α → 0. There are two branches of the solution indicated by sign in front of the square root in
Eq. (10), which we call the minus- and plus-branches.

There exists a central curvature singularity at r = 0 as well as the branch singularity at r = rb > 0
where the term inside the square root in Eq. (10) is zero. This solution can represent a black hole depend-
ing on the parameters. The n-dimensional black hole with (n−4)-dimensional compact extra dimensions
is called the Kaluza-Klein black hole. The warp-factor of the submanifold r20 is proportional to GB pa-
rameter α which is supposed to be very small. Thus, compactifying Hn−4 by appropriate identifications,
we obtain the Kaluza-Klein black-hole spacetime with small and compact extra dimensions.

The function f(r) is expanded for r →∞ as

f(r) ≈ k ∓ α1/2μ
√

3(n− 4)(n− 5)
r

± αq
√

3(n− 4)(n− 5)
r2

+
r2

2(n− 4)α

(
1∓

√
n− 4

3(n− 5)

)
. (11)
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This is the same as the Reissner-Nordström-anti-de Sitter (AdS) spacetime for k = 1 in spite of the
absence of the Maxwell field. This suggests that μ is the mass of the central object and q is the charge-
like new parameter.

Further, the solution (10) agrees with the solution in the Einstein-GB-Maxwell-Λ system having the
topology of Mn ≈M2 ×Kn−2 although it does not admit n = 4. The solution is given for n ≥ 5 by

ds2 = −g(r)dt2 +
1

g(r)
dr2 + r2dΣ2

n−2(k) (12)

with

g(r) = k+
r2

2(n− 3)(n− 4)α

[
1∓
√

1 +
8(n− 3)(n− 4)αΛ

(n− 1)(n− 2)
+

8(n− 3)(n− 4)κ2nαM
(n− 2)V k̄

n−2rn−1 − (n− 4)ακ2nQ2

(n− 2)πg2cr2(n−2)

]
,

(13)
where gc is the coupling constant of the Maxwell field, and M and Q are mass and charge respectively [3].
k is the curvature of Kn−2 and a constant V k

n−2 is its surface area on compactifications. The non-zero
component of the Maxwell field reads as

Frt =
Q

rn−2 (14)

representing the coulomb force of a central charge in n-dimensional spacetime.
Thus the parameters μ and q act as mass and “charge” respectively in spite of the absence of the

Maxwell field. The new “gravitational charge” q is generated by our choice of the topology of space-
time, splitting it into a product of the usual 4-spacetime and a space of constant curvature. Thus, the
solution (10) manifests gravitational creation of the Maxwell field, i.e., “matter without matter”.

Clearly the global structure of our solution (10) will be similar to that of the solution (13). Note that
f(0) = k ∓√−q, which produces a solid angle deficit and it represents a spacetime of global monopole.
This means that at r = 0 curvatures will diverge only as 1/r2 and so would be density which on integration
over volume will go as r and would therefore vanish. This indicates that singularity is weak as curvatures
do not diverge strongly enough.

2.2 Vaidya-like solution

It is well known that Schwarzschild spacetime could be made to radiate null (Vaidya) radiation by trans-
forming the metric into retarded/advanced time coordinate and then making mass parameter function of
the time coordinate. It is interesting to note that the same procedure also works here. This solution (10)
can thus be generalized to include Vaidya radiation and it would be given by

gABdx
AdxB = −f̃(v, r)dv2 + 2dvdr + r2dΣ2

2(k), (15)

f̃(v, r) ≡ k +
r2

2(n− 4)α

[
1∓

{
1− 2n− 11

3(n− 5)

+
4(n− 4)2α3/2M̃(v)

r3
− 4(n− 4)2α2q̃(v)

r4

}1/2]
, (16)

where M̃(v) and q̃(v) are arbitrary functions. As expected, this solution is quite similar to the null dust
solution with the topology of M2 ×Kn−2 [4].

This solution manifests gravitational creation of an ingoing charged null dust as another complete ex-
ample of “matter without matter”. Using this solution and the solution (10), we can construct completely
vacuum spacetime representing the formation of a black hole from an AdS spacetime by gravitational
collapse of a gravitationally created charged null dust.

3 Discussions and conclusion

In this paper, we obtained new exact solutions in Einstein-Gauss-Bonnet gravity which offer direct and
purely classical examples of curvature manifesting as matter, i.e., “matter without matter”. The origins
of the Maxwell field and a null dust fluid have been proposed.
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We have found a new Kaluza-Klein vacuum black hole solution (10) of Einstein-Gauss-Bonnet gravity
with topology of product of the usual 4-spacetime with a negative constant curvature space. In this
solution we have brought the GB effects down on four dimensional black hole. This solution manifests
gravitational creation of the Maxwell field and asymptotically resembles a charged black hole in AdS
background. What really happens is that GB term regularizes the metric and weakens the singularity
while the presence of extra dimensional hyperboloid space generates the Kaluza-Klein modes giving rise
to the Weyl charge. This is indeed the most interesting and remarkable feature of the new solution which
needs to be probed further for greater insight and application. The global structure of the solution (10)
depending on the parameters will be shown in the forthcoming paper. Also, we have successfully gener-
alized this solution into Vaidya-like metric on M4. That solution manifests gravitational creation of an
ingoing charged null dust.

Now we explain the origin of “matter without matter”. For the metric in the form of Eq. (9), one
just requires one second-order differential equation (8) to determine the metric fully and it will in general
have two constants of integration. On the other hand, the trace of the Einstein-Gauss-Bonnet equation
(3) is given by

−n− 2
2

R− (n− 4)α
2

LGB + nΛ = κ2nT. (17)

The basic equation (8) for gAB resembles this equation with T = 0 and Λ = Λeff defined by

Λeff ≡ − C(2n− 11)
α(n− 4)2(n− 5)

, (18)

where C is some positive constant. Thus, Eq. (8) will generate a Maxwell-like charge as well as a null
dust because vanishing trace is characteristic of a null dust and the Maxwell field in four dimensions.
That is why it is not surprising that there occur Maxwell-like additional gravitational charge or a gravi-
tationally created null dust in our solution. It is noted that this happens only in four dimensions because
electromagnetic stress tensor is not trace-free in other dimensions.

In the original Kaluza-Klein theory, the origin of the Maxwell field is the extra-dimensional component
of the five-dimensional metric with which the five-dimensional vacuum Einstein equation is decomposed
into the four-dimensional Einstein-Maxwell equation [5]. Here on the other hand, we have given com-
pletely different and novel generation of Maxwell field as well as of null dust fluid in the framework
of Einstein-Gauss-Bonnet gravity. This is a partial success to explain origin of all matter in our four-
dimensional universe. Since our mechanism works only for trace free matter fields, creation of other
matter, especially with non-zero trace remains a very important open problem. Undoubtedly its solution
will have a great bearing on our understanding of spacetime and matter.
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