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Introduction

A great part of what we know about the Universe passes through the observation
of electromagnetic waves: from radio waves up to v rays. Some complementary
information comes from the detection of cosmic rays and neutrinos, that allow for
different perspectives on our Universe. Similarly, gravitational wave astronomy
might increase considerably our knowledge and allow the comprehension of the
most violent and catastrophic events occurring in the nearby Universe.

Whereas light or matter waves propagate through space, gravitational waves are
propagating ripples of spacetime itself. Such distortions in spacetime are generated
by non-spherical motion of matter. There are large uncertainties in the theoretical
predictions of either the strength or the rate of occurrence of gravitational wave
(gw) events, in the ranges of strengths and frequencies under observation by present
gw detectors. In most cases, theory can only give an indication on which gw
sources might be promising and suggests estimates on the energy emitted in gws
and event rates. The first raw information drawn from models is that even the
most violent astrophysical phenomena involving compact objects such as merging
black holes or neutron stars, or collapsing stars, emit gravitational waves which
manifest themselves as a tiny relative shift of only Al/l ~ 1072° on the Earth.

Although gravitational waves have been predicted by Albert Einstein in his
theory of general relativity over 80 years ago, only nowadays technology enables
physicists to tackle the problem of their detection. A successful detection of gravi-
tational waves will not only supply a further confirmation to Einstein’s prediction,
but will open a completely new ”window” into the Universe. By routinely observing
gravitational waves, astrophysicists will gain new, and otherwise entirely unattain-
able insights, into such fascinating objects like black holes, the enigmatic cosmic
gamma ray bursts, or the driving engines behind stellar supernova explosions [30].

Since the well known observations made by Hulse and Taylor (1994) of the bi-
nary system PSR1913+16 [1,2], the scientific community is waiting for the day in
which a detector, or most likely a network of detectors, will claim the first direct
observation of a gravitational signal. Note that this enthusiasm was triggered by



a source that actually is not very promising, neither for the energy radiated in gw
nor for the expected rate of occurrence.

More recently (December 2003), a revised estimate of the neutron-star merger rate
has been assessed through the discovery of a double neutron-star system, a pulsar
called PSR J0737-3039 and its neutron-star companion, by a team of scientists
from Italy, Australia, the UK and the USA using the 64-m CSIRO Parkes radio
telescope in eastern Australia [3].

The challenge of detecting gws was firstly addressed by Joseph Weber, who is gene-
rally considered the pioneer of this field. Using room-temperature aluminum bars
as detectors, he reported tentative evidences for gw bursts at the kHz frequencies
(1969). This first report, although later on denied by more sensitive detectors,
has triggered considerable efforts in this direction, giving birth to a new field of
astrophysical detection.

There are five operating resonant gw detectors: ALLEGRO [4] in Baton Rouge
(USA), AURIGA [5] in Legnaro, near Padova (Italy), EXPLORER [6] in CERN
(Switzerland), NAUTILUS [7] in Frascati, near Rome (Italy) and NIOBE [8] in
Perth (Australia).

The five detectors have signed the International Gravitational Event Collaboration
(IGEC) [9], with the purpose of data exchange and coincidence searching among
different detectors. This joint effort led to an upper limit on the gws from the
galactic center [10], and showed that the data exchange technique allows to make
the false alarm rate negligible [10].

Another way to search for gws is by interferometric experiments.

In 1978, Forward made the very first experimental attempt to detect gws by means
of an interferometer, measuring the displacement of test masses with high sensi-
tivity. Since then, the sensitivity of such detectors has greatly increased, following
a thorough test of several optical schemes.

There are currently four (actually five counting the two sites of LIGO) interfero-
metric gw detectors: GEO 600 [11] in Hannover (Germany), LIGO Hanford and
LIGO Livingston in the USA [12], TAMA 600 [13] in (Japan) and VIRGO [14] in
Cascina, near Pisa (Italy). They are now constantly upgrading, both as regards
sensitivity and duty cycle, struggling to reach their goal sensitivity curves.

In the future there will also be LISA [15], the ESA-NASA collaboration to
bring the gw research into the space, where the detection of the gw should be out
of doubt, as it is limited to the lowest range of frequencies.

The detection of an event in a single detector is not sufficient to claim any
discovery: a multi-detector search has to be performed to reach a sufficient level
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of confidence for the detection.

The aim of this work is to develop multi-detector data analysis techniques. How-
ever, before analyzing a network of detectors, part of the work was devoted to the
study of two different types of analysis, which have been implemented in AURIGA
data analysis. As described in chapter 3, the standard AURIGA data analysis cor-
responds to an event search on template-filtered data and to a template-less event
search, based on the Excess Power method [53]. These two event search pipelines
are compared as regards to their parameters estimation capabilities and the False
Alarms and False Dismissals probabilities. In addition, theoretical lower bounds
on parameter estimation errors are recalled to give some additional insight in the
estimators performances. Chapter 4 deals with the multi-detector analysis and the
various methods of combining data from different detectors; part of this chapter
comes from a paper published on the proceedings of GWDAW2002 [75].

Chapter 1 gives a brief overview on the detector AURIGA, as regards its recent
hardware and software upgrades, and shows the theoretical and experimental sen-
sitivity curves of other gw detectors as a comparison.

Chapter 2 covers the main astrophysical sources which should be relevant to reso-
nant detectors.
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Chapter 1

Resonant gravitational waves
detectors

1.1 A brief overview on gravitational waves

Resonant gravitational waves (gw) detectors are massive mechanical oscillators,
equipped with very sensitive displacement sensors, capable of detecting changes in
the vibrational amplitude of the oscillator motion. The displacement sensitivity of
a resonant detector is of the order of 1072! m for short transients (At < 1 s), level
at which an excitation due to the interaction of gw with the bar should emerge
from the detector noise.

Gravitational signals should come from astrophysical objects experiencing ex-
treme conditions, in which the effects of the Einstein theory of General Relativity
(GR) [21] allow huge quantity of energy (=~ 1M, ~ 10° erg) to be converted in
spacetime perturbations travelling through the universe and finally reaching the
earth.

A formula for the total luminosity emitted by a gw source is available in the

weak-field limit ! [22]:
2
dE G QLT
b= (%) - 5—E< ) (2

where G is the Newton gravitational constant, ¢ is the speed of light and gT

'In the weak-field limit the metric tensor g,,, is quasi-minkowskian:

g,uV = nltl/ + huV% ‘h/;,bl/| < 1 (11)



are the elements of the quadrupolar tensor for the mass distribution of the source,
calculated in the Transverse Traceless gauge:

i (1) = (/V p(x,t) (xz’%‘ - %&ﬂx\z) dV) TT' (1.3)

The expression for the perturbation of the metric tensor in the wave region is [23]:
2NTT
roct dt? ’

where 7 is the distance of the observer from the source.

hij -

(1.4)

Eq.(1.3) can be used to give a rough estimate of the luminosity of an astrophysical
source:

G M2R?
2
Ly~ & 5

where M, R and T are its mass, its radius and the characteristic evolution time of

(1.5)

the source, respectively; € is a measure of the asymmetry of the matter distribution.
Accordingly, the amplitude of metric perturbation h reads:

heo =2 (1.6)

where E™8 = e M R?/T? is the source energy ( proportional to the fraction of matter
which is not spherically symmetric).
The factor G/c® keeps the luminosity so small that we must look for massive and
compact objects, in relativistic motion. The luminosity can be rewritten as:
S rra\2 fv\6
L~ (%) () (.7
where R and v are respectively the typical scale of the source and velocity of the
system, r, = 2GM/c? is the Schwarzschild radius.
For the most luminous gw sources, the weak-field approximation no longer holds
(r — rs and v — ¢) and therefore, efforts to build reliable theoretical models are
of paramount importance [30,31]. Accurate numerical simulations for the full 3-
D general relativistic problem [38] should predict the range of frequencies for the
design of new detectors and signal templates to be used in the data analysis.

1.2 Recent upgrades of AURIGA detector and
near future prospects

The first run of gw detector AURIGA began on June 1997 and ended in November
1999 because of a cryogenic failure, which forced the warm up of the detector at
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room temperature.
During the two years of data acquisition, the detector operated at a minimum
thermodynamic temperature of 200 mK, reaching the best strain sensitivity of
S,ll,/f ~ 4 x 10722 Hz= /2 over a a bandwidth of ~ 1 Hz around the two resonant
frequencies [16]. It is worth noticing that also the achieved duty cycle (30%) was
unsatisfactory since we are looking for rare astrophysical sources.
Since the end of previous run, the group has been working on the upgrade of the
whole project AURIGA [17].

In order to perform all the measurements necessary to fully characterize the new
AURIGA readout, a specific apparatus, the Transducer Test Facility (TTF) [20],
was set up. In the TTF, shown in figure 1.1, the transduction chain is identical to

the one mounted on the gw detector.

= enic Susp.

- Mixing Chamber
- Transducer

“~_Transformer

Figure 1.1: Cross section of the Transducer Test Facility: the cryostat, the structure of
the multi-stage suspension system, and the resonant transducer. The box attached to
the last stage of the suspensions contains the double SQUID amplifier.

TTF allows frequent ultra-cryogenic measurements on the complete readout chain
as its cryogenic time to cool down or heat up is less than one week, while the
AURIGA cryogenic time is of the order of one month. Once the readout has
shown to work properly, it has been installed on the AURIGA bar. In figure 1.2



there is a picture of the open cryostat, in the assembling phase of AURIGA detector
(October 2003).

The ultra-cryogenic detectors achieve a better sensitivity with respect to detec-
tors operated at liquid Helium temperature, but the dilution refrigerator shrinks
the duty cycle and reduces the system’s reliability. Consequently, it has been de-
cided to split the second run into two phases: a first phase, which is currently taking
place, where the detector is operating at cryogenic temperature (Tiperm ~ 4.5 —1.5
K) and a second phase, with a new designed *He-*He dilution refrigerator to reach
lower temperatures (Tjperm ~ 0.1 K) and the better sensitivities (see figure 1.4).

Figure 1.2: A picture of AURIGA detector with the new multistage suspensions.

In the second run, the AURIGA detector has been equipped with:

e new mechanical suspensions designed by means of a Finite Element Method
(FEM) to avoid spurious mechanical resonances in the detector bandwidth:
attenuation > 360 dB at 1 kHz (see figure 1.3)

e new capacitive transducer: two modes (1 mechanical+1 electrical)

e new amplifier: double stage SQUID with 200/ energy resolution

e new data analysis: C++ object oriented code and frame data format.



New AURIGA cryogenic mechanical suspension: assembled view

Liquid Helium
Vessel

Holder A12081 (230 kg) ‘

Thermal shield 4.2 K
Main attenuator

Thermal Shield 1K

Compression
Spring

Figure 1.3: A close view of AURIGA new suspensions: the 4K vessel of the cryostat
supports a stainless steel frame, to which the whole suspension system is hung. The four
main suspension columns are fixed to a big 300 kg aluminum mass holder, supported by
four titanium springs. The aim of these four springs is to uncouple the steel frame from
the columns. Each pair of columns supports an inverted “T" aluminum mass on the top
of which is fixed a compression spring with an upper conical joint which is used to lean
an aluminum beam. The bar is hung at its center of mass with a tubular cable which is
attached with a "bayonet” mount into the aluminum beam.

To satisfy the new requirements of the improved detector design, (i.e. the
wider bandwidth and the higher sensitivity), the data acquisition and data analysis
systems have been fully redesigned and implemented from scratch [19].

Operating gw detectors in a coordinated network allows for a drastic reduction
of spurious signals and an experimental determination of the false alarm rate. To
this end a great effort has been put to reach an accurate data synchronization with
the Universal Time Coordinate (UTC) and permanent and temporary data storage
has been based on the Frame format 2.

2The Frame format [24] has been developed by VIRGO and LIGO groups and adopted by the
gravitational wave community.



1.2.1 AURIGA second run model

Within a 200 Hz bandwidth centered around the mode frequencies & [800 = 1000]
Hz , resonant detectors are well described by linear, constant coefficients differential
equations, so that both the detector transfer function H(w), and the noise spectral
density S(w), can be reasonably well approximated by real coefficient polynomials.
A suitable model of the power spectrum of the AURIGA noise and the detector
transfer function are the complex zeroes-poles functions derived in ref. [47]

L) (i) = 5 T1 qmw g — iw) (g} +iw)(gi — i)
S(w) = Liw)L( U iy —wmprmp =) Y
and
H(w) = Ho(w) Fiw) ™ (1.9)

T8 (o — iw) (9, — iw)

where Sy is a constant representing the wide-band noise level, Np is the number
of resonances (in our case the system can be modelled with Np = 3 ), py and ¢
are respectively the poles and the zeroes (see tables 1.1 and 1.2) and Hy(w) is the
calibration function that has to be provided by the detector calibration procedures
at any run and monitored during the data taking. The poles p; entering in Eq.s
1.8 and 1.9 are subject to slow drifts mainly caused by discharges of the capacitive
transducer or variations of the thermodynamic temperature (usually less than few
mHz per month).

p1 | —0.409 +i5421.781 [rad/s]
p2 | —3.469 +i5780.161 [rad/s]
s | —8.781 + i5996.345 [rad /]
¢1 | —1653.439 + i5345.336 [rad/s]
q2 | —47.980 + i5445.167 [rad/s]
g3 |  —50.393 +45842.61 [rad/s]

Table 1.1: Parameters for the noise model of AURIGA second run phase | at 4.5 K.

From the previous equations is straightforward to obtain the modelled Sy, =
S(w)/|H(w)|? strain sensitivity for the two devised phases shown in figure 1.4.

8



pr | —0.400 + i5421.781 [rad/s]
p2 | —3.469 +i5780.161 [rad/s]
ps | —8.781 +i5996.345 [rad/s]
q1 | —42.838 4 15437.447 [rad/s]
G2 | —683.443 + i5824.997 [rad/s]
G5 | —52.716 + i5840.513 [rad/s]

Table 1.2: Parameters for the noise model of AURIGA second run phase Il at 100 mK

1E-20

Shh1 2 [HZ-1 /2]

1E-22

AURIGA first run

Al

1E-21

\ AURIGA Next run (T=1.5 K) /
NN
_ N

-

AURIGA Ultracryogenic (T=0.1 K)

t ! ! ! ! ! ! !
850 860 880 900 920 940 950

Frequency [Hz]

Figure 1.4: Comparison among the sensitivities of the various hardware setups of
AURIGA: i) a Sy, from the first run data acquisition (black), ii) design sensitivity of
Phase 1 at cryogenic thermodynamic temperatures (red) and iii) design sensitivity of
Phase 2 at ultra-cryogenic thermodynamic temperatures (blue)

1.2.2 Comparison with other g.w. experiments: design

and current sensitivity curves

The main task to be accomplished by the new AURIGA detector is to exchange
data with other gw experiments. It is worth giving a look at the planned (and the
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actually reached) sensitivity curves of the operating interferometers. For the sake
of simplicity, we choose to omit any resonance, such as violin modes, mirror modes
etc. in the detection bandwidth and to consider only the thermal (pendulum and
mirror substrates) and the shot noise: the simplified model is therefore [49],

w 2
. ( ) ]
Wknee

where Speng and Syirror are the thermal noises of the mirror pendular mode and of

S en Smirror
Sp(w) = Z5d+ o Sahor

(1.10)

the mirror substrates; S0 and wiyee fit the optical read-out noise.

Detector Spend Soirror Sehot Winee/ (27)
[Hz|
GEO 41-107%2 | 5.7-107% 1-107% 577
LIGO 2K | 2.1-10731 | 1.4-107%2 | 4.35-10746 182
LIGO 4K | 5.6-10732 | 24.5.107%3 | 1.1-107 83
TAMA |46-1073% | 3.2-1073 | 1.78-10~% 500
VIRGO 9.1073% | 28.3-107%2 | 3.24-1074 500

Table 1.3: Parameters for the simplified noise model of the interferometers.

We report the numerical values taken from [49] ? that fit the model and in figure
1.5 the design sensitivity curves of the five interferometers, compared with the one
of AURIGA second run phase 2. Of course, this is an oversimplified comparison:
there are other parameters to be taken care of, such as the effective detection
bandwidth, the duty cycle, the degree of stationarity, the lock time, the spurious
lines etc. Besides, the actual sensitivity curves shown in figures 1.6 and 1.7 of the
interferometers that have had science runs (the LIGOs and TAMA interferometers)
are still well above the designed ones.

1.2.3 AURIGA Status

On December 2003, the AURIGA detector reached a set of parameters suitable for
tests and operation. Data taking began at 4.5 K for diagnostics and calibration.
Since December the 24" both the noise floor and the bandwidth have been in close

agreement with the performance predicted by the thermodynamic model of the

3The sensitivity of GEO600 refers to the wideband configuration. The TAMA detector pa-
rameters have been updated to the sensitivity enhancement due to the power recycling upgrade.
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Figure 1.5: Design strain sensitivities of gw detectors. H4K and H2k are, respectively
the 4 km and 2 km Hanford interferometer. L4K is the Livingstone 4 km interferometer.
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Figure 1.6: Strain sensitivities of LIGO Livingstone 4km.
detector. In particular, the bilateral spectral strain noise is lower than 5 x 1072
Hz~'/2 between 855 and 950 Hz (see figure 1.8). However, a few spurious non-

modelled lines are still present.
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Chapter 2

G.W. Burst Sources

In this chapter, we will give a brief introduction to some gw sources. We have
chosen the most commonly discussed astrophysical models: supernovae, binary
systems and Gamma-Ray Bursts (GRB) sources. Of course, at present such mo-
dels can only give some indications about the strength and, sometimes, the rate of
certain gw events; nevertheless, these are the first steps toward a better compre-
hension of some of the most intriguing phenomena of the Universe. It’s still not
clear whether the implementation of new and more accurate relativistic simula-
tions will help us to achieve higher degrees of confidence in theoretical predictions.
Probably, this ambiguity will persist till the gw detectors will reach a sensitivity
high enough to enlighten the situation.

2.1 Supernova rotational core collapse

At the end of their evolution, massive stars (M > 4M)) develop an iron core which
becomes unstable against gravitational collapse. This core collapses to a neutron
star or a black hole releasing gravitational binding energy, which is enough to power
a supernova explosion. As the core collapses, large amounts of mass ( 1 — 100 M)
flow in a compact region (10% — 10° cm) at relativistic velocities (v/c ~ 1/5). If
the collapse is nonspherical, part of this huge energy will be emitted in the form of
gravitational waves. For these reasons supernovae have always been considered as
one of the most promising sources of gravitational waves; indeed, in the 60’s-70’s,
the first gw detectors - resonant bars - had their resonant frequencies tuned around
1 kHz, in order to look for the typical frequencies expected for these gw signals.
However, according to present knowledge, the energy released in gw in rotational
core collapse was overestimated by orders of magnitude; a clear upper bound for

15



this quantity is By, < 1076Mgc? [25]. In supernova core collapse, there are several
mechanisms of wave emission (of comparable strength) [30], [29]:

e Deceleration of bulk mass at core bounce (burst signal);

e Bar instability, in which the mass in the core forms a rapidly rotating bar-like
structure with a rapidly varying quadrupole moment (quasi-periodic signal);

e Fragmentation instability: the collapse material fragments into clumps, which
orbit for some cycles as the collapse proceeds;

e R-modes instability, peculiar of the neutron stars;

e Ring-down signal from a possible newborn black hole: large amounts of ma-
terial accreting a black hole formed in core collapse would induce a distortion
in the Black Hole (BH) stationary Kerr configuration.

The frequency of the emitted radiation ranges from a few Hz to a few kHz and
the dimensionless signal amplitudes for a source located at a distance of 10 Mpc
do not exceed h ~ 10722 consequently, the prospects of detecting a gw signal from
a supernova core collapse by the detectors currently in data taking (and even with
next generation detectors) appears to be limited to those events occurring within
the Local group (= 4 Mpc).

2.1.1 MPA Newtonian and Relativistic templates

At present, one of the most accurate simulations of star collapse has been im-
plemented by a group from the Max-Planck-Institut fiir Astrophysik. They have
performed hydrodynamical simulations of rotational core collapse in axisymmetry
and equatorial symmetry: first in the Newtonian approximation [26] and later with
a fully relativistic treatment [27], [28]. Note that, at the rotational speeds expected
from stellar evolution models, bar-modes do not develop and the dominant gw sig-
nal occurs at bounce. This is due to the convection and the viscosity which carry
away this already small angular momentum.

To reduce the complexity of the problem, they assume rotating v = 4/3 polytropes
in equilibrium as initial models of the type iron core, with initial central density
0. = 1019 g-em™3, a radius Reore ~ 1500 km and a simplified ideal fluid equation
of state.

The MPA group has simulated, both in Newtonian and in relativistic gravity, the
evolution of 26 models that cover a 3-D parameter space: the first parameter A,

16
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Figure 2.1: Time evolution of the gravitational wave signal Amplitude for the newto-
nian (red) and the relativistic (blue) simulation of model A3B3G1: while the newtonian
simulation has given raise to multiple bounces, the relativistic shows a regular collapse.

A B G
[em]
1]5-10° | 0.25% | 1.325
2| 108 0.5% | 1.320
315-107| 0.9% | 1.310
41 107 1.8% | 1.300
5 - 4% | 1.280

Table 2.1: The three model parameters. The name of each model is obtained with a
combination of parameters from the three sets (i.e. A1B2G3).

is a length scale ranging from (107 + 5 x 10%) cm, which specifies the degree of
differential rotation. The second parameter B, is the initial rotation rate, i.e. the
ratio of rotational energy and the absolute value of gravitational binding energy,
spanning from 0.25% to 4%. Finally, the third parameter G is related to the
adiabatic index at subnuclear densities: collapse begins as the adiabatic index
decreases from 4/3 to G (see Table 2.1).

Three types of rotational supernova core collapse and related waveforms have been
identified in both set of simulations: regular collapse, multiple bounce and rapid
collapse.
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Figure 2.2: Spectral energy distribution of gw signal for the newtonian and the relativistic
simulations of model A1B3G3: due to higher average central densities in relativistic
simulations, the maximum of the energy spectrum is shifted to higher frequencies.

In figure 2.1, a quick comparison of the Newtonian and the relativistic simulations
results is shown. For model A3B3G1, simulations produce very different waveforms:
in particular, a multiple bounce type (Newtonian) becomes a regular one with a
ringdown. The range of gw amplitudes and frequencies v obtained for the two sets
is roughly the same: 4 x 10721 < ATT < 3x10~2° for a source at a distance of 10 kpc
and 60 Hz < v < 1000 Hz. These simulations give an even more restrictive limit
with respect to theoretical predictions to the total energy radiated in gw, reduced
to only a few 10-"Myc? . Besides, the relativistic models, that are expected to
be more accurate, have typically lower gw amplitudes. Nevertheless, the peak of
emission in latter models is at higher frequencies and in some cases very close
or inside the bandwidth of the future detector AURIGA2, leading to an SNR
enhancement with respect to Newtonian models (see figure 2.2).

2.1.2 Estimating SNR for AURIGA detector

The AURIGA data analysis allows for optimal filtering of arbitrary waveforms;
nevertheless, applying a J-filtering to estimate the SNR and the time of arrival of
newtonian and relativistic waveforms is still a good approximation. In fact the
response to the major part of the MPA signals is almost flat over the AURIGA
bandwidth.
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The fraction of in-band SNR ASNR/SNR, lost because of the filter mismatch, is
lower than 5% if the in-band SNR of injection is larger than 6-7, i.e. in the linear
estimation region of the WK delta filter. Note that this result is model dependent:
slightly changing AURIGA resonant frequencies of 20 — 30 Hz can produce on some
MPA waveforms a loss of 20 + 30% for in-band SNR. These values agree perfectly
with those estimated analytically by means of the Fitting Factor (FF) ! reported
on tables 2.2 and 2.3.

!The Fitting Factor represents the loss fraction of SNR due to the mismatch between the filter

and the actual gw waveform:
H|T
F = (HT) (2.1)

(H[H)/(T|T)
where (z]y) is the usual scalar product, H is the gw waveform and T the template to whom the
filter is matched: in our case the delta function.
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Model SNR Total Energy |  Arrma FF T

(10 kpe) | (Moc?) (1ms)
1 | A1B1G1y 0.80 5.8-1078 1.5-10729 | 0.97 | 108.7
2 | A1B2G1y 1.1 6.4-1078 2.1-1072% 1. 112.2
3 | A1B3G1y 0.28 1.8-1078 1.3-1072° | 0.97 | 134.7
4 | A1B3G2yN 1.1 5.8-1078 1.8-1072° | 0.99 | 113.8
5 | A1B3G3y 1.1 2.5-1078 8.6-10721 | 1. |69.39
6 | A1B3G5y 0.45 3.8-10°1° 1.2-10721 | 0.97 | 58.69
7 | A2B4G1y | 0.0068 59-107% | 58-10721 | 1. | 198.2
8 | A3B1G1y 1.9 8.7-1078 2.2-10720 1 0.95 | 114.2
9 | A3B2G1y 0.70 2.3-1078 1.5-1072° | 0.99 | 133.8
10 | A3B2G2y 1.7 7.6-1078 2.1-1072° 1 0.99 | 99.12
11 | A3B2G4y 1.2 1.5-1078 6.2-1072! 1. 59.68
12 | A3B2G4, 1.4 1.9-10°8 6.9-1072 | 1. | 59.63
13 | A3B3G1y | 0.023 3.7-107° 9.6-10721 | 0.94 | 135.5
14 | A3B3G2y 0.23 9.2-107° 1.3-1072° | 0.98 | 106.0
15 | A3B3G3y 1.0 2.1-10°8 1.3-1072° | 0.95 | 77.09
16 | A3B3G5hy 0.76 2.7-107° 2.3-10721 | 0.99 | 57.07
17 | A3B4G2y | 0.040 1.5-107° 79-10721 | 1. | 1174
18 | A3B5G4y | 0.018 1.1-107° 4.7-10721 | 0.95 | 88.40
19 | A4B1G1y 1.8 6.9-1078 1.8-10720 | 0.89 | 118.9
20 | A4B1G2y 1.6 6.2-1078 1.8-107%2° | 0.96 | 87.73
21 | A4B2G2yN 1.2 4.1-1078 1.9-10720 1. 102.9
22 | AAB2G3yN 1.6 5.1-1078 2.-107% 1. | 89.31
23 | AAB4G4yN 0.25 1.6-1078 1.5-1072° | 0.99 | 79.82
24 | AABAGHN 0.84 3.3-1078 1.9-1072° | 0.98 | 64.45
25 | A4B5G4yx | 0.086 2.7-1078 2.6-10720 | 0.93 | 79.03
26 | A4B5G5N 1.7 1.5-10719 | 4.8-107%2° | 1. |69.08

Zwerger and Miiller Newtonian waveforms: i) model name,
i) SNR on AURIGA second run phase 2 expected sensitivity
curve for a source at 10 kpc, iii) Total energy radiated in gw,
iv) the maximum strain amplitude, v) Fitting Factor with a

delta-matched filter and vi) signal duration.
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Model SNR Total Energy |  hArrmas FF T

(10 kpc) (Moc?) (ms)

1 | A1B1G1g 1.2 2.1-107% | 84-107%'| 1. |109.1
2 | A1B2G1p 2.0 6.-1078 1.6-10720 | 1. |114.0
3 | A1B3G1y 2.3 1.2-107% | 24-1072 | 1. | 134.0
4 | A1B3G2p 1.9 6.-1078 1.5-10720 | 1. | 108.4
5 | A1B3G3g 1.5 1.3-107% | 5.8-1072 | 1. | 69.76
6 | A1B3G5r | 0.44 3.-10710 1.1-1072* | 1. | 57.01
7 | A2B4G1; | 0.036 45-1072 | 4.9-1072" | 0.94 | 198.8
8 | A3B1G1y 2.0 71-107% | 1.7-107% | 1. | 1149
9 | A3B2G1y 2.4 1.8-107% |26-10720| 1. | 134.2
10 | A3B2G2pR 2.6 1.-10710 1.9-1072° | 1. |99.23
11 | A3B2G4p 1.2 82-107% | 4.6-1072' | 0.99 | 59.66
12 | A3B2GA4, 2.1 1.2-107®% | 55-10721 | 1. | 59.45
13 | A3B3G1i | 0.90 2.1-10719 | 87-1072' | 0.99 | 129.3
14 | A3B3G2R 1.5 1.2-107% | 1.2-10720 | 0.98 | 108.8
15 | A3B3G3g 1.7 5.1-107% | 1.1-1072° | 0.99 | 79.35
16 | A3B3G5; | 0.46 1.9-107 [23-107% | 1. | 58.65
17 | A3B4G2; | 0.10 6.1-10™ | 5.3-1072' | 0.98 | 119.1
18 | A3B5G4, | 0.043 1.5-107 | 4.3-1072' | 0.95 | 87.56
19 | A4B1G1p 2.5 1.2-107% | 22.1072° | 1. | 120.0
20 | A4B1G25 2.9 1.-10°10 2.-10720 | 1. | 89.12
21 | A4B2G2R 4.8 3.6-1071% | 3.-1072° | 1. |104.0
22 | A4B2G3g 3.5 2.-1071% 1 22.1072° | 1. | 89.80
23 | A4B4G4z | 0.55 23.107% | 1.1-1072° | 0.98 | 77.28
24 | A4BAG5r | 0.20 2.7-107% 19.1-1072' | 0.97 | 66.15
25 | A4B5G4r | 0.16 2.2-107% | 1.5-107% | 0.96 | 77.35
26 | A4B5G5R 1.9 14-10719 1 21-107% | 1. | 66.12

Dimmelmaier, Font and Miiller Relativistic waveforms: i)
model name, ii) SNR on AURIGA second run phase 2 ex-
pected sensitivity curve for a source at 10 kpc, iii) Total
energy radiated in gw, iv) the maximum strain amplitude,
v) Fitting Factor with a delta-matched filter and vi) signal

duration.
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2.2 Coalescing Binaries

The coalescence of binary systems (NS-NS, BH-BH and BH-NS) is generally con-
sidered as one of the most important sources of gravitational waves [30]: the orbits
of the binary system gradually decay through gw emission on a time scale highly

2. The entire process is usu-

dependent on the total mass of the binary system
ally divided into three overlapping phases for BH-BH binaries, while NS-NS and

BH-NS have only the first two phases:

e an inspiral phase, whose timescale is much longer than the orbital period,
giving a chirping signal, with a definite time-frequency relation;

e a merger phase, heavily dependent on the parameters of the collision and
therefore very difficult to predict;

e a ringdown phase, characteristic of a deformed BH, whose signal should be a
superposition of dumped sinusoids, with a priori unknown relative amplitude
and phases.

2.2.1 Inspiral

The Inspiral phase can be described as two rotating point particles with intrinsic
spins and masses m; and my, whose orbital parameters evolve secularly due to
gravitational radiation. The radiation removes orbital binding energy, which leads
to a faster orbiting. This process is adiabatic till the gravitational radiation reac-
tion acts on a timescale which is much longer than the orbital period. The energy
spectrum of the inspiral phase is a decreasing function of the frequency f [23],

dE (WG)2/3 5/3 p—1/3
- - 2.2
~1/5 is the so-called chirp mass.

where M = (m1m2)3/5 (my + my)
During the inspiral phase, relativistic effects are large as the orbital velocity gets
closer to the speed of light. The gravitational waveform is then determined by the
relativistic gravitational interaction between the two point masses and all the other
complicated effects (tidal distortion, magnetic fields interaction, etc.) act as small
perturbations, allowing an accurate prediction of the waveform. As a consequence,

the detection hopes rely mostly on this first phase, while chirping signal achieve

2For gravitational radiation to successfully drive the merging phase, the initial orbital period
must be < 0.3 days (M/Mg)%/®, with M the total mass of the system [32]
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AURIGA detection bandwidth (close to 1 kHz) in its final phase. The event rate
for NS-NS is fairly well known from observations of progenitors in our galaxy and
was estimated to be nearly 3 per year in a 200 Mpc volume [39] but, as reported
in the introduction, this rate has been recently increased by a factor 6-7 by [3].
The event rates for BH-NS and BH-BH coalescences are far less accurate, but the
inspiral waves are expected to be stronger than the NS-NS, due to their greater
mass.

2.2.2 Merger

From the adiabatic inspiral in his late evolution, the binary system undergoes a
transition to an unstable plunge, induced by strong spacetime curvature: at this
point, even if the radiation reaction could be turned off, the companions would still
merge. The plunge and the collision are generally called merger phase. Unfortu-
nately, this phase (either for NS-NS or NS-BH) is still poorly understood, resulting
in a lack of reliable waveforms and energy spectra.

2.2.3 Ringdown

As the final BH is settling down to a stationary Kerr state, it should undergo
damped vibrations, which can be seen as oscillations of the final BH quasi-normal
modes. The most slowly damped mode, which has spherical harmonic indices
[ = m = 2, dominates over the other modes at late times. Focusing on this last
Quasi-Normal Ringdown (QNR) mode, the energy spectrum is just a resonance

curve [40],
dE  AM2f? { 1 . 1 }
T o2 o2 (
df 32mi7? [(f - fong)” + (277) 2} [(f+ fong)® + (277) 2}
(2.3)
peaked at fonr with a width given by the inverse of the damping time,
1 7fong
Af ~ - = ’
T Q(a)

where the quality factor of the mode @) is given by

Qa)=2(1—a) =
A is a dimensionless coefficient that describes the magnitude of the perturbation
when the ringdown begins, M is the mass of the BH and a is the spin of the final
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BH. The value of the spin depends on the initial parameters of the system, which
are difficult to predict, nevertheless, since the BH may typically have spun up to
near maximum rotation, we can assume a = 0.98 [32]; the resonance frequency and
the quality factor are then:

fanr =%
Q~12

For a BH mass M = (28 + 31) M, the signal spectrum is substantially coincident
with the AURIGA second run detection bandwidth.

2.3 Gamma-ray Burst Models

Gamma-Ray Bursts are the most luminous events in the Universe. Current mo-
dels explain the origin of "long” GRB (¢, 2 2 s) [44] in the coalescence of a NS
and a rotating BH, where the latter may form a matter torus surrounding the
BH [37]; other models call for a class of massive supernovae collapsing to form a
spinning BH. Although the association between GRB and star collapse (Hyper-
novae or Collapsars stars) is sure for at least a few GRBs, the BH-Torus models
are very interesting because: i) they are excellent candidates for the ultimate en-
ergy source of GRB (~ 10% erg) and ii) they are expected to emit gravitational
waves [34], [35].
In particular, this last model, a 1.4M, NS and a 7M. BH binary system evolves
towards a torus through the disruption of the NS, surrounding the BH in a sus-
pended accretion state, which should last several seconds (10 + 80 s) before the
final collapse. A strong emission of gw occurs, once the torus is formed, due to the
lumpiness of the neutronized matter: estimates on the energy released in gw equal
the order of magnitude of "traditional” electromagnetic channels. The distinctive
characteristics of the above model is a slowly varying frequency and an almost
constant amplitude for the emission of gw, also known as the linear chirp.
Compact binary mergers, such as NS-NS, might also be emitters of ”short”
GRBs [45]: this could be interesting from the point of view of gw research, since
these systems, as reported in the previous paragraph, are strong gw emitters. How-
ever, binary mergers have natural channels of emission along their rotational axis
and they may therefore produce beamed GRBs: current afterglows observations,
though, indicate that only "long” GRBs are beamed, with opening angles of a few
to tenths of degrees. There is no such evidence for "short” GRBs.
As a matter of fact, for all these models the amplitude of gw strain is expected
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to be h ~ 1072 =+ 1072! at cosmological distances, i.e. 1 = 3 orders of magnitude
below the sensitivity of present and planned ground-based gw detectors.
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Chapter 3

Single detector estimation
methods

A gw impinging transversally to the bar axis deposits energy in the first com-
pression mode of oscillation. To detect this tiny signal, an auxiliary oscillator is
attached to one of the bar faces and its resonance frequency is tuned to that of the
bar sensitive mode, in order to have a strong coupling. This transducer is in turn
electrically coupled to the external readout. Many different solutions have been
tested: capacitive, inductive, microwave and optical. The raw data at the output
of the readout system are the starting point of the data analysis.

We now assume that we observe, in the presence of noise, a burst whose char-
acteristics are known except a few parameters. In our study, we have focused on
short (duration < 100 ms) bursts, whose spectral density is ranging over the de-
signed bandwidth of AURIGA in its ultra-cryogenic configuration (Phase 2; see
figure 1.4), and obviously, with sufficient strain amplitude to be observed over the
expected detector noise.

Two pipelines corresponding to different approaches to the signal detection have
been recalled: a template search based on the matched filter, under the hypothesis
of a complete a priori knowledge of the signal waveform; a blind search based on
the Excess Power method, which makes minimal assumptions (i.e. the duration)
on the unknown gw burst.

For the template search, assuming a signal embedded in addictive gaussian noise,
we can resort to the Maximum Likelihood theory to estimate signal parameters.
This "near-optimal” data analysis, is able to recognize gw signals and extract the
signal parameters without distortion of their probability distributions [62].

The burst parameters, the amplitude A and Time Of Arrival TOA, are determined
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by matched filtering. At low SNRs, there is a large ambiguity in their estimation:
this uncertainty makes genuine burst gravitational wave signals almost indistin-
guishable from events arising from un-modelled environmental noise sources. In
fact, the x? -test does not have enough statistical power to identify the signal tem-
plate and/or parameters in the low SNR regime.

The Excess Power search is less restrictive with respect to the signal waveform but,
compared to the previous method, requires higher selection thresholds to get rid
of the increased number of FA.

3.1 The AURIGA Matched Filter

If we suppose that the overall system (the bar, the transducer and the double dc
squid amplifier) is linear and time-invariant and, in addiction, that gaussian sta-
tionary noise is superimposed to the signal, then the matched filter is the minimum-
variance unbiased linear estimator of the signal amplitude. In our case, such filter
is usually matched to a delta function, the so called (Wiener-Kolmogorov Filter,
WK) ! and is applied continuously to the data of the AURIGA detector.

The identification of candidate events is performed in the time domain, by a max-
hold algorithm. This algorithm identifies the time and the amplitude of the ex-
tremes of the filtered data separated by at least a time span about 3 times the
reciprocal of the effective bandwidth of the system (i.e. ~ 0.1 second for a 80 Hz
bandwidth).

An adaptive threshold 2 is then applied to select candidate events for further inves-
tigations. Finally, to increase the timing resolution below the sampling time, we
have adopted an algorithm of interpolation [61] to estimate the event amplitude
and time of arrival.

Our standard estimation method is then the result of : i) the adaptive WK filter,
ii) the max-hold algorithm + the adaptive threshold, as candidate event selection
method and iii) the interpolation algorithm to calculate the event parameters, A
and TOA, with greater accuracy.

There are two reasons to establish a threshold on candidate events:

1. the trigger search algorithm has strong biases in amplitude and arrival time
at least up to SNR= 4 + 5. The bias is in this case due to the fact that we

'In the new AURIGA data analysis, a thorough work has been done in these last months to
implement the possibility to filter for any arbitrary waveform.

2for example, during the first run of AURIGA, a SNRyy,, = 5 was applied to produce the list
of candidate events for coincidence analysis with the other gw detectors.
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cannot know the true time of arrival of the gw signal; the max-hold algorithm
looks for the nearest large fluctuation of the noise and the trigger cannot be
related with the injected waveform;

2. for SNR> 5 the False Alarms rate (FAr) falls down to acceptable levels for
gw detections [66]. As the SNR grows up, there is less chance for a noise
fluctuation to reach such a SNR level and the max-hold locks to the real
trigger. In this case, the estimated amplitude becomes unbiased and the
time of arrival error strongly peaks around zero.

It should be noticed that the bias in TOA is unavoidable as the arrival time
estimate is a non linear algorithm, which can be linearized at high SNR around
the true arrival time [48].

To cope with the problem of biases in the signal estimation, we can resort
to the maximum likelihood criterion; it is equivalent, in the presence of gaussian
noise, to the standard Wiener filtering together with the y? test of the goodness
of the fit [62]. The x? value (which is statistically independent of the amplitude
for signals which pass the test) can be used to test the consistency of our a priori
hypothesis on the signal template.

3.1.1 Timing errors, bias on the SNR and ROCs

In the time domain, the signal after the WK filter appears as a damped beat
between the system modes, modulating a sinusoidal carrier wave [61]. In the new
hardware configuration, the two modes are more separate; hence, near the TOA
the relative amplitudes of the peaks decrease faster than what happened for the
previous AURIGA (the beat modulation is of the same order of the exponential
decay): this allows for an improved timing accuracy. In the low SNR regime, the
TOA is expected to be a zero-mean random variable with a distribution made of
multiple gaussian peaks; these peaks are spaced by the half-period of oscillation of
the antenna and have gaussian distributed relative amplitudes, as shown by figure
3.1, for a MonteCarlo simulation of N=3647 delta-like bursts at SNR=10.

We split the timing error At,,,, in the sum of phase error Aty, and peak peak
number & multiplied by the period T = 27 /wjy of the carrier wave:

Aterr - At¢ + k‘ . T, (31)

If we look for an asymptotic solution, for large SNR, it can be demonstrated [61]
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Figure 3.1: Timing Error distribution for delta-like bursts at SNR= 10 (N=3647 trials).
The distribution has a small bias (~ 3us), while the overall rms of all the peaks is 615us.

that the standard deviation of the errors is equal to:

1

- 3.2
7t = ,SNR’ (3:2)

and
Ok — —WW*SNR. (33)

Equation 3.11 is the classical formula for the phase timing of narrow band signals
leading to the well-known Cramer-Rao Lower Bound (CRLB), which will be briefly
introduced in paragraph 3.4.1.

In figure 3.2, we show the timing error as a function of the injected SNR:

e the upper points (yellow) refer to the standard deviation of the errors on the
TOA (N=35977 trials each SNR); the error bars are conservative and are
computed according to 95% probability of FD by setting k& = 4.2 through the
Bienayme-Tchebyscheff inequality 3

3The FD probability is upper bounded by:

FD < P{Ateyy > kop,, } < — = Pr. (3.4)

1
k2

where Pr is the maximum FD probability computed through the Bienayme-Tchebyscheff in-
equality.
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Figure 3.2: Timing Error vs SNR: At (yellow) and Aty (blue) as a function of the
SNR.

e lower points (blue) refer to the standard deviation of the phase error; oy
matches perfectly the theoretical curve given by the CRLB (in eq. 3.11),
f(z) = Py/x; the fitting value Py = (176.6 £ 0.9) us is the inverse of the
central frequency wy = 5661 rad/s calculated from the parameters in table
1.2.

At SNR=11, o4, < 1 and ~ 70% of injected signals are in the central peak and, as
shown, for SNR> 80-+90, At,,, collapses to the CRLB (within conservative errors).
At low SNRs, in the ambiguity region, the WWLB (see following paragraph 3.4.2)
gives a tighter lower bound on time estimates for a wide range of SNRs [60].

As it concerns the SNR estimation, we have performed a Montecarlo simulation:
first, by injecting 0 signals (N=35981 trials for each tested SNR) in 10 hours of
simulated data and then by estimating the amplitude of the resulting events. Figure
3.3 shows the histograms for SNRy = 1 (red), 2 (violet), 8 (blue). At low SNR, the
estimation method is no more linear and a large bias towards greater amplitudes
appears. The expected SNR biases are, respectively: ASNR(1) = 1.952 £ 0.003,
ASNR(2) = 1.284 £+ 0.007 and ASNR(8) = 0.123 £ 0.005. The ensemble of the
WK filter, the max-hold algorithm, a determined threshold, and the interpolation
algorithm is called the Standard Estimation Method (SEM). The results obtained
with this model, implemented in AURIGA data analysis, provide unbiased (i.e.
ASNR/SNR < 0.1) amplitudes for signals with SNR> 5.

Finally, we report the Receiver Operating Characteristics (ROC) curves (see
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Figure 3.3: Montecarlo of N=35981 trials : the histograms of the estimated SNRs
(diminished by the true SNRy, ASNR = SNR — SNRy) for injected signals at SNRy = 1
(red), 2 (violet), 8 (blue). For the first two case, the estimation method is no more linear
and a bias toward greater amplitudes appears. In the last case, instead, the histogram
reproduces the zero-mean Normal density function of the underlying stochastic process,
as predicted by linear estimation theory. Note that this happens already at SNR=5, but,
for graphical reasons, we have chosen not to show it.

appendix A) for the SEM.

These curves, shown on figure 3.4, allow a quick comparison among different al-
gorithms: they display the detection efficiency (for injected delta-like signals of
different amplitude) versus the FAr. As the key parameter for this method is the
threshold 4, we have estimated acceptance as a function of the threshold itself on
a population of N = 35997 injected signals for SNR=5,6,7. These are the lowest
SNRs which can be taken in consideration neglecting the bias on the amplitude
and on the time of arrival.

The FArs shown on figure 3.4 refer to gaussian stationary noise and are esti-
mated analytically by means of a conservative upper limit: in fact, it would take
thousands of years of data to calculate the leftmost points on the graph. As a
matter of fact, it is well known that the main problem in real data comes from
spurious events (environmental noises) and that these outliers are much more fre-

4Note that it is easy to put up different decision algorithms, which do not depend on a
threshold: for example, instead of selecting candidate events on threshold-crossing, one can
choose the M largest events in each day. In such case, the key parameter would be M and the
FAr on the single detector would be fixed once for all.
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Figure 3.4: ROC curves for the SEM (SNR=5,6,7). Once having fixed a tolerable
FAr (depending strictly on the purpose of the analysis: for example, the accepted FAr
for detectors participating the Supernova Watch Search is one every 100 years), the
comparison with other algorithms is on the detection efficiency.

quent (at higher thresholds) than the expected FAr of gaussian stationary noise.
Nevertheless, the key point is to keep under control the events arising from noise
fluctuations. To get rid of spurious signals, it is necessary to perform a multi-
detector analysis.

3.2 Maximum Likelihood Estimators of Signal

Parameters

Let us assume that the sampled data stream of a gw detector is given by the
superposition of a deterministic function f(¢) (the signal) and a stationary gaussian
stochastic process 7(t) (the noise):

xy = n(t;) + Af(ti — to,9) , (3.5)

where t; = iAt, with At the sampling time and ¢ an integer index, 7n(¢;) has zero
mean and correlation (n(¢;)n(t;)) = o4 ((...) means ensemble average) and f(¢,7)
is a known function of time and of the parameter set 1.

In order to extract the value of the signal amplitude, A, the TOA ty and the
other parameters 9, the Maximum Likelihood procedure searches the parameter

33



values that maximize the probability of occurrence of the observed data set, or

equivalently, that correspond to the minimum of the negative of logarithmic like-
lihood A(A,ty,V):

A(A, t, 0 Z i — to,)][z; — Af(t; —to, V)], (3.6)

1,j=1

where p;; is the inverse of the correlation matrix o;;.
For given values of ¢y and ¢ the minimum of A(A, %y, ) as a function of A is
found analytically at

Zgjzl pigi f(tj — to, )

Aept(to, 9) = ) (3.7)
’ 25:1 pij f(ti — to, 0) f(t; — to, V)
and it amounts to:
to, ¥
Mt ) = 2 5 gz, — Ll 08
i,j=1 A
The square of the uncertainty on A (to,?) turns out to be
1
0% = : (3.9)

SN g f(t— o, 9) f (5 — to. D)

The linear combination of the data in eq. 3.7 is just the discrete Wiener optimal
filter matched to the function f(¢). On the other hand, eq. 3.8 shows that, in order
to minimize A(A,ty,1) as a function of the TOA, to, and ¢, one has to maximize
the square of the signal to noise ratio. This means that once one has set up the
Wiener filter for the data, the best estimate of the parameters is the one that
maximize the filter output. As usually the dependence of o4 on ty and ¢ is very
weak, this just implies that one has to maximize A, (fp). The minimum value of
2A(A, tg,) has to be distributed as a x* with N — Ny — 2 degrees of freedom, with
Ny the number of elements of the parameter set 1.

3.3 Excess Power through Karhunen-Loéve Ex-
pansion

Though some of the candidates sources, like coalescing binaries in the initial phase
of spiralling, have been modelled with great accuracy, allowing the construction of

34



trustful gw templates, and hence the implementation of matched filter, it is clear
that the uncertainty on the burst waveforms of the great part of the gw possible
sources (like supernova core collapses or merging phases of a binary system) is
still long to go. Moreover, the available waveforms highly depend on some set of
arbitrarily chosen parameters through the result of some simulation.

We note that for narrow band detectors (such as AURIGA during his first
scientific run), the simplified hypothesis of a § — like incoming signal (i.e. with a
flat response over the detector bandwidth), even though somehow restrictive, was a
reasonably good approximation, since the two resonant modes were only ~ 20H 2
far apart. With the present AURIGA bandwidth (~ 70Hz), such hypothesis is
even more restrictive with respect to all possible incoming gw waveforms.

In such context, a realistic detection strategy have to cope with poorly modelled,
or not modelled at all, gw signals.

This problem has already been faced from different point of views:

e Much work has been devoted by the LIGO group to implement and test new
"blind” strategies (the so-called Event Trigger Generators ETG): TFclusters
[52], Excess Power [53], [54], WaveBurst [56]. These ETGs are currently used
in data-analysis of latest LIGO science runs.

e Within the Virgo group, some authors devised several simple algorithms (i.e.
the Norm filter, the mean filter, the Slope filter, the ALF and the Peak
Correlator) to be run in parallel [55]; A. Vicere [49] has proposed a kind
of Excess Power Search based on the Karhunen-Loeve Expansion, KLE (see
Appendix B for a brief introduction on the subject). These procedures need
a thorough test and optimization against model waveforms [51], [50].

Following a previous internal work [57] and with a careful look at the most
recent papers on Excess Power [54], [49], an Excess Power method based on the
KLE has been recently implemented in AURIGA data-analysis. It consists of two
main steps:

e we apply the WK filter (6-matched filter) to the detector output;

e we then perform an Excess Power search on a test statistic similar to the
energy, which can be easily calculated by means of the KLE.

Such approach looks very promising, even though it still lacks an exhaustive
bench-testing.
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Figure 3.5: SNR distributions (Hp and H;) for a mismatched linear filter (green) and
for the KLE (red).

For any waveform, this method allows for the recovery of all the in-band signal
spectral energy with the sole assumption of knowing a priori the signal duration,
Tkr: the SNR through KLE equals the maximum one achievable by means of a
filter matched to the signal, under the hypothesis of waveform complete knowledge.
The drawback is the increased tail of fake events at a given threshold. A typical
comparison between SNR distributions of a mismatched filter (e.g. WK filter) and
of the KLE of an unknown signal h(t) is depicted on figure 3.5: it is possible to
note that: i) the KLE (red line) recovers the correct SNRy, but the distribution of
noise events follows a x distribution (the Tk, fixes the degrees of freedom); ii)for
the WK filter (green line), the SNR; is smaller due to the filter mismatch, but the
tail of noise events follows the gaussian statistic.

3.3.1 Statistical analysis

Let us write the detector output signal z(t) as a vector of samples at the instance
t; = %T, with i = 1,..., N. Let x = (21,...,2n) = (z4,,...,2t,) be such data
vector. This vector can be written as the sum of signal and noise coefficients of

the KLE, respectively h; and ny:
N
xp = Y (hi+ i) U (3.10)
k

Yy being the k—th eigenvector of the correlation matrix R~ (see Appendix B),
and therefore through the equation B.2 the J-filtered data fj:
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N

1
f5 = R_lx = Z ; (hk + nk) wkv (311)
k k

where o are the correlation matrix eigenvalues. Consider test statistic L,

N
1 2
L:f5T~Rf5:;g—z(hk+nk) : (3.12)

this expression, which is similar to the power (fs- fs), is the optimal statistic for an
unknown burst with a flat prior [49]. The sole reason for applying the KLE is that
it allows for more flexibility in the calculation of L: in particular, we can decide,
for instance, that some of the basis elements correspond to large noise components
and, therefore, that such components can be omitted without loosing significant
fractions of SNR. Due to the fact that the coefficients of the KLE are uncorrelated,
this procedure corresponds to simply restricting the summation over a number N
of eigenfunction such that Ny < N.

The distribution of the statistic L is a x? with N(NN}) degrees of freedom under
the hypothesis Hy (no signal); in case of H; (signal of unknown shape, h) the L is
distributed as a non-central y? with N (N)) degrees of freedom and the square of
the optimal filter signal-to-noise ratio SNR? as non-central parameter.

3.3.2 Timing errors and bias on SNR

In this paragraph, we briefly describe preliminary results of the Excess Power search
implemented in AURIGA data analysis.

The TOA is assumed to have a uniform a prior: distribution over the interval
[0,Tkr]; to estimate it, we have devised a Minimum Mean Square Error (MMSE)
algorithm:

N R(kTs)
2
S kTye ©°%
k

banise = — 5 mGm (3.13)

where T is the sampling time, R is the correlation matrix, oy is the standard
deviation of the N samples and f is a free parameter to be tuned.

Testing this estimator, it turned out that the optimal value for f is weakly related
to the SNR of simulated signals and to the Tk fixed for the search: over a wide
range of SNR (5-+-160) and of T, (10 ms <+ 50 ms). The choice of f = 0.3 produces
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Figure 3.7: The bias on the estimated SNR vs. SNR as a function of the Tk, (10 ms
(black), 20 ms (red), 30 ms (green), 40 ms (blue) and 50 ms (yellow)).

timing errors which are less than 10% larger than the minimum attainable ones
(see figure 3.6).

As a preliminary result, we show the timing errors as a function of SNR for a
set of simulations with N=35997 injected d-like signals on figure 3.7 and the bias on
the estimated SNR as a function of the SNR itself for the same set of simulations
on figure 3.8.

As regards the ROC curves for the Excess Power method, it is straightforward
to find a template for which this method is favorable to the WK filter: as the KLE
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Figure 3.8: The oy vs. SNR as a function of the Tk, (10 ms (black), 20 ms (red),
30 ms (green), 40 ms (blue) and 50 ms (yellow)).

eigenvectors are a complete basis in the vector space of all possible data vectors of
dimension N, any of such eigenvectors (except the one representing the § function)
is orthogonal to the . Almost all of the SNR is lost by the WK filter because of
this mismatch. By the way, those templates have currently no correspondence in
the astrophysical models, which, on the frequency scale of the AURIGA bandwidth
(~ 80 + 100 Hz), show no great deviations from a flat spectrum: at least, these
deviations do not affect the detection probability of the WK filter in such a way to
counterbalance the longer tail of FA produced by the Excess Power. This method
too calls for a multi-detector data analysis to cut all fake events.

3.4 Error Bounds

To investigate the performances of a specific estimator, it is useful to resort to the
well known and widely used lower bounds on the Mean Square Error (MSE). The
most commonly used bounds include the Cramer-Rao Lower Bound (CRLB) and
the Weiss-Weistein Lower Bound (WWLB).

3.4.1 Cramer-Rao Lower Bound

The CRLB treats the unknown parameter, #, as a deterministic quantity and
provide bounds on the MSE in estimating any selected value of the parameter: for
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this reason it is often referred to as a local bound.

Consider a waveform characterized by a set of parameters, A, ty and 9 (for the
sake of simplicity we shall refer to the ensemble of parameters as the parameter
vector @), which is superimposed to additive gaussian noise (just like in equation
3.5): the CRLB affirms that the error covariance matrix of any parameter vector
5, evaluated by means of an unbiased estimator, is always larger than or equal to
the inverse of the Fisher information Z at 0:

Ry = <(9‘i - ei) (éj - ej)> > 71, (3.14)

where the elements of Z;; are calculated by [48]:

82
7y = (G (A 0I0) = A0 ) (3.15

and A(x|6) is the logarithmic likelihood introduced in equation 3.6.

Provided that some general conditions are fulfilled, the CRLB can be written
as [48]:

1

2
‘>
% = w2SNR? + C/0?’

(3.16)

where C' is a constant depending only on the shape of 6 distribution, o is the
standard deviation of x and wy is the so-called Gabor bandwidth (or the rms
bandwidth) of the signal f :

o Sl )P
"I w)Pde

Though the CRLB is generally the easiest to be evaluated, it does not charac-

(3.17)

terize performances outside the asymptotic region, where estimators are unbiased
and, as other local bounds, it does not consider any a priori information about
the parameter space. Further more, it does not take into account the well-known
"threshold effect” of time estimators, which is present in narrowband systems [59].
In fact, for SNR below a certain threshold, the MSE increases rapidly as the SNR
decreases: in this region, the MSE exceeds the CRLB, mainly due to the peak
ambiguity error.

These limitations are clearly visible on figures 3.1 and 3.2. Only if the gw signal
is well above the background noise, an independent estimation of A and TOA is
then allowed. In such case, the Fisher information matrix provides bounds on the
variance of unbiased estimators via the CRLB, but theoretical extension of this
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local bound to biased estimators is not trivial [58]. As a consequence, we can
resort to a different kind of lower bounds: the Bayesian bounds.

3.4.2 Weiss-Weistein Lower Bound

The Weiss-Weinstein Lower Bound (WWLB) is a Bayesian bound which assume
that the parameter is a random variable with known a prior: distribution. There
is no restriction on the class of estimators to which they apply (i.e. like for CRLB)
and they can easily incorporate any prior information about parameters to be
estimated.

By assuming that the parameter 6 represents the time of arrival to be estimated
and that it is uniformly distributed in an interval 0 < 6 < D, the WWLB can be
written as [60]:

= > max J (h), (3.18)

where

92(1—%)%—@9“4‘(9”
)67 SHR[1-Rr(20)]’

J(0) = P (3.19)
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and where R is the normalized signal autocorrelation function. Note that the
WWLB takes into account the peak ambiguity and, except for the SNR, it depends
only on the a priori known interval D and the autocorrelation function.

41



42



Chapter 4

Methods of gw network data
analysis

There are many reasons to combine data from geographically separated detectors:

a better sensitivity with respect to a single detector, since the network noise
behaves as almost ”isotropic”, while gravitational signals are directional;

higher levels of confidence in the detection and characterization of a signal;

spurious background reduction;

the possibility to estimate the direction of arrival and polarization of the
incoming gravitational wave.

Ideally, under the hypothesis of knowing the gw waveform in advance, one
would apply an optimal filter on the output from a single detector and apply the
x3-test on the filtered output. However, given current astrophysical predictions
and gravitational wave detector sensitivity curves, one expects the signal-to-noise
ratios (SNRs) and rates of burst gravitational waves to be very low. At low SNRs
(for instance SNR< 15 for the AURIGA first run), there is a large ambiguity in
the estimation of the burst parameters, namely arrival time and amplitude [61].
This uncertainty makes genuine burst gravitational wave signals almost indistin-
guishable from events arising from unknown environmental noise sources. In fact,
the y2-test does not have enough statistical power to identify the signal parame-
ters in the low SNR regime, as previously shown for resonant-mass detectors by
Baggio et al. [62]. Thus, to make a distinction between signals and noise, one must
cross-correlate data from multiple detectors to reduce contributions from spurious
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environmental noise and to increase the SNR of gravitational wave bursts. Hence,
methods for performing multi-detector burst searches and the choice of data ex-
change parameters are crucial for the burst gravitational wave search pipeline.

Burst gravitational wave searches on data from multiple, widely-spaced detec-
tors have already been performed [63], [64]. These searches have put upper-limits
to the rates and amplitudes of burst gravitational waves impinging on the earth.
An example is the International Gravitational Event Collaboration (IGEC), which
developed a framework composed of data format and analysis tools that allowed a
thorough analysis of the triggers from the burst search pipeline of 5 resonant-mass
detectors [65] [66]. Though this framework allows for a statistically robust analysis,
it is currently restricted to the analysis of triggers from resonant-mass detectors.

Astone and Schutz [67] have discussed the idea of narrowbanding interferom-
eters for the purpose of performing a burst search between interferometers and
resonant-mass detectors. The drawback to this method is that narrowbanding
reduces the sensitivity of the intereferometers to burst signals, but it could be use-
ful for those astrophysical templates (e.g. Quasi-Normal ringdown of perturbed
Black-Holes) whose spectral power is concentrated within a narrow band.

In this chapter, we describe briefly four methods for performing burst searches
between interferometers and resonant-mass detectors. The first method is a coinci-
dence search and is an extension of the IGEC framework to include the parameters
from interferometer burst search algorithms (also known as Event Trigger Gen-
erators or ETGs). The second method is the externally triggered search method
previously proposed by Finn, Romano and Mohanty [68]. The third method is a
consistency method based on the r-statistic of the cross-correlation of two detec-
tors. The fourth method is what we call a ”Coherent Network Search” and it has
been split in two subsections: the template-based search and the templateless (or
”blind”) search. In figure 4.1, we show a block scheme of the various possibilities.

4.1 Coincident trigger search

The most straightforward approach to a burst gravitational wave search is to look
for coincident excitations between faraway detectors. For such an analysis, candi-
date burst event lists are independently generated for each detector with a threshold
that extract the larger SNR excitations. A search for coincident arrival times is
then performed. In addition to correlating the event arrival times, one may also
apply additional constraints on other signal parameters such as the amplitude or
the orientation of the detector with respect to a fixed direction in the sky for non
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Figure 4.1: Block scheme of a network analysis.

isotropic source distribution, e.g. Galactic sources.

This analysis has been used in several searches in the past and recently by
the IGEC [63] [64] [65], [66]. The IGEC has established a complete framework for
exchanging data in view of performing a coincidence search. Under this framework,
it is mandatory to exchange the time of occurrence, amplitude and duration of a
trigger and the time spans of detector operation [69]. In addition, one has to
exchange the variance of the noise distribution as well as its skewness and curtosis
(3rd and 4th moments).

For a burst gravitational wave search between triggers from resonant-mass and
interferometric detectors, we would have to extend this framework in order to
include parameters from interferometer ETGs by exchanging information about
the frequency band over which an event stretches.

By using the higher order moments, Bienayme’s inequality [48] allows an es-
timate of the false alarm probability and detection efficiency of each event, as a
funcion of the corresponding SNR [65], [66]. Although the Bienamye’s inequal-
ity is a non-parametric test which gives a very conservative estimate of the false
alarm probabilities, it provides more statistical robustness in the presence of non-
stationary and/or non-gaussian noise.

However, in order to perform such a trigger-based coincidence search between
resonant-mass and interferometric gravitational wave detectors, we would have
to fully characterise the different search algorithms so that we could exchange
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homogeneous definitions of signal parameters such as amplitude and SNR. So one
needs to perform Monte Carlo simulations where the effect of each burst search
pipeline on particular signal templates is studied. Such simulations and software
signal injections in the detector noise are currently being done by the LIGO Burst
Analysis Group and the AURIGA group.

Another approach to this method could be to apply a new burst search algo-
rithm that restricts interferometer search to resonant-mass detector’s band and
apply the optimal filter for the resonant-mass detector. This way, we ensure that
the same quantities are compared when searching for coincidences. The required
filter should express the amplitude of an event observed by an interferometer in
terms of one observed by a resonant-mass detector. However, such techniques are
not straightforward and beyond the purpose of this paragraph.

4.2 Externally triggered search

The basic idea which lies beneath the second method of multi-detector burst search
is to use a detector with less triggers (such as gamma ray bursts and resonant-
mass detectors) to trigger the cross-correlation of data from detectors with a high
trigger rate (such as the current interferometeric detectors). This is the externally
triggered search laid out in Finn, Romano and Mohanty [68].

For this search, the cross-correlation statistic of the output of two gw detectors is
calculated for a time window T" when a trigger is observed. That is, one calculates
the quantity

T T
X = /0 /0 dtdt' Ty (t1, — )Q(|t — t'|)wa(ta, — t') , (4.1)

where T is the time window around a bar trigger within which a trigger is expected
in the interferometer and Q) is the filter kernel. The details concerning the latter
filter are discussed in [68]. Here z, and ¢, are the data samples and the arrival
time of the bar trigger for the a-th detector respectively.

This quantity is calculated also for periods of time in which no bar triggers are
observed. A statistically significant difference between on- and off-source correla-
tions indicates the presence of a signal. Finn, Romano and Mohanty suggested the
use of Student’s t-test as a statistical tool for the difference between the two distri-
butions. However, for the sake of robustness, Tricarico et al. [70] recommended the
use of the Mann-Whitney u-test, which is useful for systems affected by unmod-
elled noise backgrounds and/or quasi-stationary noises. The u-test only demands
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that the shapes of the two distributions (off and on populations) are identical and
that the two statistical samples are independently drawn. If the requirements of
the Mann-Whitney test are met, then the one-tailed z-test can be applied on its
outcome u.

4.3 Cross correlation

To fully exploit the network sensitivity, we can resort to a standard technique: the
linear time-domain cross-correlation. This is particularly true in the case of events
occurring simultaneously on two different detectors.

Such approach is the base of a coherent consistency test on the coincident
triggers produced by LIGO ETGs [71]. In fact, the LIGO interferometers have
similar sensitivity curves and a relatively small mis-alignement: when coping with
similar waveforms, the method is greatly simplified.

Cross-Correlation for coherent analysis of coincident event is a blind search,
in fact, it makes no a priori assumptions on the incoming gravitational signal
waveform. Furthermore, it allows suppression of false events without reducing the
detection efficiency of the pipeline.

Given two finite series {z;} and {y;} with i = 1,..., N, we recall the well-known
linear correlation coefficient r as:

r=——= . (4.2)

This latter quantity measures the degree of correlation between the two time
series: a value |r| close to unity means a complete correlation (or anti-correlation);
while a value |r| close to zero means that the two series are uncorrelated.

Two hypotheses : Hy, ({z;} and {y;} are uncorrelated); H; ({z;} and {v;}
are correlated). In case of null hypothesis, the r-statistic is normally distributed
around zero, with standard deviation o = 1/4/N, N being the degrees of freedom.
The significance S of null hypothesis is the probability that |r| is larger than what
actually measured in case of Hy: S turns out to be

S=erfc <|r| \/§> : (4.3)
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where er fc is the Complementary Error Function .
The Confidence C' on the rejection of H, i.e. on retaining H;, is then:

C = —logy(5). (4.5)

4.4 Coherent network search

Finally, we discuss the coherent network search method. With this method, the
outputs from all the detectors in the network are linearly and coherently combined
using their phase information: either by maximizing a network likelihood for the
presence of a specified signal in the different data streams or by an excess power
search. If noise from the individual detectors of the network are not correlated,
then the probability of observing a specific set of data on the different detectors
is simply proportional to the sum of the log-likelihood ratios of each detector.
The method can be seen as a vector matched filter and, under the assumption of
gaussian noise, the coherent analysis can be made optimal in the sense of Wiener
filter theory.

4.4.1 Network geometry
We adopt the following reference frames:

e a network frame (X)Y,Z), centered on Earth: the Z axis aligned along the
geographical north, the X axis pointing at the I' point of Aries and Y chosen
to have a left-hand frame. Any source direction in the sky is then found
through the polar angles (6,¢);

e local frames (X,,Y,, Z,), which are the coordinate frames attached to the
detectors of the network. For bar detectors, we choose n unit vector along
the bar axis, while for interferometers m; and ms unit vectors lying along
the arms;

e wave frame, which has the Z,, axis aligned along the propagation direction
of the wave. X, and Y, are the axes of the polarization (¥) ellipse of the
wave. We then introduce the wave tensor, W;;.

2 [
erfe(z) = ﬁz/e dt (4.4)
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Rotations of coordinates from one frame to the other are expressed by means
of the Euler angles of an orthogonal rotation matrix O(6, ¢, ¥):

Xa = (@] (¢a7 eau wa> * Xnetwork

Xw = @) (97 Qb, \Ij) * Xnetwork
where ¢, 0, and 1, are the Euler angles between the local and the network frames;
given the detector latitude A and longitude /3, the orientation 1, the earth angular

(4.6)

velocity wg and the Universal Time Coordinate tyre, these angles can be written
as:

{ 004 - w®tUTC (4 7)

bo =7/2 =3

Similarly, €, ¢ and ¥ are the Euler angles between the wave and the network

frames; these angles are directly related to the source coordinates Right Ascension
RA and declination ¢ through the relations:

{9:5+7T/2 (48)

¢p=RA —7/2
As the gw signal at a-th detector is the projection of the gw wave tensor over
the detector tensor, we write the geometrical factor, the so-called beam pattern
function of a-th detector as:

nnd W, for bars
j

o o 4.9
(mim] —mim3) Wi (for interferometers) (4.9)

s (0,9,¥) :{

The detector output X, (¢;) is then a function of the signal template f, and the
the antenna pattern s,, and is given by:

X <t1> = As® (6, §b, \I/) fa (tz - to - rAOé . k) . (410)

Cc

where A is the wave amplitude, s* (6, ¢, V) is the previously defined beam pattern
function, and f¢ is the gw waveform convoluted with the detector transfer function;
the function is time-shifted of the delay at the a-th detector with respect to the
Network frame.

4.4.2 Template-based search

We begin calculating the log-likelihood function A of the network with respect to
an impulsive plane wave of amplitude A impinging the detectors, then we look for
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Figure 4.2: Reference frames: 1) the incoming wave reference frame, 2) the detector
local frame and the earth centered network frame.

the minimum value of A over the burst gravitational wave parameters. This is
equivalent to the x? statistic of the data of the detectors in the network obtained
by a fit to a given planar gravitational wave burst. The network log-likelihood is

given by
N My
X* = A(A to,k, 0) ZZ:UOMJ [a (i) = Xa ()] [1a () — Xa (£)],  (4.11)
a=1 1,j

where f1,,;; is the inverse of the cross-correlation matrix of the a-th detector noise,
xo(t;) is the data set of length My to be searched for the signal template. For any
given sky direction lA<, arrival time ¢y and polarization ¥ , the logarithmic likelihood
of the network has to be minimized. It can be shown that A reaches a minimum
when the amplitude A is simply the weighted sum of the optimal estimates on the
single detectors [62]

( N
Aopt (0,0, 0, W) = > Aa(to, ,ga,\I/)/Z 1

a=1

¢ (4.12)

ou= (3 [ 1P /5. (0) d )/

\
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where o, is the standard deviation of the noise in the a-th detector and S,(w)
is the spectral density of the noise. From the above equation, one can see that
the weighted sum automatically selects which detector in the network to consider
in the analysis. This procedure would reduce the contribution of less sensitive
detectors, as far as the signal template is concerned.

To properly determine the amplitude, arrival time and y? estimators, we have to
assume that the detector noise is a linear superposition of deterministic signals,
either gw or environmental events, and quasi-stationary noise. The gaussianity of
the data can be checked a priori by performing Monte Carlo simulations where
signals with known waveforms are injected into the detector noise. The hypothesis
testing of signal detection with the network is based on the overall 2. The rejection
of the null hypothesis is usually achieved by means of a threshold crossing of some
signal parameters (eg. amplitude), which corresponds to the sole (and unavoidable)
non-linear operation within the framework of the proposed search. The single
threshold value will also fix the global false alarm and false dismissal probabilities.

A coherent network search can be set up as follows:

1. Any detector in the network can raise a trigger;

2. All the detector in the network should exchange a short stretch of whitened
data w,; around the trigger, together with the adopted whitening filter;

3. For a given template, the x? statistic of the network can be then determined
substituting the values calculated in equation 4.12 into the expression

Mg
N ZUJQ- 2
7 “ (AO (t 7197 2 \I/))
=) ke r 00 (4.13)

2 )

a=1 opt

where ¢, and o, are the standard deviation respectively of the A,,; whitened
data wg;;

4. Once the likelihood function is calculated, two thresholds (decided through

signal injections studies) can be applied to the x? and A2

opt Outcomes, to

determine the presence or absence of a genuine gravitational wave signal.

To further test gravitational wave events versus spurious excitations, we can
resort to the distinctive properties of the Riemann tensor (transverse and trace-
less) associated to a planar gravitational wave. It can be shown that there are

3 quantities, the eigenvalues of the polarization tensor W;;, which are invariant

J
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under the group of spatial rotation O(3) [72]. These quantities are basically the
linear, quadratic and cubic combinations of the detector outputs. They are random
variables whose distributions can be calculated by means of a Monte Carlo, which
uses the noise distributions and orientation information of the individual detectors
in the network.

4.4.3 Non-Template search method

As it is extremely difficult to obtain trustful gravitational waveforms, it may be
necessary to use blind searches, such as the excess power method [53] or the
TFCLUSTER [52]; both of them rely on the same simple concept: one has to
compare the power of the data in a given time-frequency domain to the estimated
noise power. This kind of search is non-linear but it can be demonstrated to be
optimal under the hypothesis that the signal prior is constant [54]. Since these
techniques do not require the signal to have a specific form, random noise glitches
are much more likely to meet the detection criteria than a signal search such as
the matched filter.

A possible implementation of a coherent network gw analysis is to combine all
data streams as a synthetic response of the network [73], [74]:

Y = Z a;T (13) v, (4.14)

where a; is a set of real coefficients to be calculated, 7; are the time shifts of the
detectors with respect to the network frame, T is the time-shift operator, y; is the
data of the i-th detector and N is the number of detectors in the network.

The search algorithm is defined as follows:

1. for any given gw incoming direction 0,¢ and polarization ¥, a; and 7; are the
solutions arising from the minimization of a system of equations constrained
to obtain the maximum SNR;

2. with the calculated coefficients the synthetic response Y is formed;

3. the network power P = |Y|? is then calculated and taken as detection statis-
tic;

4. the largest among all the P-values, which cross a threshold, fixes the energy,
the incoming direction and the polarization of the candidate event.

o2



This method is an optimal generalization of the blind searches yet developed for
single detectors, such as the Excess Power method [53] and TFclusters [52], so that
it can process coherently data from a network of detectors.

4.5 Summary and Discussion

The search for coincidence triggers is the most straightforward method one could
use to search for burst gravitational waves. This analysis has been widely used in
the past and is well understood. However, the problem of comparing homogeneous
trigger parameters among interferometers and resonant-mass detectors is quite
complex and requires more investigation.

The externally triggered search, on the other hand, would use triggers from
resonant-mass detectors to trigger a search in two or more interferometers. It makes
no assumption about the waveform of the gravitational wave signal. Moreover,
because this search is comparing the statistics of a large number of cross-correlated
segments, it is in effect digging into the noise of interferometric detectors.

The Cross-Correlation method has been already applied, as a consistency test,
to the data around the events of the three LIGOs, but a generalization to non-
parallel detectors with different sensitivity curves is still not accomplished.

The use of a sole threshold makes the coherent network search an extremely
powerful method. A single threshold greatly increases the overall efficiency of
the network. It overcomes the intrinsic limits connected with the ambiguity of
parameter estimation in single detectors and allows for a stronger x? statistical
analysis. The efficiency of "OR” logic network is greatly increased with respect to
an "AND” logic one, because it allows to detect even those signals which happen
to cross the threshold in only one detector in the network, to be detected.
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Chapter 5

Conclusions and perspectives

The second AURIGA run is proving the feasibility of a nearly quantum-limited
(few hundreds of h) gravitational wave detector. The sensitivity and reliability
of this second-generation acoustic detector could be compared with the working
interferometers’ ones.

Moreover, two different analysis pipelines have been implemented in AURIGA
data analysis, corresponding to different approaches to the problem of detection:

e the so-called ”standard” analysis, which is based on the matched filter to
enhance a given waveform in the data stream and make use of devised algo-
rithms to select candidate events and to estimate their parameters;

e the blind search, which looks for a power excess in a given time window and
rely on a quadratic form of the data as a detection statistic.

The performances of these two pipelines of Event Trigger Generators have been
tested on simulated data in case of gaussian stationary noise. Such test has been
carried out either for the timing accuracy and the low biases on the estimated
amplitudes or for the False Alarms and False Dismissals.

This approach, although simplified, has led to a novel and precise characteri-
zation of the two analyses within the framework of the new hardware setup.

However, unless that new hardware upgrades improve the AURIGA detector
behavior as for the non-stationarity, both pipelines analyses will suffer from big
losses in terms of duty cycle. In fact the analysis will be restricted to well operating
periods. Indeed large excesses of false alarms, mainly due to spurious environmen-
tal noises, will occur.
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As a consequence, the major task to be accomplished is to test the two pipelines
in real non-stationary conditions, as regards either the adaptiveness and the ro-
bustness of parameters estimation or the characterization of False Alarm rates and
False Dismissals.

The encouraging results yet achieved by this initial phase of the new detector
AURIGA and the new implementations of data analysis methods will hopefully
produce an afterthought on ground-based gw research towards a more coordinated
international effort.

In this perspective, multi-detector data analysis methods will soon play a lead-
ing role in the gw searches.

This thesis work, far from solving the major problems related to a network
data analysis, such as the combination of information from different detectors, is
intended to be a brief review of the main possible multi-detector methods. It is of
paramount importance that as soon as possible a large international collaboration
be set to implement a multi-detector data analysis.

Whether this search will be a simple coincidence analysis among event lists
from different detectors, as already done by IGEC for resonant bars [66], or it
will have some "flavor” of coherent analysis, is yet not clear, mainly depending on
the complexity of the problem, but also on the mutual relationships among the
different groups.

Overall the results given in this thesis push towards the implementation of a
coherent blind search, which should exploit the full potentials of a network of gw
detectors: future work will be devoted to this aim.
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Appendix A

ROC (Receiver Operating
Characteristic curves )

ROC curves were developed in the 1950’s as a by-product of research into mak-
ing sense of radio signals contaminated by noise, hence the name receiver-operating
characteristic. More recently they have been used by medical researchers in decision-
making statistics. Central to the idea of ROC curves is the idea of a cutoff level.
Let’s imagine that we have two statistical populations.

A good algorithm of decision will have both a small fraction false dismissals,
FD, as a small fraction false alarms, FA. By varying a threshold on some param-
eter of a known population, and measuring the error on the outliers, a Receiver
Operating Characteristics curve (ROC-curve) is obtained. This curve shows how
the fraction of false alarms varies for varying fraction false dismissals. The smaller
these fractions are, the more this algorithm is to be preferred. Traditionally the
acceptance (1-FD) is plotted versus the FA probability, as shown in figure 1.

Although the ROC curve gives a very good summary of the performance of
an algorithm, it is hard to compare two ROC curves. One way to summarize a
ROC curve in a single number, is the Area Under the Curve, AUC. This integrates
the fraction FA over varying thresholds (or equivalently, varying fraction of FD).
Larger values indicate a better separation between target and outliers. Note that
for the actual application of the algorithm a specific threshold (or equivalently
fraction of FD) has to be chosen. That means, that only one point of the ROC
curve is used. It can therefore happen that for a specific threshold an algorithm
with a lower AUC might be preferred over another with an higher AUC, but with
a larger fraction of FA for that specific threshold.
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Threshold

1-ED

AUC -0.863

0 FA 1

Faramerter value

Figure A.1: An example of a ROC curve. Two distributions: target (red) and outliers
(blue). Moving the threshold along the parameter axis, you get different fractions of FA
and FD: by drawing these ordered couples of values (FA, 1-FD) one produces the ROC

curve.
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Appendix B

Karhunen-Loeve expansion

B.1 Introduction

A well-known result of the theory of integral equations, is that the correlation
matrix, R, is bounded, symmetric and positive definite. Thus, it has a spectral
decomposition and can be written in terms of its eigenvalues, \,, and eigenvectors,
©n, namely

N
Ros =Y Al (B.1)
n=1

where N is the dimension of the matrix and

Rosps = Anpp (B.2)

with the eigenvalues A,, > 0. Due to the symmetry and the positive definiteness
of the covariance kernel, its eigenfunctions are mutually orthogonal with respect to
both the usual inner product and with respect to the inner product derived from
the covariance function and form a complete set; if we choose the eigenvectors to
be orthonormal, we set a basis in the space RV and any data vector lasting less
then N samples can be written as

N
X = chwn (B.3)
n=1

which is the so-called discrete Karhunen-Loeve Expansion (The expansion was
derived independently by a number of investigators (Karhunen, 1947; Loeéve, 1948;
Kac and Siegert, 1947). ) [48], [76], [77] and the coefficients, ¢, are uncorrelated.
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As for the Fourier expansion, which is a special case of KLE, the Parseval’s theorem
holds,

N
xx=32 (B.4)
n=1
and it is immediate to show that
E[cncl] = )\nénl = O'Z <B5>

Ex x|=> Ru=) M. (B.6)

This expansion has been used extensively in the fields of detection, estimation,
pattern recognition, and image processing as an efficient tool to store random
processes .
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