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beam of 1014 protons per second could be accelerated 
and stacked at about 14 GeV, and RF noise introduced 
to increase the energy width of the stack to 1 GeV. 
The stack could then be brought onto the energy-loss 
foil slowly and uniformly over a period of a second 
by a phase-displacement oscillator while a new stack 
was being formed at 14 GeV. A beam duty factor in 
excess of 80% should result. 
The extraction channel is not discussed beyond the 

current septum; magnets and magnetic channels 
would follow in a rather conventional manner, after 
the initial separation of extracted particles from cir­
culating particles. 

For simplicity, the sketches indicate particles 
striking the first foil as having no betatron oscillation 
amplitude. The operation of the system is independ­
ent of initial amplitudes so long as the oscillations 
are nearly linear. A spread of betatron amplitudes 
will produce the only energy spread in the external 
beam; approximately 100 MeV for a ±1 cm betatron 
oscillation amplitude. 
It is reasonable to conclude, therefore, that an 

FFAG accelerator will be able to provide external 
proton beams of high quality ranging from one turn 
extraction of accumulated (stacked) particles to 
essentially continuous 10 to 50 μΑ beams. 
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I. INTRODUCTION 
In order to do colliding-beam experiments with 

a reasonable counts-to-background ratio, it is desir­
able to have a high beam current density. Obtaining 
equal numbers of beam-beam collisions and beam-residual 
gas collisions, for example, would require 

a current density of about 50 A/cm2 at 10-8 mm Hg. 
To get this density it is usually necessary to spatially 
superimpose a large number of injected pulses, 
requiring RF beam stacking1). In this stacking 
process, however, depositing a beam pulse at a 
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given energy with the RF lowers the energy of the 
previously stacked coasting beam by the energy 
width of the accelerating RF bucket, in accordance 
with Liouville's theorem. This decrease in energy 
decreases the beam radius an amount determined 
by the momentum compaction factor. When this 
decrease in radius is larger than the maximum radial 
betatron oscillation, the added pulses will no longer 
spatially superimpose on the first ones. There will 
be an increase in the total stacked beam, but no 
further increase in beam density. 
It would be useful to eliminate the spatial separation 

of the different energy equilibrium orbits, at least 
in the colliding-beam region. The betatron oscilla­
tion amplitude would cease to be a limit on the 
achievable beam density; pulses could be spatially 
superposed independent of this amplitude. Such 
equilibrium orbit superposition is reasonable easy 
to achieve, at least over a limited energy range. 

II. SUPERPOSITION OF EQUILIBRIUM ORBITS 
The linearized radial equation of motion of a 

particle of momentum Ρ+ΔΡ about the equilibrium 
orbit of a particle of momentum Ρ is2) 

d2x 
+( 

1-n(s) )x = 1 ΔΡ 
, (1) ds2 +( ρ(s)2 )x = ρ(s) Ρ , (1) 

where s, n and ρ are measured along the Ρ equilibrium 
orbit. The equilibrium orbit of the particle of 
momentum Ρ+ΔΡ is of course the particular solution 
to the above equation. For conventional weak 
focusing or A G machines, the average equilibrium 
orbit displacement is 

<x> = 
r ΔΡ 

<x> = νx2 Ρ 
while for a scaling FFAG machine, with field Η ~ rk, 

<x> = r ΔΡ • <x> = k+1 Ρ 
• 

Now, since Eq. (1) is linear, if a particular solution 
for a given ΔΡ is designed to be zero or tangent 
to x = 0 at a given azimuth, all equilibrium orbits 
will automatically be zero or tangent at that azimuth. 

So the possibility of superposition is obvious; it 
is just necessary to find a convenient linear modifica­
tion of the conventional fields. 
The different equilibrium orbits can obviously 

be made tangent at particular azimuths by adding 
a field modification such that the off-momentum 
equilibrium orbits undergo a forced oscillation about 
their average displacement, with an amplitude 
equal to this average displacement. One simple 
method of producing a forced oscillation equal to the 
average displacement consists of adding a field 
gradient perturbation having a Fourier component 
ΔΗ = [H'M cos Μθ]x, where M is an integer reasonably 
close to νx, and x again is the displacement from 
the selected equilibrium orbit. This selected equilib­
rium orbit, of course, will be unchanged by the 
perturbation. The perturbation could be produced 
with pole-face windings or quadrupole lenses(*). 
The effect of such a gradient type field perturbation 

on the equilibrium orbits is easily calculated, to a 
first approximation, giving some insight into the 
process. Measuring all distances in terms of 
r0 = circumference/2π, writing θ = s/r0 and taking 
Ρ = <H>orbit = 1, Eq. (1) is 

d2x +( 1-n )x = ΔΡ • (2) dθ2 +( ρ2 )x = Ρ 
• (2) 

With the additional perturbing field 
ΔΗ = [H'M cos Μθ]x, 
this becomes 

d2x +[ 1-n + H'M cos Mθ]x = 
ΔΡ 

, (3) dθ2 +[ ρ2 
+ H'M cos Mθ]x = ρ 

, (3) 

n and ρ here having their original unperturbed values 
of Eq. (2). Taking x2 as the particular solution 
to Eq. (2), and x3, the desired equilibrium orbit, 
as the particular solution to Eq. (3), expand about 
x2 in Eq. (3) by defining a difference orbit x4 = x3 — x2. 
Then Eq. (3) gives the equation for x4: 
d2x4 +[ 1-n + H'M cos Μθ]x4 = -[H'M cos Μθ]x2. (4) dθ2 +[ ρ2 + H'M cos Μθ]x4 = -[H'M cos Μθ]x2. (4) 

To obtain an approximate solution to Eq. (4) replace 

(*) Another technique for achieving superposition, suggested by Courant, is to drive the off-momentum equilibrium orbits by 
modulating (s) of (1) with a periodicity close to νx, like the proposal of Vladimirskij and Tarasov for eliminating the transition energy. 
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the left-hand side with a harmonic oscillator of the 
same frequency ν and x2 by its average value <x2>. 
Then 

d2x4 + ν2x4 = - [H'M cos Mθ]<x2>, (5) dθ2 + ν
2x4 = - [H'M cos Mθ]<x2>, (5) 

which gives as the approximate particular solution 
to Eq. (4): 

x4  
[H'M cos Mθ]<x2> • (6) x4  M2-ν2 • (6) 

Since the correct forced equilibrium orbit is given 
by x3 = x2 + x4, replacing x2 and x4 by their 
approximate values gives 

X3 <X2> + 
[H'M cos Mθ]<x2> X3 <X2> + M 2 - ν 2 

= <x2>[1 + 
H'M cos Mθ ]• (7) = <x2>[1 + M 2 - ν 2 ]• (7) 

So to this approximation, the off-momentum equilib­
rium orbits can all be made tangent to zero at periodic 
angles. If the angles were chosen to be θm = 

2πm 
M , 

for example, the perturbation coefficient would be 
H'M= -(M 2-ν 2). (8) 

The addition of the perturbing field [H'M cos M θ]x 
will open up stopbands at ν = M/2, 2M/2, M/2,... 
and will cause a perturbation of the original ν. The 
tune-changes and the stopbands, away from the M/2 
region, however, are small; so bringing M to the 
closest or next to closest integer to ν should not 
prove troublesome3). 
The equilibrium orbits must superpose, with a 

correctly designed gradient perturbation, only as 
long as Eq. (3) remains the radial equation of motion, 
that is, as long as the equation stays linear in the 
quantities x and ∆P. In a perfect linear field AG 
machine the radial equation stays essentially linear 
in x, and the x tune is independent of amplitude. 
The coefficient of x, however, depends on the momen­
tum ΔΡ. An increase in ΔΡ will change generally 
decreasing it; in any event it will change |M2 — ν2|, 
hence the amplitude of the forced oscillations, and 
the orbits will no longer exactly superimpose, as 
seen from Eq. (7). In a non-linear but scaling FFAG 
machine, the tune is independent of ΔΡ, but depends 
on the x amplitude, so there is a change in |M 2- ν2| 
for the larger driven oscillations, and the orbits for 

large ΔΡ again will not exactly superpose. For 
both types of machine it should be possible, of 
course, to make the perturbation slightly non­
linear to compensate for the change in M 2—ν 2, 
giving exact superposition over a larger range of 
ΔP. Since the perturbation itself is usually small, 
this added non-linearity should not appreciably 
affect the frequencies. 

III. EXAMPLE OF SUPERPOSED ORBITS IN AN 
AG STORAGE RING 

As an illustration, a field gradient perturbation 
giving superposed equilibrium orbits was designed 
for an A G machine with the M U R A IBM-704 
computer, using the approximate result of the previous 
section, Eq. (8), as a guide. The unperturbed magnetic 
field, expanded about a circle, was 

H = 1 - [300 cos 32θ]x, 
which gives the linearized on-momentum radial 
equation and tune 

d2x + [1 - 300 cos 32θ]x = 0, νx = 7.27. (9) dθ2 + [1 - 300 cos 32θ]x = 0, νx = 7.27. (9) 

Nearly exact superposition for small ΔΡ was achieved 
with the added field gradient perturbation 

ΔΗ = H'M cos Μθx = - 9.7 cos 8θx, 
giving the new on-momentum equation and tune 
d2x + [1 - 300 cos 32θ - 9.7 cos 8θ]x = 0, νx = 7.25. 

(10) dθ2 + [1 - 300 cos 32θ - 9.7 cos 8θ]x = 0, νx = 7.25. (10) 

Fig. 1. Betatron oscillation phase plots, (a) without and (b) 
with the field gradient perturbation. The plots are made at 
azimuths θm = 2πm 8 , 8 points per revolution. These phase 
plots are for on-momentum orbits. 
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Sample betatron oscillation phase plots, with and 
without the field gradient perturbation, are presented 
in Fig. 1. As expected, the perturbation has only 
a slight effect on the betatron oscillation frequencies 
and phase plots. 
To get superposition using the approximation 
(8) of the previous section, one would calculate the 
perturbation coefficient 

-H'M = M2-ν2
x = 82-7.252 = 11.4 

reasonably close to the computer designed value 
- H'M = 9.7. 
Sample off-momentum equilibrium orbits, with 

and without the linear perturbation, are shown 
in Fig. 2. The perturbed equilibrium orbit is clearly 
just a driven oscillation about an average displace­
ment, as indicated earlier. The maximum radial 
excursion of this driven orbit has been made as small 
as possible by appropriate phasing of the two gradient 
terms in the magnetic field. The positive maximum 
of the perturbing gradient, hence the maximum 
amplitude of the driven equilibrium orbit, is made 
to occur at the middle of a negative gradient sector. 

Fig. 2. Off-momentum equilibrium orbits (a) without and (b) 
with the perturbation. 

Fig. 3. Unperturbed and perturbed equilibrium orbit positions 
as a function of momentum, plotted for the azimuths θm = 2πm 8 • 

Fig. 3 presents the effect of non-linearities on 
superposition of the driven orbits. Plotted are 
perturbed and unperturbed equilibrium orbit posi­
tions at the azimuths θm = 2πm 8 , corresponding to 
the minima of Fig. 2b, as a function of the momentum 
deviation ΔΡ. As ΔΡ increases, the superposition 
is less exact, the separation from x = 0 being approx­
imately a quadratic function of ΔΡ. The reason, 
mentioned earlier, is that increasing ΔΡ decreases 
νx, hence increases |M2 — ν2x|; this decreases the 
amplitude of the driven oscillations and they no 
longer get back to x = 0. The quadratic dependence 
follows from Eq. (7), since the change in νx is approx­
imately proportional to ΔΡ. This change in νx 
does not appreciably affect the positions of the 
unperturbed equilibrium orbits, hence their displace­
ments remain proportional to ΔΡ. These displace­
ments from x = 0 are considerably more than those 
of the perturbed orbits, even for quite large ΔP. 

For an estimate of the current density attainable, 
take the above A G machine to be a 10 GeV storage 
ring of 50 m radius, used in conjunction with a 
10 GeV accelerator of the same tune and radius. 
With an injection energy of 50 MeV, the final current 
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density for one pulse, after betatron damping, is 
about 0.6 A/cm2; the density is assumed to be 
limited by space charge repulsion at injection, includ­
ing a factor of 1/4 for RF bunching. Now from 
Fig. 3 it is apparent that equilibrium orbits of particles 
in the momentum range ∆P = ±0.01 superpose 
almost exactly, within a ∆x of 2×10-5 or 1 m m 
with the linear perturbation. As indicated earlier, 
this ∆x could be made even smaller by making the 
perturbation slightly non-linear. These particles in 
this momentum range will have a total energy spread 
of 200 MeV. If the original energy resolution at 
50 MeV injection was 50 keV, the energy spread of 

one pulse at full energy would be ∆Einj ƒ 
ƒinj 

= 150 keV 
(∆E/ƒ = constant, with perfect RF handling). The 
number of pulses (within ΔΡ = ± 0.01) which can 
be superposed is then 200/0.150 = 1330. With the 
current density per pulse of 0.6 A/cm2, this gives 
a total of 800 A/cm2. Two colliding beams of this 
density, taking an interaction cross-section of 
25 mb, would have a total p-p interaction rate of 
4×107 interactions/cm3/s, and, at 10-8 m m Hg, 
a gas collision background from both beams of 
2×106/cm3/s. There will, of course, be some decrease 
in this density due to RF mishandling. With a 
factor of 4 decrease in beam density in RF phase 
space, there could be 1330/4 = 330 superpositions 
and 200 A/cm2, with the same energy spread. The 
p-p interaction rate density would then be 
2.5 × 106/cm3/s. with a background from residual 
gas of 5 × 105/cm3/s. Although the net current 
density is quite high, the total current can be restricted 
to quite small values by using small betatron oscilla­
tion amplitudes. With 200 A/cm2, if the betatron 

amplitudes were restricted to ± 1 mm, the total 
current would be about 8 A. To get 200 A/cm2 
without equilibrium orbit superposition would require, 
assuming the same RF losses, that the 330 pulses 
be spatially superimposed by the betatron oscilla­
tions. Now assuming a momentum compaction 
factor of 50, the 200 MeV energy spread will corre­
spond to a radial separation of the equilibrium orbits 
of 4×10-4, and a necessary final damped betatron 
oscillation (for any superposition of the extreme 
energies) of 2×10-4, or 1 cm at 50 m radius. The 
current density per pulse of 0.6 A/cm2, the 1 cm 
betatron amplitude, and the 330 pulses would then 
require the large total current of 630 A. To get 
an appreciable fraction of the current at the 200 A/cm2 
density would require even larger total currents. 
Although the example has been worked out for 

an AG storage ring, according to the analysis of the 
previous section the perturbation should have the 
same effect in an FFAG accelerator. The only 
difference should be that the tune will change with 
amplitude and not energy. In an FFAG machine 
the linear region, where tune does not appreciably 
change, is of the order 3 × 10-4. With a k of 200 
this corresponds to a ∆P of ± 0.06, compared to 
the AG case of ∆P = ±0.01; thus six times as 
many pulses could be superposed as in the previous 
A G design (with six times as large an energy spread). 
However, the two-way FFAG design usually has a 
low νy (~ 4 compared to 7 for the A G case) and 
a large radius (125 m compared to 50) so the net 
current density per pulse, proportional to νy/r2 from 
space charge limits at injection, is down by the factor 
~ 1/10, giving a net current density about 1/2 of 
the storage ring case. 
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