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beam of 10 !* protons per second could be accelerated
and stacked at about 14 GeV, and RF noise introduced
to increase the energy width of the stack to 1GeV.
The stack could then be brought onto the energy-loss
foil slowly and uniformly over a period of a second
by a phase-displacement oscillator while a new stack
was being formed at 14 GeV. A beam duty factor in
excess of 809 should result.

The extraction channel is not discussed beyond the
current septum; magnets and magnetic channels
would follow in a rather conventional manner, after
the initial separation of extracted particles from cir-
culating particles.

For simplicity, the sketches indicate particles
striking the first foil as having no betatron oscillation
amplitude. The operation of the system is independ-
ent of initial amplitudes so long as the oscillations
are nearly linear. A spread of betatron amplitudes
will produce the only energy spread in the external
beam; approximately 100 MeV for a +1 cm betatron
oscillation amplitude.

It is reasonable to conclude, therefore, that an
FFAG accelerator will be able to provide external
proton beams of high quality ranging from one turn
extraction of accumulated (stacked) particles to
essentially continuous 10 to 50 uA beams.
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I. INTRODUCTION

In order to do colliding-beam experiments with
a reasonable counts-to-background ratio, it is desir-
able to have a high beam current density. Obtaining
equal numbers of beam-beam collisions and beam-
residual gas collisions, for example, would require

a current density of about 50 A/cm? at 10”® mm Hg.
To get this density it is usually necessary to spatially
superimpose a large number of injected pulses,
requiring RF beam stacking®. In this stacking
process, however, depositing a beam pulse at a
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given energy with the RF lowers the energy of the
previously stacked coasting beam by the cnergy
width of the accelerating RF bucket, in accordance
with Liouville’s theorem. This decrease in energy
decreases the beam radius an amount determined
by the momentum compaction factor. When this
decrease in radius is larger than the maximum radial
betatron oscillation, the added pulses will no longer
spatially superimpose on the first ones. There will
be an increase in the total stacked beam, but no
further increase in beam density.

It would be useful to eliminate the spatial separation
of the different energy equilibrium orbits, at least
in the colliding-beam region. The betatron oscilla-
tion amplitude would cease to be a limit on the
achievable beam density; pulses could be spatially
superposed independent of this amplitude. Such
equilibrium orbit superposition is reasonable easy
to achieve, at least over a limited energy range.

{I. SUPERPOSITION OF EQUILIBRIUM ORBITS

The linearized radial equation of motion of a
particle of momentum P-+AP about the equilibrium
orbit of a particle of momentum P js ?

d*x  [1—n(s) 1 4ap
P“L( % >x_@7’ M

where s, n and p are measured along the P equilibrium
orbit. The equilibrium orbit of the particle of
momentum P+ AP is of course the particular solution
to the above equation. For conventional weak
focusing or AG machines, the average equilibrium

orbit displacement is
r AP

xy = V—i P

while for a scaling FFAG machine, with field H~ r*,

Now, since Eq. (1) is linear, if a particular ‘solution
for a given 4P is designed to be zero or tangent
to x =0 at'a given azimuth, all equilibrium orbits
will automatically be zero or tangent at that azimuth.

So the possibility of superposition is obvious; it
is just necessary to find a convenient linear modifica-
tion of the conventional fields.

The different equilibrium orbits can obviously
be made tangent at particular azimuths by adding
a field modification such that the off-momentum
equilibrium orbits undergo a forced oscillation about
their average displacement, with an amplitude
equal to this average displacement. One simple
method of producing a forced oscillation equal to the
average displacement consists of adding a field
gradient perturbation having a Fourier component
AH =[H )y cos M@]x, where M is an integer reasonably
close to v,, and x again is the displacement from
the selected equilibrium orbit. This selected equilib-
rium orbit, of course, will be unchanged by the
perturbation. The perturbation could be produced
with pole-face windings or quadrupole lenses ™.

The effect of such a gradient type field perturbation
on the equilibrium orbits is easily calculated, to a
first approximation, giving some insight into the
process. Measuring all distances in terms of
ro = circumference/2n, writing 6 = s/r, and taking
P={H.=1, Eq. (1) is

d’x (l—n 4P
— | x=—. 2
do’ ( p* ) p @
With the additional perturbing field
AH = [H)y cos M0] x,
this becomes
d2x+ 1—n+H, Mo AP 3
—+|—— cos x =—,
ag* | p* ™ p
n and p here having their original unperturbed values
of Eq. (2). Taking x, as the particular solution
to Eq. (2), and x5, the desired equilibrium orbit,
as the particular solution to Eq. (3), expand about

x, in Eq. (3) by defining a difference orbit x, = x3 — x,.
Then Eq. (3) gives the equation for x, :

d*x, [1—n , , .
W+ —pT“*‘HM cos MO [x, = —[H'y cos MO]x, .
f 4

To obtain an approximate soluiion to Eq. (4) replace

(%) Another. technique for qchieving_ su_gerposition, suggested by Courant, is (o drive the off-momentum equilibrium orbits by
modulating e(s) of (1) with a periodicity close to vx, like the proposal of Vladimirskij and Tarasov for eliminating the transition

energy.
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the left-hand side with a harmonic oscillator of the
same frequency v and x, by its average value {x,).
Then

d*x,

de? +v2xy = —[H'y cos MO(x,) ®)

which gives as the approximate particular solution
to Eq. (4):

_ [H'y cos MOJ(x,)
4 = .

M?—y? ©

X

Since the correct forced equilibrium orbit is given
by x3 = x, + x,, replacing x, and x, by their
approximate values gives

H'y cos MO[<x,>
X3§<X2>+[ MMz_vz] :
‘ H',,; cos M0
={x;> I+W . N

So to this approximation, the off-momentum equilib-
rium orbits can all be made tangent to zero at periodic

2nm
angles. If the angles were chosen to be 8, = o7 )
M

for example, the perturbation coefficient would be
Hy= —(M*=v%) . (8)

The addition of the perturbing field [ H, cos M 0]x
will open up stopbands at v = M/2, 2 M/2, 3 M/2,...
and will cause a perturbation of the original v. The
tune-changes and the stopbands, away from the M/2
region, however, arc small; so bringing M to the
closest or next to closest integer to v should not

prove troublesome ¥.

The equilibrium orbits must superpose, with a
correctly designed gradient perturbation, only as
long as Eq. (3) remains the radial equation of motion,
that is, as long as the equation stays linear in the
quantities x and AP. In a perfect linear field AG
machine the radial equation stays essentially linear
in x, and the x tune is independent of amplitude.
The coefficient of x, however, depends on the momen-
tum AP. An increase in AP will change + generally
decreasing it; in any event it will change |M2—v2|,
hence the amplitude of the forced oscillations, and
the orbits will no longer exactly superimpose, as
seen from Eqg. (7). In a non-linear but scaling FFAG
machine, the tune is independent of AP, but depends
on the x amplitude, so there is a change in |M*- v?!
for the larger driven oscillations, and the orbits for

large AP again will not exactly superpose. For
both types of machine it should be possible, of
course, to make the perturbation slightly non-
linear to compensate for the change in M?*—v?
giving exact superposition over a larger range of
AP. Since the perturbation itself is usually small,
this added non-linearity should not appreciably
affect the frequencies.

. EXAMPLE OF SUPERPOSED ORBITS IN AN
AG STORAGE RING

As an illustration, a field gradient perturbation
giving superposed equilibrium orbits was designed
for an AG machine with the MURA 1BM-704
computer, using the approximate result of the previous
section, Eq. (8), as a guide. The unperturbed magnetic
field, expanded about a circle, was

H = 1—[300 cos 320]x,

which gives the linearized on-momentum radial

equation and tune

d*x

ETI- [1—300cos 320]x =0, v,=7.27. Q)
Nearly exact superposition for small 4P was achieved

with the added field gradient perturbation
AH = Hj cos MOx = — 9.7 cos 86x ,

giving the new on-momentum equation and tune

d*x

—+[1—-300 cos 320—9.7 cos 8]x =0, v, =725.
dé (10)
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Fig. 1. Betatron oscillation phase plots, (a) without and (b)

with the field gradient perturbation. The plots are made at
2

azimuths 0m=—%zl, 8 points per revolution. These phase

plots are for on-momentum orbits.
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Sample betatron oscillation phase plots, with and
without the field gradient perturbation, are presented
in Fig. 1. As expected, the perturbation has only
a slight effect on the betatron oscillation frequencies
and phase plots.

To get superposition using the approximation
(8) of the previous section, one would calculate the
perturbation coefficient

~H\yy=M"—v.=8"-725" =114

reasonably close to the computer designed value
— Hyy =97

Sample off-momentum equilibrium orbits, with
and without the linear perturbation, are shown
in Fig. 2. The perturbed equilibrium orbit is clearly
just a driven oscillation about an average displace-
ment, as indicated earlier. The maximum radial
excursion of this driven orbit has been made as small
as possible by appropriate phasing of the two gradient
terms in the magnetic field. The positive maximum
of the perturbing gradient, hence the maximum
amplitude of the driven equilibrium orbit, is made
to occur at the middle of a negative gradient sector.
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Fig. 2. Off-momentum equilibrium orbits (a) without and (b)
with the perturbation.
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Fig. 3. Unperturbed and perturbed equilibrium orbit positions
as a function of momentum, plotted for the azimuths 0m = Zrm )

Fig. 3 presents the effect of non-linearities on
superposition of the driven orbits. Plotted are
perturbed and unperturbed equilibrium orbit posi-

2nm
tions at the azimuths 9,,,=—8—, corresponding to

the minima of Fig. 2b, as a function of the momentum
deviation AP. As AP increases, the superposition
is less exact, the separation from x = 0 being approx-
imately a quadratic function of AP. The reason,
mentioned earlier, is that increasing AP decreases
v, hence increases |M?—v2|; this decreases the
amplitude of the driven oscillations and they no
longer get back to x = 0. The quadratic dependence
follows from Eq. (7), since the change in v, is approx-
imately proportional to AP. This change in v,
does not appreciably affect the positions of the
unperturbed equilibrium orbits, hence their displace-
ments remain proportional to AP. These displace-
ments from x = 0 are considerably more than those
of the perturbed orbits. even for quite large AP.

For an estimate of the current density attainable,
take the above AG machine to be a 10 GeV storage
ring of 50m radius, used in conjunction with a
10 GeV accelerator of the same tune and radius.
With an injection energy of 50 MeV, the-final current
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density for one pulse, after betatron damping, is
about 0.6 AJem?; the density is assumed to be
limited by space charge repulsion at injection, includ-
ing a factor of 1/4 for RF bunching. Now from
Fig. 3 it is apparent that equilibrium orbits of particles
in the momentum range AP = 4+0.01 superpose
almost exactly, within a Ax of 2x107° or 1 mm
with the linear perturbation. As indicated earlier,
this 4x could be made even smaller by making the
perturbation slightly non-linear. These particles in
this momentum range will have a total energy spread
of 200MeV. If the original energy resolution at
50 MeV injection was 50 keV, the energy spread of

one pulse at full energy would be 4E;,; i = 150 keV

inj
(4E/f = constant, with perfect RF handling). The
number of pulses (within 4P = + 0.01) which can
be superposed is then 200/0.150 = 1330. With the
current density per pulse of 0.6 A/cm?, this gives
a total of 800 A/cm®. Two colliding beams of this
density, takiig an interaction cross-section of
25 mb, would have a total p-p interaction rate of
4x 107 interactions/cm’/s, and, at 107® mm Hg,
a gas collision background from both beams of
2x10%/cm?/s. There will, of course, be some decrease
in this density due to RF mishandling. With a
factor of 4 decrease in beam density in RF phase
space, there could be 1330/4 = 330 superpositions
and 200 A/cm?, with the same energy spread. The
p-p interaction rate density would then be
2.5x10%/cm?/s. with a background from residual
gas of 5x10°/cm’/s. Although the net current
density is quite high, the total current can be restricted
to quite small values by using small betatron oscilla-
tion amplitudes. With 200 A/cm?, if the betatron

amplitudes were restricted to + 1| mm, the total
current would be about 8 A. To get 200 A/cm?
without equiltbrium orbit superposition would require,
assuming the same RF losses, that the 330 pulses
be spatially superimposed by the betatron oscilla-
tions. Now assuming a momentum compaction
factor of 50, the 200 MeV energy spread will corre-
spond to a radial separation of the equilibrium orbits
of 4x107*%, and a necessary final damped betatron
oscillation (for any superposition of the extreme
energies) of 2x107%, or 1 cm at 50 m radius. The
current density per pulse of 0.6 A/cm?, the 1 cm
betatron amplitude, and the 330 pulses would then
require the large total current of 630 A. To get
an appreciable fraction of the current at the 200 A/cm?
density would require even larger total currents.

Although the example has been worked out for
an AG storage ring, according to the analysis of the
previous section the perturbation should have the
same effect in an FFAG accelerator. The only
difference should be that the tune will change with
amplitude and not energy. In an FFAG machine
the linear region, where tune does not appreciably
change, is of the order 3x 10™*, With a k of 200
this corresponds to a AP of + 0.06, compared to
the AG case of AP = 4+ 0.01; thus six times as
many pulses could be superposed as in the previous
AG design (with six times as large an energy spread).
However, the two-way FFAG design usually has a
low v, (~ 4 compared to 7 for the AG case) and
a large radius (125 m compared to 50) so the net
current density per pulse, proportional to v,,/r2 from
space charge limits at injection, is down by the factor
~1/10, giving a net current density about 1/2 of
the storage ring case.
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