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Abstract

This dissertation reviews the formulation of twisted supersymmetric Yang–Mills (SYM) theories

in the continuum and also on the lattice. We focus on the maximally supersymmetric twisted

SYM theories in four and two dimensions. The one-loop renormalization of the lattice four-

dimensional SYM theory is investigated. We also study the thermal phase structure of the

maximally supersymmetric SYM in two dimensions and possible black hole transitions in its

dual gravitational theory, using numerical simulations of the lattice theory.
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Preface

Implementation of supersymmetric Yang–Mills (SYM) theories on the lattice is an
old problem in lattice field theory. It has resisted solution until recently, when new ideas
drawn from topological field theories have been brought to bear on the question. The
result has been the creation of a new class of lattice gauge theories, called “twisted SYM
theories,” in which the lattice action is invariant under one or more supersymmetries.
The twisted SYM theories on the lattice are local, free of doublers, and also possess exact
gauge-invariance. In principle, they form the basis for a truly non-perturbative definition
of the continuum SYM theories. In this dissertation, we attempt to present a variety of
lattice studies of sixteen supercharge SYM theories in four and two dimensions.

To make this dissertation as self contained as possible, we have included a set of
introductory topics, such as constructing SYM theories in various dimensions, general
properties of topological field theories, and their connections to SYM theories and lattice
formulations, geometric structure of the resultant lattices, and simulation algorithms
employed in the numerical studies to obtain some interesting results.

In Chapter 1, we introduce the four-dimensional N = 4 SYM theory. We begin
with various conditions that can be imposed on Dirac fermions in various dimensions to
maintain the symmetry between the number of fermion and boson degrees of freedom in
a given Yang-Mills theory coupled to spin-1/2 fermions. The conditions lead to Weyl,
Majorana, and Weyl–Majorana fermions. The method of dimensional reduction is intro-
duced next, and then this method is applied to the ten-dimensional N = 1 SYM theory
to obtain the N = 4 SYM theory in four dimensions.

In Chapter 2, we introduce topological field theories, BRST invariance in gauge the-
ories, and then focus on topological field theories of Witten type, which are the focus of
our interest.

In Chapter 3, we show how to twist the supersymmetries of SYM theories with ex-
tended supersymmetries. The method of maximal twisting is discussed next, and then
its relevance to the lattice constructions is explained. We give the twisted versions of
the two-dimensional N = 2 and four-dimensional N = 4 SYM theories, exposing the
nilpotent scalar supersymmetries appearing as a consequence of the twist. We also write
down the action and scalar supersymmetries of these theories.

In Chapter 4, we introduce supersymmetric lattices, their geometric structure, ori-
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entation of field operators, the lattice covariant derivatives, connection to Dirac-Kähler
fermions, and discretized actions of the twisted SYM theories.

After these introductory Chapters, in Chapter 5, we present a part of the original
work, where the N = 4 SYM is studied at one-loop on a four-dimensional lattice. The
lattice formulation under consideration retains one exact supersymmetry at non-zero
lattice spacing. This feature, combined with gauge-invariance and the large point group
symmetry of the lattice theory, can be used to show that that the only counterterms that
appear at any order in perturbation theory correspond to renormalizations of existing
terms in the bare lattice action. The analysis shows that no mass terms are generated
at any finite order of perturbation theory. The one-loop renormalization coefficients are
extracted by examining the fermion and auxiliary boson self-energies at one-loop. They all
exhibit a common logarithmic divergence that can be absorbed by a single wavefunction
renormalization. This finding implies that, at one-loop, only a fine tuning of the finite
parts is required to regain full supersymmetry in the continuum limit.

In Chapter 6, we write down the algorithms to simulate the twisted SYM theories,
as a prelude to the numerical study presented in the following Chapter. The Rational
Hybrid Monte Carlo (RHMC) algorithm is presented, and the overall structure of the
C++ code to simulate these theories is detailed.

In Chapter 7, we discuss the results of numerical simulations of (1+1)-dimensional
sixteen supercharge SU(N) Yang–Mills theory at finite temperature and compactified on
a circle. For largeN , this system is thought to provide a dual description of the decoupling
limit of N coincident D1-branes on a circle. It has been proposed that, at large N , there
is a phase transition at strong coupling related to the Gregory-Laflamme (GL) phase
transition in the holographic gravity dual. In a high temperature limit, there was argued
to be a deconfinement transition associated with the spatial Polyakov loop, and it has
been proposed that this is the continuation of the strong coupling GL transition.

On the lattice, this theory is investigated for SU(3) and SU(4). The study of the
time and space Polyakov loops in the lattice SYM theory show evidence supporting this
transition. In particular, at strong coupling, the transition has the parametric dependence
on coupling predicted by gravity. The GL phase transition temperature is estimated from
the lattice data which, interestingly, is not yet known directly in the gravity dual.

We end with a set of conclusions and recommendations for the directions of future
research.



Chapter 1

N = 4 Super Yang–Mills Theory

Supersymmtric Yang–Mills (SYM) theories belong to an interesting class of quantum
field theories. Among them, the four-dimensional SYM theory with sixteen supersymme-
tries is a very special quantum field theory in its own right. This theory exhibits many
interesting properties. For zero theta angle, the four-dimensional SYM theory with a
simple gauge group has just a single dimensionless coupling parameter, the gauge cou-
pling parameter g. The classical version of this theory exhibits superconformal invariance,
owing to the dimensionless nature of its coupling parameter. Its beta function vanishes
identically to all orders in perturbation theory and the same is believed to be true at
the nonperturbative level. This theory, therefore, is finite, with no renormalization at
all. Its coupling parameter does not run, unlike most gauge theories, different values of g
really give different theories, rather than being transmuted to a change of scale. Another
interesting property exhibited by this theory is exact electric-magnetic duality that is,
the invariance under the interchange of electric and magnetic quantum numbers, and also
the replacement of g with 4π/g. That is, the theory with a weak gauge coupling g is fully
equivalent to the one with a strong gauge coupling 4π/g.

In 1997, Maldacena proposed [1] a new duality relating Type II supergravity (a certain
low energy limit of string theory) in (d + 1)-dimensional anti-de Sitter (AdS) space and
d-dimensional super conformal theories. This is known as the holographic principle.
The N = 4 SYM theory takes part in the most successful realization of holographic
principle. This theory can be realized as the gauge theory living on a D3-brane of Type
IIB superstring theory in AdS5 × S5 space.

The action of N = 4 SYM theory was given for the first time in 1977 in [2, 3] within
the framework of string theory toroidal compactifications. This theory has the maximal
amount of supersymmetry - sixteen real supercharges - for a four-dimensional field theory
with global supersymmetry.

There exist different types of construction schemes for four-dimensional N = 4 SYM
theory. We follow the original work of Brink, Schwarz and Scherk [2], where it is con-
structed by dimensional reduction from ten dimensions.

1



2 Chapter 1. N = 4 Super Yang–Mills Theory

1.1 Yang–Mills theory with fermions

We are interested in constructing a Yang–Mills theory coupled to spin-1
2
fermions in d

spacetime dimensions with an additional symmetry: the number of bosonic and fermionic
degrees of freedom are equal. We will call this symmetry supersymmetry.

A massless gauge potential in d dimensions has d−2 on-shell real degrees of freedom.
A Dirac spinor in d dimensions has 2[d/2] on-shell real degrees of freedom, where [d/2]
represents the integral part. These two numbers do not match in any dimension. In
order to demand the additional symmetry, we will have to reduce the number of fermionic
degrees of freedom by requiring the spinor to satisfy some supplementary conditions.

Let us consider a Yang–Mills theory coupled to massless spin-1
2
particles on a d-

dimensional flat Minkowski space R1,(d−1) with signature gmn = diag(−,+,+, · · · ,+),
where m,n = 0, 1, 2, · · · , (d− 1). The metric is

ds2 =
∑

m,n

gmndx
mdxn = −(dx0)2 + (dx1)2 + · · ·+ (dx(d−1))2 . (1.1)

The theory has a gauge field Am taking values in the real Lie algebra of a compact
gauge group G. The gauge field takes values in anti-hermitian matrices, in the adjoint
representation of G. The covariant derivative Dm is

Dm = ∂m + Am , (1.2)

The corresponding curvature Fmn is

Fmn = [Dm, Dn] = ∂mAn − ∂nAm + [Am, An] . (1.3)

We add a fermionic term to the d-dimensional Yang–Mills action. The fermions are
contained in a Dirac spinor λ taking values in the Lie algebra of G.

The action is

S = Tr

∫
ddx

(
− 1

4
FmnF

mn + iλΓmDmλ
)
, (1.4)

where Γm are the d-dimensional gamma matrices. Since anti-hermitian matrices generate
the Lie algebra in our case, the trace Tr is negative definite.

We examine the dimensions in which the action (1.4) permits the extra symmetry
- supersymmetry - between the gauge bosons and the fermions without the addition of
other fields. The requirement of same number of bosonic and fermionic degrees of freedom
is essential for field theories that transform as linear representations of supersymmetry.
Since the spinor degrees of freedom grow faster than that of gauge bosons, we will reduce
the number of spinor degrees of freedom by imposing some additional conditions on the
fermions. Before we choose those conditions, a familiarization with spinor representations
in arbitrary dimensions would be useful.

1.2 Spinors in higher dimensions

The Lorentz group, the symmetry group of Minkowski space, admits finite-dimensional
representations. Spinors appear as fields that transform under finite-dimensional repre-
sentations of the Lorentz group.



1.2 Spinors in higher dimensions 3

We use the language of Clifford algebras to discuss the spinor representations in d
dimensions. A Clifford algebra is a set of matrices (we call them gamma matrices)
satisfying the anticommutation relations:

{Γm,Γn} = 2gmn , (1.5)

where m,n = 0, 1, · · · (d− 1).
Given such a set of matrices, we see that the following antisymmetric matrices,

Σmn = − i

4
[Γm,Γn] = −Σnm , (1.6)

satisfy the commutation relations of the Lorentz group generators:

i[Σmn,Σsr] = ηnsΣmr + ηmrΣns − ηnrΣms − ηmsΣnr . (1.7)

The matrices Σmn give a d-dimensional representation of the Lorentz algebra. They are a
set of antisymmetric tensors transforming according to the d-dimensional Lorentz vector
representation of SO(1, d− 1). They act on the space of fields called Dirac spinors. The
algebra generated by Σmn yield the spinor representation of SO(1, d− 1).

The d-dimensional representation of the Lorentz algebra generated by Σmn is not
always an irreducible representation. To see if a given representation is reducible or not,
we need to consider separately the case where d is an odd or even dimension.

We begin with the construction of gamma matrices in even dimensions, d = 2k + 2,
where k = 1, 2, · · · . We group the gamma matrices into a set of raising and lowering
operators [4, 5]

u±0 =
1

2
(±Γ0 + Γ1) , (1.8)

u±a =
1

2
(Γ2a ± iΓ2a+1) , (1.9)

where a = 1, · · · , k. These operators satisfy the following anticommutation relations:

{u+i , u−j } = δij , i, j = 0, 1, · · · , k (1.10)

{u+i , u+j } = {u−i , u−j } = 0 , (1.11)

along with the conditions:

(u+i )
2 = (u−i )

2 = 0 . (1.12)

We can let u−i operators act repeatedly on any spinor state to reach a spinor |ξ〉 annihilated
by all u−i ’s

u−i |ξ〉 = 0, for all i . (1.13)

Now we can let the creation operator u+i act on |ξ〉, at most once each, in all possible
ways to obtain a spinor representation. The spinor states obtained in that way are given
in table 1.1.
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states |ξ〉 u+i |ξ〉 u+i u
+
j |ξ〉 · · · (u+k u

+
(k−1) · · ·u+0 )|ξ〉

number 1 k + 1 k+1C2 · · · 1

Table 1.1: Spinor states and their corresponding numbers.

The total number of states is

1 + (k + 1) + k+1C2 + · · ·+ 1 =
k+1∑

n=0

k+1Cn = 2k+1 = 2d/2 . (1.14)

This representation has dimension 2k+1. The spinor representation is given by

|s0s1 · · · sk〉 = (u+k )
sk+

1
2 · · · (u+0 )s0+

1
2 |ξ〉 , (1.15)

where each of si is ±1
2
. The |ξ〉 we started with contains all si = −1

2
.

The matrix elements of Γm can be derived from the definitions and the anticommu-
tation relations by taking the |s0s1 · · · sk〉 as a basis.

The generators Σ2i,2i−1 form a commuting set. We consider the operator

Si ≡ Σ2i,2i−1 = u+i u
−
i − 1

2
. (1.16)

The basis vectors |s0s1 · · · sk〉 defined above form simultaneous eigenstates of all the Si’s
with eigenvalues si,

Si|s0s1 · · · sk〉 = si|s0s1 · · · sk〉 . (1.17)

The half-integer eigenvalues show that this is a spinor representation. The spinors form
the 2k+1-dimensional Dirac representation of the Lorentz algebra SO(1, 2k + 1). For
example, in d = 4, the states | ± 1

2
,±1

2
〉 form a four component Dirac spinor.

Noting that increasing d by two doubles the size of Dirac matrices, we can give an
iterative expression for gamma matrices in even dimensions starting in d = 2.

The gamma matrices in d = 2 are:

Γ0 =

(
0 1
−1 0

)
, Γ1 =

(
0 1
1 0

)
. (1.18)

Then in d = 2k + 2 with k = 1, 2, · · · we have,

Γm = γm ⊗
(

−1 0
0 1

)
, m = 0, · · · , d− 3 , (1.19)

Γ(d−2) = I⊗
(

0 1
1 0

)
, (1.20)

Γ(d−1) = I⊗
(

0 −i
i 0

)
, (1.21)

with γm the 2k × 2k Dirac matrices in d − 2 dimensions and I the 2k × 2k identity. The
2×2 matrices act on the index sk, which is added in going from 2k to 2k+2 dimensions.

For representations in odd dimensions, we need to add a new gamma matrix Γd+1 to
the Γm matrices. Let us define Γd+1 in the following section.
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1.2.1 Weyl spinors

Since the generators Σmn are quadratic in the gamma matrices, the spinor states |s0s1 · · · sk〉
with even and odd numbers of +1

2
s do not mix. This indicates that the Dirac represen-

tations in even dimensions are reducible representations of the Lorentz algebra.
We define a new gamma matrix:

Γd+1 = i−kΓ0Γ1 · · ·Γd−1 , (1.22)

which has the properties:

(Γd+1)
2 = 1, {Γd+1,Γ

m} = 0, [Γd+1,Σ
mn] = 0 . (1.23)

All the Dirac spinor states are eigenstates to Γd+1

Γd+1|s0s1 · · · sk〉 = ±|s0s1 · · · sk〉 , (1.24)

with eigenvalue +1 for even numbers of si = +1
2
and −1 for odd ones.

Since Γd+1 commutes with the generators of the Lorentz algebra Σmn cannot furnish
an irreducible representation of SO(1, d− 1). The Dirac representation, let us denote it
by S, breaks down into two 2k dimensional irreducible representations S+ and S−. These
representations are called Weyl (or chiral) representations, and they can be obtained by
projecting out the two subspaces using Γd+1. We define a projection operator:

P
± =

1

2
(I± Γd+1) . (1.25)

The Lorentz generators and representation now split into two parts:

Σ±
mn = P

±Σmn, S
± = P

±
S . (1.26)

The spinors obtained in this way are called Weyl spinors.
In d = 4, the Dirac representation is the familiar four-dimensional one, which separates

into two two-dimensional Weyl representations distinguished by their eigenvalue under
the chirality operator Γ5.

4Dirac = 2+ 2′ . (1.27)

Here we have labeled a representation S by its dimension (in boldface). In d = 10, the
representations are:

32Dirac = 16+ 16′ . (1.28)

To get representations in odd dimensions, d = 2k + 3, we simply add Γd+1 to the
gamma matrices for d = 2k + 2. The set of creation and annihilation operators is the
same as that of d = 2k+2. This is now an irreducible representation of the Lorentz algebra
because Σmd anticommutes with Γd+1. Thus, there is a single spinor representation of
SO(1, 2k + 2), which has dimension 2k+1. There is no chirality in odd dimensions.

For k even, the Weyl irreducible representations are equivalent to complex conjugates
of each other. While for k odd each Weyl representation is equivalent to its own complex
conjugate. The Weyl representations can only be real for k = 1 (mod) 4 and must be
pseudo-real for k = 3 (mod) 4.

The Lorentz generators Σmn in odd dimensional case furnish an irreducible repre-
sentation of the Lorentz group by themselves. In each odd dimension, the fundamental
spinor representation is either real or pseudo-real.
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1.2.2 Majorana spinors

The above construction of the irreducible representations of gamma matrices shows that,
in even dimensions, d = 2k+2, the irreducible representations are unique up to a change
of basis. That is, for any set of gamma matrices {Γm} and {Γm′} both satisfying the
Clifford algebra, there exists a nonsingular matrix M , such that

Γm =MΓ′
mM

−1, for all m = 0, 1, · · ·d− 1 . (1.29)

Thus, the matrices (Γm)∗ and −(Γm)∗ satisfy the same Clifford algebra as Γm. This
implies that the Dirac representation is its own conjugate in even dimensions.

We can impose a condition that relates the spinor state |ξ〉∗ to |ξ〉. This condition
must be consistent with Lorentz transformations and so must have the form:

|ξ〉∗ = B|ξ〉 , (1.30)

with B, a nonsigular matrix satisfying

BΣmnB−1 = −(Σmn)∗ . (1.31)

Such a condition, called the Majorana (or reality) condition, is consistent only if BB∗ = 1.
Using the reality and anticommutation properties of the gamma matrices, one finds

B∗B = (−1)k(k+1)/2 or (−1)k(k−1)/2 . (1.32)

Thus, a Majorana condition is possible only if k = 0 or 3 (mod) 4 for the first case, and
for k = 0 or 1 (mod) 4 for the second case. If k = 0, both conditions are possible, but
they are physically equivalent, being related by a similarity transformation.

The Majorana condition on a Dirac spinor λ is:

λ = Cλ
T
, (1.33)

where C is the charge conjugation matrix. It transforms the Lorentz representation
matrices in the following way:

CΣmnC−1 = −ΣmnT . (1.34)

1.2.3 Weyl–Majorana spinors

Imposing a Majorana condition on a Weyl spinor requires the Weyl spinor representation
to be conjugate to itself. For k odd, which is d = 0 or 4 (mod) 8, it is therefore not
possible to impose both the Majorana and Weyl conditions on a spinor: one can impose
one or the other. Precisely for k = 0 (mod) 4, which is d = 2 (mod) 8, a spinor can
simultaneously satisfy the Majorana and Weyl conditions.

We can have Majorana spinors in d = 2, 3, 4, 8, 9, 10, and Weyl spinors in d =
2, 4, 6, 8, 10. For the cases d = 4, 8, while one can, in principle, impose a Majorana
condition, this condition is incompatible with the Weyl condition and, thus, there are no
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d Majorana Weyl Weyl–Majorana min. rep.

2 yes self yes 1
3 yes - - 2
4 yes complex - 4
5 - - - 8
6 - self - 8
7 - - - 16
8 yes complex - 16
9 yes - - 16
10 yes self yes 16

Table 1.2: We can impose various conditions on SO(1, d − 1) Dirac spinors in various
dimensions. A dash indicates that the condition cannot be imposed. For the Weyl
representation, it is indicated whether these are conjugate to themselves (self) or to each
other (complex). The smallest representation in each dimension, counting the number of
real components, is given in the final column.

d Am λD λM λW λMW

3 1 2 1 - -
4 2 4 2 2 -
6 4 8 - 4 -
10 8 32 16 16 8

Table 1.3: Conditions on spinor degrees of freedom in various dimensions.

Weyl–Majorana spinors for d = 4, 8. For d = 2, 10, we can impose both Majorana and
Weyl conditions, that is, we have Weyl–Majorana spinors. The Weyl–Majorana spinors
in d = 2 and d = 10 have particular importance because of their relevance to string
theory.

Imposing a Majorana or Weyl condition on the spinor, though, reduces its degrees of
freedom, each by a factor of one half. Starting with d = 3, the various possibilities for
matching the degrees of freedom of a gauge field Am to those of Dirac λD, Majorana λM ,
Weyl λW and Weyl–Majorana λMW spinors are shown in table 1.3.

Note that in d > 10 there are no solutions to our matching problem on fermion-gauge
boson degrees of freedom. That is, d = 10 is the highest dimension in which we can have
a SYM action (on a flat spacetime without adding extra fields).

1.3 Super Yang–Mills theory in ten dimensions

The SYM action in ten dimensions has the form

S = Tr

∫
d10x

(
− 1

4
FmnF

mn + iλΓmDmλ
)
, (1.35)
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where Fmn is the ten-dimensional curvature, m,n = 0, 1, · · · , 9; λ is a Weyl–Majorana
spinor (it is known as a gaugino) with its 8 degrees of freedom matching with those of
the ten-dimensional gauge field Am. The Dirac spinor in ten dimensions has 32 degrees of
freedom. This can be reduced to 16 by imposing the Weyl condition (decomposing λ in
to chiral and antichiral parts λ± by applying the projection operator P±). Imposing the

Majorana condition λ = Cλ
T
on this Weyl spinor further reduces the number of degrees

of freedom down to 8. Thus we obtain a Weyl–Majorana spinor with 8 degrees of freedom
matching with those of the gauge field.

The action (1.35) is invariant under a set of transformations of the fields, called the
supersymmetry transformations

δSAm = iαΓmλ , (1.36)

δSλ = ΣmnF
mnα , (1.37)

where the constant spinor field parameter α is a single Weyl–Majorana spinor parameter-
izing the supersymmetry transformations. This is referred to as N = 1 supersymmetry.
In d = 10, there are 16 real supercharges corresponding to these transformations.

The symbol δS stands for the supersymmetric variation. For a generic field Φ, it
means:

δSΦ =
16∑

a=1

[ǫaQa,Φ} , (1.38)

where Qa are the sixteen supersymmetries. The symbol [A,B} denotes the graded com-
mutator AB − (−1)|A||B|BA. For a field X , we have |X| = 1 when it is fermionic and
|X| = 0 when it is bosonic.

1.4 Dimensional reduction to four dimensions

We are interested in constructing N = 4 SYM theory in four dimensions. To obtain this
theory, we dimensionally reduce the ten-dimensional N = 1 SYM theory down to four
dimensions.

1.4.1 The method of dimensional reduction

Let us consider compactifying one spatial dimension of R1,(d−1) on a circle of radius R,
that is,

R
1,(d−1) −→ R

1,(d−2) × S1. (1.39)

The coordinates xm, m = 0, 1, · · · , (d − 1) of R1,(d−1) decompose into xµ of R1,(d−2) and
the compactified spatial dimension y of S1. The limit R → 0, in which the compactified
dimension shrinks to zero size, is called ‘dimensional reduction’. To understand what
happens to spacetime fields under this action, we begin with the simplest case of a
complex scalar field ϕ with periodic boundary conditions on S1. This field has the
Fourier expansion:

ϕ(xµ, y) =
∑

n∈Z

ϕn(x
µ)
einy/R√
2πR

. (1.40)
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The kinetic part of the action for this field becomes:

S
(d)
KE =

∫
ddxmϕ†

(
2(d) −m2

)
ϕ

=

∫
d(d−1)xµ

∫
dyϕ†

(
2(d−1) +

∂2

∂y2
−m2

)
ϕ

=

∫
d(d−1)xµ

∑

n∈Z

ϕ†
n(x

µ)
(
2(d−1) −m2 − n2

R2

)
ϕn(x

µ) . (1.41)

The Fourier modes ϕn(x
µ) acquire curvature dependent masses m2 +n2/R2. In the limit

R → 0, the modes ϕn for n 6= 0 become infinitely massive. It would cost an infinite
amount of energy to excite such modes, and they therefore decouple from the theory.
The only mode that survives in this limit is the zero mode ϕ0, with the kinetic action:

S
(d−1)
KE =

∫
d(d−1)xµϕ†

0

(
2(d−1) −m2

)
ϕ0 . (1.42)

We can extend the method of dimensional reduction to more than one space dimensions.
Consider compactification on a torus Tk = S1 × S1 · · ·S1, k times, with each circle of
radius R. The spacetime becomes:

R
1,(d−1) −→ R

1,d−1−k × T
k . (1.43)

The Lorentz group splits in the following way:

SO(1, d− 1) → SO(1, d− 1− k)× isometries on T
k . (1.44)

The representations of the fields also take new forms. The covariant derivative, Dm =
∂m + Am, acting on the zero mode of a field simply reduces to Dµ for m = µ. The
components of the covariant derivative in the reduced directions, Di for i = 1, · · · , k,
acting on a zero mode is just Ai on the mode. The gauge field components in the reduced
dimensions, Ai i = 1, · · ·k, become a collection of scalar fields.

In the limit R → 0, the isometries on Tk become the rotations on Rk, and we have
the splitting:

SO(1, d− 1) → SO(1, d− 1− k)× SO(k) . (1.45)

A spinor field decomposes into direct sums of representations of SO(1, d−1−k) because
of the tensor product structure of the Clifford algebra. The Lorentz group splitting is the
same as in (1.45).

1.4.2 From N = 1, d = 10 SYM to N = 4, d = 4 SYM

Dimensional reduction of ten-dimensional N = 1 SYM theory down to four dimensions
leads to an N = 4 SYM with the same number of supersymmetries.

The Lorentz group SO(1, 9) splits according to

SO(1, 9) → SO(1, 3)× SO(6) . (1.46)
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We will also be using the notation of Spin group, the double cover of the Lorentz group,
in the later sections. The double cover splits according to

Spin(1, 9) → Spin(1, 3)× Spin(6) ≈ Spin(1, 3)× SU(4) . (1.47)

Dimensional reduction of the theory on a six dimensional torus T6 gives rise to a
multiplet of four-dimensional fields possessing an additional SO(6) ∼ SU(4) global sym-
metry. This internal rotational symmetry is known as the R-symmetry, SOR(6), of the
dimensionally reduced theory.

After dimensional reduction, the ten-dimensional gauge field reduces to a four dimen-
sional real vector Aµ, µ = 0, 1, 2, 3, transforming under the SO(1, 3) symmetry. The
reduced components of the gauge field Ai, i = 1, 2, · · · , 6 become six real scalars. The
SOR(6) becomes an internal symmetry mixing between these scalars. They transform as
the second rank complex self-dual 6 of SU(4).

The Clifford algebra splits up as follows:

Γµ = γµ ⊗ I8, Γi ≈ γpq = γ5 ⊗
(

0 ρpq
ρpq 0

)
, (1.48)

where γµ, µ = 0, 1, 2, 3, are the ordinary 4× 4 gamma matrices, and the 4× 4 ρ matrices,
with p, q = 1, 2, 3, 4, are given by

(ρpq)rs = ǫpqrs, (ρpq)rs =
1

2
ǫpqklǫklrs , (1.49)

and the chirality matrix Γ11, in terms of our usual γ5 is:

Γ11 = Γ0 · · ·Γ9 = γ5 ⊗ I8 . (1.50)

Finally, the ten-dimensional charge conjugation matrix is related to the four dimen-
sional matrix C by

C10 = C ⊗
(

0 I4

I4 0

)
. (1.51)

Imposing both Majorana and Weyl conditions on the Dirac spinor results in the
structure

λ =




Lχs

Rχ̃s


 , (1.52)

where L = 1
2
(I + γ5) and R = 1

2
(I − γ5); s = 1, 2, 3, 4; and χ̃s = CχsT . We have four

left-handed and four right-handed (Weyl) spinors.
The spinor index 16 separates into (2, 4) + (2, 4) under SO(1, 3)× SO(6). The ten-

dimensional spinor becomes four Weyl spinors.
Thus the dimensionally reduced action is

S =

∫
d4xTr

(
− 1

4
FµνF

µν − 1

2
DµAiD

µAi +
1

4
[Ai, Aj]

2
)

− i

2
Tr (λΓµDµλ+ iλΓi[Ai, λ]) . (1.53)
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The supersymmetry transformation laws take the following form after dimensional
reduction

δAµ = −iαΓµλ , (1.54)

δAi = −iαΓiλ , (1.55)

δλ =
(1
2
FµνΓ

µν +DµAjΓ
µj +

i

2
[Ai, Aj]Γ

ij
)
α . (1.56)



Chapter 2

Topological Field Theory

Supersymmetric fields theories naively break supersymmetry when they are discretized
on a lattice. Topological field theories provide a crucial insight into establishing the com-
patibility between SYM theories and lattice discretization. Certain supersymmetric field
theories with extended supersymmetries can be discretized on a lattice while preserving
at least one supersymmetry. The continuum limit of these discretized theories turn out
to have a structure similar to that of topological field theories. In this Chapter we briefly
introduce a class of topological field theories and show how their structure is compatible
with discretization on the lattice.

As the name suggests, topological field theories are characterized by observables (cor-
relations functions) which depend only on the topology (global features) of the space on
which these theories are constructed. The non-dependence on local features implies that
the observables of topological field theories are independent of the metric of the space on
which they are defined.

The origin of topological field theories goes back to the work of Schwarz and Wit-
ten. In 1978, Schwarz showed [6] that Ray-Singer torsion1 could be represented as the
partition function of a certain quantum field theory. In 1982, the work of Witten [7] pro-
vided a framework for understanding Morse theory2 in terms of supersymmetric quantum
mechanics. These two field theory constructions represent the prototype of all known
topological field theories.

There are two general classes of topological field theories: they are known as Witten
and Schwarz type. In Witten type topological field theories, the classical action is trivial
(zero or a topological invariant). In Schwarz type theories, classical actions are non-
trivial. The prototype example of a Witten type theory is the Donaldson theory3; the
best known example of Schwarz type theory is the Chern-Simons theory.

1Ray-Singer torsion is a particular topological invariant of Riemannian manifolds.
2Morse theory is a method to determine the topology of a manifold from the critical points of only

one suitable function on the manifold.
3Donaldson theory is the study of smooth 4-manifolds using gauge theory techniques.

12
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2.1 Yang–Mills theory and BRST invariance

Let us begin our brief description of topological field theory focusing only on Witten type
theory, as only this type eventually leads to a discretization on the lattice.

We look at a conventional nonabelian field theory with gauge symmetry. The best
example is Yang–Mills theory in four dimensions. The classical action is a combination
of gauge field Lagrangian and Dirac Lagrangian. It is:

Sc =

∫
d4xTr

(
− 1

4
FµνF

µν + ψ(ΓµDµ −m)ψ
)
, (2.1)

where the trace is over the generators of the gauge group G and the fermion multiplet ψ
belongs to an irreducible representation of G. The field strength is:

FA
µν = ∂µA

A
ν − ∂µA

A
ν + fABCABµA

C
ν , (2.2)

where fABC are the structure constants of G. The covariant derivative is defined in terms
of the representation matrices TA by

Dµ = ∂µ + AAµT
A (2.3)

The gauge-fixed (quantum) action after Faddeev-Popov gauge-fixing is:

Sq = Sc +

∫
d4xTr

( 1

2ξ
(∂µAAµ )

2 + cA(−∂µDAC
µ )cC

)
, (2.4)

where ξ is a gauge parameter, and c and c are the Faddeev-Popov ghost and anti-ghost
fields.

The Faddeev-Popov ghost fields serve as negative degrees of freedom to cancel the
effects of unphysical time-like and longitudinal polarization states of gauge bosons Aµ,
and thus make the gauge theory a complete interacting theory.

There is a beautiful formal tool to implement this cancellation, known as the BRST
formulation [8, 9].

Let us rewrite the gauge-fixed action by introducing a new commuting scalar field BA

to expose the the symmetry associated with the BRST technique:

Sq = Sc +

∫
d4xTr

(
− ξ

2
(BA)2 +BA∂µAAµ + cA(−∂µDAC

µ )cC
)
. (2.5)

The new field BA is not a normal propagating field, as it has a quadratic term without
derivatives. These type of fields, which appear in the functional integral part but have no
independent dynamics, are called auxiliary fields. We can eliminate them by using the
equations of motion. We could also get rid of the dependence on B by integrating it in
a functional integral with a standard Euclidean measure [dB]. This would bring us back
to (2.4), the Faddeev-Popov gauge-fixed action.

The BRST symmetry has a continuous parameter that is an anticommuting number.
Let us denote it by ǫ (we call this the BRST parameter), and consider the following
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infinitesimal transformation of the fields in the action:

δAAµ = ǫDAC
µ cC (2.6)

δψ = iǫcATAψ (2.7)

δcA = −1

2
ǫfABCcBcC (2.8)

δcA = ǫBA (2.9)

δBA = 0 (2.10)

The BRST transformation above is a global symmetry of the gauge-fixed action for any
value of the gauge parameter ξ.

The BRST transformation has one more remarkable feature, which is a natural conse-
quence of its anticommuting nature. Let QΦ be the BRST transformation of the generic
field Φ of the theory:

δΦ = ǫQΦ . (2.11)

Then the BRST variation of QΦ vanishes:

Q2Φ = 0 . (2.12)

That is, the BRST operator Q is nilpotent.
The BRST operator gives a precise relation between the unphysical gauge boson po-

larization states and anti-ghosts as positive and negative degrees of freedom. We can
use the principle of BRST symmetry to remove the unphysical gauge boson polariza-
tions in nonabelian gauge theories. The complete quantum action, Sq, which comprises
the classical action Sc together with the necessary gauge-fixing and ghost terms, is, by
construction, Q-invariant.

The change in gauge field AAµ involves the ghost field cA. In the infinitesimal gauge
symmetry (Yang–Mills symmetry), transformation for AAµ given by AAµ → AAµ − (Dµθ)

A

we can replace the gauge parameter −θA by the ghost field cA. That is, gauge-invariant
quantities are also BRST-invariant. We also see that all observables are given by BRST-
invariant expressions, since all observables in a gauge theory must be gauge-invariant.

With the BRST transformations, we can write:

Sq = Sc +Q
∫
d4x

[
cA
(
∂µAAµ − ξ

2
BA

)]
. (2.13)

We can show that the vacuum expectation value of QO for any (not necessarily Q
invariant) functional O is zero. We write:

〈O〉 =

∫
[dA][dc][dc] O(A, c, c)e−Sq(A,c,c) . (2.14)

Let us rename the variables of integration in the following way:

AA
′

µ = AAµ + δAAµ , (2.15)

cA
′

= cA + δcA , (2.16)

cA
′

= cA + δcA . (2.17)
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where δ = ǫQ is the BRST variation with ǫ an arbitrary Grassmann number. The vacuum
expectation value of O becomes:

〈O〉 =

∫
[dA′][dc′][dc′] O(A′, c′, c′)e−Sq(A′,c′,c′) . (2.18)

Assuming that the measure of integration is invariant, which it should be for consistency
of the theory, we get the vacuum expectation value of O:

〈O〉 =

∫
[dA][dc][dc] (O + δO)e−Sq−δSq ,

= 〈O〉+ 〈δO〉 , (2.19)

since δSq = 0. The change δO is the BRST variation of the operator O. We can thus
write the above equation as

〈QO〉 = 0 . (2.20)

2.2 Introducing topological field theory

Now that we are familiar with the basics of BRST quantization of gauge theories, we can
move on to introducing topological field theories. We define a topological field theory as
follows [10]:

A topological field theory consists of:

(a.) A collection of fields Φ (which are Grassmann graded) defined on a Riemannian
manifold (M, g),

(b.) A nilpotent operator Q, which is odd with respect to the Grassmann grading,

(c.) Physical states defined to be Q-cohomology classes,

(d.) An energy-momentum tensor which is Q-exact, i.e.,

Tαβ = QVαβ(Φ, g) , (2.21)

for some functional Vαβ of the fields and the metric.

The collective field content of the theory Φ includes the gauge field, ghosts, and
multipliers. The theory has local gauge symmetry, and, as we briefly discussed before in
the case of Yang–Mills, we can construct a BRST type operator Q that is nilpotent. We
denote the variation of any functional O(Φ) as:

δO = QO . (2.22)

The physical Hilbert space is defined by the condition:

Q |phys〉 = 0 . (2.23)

Furthermore, a physical state of the form:

|phys〉 = |phys〉+Q|χ〉 (2.24)
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is equivalent to |phys〉, for any state |χ〉. A state is called Q-closed if it is annihilated by
Q, while a state is called Q-exact if it is of form Q|χ〉. Thus the physical Hilbert space
splits into different equivalence classes called Q-cohomology classes.

We take Q to be metric independent, which is the simplest situation to deal with, also
the best choice of connecting SYM theories with global supersymmetries. For a theory
defined on some manifold M , with a metric gαβ , the energy-momentum tensor Tαβ is
defined by the change in the action under an infinitesimal deformation of the metric:

δgSq =
1

2

∫

M

dnx
√
gδgαβTαβ . (2.25)

We assume that the functional measure in the path integral is both Q-invariant and
metric independent.

We now consider the change in the partition function:

Z =

∫
[dΦ]e−Sq , (2.26)

under the infinitesimal change in the metric:

δgZ =

∫
[dΦ]e−Sq(δgSq) ,

=

∫
[dΦ]e−Sq

(
− 1

2

∫

M

dnx
√
gδgαβTαβ

)
,

=

∫
[dΦ]e−Sq

(
− 1

2

∫

M

dnx
√
gδgαβQVαβ

)
.

Let us denote:

χ = −1

2

∫

M

dnx
√
gδgαβVαβ . (2.27)

Thus, we have

δgZ =

∫
[dΦ]e−SqQχ = 〈Qχ〉 = 0 . (2.28)

Thus, the partition function Z is independent of metric deformations. It depends not
on the local structure of the manifold, but only on global properties. That is, Z is a
topological invariant.

We can now move on to finding other metric independent correlation functions in the
theory. Let us consider the vacuum expectation value of an observable O(Φ):

〈O〉 =
∫
[dΦ]e−SqO , (2.29)

and look for the conditions that are sufficient for this expectation value to be a topological
invariant, that is, for δg〈O〉 to be zero.

Proceeding as before, we find:

δg〈O〉 =
∫

[dΦ]e−Sq(δgO − δgSq · O) . (2.30)
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Assuming that O enjoys the properties:

δgO = QR and QO = 0 , (2.31)

for some R, we have that

δg〈O〉 = 〈QR〉+ 〈Q(χO)〉 = 0 . (2.32)

Now, it is clear that if O = QO′, for some O′, we automatically have 〈O〉 = 0. Thus
BRST invariant operators that are not Q-exact are topological invariants if they satisfy
the condition δgO = QR.

In the case of Witten type theories, the complete quantum action Sq, which comprises
the classical action plus all the necessary gauge-fixing and ghost terms, can be written
as a BRST commutator, i.e.,

Sq = QV , (2.33)

for some functional V (Φ, g) of the fields, and Q is the nilpotent BRST charge.
By using the Q-exact nature of the action, we can prove that the partition function Z

and the above class of topological invariant correlators are also exact at the semi-classical
level. Let us introduce a dimensionless parameter β to rescale the action Sq → βSq and
then consider the variation of the partition function under a change in β:

δβZ = −
∫

[dΦ]e−βSqSqδβ

= −
∫

[dΦ]e−βSq(QV ) δβ = 0 . (2.34)

This shows that Z is independent of β, as long as β is non-zero4. We can evaluate the
partition function in the large-β limit. Such a limit corresponds to the semi-classical
approximation, in which the path integral is dominated by fluctuations around the clas-
sical minima. In Witten type theories, such an approximation is exact. We can also
establish the semi-classical exactness of the topologically invariant correlation functions
in a similar way.

It should be noted that topological field theories do not admit dynamical excitations.
That is, these theories have no propagating degrees of freedom. In Witten type theories,
the BRST operator Q plays the role of a supersymmetry charge as well. The classical
action for Witten type theories is:

Sc = 0 , (2.35)

or a topological invariant. This action admits a large amount of topological shift sym-
metry:

AA
′

µ = AAµ + ǫAµ . (2.36)

From the structure of the topological shift symmetry, we can see that each bosonic field
has a Q-superpartner. We have defined our theory by the requirement that physical
states are annihilated by Q. Hence, the superpartners are interpreted as ghosts, leading

4Setting β to zero is not allowed, as the path integral requires a damping factor.
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to a total of zero degrees of freedom. The energy of any physical state in these theories
is zero, and, hence, there are no physical excitations.

Thus, the number of degrees of freedom in a Witten type topological field theory
and a conventional supersymmetric field theory are quite different. There are no physical
degrees of freedom at all in Witten type theories. This may seem a little strange since from
what we have described above topological field theories are also supersymmetric theories
in their own right with supersymmetry charge Q. If we think of them as topological field
theories, they have to satisfy the requirement that they have no degrees of freedom, while,
on the other hand, if we think of them as supersymmetric field theories, we require them
to have both bosonic and fermionic states. These two requirements do not contradict with
each other if we look at these theories from the point of view of the so-called twisting
of the supersymmetry. (We will describe the details of twisting in Chapter 3.) In the
context of the lattice supersymmetry constructions, we are strongly dependent on this
view point.

We can construct topological field theories from SYM theories through the twisting
process. The zero degrees of freedom restriction would then be equivalent to a projection
to the vacuum states of the supersymmetric gauge theory. Once Q is chosen, we can
change the physical interpretation of the supersymmetric gauge theory in the following
way to make it a topological field theory: We restrict our interest to Q-invariant path
integrals, observables, and states, and we consider anything of the form QO, for any
operator O, to be trivial. Thus, the interesting observables or states lie in the cohomology
groups of Q. Theories obtained after these restrictions are topological field theories.

Since we will be interested in dynamical excitations of the (twisted) supersymmetric
gauge theories, we will not impose these restrictions on path integrals, observables, and
states, but treat the theory as merely a twisted version of the original supersymmetric
theory that exposes a nilpotent supersymmetry explicitly.

2.3 Constructing a topological field theory

The original construction of topological quantum field theory by Witten [11] showed that
Donaldson theory can be realized as a four-dimensional “twisted” N = 2 SYM theory.
There are different approaches to deriving the action of Witten’s theory and a topological
field theory in general. We briefly describe them below. We will be interested in the third
method, the method of twisting.

2.3.1 Gauge-fixing topological shift symmetry

Beaulieu and Singer [12], and Brooks, Montano and Sonnenschein [13] noted that Witten’s
theory can be derived by gauge-fixing the local transformation

δAAµ = θAµ , (2.37)

where AAµ is a gauge field in the adjoint representation. The gauge-fixing has two steps:
BRST gauge-fixing to expose fermionic symmetries and Yang–Mills gauge-fixing of the
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gauge field. They started with a classical action that is BRST and Yang–Mills gauge-
invariant. The set of classical actions that satisfy these conditions are the trivial classical
action Sc = 0 and actions that are topological invariants (such as the theta term).

The gauge-fixing condition that leads to Witten’s theory corresponds to gauge field
configurations with vanishing instanton curvature,

F+
µν = Fµν + F̃µν = 0 . (2.38)

A series of topological gauge-fixing steps generate a set of ghosts and ghost for ghost
fields, leading to Witten’s N = 2 SYM action in four dimensions [11].

2.3.2 Quantization through Batalin-Vilkovisky procedure

The basic idea here [14] is to regard the instanton equation F+
µν = 0 as arising from a

suitable classical action involving a linear combination of the F+
µν and an auxiliary self-

dual field Gµν . The equation of motion for Gµν becomes the Langevin equation for the
system. This theory has an on-shell reducibility. Quantizing the theory with this on-shell
reducibility requires us to make use of the Batalin-Vilkovisky quantization procedure [15].
The result is the quantum action of N = 2, d = 4 SYM theory given by Witten [11].

2.3.3 Twisting the supercharges of Yang–Mills theory

There is yet another way to understand the origin of the action given in [11]. This is the
most useful way for us in the context of lattice supersymmetry. The motivation here is
to obtain the (scalar) BRST supercharge by “twisting” a set of conventional (spinorial)
supercharges. After twisting, we obtain an action that bears a formal similarity to that
of Witten’s four-dimensional N = 2 SYM theory. The twisting procedure can obviously
be applied to various classes of SYM theories with extended supersymmetries.

It should be noted that, it is most natural to use Euclidean signature in constructing
topological quantum field theories. Twisting of the supersymmetries does not work well
in Lorentz signature in any event.



Chapter 3

Twisted Super Yang–Mills Theories

In Chapter 2 we briefly mentioned that we can twist the supersymmetries of SYM
theories to derive topological field theories. Since topological field theories are most nat-
urally related to Euclidean signature, we will be focusing on SYM theories on Euclidean
spacetime. Our interest in constructing SYM theories on the lattice also require these the-
ories to have a flat Euclidean signature. Although twisting does not work well in Lorentz
signature, we can usually return to Lorentz signature, if the theory is constructed on a
manifold of type M = R×W , by simply taking Lorentz signature on R.

We are specifically interested in the method of twisting, as it provides a way of study-
ing a class of SYM theories on a flat Euclidean spacetime lattice. All SYM theories do
not admit twisting; only SYM theories with extended supersymmetries (N > 1) undergo
twisting. Among the set of extended SYM theories, we focus on a special class of SYM
theories that can be maximally twisted.

In Chapter 1, we showed that SYM theories can be constructed only in certain space-
time dimensions. The theories we construct in that way are N = 1 SYM theories. We
can construct SYM theories with extended supersymmetries through the method of di-
mensional reduction. In table 3.1, we show how a set of SYM theories with extended
supersymmetries can be obtained through the dimensional reduction of a set of N = 1
theories in higher dimensions. Here (a, a) represents left and right-handed supersymme-
tries.

Theories with extended supersymmetries in d dimensions contain a (Euclidean) space-
time rotation group SO(d) and an R-symmetry group, which we denote by GR. Super-
symmetric theories typically have global chiral symmetries that do not commute with
the supercharges. They are called “R-symmetries.” These symmetries turn out to play a
crucial role in twisting. We are interested in the full twist of the Lorentz group - called
maximal twisting. Construction of a manifestly supersymmetric d-dimensional Yang–
Mills theory through twisting requires the R-symmetry group to contain SO(d) as a
subgroup. That is, there should exist a nontrivial homomorphism from the Euclidean
Lorentz group SO(d)E to the R-symmetry group GR. In table 3.2 we list a set of Eu-

20
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N = 1, d = 10 N = 1, d = 6 N = 1, d = 4
↓ ↓ ↓

N = 2, d = 6 N = 2, d = 4 N = 2, d = 3
↓ ↓ ↓

N = 4, d = 4 N = 4, d = 3 N = (2, 2), d = 2
↓ ↓

N = 8, d = 3 N = (4, 4), d = 2
↓

N = (8, 8), d = 2

Table 3.1: Dimensional reduction of a set of N = 1 SYM theories and their daughter
theories in lower dimensions. Here (a, a) represents left- and right-handed supersymme-
tries.

Theory Lorentz symmetry R-symmetry Maximal twist

d = 2, N = 2 SO(2) SO(2)× U(1) Yes
d = 2, N = 4 SO(2) SO(4)× SU(2) Yes
d = 2, N = 8 SO(2) SO(8) Yes
d = 3, N = 1 SO(3) U(1) No
d = 3, N = 2 SO(3) SO(3)× SU(2) Yes
d = 3, N = 4 SO(3) SO(7) Yes
d = 4, N = 1 SO(4) U(1) No
d = 4, N = 2 SO(4) SO(2)× SU(2) No
d = 4, N = 4 SO(4) SO(6) Yes

Table 3.2: Euclidean SYM theories with symmetry groups and possibilities of maximal
twist.

clidean SYM theories with their Lorentz and R-symmetries, and the existence of maximal
twist in each case.

The constraint on the size of R-symmetry group excludes the (twisted) lattice for-
mulation of some interesting class of theories, such as N = 2 SYM (the Seiberg-Witten
theory) in four dimensions or generic N = 1 supersymmetric QCD theories.

The well known N = 4 SYM in four dimensions can be twisted in three different ways
[16, 17, 18] but only one of them, introduced by Marcus [18], undergo maximal twisting
and, thus, leads to a lattice construction of this theory. The other two twists cannot be
implemented on a lattice in a gauge covariant way.

The twists of three-dimensional N = 4 and N = 8 and two-dimensional N = (8, 8),
N = (4, 4) theories are presented by Blau and Thompson [19].
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3.1 Twisting in d dimensions

In this section, we briefly review the maximal twists of extended SYM theories in the
continuum formulation on Rd. From the list we created above we see that the R-symmetry
group possess an SO(d)R subgroup for six of the theories. The theories that allow maximal
twisting have the property:

SO(d)E × SO(d)R ⊂ SO(d)E ×GR . (3.1)

To construct the twisted theory, we embed a new rotation group SO(d)′ into the diagonal
sum of SO(d)E × SO(d)R, and declare this SO(d)′ as the new Lorentz symmetry of the
theory. This is called the twisted rotation group.

The details of twist construction are slightly different in each case. We focus on
the general idea of twisting first and then go on to the special cases of interest in later
sections. Let us assume that a fermionic field, which is a spacetime spinor, is in the
spinor representation of the R-symmetry group SO(d)R as well1. After twisting, the
fermions become integer spin representations of the twisted rotation group SO(d)′, since
the product of two half-integer spins is always an integer spin. The fermions still preserve
their Grassmann odd nature, but they are now irreducible antisymmetric tensor fields of
the twisted rotation group. They can be expressed as a direct sum of scalars, vectors,
anti-symmetric tensors, and other higher p-forms.

The bosons of the theory, Grassmann even fields, transform as vectors d under the
SO(d)′ - the gauge bosons Vµ transform as (d, 1), and the scalars Bµ transform as (1,d)
under the SO(d)E×SO(d)R. If there are more than d scalars in the untwisted theory (for
example, N = 4, d = 4 theory has six scalars), they become either 0-forms or d-forms
under SO(d)′.

It is clear now why we have used the the name maximal twist for this type of twisting.
The twisting procedure involves the twisting of the full Lorentz symmetry group instead
of twisting a subgroup of it. The four dimensional N = 2 theory can only admit a half
twisting as its R-symmetry group is not as large as the Lorentz rotation group SO(4)E.
The other two theories, N = 1 in d = 4 and N = 1 in d = 3 do not admit a nontrivial
twisting as there is no nontrivial homomorphism from their Euclidean rotation group to
their R-symmetry group.

The supersymmetries also take new forms under the twisted rotation group. They
also transform like twisted fermions, in integer spin representations of the twisted rotation
group. The scalar component Q of the twisted supersymmetries is nilpotent

Q2 = 0 . (3.2)

The twisted superalgebra implies that the momentum Pa is now the Q-variation of some-
thing. That is, it is Q-exact. This fact renders it plausible that the entire energy mo-
mentum tensor may be Q-exact in twisted theories. This, in turn, implies that the entire
action of the theory could be written in a Q-exact form S = QΛ. (In some cases, for
example, N = 4 in d = 4 case, the twisted action is a sum of Q-exact and Q-closed

1It is the spin group Spin(d) to be more precise, but using SO(d) will also lead to same results.
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terms.) The subalgebra Q2 = 0 of the twisted supersymmetry algebra does not produce
any spacetime translations. We can use this fact to carry the twisted theory easily onto
the lattice.

On a flat Euclidean spacetime, the twisted theory is merely a rewriting of the physical
theory, and, indeed, possesses all supersymmetries of the physical theory. The twisted
SYM theory can be made topological by interpreting the scalar supercharge Q as a
BRST operator. Then the observables of the physical theory are restricted only to a set
of topological observables, appropriately defined correlators of the twisted operators.

Although the twisted formulation of supersymmetry goes back to Witten [11] in the
topological field theory construction of four-dimensional N = 2 SYM theory in the con-
text of Donaldson invariants, this formulation had been anticipated in earlier lattice work
using Dirac-Kähler fields [20, 21, 22, 23, 24]. The precise connection between Dirac-Kähler
fermions and topological twisting was found by Kawamoto and collaborators [25, 26, 27].
They observed that the 0-form supercharge that arises after twisting is a scalar that
squares to zero and constitutes a closed subalgebra of the full twisted superalgebra. It is
this scalar supersymmetry that can be made manifest in the lattice action, even at finite
lattice spacing [28, 29, 30, 31, 32, 33, 34, 35].

3.2 Twisted N = 2, d = 2 SYM theory

We begin with a simple example of the twist construction: the two-dimensional N =
2 SYM theory. This theory can be obtained by the dimensional reduction of four-
dimensional N = 1 SYM theory. The global symmetry of the four-dimensional theory:

SO(4)E × U(1) , (3.3)

where SO(4)E is the Euclidean Lorentz symmetry and U(1) is the chiral symmetry, splits
in the following way, after dimensional reduction, to become the global symmetry of the
two-dimensional theory

G = SO(2)E × SO(2)R1 × U(1)R2 . (3.4)

Here, SO(2)E is the Euclidean Lorentz symmetry; SO(2)R1 is rotational symmetry along
reduced dimensions and U(1)R2 is the chiral U(1) symmetry of the theory. We rewrite
the symmetry group of the theory as:

SO(2)E × SO(2)R1 × U(1)R2 ∼ SO(2)E × SO(2)R1 × SO(2)R2 . (3.5)

Since the internal symmetry group contains two SO(2)’s, we can maximally twist
this theory in two ways. They are called the A-model and the B-model twist [36]. In
the A-model twist, the twisted rotation is defined as the diagonal SO(2) subgroup of
the product of the Lorentz rotation SO(2)E and the (chiral) SO(2)R2 symmetry. In the
B-model twist, the twisted rotation group is the diagonal SO(2) subgroup of the product
of the Lorentz rotation SO(2)E and the (internal) SO(2)R1 symmetry.

We will be focusing on the B-model twist picture (it is also known as self-dual twist),
since the form of the twisted action resembles that of the orbifold constructions [37, 38,
39, 40], a complementary and equivalent approach to lattice supersymmetry.
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The fermions and supersymmetries are now decomposed into integer spin represen-
tations of the twisted rotation group - there is a 0-form η, a 1-form ψa and a 2-form
χab:

supercharges: Q Qa Qab

fermions: η ψa χab
number of fields: 1 2 1

Under the twisted symmetry SO(2)′ × U(1)R2 , the fermions transform as

η ⊕ ψa ⊕ χab −→ 1 1
2
⊕ 2− 1

2
⊕ 1 1

2
(3.6)

The gauge field Aa transform as (2, 1)0, and the scalars Ba transform as (1, 2)0 under the
rotation group SO(2)E ×SO(2)R1 ×U(1)R2 . In the new rotation group SO(2)′×U(1)R2 ,
they transform as (2)0. Naturally we can combine the gauge field and scalars to obtain
a complexified gauge field in this type of twist, that is,

Aa = Aa + iBa and Aa = Aa − iBa. (3.7)

Thus, the complexified gauge bosons transform as

Aa ⊕Aa −→ 20 ⊕ 20 . (3.8)

3.2.1 Supersymmetry transformations and twisted action

The twisting process produces a nilpotent supercharge Q; it acts on the twisted fields in
the following way:

QAa = ψa (3.9)

Qψa = 0 (3.10)

QAa = 0 (3.11)

Qχab = −Fab (3.12)

Qη = d (3.13)

Qd = 0 (3.14)

where d is an auxiliary field introduced for the off-shell completion of the supersymmetry
algebra. It has equations of motion:

d = [Da,Da] . (3.15)

The twisted theory has complexified covariant derivatives and field strengths. For a
generic field Φ, we have:

DaΦ ≡ ∂aΦ+ [Aa,Φ], DaΦ ≡ ∂aΦ + [Aa,Φ] . (3.16)

The field strength takes the form:

Fab = [Da,Db], Fab = [Da,Db] . (3.17)
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The action of the twisted theory can be expressed in a Q-exact form:

S = Q
∫
d2xTr Λ (3.18)

= Q
∫
d2xTr

(
χabFab + η[Da,Da]−

1

2
ηd

)
. (3.19)

After Q-variation and integrating out the field d yields

S =

∫
d2xTr

(
−FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

)
. (3.20)

The action is Q-invariant by construction

QS = Q2Λ = 0 . (3.21)

This theory can be made topological by regarding Q as a BRST charge.

3.2.2 The twisted supersymmetry algebra

The two-dimensional supersymmetry algebra of the untwisted N = 2 theory has the form

{Qαi, Qβj} = 2δijγ
a
αβPa , (3.22)

where Qαi is supercharge, the left-indices α(= 1, 2) and the right-indices i(= 1, 2) are
Lorentz spinor and internal spinor suffixes labeling two different N = 2 supercharges,
respectively. We can take these operators to be Majorana in two dimensions. Pa is the
generator of translation.

The process of twisting leads to the decomposition of the above supercharges with
double spinor indices into scalar, vector and pseudo-scalar components:

Qαi = (IQ+ γaQa + γ5Q̃)αi, Q̃ = ǫabQab . (3.23)

These are the twisted supercharges of the two-dimensional N = 2 SYM theory. The
supersymmetry relations can be rewritten by the twisted generators in the following
form:

{Q,Qa} = Pa, {Q̃,Qa} = −ǫabP b , (3.24)

Q2 = Q̃2 = {Q, Q̃} = {Qa,Qb} = 0 . (3.25)

This is the twisted N = d = 2 supersymmetry algebra.

3.2.3 Connection with Dirac-Kähler fermions

The supercharges and fermions become tensorial in their representations as a result of
twisting. The twisted fermions appearing in the matrix form (3.23) can be considered as
components of a geometrical object called a Dirac-Kähler field [27]

Ψ = (η, ψa, χab) . (3.26)
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If we take a standard free fermion action for a theory with two degenerate Majorana
species and replace the fermions by matrices, we find that the action can be easily written
as [27]

SF = Tr Ψ†γa∂aΨ . (3.27)

Expanding the matrices into (real) components (η, ψa, χab) and doing the trace yields

SF =
1

2
η∂aψa + χab∂[aψb] . (3.28)

This geometrical rewriting of the fermionic action yields the so-called Dirac-Kähler action,
which is most naturally rewritten using the language of differential forms as [41]

SF = 〈Ψ · (d− d†)Ψ〉 . (3.29)

Here d and d† are the usual exterior derivative and its adjoint. Their action of d on general
rank p-antisymmetric tensors (forms) ω[µ1···µp] yields a rank p+1 tensor with components
ω[µ1···µpµp+1] and the square bracket notation indicates complete antisymmetrization be-
tween all indices. The dot notation just indicates that corresponding tensor components
are multiplied and integrated over space. The operator d† maps rank p tensors to rank
p − 1. This recasting of the action in geometrical terms not only yields a nilpotent su-
persymmetry but allows us to discretize the action without inducing fermion doubles
[42].

The choice of maximal twisting gives rise to twisted fermions that are just sufficient
to saturate a single Dirac-Kähler field [43] and, thus, leads to a lattice construction that
does not suffer from the fermion doubling problem.

3.3 Twisted N = 4, d = 4 SYM theory

We begin with looking at the symmetries of the ten-dimensional N = 1 SYM theory as
the theory we are interested in is obtained by the dimensional reduction of it down to
four dimensions. Taking spinors into consideration, the rotational symmetry group of the
ten-dimensional theory is Spin(10). The ten-dimensional Dirac spinors are in the spin
representations S+ and S− of rank 16. These representations are complex conjugates of
each other in Euclidean spacetime. We can define a Euclidean chirality operator ΓE11 in
ten dimensions. It acts on the spin representations by a multiplication by ∓i. (In (1.24),
the chirality operator acts on Lorentz representations of Dirac spinor.), that is,

ΓE11S
± = ∓i S± . (3.30)

If ǫ is the infinitesimal Grassmann valued parameter generating supersymmetry transfor-
mations then

ΓE11ǫ = −iǫ . (3.31)

After dimensional reduction, the ten-dimensional Euclidean rotation symmetry group
reduces to

Spin(10)E → Spin(4)E × Spin(6)R ,
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where Spin(4)E ∼ SU(2)× SU(2) is the four-dimensional rotational symmetry group on
R4 and Spin(6)R ∼ SU(4)R is the global R-symmetry group of the dimensionally reduced
theory.

The ten-dimensional chirality operator also splits into two ΓE11 → Γ̂EΓ̃E, where Γ̂E

measures the Spin(4) chirality and Γ̃E measures the Spin(6) chirality. Thus, in four
dimensions, the chirality condition becomes

ΓE11ǫ = Γ̂EΓ̃Eǫ . (3.32)

The complexification of Spin(4) is SL(2,C) × SL(2,C) and the two spin represen-

tations corresponding to the two eigenvalues of Γ̂E are (2, 1) and (1, 2) of SL(2,C) ×
SL(2,C)2. They are pseudo-real in Euclidean dimensions. The spin representations of
Spin(6) are the defining four-dimensional representation 4 of SU(4)R and its dual 4.
Thus, the four-dimensional fermion fields transform under

Spin(4)× Spin(6) ∼ SL(2,C)× SL(2,C)× Spin(6) (3.33)

as
(2, 1, 4)⊕ (2, 1, 4) . (3.34)

The supersymmetries also transform the same way under Spin(4)× Spin(6).
Now we introduce the maximal twisting of this theory. This twist was originally

introduced by Marcus [18]. This twist plays a crucial role in the Geometric Langlands
program [44] as well.

There is a nontrivial homomorphism from the four-dimensional rotation group Spin(4)
to the R-symmetry group Spin(6) of the theory. That means there exists maximal
twisting of the theory. We replace the Spin(4) rotation group with a different subgroup
Spin′(4) of Spin(4) × Spin(6). Though the new Spin′(4) group is isomorphic to the
original rotational symmetry Spin(4), and acts on R4 the same way that Spin(4) does,
it acts differently on the N = 4 gauge theory.

We choose the homomorphism from Spin(4) to Spin(6), such that the action of
Spin′(4) on S+ has a non-zero invariant vector. Since the supersymmetry generator ǫ
takes values in S+ (See (3.30) and (3.31) above), a choice of an invariant vector in S+ will
give us a Spin′(4)-invariant supersymmetry. We will call it Q. This is a scalar symmetry
under the Spin′(4) group, and it will automatically obey Q2 = 0.

We describe below how the fields transform under the twisted rotation group. From
the twist construction, we want the 4 of Spin(6) (= SU(4)R) to transform as (2, 1)⊕(1, 2)
of Spin(4)(= SU(2)× SU(2)). The 4 of Spin(6), which is the complex conjugate of the
4, transforms the same way under Spin(4), since the (2, 1) and (1, 2) of Spin(4) are
pseudo-real.

We can embed the Spin(4)(=SU(2)×SU(2)) in Spin(6) (= SU(4)R). This embedding
commutes with the additional U(1) group. So our embedding is such that the 4 of Spin(6)
transforms under SU(2) × SU(2) × U(1) as (2, 1)1 ⊕ (1, 2)−1. The 4 transforms as the
complex conjugate of this, or (2, 1)−1 ⊕ (1, 2)1.

2The two-dimensional representation of the first SL(2,C) tensored with the trivial one-dimensional
representation of the second SL(2,C) gives (2,1), and vice versa gives (2,1).
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We could also use the language of SO groups to describe the twist instead of Spin
groups. To do so, we use the fact that the fundamental six-dimensional vector representa-
tion 6 of SO(6) is, in terms of Spin(6) = SU(4)R, the same as antisymmetric part of 4⊗4.
So 6 is the antisymmetric part of (2, 1)1 ⊕ (1, 2)−1, which is (2, 2)0 ⊕ (1, 1)2 ⊕ (1, 1)−2.
Here (2, 2) is the same as the vector representation 4 of SO(4). So the 6 of SO(6)
decomposes into the sum of a vector 4 and two scalars of SO(4).

We can likewise analyze how the supersymmetries transform under Spin′(4). The 4 of
Spin(6) transforms as (2, 1)−1⊕(1, 2)1 of Spin′(4)×U(1), and the 4 as (2, 1)1⊕(1, 2)−1.
So using (3.34)

(2, 1, 4)⊕ (2, 1, 4) ,

the supersymmetries that transform as (2, 1) of Spin(4) transform under Spin′(4)×U(1)
as

(2, 1)0 ⊗ ((2, 1)−1 ⊕ (1, 2)1) = (1, 1)−1 ⊕ (3, 1)−1 ⊕ (2, 2)1 , (3.35)

and the supersymmetries that transform as (1, 2) of Spin(4) transform under Spin′(4)×
U(1) as

(1, 2)0 ⊗ ((2, 1)−1 ⊕ (1, 2)1) = (1, 1)−1 ⊕ (1, 3)−1 ⊕ (2, 2)1 . (3.36)

Thus, the supercharges and fermions transform under the new rotation group

SU(2)′ × SU(2)′ × U(1)

as
(1, 1)−1 ⊕ (2, 2)1 ⊕ [(3, 1)⊕ (1, 3)]−1 ⊕ (2, 2)1 ⊕ (1, 1)−1 , (3.37)

or equivalently under the rotation group

SO(4)′ × U(1)

as
1−1 ⊕ 41 ⊕ 6−1 ⊕ 41 ⊕ 1−1 . (3.38)

As a result of this choice of embedding, the twisted theory contains supersymmetries and
fermions in integer spin representations. They transform as scalars, vectors and higher
rank p-form tensors:

supercharges: Q Qµ Qµν Q̄µ Q̄
fermions: η ψµ χµν ψ̄µ η̄
number of fields: 1 4 6 4 1

The four gauge bosons transform as (2, 2)0 under the twisted rotation group. We label
them as a vector field Aµ. Similarly, four of the six scalars of the theory are now elevated
to the same footing as the gauge bosons; they also transform as (2, 2)0 under the twisted
rotation group. We label them as a vector field Bµ. The two other scalars remain as
singlets under the twisted rotation group. We label them by φ and φ̄. Thus the bosons
of the twisted theory transform as:

SU(2)′ × SU(2)′ × U(1) → (1, 1)1 ⊕ (2, 2)0 ⊕ (2, 2)0 ⊕ (1, 1)−1 , (3.39)

or equivalently
SO(4)′ × U(1) → 11 ⊕ 40 ⊕ 40 ⊕ 1−1 . (3.40)

We parametrize the bosonic field content of the theory by
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bosons: φ Aµ Bµ φ̄
number of fields: 1 4 4 1

3.3.1 Supersymmetry transformations and twisted action

The two vector fields Aµ and Bµ of the twisted N = 4, d = 4 theory transform the same
way under the twisted rotation group. We can describe the twisted theory in a compact
way if we combine the vector fields into a complex vector field Aµ [18]:

Aµ ≡ Aµ + iBµ , (3.41)

Aµ ≡ Aµ − iBµ . (3.42)

We can now define three covariant derivatives and field strengths3 using these connections:

Dµ · ≡ ∂µ + [Aµ, · ], Fµν ≡ [Dµ, Dν ] , (3.43)

Dµ · ≡ ∂µ + [Aµ, · ], Fµν ≡ [Dµ,Dν ] , (3.44)

Dµ · ≡ ∂µ + [Aµ, · ], Fµν ≡ [Dµ,Dν ] . (3.45)

We will go one more step further to make contact with the lattice construction. We as-
semble the complexified gauge fields and the two scalar fields into a single five-component
complexified connection:

Aa =
(
Aµ ≡ Aµ + iBµ, A5 ≡ A5 + iB5

)
, a = 1, · · · , 5 ;µ = 1, · · · , 4 (3.46)

where the fifth component A5 = φ and A5 = φ. Correspondingly, we package the fermions
in the SU(5)×U(1) representation (which is a subgroup of SO(10), the Lorentz symmetry
group of the ten-dimensional theory) - they become five-dimensional scalar, vector and
antisymmetric tensors (η, ψa, χab). The original twisted theory will then be obtained by
simple dimensional reduction of a theory in five dimensions. A similar language arises in
the orbifold construction of this theory [40] where the fermions and bosons transform in
the representations of SU(5)× U(1):

bosons: 10 → 5⊕ 5

fermions: 16 → 1⊕ 5⊕ 10

In addition to these fields, we introduce one auxiliary bosonic scalar field d for off-shell
completion of the scalar supersymmetry.

The nilpotent scalar supersymmetry Q now acts on these fields in a simple manner

QAa = ψa (3.47)

Qψa = 0 (3.48)

QAa = 0 (3.49)

Qχab = −Fab (3.50)

Qη = d (3.51)

Qd = 0 (3.52)

3We employ an anti-hermitian basis for the generators U(N).
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The action of the twisted theory can now be expressed in a compact five-dimensional
form, as a linear combination of Q-exact and Q-closed terms:

S = QΛ + SQ−closed , (3.53)

where

Λ =

∫
Tr

(
χabFab + η[Da,Da]−

1

2
ηd

)
, (3.54)

and

SQ−closed = −1

2

∫
Tr ǫabcdeχdeDcχab . (3.55)

The invariance of the Q-closed term is a result of the Bianchi identity (or Jacobi identity
for covariant derivatives)

ǫabcdeDcFde = ǫabcde[Dc, [Dd,De]] = 0 . (3.56)

Carrying out the Q-variation and subsequently eliminating the auxiliary field d using the
equation of motion, we can write down the action in terms of the propagating fields:

S =

∫
Tr

(
− FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

− 1

2
ǫabcdeχdeDcχab

)
. (3.57)

We can obtain the twisted theory in four dimensions by dimensional reduction of this
theory along the 5th direction. We write down the decomposition of five-dimensional
fields into four-dimensional fields as follows

Aa → Aµ ⊕ φ (3.58)

Fab → Fµν ⊕Dµφ (3.59)

[Da,Da] → [Dµ,Dµ]⊕ [φ, φ] (3.60)

ψa → ψµ ⊕ η (3.61)

χab → χµν ⊕ ψµ (3.62)

The action (5.6), after dimensional reduction, yields:

S =

∫
Tr

(
−FµνFµν +

1

2
[Dµ,Dµ]

2 +
1

2
[φ, φ]2 + (Dµφ)(Dµφ)− χµνD[µψν]

−ψµDµη − ψ[φ, ψµ]− ηDµψµ − η[φ, η]− χ∗
µνDµψν −

1

2
χ∗
µν [φ, χµν ]

)
, (3.63)

where the last two terms arise from the dimensional reduction of the Q-closed term with
χ∗, the Hodge dual of χ, defined as χ∗

µν =
1
2
ǫµνρλχρλ and ψµ = 1

2
χ5µ.

The twisted supersymmetry transformations take the following form after dimensional
reduction to four dimensions:

QAµ = ψµ, Qψµ = 0

QAµ = 0, Qχµν = −Fµν

Qη = d, Qd = 0, Qφ = η (3.64)

Qη = 0, Qψµ = Dµφ

Qφ = 0



Chapter 4

Supersymmetric Lattices

Supersymmetric field theories resisted discretization on the lattice for a long time
since they were discovered. The central part of the difficulty is that naive discretizations
of continuum supersymmetric field theories break supersymmetry completely, and radia-
tive effects lead to a profusion of relevant supersymmetry breaking counterterms in the
renormalized lattice action. In order to arrive at a supersymmetric theory in the con-
tinuum limit, the coefficients to these counterterms must be carefully fine tuned as the
lattice spacing is sent to zero. This fine tuning process turned out to be both unnatural
and practically impossible in most of the cases. We can easily identify the problem with
discretization just by looking at the supersymmetry algebra. It naively breaks on the
lattice. There are no infinitesimal translation generators on a discrete spacetime so that
the algebra {Q,Q} = γaPa is already broken at the classical level. An equivalent way to
realize this difficulty is looking at the supersymmetry variation on the lattice. A naive
supersymmetry variation of a naively discretized supersymmetric theory fails to yield
zero as a consequence of the failure of the Leibniz rule when applied to lattice difference
operators.

At present we have a new set of theoretical tools and ideas to construct a family of lat-
tice models that retain exactly some of the continuum supersymmetry at non-zero lattice
spacing. The basic idea is to maintain a particular subalgebra of the full supersymmetry
algebra in the lattice theory. The hope is that this exact symmetry will constrain the
effective lattice action and protect the theory from dangerous supersymmetry violating
counterterms. The resultant supersymmetric lattice theories are local and free of dou-
blers, and, in the case of Yang-Mills theories, also possess exact gauge-invariance. In
principle, they form the basis for a truly non-perturbative definition of the continuum
supersymmetric field theory.

Having a lattice formulation of supersymmetric gauge theories is very advantageous,
as it opens up a large arena of theoretical and numerical investigations. For example,
the availability of a supersymmetric lattice construction for the four dimensional N = 4
SYM theory is clearly very exciting from the point of view of exploring the connection
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between gauge theories and string/gravitational theories. The lattice formulation of this
theory is important in its own right, even without the connection to string theory – it
provides a non-perturbative formulation of a supersymmetric theory.

The geometric structure of twisted SYM theories allows them to be easily transported
onto the lattice. The fermions manifest themselves in integer spin representations of
the twisted rotation group. They carry the structure of anti-symmetric tensor fields.
They also fill out the right number of ingredients to build a single Dirac-Kähler field.
Such a construction suitably evades the fermion doubling problem on the lattice. The
nilpotent supercharge exposed by the process of twisting does not generate translations.
This property makes the twisted theory to be discretized keeping the nilpotent scalar
supersymmetry unbroken. All these unique features make the twisted continuum theory
well qualified to undergo discretization. We follow a geometric discretization scheme to
construct lattice versions of the twisted SYM theories [45, 46, 42, 47, 29, 48] and it is
detailed below.

4.1 Geometric structure of continuum and lattice ac-

tion

We begin the description of the lattice formulation by looking at the general structure
of the continuum gauge theory. The bosonic and fermionic fields are in integer spin
representations of the twisted rotation group. The fermions are p-forms, that is, they are
tensor fields in general. We take the gauge group to be U(N) and represent all the fields
in the adjoint representation of this gauge group. The continuum action, defined on a
d-dimensional flat Euclidean spacetime has the following properties.

The action is Lorentz invariant, and it consists of complex covariant derivatives Da and
Da associated with a complex (not hermitian) connection Aa and its complex conjugate

Aa, respectively, and a set of (bosonic and/or fermionic) tensor fields, {f (±)
a1···ap}, that is,

Scont = Scont

(
Da,Da, {f (±)

a1···ap}
)
. (4.1)

The covariant derivatives can act on the tensor fields in a curl-like or a divergence-like
operation. The curl-like operation gives

Da{f (±)
a1···ap(x)} = ∂a{f (±)

a1···ap(x)}+ [Aa(x), {f (±)
a1···ap(x)}] , (4.2)

Da{f (±)
a1···ap(x)} = ∂a{f (±)

a1···ap(x)}+ [Aa(x), {f (±)
a1···ap(x)}] , (4.3)

while the divergence-like operation gives

Dai{f (−)
a1···ap

(x)} = ∂ai{f (−)
a1···ap

(x)}+ [Aai(x), {f (−)
a1···ap

(x)}] , (4.4)

Dai{f (+)
a1···ap(x)} = ∂ai{f (+)

a1···ap(x)}+ [Aai(x), {f (+)
a1···ap(x)}] , (4.5)

where (1 ≤ i ≤ p).
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We choose a hypercubic abstract lattice to write down the lattice versions of the SYM
theories1. The p-form fields are mapped to lattice fields living on p-cells of the lattice.
The p-cell lattice field can have two possible orientations. This orientation is physical and
determines how the lattice fields are gauge rotated on the lattice. So we need to choose
an orientation that respects gauge symmetry on the lattice. We choose the fields to be
positively oriented, that is, the orientation of the field corresponds to the one in which
the link vector has positive components with respect to the coordinate basis.

We replace the complexified connections Aa and Aa with the following link fields on
the lattice:

Aa(x) → eAa(n) ≡ Ua(n) , (4.6)

Aa(x) → eAa(n) ≡ Ua(n) , (4.7)

where n denotes the integer valued lattice site.
The lattice action contains a set of site, link and p-form fields:

Slatt = Slatt

(
Ua(n),Ua(n), {f (±)

a1···ap(n)}
)
. (4.8)

The fields on the lattice can be regarded as variables living on orientable links. As
a result of this prescription the lattice variables Ua(n), Ua(n), {f (+)

a1···ap(n)}, {f (−)
a1···ap(n)}

live on links (n,n+ µ̂a), (n+ µ̂a,n), (n,n+ µ̂a1 + · · ·+ µ̂ap) and (n+ µ̂a1 + · · ·+ µ̂ap ,n)
respectively. A site variable η(n) lives on a link (n,n).

For G(n) ∈ U(N), the lattice variables translate under the gauge transformations in
the following way:

Ua(n) → G(n)Ua(n)G†(n+ µ̂a) (4.9)

Ua(n) → G(n+ µ̂a)Ua(n)G
†(n) (4.10)

{f (+)
a1···ap(n)} → G(n){f (+)

a1···ap(n)}G†(n+ µ̂a1 + · · ·+ µ̂ap) (4.11)

{f (−)
a1···ap

(n)} → G(n+ µ̂a1 + · · ·+ µ̂ap){f (−)
a1···ap

(n)}G†(n) (4.12)

Notice that these transformations respect the p-cell and orientation assignments of lattice
fields.

The covariant derivatives Da (Da) in the continuum become forward and backward

covariant differences D(+)
a (D(+)

a ) and D(−)
a (D(−)

a ), respectively. They act on the lattice

fields f
(±)
a1···ap(n) in the following way:

D(+)
b f (+)

a1···ap
(n) ≡ Ub(n)f (+)

a1···ap
(n+ µ̂b)− f (+)

a1···ap
(n)Ub(n+ µ̂) (4.13)

D(+)
b f (−)

a1···ap(n) ≡ Ub(n+ µ̂)f (−)
a1···ap(n + µ̂b)− f (−)

a1···ap(n)Ub(n) (4.14)

D(+)

b f (+)
a1···ap

(n) ≡ f (+)
a1···ap

(n+ µ̂b)U b(n+ µ̂)− U b(n)f
(+)
a1···ap

(n) (4.15)

D(+)

b f (−)
a1···ap

(n) ≡ f (−)
a1···ap

(n+ µ̂b)U b(n)− U b(n+ µ̂)f (−)
a1···ap

(n) (4.16)

where we have defined µ̂ =
∑p

i=1 µ̂ai
.

1Later we will see that there are more exotic lattice choices that expose the maximum amount of
symmetry and thus impose stronger constraints on the counterterms on the lattice. We can write down
a set of transformation rules that connects the basis vectors of such lattices with those of the hypercubic
lattice.
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4.1.1 Prescription for discretization

Thus, from a given continuum twisted action in d dimensions, we can construct the lattice
action using the following prescription for discretization.

(i.) For complexified gauge bosons in the continuum Aa(x) and Aa(x), we introduce

lattice link fields Ua(n) = eAa(n) and Ua(n) = eAa(n).

(ii.) A continuum p-form field will be mapped to a corresponding lattice p-form field
associated with a p-dimensional hypercubic lattice. The lattice site (n) is spanned
by the (positively oriented) unit vectors {µ̂a1 · · · µ̂ap}. The continuum fields be-
come link variables and live on oriented links. The continuum complex covariant
derivatives Da and Da become link variables Ua(n) and Ua(n), and they live on

the links (n,n+ µ̂a) and (n+ µ̂a,n), respectively. The tensor fields f
(+)
a1···ap(x) and

f
(−)
a1···ap(x) become lattice variables f

(±)
a1···ap(n) living on links (n,n+ µ̂a1 + · · ·+ µ̂ap)

and (n+ µ̂a1 + · · ·+ µ̂ap ,n), respectively.

(iii.) The gauge transformations of lattice variables are given in (4.9)-(4.12).

(iv.) The curl-like complex covariant derivatives become forward covariant differences
given in (4.2)-(4.3).

(v.) The divergence-like complex covariant derivatives become backward covariant dif-
ferences given in (4.4)-(4.5).

4.2 Two-dimensional lattice N = 2 SYM theory

As a result of the geometrical discretization prescription the two-dimensional N = 2
lattice SYM theory lives on a two-dimensional square lattice spanned by two orthogonal
basis vectors. The fermionic and bosonic fields live on sites, links and body diagonal of
the lattice unit cell.

The lattice covariant forward difference operator D(+)
a acts on the lattice scalar and

vector fields in the following way:

D(+)
a f(n) = Ua(n)f(n+ µ̂a)− f(n)Ua(n) , (4.17)

D(+)
a fb(n) = Ua(n)fb(n + µ̂a)− fb(n)Ua(n+ µ̂b) , (4.18)

where µ̂a is the unit vector along the a direction; there are two unit vectors: (µ̂1, µ̂2). We
have replaced the continuum complex gauge fields Aa by non-unitary link fields Ua = eAa .

The lattice covariant backward difference operator D(−)

a replaces the continuum co-
variant derivative in divergence-like operations and its action on (positively oriented)

lattice vector fields can be obtained by requiring that it to be the adjoint to D(+)
a . Thus,

its action on lattice vectors is

D(−)

a fa(n) = fa(n)Ua(n)− Ua(n− µ̂a)fa(n− µ̂a) . (4.19)
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Figure 4.1: Orientations of twisted fields on a two-dimensional lattice.

The nilpotent scalar supersymmetry acts on the lattice fields in the following way:

QUa(n) = ψa(n) (4.20)

Qψa(n) = 0 (4.21)

QUa(n) = 0 (4.22)

Qχab(n) = F †
ab(n) (4.23)

Qη(n) = d(n) (4.24)

Qd(n) = 0 (4.25)

The lattice field strength can be written as:

Fab(n) = D(+)
a Ub(n) = Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b) . (4.26)

It reduces to the continuum (complex) field strength in the naive continuum limit and is
automatically antisymmetric in the indices.

The supersymmetry transformations on the lattice, associated with the nilpotent su-
persymmetry, imply that the fermion fields ψa(n) have the same orientation as their
superpartners, the gauge links Ua(n), and run from n to (n + µ̂a). However, the field
χab(n) must have the same orientation as F †

ab(n) and hence is to be assigned to the
negatively oriented link running from (n + µ̂a + µ̂b) to n. The negative orientation is
crucial for allowing us to write down gauge-invariant expressions for the fermion kinetic
term. The scalar fields η(n) and d(n) can be taken to transform simply as site fields.
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4.2.1 Gauge transformations on the lattice

The gauge transformation properties of the lattice fields conveniently summarize these
link mappings and orientations:

η(n) → G(n)η(n)G†(n) (4.27)

ψa(n) → G(n)ψa(n)G
†(n+ µ̂a) (4.28)

χab(n) → G(n+ µ̂a + µ̂b)χab(n)G
†(n) (4.29)

Ua(n) → G(n)Ua(n)G†(n+ µ̂a) (4.30)

Ua(n) → G(n+ µ̂a)Ua(n)G
†(n) (4.31)

The action is again Q-exact on the lattice: S = QΛ, where

Λ =
∑

n

Tr
(
χab(n)D(+)

a Ub(n) + η(n)D(−)

a Ua(n)−
1

2
η(n)d(n)

)
. (4.32)

Acting with the Q transformation shown above and again integrating out the auxiliary
field d, we derive the gauge and Q-invariant lattice action:

S =
∑

n

Tr
(
F †
ab(n)Fab(n) +

1

2

(
D(−)

a Ua(n)
)2

−χab(n)D(+)
[a ψb](n)− η(n)D(−)

a ψa(n)
)
. (4.33)

It is interesting to see that each term in the action forms a closed loop on the two-
dimensional lattice. This is a requirement for preserving the gauge symmetry on the
lattice.

4.3 Four-dimensional lattice N = 4 SYM theory

The way we discretized the two-dimensional N = 2 theory on a two-dimensional square
lattice immediately motivates us to choose the discretization of the four-dimensional N =
4 theory on a four-dimensional hypercubic lattice. The fermions of the four-dimensional
theory live on p-cells of the hypercubic lattice unit cell, associating themselves with the
p-form representation of the continuum SO(4) symmetry. The fermionic content of the
hypercubic lattice construction manifest themselves as an explicit realization of Dirac-
Kähler fermions. The bosons are also distributed on this lattice in orientations consistent
with those of the fermions. The symmetry of the hypercubic lattice action is S4, much
smaller than the symmetry of the hypercube itself, due to the orientation assignment of
the fields.

The gauge link fields Ua(n), a = 1, 2, 3, 4, live on elementary coordinate directions in
the unit cell of the hypercube pointing in the direction (n,n+ µ̂a). The superpartners of
the gauge link fields, ψa(n), also live on the same links and oriented identically. The field
Ua(n) is oriented in the opposite direction (n + µ̂a,n). The complexified field strength
Fab(n) runs along the direction (n,n+ µ̂a + µ̂b). By exact supersymmetry, this implies
that the field χab(n) (and thus Fab(n)) runs in the opposite direction.
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The assignment of U5(n) (and, thus, that of ψ5(n)) is not immediately obvious. The
Dirac-Kähler decomposition demands a 4-form. This motivates assigning the lattice field
to the body diagonal of the unit hypercube, which is a 4-cell. It is oriented along the vector
µ̂5 = (−1,−1,−1,−1). We see that this assignment ensures that µ̂1+ µ̂2+ · · ·+ µ̂5 = 0,
and it is crucial for constructing gauge-invariant quantities on the lattice.

The basis vectors µ̂a of the hypercubic lattice are thus defined as2

µ̂1 = (1, 0, 0, 0)

µ̂2 = (0, 1, 0, 0)

µ̂3 = (0, 0, 1, 0) (4.34)

µ̂4 = (0, 0, 0, 1)

µ̂5 = (−1,−1,−1,−1)

Though the four-dimensional fields come with five indices they are all taken care of
with suitable orientation assignments consistent with the lattice gauge symmetry.

On the hypercubic lattice the action of the four-dimensional theory takes the following
form

S =
∑

n,a,b,c,d,e

{
Q Tr

[
χabD(+)

a Ub(n)− η(n)
(
D(−)

a Ua(n)−
1

2
d(n)

)]

−1

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}
. (4.35)

where the lattice field strength is given by

Fab(n) ≡ D(+)
a Ub(n) =

(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)
. (4.36)

and the covariant difference operators appearing in this expression are given by

D(+)
c f(n) = Uc(n)f(n+ µ̂c)− f(n)Uc(n) (4.37)

D(+)
c fd(n) = Uc(n)fd(n+ µ̂c)− fd(n)Uc(n+ µ̂d) (4.38)

D(−)

c fc(n) = fc(n)U c(n)− U c(n− µ̂c)fc(n− µ̂c) (4.39)

D(−)

c fab(n) = fab(n)U c(n− µ̂c)− U(n + µ̂a + µ̂b − µ̂c)fab(n− µ̂c) (4.40)

The supersymmetry transformations on the lattice fields are almost identical to their
continuum counterparts:

QUa(n) = ψa(n) (4.41)

Qψa(n) = 0 (4.42)

QUa(n) = 0 (4.43)

Qχab(n) = −FL

ab(n) (4.44)

Qη(n) = d (4.45)

Qd(n) = 0 (4.46)

2These vectors are related to the r-charges defined in the orbifold formulation of the four-dimensional
N = 4 lattice SYM theory [40].
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After the Q-variation, as performed in the continuum, and integrating out the auxiliary
field d, the final lattice action is:

S =
∑

n

Tr
[
FL†
ab FL

ab +
1

2

(
D(−)

a Ua(n)
)2

− χab(n)D(+)
[a ψb](n)− η(n)D†(−)

a ψa(n)

−1

2
ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D

(−)

c χab(n + µ̂c)
]
. (4.47)

To see that this action targets the continuum twisted theory one needs to expand Ua
about the unit matrix [40]3

Ua(n) = IN +Aa(n) , (4.48)

Ua(n) = IN −Aa(n) . (4.49)

While the supersymmetric invariance of the Q-exact term is manifest in the lattice the-
ory it is not immediately clear that the Q-closed term remains supersymmetric after
discretization. Interestingly, this can be shown using a remarkable property of the dis-
crete field strength, which can be shown to satisfy an exact Bianchi identity just as for
the continuum [47].

ǫabcdeD(−)

c Fab(n+ µ̂c) = 0 . (4.50)

4.3.1 The A∗
4 lattice construction

There exists a more symmetric lattice than the hypercubic lattice for the four-dimensional
N = 4 theory. This lattice is called the A∗

4 lattice. On this lattice, we treat all five basis
vectors equally and they are oriented in such a way that the basis vectors connect the
center of a 4-simplex to its corners. Having a most symmetric lattice is advantageous
because the greater the symmetry is, the fewer relevant or marginal operators will exist
on the lattice.

The lattice possesses an S5 point group symmetry, which is the Weyl group of SU(5).
We briefly described the SU(5)×U(1) decomposition of the fields of the four-dimensional
N = 4 SYM theory in Sec. 3.3.1. The discretization prescription for such a decomposition
of the fields would be the A∗

4 lattice. A specific basis for the A∗
4 lattice is given in the

form of five lattice vectors:

ê1 =
( 1√

2
,
1√
6
,

1√
12
,

1√
20

)
(4.51)

ê2 =
(
− 1√

2
,
1√
6
,

1√
12
,

1√
20

)
(4.52)

ê3 =
(
0,− 2√

6
,

1√
12
,

1√
20

)
(4.53)

ê4 =
(
0, 0,− 3√

12
,

1√
20

)
(4.54)

ê5 =
(
0, 0, 0,− 4√

20

)
(4.55)

3To leading order this is equivalent to the more conventional expression Ua(n) = eAa(n). We will see
that the linear representation offers important advantages over the exponential in our later calculations.
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These lattice vectors connect the center of a 4-simplex to its five corners. They are
related to the SU(5) weights of the 5 representation. The unit cell of the A∗

4 lattice is
a compound of two 4-simplices corresponding to the 5 (formed by the basis vectors êm)
and 5 (formed by the basis vectors −êm) representations of SU(5). The basis vectors
satisfy the relations

5∑

m=1

êm = 0; êm · ên =
(
δmn −

1

5

)

5∑

m=1

(êm)µ(êm)ν = δµν ; µ, ν = 1, · · · , 4.

Notice also that S5 is a subgroup of the twisted rotation symmetry group SO(4)′ and
that the lattice fields transform in reducible representations of this discrete group - for
example, the vector Aa decomposes into a four component vector Aµ and a scalar field
φ under SO(4)′. Invariance of the lattice theory with respect to these discrete rotations
then guarantees that the theory will inherit full invariance under twisted rotations in the
continuum limit.

Proceeding in this manner, it is possible to assign all the remaining fields to links on
the A∗

4 lattice. Since ψa(n) is a superpartner of Ua(n) it must also reside on the link
connecting n → n+ êa. Conversely the field U †

a(n) resides on the oppositely oriented link
from n → n − êa. The ten fermions χab(n) are then chosen to reside on new fermionic
links n+ êm+ ên → n, while the singlet fermionic field η(n) is assigned to the degenerate
link consisting of a single site n.

The integer-valued lattice site n can be related to the physical location in spacetime
using the A∗

4 basis vectors êa.

R = a

4∑

ν=1

(µν · n)êν = a

4∑

ν=1

nν êν , (4.56)

where a is the lattice spacing. On using the fact that
∑

m êm = 0, we can show that a
small lattice displacement of the form dn = µ̂m corresponds to a spacetime translation
by (aêm):

dR = a
4∑

ν=1

(µν · dn)êν = a
4∑

ν=1

(µ̂ν · µ̂m)êν = aêm . (4.57)

In the next Chapter, we will use the A∗
4 lattice construction to study the one-loop

renormalization of the N = 4, d = 4 SYM theory.



Chapter 5

Lattice N = 4 SYM Theory at

One-loop

In Chapter 1, we briefly discussed how special the four-dimensional N = 4 SYM
theory is and also mentioned that it plays a crucial role in the holographic principle.
The dual of N = 4 SYM theory is a string theory in AdS5 × S5 space. We can study
the dynamics of the gauge theory in various limits of its coupling parameter. We could
also learn a lot about the dual string theory by studying the gauge theory. The lattice
formulation of four-dimensional N = 4 SYM theory would be very advantageous as it
would give a non-perturbative definition of the gauge theory and open up a new window
to explore its strong coupling dynamics. Indeed, such a lattice construction would allow
for a systematic study of its dual string theory. In Chapter 4, we have written down
the lattice version of this theory. We wrote down the the theory on a four-dimensional
hypercubic lattice and then, to utilize the maximum symmetry of the lattice theory, we
described the discretization of this theory on a very special lattice called the A∗

4 lattice.

The lattice formulation of the N = 4 SYM theory retains an exact supersymmetry,
even at non zero lattice spacing. But this is only one out of the sixteen continuum
supersymmetric invariances. There is still a question of how much fine tuning would be
required to take a continuum limit of this lattice theory targeting the usual N = 4 theory.
In this Chapter1, we address this issue using both general arguments valid to all orders
in perturbation theory and an explicit calculation of the renormalization of the lattice
theory to one-loop order.

We can make a quite general argument that the symmetries of the lattice theory
strongly constrain the possible counterterms that can arise as a result of quantum cor-
rections. We will see that the only relevant operators that can be induced via radiative
effects correspond to renormalizations of four marginal operators already present in the
tree level theory. These operators correspond to kinetic terms in the bare action. We

1This Chapter is based on the work [49].
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also show that no mass terms are induced, to all orders in perturbation theory, using a
topological argument based on the exact lattice supersymmetry.

We then go on to ask what divergences can arise in the renormalization of these
four bare couplings to address the remaining fine tuning question. On using lattice
perturbation theory, we proceed to calculate these divergences at one-loop. The lattice
structure of the theory, coming from the twisted supersymmetry, allows us to extract these
leading divergences. We derive the Feynman rules governing the perturbative structure of
the lattice theory and write down the diagrams needed to renormalize the theory at one-
loop. We need only to examine the renormalization of the three types of twisted fermion
propagators and a single propagator for an auxiliary bosonic field. We show that all
these propagators exhibit a common logarithmic divergence at one-loop. The appearance
of a single logarithmic divergence ensures that, at one-loop, only finite parts need to be
fine tuned in order to regain full supersymmetry in the continuum limit. This is a huge
advantage of this approach, as compared to earlier efforts at constructing supersymmetric
lattice theories in four dimensions.

We also compute the partition function of the theory at one-loop and show that it is
independent of any background fields, and, furthermore, that this is true to all orders in
perturbation theory.

5.1 General analysis of renormalization

From power counting, we see that the four-dimensional N = 4 theory in the continuum
has an infinite number of superficially divergent Feynman diagrams occurring at all orders
of perturbation theory. All of these potential divergences cancel between diagrams to
render the quantum theory finite in the continuum. This perfect cancellation may not
happen on the lattice, since the lattice theory does not possess all the supersymmetries
of the continuum theory.

Before we proceed to the perturbative analysis of the lattice theory, let us check what
kinds of counterterms are permitted by the lattice symmetries. The four-dimensional
theory on an A∗

4 lattice has the following set of symmetries:

i. The exact supersymmetry corresponding to the scalar supercharge Q.

ii. Lattice gauge symmetry.

iii. The S5 point group symmetry and discrete translations on the lattice.

If we take the gauge group to be U(N), lattice gauge theory possesses an additional
fermionic symmetry, given by

η(n) → η(n) + ǫIN , δǫ(all other fields) = 0 , (5.1)

where ǫ is an infinitesimal Grassmann parameter. Thus, our list contains one more
symmetry:

iv. Fermionic shift symmetry.
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In this Chapter, we will change our conventions to hermitian basis for the generators of
the gauge group satisfying Tr (TATB) = 1

2
δAB. We also explicitly indicate the dependence

on the coupling parameter g. In terms of the complexified connections, the three types
of covariant derivatives and field strengths take the form:

Da · ≡ ∂a + ig[Aa, · ], Fab ≡ − i

g
[Da, Db] , (5.2)

Da · ≡ ∂a + ig[Aa, · ], Fab ≡ − i

g
[Da,Db] , (5.3)

Da · ≡ ∂a + ig[Aa, · ], Fab ≡ − i

g
[Da,Db] . (5.4)

The continuum action of the theory is:

S =

∫
Tr

(
FabFab +

1

2g2
[Da,Da]

2 − χabD[aψb] − ηDaψa

−1

2
ǫabcdeχdeDcχab

)
. (5.5)

We extract the coupling parameter dependence from the terms in the action by rescaling
the fields gη → η, gψa → ψa, gχab → χab and gAa → Aa:

S =
1

g2

∫
Tr

(
− [Da,Db][Da,Db] +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

− 1

2
ǫabcdeχdeDcχab

)
. (5.6)

The lattice action is

S =
1

g2

∑

n

{
Q Tr

[
− iχabD(+)

a Ub(n)− η(n)
(
iD†(−)

a Ua(n)−
1

2
d(n)

)]

−1

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}
, (5.7)

where the lattice field strength is given by:

Fab(n) ≡ − i

g
D(+)
a Ub(n)

= − i

g

(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)
. (5.8)

We are primarily interested in relevant or marginal operators - operators whose mass
dimension is less than or equal to four - on the lattice. We will see that the set of rel-
evant counterterms in the lattice theory is rather short. The lattice symmetries, gauge-
invariance in particular, being extremely restrictive in comparison to the equivalent sit-
uation in the continuum. Invariance under Q restricts the possible counterterms to be
either of a Q-exact form, or of a Q-closed form. There is only one Q-closed operator
permitted by the lattice symmetries, and it is already present in our bare lattice action.
A possible renormalization of this fermion kinetic term is hence allowed. Beyond that,
the exact lattice supersymmetry forces us to look at the set of Q-exact counterterms.

The bosonic and fermionic fields have the following canonical dimensions:
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[Ua] = 1, [Ψ] = 3
2
and [Q] = 1

2

where Ψ stands for any of the twisted fermion fields (λ, ψa, χab). Any counterterm we
add to the action, which respects the lattice symmetries, must be of the form

O = QTr (Ψf(U ,U †)).

There are, thus, no terms permitted by symmetries with a dimension less than two.
In addition, gauge-invariance tells us that each term must correspond to the trace of a
closed loop on the lattice. The smallest dimension gauge-invariant operator is then just
Q(Tr ψaU †

a). But this vanishes identically, since both U †
a and ψa are singlets under Q.

No dimension 7
2
operators can be constructed with this structure, and we are left with

just dimension four counterterms. Notice, in particular, that lattice symmetries permit
no simple fermion bi-linear mass terms. However, gauge-invariant fermion bi-linears with
link field insertions are possible, and their effect should be accounted for carefully.

Thus, the set of possible dimension four operators is, schematically,

L1 = g−2QTr (χabUaUb)
L2 = g−2QTr (ηD†

aUa)
L3 = g−2QTr (ηUaU †

a)
L4 = g−2QTr (η)Tr (UaU †

a) (5.9)

The first operator can be simplified on account of the antisymmetry of χab to simply
Q(χabFab), which, again, is nothing but one of the continuum Q-exact terms present in
the bare action. The second term in (5.9) also corresponds to one of the Q-exact terms
in the bare action. However, the third term L3 is a new operator not present in the
bare Lagrangian and the same is true for the final double-trace operator L4. Both of
these operators transform non-trivially under the fermionic shift symmetry, but a linear
combination of the two:

D = L3 −
1

N
L4 (5.10)

is invariant under the shift symmetry with N the rank of the gauge group U(N).
It is quite remarkable to see that these arguments lead to relevant counterterms cor-

responding to renormalizations of operators that are already present in the bare action
together with D. Thus, the most general form for the renormalized lattice Lagrangian is:

L =
∑

n,a,b,c,d,e

{
Q Tr

[
− iα1χabD(+)

a Ub(n)− iα2η(n)D†(−)
a Ua(n)

+
α3

2
η(n)d(n)

]
− α4

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}

+QβD , (5.11)

where (αi, i = 1 . . . 4) and β are dimensionless numbers taking values (1, 1, 1, 1) and 0
respectively in the classical lattice theory. Thus, it appears that, at most, four dimen-
sionless ratios of these couplings might need to be tuned to approach N = 4 Yang–Mills
in the continuum limit. Furthermore, since these operators are dimension four, we expect
this tuning to be, at worst, logarithmic in the cut-off.
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In order to see the explicit form of the D operator close to the continuum limit, we
expand the action around Um(n) = 1

a
I. The result is

L4 ∼
1

a

[
Tr η(n)(

5∑

m=1

ψm(n))− 1

N
Tr η(n)Tr (

5∑

m=1

ψm(n))+

]
. . . (5.12)

where ellipsis are dictated by supersymmetry. It is interesting to see that (
∑5

a=1 ψa) is
nothing but the S5 (and twisted SO(4)′) singlet contained in the reducible representation
ψa. It is the only field that could form a fermion mass term by pairing with η.

We conclude our exploration using general lattice symmetry arguments here. We now
turn to a full perturbative analysis to determine how the couplings (αi, β) evolve with
the cut-off.

5.2 Deriving the lattice propagators and vertices

We begin our perturbative analysis of the lattice N = 4 SYM theory by deriving the
boson and fermion propagators and the vertices connecting them.

The classical lattice action (5.7) is a combination of three parts - bosonic (SB),
fermionic (SF ) and Q-closed terms (Sc). They are given below:

SB =
1

g2

∑

n,a,b

Tr
[(

D(+)
a Ub(n)

)†(
D(+)
a Ub(n)

)
+

1

2

(
D†(−)
a Ua(n)

)2]

=
1

g2

∑

n,a,b

Tr
[(

U †
b (n+ µ̂a)U †

a(n)− U †
a(n+ µ̂b)U †

b (n)
)

×
(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)

+
1

2

(
Ua(n)U †

a(n)− U †
a(n− µ̂a)Ua(n− µ̂a)

)2]
, (5.13)

SF = − 1

g2

∑

n,a,b,c,d

Tr
1

2
(δacδbd − δadδbc)

[
χab(n)

(
Uc(n)ψd(n+ µ̂c)

−ψd(n)Uc(n+ µ̂d)
)]

+ η(n)
(
ψa(n)U †

a(n)

−U †
a(n− µ̂a)ψa(n− µ̂a)

)
, (5.14)

and

Sc = − 1

2g2

∑

n,a,b,c,d,e

Tr ǫabcde

(
χde(n+ µ̂a + µ̂b + µ̂c)

×
[
χab(n+ µ̂c)U †

c (n)− U †
c (n+ µ̂a + µ̂b)χab(n)

])
, (5.15)

where we have expressed the field strength and covariant derivatives in terms of the
bosonic link fields Ua(n).



5.2 Deriving the lattice propagators and vertices 45

To proceed further, we expand the Ua(n) fields around unity

Ua(n) =
1

a
IN + iAa(n) , (5.16)

U †
a(n) =

1

a
IN − iAa(n) . (5.17)

Notice that this expansion point is but one of an infinite number of classical vacuum
solutions - the full moduli space of the lattice theory corresponds to the set of all bosonic
field variables Ua(n) such that

0 =
∑

n,a,b

Tr
[(

U †
b (n+ µ̂a)U †

a(n)− U †
a(n+ µ̂b)U †

b (n)
)

×
(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)

+
1

2

(
Ua(n)U †

a(n)− U †
a(n− µ̂a)Ua(n− µ̂a)

)2]
. (5.18)

These equations possess a large class of solutions corresponding to constant diagonal
matrices modulo gauge transformations. We will use this additional freedom later when
we compute the one-loop contribution to the effective action of the theory.

5.2.1 The bosonic propagators on the lattice

As usual it is easiest to compute the Feynman diagrams in momentum space. On the A∗
4

lattice a generic field Φ(x) has Fourier expansion

Φ(x) =
1

(La)4

∑

p

eip·xΦp , (5.19)

where x = a
∑4

a=1 naêa denotes the position on A∗
4 and the momenta lie on the dual

lattice given by p = 2π
La

∑4
a=1maĝa (for a lattice with spacing a and length L). The dual

basis vectors ĝa, a = 1 . . . 4 satisfy

êa.ĝb = δab . (5.20)

On an L4 lattice both sets of lattice coordinates na, ma take integer values in the range
−L/2+ 1, . . . , L/2. We will assume periodic boundary conditions in all directions in this
Chapter. Eqn. 5.19 implies that fields are automatically invariant under translations by
a lattice length in any direction and a field shifted by one of the basis vectors can be
expressed as2

Φ(x+ êa) =
∑

p

eipaeip·xΦp , (5.21)

where pa = 2π
L
ma. The only remaining is the question of how to deal with shifts in

the lattice action associated with the additional ê5 vector. However, the solution is

2For simplicity we will adopt the convention that momentum sums
∑

k automatically include the
1/(La)4 normalization factor.
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simple: since
∑5

a=1 êa = 0 we simply replace any ê5 shift encountered in the action
by the equivalent shift −∑4

a=1 êa. One might have worried about an apparent lack of
rotational invariance associated with the naive continuum limit of terms in the action
which resemble

∑5
a=1 sin

2 pa However, putting pa = p.êa and taking the naive continuum
limit this becomes

5∑

a=1

p2a =

4∑

µ,ν

5∑

a=1

pµpν ê
µ
a ê

ν
a =

4∑

µ

p2µ , (5.22)

which has the correct rotationally invariant form since the Greek indices refer to a Carte-
sian basis.

Using these ideas the bosonic action when expanded around (5.16) and (5.17) gives
the following second-order term in Fourier space

S
(2)
B ≈ 2

∑

k,a,b

Tr
(
Aa(k)

[
δabfc(k)f

∗
c (k)− f ∗

a (k)fb(k)
]
Ab(−k)

+Ba(k)
[
f ∗
a (k)fb(k)

]
Bb(−k)

)
, (5.23)

where

fa(k) = (eika − 1) . (5.24)

We need to gauge-fix the bosonic action before we derive the propagators. A natural
gauge-fixing choice would be an obvious generalization of Lorentz gauge-fixing [18]

G(n) =
∑

a

(
∂(−)
a Aa(n) + ∂(−)

a Aa(n)
)
. (5.25)

This gauge-fixing choice adds the following term to the bosonic action at quadratic order

SGF =
1

4α

∑

n

G2(n) =
1

α

∑

n,a

Tr (∂(−)
a Aa(n))

2 , (5.26)

where ∂
(−)
a f(n) = f(n)− f(n− µ̂a). On using the relation

∑

n

(∂(+)
a f(n))g(n) = −

∑

n

f(n)∂(−)
a g(n) ,

the gauge-fixing term becomes

SGF = − 1

α

∑

n,a,b

Tr Aa(n)∂
(+)
a ∂

(−)
b Ab(n) . (5.27)

In momentum space it becomes

SGF =
1

α

∑

k,a,b

Tr Aa(k)f
∗
a (k)fb(k)Ab(−k) . (5.28)
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AA
a (−k) k −→ A

B

b (k)

−→ δabδAB

1

k̂2

Figure 5.1: Bosonic propagators on the lattice.

Thus the gauge-fixed bosonic action to quadratic order is

S
(2)
B + SGF ≈ 2

∑

k,a,b,c

Tr
(
Aa(k)

[
δabfc(k)f

∗
c (k)−

(
1− 1

2α

)
f ∗
a (k)fb(k)

]
Ab(−k)

+Ba(k)
[
δabfc(k)f

∗
c (k)

]
Bb(−k)

)
. (5.29)

The choice α = 1/2 makes the above expression diagonal

S
(2)
B ≈ 2

∑

k,a,b,c

Tr Aa(k) [δabfc(k)f
∗
c (k)] Ab(−k)

= 2
∑

k,a,b

Tr
[
Aa(k)δab

(
4
∑

c

sin2
(kc
2

))
Ab(−k)

]
. (5.30)

Putting in the trace (using the convention Tr (TATB) = 1
2
δAB) the quadratic bosonic

action can be written as

S
(2)
B ≈

∑

k,a,b

AA

a (k)M
AB
ab (k)AB

b (−k) , (5.31)

where MAB
ab (k) = k̂2δabδAB, with k̂2 = 4

∑
c sin

2
(
kc
2

)
. Thus only the AA propagator is

non-zero and it is given by (See figure 5.1.)

〈AA
a (−k)AB

b (k)〉 = δabδAB
1

k̂2
. (5.32)

5.2.2 The fermionic propagators on the lattice

The fermionic part of the action has the following form on the lattice

SF = − 1

g2

∑

n,a,b,c,d,e

Tr
(
χab(n)D(+)

[a ψb](n) + η(n)D†(−)
a ψa(n)

+
1

2
ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
)
. (5.33)

When expanded up to second order in the fields using (5.16) and (5.17), it becomes

S
(2)
F ≈ 1

g2

∑

k,a,b,c,d,e

Tr χab(k)
[
− f ∗

a (k)δbc + f ∗
b (k)δac

]
ψc(−k) + η(k)fc(k)ψc(−k)

+
1

2
ǫabcdeχde(k)e

i(ka+kb)fc(k)χab(−k) . (5.34)
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Upon restricting the sum and rescaling the field 2χab → χab the fermionic action becomes

S
(2)
F ≈ 1

g2

∑

k,a<b;c,d<e

Tr
(
χab(k)

[
− f ∗

a (k)δbc + f ∗
b (k)δac

]
ψc(−k) + η(k)fc(k)ψc(−k)

+
1

2
ǫabcdeχde(k)e

i(ka+kb)fc(k)χab(−k)
)
. (5.35)

We can then write this action in the form of a matrix product

S
(2)
F ≈ 1

g2

∑

k

(Ψ(k)Ψ(−k))

(
1

4

)(
0 M(k)

−MT (k) 0

)(
Ψ(k)
Ψ(−k)

)

=
1

4g2

∑

k

Φ(k)MΦ(k) . (5.36)

where Φ ≡ (Ψ(k),Ψ(−k)) and Ψi = (η, ψ1, . . . , ψ5, χ12, . . . , χ15, . . . , χ45) and M(k) is
given in block matrix form

(η ψa χde) (k)




0 fb(k) 0
−f∗a (k) 0 fg(k)δha − fh(k)δga

0 −f∗d (k)δeb + f∗e (k)δdb ǫghcdeqghfc(k)







η
ψb
χgh


 (−k).

where qgh = ei(kg+kh). Notice that M has the properties MT (k) = −M∗(k) = −M(−k) .
Using the property that

∑
a µ̂a = 0, we can square the matrix to obtain

M2(k) = −
5∑

a=1

|eika − 1|2I16 = −4

5∑

a=1

sin2
(ka
2

)
I16 = −k̂2

I16 . (5.37)

Thus,

M−1 = − 1

k̂2
M , (5.38)

and the inverse of the full fermion matrix is:

M−1 = − 1

k̂2

(
0 −MT (k)

M(k) 0

)
. (5.39)

Then we can write the quadratic part of the fermionic action as:

S
(2)
F =

1

4g2

∑

k

Tr

[
∑

ij

Φi(k)Mij(k)Φj(k)

]

=
1

4g2

∑

k

∑

ij,A,B

ΦAi (k)Mij(k)Φ
B
j (k)Tr (T

ATB)

=
1

8g2

∑

k

∑

ij,A,B

ΦAi (k)Mij(k)Φ
B
j (k)δAB , (5.40)

where we have expanded the fermions as Φ = ΦATA and used Tr (TATB) = 1
2
δAB. Thus,

we write the propagators as:

〈ΦAi (k)ΦBj (k)〉 = 2M−1
ij (k)δAB , (5.41)
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k

ηA(−k) ψB
a (k) −→ δAB

2

k̂2
(eika − 1)

k

ψA
a (−k) χB

bc(k) −→ δAB

1

k̂2

[
(eikb − 1)δac − (eikc − 1)δab

]

k

χA
ab(−k) χB

de(k) −→ δAB

1

2k̂2
ǫabcdee

i(kd+ke)(eikc − 1)

Figure 5.2: Fermionic propagators on the lattice.

or, alternatively,

〈ΨA
i (k)Ψ

B
j (−k)〉 = 2

k̂2
MT

ij (k)δAB . (5.42)

Notice that by switching the fields (with some relabeling), we have

〈ΨA
i (−k)ΨB

j (k)〉 = −〈ΨB
j (k)Ψ

A
i (−k)〉

= − 2

k̂2
MT

ji(k)δBA = − 2

k̂2
Mij(k)δAB . (5.43)

For a consistency check, we replace k with −k and get

〈ΨA
i (−k)ΨB

j (k)〉 =
2

k̂2
MT

ij (−k)δAB = − 2

k̂2
Mij(k)δAB . (5.44)

We must also undo the earlier rescaling of the χ field, giving a factor of 1
2
in the ψχ

propagators and a factor of 1
4
in the χχ propagators. It is also important to note that if

we switch the direction of fermion flow in the propagators, then we pick up an additional
minus sign.

5.2.3 The vertices on the lattice

The expressions for vertices require additional trace contractions of the gauge group
generators. So let us further fix our conventions on the trace algebra.

For the generators TA of U(N), one has

TATB =
1

2
(dABC + ifABC)T

C , (5.45)

where dABC and fABC are the symmetric and antisymmetric structure constants, respec-
tively. This product formula is consistent with our previous trace convention Tr (TATB) =
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1
2
δAB and, in addition, yields the results:

Tr (TATBTC) = Tr

(
1

2
(dABD + ifABD)T

DTC
)

(5.46)

=
1

2
(dABD + ifABD)Tr [T

DTC ]

=
1

2
(dABD + ifABD)

1

2
δDC

=
1

4
(dABC + ifABC) =

1

4
λABC .

Since fABC is antisymmetric and dABC is symmetric, it follows that

λACB = λABC . (5.47)

To extract expressions for the vertices, we now return to the original gauge-fixed action
for the theory given by

S =
1

g2

∑

n

Tr
[(

D(+)
a Ub(n)

)†(
D(+)
a Ub(n)

)
+

1

2

(
D†(−)
a Ua(n)

)2

+ 2Aa(n)∂
(+)
a ∂

(−)
b Ab(n)−

(
χab(n)D(+)

[a ψb](n) + η(n)D†(−)
a ψa(n)

+
1

2
ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
)]

. (5.48)

The last three terms of the action give rise to vertices between varying number of A’s
and the fermions η, ψa, and χab. There are three vertices that arise at linear order in A:

The ψAη vertex

VψAη = −
∑

n,a

Tr
(
η(n)D†(−)

a ψa(n)
)

= −
∑

n,a

Tr
(
η(n)ψa(n)U †

a(n)− η(n)U †
a(n− µ̂a)ψa(n− µ̂a)

)

= −
∑

n,k,q,p,a

Tr ei(k+q+p)·n
(
η(k)ψa(q)(−i)Aa(p)

−η(k)(−i)Aa(p)e
ipaψa(q)e

iqa
)

=
∑

k,q,p

δ−k,q+pη
C(k)AB

b (p)ψ
A
a (q)

(
i

4

)
δab[λABC − λABCe

−i(pa+qa)] . (5.49)

Thus, the Feynman diagram contribution for this vertex is (add a minus since it comes
from the first order term of e−S):

VηAψ = − i

4
δab[λABC − λABCe

−i(pa+qa)] . (5.50)
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p −kψA
a (p) ηC(k)

A
B

b (q)

−→ −
i

4
δab[λABC − λABCe−i(pa+qa)]

p −kψA
d (p) χC

ab(k)

AB
c (q)

−→ −
i

4
(−δacδbd + δadδbc)[λABCeipc − λABCeiqd ]

p −kχA
ab(p) χC

de(k)

A
B

c (q)

−→ −
i

8
ǫabcde

(
ei(ka+kb+kc)[λABCeipc − λABCei(qa+qb)]

−ei(pd+pe+pc)[λABCeikc − λABCei(qd+qe)]

)

Figure 5.3: Boson-fermion vertices on the lattice.

The ψAχ vertex

VψAχ = −
∑

n,a,b

Tr χab(n)D(+)
[a ψb](n)

=
∑

n,a,b

Tr
(
− χab(n)D(+)

a ψb(n) + χab(n)D(+)
b ψa(n)

)

=
∑

n,a,b,c,d

(−δacδbd + δadδbc)Tr
[
χab(n)

(
Uc(n)ψd(n+ µ̂c)− ψd(n)Uc(n+ µ̂d)

)]

=
∑

k,q,p,a,b,c,d

δ−k,q+p(−δacδbd + δadδbc)χ
C
ab(k)AB

c (q)ψ
A
d (p)

× i

4
[λABCe

ipc − λABCe
iqd] . (5.51)

The vertex is given by

VχAψ = − i

4
(−δacδbd + δadδbc)[λABCe

ipc − λABCe
iqd] . (5.52)



52 Chapter 5. Lattice N = 4 SYM Theory at one-loop

The χAχ vertex

VχAχ = −1

2

∑

n,a,b,c,d,e

Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)
c χab(n+ µ̂c)

= −1

2

∑

n,a,b,c,d,e

Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)
(
χab(n+ µ̂c)U †

c (n)

−U †
c (n+ µ̂a + µ̂b)χab(n)

)

=
1

2

∑

k,p,q,a,b,c,d,e

δ−k,q+pǫabcdeχ
C
de(k)A

B

c (q)χ
A
ab(p)

(
ei(ka+kb+kc)

i

4
[λABCe

ipc − λABCe
i(qa+qb)]

−ei(pd+pe+pc) i
4
[λABCe

ikc − λABCe
i(qd+qe)]

)
.

The vertex is given by (taking into account both possible contractions with external
propagators):

VχAχ = − i

8
ǫabcde

(
ei(ka+kb+kc)[λABCe

ipc − λABCe
i(qa+qb)]

−ei(pd+pe+pc)[λABCeikc − λABCe
i(qd+qe)]

)
. (5.53)

5.3 One-loop diagrams for the renormalized fermion

propagators

It is straightforward to see that we can construct four different amputated diagrams
using these propagators and vertices. The renormalized fermion propagators receive
contributions from these amputated diagrams. We write down these diagrams below. In
Appendix A, we show the simplification of these diagrams.

• The amputated ηψ diagram.

We have an AA propagator, a ψχ propagator, an ηAψ vertex, and a χAψ vertex.
Using the expressions above, we have:

Iηψ(p) =
∑

k,q

∑

BC

∑

abc

δ−p,k+q

[ 1

k̂2
[(eikb − 1)δac − (eikc − 1)δab]

]
·
[ 1

q̂2

]

·
[ i
4
[λABC − λABCe

i(ka+qa)]
]

·
[ i
4
(−δbaδcd + δbdδca)[λBCDe

−ipa − λBCDe
iqd]

]
. (5.54)
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• The first amputated ψχ diagram.

We have an AA propagator, a χχ propagator, a ψAχ vertex, and a χAχ vertex.

I1ψχ(p) =
∑

k,q

∑

bcdefm

∑

BC

[ 1

2k̂2
ǫbcmefe

i(ke+kf )(eikm − 1)
]

·
[ 1

q̂2

]
·
[
− i

4
(−δbdδca + δbaδcd)[λACBe

ipd − λACBe
−iqa ]

]

·
[
i

8
ǫefdgh

(
eik(d+g+h)[λBCDe

−ipd − λBCDe
i(qg+qh)]

]

−e−ip(d+e+f)[λBCDe
ikd − λBCDe

i(qe+qf )]
)]

. (5.55)

• The second amputated ψχ diagram.

It has an AA propagator, an ηψ propagator, a ψAη vertex, and a ψAχ vertex.
This yields:

I2ψχ(p) =
∑

k,q

∑

bc

∑

BC

[ 2

k̂2
(eikc − 1)

]
·
[ 1

q̂2

]
· δab

[
− i

4
[λACB − λACBe

−i(pa−qa)]
]

·
[
− i

4
(−δdbδec + δdcδeb)[λDCBe

ikb − λDCBe
iqc ]

]
. (5.56)

• The amputated χχ diagram.

It has a AA propagator, a χψ propagator, a χAχ vertex, and a ψAχ.

Iχχ(p) =
∑

k,q

∑

cdef

∑

BC

δk+q−p,0

[ 1

k̂2
[(e−ike − 1)δfd − (e−ikd − 1)δfe]

]
·
[ 1

q̂2

]

·
[
− i

8
ǫabcde

(
e−ik(a+b+c)[λACBe

ipc − λACBe
−i(qa+qb)]

−eip(c+d+e)[λACBe
−ikc − λACBe

−i(qd+qe)]
)]

·
[
− i

4
(−δgcδhf + δgfδhc)[λBCDe

ikc − λBCDe
iqf ]

]
. (5.57)

The contributions of these diagrams all vanish in the limit p → 0, indicating that
mass counterterms are absent in the lattice theory at one-loop. We show the details of
this calculation in Appendix B. In our general argument of section 5.1, we argued that
the only dangerous mass term involved a coupling of η and ψa. We now see that this term
does not arise at one-loop. In the next section, we will show that this feature persists to
all orders and, thus, our general conclusion will be that no mass counterterms are needed
at any finite order of perturbation theory.
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(i) ψ − η diagram (ii) First ψ − χ diagram

ηA(p) ψB
a (−k)

A
C

a (−q) AC
a (q)

ψD
d (−p)χB

bc(k) ψA
a (p) χB

bc(−k)

AC
d (−q) A

C

d (q)

χD
gh(−p)χB

ef (k)

(iii) Second ψ − χ diagram (iv) χ − χ diagram

ψA
a (p) ηB(−k)

A
C

b (−q) AC
b (q)

χD
de(−p)ψB

c (k) χA
ab(p) χB

de(−k)

A
C

c (−q) AC
c (q)

χD
gh(−p)ψB

f (k)

Figure 5.4: One-loop diagrams of fermions and complexified gauge fields.

5.4 The effective action

In this section, we will compute the partition function of the lattice theory in one-loop
order around an arbitrary classical vacuum state in which the fermions vanish and the
bosonic fields correspond to constant commuting matrices. To start, we expand the fields
around such a constant commuting background,

Ua(n) = Ua + iAa(n), U †
a(n) = U †

a − iAa(n) . (5.58)

Choosing the gauge α = 1/2, the quadratic part of the bosonic action then takes the
form

SB = −2
∑

n,a,b

Tr Ab(n)D†(−)
a D(+)

a Ab(n) . (5.59)

Here the covariant derivatives depend on the constant commuting classical background
[Ua,U †

a ] = 0. After integration over the fluctuations in the bosonic fields, we find that the
bosonic contribution to the one-loop partition function is given by

det−5(D†(−)
a D(+)

a ) . (5.60)

The gauge-fixing functional (5.25) leads to the quadratic ghost action:

SG =
∑

n,a

Tr cD†(−)
a D(+)

a c . (5.61)

The quadratic fermionic part of the action is given by the corresponding terms in (5.7),
except that now the covariant derivatives depend only on the background fields.
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Since the background is constant, we can pass to momentum space in which the action
separates into terms for each mode k. The 16× 16 fermion matrix M(k) for the mode k
then can be shown (using MAPLE to compute the determinant) to satisfy

detM(k) = det(D†(−)
a (k)D(+)

a (k))8 . (5.62)

Going back to position space, and taking into account the fact that there is a double
counting of modes in the matrix form (5.36), we obtain

Pf(M) = det4(D†(−)
a D(+)

a ) . (5.63)

The ghosts add another factor of det(D†(−)

a D(+)
a ), which is just what is needed to cancel

the bosonic contribution given earlier.

In conclusion, we have shown that the one-loop effective action of the lattice theory
obtained by expanding about an arbitrary point in the classical moduli space is identically
zero. Thus, as for the continuum, the moduli space is not lifted in this analysis and,
hence, there can be no boson or fermion masses at one-loop. Furthermore, we expect
that we can extend this analysis to all loops since the partition function of the lattice
theory is a topological invariant and, hence, can be computed exactly in the semi-classical
approximation (see Appendix C). Indeed, Matsuura uses similar arguments to show that
the vacuum energy of supersymmetric lattice theories with four and eight supercharges
remains zero to all orders in the coupling [50]. The calculation presented here extends
this to the case of sixteen supercharges3. Thus, we conclude that boson and scalar masses
remain zero to all orders in the coupling constant. This implies that the fermions also
remain massless, which is consistent with our explicit one-loop calculation.

At this point, we have derived expressions for the amputated one-loop diagrams that
contribute to the renormalization of the three twisted fermion propagators. This is suffi-
cient to calculate α1, α2 and α4 that appear in the general action:

L =
1

g2

∑

n,a,b,c,d,e

{
Q Tr

[
− iα1χabD(+)

a Ub(n)− iα2η(n)D†(−)
a Ua(n) +

α3

2
η(n)d(n)

]

−α4

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n + µ̂c)
}
. (5.64)

However the coefficient α3 requires further work. One simple way to extract it is via a
computation of the renormalized auxiliary boson propagator that we turn to in the next
section.

3Notice that in this calculation we have not included any mass terms that would guarantee the
stability of the initial classical vacuum state we have chosen to expand around. We have also ignored a
potential sign problem associated with the replacement of a Pfaffian with a square root of a determinant.
Nevertheless, we expect the result to be robust; the existence of an exact supersymmetry should ensure
that the object we are computing is a lattice regularized Witten index and hence independent of both
coupling constant and background field.
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5.5 One-loop diagrams for the auxiliary field propa-

gator

We have shown that the off-shell form of the bosonic action is given by

SB =
∑

n,a,b

Tr
(
F †
ab(n)Fab(n)−

i

g
d(n)D†(−)

a Ua(n) +
1

2
d2(n)

)
, (5.65)

where Fab(n) = − i
g
D(+)
a Ub(n).

In our previous computation of the fermion diagrams, we integrated out the field
d to give an on-shell action defined just in terms of the complex gauge link fields Ua
and U †

a. In this section we will not do this but, instead, focus on a computation of the
renormalized propagator for the d field. The Feynman rules for the fermions will be
identical to our previous scheme, but the boson propagators will change and so we need
to recompute those propagators in this off-shell scheme. We proceed in the standard
fashion by expanding the link field Ua(n):

Ua(n) = 1+ igAa(n), U †
a(n) = 1− igAa(n). (5.66)

and using the same lattice gauge-fixing term as before

SGF [A] = − 1

α

∑

n,a

Tr (∂(−)
a Aa(n))

2, (5.67)

we find the momentum space form:

SGF [A] =
1

α

∑

k,a,b

Tr Aa(k)f
∗
a (k)fb(k)Ab(−k) . (5.68)

It is convenient in this calculation to work with the real and imaginary parts of the
complex gauge field explicitly, thus,

Aa = Aa + iBa . (5.69)

The gauge-fixed bosonic action on the lattice to quadratic order in fields, with the choice
α = 1

2
, is then

S
(2)
B =

∑

k,a,b

Tr 2Aa(k)
[
δabfc(k)f

∗
c (k)

]
Ab(−k)

+2Ba(k)
[
δabfc(k)f

∗
c (k)− f ∗

a (k)fb(k)
]
Bb(−k)

−2id(k)fa(k)Ba(−k) +
1

2
d(k)d(−k) . (5.70)

We see that the d−Ba system decouples from Aa to this order. Its action is given by

S
(2)
B [d, Ba] ∼

∑

k,a,b

Tr 2Ba(k)
[
δabf

∗
c (k)fc(k)− f ∗

a (k)fb(k)
]
Bb(−k)

−2id(k)fa(k)Ba(−k) +
1

2
d(k)d(−k) . (5.71)
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d(−p) BA
a (p) BD

d (−p) d(p)

Figure 5.5: The generic diagram contributing to renormalized d propagator

or in matrix form

(
d Ba

)
(k)

(
1
2

−ifb(k)
−if ∗

a (k) Mab(k)

)(
d
Bb

)
(−k) , (5.72)

where Mab(k) = 2[δab
∑

c fc(k)f
∗
c (k) − f ∗

a (k)fb(k)]. Using standard identities for the
inverse of a partitioned matrix, we find

M−1 =

(
1
2

−ifb(k)
−if ∗

a (k) Mab(k)

)−1

=
1∑

c fc(k)f
∗
c (k)

(
0 ifb(k)

if ∗
a (k)

1
2
15

)
. (5.73)

We have
∑

c fc(k)f
∗
c (k) = 4

∑
c sin

2
(

kc

2

)
and, as before, we define k̂2 ≡ 4

∑
c sin

2
(

kc

2

)
.

Thus the lattice propagators are

〈dA(k)dB(−k)〉 = 0 , (5.74)

〈dA(k)BB
a (−k)〉 = iδAB

(e−ika − 1)

k̂2
, (5.75)

〈BA
a (k)B

B
b (−k)〉 = δabδAB

1

2k̂2
. (5.76)

From (5.70) the propagator for the A field is also

〈AAa (k)ABb (−k)〉 = δabδAB
1

2k̂2
. (5.77)

Notice that the field d is non-propagating at tree level. Using these propagators and
those derived earlier for the bosons and fermions, we can now write down the generic
Feynman diagram contributing to a renormalization of the auxiliary boson propagator.
It is shown in figure 5.5 and represents the set of amputated diagrams possessing two
external B field legs. These combine with the external 〈dB〉 propagators derived above
to yield the renormalized propagator for the auxiliary field d. Notice that the vanishing
of the tree level 〈dd〉 propagators ensures that no amputated diagrams with 2 d field
external legs contribute. The set of all such lattice Feynman diagrams is shown below
and corresponds to a subset of the B field vacuum polarization diagrams. It is important
to notice that almost all these diagrams appear in the continuum off-shell twisted theory.
The exceptions are just the diagrams containing a BBd vertex that corresponds to the
lattice vertex

VdBB = 〈dA(−k− q)BB
a (k)B

C
b (q)〉 =

i

2
δab(λABC + λABC)(1− e−i(ka+qa)) . (5.78)
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BA
a (p) BD

d (−p)

AC
c (−q) AC

c (q)

AB
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BC
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Figure 5.6: Set of all lattice amputated Feynman diagrams contributing the renormalized
d propagator.
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Clearly, this vertex vanishes as the lattice spacing is sent to zero and, hence, this dia-
gram does not contribute to the divergent piece in the 〈dd〉 propagator at this order of
perturbation theory.

Hence, we are left with a set of diagrams that correspond to those of the equivalent
continuum theory at one-loop order. This fact can be exploited later to allow us to
argue that the leading logarithmic divergences of the lattice theory are shared with the
continuum theory. Anticipating this, we will not write down explicit expressions for these
amputated lattice diagrams in this section.

5.6 Divergence structure of the one-loop diagrams

At this point, we have derived expressions for the amputated one-loop diagrams that
determine the renormalization of three fermion propagators and also the set of Feynman
graphs needed to renormalize the auxiliary bosonic field propagator. In principle, this
input will allow us to determine all four coefficients αi appearing in the renormalized
action (5.11). Of course, the question of how much fine tuning is required to regain full
supersymmetry is determined by the parts of these expressions that diverge as the lattice
spacing is sent to zero. We must, therefore, evaluate the expressions for the one-loop
integrals as the lattice spacing tends to zero.

First, let us discuss the diagrams contributing to the fermion propagators. We have
shown in Appendix B that the one-loop fermion propagators all vanish for vanishing
external momentum, which is consistent with our effective action computation showing
that no fermionic mass terms can be generated perturbatively. Reisz’s power counting
theorem [51]-[54] shows us that we cannot simply take the naive continuum limit of the
expressions for the amputated one-loop diagrams as they have a naive degree of divergence
of 1. However, we can use a trick due to [55] and detailed in [56] to extract the leading
divergences.

We split the integral I(p) into two pieces as follows:

lim
a→0

I(p) = lim
a→0

[
I(p)− I(0)−

∑

b

pb
∂I

∂pb

∣∣∣∣
p=0

]

+ lim
a→0

[
I(0) +

∑

b

pb
∂I

∂pb

∣∣∣∣
p=0

]
. (5.79)

The first term in square brackets can now be evaluated in the naive continuum limit and
contains no divergence. The second term contains the divergence but contains no external
momenta in the integrand, which simplifies its evaluation on the lattice. In addition we
know that I(0) vanishes for each of our diagrams so the calculation becomes simpler still.

We will find that the resulting expressions have logarithmic divergences of the form
log µa, where µ is a small mass parameter used to regulate the behavior of the integrand
close to the origin of momentum space and a the lattice spacing4.

4We will only consider the case of infinite lattice size which reduces all lattice sums in momentum
space to integrals.
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One obvious way to proceed is simply to numerically evaluate the integral for a variety
of regulator masses µ and extract the logarithmic divergence and any constant contri-
butions using a fitting procedure. However, if we are only interested in the leading log
divergences, there is a simpler approach detailed in the next section in which a naive con-
tinuum limit can be taken and the expressions evaluated using, for example, dimensional
regularization.

In the next section, we give an example of this procedure for the amputated ηψ
diagram and show how to extract similar results for the remaining fermion self-energy
diagrams. We will also see that the same procedure allows us to argue that the leading
log divergent contribution to α3 is also equal to its value in the continuum theory.

5.6.1 The amputated fermion diagrams

We start with our simplified expression for Iηψd
(p) given in Appendix A

Iηψd
(p) =

∫
d4q

(2π)4

∑

BC


(1− ei(p−q)d)

8 ̂(p− q)
2

q̂2



[
−

∑

a6=d

[
dABCdBCD

× (e−ipa − eiqd − 1 + eipa+iqd)

+ fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]]
. (5.80)

As a first step we need to calculate the derivative of the diagram (re-inserting the
lattice spacing a and the infra-red cutoff µ)

∂Iηψd
(p)

∂pb

∣∣∣∣
p=0

=

∫ π
a

−π
a

d4q

(2π)4
−2a4 sin aqb
(q̂2 + µ2a2)3

(1− e−iaqd)fABCfBCD(1 + eiaqd)

+

∫ π
a

−π
a

d4q

(2π)4
−a3

(q̂2 + µ2a2)2
(−iaδdbe−iaqd)fABCfBCD(1 + eiaqd)

+

∫ π
a

−π
a

d4q

(2π)4
−a3

8(q̂2 + µ2a2)2
(1− e−iaqd)

×
∑

a6=d

(dABCdBCD + fABCfBCD)δab(−ia)(1− eiaqd) . (5.81)

A further simplification now occurs. If we are only interested in the leading log µa coef-
ficient, we can evaluate this integral in a small q region around zero. This is because the
contribution of the integrand to the logµa coefficient comes only from small q. Further-
more, in the region q → 0, the propagators and vertices inside the integral will approach
their continuum counterparts and, hence, the logarithmic divergence can be extracted by
replacing the lattice integrals by their naive continuum limit. Note that this only works
for the coefficient of the log - we must evaluate the integral numerically (and then fit) in
order to extract the constant terms.
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Thus, we find:

lim
a→0

∂Iηψd
(p)

∂pb

∣∣∣∣
p=0

∼
∫ ∞

−∞

d4q

(2π)4
−4iqbqd

(q2 + µ2)3
fABCfBCD

+

∫ ∞

−∞

d4q

(2π)4
2iδdb

(q2 + µ2)2
fABCfBCD . (5.82)

Note that we cannot just set the first term in this expression to zero as êd and êb are not
orthogonal to each other; instead, we have:

∫
ddq

qbqd
(q2 + µ2)3

= eµb e
ν
d

∫
ddq

qµqν

(q2 + µ2)3

= êb · êd
∫
ddq

q2

d(q2 + µ2)3
. (5.83)

Then êb · êd = δbd − 1
5
. We use dimensional regularization and the fact that

∑
b pb = 0 to

evaluate the resulting integrals getting

Iηψd
(p) ∼

∑

b

pb
∂Iηψd

(p)

∂pb

∣∣∣∣
p=0

∼ − i

8π2
pdfABCfBCD log µa . (5.84)

Note that we have inserted the cutoff 1
a
inside the logarithm to ensure that it is dimen-

sionless.
Since all the Feynman graphs we need to evaluate are logarithmically divergent and

in one-to-one correspondence with continuum diagrams, the resulting logarithmic di-
vergences can all be extracted by following a similar procedure i.e. taking the naive
continuum limit of the relevant I(p).

lim
a→0

I
(1)
ψaχgh

(p) ∼
∫

d4q

(2π)4

∑

m

−i(p− q)m
2(q2 + µ2)((p− q)2 + µ2)

× (3δagδmh − 3δahδmg) fABCfBCD

∼ 3i

32π2
fABCfBCD (δagph − δahpg) logµa . (5.85)

lim
a→0

I
(2)
ψaχde

(p) ∼
∫

d4q

(2π)4

∑

c

−i(p− q)c
2(q2 + µ2)((p− q)2 + µ2)

×(δdaδec − δdcδea)fABCfBCD

∼ i

32π2
fABCfBCD(δdape − δeapd) logµa . (5.86)

This obviously leads us to define Iψaχde
(p) = I

(1)
ψaχde

(p) + I
(2)
ψaχde

(p) and therefore

Iψaχde
(p) ∼ i

8π2
fABCfBCD(δdape − δeapd) (5.87)
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ψd η ψc η ψd χgh ψc η

Figure 5.7: Full ηψ propagators.

lim
a→0

Iχabχgh
(p) ∼

∫
d4q

(2π)4

∑

d

i(p− q)d
2(q2 + µ2)((p− q)2 + µ2)

ǫabdghfABCfBCD

− (h↔ g)

∼ − i

16π2
fABCfBCD

∑

d

ǫabdghpd logµa . (5.88)

Note that these calculations of the log terms for the other diagrams have also been verified
by numerical evaluation and fitting of the resulting lattice integrals.

5.6.2 The auxiliary field diagram

Since the amputated divergent diagrams for the lattice d propagator are log divergent,
we can extract the sum of these logarithmic divergences using the same tricks we used
for the fermions, evaluating the diagram in the naive continuum limit. The sum of all
these diagrams, contracted with external dB propagators, will then yield a log divergent
term of the form

Cdd = cfACBfDCB log (µa) , (5.89)

where c is a constant to be determined by explicitly evaluating the diagrams. However,
we will argue in the next section that it is not necessary to evaluate these diagrams,
even in the continuum, to determine α3 – the requirement that the continuum theory
preserve full supersymmetry will automatically determine α3 in terms of the other αi
corresponding to the fermion propagator renormalization.

5.6.3 From amputated diagrams to renormalized propagators

The leading logarithmic divergences appearing in the renormalized propagators are ob-
tained by combining the (divergent parts of) the individual amputated diagrams we have
just computed. In principle, several of the amputated fermion diagrams can appear as in-
ternal bubbles when correcting a given fermion propagator. As an example, consider the
ψη diagram shown in Figure 5.7. Naively, we see that three of our amputated diagrams
contribute to the renormalization of this propagator. However, we find that (at least in
the case of the log divergences) the Lorentz structure of the propagators and integrals
means that only the ηψ amputated diagram contributes to the renormalization of the ηψ
propagator.

We demonstrate this through explicit calculation. Denoting the full diagrams by C
and noting that, as we are dealing with only the divergent part, we can approximate the
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lattice propagators by their continuum analogues we find

Cψdη =
2ipd
p2

∑

c

Iηψc
(p)

2ipc
p2

+
∑

c,g,h

ipgδdh − iphδdg
p2

Iχghψc
(p)

2ipc
p2

∼ −2ipd
p2

i

8π2
fABCfBCD

∑

c

pc
2ipc
p2

logµa

∼ 1

4π2
fABCfBCD

2ipd
p2

logµa . (5.90)

The second term disappears as

∑

c,g,h

(pgδdh − phδdg)(δcgph − δchpg)pc =
∑

c

(pcpd − p2δcd − p2δdc + pcpd)pc

= 0 . (5.91)

We can similarly show that only Iψχ contributes to Cψχ and Iχχ to Cχχ. Note, however,
that this analysis strictly only applies to the logarithmically divergent piece in C.

Cψaχde
=

i

8π2
fABCfBCD

∑

g,h,c

ipgδah − iphδag
p2

(δgcph − δhcpg)

×ipdδce − ipeδcd
p2

logµa

=
1

4π2
fABCfBCD

ipdδae − ipeδad
p2

logµa . (5.92)

In calculating Cχχ we must take into account that the internal propagator in Iχχ can be
a ψχ or χψ. This contributes another factor of 2 to Cχχ.

Cχabχde
= − i

8π2
fABCfBCD log µa

∑

c,f,g,i,h,j,k

ǫabcfg
ipc
2p2

ǫfgihjpiǫhjkde
ipk
2p2

= − i

2π2
fABCfBCD log µa

∑

c,i,k

ipc
2p2

pi
ipk
2p2

× (δaiǫbckde + δbiǫcakde + δciǫabkde)

=
1

4π2
fABCfBCD log µa

∑

k

ipk
2p2

ǫabkde . (5.93)

The coefficients αi are now determined by the coefficient of the propagator in the renor-
malized propagator amplitudes C. Explicitly, we find

αi = 1 + bi logµa i = 1, 2, 4 , (5.94)

where

bi = b =
g2N

4π2
. (5.95)
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Note that we have used fABCfBCD = NδAD. This is required, as the color structure of
any counterterms must match the tree propagators. However, this is strictly only true
for SU(N) as fABCfBCD = N(δAD − δA0δD0) for U(N). This does not matter in the
continuum, as the U(1) trace piece simply decouples from the rest of the system and can
be ignored. When doing lattice simulations, we might imagine achieving a similar result
by giving the U(1) mode a large mass of the order of the cut-off that will serve to decouple
it from the SU(N) modes at finite lattice spacing. The breaking of supersymmetry in this
sector may then be removed by sending this U(1) mass to zero after taking the continuum
limit.

While naively one might have expected the coefficients bi to be all different, our
results indicate that, in fact, the log divergent parts of bi and, hence, αi are actually all
equal. This fact can be understood quite simply; to untwist the continuum theory into a
theory with four Majorana spinors requires that the continuum twisted fermions exhibit a
common wavefunction renormalization. This just follows from the fact that the individual
components of the spinors mix the different twisted fermions together. To achieve this
requires that the corresponding renormalization constants of the kinetic terms αi should
all be equal – just as we find. Furthermore, since the leading log behavior of the lattice
theory is the same as the continuum, we should expect that the log divergent part of the
lattice couplings behave in the same way. Thus, a single wavefunction renormalization of
the twisted lattice fermions is all that is needed to render the renormalized theory finite.
The common anomalous dimension of the fermions in this twisted scheme is then given
by

γ =
g2N

8π2
. (5.96)

In the case of the 〈dd〉 propagator, the leading log divergent contribution can be
computed from the naive continuum limit of the corresponding continuum expression for
the sum of the BB bubble diagrams given in diagram 5.6. Combined with the fact that
the tree level 〈dB〉 propagators required on the outside of these BB amputated diagrams
are the same as the continuum to O(a), we find that the log divergence in the mass
renormalization of the d field must be the same on the lattice as in the continuum. Using
this fact we can argue that the log divergent part of α3 must actually be equal to that
of the fermions, α1, for example. This follows from the fact that the bosonic action for
general αi can be rewritten as

α1

(
FabFab

)
+
α2
2

α3

(1
2
[Da,Da]

2
)
. (5.97)

Only for α3 = α2 = α1 can this renormalized bosonic action be untwisted to yield
the conventional gauge field plus scalar action in the continuum limit. But, since the
continuum twisted theory possesses full supersymmetry, this must be true. And our
general arguments then tell us the log divergence of α3 on the lattice must satisfy the
same property.

To summarize: we find that the log divergent parts of the coefficients αi, i = 1 . . . 4
must all be equal to one-loop order in the lattice theory. This implies that a common
wavefunction renormalization of both twisted fermions and bosons is sufficient to ren-
der the renormalized theory finite at one-loop with all fields acquiring an anomalous
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dimension (in this scheme) given by γ = g2N
8π2 . Physically, the equality of the couplings

αi, i = 1 . . . 4 means that no logarithmic fine tuning is required at weak coupling for the
lattice theory to exhibit full supersymmetry as the lattice spacing is sent to zero.



Chapter 6

Simulating Lattice SYM Theories

The unique geometric structure of the twisted SYM theories calls for a special class
of algorithms to simulate them on the lattice. Fortunately, we are equipped with the
right tools to perform the simulations and, thus, extract some interesting results. We
will present some interesting results in the case of two-dimensional sixteen supercharge
Yang-Mills theory in the next Chapter. In this Chapter, we briefly describe the simula-
tion algorithms and architectures needed to simulate the above mentioned twisted SYM
theories.

6.1 Hybrid Monte Carlo algorithm

We begin with the case of conventional lattice QCD. To compute an observable Ω in a
theory with a set of bosonic fields Φ and fermionic fields ψ, ψ, we use the path integral

〈Ω〉 = 1

Z

∫
[dΦ]e−SB [Φ] [detM(Φ)]αΩ(Φ) , (6.1)

where we have integrated out the fermionic fields to get the determinant, Z is the partition
function

Z =

∫
[dΦ]e−SB [Φ] [detM(Φ)]α , (6.2)

with the parameter α depending on the number of the fermion species, and the operator
M ≡M †M with M the discretized Dirac operator.

The parameter α takes integer values in conventional theories and, when α = 1, we
use the well known Hybrid Monte Carlo (HMC) algorithm [57]. Later we see that we can,
in fact, define a theory (the twisted SYM theories belong to such class) with an arbitrary
number of fermions if we are willing to allow a non-integer α. The HMC algorithm fails
in such cases because there is no prescription to evaluate directly either the action or its
variation with respect to the bosonic fields to evaluate the forces, so we are in need of an
enhanced HMC algorithm.

66
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Let us try to understand the HMC algorithm first before we move on to an alternative
algorithm to simulate the twisted SYM theories. HMC algorithm is the de facto algorithm
for fermion theories where α = 1. Here we rewrite the fermion determinant in terms of
pseudo-fermions F [58]

detM =

∫
[dF †][dF ] e−F

†M−1F =

∫
[dF †][dF ] e−Spf . (6.3)

We then introduce fictitious momentum fields pΦ and pF , conjugate to the fields Φ and
F , respectively1, whose values are drawn from a Gaussian distribution, and define a
Hamiltonian

H =
1

2
p2Φ +

1

2
p2F + SB + Spf . (6.4)

The basic idea of HMC algorithm is to use the fact that the Hamiltonian is a constant
of classical dynamics to update the fields. The field variables are now promoted to be
variables of a new Monte Carlo “time” τ 2.

Now that the Hamiltonian is defined, we can evolve the fields through integrating
Hamilton’s equations of motion. The resulting fields will have the desired probability
distribution,

P(Φ, F ) =
1

Z
e−SB−Spf . (6.5)

We refresh the momenta periodically, once per trajectory, to ensure ergodicity of the
algorithm.

We discretize the fictitious time dimension τ and employ a numerical integration
scheme with step-size δτ to evolve the fields by integrating Hamilton’s equations. This
process introduces an O(δτk) error to the field distribution, where k is equal to the order
of the integration scheme used. We can use the Metropolis acceptance test at the end of
each trajectory to stochastically correct this error. The Metropolis test requires detailed
balance. This requirement places two constraints on the integration scheme chosen: the
integration process should be reversible and area preserving. Symmetric symplectic inte-
grators respect these constraints and the most simple of these is the second order leapfrog
integrator. Thus, the HMC algorithm is an exact algorithm and the results obtained are
independent of the step-size if the step-size is chosen to give a reasonable acceptance
rate3.

We summarize the steps involved in the HMC algorithm below:

1. Choose a starting bosonic field configuration Φ.

2. Choose the momentum pΦ from a Gaussian ensemble with Boltzmann factor exp(−1
2
p2Φ).

1Introducing conjugate momenta in the Hamiltonian will not affect the measured expectation values
of observables.

2This should not be confused with the Euclidean time direction in the theory.
3There exist integration schemes in HMC with multiple time scales to evolve bosonic and fermionic

field variables independently to optimize the algorithm.
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3. Choose ξ to be a field of Gaussian noise and calculate

F =M †(Φ)ξ. (6.6)

4. Evolve fields and momenta to get the corresponding updated configurations.

5. At the end of the trajectory4, accept the new configuration with probability

Pacc = min(1, e−δH). (6.7)

6. Save the new configuration generated, or the old configuration, depending on the
outcome of the Metropolis test.

7. Return to 3.

6.2 Rational Hybrid Monte Carlo algorithm

The simulations of twisted SYM theories calls for an algorithm that takes care of non-
integer α values. The best alternative is the Rational Hybrid Monte Carlo (RHMC)
algorithm [59]. We briefly describe the algorithm below.

We rewrite the determinant in terms of pseudo-fermions, but now replace the fermion
operator in the bilinear by a rational approximation,

detMα =

∫
[dF †][dF ]e−F

†M−αF ≈
∫
[dF †][dF ]e−F

†r2(M)F , (6.8)

with r(M) = M−α/2.
The rational approximation has far superior convergence properties. We can use

Remez algorithm to generate optimal rational approximations. The roots and poles of
such approximations are, in general, real. The poles are also always positive for |α| < 1,
which are the functions of our interest. We write r(M) in partial fraction form:

r(M) =

m∑

k=1

αk
M+ βk

, (6.9)

and then evaluate using a multi-shift solver [60]. The cost of evaluating a rational func-
tion is essentially the same as a single matrix inversion and the precision is independent
of the cost to first order. For |α| < 1, the αk coefficients are in general all the same sign
and so the evaluation of rational functions using partial fractions is numerically stable.

We summarize the steps involved in the RHMC algorithm below:

1. Choose a starting bosonic field configuration Φ.

2. Choose the momentum pΦ from a Gaussian ensemble with Boltzmann factor exp(−1
2
p2Φ).

4The trajectory has τ/δτ steps.
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3. Choose ξ to be a field of Gaussian noise and calculate

F = r(M)−1ξ. (6.10)

4. Evolve fields and momenta to get the corresponding updated configurations.

5. At the end of the trajectory, accept the new configuration with probability

Pacc = min(1, e−δH).

6. Save the new configuration generated, or the old configuration, depending on the
outcome of the Metropolis test.

7. Return to 3.

In the case of twisted SYM theories we integrate out the fermions to produce a Pfaffian,
which is in turn represented by the square root of a determinant5 and can be simulated
using the RHMC algorithm.

If we denote the set of twisted fermions by the field Ψ = (η, ψµ, χµν), we first introduce
a parallel pseudo-fermion field Φ with action:

SPF = Φ†(M †M)−
1
4Φ , (6.11)

where M =M(U ,U †) is the antisymmetric twisted lattice fermion operator6.

Integrating over the fields Φ will then yield (up to a possible phase) the Pfaffian of
the operator M(U ,U †) as required. The fractional power is approximated by the partial
fraction expansion:

1

(M †M)
1
4

= α0 +
P∑

i=1

αi
M †M + βi

, (6.12)

where the coefficients {αi, βi} are evaluated offline using the Remez algorithm to minimize
the error in some interval (ǫ, A). Typically, we have used P = 15 which yields a fractional
error of 0.00001 for the interval 0.0000001 → 1000.0, which conservatively covers the range
we are interested in.

Following the standard procedure, we introduce momenta (pU , pF ) conjugate to the
coordinates (U ,Φ), and evolve the coupled system using a discrete time leapfrog algorithm
according to the classical Hamiltonian

H = SB + SPF + pU p̄U + pΦp̄Φ. (6.13)

The bosonic action is real, positive semi-definite in all these theories even on the lattice.

5This ignores a possible sign ambiguity in the fermionic determinant.
6The antisymmetry is guaranteed if the fermion action is rewritten as the sum of the original terms

plus their lattice transposes.
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One step of the discrete time update is given by:

δpU =
δt

2
f̄U (6.14)

δpΦ =
δt

2
f̄Φ (6.15)

δU =
(
eδtpU − I

)
U (6.16)

δΦ = δtpΦ (6.17)

δpU =
δt

2
f̄U (6.18)

δpΦ =
δt

2
f̄Φ (6.19)

where the forces fU and fΦ are given by:

fU = −δS
δU (6.20)

fΦ = −δS
δΦ

(6.21)

and the bar denotes complex conjugation. Using the partial fraction expansion given in
(6.12) these forces take the form:

fU =

P∑

i=1

αi

[
t̄i
δM

δU si +

(
t̄i
δM

δU si

)]
(6.22)

fΦ = −α0Φ̄−
P∑

i=1

αis̄i (6.23)

where

(M †M + βi)si = Φ (6.24)

ti = Msi (6.25)

The latter set of sparse linear equations is solved using a multimass CG-solver [61], which
allows for the simultaneous solution of all P systems in a single CG solve.

At the end of one such classical trajectory the final configuration is subjected to a
standard Metropolis test based on the Hamiltonian H . The symplectic and reversible
nature of the discrete time update is then sufficient to allow for detailed balance to be
satisfied and hence expectation values are independent of δt. After each such trajectory,
the momenta are refreshed from the appropriate Gaussian distribution as determined by
H , which renders the simulation ergodic.
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The forces are derived below:

fUm
=

∂Spf
∂Um

=
P∑

i=1

αiF
† −1

(M †M + βi)2
∂

∂Um
(M †M)F

= −
P∑

i=1

αi

( F

(M †M + βi)

)† ∂

∂Um
(M †M)

( F

(M †M + βi)

)

= −
P∑

i=1

αi

( F

(M †M + βi)

)†(
M † ∂M

∂Um
+
∂M †

∂Um
M

)( F

(M †M + βi)

)

= −
P∑

i=1

αi

[(
M

F

(M †M + βi)

)† ∂M

∂Um

( F

(M †M + βi)

)

+
( F

(M †M + βi)

)†∂M †

∂Um

(
M

F

(M †M + βi)

)]

= −
P∑

i=1

αi

[
t†i
∂M

∂Um
si + s†i

∂M †

∂Um
ti

]
. (6.26)

fF =
∂Spf
∂F

= α0
∂

∂F
(F †F ) +

P∑

i=1

αi
∂

∂F

(
F †

[
(M †M + βi)

−1F
])

= α0F
† +

P∑

i=1

αis
†
i . (6.27)

6.3 Overall structure of the C++ code

We focus on implementing the SYM theories on hypercubic lattices. For a p-dimensional
hypercubic lattice there are p orthogonal basis vectors µ̂1, · · · , µ̂p. In the case of N = 4
in four dimensions, we have to augment this set with one additional body diagonal lattice
link. We introduce the Lattice Vector class to store the coordinates of the lattice sites
and also the vector between sites. Such lattice vectors can be added or subtracted by
overloading the ‘+’ or ‘−’ operators. These operations also respect the lattice boundary
conditions.

The bosonic and pseudo-fermionic fields are stored in various objects belonging to the
classes corresponding to them. We define various classes such as Umatrix, Gauge Field,
Twist Fermion, Site Field, Link Field, Plaq Field, Body Field, etc., in utilities.h.

Let us briefly describe how the code works. The general organizational structure of
the code is given in figure 3. We begin with sym.cpp. It reads the input parameters,
such as number of sweeps (SWEEPS), number of thermalization steps (THERM), gap in mea-
surements (GAP), the ‘t Hooft coupling (LAMBDA), etc., using functions contained in the
file read param.cpp. It can also read in previously generated field configurations using
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Figure 6.1: The organizational structure of the C++ code that generates and measures
field configurations.

read in.cpp.

The code sym.cpp performs three major tasks:

1. Update the field configurations as the simulation time progresses. This is accom-
plished by calling the function update(U,F) contained in update.cpp

2. Save the field configurations after some number of Monte Carlo sweeps and then a
Metropolis test. (using the functions in write out.cpp)

3. Measure the observables in the theory. This is done by function calls within
(measure.cpp)

Let us focus on the task of updating field configurations first. After reading the
initial parameters and field configurations, update() is called. Here, we refresh the
momenta p U and p F (at the beginning from a Gaussian distribution) and then go to
kinetic energy.cpp to compute the kinetic energy

Adj(p U)*p U + Cjg(p F)*p F.

Compare this with the first two terms in the classical Hamiltonian (6.13):

pUpU + pFpF
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After computing kinetic energy, the boson and pseudo-fermion actions (6.13) are com-
puted with a call to action().

The computation of the bosonic action SB is straightforward. In the code, it is
accomplished with the line:

KAPPA*[0.5*Tr(DmuUmu*DmuUmu) + 2.0*Tr(Fmunu*Adj(Fmunu))] .

Here KAPPA is the dimensionless lattice coupling. It is defined in read param.cpp and
depends on the number of dimensions (D), size of the lattice (LX, LY, LZ, T) and number
of colors (NCOLOR). The terms in the bosonic action can easily be identified with those of
the lattice action. We have

DmuUmu(x) → Umu(x)*Udagmu(x)-Udagmu(x-e mu)*Umu(x-e mu)

Fmunu(x) → Umu(x)*Unu(x+e mu)-Unu(x)*Umu(x+e nu)

The fermionic part of the action is computed by taking the real part of

S F = ampdeg*(Cjg(F)*F) +
∑

DEGREE

n=0
amp[n]*(Cjg(F)*sol[n]) ,

where n runs from 0 to DEGREE (which is equal to number of terms in the Remez approx-
imation P ), ampdeg corresponds to α0, F the twisted pseudo-fermion F , Cjg(F) is F †,
amp[n] is αi and sol[n] corresponds to si ≡ (M †M + βi)

−1F .
Compare this pseudo-fermion action with

Spf = α0F
†F +

∑P
i=1 αiF

†
[
(M †M + βi)

−1F
]
.

We invoke a multimass conjugate gradient (MCG) solver MCG solver, provided in
MCG solver.cpp, to help compute the terms needed in the fermionic action. The MCG
solver can return solution to (M †M + βi)si = F for all shifts βi.

Once the Hamiltonian is computed, we evolve the fields along a classical trajectory.
This is handled by the function evolve fields. The evolution of the fields and momenta
are achieved through a leapfrog algorithm. In the first half step we have:

p Umu → p Umu + 0.5*DT*f Umu

p F → p F + 0.5*DT*f F

Umu → Umu + exp(DT*p Umu)

F → F + DT*p F

Immediately after computing the change in fields (Umu and F) and momenta (p Umu

and p F), we update the forces by calling force(). The bosonic force contribution to
f Umu is given by:

f Umu(x) → f Umu(x)+Umu(x)*Udagmu(x)*DmuUmu(x)

-Umu(x)*DmuUmu(x+e mu)*Udagmu(x)

+2.0*Umu(x)*Unu(x+e mu)*Adj(Fmunu(x))

-2.0*Umu(x)*Adj(Fmunu(x-e nu))*Unu(x-e nu)

The computation of the fermionic force f F requires first a call to the MCG solver
MCG solver(). We find
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f F = -ampdeg*Cjg(F) -
∑

DEGREE

n=0
amp[n]*Cjg(sol[n])

Once we have this solution an additional contribution to the gauge force coming from the
pseudo-fermions is gotten by a call to the function fermion forces(). Each fermionic
term in the action yields a contribution. We provide a part of this code in figure 4. In the
second half step of the leapfrog algorithm, the momenta p U and p F are again updated
with the new forces. These final forces are then saved for the next iteration.

In practice it is important to use a multi-time step integrator for this evolution [62]. In
this case, while the fermions are with a time step of DT, the bosons are integrated with the
time step DT/MSTEP. Provided the boson force is substantially larger than the fermionic
contribution, this can result in fewer costly fermion inversions for a fixed acceptance rate.
In practice, the parameter MSTEPS can be tuned to optimize the update.

Finally, control returns to update() and the updated Hamiltonian H new is computed.
A simple Metropolis test is used to accept or reject the field configuration at the end of
the trajectory.
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1 #include ”fermion forces.h”
2

3 void fermion forces(const Gauge Field &U, Gauge Field &f U,
4 const Twist Fermion &s, const Twist Fermion &p)
5 {
6 Lattice Vector x, e mu;
7 int sites, mu, a, b;
8 Umatrix tmp;
9 Gauge Field Udag;
10

11 Udag=Adj(U);
12 f U=Gauge Field();
13 //contribution to f_U from psi_muDb_mu(U)eta term

14 sites=0;
15 while(loop over lattice(x,sites))
16 {
17 for(mu=0;mu<NUMLINK;mu++)
18 {e mu=Lattice Vector(mu);
19 tmp=Umatrix();
20 for(a=0;a<NUMGEN;a++)
21 {
22 for(b=0;b<NUMGEN;b++)
23 {tmp=tmp+conjug(p.getS().get(x).get(a))∗s.getL().get(x,mu).get(b)
24 ∗Lambda[a]∗Lambda[b]∗Udag.get(x,mu)−conjug(p.getS().get(x+e mu).get(a))
25 ∗BC(x,e mu)∗s.getL().get(x,mu).get(b)∗Lambda[b]∗Lambda[a]∗Udag.get(x,mu);}
26 }
27 f U.set(x,mu,f U.get(x,mu)−0.5∗Adj(tmp));}
28 }
29 sites=0;
30 while(loop over lattice(x,sites))
31 {
32 for(mu=0;mu<NUMLINK;mu++)
33 {e mu=Lattice Vector(mu);
34 tmp=Umatrix();
35 for(a=0;a<NUMGEN;a++)
36 {
37 for(b=0;b<NUMGEN;b++)
38 {tmp=tmp+conjug(p.getL().get(x,mu).get(a))∗s.getS().get(x+e mu).get(b)
39 ∗BC(x,e mu)∗Lambda[a]∗Lambda[b]∗Udag.get(x,mu)−
40 conjug(p.getL().get(x,mu).get(a))∗s.getS().get(x).get(b)
41 ∗Lambda[b]∗Lambda[a]∗Udag.get(x,mu);}
42 }
43 f U.set(x,mu,f U.get(x,mu)−0.5∗Adj(tmp));}
44 }
45 sites=0;
46 while(loop over lattice(x,sites))
47 {for(mu=0;mu<NUMLINK;mu++){f U.set(x,mu,−1.0∗Adj(f U.get(x,mu)));}}
48 return;
49 }

Figure 6.2: A part of the C++ code to compute the fermion force contribution.



Chapter 7

D1-brane Thermodynamics from

Lattice Super Yang–Mills

In this Chapter1, we investigate the phase structure of the two-dimensional lattice
SYM theory with sixteen supercharges using Monte Carlo simulations described in Chap-
ter 6. The two-dimensional theory is obtained by the dimensional reduction of the N = 4,
d = 4 SYM theory. We write down the lattice version of the theory using the twisted
formulation and study the possible large N transitions between spatially confined and
deconfined phases of the theory as revealed by behavior of the spatial Polyakov line.
This theory has a supergravity dual; we also investigate the possible transitions between
certain black holes in the dual supergravity theory.

The holographic duality conjecture connects supersymmetric gauge theories with
string theories in certain background. According to this conjecture, type II superstring
theory in AdSd+1 ×M space, where M is a compact manifold with positive curvature,
should be equivalent to a superconformal field theory living on the d-dimensional bound-
ary of AdSd+1. In recent years the holographic principle between supersymmetric gauge
theories and supergravity theories [65] has been explored using a series of numerical stud-
ies. So far, these studies have been confined to the case when the super Yang–Mills theory
is one-dimensional and the dual gravitational theory describes the low energy dynamics
of D0-branes [66, 67, 68, 69, 70, 71, 72, 73] or the N = 4 theory compactified on S3 × R

[74, 75, 76].

In this Chapter, we extend these calculations to the case of N coincident D1-branes
wrapped on a spatial circle, which, in the decoupling limit, is described by a two-
dimensional maximally SYM theory on a circle [65, 77]. This two-dimensional Yang–Mills
system possesses a richer structure at large N than its one-dimensional counterpart. The
reason is that there is a new dimensionless coupling in the theory that can be varied
in addition to the temperature when the spatial direction is compactified on a circle.

1This Chapter is based on the work [63, 64].

76
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Arguments from a high temperature limit and also from strong coupling, using a dual
supergravity description, indicate that the system should possess an interesting phase
structure in the two-dimensional parameter space spanned by the temperature and this
new coupling in the large N limit [77, 78]. A large N transition between confined and
deconfined phases with respect to the spatial Polyakov line is expected, which interpo-
lates between the high temperature region and the strongly coupled region. In particular,
for the strongly coupled region, the dual D1-brane system can be described by certain
black holes in supergravity, with a compact spatial circle. Then arguments from the dual
gravity model indicate a first order Gregory-Laflamme (GL) [79, 80] phase transition
between the black hole solutions localized on the circle and uniform black hole solutions
which wrap the circle [77, 78, 81, 82, 83, 84, 85, 86]. Translating back to the SYM,
the dual gravity model predicts the parametric dependence of the transition temperature
against dimensionless circle coupling – a dependence that seemingly cannot be deduced
by simple SYM considerations. Interestingly, since the relevant gravity solutions have
not been constructed yet (analog solutions are known, but not in the correct dimension
[87, 88, 89]), the precise coefficient in this relation is not known, and determining it in
SYM yields a prediction for the phase transition temperature that could be tested in the
future when the gravity solutions are constructed – a classical, but, nonetheless, rather
non-trivial gravitational problem.

The numerical results appear to confirm the expected deconfinement phase transition
in the two-dimensional sixteen supercharge SYM theory. At strong coupling, the position
of the observed critical line agrees with the parametric dependence on couplings predicted
by the dual gravity analysis. In particular, we can give an estimate of the coefficient in
this relation and, hence, derive a prediction for the GL phase transition temperature for
the dual black holes theory.

In the next section we review the theoretical background to the conjectured two-
dimensional Yang–Mills/D1-brane duality when the theories are compactified on a circle
and describe the expected phase structure in certain limits.

7.1 Theoretical background

We are interested in studying large N thermal two-dimensional maximally supersym-
metric (16 supercharge) SU(N) Yang–Mills theory, in the ’t Hooft limit, with coupling
λ = Ng2YM , with the spatial direction compactified. Continuing the theory to Euclidean
time, this implies the Yang–Mills theory is defined on a rectangular 2-torus, with time
cycle size β, and space cycle size R. The fermion boundary conditions distinguish the two
cycles, being anti-periodic on the time cycle so that β has the interpretation of inverse
temperature, and periodic boundary conditions on the space cycle. The action may then
be written as:

S =
N

λ

∫

T 2

dτdxTr
[

1
4
F 2
µν +

1
2

∑

I

[Dµφ
I , DµφI ]2 − 1

4

∑

I,J

[φI , φJ ]2

+fermions
]
, (7.1)
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where I, J = 1, . . . , 8 and φI are the 8 adjoint scalars, and τ is the coordinate on the time
circle, and x the coordinate on the space circle. Since λ, β and R are dimensionful, it is
convenient to work with the two dimensionless couplings:

rτ =
√
λβ and rx =

√
λR, (7.2)

which give the dimensionless radii of the time and space circles, respectively, measured
in units of the ’t Hooft coupling. We will be interested in the expectation values of the
trace of the Polyakov loops on the time and space circles,

Pτ =
1

N

〈∣∣∣Tr (P exp(i

∮
Aτ ))

∣∣∣
〉
, Px =

1

N

〈∣∣∣Tr (P exp(i

∮
Ax))

∣∣∣
〉
, (7.3)

as at large N , these give order parameters for confinement/deconfinement (or center
symmetry breaking) phase transitions which we will discuss below.

As discussed in [77, 78] there are several interesting limits for the theory. In the large
torus limit, 1 ≪ rx, rτ the string theory dual may be described by supergravity. For the
weak coupling limit, rx, rτ ≪ 1, or asymmetric torus limits rτ ≪ r3x and rx ≪ r3τ , we will
find the dynamics are captured by a lower dimensional YM theory. Let us now review
these cases and their predictions.

7.1.1 Large torus limits and IIB and IIA supergravity duals

When the torus becomes large in units of the ’t Hooft coupling, one finds that in certain
regimes, the dual D1-branes in string theory can be well described by supergravities
[65] as we shall now briefly review. Having a supergravity description of the full string
theory dual allows certain behaviors of the theory to be studied using simple semi-classical
gravity reasoning, which allows powerful predictions to be inferred for the dual SYM.

The dual IIB string theory is given by the ‘decoupling limit’ of N coincident D1-
branes [65]. This decoupling limit is where one considers finite energy excitations of the
D1-branes while taking the limit,

g2YM =
1

2π

gs
α′

= fixed, α′ → 0, (7.4)

where gs is the string coupling and α′ determines the string tension. Since the Euclidean
SYM is defined on a torus, the string dual is too, being at finite temperature and having
one spatial direction compactified into a circle of radius R with periodic fermion boundary
conditions.

One finds that for 1 ≪ rτ ≪ r2x, this string theory can be described effectively by its
supergravity sector. String oscillator and winding mode corrections to this supergravity
description are small in this limit. The IIB supergravity solution describing the thermal
vacuum is a black hole, carrying electric D1-brane charge. The D1-brane charge is string
like, (i.e., its field strength tensor is a 3-form), and the appropriate configuration is to
take the charge to wrap over the compact space circle. The solution preserves transla-
tional invariance around the space circle direction and is thought to be stable to small
perturbations.
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Figure 7.1: Figure indicating the regions of coupling space where, at large N , the dual
string theory may be approximated by (red) IIB supergravity and (blue) IIA supergravity.
In these regions, the SYM thermodynamics is dual to the thermodynamics of certain black
holes in the corresponding supergravity. The IIA region predicts a large N first order
phase transition (the Gregory-Laflamme phase transition) between black holes localized
on the spatial circle, and wrapping over the circle. The phase transition is known to occur
along the curve r2x = ccritrτ where ccrit is a constant, not yet determined, but known to
be order one and ccrit > 2.29. The SYM transition is thought to be a deconfinement
transition of the spatial Polyakov loop.
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However, there is a second supergravity description of the theory which is valid in
a partly overlapping and partly complementary range 1 ≪ rτ and r

4/3
x ≪ rτ , obtained

by performing a T-duality transformation on the compact spatial circle of the IIB string
theory [77, 78]. Roughly speaking, such a T-duality exchanges winding and momentum
modes of the string on this spatial circle, and exchanges the IIB string theory for a IIA
string theory. In our case, the N D1-branes now get exchanged with N D0-branes in the
IIA theory. Since the D0-branes are point like, rather than string like, they have freedom
to distribute their electric charge over the circle in various ways - it may be uniformly
distributed, non-uniformly distributed, or fully localized on the circle, the latter two
choices breaking the translational symmetry along the space circle direction. It is then a
dynamical question which case is preferred.

It is thought [77] that there are 3 types of black hole solution that indeed realize
these 3 choices. The uniform black hole solution exists for all temperatures, but it
is known to have a dynamical perturbative instability of the Gregory-Laflamme type
[79, 80] for low temperatures r2x ≤ 2.29 rτ [77]. For higher temperatures it is thought
to be dynamically stable. However, at a higher temperature than the instability point,
so that r2x = ccrit rτ for some constant ccrit with ccrit > 2.29, the uniform black hole is
thought to become globally thermodynamically less favored than the localized black hole
solution. The actual transition temperature that governs the constant ccrit is not yet
known, as the localized black hole solutions have not yet been constructed in the correct
context to be embedded in the supergravity dual. The line r2x = ccrit rτ represents a first
order thermal phase transition between the uniform and localized solutions, with uniform
favored for higher temperature r2x > ccrit rτ and localized favored for lower temperature
r2x < ccrit rτ

2. We term this the GL phase transition and emphasize that this is distinct
from the GL dynamical instability. Whilst there is a non-uniform black hole solution it is
never thermally dominant. For reviews on the GL dynamical instability, phase transition
and uniform, non-uniform and localized black hole solutions, see [90, 91, 92].

According to the duality hypothesis, a Polyakov loop about the time/space circle in
the Euclidean SYM is computed in the leading large N limit by considering whether a
two-dimensional minimal area surface (the classical string worldsheet) that asymptotically
wraps the time/space circle exists. If the time/space circle is contractible in the interior of
the gravity solution, a minimal area solution for the string worldsheet will exist and then
the correspondence states that Pτ/x ∼ O(1). However, if the circle is not contractible,
there cannot exist a minimal surface that gives a finite action for the string worldsheet,
and the correspondence states that Pτ/x ∼ O(1/N) and hence Pτ/x = 0 in the large
N limit. It is a standard result of Euclidean gravity that black hole solutions have
contractible time circles in the interior of the solution, and in fact the time circle contracts
precisely at the horizon. The contractability of the spatial circle however depends on the
type of black hole. In the IIB supergravity solution the space circle is non-contractible.
The IIA uniform (and non-uniform) solutions have non-contractible space circles, whereas
the localized solution has a contractible circle. In fact, the eigenvalues of the SYM spatial

2The region r2x < αrτ for 2.29 < α < ccrit is the region where the localized solution dominates the
canonical ensemble, but the uniform phase could in principle be constructed as a metastable supercooled
state (although here we will only be concerned with equilibrium thermodynamics).
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Polyakov loop (which are phases, and hence live on a circle) are thought to correspond
to the positions of these D0-branes on the space circle in the IIA dual. Hence, the GL
phase transition can physically be thought of as a thermal instability associated with the
clumping of D0-branes, breaking the U(1) circle translation symmetry. In the large N
SYM, this symmetry breaking is the spontaneous breaking of center symmetry ZN , where
for large N , U(1) ≃ ZN .

Let us summarize our predictions for the large torus. We learn that in the IIB regime,
1 ≪ rτ ≪ r2x, we expect Pτ 6= 0 but Px = 0. In the IIA regime, where 1 ≪ rτ and

r
4/3
x ≪ rτ , we have Pτ 6= 0, and Px 6= 0 for r2x ≤ ccrit rτ and Px = 0 for r2x > ccrit rτ , with
ccrit an order one constant with ccrit > 2.29. We note that, in the regime where both
IIA and IIB apply, they give consistent results. Thus, in the large torus, supergravity
regimes, the SYM is always deconfined in the time direction, and there is a first order
deconfinement/confinement transition in the space direction at r2x = ccrit rτ .

7.1.2 Dimensional reduction

Consider the toy model scalar theory defined on the 2-torus:

S =
1

λ

∫

T 2

dτdx
(
(∂µφ)

2 + φ4
)
. (7.5)

First we change to angular coordinates θτ = τ/β and θx = x/R with unit radius, so

θτ,x ∼ θτ,x + 1, and then define the dimensionless scalar variable φ̃ = (βR/λ)1/4 φ. The
action can now be written as:

S =

∫ 2π

0

dθτdθx

(
φ̃4 +

√
rx
r3τ
(∂θτ φ̃)

2 +

√
rτ
r3x
(∂θxφ̃)

2

)
, (7.6)

and we see that the dimensionless couplings rx/r
3
τ and rτ/r

3
x determine the masses of the

non-constant modes of the field φ on the torus. There are three interesting limits. When
rx ∼ rτ ≪ 1, then the non-constant modes of the scalar become very massive and, hence,
weakly coupled and one may integrate these out to arrive simply at the quartic integral
governing the constant modes. If only 1 ≪ rx/r

3
τ , then the non-constant modes on the

time circle are weakly coupled and one may integrate these out to obtain the dimensional
reduction, which now lives only on the space circle. Likewise, if 1 ≪ rτ/r

3
x, one may

dimensionally reduce to obtain a theory only on the time circle.

The structure of this toy example is such that precisely the same phenomenon occurs
with the full SYM on a 2-torus, as discussed in [78]. One difference is that, due to the
anti-periodic boundary conditions on the time circle, the Fourier decomposition of the
fermions contain only non-constant modes in the time direction. Another difference is
that, under a reduction, the constant component of the gauge field in the direction of
reduction yields a scalar field, similar to the scalars φI , in the reduced theory. This scalar
in the reduced theory corresponds to the Polyakov loop about the cycle that has been
reduced on. Since the expectation value of the eigenvalue distribution of the scalar in
the reduced theory will have a non trivial profile, this implies that center symmetry is
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Figure 7.2: Figure showing the regions of coupling space where the SYM may be di-
mensionally reduced on the time and/or space circles. The blue region indicates where
reduction on the space circle gives a good approximation, yielding a supersymmetric
quantum mechanics theory, the BFSS model. The red region indicates where reduction
on the space circle to a bosonic quantum mechanics (BQM) is a good approximation.
This latter reduction predicts a large N deconfinement phase transition in the spatial
Polyakov loop for r3x = 1.35rτ and this curve is shown.
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broken in the Polyakov loop about the reduced cycle3.

There are, again, 3 regimes. For rx ∼ rτ ≪ 1, one may reduce on both time and space
to just give the zero modes of the theory, and arrive at a bosonic Yang–Mills matrix
integral, since, in reducing on the time circle one loses the fermions that have no zero
modes. Such a reduction indicates that, in this limit, the two-dimensional SYM should
have Pτ , Px 6= 0.

For r3x ≪ rτ , the theory may be dimensionally reduced on the space circle to give
the thermal supersymmetric matrix quantum mechanics living on the time circle with
radius β. The spatial Polyakov loop is then given in terms of one of the 9 scalars of
the BFSS model, and, since these scalars have localized eigenvalues, the two-dimensional
SYM should be deconfined in the space direction with Px 6= 0. This theory is precisely the
BFSS theory [94], and recently this has been numerically simulated in the ’t Hooft limit
[67, 68, 69], and indeed, the results obtained are consistent with the theory always being
deconfined, so Pτ 6= 0. The coupling of this quantum mechanics is given by rτ/(rx)

1/3

and, when this is large, we know from our arguments above that we are in a regime where
a dual IIA supergravity description exists, and the dynamics are given by the localized
black hole solution, which is indeed consistent with Pτ , Px 6= 0.

For r3τ ≪ rx one may again perform a dimensional reduction, now on the time circle.
Thus, in the two-dimensional theory, we expect Pτ 6= 0. Since there are no fermion zero
modes on the time circle, the resulting one-dimensional theory is a bosonic quantum
mechanics (BQM) defined on a circle radius R and with dimensionless coupling r3x/rτ .
Numerical [77, 78, 95] and analytic study [96] indicate that this theory has a large N
confinement/deconfinement transition at r3x/rτ ≃ 1.35 of second order. There is also
thought to be a third order Gross-Witten [97, 98] transition very nearby at r3x/rτ ≃ 1.49
[95, 96].

7.1.3 Expectations for large N phase diagram

We conclude by putting together the above discussions. The simplest picture is then
that the Gregory-Laflamme first order phase transition, r2x = ccrit rτ for 1 ≪ rτ (recall
ccrit > 2.29), and the second order transition r3τ ≪ rx and r

3
x = 1.35 rτ in the time reduced

BQM are two ends of the same spatial Polyakov loop confinement/deconfinement phase
transition line. At some point in-between, the order presumably changes, and here the
new third order Gross-Witten phase transition emerges, although this is not measured by
center symmetry breaking, but by more detailed information about the spatial Polyakov
loop eigenvalue distribution. It is interesting [84, 77, 85] that the new phase at small rx
also exists for 1 ≪ rx in the form of non-uniform IIA black strings, but, unlike at weak
coupling, these are never thermally dominant in the IIA supergravity region. In figure
7.3, we summarize the expected phase diagram for the spatial confinement/deconfinement
transition.

3This is to be contrasted with the Eguchi-Kawai reduction [93] where quite the opposite occurs; one
can only reduce on a direction if center symmetry is unbroken.
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Figure 7.3: Cartoon of the expected large N , spatial Polyakov loop deconfinement tran-
sition line in coupling space. Pictured is the simplest possibility, namely that the spatial
deconfinement transition interpolates between the strong coupling Gregory-Laflamme
transition parametric behavior r2x ∼ rτ , and the high temperature reduction deconfine-
ment transition behavior r3x = 1.35rτ .
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7.2 Sixteen supercharge theory on the lattice

In Chapter 4, we have written down the lattice version of the sixteen supercharge theory
in four dimensions (the N = d = 4 SYM theory). We need to dimensionally reduce this
theory down to two dimensions to obtain the sixteen supercharge theory of our interest4.
We saw that a better choice in four dimensions is the A∗

4 lattice, which retains a higher
point group symmetry than the hypercubic lattice. It is not necessary for two dimensions,
and, indeed would complicate the calculation of Polyakov lines.

We dimensionally reduce the four-dimensional supersymmetric lattice action

S =
1

g2YM

∑

n

Tr

(
F †
abFab +

1

2

(
D(−)

a Ua
)2

− χabD(+)
[a ψ b] − ηD(−)

a ψa

)

+Sclosed , (7.7)

where

Sclosed = − 1

8g2YM

∑

n

Tr ǫmnpqrχqr(n+ µ̂m + µ̂n + µ̂p)D
(−)

p χmn(n+ µ̂p) , (7.8)

along two lattice directions using periodic boundary conditions to obtain the two-dimensional
theory. The resultant lattice action corresponds in the naive continuum limit to the tar-
get Q = 16 YM theory in two dimensions. In this limit, its exact supersymmetry is
enhanced to correspond to 4 continuum supercharges corresponding to the four scalar
fermions that now appear in the dimensionally reduced theory [35].

We will be interested in this theory large N limit with ’t Hooft coupling

λ = Ng2YM . (7.9)

The lattice theory is then governed by the coupling

κ =
NLT

2r2τ
, (7.10)

where L and T denote the number of lattice sites in the spatial and temporal directions.
We have used periodic boundary conditions for the fields on the remaining spatial cir-

cle and anti-periodic boundary conditions for fermions in the temporal direction in order
to access the thermal theory. Simulations were carried out using the RHMC algorithm,
which is described in detail in [99].

It has been shown that the existence of a noncompact moduli space in the theory
renders the thermal partition function divergent [72]. In order to regulate this divergence
we have additionally introduced a mass term for the scalar fields appearing in the lattice
action with a dimensionless mass parameter m = mphysβ.

Sm =
m2

g2YM

∑

x

[
U †
µUµ +

(
U †
µUµ

)−1 − 2
]
. (7.11)

4We assume an anti-hermitian basis for all fields, which take their values in the adjoint representation
of the SU(N) gauge group.
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The form of this term is effective at suppressing arbitrarily large fluctuations of the
exponentiated scalar fields and reduces to a simple mass term for small fluctuations
characterizing the continuum limit. Notice that this infrared regulator term breaks su-
persymmetry softly and lifts the quantum moduli space of the theory. The simulations
are then performed for a range of the parameter m in order to allow for an extrapolation
m→ 0.

7.3 Simulation results

The numerical simulations of this theory focus on the Polyakov lines for both the thermal
and spatial circle. These are defined on the lattice in the usual way

Px =
1

N

〈∣∣∣Tr ΠL−1
ax=0Uax

∣∣∣
〉
, Pτ =

1

N

〈∣∣∣Tr ΠT−1
aτ=0Uaτ

∣∣∣
〉
, (7.12)

where the unitary piece of the complexified link Uµ is extracted to compute these expres-
sions. The values of spatial and temporal Polyakov lines are evaluated as a function of rτ
for two different lattices with the same aspect ratio, a 2×8 lattice and a 3×12 lattice, for
N = 3 and with values of the infrared regulator m = 0.05, 0.10 and 0.20. The use of two
different lattices with the same aspect ratio would allow to test for and quantify finite
lattice spacing effects. The simulations are performed for values of the dimensionless time
circle radius in the range 0.02 ≤ rτ ≤ 1.0. Figure 7.4 shows the numerical results.

Notice that the temporal Polyakov remains close to unity over a wide range of rτ . This
indicates the theory is (temporally) deconfined and is consistent with expectations for
the limits discussed in section 7.1 – the asymmetric torus limits, and the strong coupling
regions, where there is a dual supergravity description in terms of black holes. However,
the spatial Polyakov line has a different behavior taking values close to unity for small
rτ while falling rapidly to plateau at much smaller values for large rτ . It is tempting to
see the rather rapid crossover around rτ ∼ 0.2 as a signal for a would be thermal phase
transition as the number of colors is increased. This conjecture is seen to be consistent
with the data: in figure 7.5 we show the Polyakov lines for N = 2, 3, 4 on 2×8 lattices as
a function of rτ . The plateau evident at large rτ falls with increasing N and the crossover
sharpens. This is consistent with the system developing a sharp phase transition in the
large N limit.

Notice that in the data shown here, the results do not depend on the scalar mass.
Indeed, for the length of Monte Carlo associated with the simulation time, it appears
that m can be set to zero for rτ < 2 without fear of encountering the thermal divergence
discussed in [72]. This stability in the scalar sector can be seen in figure 7.6, which shows
the Monte Carlo time series for the eigenvalues of U †

µUµ ∼ e2φ at two different rτ ’s with
dimensionless mass parameter m = 0.05 and gauge group SU(3). There is no evidence
of a divergence over thousands of Monte Carlo sweeps. Furthermore, one sees that the
eigenvalues of the scalar fields (rendered dimensionless using the lattice spacing) cluster
with small separation for this range of rτ .

The observations indicate that the m = 0 model does exhibit the same thermal
instability observed in the case of supersymmetric quantum mechanics for sufficiently
low temperature rτ >> 1 in agreement with the general arguments given in [72].
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Figure 7.4: Spatial and temporal Polyakov lines (Px and Pτ ) against dimensionless time
circle radius rτ for maximally supersymmetric SU(3) Yang–Mills on 2 × 8 and 3 × 12
lattices using different values of the infrared regulator m.
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Figure 7.5: Plot of the absolute values of the spatial and temporal Polyakov lines (Px and Pτ )
against the dimensionless time circle radius rτ for maximally supersymmetric SU(N) Yang–
Mills on a 2× 8 lattice for N = 2, 3, 4, using the value of the infrared regulator m = 0.10.

Putting together several lattice aspect ratios for N = 3, 4, we can plot the spatial
Polyakov loop as a function of rs and rτ , where data are available. This is done in
figure 7.7. The three contours Px = 0.4, 0.5, 0.6 are shown. We see that the contours for
SU(4) are closer together than those for SU(3), as we expect for a large N transition.
From these data we can try to assess where the large N transition in Px may occur.
In the detailed studies of the dimensionally reduced bosonic quantum mechanics [77], it
was found that the large N transition occurred very close to Px ≃ 0.5. Thus from the
contours of the SU(3) and SU(4) data, we could take the Px = 0.5 curves to give an
estimate for the large N phase transition line. Another estimate is to plot the function

fN ≡ Px(SU(N))− Px(SU(N − 1)) , (7.13)

that measures the difference between the Polyakov lines for SU(N) and SU(N − 1).
At strong coupling, where we expect the large N transition is first order, the simplest
situation is to have fN < 0 in the confined region (where Px = 0 for N → ∞), and,
correspondingly, fN > 0 in the deconfined region as N → ∞. Then plotting the boundary
of the positive (or negative) region of f4 calculated from the simulation data also gives
an estimate of the critical line. Neither method can give a precise determination, and
they should not be considered as a replacement for calculations at larger N than we
have been able to reach here. However, in the absence of such large N data, we plot the
Px = 0.5 contours for SU(4) and SU(3) in figure 7.7, and, in addition, the region where
f4 is positive. We note that the SU(3) and SU(4) Px = 0.5 contours are remarkably
consistent with each other, which provides evidence that they are indeed a reasonable
approximation to the large N transition curve. Whilst the f4 data are rather noisy, and,
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Figure 7.6: Plots of the average scalar eigenvalues against Monte Carlo configuration time
step, for N = 3 on a 2 × 8 lattice with rτ = 0.5 and 1.0. Note that the spread between
eigenvalues reduces as rτ is decreased. We have used the dimensionless mass parameter
m = 0.05.
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Figure 7.7: Plot of contours of the expectation of the spatial Polyakov line Px over the rx, rτ
plane. The left frame shows SU(3), and the right SU(4). The three contours plotted are
0.4, 0.5, 0.6, and the simulation data collates and interpolates runs made on lattices 2 × 16,
2× 8, 3× 8, 4× 4 and 4× 8 therefore giving a variety of aspect ratios rτ/rx.

hence, the positive f4 region has ‘holes’ in it, the function is positive only to left of the
Px = 0.5 curves, and, furthermore, extends right up to these curves. The curve r2x = 3.5rτ
is plotted on this graph and matches the contours Px = 0.5, and the boundary of the
positive f4 region very well in the strong coupling region. This can be taken to indicate
that the gravity prediction for the parametric behavior r2x = ccritrτ is consistent with the
simulation data. The estimated value turns out to be ccrit ≃ 3.5, which indeed obeys
the gravity prediction that ccrit is order one and ccrit > 2.29. Furthermore, we see that
the contours Px = 0.5 also appear to be consistent with the high temperature prediction
r3x = 1.35rτ as well.

The value of the ratio

α ≡ ccrit/2.29 (7.14)

gives the ratio of the GL thermal phase transition temperature to the GL dynamical
instability temperature (the minimum temperature to which uniform strings can be su-
percooled), so

α = TGL phase/TGL instab. (7.15)

Whilst the GL instability temperature is known [77] (corresponding to the behavior
r2x = 2.29rτ at strong coupling), the GL phase transition temperature is not known in the
gravity theory, as the localized solutions have not been constructed. In fact, the near ex-
tremal D0-charged black holes are simply related to vacuum solutions of pure gravity with
R1,8×S1 asymptotics [77, 85]. Such localized black hole solutions have been constructed
for asymptotics R1,3×S1 and R1,4×S1, using numerical techniques [100, 87, 89]. Extend-
ing these methods to the case of interest here, R1,8×S1, is obviously an interesting future
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Figure 7.8: Plot showing a superposition of the Px = 0.5 contours for SU(3) and SU(4) as
dashed black lines. Also shown is the region (blue) where the SU(4) loop Px is greater than
the SU(3) loop, which is expected to estimate the large N deconfined region for a first order
transition (which gravity suggests at strong coupling). ‘Holes’ in this blue region are due to
statistical errors. We see the boundary of this region (ignoring ‘holes’) matches well the Px = 0.5
contours, and represents our guess for where the large N transition resides. This figure should
be compared to the previous figure 7.3 giving a sketch of the expected phase structure. Plotted
on the figure is the high temperature prediction for the transition (r3x = 1.35rτ , red curve). We
note that the estimated large N transition curve fits well both this high temperature prediction
and also the strong coupling dual gravity predicted parametric behavior r2x = ccritrτ . The
data obtained through simulations suggests ccrit ≃ 3.5 (plotted as blue curve), which obeys the
constraint from gravity ccrit > 2.29.
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direction. It is worth emphasizing that whilst finding localized solutions in the gravity
theory only involves solving the classical Einstein equations, in practice, even phrasing
the Einstein equations in a manner amenable to numerical solution, has presented a chal-
lenge [89] and then solving the resulting coupled partial differential equations is a serious
numerical undertaking.5 The lattice estimation, α ≃ 1.5, obtained through the analysis
performed above provides a prediction for the thermal behavior of the gravity solutions.
This is the first time a prediction about the properties of non-trivial classical gravity
solutions has been made from the Yang–Mills side of a holographic correspondence.

5Such solutions can be constructed perturbatively [101, 102, 103, 104] in a small radius limit (compared
to the circle size) but the GL phase transition occurs for black holes with radius of order the circle size,
and, hence, it is unclear how accurate perturbative methods are for a prediction of TGL phase/TGL instab.



Conclusions

In this dissertation, we have investigated the sixteen supercharge Yang–Mills theories
in two and four dimensions on the lattice. We have given lattice constructions of these
theories that preserve one exact supersymmetry. The lattice theories are also local, free
of doublers and possess exact lattice gauge-invariance.

The lattice version of the four-dimensional N = 4 SYM theory is investigated at
one-loop using perturbation theory. We found that the exact symmetries of the classical
lattice theory, namely, gauge-invariance, a single exact supersymmetry Q and the (large)
point group symmetry of the lattice strongly constrain the possible counterterms induced
by quantum corrections. Indeed, with one exception, the only relevant counterterms
correspond to renormalizations of existing terms in the action. We furthermore show, by
a computation of the effective action, that the one new operator that cannot be excluded
in the general renormalization analysis actually makes no appearance in all orders in
perturbation theory.

We have written down the renormalized action in terms of 4 coupling constants αi that
take the value unity in the classical lattice action. We evaluate the renormalization of
these couplings at one-loop using lattice perturbation theory. Three of the couplings can
be computed by examining the renormalization of the three twisted fermion propagators.
The final coupling is most easily read off from a one-loop contribution to the propagator
for a bosonic auxiliary field. The relevant propagators and vertices are derived and
the amputated one-loop diagrams are constructed. All these diagrams possess identical
logarithmic divergences of the form logµa, where a is the lattice spacing and µ is a
mass scale introduced to regulate the small momentum behavior of the integrands. This
divergence can be absorbed by a common wavefunction renormalization of the twisted
fermions and bosons.

The simplest way to understand this rather surprising result is to realize that the
coefficient of the logarithmic divergence of some one-loop diagram in the lattice theory can
be extracted by taking a naive continuum limit of the diagram, since the log divergence
comes from the small loop momentum region of the integral. Provided that the lattice
diagrams correspond one-to-one with equivalent continuum diagrams, and that all lattice
propagators and vertices reduce to their continuum counterparts for small momenta, this
means that the log divergences of the lattice theory are equal to the same divergences in
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the continuum theory. Furthermore, since the twisted continuum theory is equivalent to
the usual N = 4 theory in flat space, it must possess the fullQ = 16 supersymmetry. This
fact ensures that all divergences present in the twisted continuum fermion self-energies
must be equal – which is indeed what we find. And this structure is necessarily inherited
by the log divergent parts of the lattice theory at one-loop. This is what leads to the main
result: that only a one-time tuning of the finite parts of the wavefunction renormalization
needs to be performed at one-loop in order to restore the full supersymmetry.

This similarity between the divergence structure of the lattice theory and the contin-
uum theory is strongly suggestive that the beta function of the lattice theory will also
vanish at weak coupling. First, note that the calculation of the beta function requires the
evaluation of one-loop vertex diagrams in the lattice theory. Preliminary calculations sug-
gest that the set of relevant lattice vertex diagrams correspond one-to-one to continuum
vertex diagrams and remain only logarithmically divergent. They may, thus, be evalu-
ated in the continuum theory. The coefficient of this log divergence is then combined with
the wavefunction renormalizations determined above to yield the one-loop beta function
in the usual manner. However, we already know the result of this computation for the
continuum theory: the beta function vanishes. We, hence, expect a similar result to hold
at one-loop in the lattice theory. Thus, for weak coupling, we expect the lattice theory to
possess a line of fixed points parametrized by the bare coupling constant, just as for the
continuum theory. However, our calculations do not reveal whether this feature survives
in the lattice theory to strong coupling. At two or more loops, the divergences of the
lattice Feynman diagrams will not be equal to the those of the continuum theory and,
hence, we cannot use the latter to infer the divergence structure of the lattice theory. To
understand how to take the continuum limit in this regime will then require a mixture of
two-loop and numerical calculations.

We also investigate the strongly coupled dynamics of the two-dimensional maximally
supersymmetric SU(N) Yang–Mills theory using the method of twisted lattice super-
symmetry. Numerical simulations have been performed on the lattice to study the phase
structure of the theory at finite temperature and compactified on a circle. The spatial
Polyakov line serves as an order parameter for a large N deconfining phase transition in
the theory. The simulations are consistent with the existence of a single transition curve
in the two-dimensional parameter space spanned by the two dimensionless couplings (rx
and rτ ), which give the size of the thermal and spatial circle in units of the YM coupling.

At high temperature, r3τ ≪ rx, the simulations are consistent with the previously
predicted behavior that the transition curve goes as r3x = 1.35rτ . At strong coupling,
1 ≪ rτ , the transition is conjectured to be the holographic dual of a first order Gregory-
Laflamme phase transition, with the transition curve going a r2x = ccritrτ , with ccrit,
an order one constant obeying the constraint ccrit > 2.29. The simulations are con-
sistent with this parametric behavior. The N = 3, 4 data can be used to estimate
the position of the large N transition, determining ccrit ≃ 3.5. This gives the ratio
of the Gregory-Laflamme phase transition and dynamical instability temperatures to be
TGLphase/TGLinstability ≃ 1.5. Since the dual localized black hole solutions have not been
constructed, this constitutes a prediction for these non-trivial gravity solutions.



Appendix A

Simplification of the one-loop

diagrams

We show the details of arriving at the simplified expressions given in (5.54)-(5.57). We
use the following identities for the easy evaluation of the diagram:

∑

B,C

λABCλBCD =
∑

B,C

dABCdBCD − fABCfBCD , (A.1)

λABC = λACB . (A.2)

These relations among structure constants imply

(AλABC −BλABC)(CλBCD −DλBCD)

= dABCdBCD(AC−AD−BC+BD)

− fABCfBCD(AC+AD+BC+BD) . (A.3)
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We look at the diagram Iηψ(p):

Iηψd
(p) =

∫
d4q

(2π)4

∑

a,b,c

∑

BC

( 1

16 ̂(p− q)
2

q̂2

)
(λABC − λABCe

ipa)

×(λBCDe
−ipa − λBCDe

iqd)[
(1− ei(p−q)b)δca(δbaδcd − δbdδca)

−(1 − ei(p−q)c)(δbaδcd − δbdδca)δba

]

=

∫
d4q

(2π)4

∑

a,b

∑

BC

( 1

8 ̂(p− q)
2

q̂2

)

(
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

)

×(1 − ei(p−q)b)(δbaδad − δbdδaa)

That is

Iηψd
(p) =

∫
d4q

(2π)4

∑

a

∑

BC


 1

8 ̂(p− q)
2

q̂2



[[
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]
(1− ei(p−q)a)δad

−
[
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]
(1− ei(p−q)d)

]

=

∫
d4q

(2π)4

∑

BC


 1

8 ̂(p− q)
2

q̂2

(1− ei(p−q)d)




×
[[
dABCdBCD(e

−ipd − eiqd − 1 + ei(p+q)d)

+fABCfBCD(e
−ipd + eiqd + 1 + ei(p+q)d)

]

−
∑

a

[
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]]

On further simplification

Iηψd
(p) =

∫
d4q

(2π)4

∑

BC


(1− ei(p−q)d)

8 ̂(p− q)
2

q̂2



[
−

∑

a6=d

[
dABCdBCD(e

−ipa − eiqd

−1 + eipa+iqd) + fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]]
(A.4)
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Now I
(1)
ψaχgh

:

I
(1)
ψaχgh

(p) =

∫
d4q

(2π)4

∑

b,c,d,e,m,f

∑

B,C

(−1)

64q̂2 ̂(p− q)
2 ǫbcmef ǫghdefe

i(p−q)(e+f)

(ei(p−q)m − 1)(δbdδca − δbaδcd)

×
(
λABCe

ipd − λABCe
−iqa

)(
e−ip(d+e+f)

(
λBCDe

iq(e+f) − λBCDe
i(p−q)d

)

−ei(p−q)(d+g+h)
(
λBCDe

iq(g+h) − λBCDe
−ipd

))

=

∫
d4q

(2π)4

∑

d,e,m,f

∑

B,C

1

16q̂2 ̂(p− q)
2 ǫadmef ǫghdef (e

i(p−q)m − 1)

×
(
− dABCdBCD(e

i(pd+q(g+h)) − 1− eiq(g+h−a) + e−i(pd+qa))

+fABCfBCD(e
i(pd+q(g+h)) + 1 + eiq(g+h−a) + e−i(pd+qa))

)

That is

I
(1)
ψaχgh

(p) =

∫
d4q

(2π)4

∑

d,m

∑

B,C

1

8q̂2 ̂(p− q)
2 (e

i(p−q)m − 1)

× (δagδmh + δahδmdδdg + δadδmgδdh − δahδmg − δagδmdδdh − δadδmhδdg)

×
(
dABCdBCD(e

i(pd+q(g+h)) − 1− eiq(g+h−a) + e−i(pd+qa))

−fABCfBCD(ei(pd+q(g+h)) + 1 + eiq(g+h−a) + e−i(pd+qa))
)

(A.5)

Looking at the second ψχ diagram we have:

I
(2)
ψaχde

(p) =

∫
d4q

(2π)4

∑

b,c,B,C

1

8q̂2 ̂(p− q)
2 (e

i(p−q)c − 1)δab(δdbδec − δdcδeb)

×(λABCe
−i(p−q)a − λABC)(λBCDe

iqc − λBCDe
i(p−q)b)

=

∫
d4q

(2π)4

∑

c,B,C

1

8q̂2 ̂(p− q)
2 (e

i(p−q)c − 1)(δdaδec − δdcδea)

×
(
dABCdBCD(e

i(qc−(p−q)a) − eiqc − 1 + ei(p−q)a)

−fABCfBCD(ei(qc−(p−q)a) + eiqc + 1 + ei(p−q)a)

)
(A.6)
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Now looking at Iχabχgh
:

Iχabχgh
(p) =

∫
d4q

(2π)4

∑

c,d,e,f,B,C

1

32q̂2 ̂(p− q)
2 ǫabcde(δgcδhf − δgfδhc)

×
(
(e−i(p−q)d − 1)δef − (e−i(p−q)e − 1)δdf

) (
λBCDe

iqf − λBCDe
i(p−q)c

)

×
(
e−ik(a+b+c)

(
λABCe

ipc − λABCe
−iq(a+b)

)

−eip(c+d+e)
(
λABCe

−i(p−q)c − λABCe
−iq(d+e)

) )

=

∫
d4q

(2π)4

∑

d,e,B,C

−1

16q̂2 ̂(p− q)
2 e

ip(g+d+e)ǫabgde

×
(
(e−i(p−q)d − 1)δeh − (e−i(p−q)e − 1)δdh

)

×
(
λABCe

−i(p−q)g − λABCe
−iq(d+e)

) (
λBCDe

iqh − λBCDe
i(p−q)g

)

− (h↔ g)

That is

Iχabχgh
(p) =

∫
d4q

(2π)4

∑

d,B,C

1

8q̂2 ̂(p− q)
2 e

ip(g+d+h)ǫabdgh(e
−i(p−q)d − 1)

×
(
dABCdBCD(e

−i(pg−q(g+h)) − 1− e−iqd + ei(pg−q(g+d+h)))

−fABCfBCD(e−i(pg−q(g+h)) + 1 + e−iqd + ei(pg−q(g+d+h)))
)

− (h↔ g) (A.7)

(Note that we also need to take into account the diagram where the internal ψχ is
flipped. It is the same as what we have but with a↔ g, b↔ h and p ↔ −p. We may for
convenience take q ↔ −q. We pick up an additional minus sign in the fABCfBCD term
due to the differing order of the group factors.)



Appendix B

The vanishing of one-loop fermion

propagators at zero momentum

We show that the one loop fermion propagators given in given in (5.54)-(5.57) vanish in
the limit of vanishing external momentum. Starting with the first diagram and using the
simplified forms of the integrals derived in Appendix A (assuming an IR regulator), we
have:

Iηψd
(0) =

∫
d4q

(2π)4

∑

BC

[ 1

8q̂2q̂2
(1− e−iqd)

]

×
[
− 2

∑

a6=d

fABCfBCD(1 + eiqd)
]
= 0 , (B.1)

as (1 − e−iqd)(1 + eiqd) = 2i sin qd and then the integrand is the combination of an odd
and an even function.

Next we calculate:

I
(1)
ψaχgh

(0) =

∫
d4q

(2π)4

∑

d,m

∑

B,C

1

8q̂2q̂2
(e−iqm − 1)

[
δagδmh + δahδmdδdg + δadδmgδdh

−δahδmg − δagδmdδdh − δadδmhδdg

]
×
(
dABCdBCD(e

iq(g+h)

−1− eiq(g+h−a) + e−iqa)− fABCfBCD(e
iq(g+h) + 1 + eiq(g+h−a) + e−iqa)

)

=

∫
d4q

(2π)4

∑

m

∑

B,C

1

8q̂2q̂2
(e−iqm − 1)

(
δahδmg − δagδmh

)

×
(
dABCdBCD(e

iq(g+h) − 1− eiq(g+h−a) + e−iqa)

−fABCfBCD(eiq(g+h) + 1 + eiq(g+h−a) + e−iqa)
)
. (B.2)
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Then, we can use the fact that if a 6= g and a 6= h then the expression disappears. If
a = g = h, again the expression disappears. So, assuming a = h and a 6= g we get:

I
(1)
ψaχgh

(0) =

∫
d4q

(2π)4

∑

B,C

1

8q̂2q̂2
(e−iqg − 1)

(
dABCdBCD(e

iq(g+a) − 1− eiqg + e−iqa)

−fABCfBCD(eiq(g+a) + 1 + eiqg + e−iqa)
)

=

∫
d4q

(2π)4

∑

B,C

2i

8q̂2q̂2

(
dABCdBCD(sin qa + sin qg − sin q(a+g))

−fABCfBCD(sin qa − sin qg − sin q(a+g))
)

= 0 , (B.3)

which vanishes term by term.

We then move onto the second ψχ diagram.

I
(2)
ψaχde

(0) =

∫
d4q

(2π)4

∑

c,B,C

1

8q̂2q̂2
(e−iqc − 1)(δdaδec − δdcδea)

×
(
dABCdBCD(e

iq(c+a) − eiqc − 1 + e−iqa)

−fABCfBCD(eiq(c+a) + eiqc + 1 + e−iqa)
)

(B.4)

In a similar way to the previous diagram, if a 6= d and a 6= e, then the diagram vanishes.
If a = d = e, it also vanishes, so we only need to deal with the case a = d, a 6= e:

I
(2)
ψaχde

(0) =

∫
d4q

(2π)4

∑

B,C

1

8q̂2q̂2
(e−iqe − 1)

(
dABCdBCD(e

iq(e+a) − eiqe − 1 + e−iqa)

−fABCfBCD(eiq(e+a) + eiqe + 1 + e−iqa)
)

=

∫
d4q

(2π)4

∑

B,C

2i

8q̂2q̂2
(e−iqe − 1)

(
dABCdBCD(sin qa + sin q(a+e) + sin qe)

−fABCfBCD(sin qa + sin q(a+e) − sin qe)
)

= 0 , (B.5)

which again vanishes term by term.
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Finally we show that Iχχ(0) = 0.

Iχabχgh
(0) =

∫
d4q

(2π)4

∑

d,B,C

1

8q̂2q̂2
ǫabdgh(e

iqd − 1)

×
(
dABCdBCD(e

iq(g+h) − 1− e−iqd + e−iq(g+d+h))

−fABCfBCD(eiq(g+h) + 1 + e−iqd + e−iq(g+d+h))
)

−
(
h↔ g

)

=

∫
d4q

(2π)4

∑

d,B,C

2i

8q̂2q̂2
ǫabdgh

×
(
dABCdBCD(sin q(d+g+h) − sin qd − sin q(g+h))

−fABCfBCD(sin q(d+g+h) + sin qd − sin q(g+h))
)

= 0 . (B.6)



Appendix C

Coupling constant independence in

N = 4 SYM

The twisted N = 4 SYM in the continuum possesses a privileged set of operators
whose expectation values can be shown to be independent of the background metric and,
hence, topological. (See (2.31) and (2.32) in Chapter 2.) The condition for this to be true
is that the operator be annihilated by the charge Q. In addition, the expectation values of
these operators can be shown to be independent of the coupling constant. As we will see,
this property remains true in the lattice theory and provides powerful constraints on the
renormalization of such operators. To see this result, consider the twisted lattice action,
which is the sum of Q-exact and Q-closed terms. The coupling constant dependence of
the Q-closed term can be removed, without disturbing the Q BRST transformation, by
rescaling the fields in appropriate ways. We show this below.

The twisted action is:

S =
1

g2
Sexact +

1

g2
Sclosed

=

∫
Tr

{ 1

g2

(
FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

)

− 1

g2

(1
2
ǫabcdeχabDcχde

)}
. (C.1)

A simple rescaling of the fields:

χab → χab/g, ψa → gψa, η → η/g , (C.2)
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gives the action

S =
1

g2

∫
Tr

(
FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

)

−1

2

∫
Tr ǫabcdeχabDcχde

=
1

g2
Sexact + Sclosed (C.3)

Calling β = 1
g2

and writing the action as S = QΛ + Sclosed the expression for the
expectation value of a Q-invariant operator O becomes

〈O〉β =
1

Z

∫
Oe−(βQΛ+Sclosed), Z =

∫
e−(βQΛ+Sclosed) . (C.4)

Differentiating this expression with respect to β leads to

∂

∂β
〈O〉β = 〈QΛ〉β〈O〉β − 〈OQΛ〉β

= 〈QΛ〉β〈O〉β − 〈Q(OΛ)〉β
= 0 , (C.5)

where we have used the fact that as long as the BRST symmetry is not broken spon-
taneously, the expectation value of the Q variation of some operator vanishes. Thus,
expectation values of Q-invariant observables are independent of β and, hence, can be
computed exactly in the semi-classical limit β → ∞. In this limit, we need only do one
loop calculations around the classical vacua.
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