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3.3 Excess Power through Karhunen-Loève Expansion . . . . . . . . . . 34

3.3.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Timing errors and bias on SNR . . . . . . . . . . . . . . . . 37

3.4 Error Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Introduction

A great part of what we know about the Universe passes through the observation

of electromagnetic waves: from radio waves up to γ rays. Some complementary

information comes from the detection of cosmic rays and neutrinos, that allow for

different perspectives on our Universe. Similarly, gravitational wave astronomy

might increase considerably our knowledge and allow the comprehension of the

most violent and catastrophic events occurring in the nearby Universe.

Whereas light or matter waves propagate through space, gravitational waves are

propagating ripples of spacetime itself. Such distortions in spacetime are generated

by non-spherical motion of matter. There are large uncertainties in the theoretical

predictions of either the strength or the rate of occurrence of gravitational wave

(gw) events, in the ranges of strengths and frequencies under observation by present

gw detectors. In most cases, theory can only give an indication on which gw

sources might be promising and suggests estimates on the energy emitted in gws

and event rates. The first raw information drawn from models is that even the

most violent astrophysical phenomena involving compact objects such as merging

black holes or neutron stars, or collapsing stars, emit gravitational waves which

manifest themselves as a tiny relative shift of only ∆l/l ∼ 10−20 on the Earth.

Although gravitational waves have been predicted by Albert Einstein in his

theory of general relativity over 80 years ago, only nowadays technology enables

physicists to tackle the problem of their detection. A successful detection of gravi-

tational waves will not only supply a further confirmation to Einstein’s prediction,

but will open a completely new ”window” into the Universe. By routinely observing

gravitational waves, astrophysicists will gain new, and otherwise entirely unattain-

able insights, into such fascinating objects like black holes, the enigmatic cosmic

gamma ray bursts, or the driving engines behind stellar supernova explosions [30].

Since the well known observations made by Hulse and Taylor (1994) of the bi-

nary system PSR1913+16 [1,2], the scientific community is waiting for the day in

which a detector, or most likely a network of detectors, will claim the first direct

observation of a gravitational signal. Note that this enthusiasm was triggered by
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a source that actually is not very promising, neither for the energy radiated in gw

nor for the expected rate of occurrence.

More recently (December 2003), a revised estimate of the neutron-star merger rate

has been assessed through the discovery of a double neutron-star system, a pulsar

called PSR J0737-3039 and its neutron-star companion, by a team of scientists

from Italy, Australia, the UK and the USA using the 64-m CSIRO Parkes radio

telescope in eastern Australia [3].

The challenge of detecting gws was firstly addressed by Joseph Weber, who is gene-

rally considered the pioneer of this field. Using room-temperature aluminum bars

as detectors, he reported tentative evidences for gw bursts at the kHz frequencies

(1969). This first report, although later on denied by more sensitive detectors,

has triggered considerable efforts in this direction, giving birth to a new field of

astrophysical detection.

There are five operating resonant gw detectors: ALLEGRO [4] in Baton Rouge

(USA), AURIGA [5] in Legnaro, near Padova (Italy), EXPLORER [6] in CERN

(Switzerland), NAUTILUS [7] in Frascati, near Rome (Italy) and NIOBE [8] in

Perth (Australia).

The five detectors have signed the International Gravitational Event Collaboration

(IGEC) [9], with the purpose of data exchange and coincidence searching among

different detectors. This joint effort led to an upper limit on the gws from the

galactic center [10], and showed that the data exchange technique allows to make

the false alarm rate negligible [10].

Another way to search for gws is by interferometric experiments.

In 1978, Forward made the very first experimental attempt to detect gws by means

of an interferometer, measuring the displacement of test masses with high sensi-

tivity. Since then, the sensitivity of such detectors has greatly increased, following

a thorough test of several optical schemes.

There are currently four (actually five counting the two sites of LIGO) interfero-

metric gw detectors: GEO 600 [11] in Hannover (Germany), LIGO Hanford and

LIGO Livingston in the USA [12], TAMA 600 [13] in (Japan) and VIRGO [14] in

Cascina, near Pisa (Italy). They are now constantly upgrading, both as regards

sensitivity and duty cycle, struggling to reach their goal sensitivity curves.

In the future there will also be LISA [15], the ESA-NASA collaboration to

bring the gw research into the space, where the detection of the gw should be out

of doubt, as it is limited to the lowest range of frequencies.

The detection of an event in a single detector is not sufficient to claim any

discovery: a multi-detector search has to be performed to reach a sufficient level
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of confidence for the detection.

The aim of this work is to develop multi-detector data analysis techniques. How-

ever, before analyzing a network of detectors, part of the work was devoted to the

study of two different types of analysis, which have been implemented in AURIGA

data analysis. As described in chapter 3, the standard AURIGA data analysis cor-

responds to an event search on template-filtered data and to a template-less event

search, based on the Excess Power method [53]. These two event search pipelines

are compared as regards to their parameters estimation capabilities and the False

Alarms and False Dismissals probabilities. In addition, theoretical lower bounds

on parameter estimation errors are recalled to give some additional insight in the

estimators performances. Chapter 4 deals with the multi-detector analysis and the

various methods of combining data from different detectors; part of this chapter

comes from a paper published on the proceedings of GWDAW2002 [75].

Chapter 1 gives a brief overview on the detector AURIGA, as regards its recent

hardware and software upgrades, and shows the theoretical and experimental sen-

sitivity curves of other gw detectors as a comparison.

Chapter 2 covers the main astrophysical sources which should be relevant to reso-

nant detectors.
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Chapter 1

Resonant gravitational waves

detectors

1.1 A brief overview on gravitational waves

Resonant gravitational waves (gw) detectors are massive mechanical oscillators,

equipped with very sensitive displacement sensors, capable of detecting changes in

the vibrational amplitude of the oscillator motion. The displacement sensitivity of

a resonant detector is of the order of 10−21 m for short transients (∆t . 1 s), level

at which an excitation due to the interaction of gw with the bar should emerge

from the detector noise.

Gravitational signals should come from astrophysical objects experiencing ex-

treme conditions, in which the effects of the Einstein theory of General Relativity

(GR) [21] allow huge quantity of energy (≈ 1M¯ ' 1053 erg) to be converted in

spacetime perturbations travelling through the universe and finally reaching the

earth.

A formula for the total luminosity emitted by a gw source is available in the

weak-field limit 1 [22]:

Lg =

(
dE

dt

)
=

G

5c5
Σi,j

(
d3QTT

ij

dt3

)2

, (1.2)

where G is the Newton gravitational constant, c is the speed of light and QTT
ij

1In the weak-field limit the metric tensor gµν is quasi-minkowskian:

gµν = ηµν + hµν , |hµν | ¿ 1 (1.1)
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are the elements of the quadrupolar tensor for the mass distribution of the source,

calculated in the Transverse Traceless gauge:

QTT
ij (t) =

(∫

V

ρ(x, t)

(
xixj − 1

3
δij|x|2

)
dV

)TT

. (1.3)

The expression for the perturbation of the metric tensor in the wave region is [23]:

hij =
1

r

2G

c4

d2QTT
ij (t− r/c)

dt2
, (1.4)

where r is the distance of the observer from the source.

Eq.(1.3) can be used to give a rough estimate of the luminosity of an astrophysical

source:

Lg ∼ ε2 G

c5

M2R4

T 6
. (1.5)

where M , R and T are its mass, its radius and the characteristic evolution time of

the source, respectively; ε is a measure of the asymmetry of the matter distribution.

Accordingly, the amplitude of metric perturbation h reads:

h ∼ G

c4

Ens

r
, (1.6)

where Ens = εMR2/T 2 is the source energy ( proportional to the fraction of matter

which is not spherically symmetric).

The factor G/c5 keeps the luminosity so small that we must look for massive and

compact objects, in relativistic motion. The luminosity can be rewritten as:

Lg ∼ c5

G

(rs

R

)2 (v

c

)6

, (1.7)

where R and v are respectively the typical scale of the source and velocity of the

system, rs = 2GM/c2 is the Schwarzschild radius.

For the most luminous gw sources, the weak-field approximation no longer holds

(r → rs and v → c) and therefore, efforts to build reliable theoretical models are

of paramount importance [30, 31]. Accurate numerical simulations for the full 3-

D general relativistic problem [38] should predict the range of frequencies for the

design of new detectors and signal templates to be used in the data analysis.

1.2 Recent upgrades of AURIGA detector and

near future prospects

The first run of gw detector AURIGA began on June 1997 and ended in November

1999 because of a cryogenic failure, which forced the warm up of the detector at
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room temperature.

During the two years of data acquisition, the detector operated at a minimum

thermodynamic temperature of 200 mK, reaching the best strain sensitivity of

S
1/2
hh ' 4 × 10−22 Hz−1/2 over a a bandwidth of ∼ 1 Hz around the two resonant

frequencies [16]. It is worth noticing that also the achieved duty cycle (30%) was

unsatisfactory since we are looking for rare astrophysical sources.

Since the end of previous run, the group has been working on the upgrade of the

whole project AURIGA [17].

In order to perform all the measurements necessary to fully characterize the new

AURIGA readout, a specific apparatus, the Transducer Test Facility (TTF) [20],

was set up. In the TTF, shown in figure 1.1, the transduction chain is identical to

the one mounted on the gw detector.

Figure 1.1: Cross section of the Transducer Test Facility: the cryostat, the structure of

the multi-stage suspension system, and the resonant transducer. The box attached to

the last stage of the suspensions contains the double SQUID amplifier.

TTF allows frequent ultra-cryogenic measurements on the complete readout chain

as its cryogenic time to cool down or heat up is less than one week, while the

AURIGA cryogenic time is of the order of one month. Once the readout has

shown to work properly, it has been installed on the AURIGA bar. In figure 1.2

5



there is a picture of the open cryostat, in the assembling phase of AURIGA detector

(October 2003).

The ultra-cryogenic detectors achieve a better sensitivity with respect to detec-

tors operated at liquid Helium temperature, but the dilution refrigerator shrinks

the duty cycle and reduces the system’s reliability. Consequently, it has been de-

cided to split the second run into two phases: a first phase, which is currently taking

place, where the detector is operating at cryogenic temperature (Ttherm ∼ 4.5−1.5

K) and a second phase, with a new designed 3He-4He dilution refrigerator to reach

lower temperatures (Ttherm ∼ 0.1 K) and the better sensitivities (see figure 1.4).

Figure 1.2: A picture of AURIGA detector with the new multistage suspensions.

In the second run, the AURIGA detector has been equipped with:

• new mechanical suspensions designed by means of a Finite Element Method

(FEM) to avoid spurious mechanical resonances in the detector bandwidth:

attenuation > 360 dB at 1 kHz (see figure 1.3)

• new capacitive transducer: two modes (1 mechanical+1 electrical)

• new amplifier: double stage SQUID with 200~ energy resolution

• new data analysis: C++ object oriented code and frame data format.
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Figure 1.3: A close view of AURIGA new suspensions: the 4K vessel of the cryostat

supports a stainless steel frame, to which the whole suspension system is hung. The four

main suspension columns are fixed to a big 300 kg aluminum mass holder, supported by

four titanium springs. The aim of these four springs is to uncouple the steel frame from

the columns. Each pair of columns supports an inverted “T” aluminum mass on the top

of which is fixed a compression spring with an upper conical joint which is used to lean

an aluminum beam. The bar is hung at its center of mass with a tubular cable which is

attached with a “bayonet” mount into the aluminum beam.

To satisfy the new requirements of the improved detector design, (i.e. the

wider bandwidth and the higher sensitivity), the data acquisition and data analysis

systems have been fully redesigned and implemented from scratch [19].

Operating gw detectors in a coordinated network allows for a drastic reduction

of spurious signals and an experimental determination of the false alarm rate. To

this end a great effort has been put to reach an accurate data synchronization with

the Universal Time Coordinate (UTC) and permanent and temporary data storage

has been based on the Frame format 2.

2The Frame format [24] has been developed by VIRGO and LIGO groups and adopted by the
gravitational wave community.
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1.2.1 AURIGA second run model

Within a 200 Hz bandwidth centered around the mode frequencies ≈ [800÷ 1000]

Hz , resonant detectors are well described by linear, constant coefficients differential

equations, so that both the detector transfer function H(ω), and the noise spectral

density S(ω), can be reasonably well approximated by real coefficient polynomials.

A suitable model of the power spectrum of the AURIGA noise and the detector

transfer function are the complex zeroes-poles functions derived in ref. [47]

S(ω) ≡ L(iω)L(−iω) = S0

NP∏

k=1

(qk + iω)(qk − iω)(q∗k + iω)(q∗k − iω)

(pk + iω)(pk − iω)(p∗k + iω)(p∗k − iω)
, (1.8)

and

H(ω) = H0(ω)
(−iω)NP +2

∏NP

k=1(pk − iω)(p∗k − iω)
, (1.9)

where S0 is a constant representing the wide-band noise level, NP is the number

of resonances (in our case the system can be modelled with NP = 3 ), pk and qk

are respectively the poles and the zeroes (see tables 1.1 and 1.2) and H0(ω) is the

calibration function that has to be provided by the detector calibration procedures

at any run and monitored during the data taking. The poles pk entering in Eq.s

1.8 and 1.9 are subject to slow drifts mainly caused by discharges of the capacitive

transducer or variations of the thermodynamic temperature (usually less than few

mHz per month).

p1 −0.409 + i5421.781 [rad/s]

p2 −3.469 + i5780.161 [rad/s]

p3 −8.781 + i5996.345 [rad/s]

q1 −1653.439 + i5345.336 [rad/s]

q2 −47.980 + i5445.167 [rad/s]

q3 −50.393 + i5842.61 [rad/s]

Table 1.1: Parameters for the noise model of AURIGA second run phase I at 4.5 K.

From the previous equations is straightforward to obtain the modelled Shh ≡
S(ω)/|H(ω)|2 strain sensitivity for the two devised phases shown in figure 1.4.
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p1 −0.409 + i5421.781 [rad/s]

p2 −3.469 + i5780.161 [rad/s]

p3 −8.781 + i5996.345 [rad/s]

q1 −42.838 + i5437.447 [rad/s]

q2 −683.443 + i5824.997 [rad/s]

q3 −52.716 + i5840.513 [rad/s]

Table 1.2: Parameters for the noise model of AURIGA second run phase II at 100 mK

Figure 1.4: Comparison among the sensitivities of the various hardware setups of

AURIGA: i) a Shh from the first run data acquisition (black), ii) design sensitivity of

Phase 1 at cryogenic thermodynamic temperatures (red) and iii) design sensitivity of

Phase 2 at ultra-cryogenic thermodynamic temperatures (blue)

1.2.2 Comparison with other g.w. experiments: design

and current sensitivity curves

The main task to be accomplished by the new AURIGA detector is to exchange

data with other gw experiments. It is worth giving a look at the planned (and the
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actually reached) sensitivity curves of the operating interferometers. For the sake

of simplicity, we choose to omit any resonance, such as violin modes, mirror modes

etc. in the detection bandwidth and to consider only the thermal (pendulum and

mirror substrates) and the shot noise: the simplified model is therefore [49],

Sn(ω) =
Spend

ω5
+

Smirror

ω
+ Sshot

[
1 +

(
ω

ωknee

)2
]

(1.10)

where Spend and Smirror are the thermal noises of the mirror pendular mode and of

the mirror substrates; Sshot and ωknee fit the optical read-out noise.

Detector Spend Smirror Sshot ωknee/(2π)

[Hz]

GEO 4.1 · 10−32 5.7 · 10−42 1 · 10−44 577

LIGO 2K 2.1 · 10−31 1.4 · 10−42 4.35 · 10−46 182

LIGO 4K 5.6 · 10−32 24.5 · 10−43 1.1 · 10−46 83

TAMA 4.6 · 10−33 3.2 · 10−33 1.78 · 10−44 500

VIRGO 9 · 10−33 28.3 · 10−42 3.24 · 10−46 500

Table 1.3: Parameters for the simplified noise model of the interferometers.

We report the numerical values taken from [49] 3 that fit the model and in figure

1.5 the design sensitivity curves of the five interferometers, compared with the one

of AURIGA second run phase 2. Of course, this is an oversimplified comparison:

there are other parameters to be taken care of, such as the effective detection

bandwidth, the duty cycle, the degree of stationarity, the lock time, the spurious

lines etc. Besides, the actual sensitivity curves shown in figures 1.6 and 1.7 of the

interferometers that have had science runs (the LIGOs and TAMA interferometers)

are still well above the designed ones.

1.2.3 AURIGA Status

On December 2003, the AURIGA detector reached a set of parameters suitable for

tests and operation. Data taking began at 4.5 K for diagnostics and calibration.

Since December the 24th both the noise floor and the bandwidth have been in close

agreement with the performance predicted by the thermodynamic model of the

3The sensitivity of GEO600 refers to the wideband configuration. The TAMA detector pa-
rameters have been updated to the sensitivity enhancement due to the power recycling upgrade.
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Figure 1.5: Design strain sensitivities of gw detectors. H4K and H2k are, respectively

the 4 km and 2 km Hanford interferometer. L4K is the Livingstone 4 km interferometer.

Figure 1.6: Strain sensitivities of LIGO Livingstone 4km.

detector. In particular, the bilateral spectral strain noise is lower than 5 × 10−21

Hz−1/2 between 855 and 950 Hz (see figure 1.8). However, a few spurious non-

modelled lines are still present.
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Figure 1.7: Strain sensitivities of Tama300.

Figure 1.8: Shh of AURIGA second run
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Chapter 2

G.W. Burst Sources

In this chapter, we will give a brief introduction to some gw sources. We have

chosen the most commonly discussed astrophysical models: supernovae, binary

systems and Gamma-Ray Bursts (GRB) sources. Of course, at present such mo-

dels can only give some indications about the strength and, sometimes, the rate of

certain gw events; nevertheless, these are the first steps toward a better compre-

hension of some of the most intriguing phenomena of the Universe. It’s still not

clear whether the implementation of new and more accurate relativistic simula-

tions will help us to achieve higher degrees of confidence in theoretical predictions.

Probably, this ambiguity will persist till the gw detectors will reach a sensitivity

high enough to enlighten the situation.

2.1 Supernova rotational core collapse

At the end of their evolution, massive stars (M > 4M¯) develop an iron core which

becomes unstable against gravitational collapse. This core collapses to a neutron

star or a black hole releasing gravitational binding energy, which is enough to power

a supernova explosion. As the core collapses, large amounts of mass ( 1− 100 M¯)

flow in a compact region (108 − 109 cm) at relativistic velocities (v/c ∼ 1/5). If

the collapse is nonspherical, part of this huge energy will be emitted in the form of

gravitational waves. For these reasons supernovae have always been considered as

one of the most promising sources of gravitational waves; indeed, in the 60’s-70’s,

the first gw detectors - resonant bars - had their resonant frequencies tuned around

1 kHz, in order to look for the typical frequencies expected for these gw signals.

However, according to present knowledge, the energy released in gw in rotational

core collapse was overestimated by orders of magnitude; a clear upper bound for
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this quantity is Egw ≤ 10−6M¯c2 [25]. In supernova core collapse, there are several

mechanisms of wave emission (of comparable strength) [30], [29]:

• Deceleration of bulk mass at core bounce (burst signal);

• Bar instability, in which the mass in the core forms a rapidly rotating bar-like

structure with a rapidly varying quadrupole moment (quasi-periodic signal);

• Fragmentation instability: the collapse material fragments into clumps, which

orbit for some cycles as the collapse proceeds;

• R-modes instability, peculiar of the neutron stars;

• Ring-down signal from a possible newborn black hole: large amounts of ma-

terial accreting a black hole formed in core collapse would induce a distortion

in the Black Hole (BH) stationary Kerr configuration.

The frequency of the emitted radiation ranges from a few Hz to a few kHz and

the dimensionless signal amplitudes for a source located at a distance of 10 Mpc

do not exceed h ∼ 10−22: consequently, the prospects of detecting a gw signal from

a supernova core collapse by the detectors currently in data taking (and even with

next generation detectors) appears to be limited to those events occurring within

the Local group (≈ 4 Mpc).

2.1.1 MPA Newtonian and Relativistic templates

At present, one of the most accurate simulations of star collapse has been im-

plemented by a group from the Max-Planck-Institut für Astrophysik. They have

performed hydrodynamical simulations of rotational core collapse in axisymmetry

and equatorial symmetry: first in the Newtonian approximation [26] and later with

a fully relativistic treatment [27], [28]. Note that, at the rotational speeds expected

from stellar evolution models, bar-modes do not develop and the dominant gw sig-

nal occurs at bounce. This is due to the convection and the viscosity which carry

away this already small angular momentum.

To reduce the complexity of the problem, they assume rotating γ = 4/3 polytropes

in equilibrium as initial models of the type iron core, with initial central density

%c = 1010 g·cm−3, a radius Rcore ∼ 1500 km and a simplified ideal fluid equation

of state.

The MPA group has simulated, both in Newtonian and in relativistic gravity, the

evolution of 26 models that cover a 3-D parameter space: the first parameter A,
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Figure 2.1: Time evolution of the gravitational wave signal Amplitude for the newto-

nian (red) and the relativistic (blue) simulation of model A3B3G1: while the newtonian

simulation has given raise to multiple bounces, the relativistic shows a regular collapse.

A B G

[cm]

1 5 · 109 0.25% 1.325

2 108 0.5% 1.320

3 5 · 107 0.9% 1.310

4 107 1.8% 1.300

5 - 4% 1.280

Table 2.1: The three model parameters. The name of each model is obtained with a

combination of parameters from the three sets (i.e. A1B2G3).

is a length scale ranging from (107 ÷ 5 × 109) cm, which specifies the degree of

differential rotation. The second parameter B, is the initial rotation rate, i.e. the

ratio of rotational energy and the absolute value of gravitational binding energy,

spanning from 0.25% to 4%. Finally, the third parameter G is related to the

adiabatic index at subnuclear densities: collapse begins as the adiabatic index

decreases from 4/3 to G (see Table 2.1).

Three types of rotational supernova core collapse and related waveforms have been

identified in both set of simulations: regular collapse, multiple bounce and rapid

collapse.
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Figure 2.2: Spectral energy distribution of gw signal for the newtonian and the relativistic

simulations of model A1B3G3: due to higher average central densities in relativistic

simulations, the maximum of the energy spectrum is shifted to higher frequencies.

In figure 2.1, a quick comparison of the Newtonian and the relativistic simulations

results is shown. For model A3B3G1, simulations produce very different waveforms:

in particular, a multiple bounce type (Newtonian) becomes a regular one with a

ringdown. The range of gw amplitudes and frequencies ν obtained for the two sets

is roughly the same: 4×10−21 ≤ hTT ≤ 3×10−20 for a source at a distance of 10 kpc

and 60 Hz ≤ ν ≤ 1000 Hz. These simulations give an even more restrictive limit

with respect to theoretical predictions to the total energy radiated in gw, reduced

to only a few 10−7M¯c2 . Besides, the relativistic models, that are expected to

be more accurate, have typically lower gw amplitudes. Nevertheless, the peak of

emission in latter models is at higher frequencies and in some cases very close

or inside the bandwidth of the future detector AURIGA2, leading to an SNR

enhancement with respect to Newtonian models (see figure 2.2).

2.1.2 Estimating SNR for AURIGA detector

The AURIGA data analysis allows for optimal filtering of arbitrary waveforms;

nevertheless, applying a δ-filtering to estimate the SNR and the time of arrival of

newtonian and relativistic waveforms is still a good approximation. In fact the

response to the major part of the MPA signals is almost flat over the AURIGA

bandwidth.
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The fraction of in-band SNR ∆SNR/SNR, lost because of the filter mismatch, is

lower than 5% if the in-band SNR of injection is larger than 6-7, i.e. in the linear

estimation region of the WK delta filter. Note that this result is model dependent:

slightly changing AURIGA resonant frequencies of 20−30 Hz can produce on some

MPA waveforms a loss of 20÷ 30% for in-band SNR. These values agree perfectly

with those estimated analytically by means of the Fitting Factor (FF) 1 reported

on tables 2.2 and 2.3.

1The Fitting Factor represents the loss fraction of SNR due to the mismatch between the filter
and the actual gw waveform:

FF =
(H|T )√

(H|H)
√

(T |T )
, (2.1)

where (x|y) is the usual scalar product, H is the gw waveform and T the template to whom the
filter is matched: in our case the delta function.
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Model SNR Total Energy hTTmax FF T

(10 kpc) (M¯c2) (ms)

1 A1B1G1N 0.80 5.8 · 10−8 1.5 · 10−20 0.97 108.7

2 A1B2G1N 1.1 6.4 · 10−8 2.1 · 10−20 1. 112.2

3 A1B3G1N 0.28 1.8 · 10−8 1.3 · 10−20 0.97 134.7

4 A1B3G2N 1.1 5.8 · 10−8 1.8 · 10−20 0.99 113.8

5 A1B3G3N 1.1 2.5 · 10−8 8.6 · 10−21 1. 69.39

6 A1B3G5N 0.45 3.8 · 10−10 1.2 · 10−21 0.97 58.69

7 A2B4G1N 0.0068 5.9 · 10−10 5.8 · 10−21 1. 198.2

8 A3B1G1N 1.9 8.7 · 10−8 2.2 · 10−20 0.95 114.2

9 A3B2G1N 0.70 2.3 · 10−8 1.5 · 10−20 0.99 133.8

10 A3B2G2N 1.7 7.6 · 10−8 2.1 · 10−20 0.99 99.12

11 A3B2G4N 1.2 1.5 · 10−8 6.2 · 10−21 1. 59.68

12 A3B2G4s 1.4 1.9 · 10−8 6.9 · 10−21 1. 59.63

13 A3B3G1N 0.023 3.7 · 10−9 9.6 · 10−21 0.94 135.5

14 A3B3G2N 0.23 9.2 · 10−9 1.3 · 10−20 0.98 106.0

15 A3B3G3N 1.0 2.1 · 10−8 1.3 · 10−20 0.95 77.09

16 A3B3G5N 0.76 2.7 · 10−9 2.3 · 10−21 0.99 57.07

17 A3B4G2N 0.040 1.5 · 10−9 7.9 · 10−21 1. 117.4

18 A3B5G4N 0.018 1.1 · 10−9 4.7 · 10−21 0.95 88.40

19 A4B1G1N 1.8 6.9 · 10−8 1.8 · 10−20 0.89 118.9

20 A4B1G2N 1.6 6.2 · 10−8 1.8 · 10−20 0.96 87.73

21 A4B2G2N 1.2 4.1 · 10−8 1.9 · 10−20 1. 102.9

22 A4B2G3N 1.6 5.1 · 10−8 2. · 10−20 1. 89.31

23 A4B4G4N 0.25 1.6 · 10−8 1.5 · 10−20 0.99 79.82

24 A4B4G5N 0.84 3.3 · 10−8 1.9 · 10−20 0.98 64.45

25 A4B5G4N 0.086 2.7 · 10−8 2.6 · 10−20 0.93 79.03

26 A4B5G5N 1.7 1.5 · 10−10 4.8 · 10−20 1. 69.08

Zwerger and Müller Newtonian waveforms: i) model name,

ii) SNR on AURIGA second run phase 2 expected sensitivity

curve for a source at 10 kpc, iii) Total energy radiated in gw,

iv) the maximum strain amplitude, v) Fitting Factor with a

delta-matched filter and vi) signal duration.
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Model SNR Total Energy hTTmax FF T

(10 kpc) (M¯c2) (ms)

1 A1B1G1R 1.2 2.1 · 10−8 8.4 · 10−21 1. 109.1

2 A1B2G1R 2.0 6. · 10−8 1.6 · 10−20 1. 114.0

3 A1B3G1R 2.3 1.2 · 10−10 2.4 · 10−20 1. 134.0

4 A1B3G2R 1.9 6. · 10−8 1.5 · 10−20 1. 108.4

5 A1B3G3R 1.5 1.3 · 10−8 5.8 · 10−21 1. 69.76

6 A1B3G5R 0.44 3. · 10−10 1.1 · 10−21 1. 57.01

7 A2B4G1R 0.036 4.5 · 10−9 4.9 · 10−21 0.94 198.8

8 A3B1G1R 2.0 7.1 · 10−8 1.7 · 10−20 1. 114.9

9 A3B2G1R 2.4 1.8 · 10−10 2.6 · 10−20 1. 134.2

10 A3B2G2R 2.6 1. · 10−10 1.9 · 10−20 1. 99.23

11 A3B2G4R 1.2 8.2 · 10−9 4.6 · 10−21 0.99 59.66

12 A3B2G4s 2.1 1.2 · 10−8 5.5 · 10−21 1. 59.45

13 A3B3G1R 0.90 2.1 · 10−10 8.7 · 10−21 0.99 129.3

14 A3B3G2R 1.5 1.2 · 10−10 1.2 · 10−20 0.98 108.8

15 A3B3G3R 1.7 5.1 · 10−8 1.1 · 10−20 0.99 79.35

16 A3B3G5R 0.46 1.9 · 10−9 2.3 · 10−21 1. 58.65

17 A3B4G2R 0.10 6.1 · 10−9 5.3 · 10−21 0.98 119.1

18 A3B5G4R 0.043 1.5 · 10−9 4.3 · 10−21 0.95 87.56

19 A4B1G1R 2.5 1.2 · 10−10 2.2 · 10−20 1. 120.0

20 A4B1G2R 2.9 1. · 10−10 2. · 10−20 1. 89.12

21 A4B2G2R 4.8 3.6 · 10−10 3. · 10−20 1. 104.0

22 A4B2G3R 3.5 2. · 10−10 2.2 · 10−20 1. 89.80

23 A4B4G4R 0.55 2.3 · 10−8 1.1 · 10−20 0.98 77.28

24 A4B4G5R 0.20 2.7 · 10−8 9.1 · 10−21 0.97 66.15

25 A4B5G4R 0.16 2.2 · 10−8 1.5 · 10−20 0.96 77.35

26 A4B5G5R 1.9 1.4 · 10−10 2.1 · 10−20 1. 66.12

Dimmelmaier, Font and Müller Relativistic waveforms: i)

model name, ii) SNR on AURIGA second run phase 2 ex-

pected sensitivity curve for a source at 10 kpc, iii) Total

energy radiated in gw, iv) the maximum strain amplitude,

v) Fitting Factor with a delta-matched filter and vi) signal

duration.
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2.2 Coalescing Binaries

The coalescence of binary systems (NS-NS, BH-BH and BH-NS) is generally con-

sidered as one of the most important sources of gravitational waves [30]: the orbits

of the binary system gradually decay through gw emission on a time scale highly

dependent on the total mass of the binary system 2. The entire process is usu-

ally divided into three overlapping phases for BH-BH binaries, while NS-NS and

BH-NS have only the first two phases:

• an inspiral phase, whose timescale is much longer than the orbital period,

giving a chirping signal, with a definite time-frequency relation;

• a merger phase, heavily dependent on the parameters of the collision and

therefore very difficult to predict;

• a ringdown phase, characteristic of a deformed BH, whose signal should be a

superposition of dumped sinusoids, with a priori unknown relative amplitude

and phases.

2.2.1 Inspiral

The Inspiral phase can be described as two rotating point particles with intrinsic

spins and masses m1 and m2, whose orbital parameters evolve secularly due to

gravitational radiation. The radiation removes orbital binding energy, which leads

to a faster orbiting. This process is adiabatic till the gravitational radiation reac-

tion acts on a timescale which is much longer than the orbital period. The energy

spectrum of the inspiral phase is a decreasing function of the frequency f [23],

dE

df
=

(πG)2/3

3
M5/3f−1/3 (2.2)

where M = (m1m2)
3/5 (m1 + m2)

−1/5 is the so-called chirp mass.

During the inspiral phase, relativistic effects are large as the orbital velocity gets

closer to the speed of light. The gravitational waveform is then determined by the

relativistic gravitational interaction between the two point masses and all the other

complicated effects (tidal distortion, magnetic fields interaction, etc.) act as small

perturbations, allowing an accurate prediction of the waveform. As a consequence,

the detection hopes rely mostly on this first phase, while chirping signal achieve

2For gravitational radiation to successfully drive the merging phase, the initial orbital period
must be . 0.3 days (M/M¯)5/8, with M the total mass of the system [32]
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AURIGA detection bandwidth (close to 1 kHz) in its final phase. The event rate

for NS-NS is fairly well known from observations of progenitors in our galaxy and

was estimated to be nearly 3 per year in a 200 Mpc volume [39] but, as reported

in the introduction, this rate has been recently increased by a factor 6-7 by [3].

The event rates for BH-NS and BH-BH coalescences are far less accurate, but the

inspiral waves are expected to be stronger than the NS-NS, due to their greater

mass.

2.2.2 Merger

From the adiabatic inspiral in his late evolution, the binary system undergoes a

transition to an unstable plunge, induced by strong spacetime curvature: at this

point, even if the radiation reaction could be turned off, the companions would still

merge. The plunge and the collision are generally called merger phase. Unfortu-

nately, this phase (either for NS-NS or NS-BH) is still poorly understood, resulting

in a lack of reliable waveforms and energy spectra.

2.2.3 Ringdown

As the final BH is settling down to a stationary Kerr state, it should undergo

damped vibrations, which can be seen as oscillations of the final BH quasi-normal

modes. The most slowly damped mode, which has spherical harmonic indices

l = m = 2, dominates over the other modes at late times. Focusing on this last

Quasi-Normal Ringdown (QNR) mode, the energy spectrum is just a resonance

curve [40],

dE

df
=

A2M2f 2

32π3τ 2

{
1[

(f − fQNR)2 + (2πτ)−2]2 +
1[

(f + fQNR)2 + (2πτ)−2]2

}
,

(2.3)

peaked at fQNR with a width given by the inverse of the damping time,

∆f ∼ 1

τ
=

πfQNR

Q (a)
,

where the quality factor of the mode Q is given by

Q (a) = 2 (1− a)−
9
20

A is a dimensionless coefficient that describes the magnitude of the perturbation

when the ringdown begins, M is the mass of the BH and a is the spin of the final
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BH. The value of the spin depends on the initial parameters of the system, which

are difficult to predict, nevertheless, since the BH may typically have spun up to

near maximum rotation, we can assume a = 0.98 [32]; the resonance frequency and

the quality factor are then:

{
fQNR = 0.13

M

Q ' 12

For a BH mass M = (28 ÷ 31)M¯ the signal spectrum is substantially coincident

with the AURIGA second run detection bandwidth.

2.3 Gamma-ray Burst Models

Gamma-Ray Bursts are the most luminous events in the Universe. Current mo-

dels explain the origin of ”long” GRB (tγ & 2 s) [44] in the coalescence of a NS

and a rotating BH, where the latter may form a matter torus surrounding the

BH [37]; other models call for a class of massive supernovae collapsing to form a

spinning BH. Although the association between GRB and star collapse (Hyper-

novae or Collapsars stars) is sure for at least a few GRBs, the BH-Torus models

are very interesting because: i) they are excellent candidates for the ultimate en-

ergy source of GRB (∼ 1053 erg) and ii) they are expected to emit gravitational

waves [34], [35].

In particular, this last model, a 1.4M¯ NS and a 7M¯ BH binary system evolves

towards a torus through the disruption of the NS, surrounding the BH in a sus-

pended accretion state, which should last several seconds (10 ÷ 80 s) before the

final collapse. A strong emission of gw occurs, once the torus is formed, due to the

lumpiness of the neutronized matter: estimates on the energy released in gw equal

the order of magnitude of ”traditional” electromagnetic channels. The distinctive

characteristics of the above model is a slowly varying frequency and an almost

constant amplitude for the emission of gw, also known as the linear chirp.

Compact binary mergers, such as NS-NS, might also be emitters of ”short”

GRBs [45]: this could be interesting from the point of view of gw research, since

these systems, as reported in the previous paragraph, are strong gw emitters. How-

ever, binary mergers have natural channels of emission along their rotational axis

and they may therefore produce beamed GRBs: current afterglows observations,

though, indicate that only ”long” GRBs are beamed, with opening angles of a few

to tenths of degrees. There is no such evidence for ”short” GRBs.

As a matter of fact, for all these models the amplitude of gw strain is expected
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to be h ∼ 10−23 ÷ 10−21 at cosmological distances, i.e. 1 ÷ 3 orders of magnitude

below the sensitivity of present and planned ground-based gw detectors.
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Chapter 3

Single detector estimation

methods

A gw impinging transversally to the bar axis deposits energy in the first com-

pression mode of oscillation. To detect this tiny signal, an auxiliary oscillator is

attached to one of the bar faces and its resonance frequency is tuned to that of the

bar sensitive mode, in order to have a strong coupling. This transducer is in turn

electrically coupled to the external readout. Many different solutions have been

tested: capacitive, inductive, microwave and optical. The raw data at the output

of the readout system are the starting point of the data analysis.

We now assume that we observe, in the presence of noise, a burst whose char-

acteristics are known except a few parameters. In our study, we have focused on

short (duration ≤ 100 ms) bursts, whose spectral density is ranging over the de-

signed bandwidth of AURIGA in its ultra-cryogenic configuration (Phase 2; see

figure 1.4), and obviously, with sufficient strain amplitude to be observed over the

expected detector noise.

Two pipelines corresponding to different approaches to the signal detection have

been recalled: a template search based on the matched filter, under the hypothesis

of a complete a priori knowledge of the signal waveform; a blind search based on

the Excess Power method, which makes minimal assumptions (i.e. the duration)

on the unknown gw burst.

For the template search, assuming a signal embedded in addictive gaussian noise,

we can resort to the Maximum Likelihood theory to estimate signal parameters.

This ”near-optimal” data analysis, is able to recognize gw signals and extract the

signal parameters without distortion of their probability distributions [62].

The burst parameters, the amplitude A and Time Of Arrival TOA, are determined
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by matched filtering. At low SNRs, there is a large ambiguity in their estimation:

this uncertainty makes genuine burst gravitational wave signals almost indistin-

guishable from events arising from un-modelled environmental noise sources. In

fact, the χ2 -test does not have enough statistical power to identify the signal tem-

plate and/or parameters in the low SNR regime.

The Excess Power search is less restrictive with respect to the signal waveform but,

compared to the previous method, requires higher selection thresholds to get rid

of the increased number of FA.

3.1 The AURIGA Matched Filter

If we suppose that the overall system (the bar, the transducer and the double dc

squid amplifier) is linear and time-invariant and, in addiction, that gaussian sta-

tionary noise is superimposed to the signal, then the matched filter is the minimum-

variance unbiased linear estimator of the signal amplitude. In our case, such filter

is usually matched to a delta function, the so called (Wiener-Kolmogorov Filter,

WK) 1 and is applied continuously to the data of the AURIGA detector.

The identification of candidate events is performed in the time domain, by a max-

hold algorithm. This algorithm identifies the time and the amplitude of the ex-

tremes of the filtered data separated by at least a time span about 3 times the

reciprocal of the effective bandwidth of the system (i.e. ∼ 0.1 second for a 80 Hz

bandwidth).

An adaptive threshold 2 is then applied to select candidate events for further inves-

tigations. Finally, to increase the timing resolution below the sampling time, we

have adopted an algorithm of interpolation [61] to estimate the event amplitude

and time of arrival.

Our standard estimation method is then the result of : i) the adaptive WK filter,

ii) the max-hold algorithm + the adaptive threshold, as candidate event selection

method and iii) the interpolation algorithm to calculate the event parameters, A

and TOA, with greater accuracy.

There are two reasons to establish a threshold on candidate events:

1. the trigger search algorithm has strong biases in amplitude and arrival time

at least up to SNR= 4 ÷ 5. The bias is in this case due to the fact that we

1In the new AURIGA data analysis, a thorough work has been done in these last months to
implement the possibility to filter for any arbitrary waveform.

2for example, during the first run of AURIGA, a SNRthr = 5 was applied to produce the list
of candidate events for coincidence analysis with the other gw detectors.
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cannot know the true time of arrival of the gw signal; the max-hold algorithm

looks for the nearest large fluctuation of the noise and the trigger cannot be

related with the injected waveform;

2. for SNR> 5 the False Alarms rate (FAr) falls down to acceptable levels for

gw detections [66]. As the SNR grows up, there is less chance for a noise

fluctuation to reach such a SNR level and the max-hold locks to the real

trigger. In this case, the estimated amplitude becomes unbiased and the

time of arrival error strongly peaks around zero.

It should be noticed that the bias in TOA is unavoidable as the arrival time

estimate is a non linear algorithm, which can be linearized at high SNR around

the true arrival time [48].

To cope with the problem of biases in the signal estimation, we can resort

to the maximum likelihood criterion; it is equivalent, in the presence of gaussian

noise, to the standard Wiener filtering together with the χ2 test of the goodness

of the fit [62]. The χ2 value (which is statistically independent of the amplitude

for signals which pass the test) can be used to test the consistency of our a priori

hypothesis on the signal template.

3.1.1 Timing errors, bias on the SNR and ROCs

In the time domain, the signal after the WK filter appears as a damped beat

between the system modes, modulating a sinusoidal carrier wave [61]. In the new

hardware configuration, the two modes are more separate; hence, near the TOA

the relative amplitudes of the peaks decrease faster than what happened for the

previous AURIGA (the beat modulation is of the same order of the exponential

decay): this allows for an improved timing accuracy. In the low SNR regime, the

TOA is expected to be a zero-mean random variable with a distribution made of

multiple gaussian peaks; these peaks are spaced by the half-period of oscillation of

the antenna and have gaussian distributed relative amplitudes, as shown by figure

3.1, for a MonteCarlo simulation of N=3647 delta-like bursts at SNR=10.

We split the timing error ∆terr, in the sum of phase error ∆tφ, and peak peak

number k multiplied by the period T = 2π/ω0 of the carrier wave:

∆terr = ∆tφ + k · T, (3.1)

If we look for an asymptotic solution, for large SNR, it can be demonstrated [61]
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Figure 3.1: Timing Error distribution for delta-like bursts at SNR= 10 (N=3647 trials).

The distribution has a small bias (∼ 3µs), while the overall rms of all the peaks is 615µs.

that the standard deviation of the errors is equal to:

σtφ =
1

ω0SNR
, (3.2)

and

σk =
ω0

πω∗SNR
. (3.3)

Equation 3.11 is the classical formula for the phase timing of narrow band signals

leading to the well-known Cramèr-Rao Lower Bound (CRLB), which will be briefly

introduced in paragraph 3.4.1.

In figure 3.2, we show the timing error as a function of the injected SNR:

• the upper points (yellow) refer to the standard deviation of the errors on the

TOA (N=35977 trials each SNR); the error bars are conservative and are

computed according to 95% probability of FD by setting k = 4.2 through the

Bienaymè-Tchebyscheff inequality 3

3The FD probability is upper bounded by:

FD 6 P
{
∆terr > kσ2

terr

}
6 1

k2
≡ PT . (3.4)

where PT is the maximum FD probability computed through the Bienaymè-Tchebyscheff in-
equality.
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Figure 3.2: Timing Error vs SNR: ∆terr (yellow) and ∆tφ (blue) as a function of the

SNR.

• lower points (blue) refer to the standard deviation of the phase error; σtφ

matches perfectly the theoretical curve given by the CRLB (in eq. 3.11),

f(x) = P0/x; the fitting value P0 = (176.6 ± 0.9) µs is the inverse of the

central frequency ω0 = 5661 rad/s calculated from the parameters in table

1.2.

At SNR=11, σk < 1 and ∼ 70% of injected signals are in the central peak and, as

shown, for SNR> 80÷90, ∆terr collapses to the CRLB (within conservative errors).

At low SNRs, in the ambiguity region, the WWLB (see following paragraph 3.4.2)

gives a tighter lower bound on time estimates for a wide range of SNRs [60].

As it concerns the SNR estimation, we have performed a Montecarlo simulation:

first, by injecting δ signals (N=35981 trials for each tested SNR) in 10 hours of

simulated data and then by estimating the amplitude of the resulting events. Figure

3.3 shows the histograms for SNR0 = 1 (red), 2 (violet), 8 (blue). At low SNR, the

estimation method is no more linear and a large bias towards greater amplitudes

appears. The expected SNR biases are, respectively: ∆SNR(1) = 1.952 ± 0.003,

∆SNR(2) = 1.284 ± 0.007 and ∆SNR(8) = 0.123 ± 0.005. The ensemble of the

WK filter, the max-hold algorithm, a determined threshold, and the interpolation

algorithm is called the Standard Estimation Method (SEM). The results obtained

with this model, implemented in AURIGA data analysis, provide unbiased (i.e.

∆SNR/SNR ≤ 0.1) amplitudes for signals with SNR≥ 5.

Finally, we report the Receiver Operating Characteristics (ROC) curves (see

31



SNR∆
-5 -4 -3 -2 -1 0 1 2 3 4 5

C
o

u
n

ts

1

10

10
2

10
3

Figure 3.3: Montecarlo of N=35981 trials : the histograms of the estimated SNRs

(diminished by the true SNR0, ∆SNR = SNR−SNR0) for injected signals at SNR0 = 1

(red), 2 (violet), 8 (blue). For the first two case, the estimation method is no more linear

and a bias toward greater amplitudes appears. In the last case, instead, the histogram

reproduces the zero-mean Normal density function of the underlying stochastic process,

as predicted by linear estimation theory. Note that this happens already at SNR=5, but,

for graphical reasons, we have chosen not to show it.

appendix A) for the SEM.

These curves, shown on figure 3.4, allow a quick comparison among different al-

gorithms: they display the detection efficiency (for injected delta-like signals of

different amplitude) versus the FAr. As the key parameter for this method is the

threshold 4, we have estimated acceptance as a function of the threshold itself on

a population of N = 35997 injected signals for SNR=5,6,7. These are the lowest

SNRs which can be taken in consideration neglecting the bias on the amplitude

and on the time of arrival.

The FArs shown on figure 3.4 refer to gaussian stationary noise and are esti-

mated analytically by means of a conservative upper limit: in fact, it would take

thousands of years of data to calculate the leftmost points on the graph. As a

matter of fact, it is well known that the main problem in real data comes from

spurious events (environmental noises) and that these outliers are much more fre-

4Note that it is easy to put up different decision algorithms, which do not depend on a
threshold: for example, instead of selecting candidate events on threshold-crossing, one can
choose the M largest events in each day. In such case, the key parameter would be M and the
FAr on the single detector would be fixed once for all.
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Figure 3.4: ROC curves for the SEM (SNR=5,6,7). Once having fixed a tolerable

FAr (depending strictly on the purpose of the analysis: for example, the accepted FAr

for detectors participating the Supernova Watch Search is one every 100 years), the

comparison with other algorithms is on the detection efficiency.

quent (at higher thresholds) than the expected FAr of gaussian stationary noise.

Nevertheless, the key point is to keep under control the events arising from noise

fluctuations. To get rid of spurious signals, it is necessary to perform a multi-

detector analysis.

3.2 Maximum Likelihood Estimators of Signal

Parameters

Let us assume that the sampled data stream of a gw detector is given by the

superposition of a deterministic function f(t) (the signal) and a stationary gaussian

stochastic process η(t) (the noise):

xi = η(ti) + Af(ti − t0, ϑ) , (3.5)

where ti = i∆t, with ∆t the sampling time and i an integer index, η(ti) has zero

mean and correlation 〈η(ti)η(ti)〉 = σij (〈. . . 〉 means ensemble average) and f(t, ϑ)

is a known function of time and of the parameter set ϑ.

In order to extract the value of the signal amplitude, A, the TOA t0 and the

other parameters ϑ, the Maximum Likelihood procedure searches the parameter
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values that maximize the probability of occurrence of the observed data set, or

equivalently, that correspond to the minimum of the negative of logarithmic like-

lihood Λ(A, t0, ϑ):

Λ(A, t0, ϑ) =
1

2

N∑
i,j=1

µij[xi − Af(ti − t0, ϑ)][xj − Af(tj − t0, ϑ)] , (3.6)

where µij is the inverse of the correlation matrix σij.

For given values of t0 and ϑ the minimum of Λ(A, t0, ϑ) as a function of A is

found analytically at

Aopt(t0, ϑ) =

∑N
i,j=1 µijxif(tj − t0, ϑ)

∑N
i,j=1 µijf(ti − t0, ϑ)f(tj − t0, ϑ)

, (3.7)

and it amounts to:

Λmin(t0, ϑ) =
1

2

N∑
i,j=1

µijxixj −
A2

opt(t0, ϑ)

σ2
A

. (3.8)

The square of the uncertainty on Aopt(t0, ϑ) turns out to be

σ2
A =

1∑N
i,j=1 µijf(ti − t0, ϑ)f(tj − t0, ϑ)

. (3.9)

The linear combination of the data in eq. 3.7 is just the discrete Wiener optimal

filter matched to the function f(t). On the other hand, eq. 3.8 shows that, in order

to minimize Λ(A, t0, ϑ) as a function of the TOA, t0, and ϑ, one has to maximize

the square of the signal to noise ratio. This means that once one has set up the

Wiener filter for the data, the best estimate of the parameters is the one that

maximize the filter output. As usually the dependence of σA on t0 and ϑ is very

weak, this just implies that one has to maximize Aopt(t0). The minimum value of

2Λ(A, t0, ϑ) has to be distributed as a χ2 with N −Nϑ−2 degrees of freedom, with

Nϑ the number of elements of the parameter set ϑ.

3.3 Excess Power through Karhunen-Loève Ex-

pansion

Though some of the candidates sources, like coalescing binaries in the initial phase

of spiralling, have been modelled with great accuracy, allowing the construction of
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trustful gw templates, and hence the implementation of matched filter, it is clear

that the uncertainty on the burst waveforms of the great part of the gw possible

sources (like supernova core collapses or merging phases of a binary system) is

still long to go. Moreover, the available waveforms highly depend on some set of

arbitrarily chosen parameters through the result of some simulation.

We note that for narrow band detectors (such as AURIGA during his first

scientific run), the simplified hypothesis of a δ − like incoming signal (i.e. with a

flat response over the detector bandwidth), even though somehow restrictive, was a

reasonably good approximation, since the two resonant modes were only ∼ 20Hz

far apart. With the present AURIGA bandwidth (∼ 70Hz), such hypothesis is

even more restrictive with respect to all possible incoming gw waveforms.

In such context, a realistic detection strategy have to cope with poorly modelled,

or not modelled at all, gw signals.

This problem has already been faced from different point of views:

• Much work has been devoted by the LIGO group to implement and test new

”blind” strategies (the so-called Event Trigger Generators ETG): TFclusters

[52], Excess Power [53], [54], WaveBurst [56]. These ETGs are currently used

in data-analysis of latest LIGO science runs.

• Within the Virgo group, some authors devised several simple algorithms (i.e.

the Norm filter, the mean filter, the Slope filter, the ALF and the Peak

Correlator) to be run in parallel [55]; A. Vicerè [49] has proposed a kind

of Excess Power Search based on the Karhunen-Loève Expansion, KLE (see

Appendix B for a brief introduction on the subject). These procedures need

a thorough test and optimization against model waveforms [51], [50].

Following a previous internal work [57] and with a careful look at the most

recent papers on Excess Power [54], [49], an Excess Power method based on the

KLE has been recently implemented in AURIGA data-analysis. It consists of two

main steps:

• we apply the WK filter (δ-matched filter) to the detector output;

• we then perform an Excess Power search on a test statistic similar to the

energy, which can be easily calculated by means of the KLE.

Such approach looks very promising, even though it still lacks an exhaustive

bench-testing.
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Figure 3.5: SNR distributions (H0 and H1) for a mismatched linear filter (green) and

for the KLE (red).

For any waveform, this method allows for the recovery of all the in-band signal

spectral energy with the sole assumption of knowing a priori the signal duration,

TKL: the SNR through KLE equals the maximum one achievable by means of a

filter matched to the signal, under the hypothesis of waveform complete knowledge.

The drawback is the increased tail of fake events at a given threshold. A typical

comparison between SNR distributions of a mismatched filter (e.g. WK filter) and

of the KLE of an unknown signal h(t) is depicted on figure 3.5: it is possible to

note that: i) the KLE (red line) recovers the correct SNRh, but the distribution of

noise events follows a χ distribution (the TKL fixes the degrees of freedom); ii)for

the WK filter (green line), the SNRδ is smaller due to the filter mismatch, but the

tail of noise events follows the gaussian statistic.

3.3.1 Statistical analysis

Let us write the detector output signal x(t) as a vector of samples at the instance

ti = i
N

T , with i = 1, ..., N . Let x = (x1, . . . , xN) = (xt1 , . . . , xtN ) be such data

vector. This vector can be written as the sum of signal and noise coefficients of

the KLE, respectively hk and nk:

xk =
N∑

k

(hk + nk) ψk. (3.10)

ψk being the k−th eigenvector of the correlation matrix R−1 (see Appendix B),

and therefore through the equation B.2 the δ-filtered data fδ:
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fδ = R−1x =
N∑

k

1

σ2
k

(hk + nk) ψk, (3.11)

where σk are the correlation matrix eigenvalues. Consider test statistic L,

L = fTδ ·Rfδ =
N∑

k

1

σ2
k

(hk + nk)
2, (3.12)

this expression, which is similar to the power (fδ ·fδ), is the optimal statistic for an

unknown burst with a flat prior [49]. The sole reason for applying the KLE is that

it allows for more flexibility in the calculation of L: in particular, we can decide,

for instance, that some of the basis elements correspond to large noise components

and, therefore, that such components can be omitted without loosing significant

fractions of SNR. Due to the fact that the coefficients of the KLE are uncorrelated,

this procedure corresponds to simply restricting the summation over a number N‖
of eigenfunction such that N‖ ≤ N .

The distribution of the statistic L is a χ2 with N(N‖) degrees of freedom under

the hypothesis H0 (no signal); in case of H1 (signal of unknown shape, h) the L is

distributed as a non-central χ2 with N(N‖) degrees of freedom and the square of

the optimal filter signal-to-noise ratio SNR2 as non-central parameter.

3.3.2 Timing errors and bias on SNR

In this paragraph, we briefly describe preliminary results of the Excess Power search

implemented in AURIGA data analysis.

The TOA is assumed to have a uniform a priori distribution over the interval

[0,TKL]; to estimate it, we have devised a Minimum Mean Square Error (MMSE)

algorithm:

tMMSE =

N∑
k

kTse
R(kTs)

fσ2
N

N∑
k

e
R(kTs)

fσ2
N

, (3.13)

where Ts is the sampling time, R is the correlation matrix, σN is the standard

deviation of the N samples and f is a free parameter to be tuned.

Testing this estimator, it turned out that the optimal value for f is weakly related

to the SNR of simulated signals and to the TKL fixed for the search: over a wide

range of SNR (5÷160) and of TKL (10 ms ÷ 50 ms). The choice of f = 0.3 produces

37



0 0.1 0.2 0.3 0.4 0.5

0.0001

0.0002

0.0003

0.0004

0.0005

Figure 3.6: The σterr vs. f as a function of the TKL for SNR=50

snr10 10
2

snr10 10
2

s]µ
S

ta
n

d
ar

d
 D

ev
ia

ti
o

n
 [

10
2

10
3

Figure 3.7: The bias on the estimated SNR vs. SNR as a function of the TKL (10 ms

(black), 20 ms (red), 30 ms (green), 40 ms (blue) and 50 ms (yellow)).

timing errors which are less than 10% larger than the minimum attainable ones

(see figure 3.6).

As a preliminary result, we show the timing errors as a function of SNR for a

set of simulations with N=35997 injected δ-like signals on figure 3.7 and the bias on

the estimated SNR as a function of the SNR itself for the same set of simulations

on figure 3.8.

As regards the ROC curves for the Excess Power method, it is straightforward

to find a template for which this method is favorable to the WK filter: as the KLE
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eigenvectors are a complete basis in the vector space of all possible data vectors of

dimension N, any of such eigenvectors (except the one representing the δ function)

is orthogonal to the δ. Almost all of the SNR is lost by the WK filter because of

this mismatch. By the way, those templates have currently no correspondence in

the astrophysical models, which, on the frequency scale of the AURIGA bandwidth

(∼ 80 ÷ 100 Hz), show no great deviations from a flat spectrum: at least, these

deviations do not affect the detection probability of the WK filter in such a way to

counterbalance the longer tail of FA produced by the Excess Power. This method

too calls for a multi-detector data analysis to cut all fake events.

3.4 Error Bounds

To investigate the performances of a specific estimator, it is useful to resort to the

well known and widely used lower bounds on the Mean Square Error (MSE). The

most commonly used bounds include the Cramèr-Rao Lower Bound (CRLB) and

the Weiss-Weistein Lower Bound (WWLB).

3.4.1 Cramèr-Rao Lower Bound

The CRLB treats the unknown parameter, θ, as a deterministic quantity and

provide bounds on the MSE in estimating any selected value of the parameter: for
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this reason it is often referred to as a local bound.

Consider a waveform characterized by a set of parameters, A, t0 and ϑ (for the

sake of simplicity we shall refer to the ensemble of parameters as the parameter

vector θ), which is superimposed to additive gaussian noise (just like in equation

3.5): the CRLB affirms that the error covariance matrix of any parameter vector

θ̂, evaluated by means of an unbiased estimator, is always larger than or equal to

the inverse of the Fisher information I at θ:

Rij =
〈(

θ̂i − θi

) (
θ̂j − θj

)〉
≥ I−1

ij , (3.14)

where the elements of Iij are calculated by [48]:

Iij =

〈
∂2

∂θi∂θj

(Λ (x|θ)− Λ (x|0))

〉
, (3.15)

and Λ(x|θ) is the logarithmic likelihood introduced in equation 3.6.

Provided that some general conditions are fulfilled, the CRLB can be written

as [48]:

σ2
θ̂
≥ 1

ω2
0SNR2 + C/σ2

, (3.16)

where C is a constant depending only on the shape of θ̂ distribution, σ is the

standard deviation of x and ω0 is the so-called Gabor bandwidth (or the rms

bandwidth) of the signal f :

ω2
0 =

∫
ω2 |f (ω)|2dω∫ |f (ω)|2dω

. (3.17)

Though the CRLB is generally the easiest to be evaluated, it does not charac-

terize performances outside the asymptotic region, where estimators are unbiased

and, as other local bounds, it does not consider any a priori information about

the parameter space. Further more, it does not take into account the well-known

”threshold effect” of time estimators, which is present in narrowband systems [59].

In fact, for SNR below a certain threshold, the MSE increases rapidly as the SNR

decreases: in this region, the MSE exceeds the CRLB, mainly due to the peak

ambiguity error.

These limitations are clearly visible on figures 3.1 and 3.2. Only if the gw signal

is well above the background noise, an independent estimation of A and TOA is

then allowed. In such case, the Fisher information matrix provides bounds on the

variance of unbiased estimators via the CRLB, but theoretical extension of this
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local bound to biased estimators is not trivial [58]. As a consequence, we can

resort to a different kind of lower bounds: the Bayesian bounds.

3.4.2 Weiss-Weistein Lower Bound

The Weiss-Weinstein Lower Bound (WWLB) is a Bayesian bound which assume

that the parameter is a random variable with known a priori distribution. There

is no restriction on the class of estimators to which they apply (i.e. like for CRLB)

and they can easily incorporate any prior information about parameters to be

estimated.

By assuming that the parameter θ represents the time of arrival to be estimated

and that it is uniformly distributed in an interval 0 ≤ θ ≤ D, the WWLB can be

written as [60]:

σ2
θ̂
≥ max

0≤θ≤D
J (h) , (3.18)

where

J (θ) =





1
2
θ2(1− θ

D )
2
e−

SNR
2 [1−R(θ)]

1− θ
D
−(1− 2θ

D )e−
SNR

4 [1−R(2θ)]
, 0 ≤ θ ≤ D

2

1
2
θ2

(
1− θ

D

)
e−

SNR
2

[1−R(θ)], D
2
≤ θ ≤ D

(3.19)

and where R is the normalized signal autocorrelation function. Note that the

WWLB takes into account the peak ambiguity and, except for the SNR, it depends

only on the a priori known interval D and the autocorrelation function.

41



42



Chapter 4

Methods of gw network data

analysis

There are many reasons to combine data from geographically separated detectors:

• a better sensitivity with respect to a single detector, since the network noise

behaves as almost ”isotropic”, while gravitational signals are directional;

• higher levels of confidence in the detection and characterization of a signal;

• spurious background reduction;

• the possibility to estimate the direction of arrival and polarization of the

incoming gravitational wave.

Ideally, under the hypothesis of knowing the gw waveform in advance, one

would apply an optimal filter on the output from a single detector and apply the

χ2-test on the filtered output. However, given current astrophysical predictions

and gravitational wave detector sensitivity curves, one expects the signal-to-noise

ratios (SNRs) and rates of burst gravitational waves to be very low. At low SNRs

(for instance SNR< 15 for the AURIGA first run), there is a large ambiguity in

the estimation of the burst parameters, namely arrival time and amplitude [61].

This uncertainty makes genuine burst gravitational wave signals almost indistin-

guishable from events arising from unknown environmental noise sources. In fact,

the χ2-test does not have enough statistical power to identify the signal parame-

ters in the low SNR regime, as previously shown for resonant-mass detectors by

Baggio et al. [62]. Thus, to make a distinction between signals and noise, one must

cross-correlate data from multiple detectors to reduce contributions from spurious
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environmental noise and to increase the SNR of gravitational wave bursts. Hence,

methods for performing multi-detector burst searches and the choice of data ex-

change parameters are crucial for the burst gravitational wave search pipeline.

Burst gravitational wave searches on data from multiple, widely-spaced detec-

tors have already been performed [63], [64]. These searches have put upper-limits

to the rates and amplitudes of burst gravitational waves impinging on the earth.

An example is the International Gravitational Event Collaboration (IGEC), which

developed a framework composed of data format and analysis tools that allowed a

thorough analysis of the triggers from the burst search pipeline of 5 resonant-mass

detectors [65] [66]. Though this framework allows for a statistically robust analysis,

it is currently restricted to the analysis of triggers from resonant-mass detectors.

Astone and Schutz [67] have discussed the idea of narrowbanding interferom-

eters for the purpose of performing a burst search between interferometers and

resonant-mass detectors. The drawback to this method is that narrowbanding

reduces the sensitivity of the intereferometers to burst signals, but it could be use-

ful for those astrophysical templates (e.g. Quasi-Normal ringdown of perturbed

Black-Holes) whose spectral power is concentrated within a narrow band.

In this chapter, we describe briefly four methods for performing burst searches

between interferometers and resonant-mass detectors. The first method is a coinci-

dence search and is an extension of the IGEC framework to include the parameters

from interferometer burst search algorithms (also known as Event Trigger Gen-

erators or ETGs). The second method is the externally triggered search method

previously proposed by Finn, Romano and Mohanty [68]. The third method is a

consistency method based on the r-statistic of the cross-correlation of two detec-

tors. The fourth method is what we call a ”Coherent Network Search” and it has

been split in two subsections: the template-based search and the templateless (or

”blind”) search. In figure 4.1, we show a block scheme of the various possibilities.

4.1 Coincident trigger search

The most straightforward approach to a burst gravitational wave search is to look

for coincident excitations between faraway detectors. For such an analysis, candi-

date burst event lists are independently generated for each detector with a threshold

that extract the larger SNR excitations. A search for coincident arrival times is

then performed. In addition to correlating the event arrival times, one may also

apply additional constraints on other signal parameters such as the amplitude or

the orientation of the detector with respect to a fixed direction in the sky for non
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Figure 4.1: Block scheme of a network analysis.

isotropic source distribution, e.g. Galactic sources.

This analysis has been used in several searches in the past and recently by

the IGEC [63] [64] [65], [66]. The IGEC has established a complete framework for

exchanging data in view of performing a coincidence search. Under this framework,

it is mandatory to exchange the time of occurrence, amplitude and duration of a

trigger and the time spans of detector operation [69]. In addition, one has to

exchange the variance of the noise distribution as well as its skewness and curtosis

(3rd and 4th moments).

For a burst gravitational wave search between triggers from resonant-mass and

interferometric detectors, we would have to extend this framework in order to

include parameters from interferometer ETGs by exchanging information about

the frequency band over which an event stretches.

By using the higher order moments, Bienayme’s inequality [48] allows an es-

timate of the false alarm probability and detection efficiency of each event, as a

funcion of the corresponding SNR [65], [66]. Although the Bienamye’s inequal-

ity is a non-parametric test which gives a very conservative estimate of the false

alarm probabilities, it provides more statistical robustness in the presence of non-

stationary and/or non-gaussian noise.

However, in order to perform such a trigger-based coincidence search between

resonant-mass and interferometric gravitational wave detectors, we would have

to fully characterise the different search algorithms so that we could exchange
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homogeneous definitions of signal parameters such as amplitude and SNR. So one

needs to perform Monte Carlo simulations where the effect of each burst search

pipeline on particular signal templates is studied. Such simulations and software

signal injections in the detector noise are currently being done by the LIGO Burst

Analysis Group and the AURIGA group.

Another approach to this method could be to apply a new burst search algo-

rithm that restricts interferometer search to resonant-mass detector’s band and

apply the optimal filter for the resonant-mass detector. This way, we ensure that

the same quantities are compared when searching for coincidences. The required

filter should express the amplitude of an event observed by an interferometer in

terms of one observed by a resonant-mass detector. However, such techniques are

not straightforward and beyond the purpose of this paragraph.

4.2 Externally triggered search

The basic idea which lies beneath the second method of multi-detector burst search

is to use a detector with less triggers (such as gamma ray bursts and resonant-

mass detectors) to trigger the cross-correlation of data from detectors with a high

trigger rate (such as the current interferometeric detectors). This is the externally

triggered search laid out in Finn, Romano and Mohanty [68].

For this search, the cross-correlation statistic of the output of two gw detectors is

calculated for a time window T when a trigger is observed. That is, one calculates

the quantity

X =

∫ T

0

∫ T

0

dtdt′x1(t1,γ − t)Q(|t− t′|)x2(t2,γ − t′) , (4.1)

where T is the time window around a bar trigger within which a trigger is expected

in the interferometer and Q is the filter kernel. The details concerning the latter

filter are discussed in [68]. Here xα and tα,γ are the data samples and the arrival

time of the bar trigger for the α-th detector respectively.

This quantity is calculated also for periods of time in which no bar triggers are

observed. A statistically significant difference between on- and off -source correla-

tions indicates the presence of a signal. Finn, Romano and Mohanty suggested the

use of Student’s t-test as a statistical tool for the difference between the two distri-

butions. However, for the sake of robustness, Tricarico et al. [70] recommended the

use of the Mann-Whitney u-test, which is useful for systems affected by unmod-

elled noise backgrounds and/or quasi-stationary noises. The u-test only demands
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that the shapes of the two distributions (off and on populations) are identical and

that the two statistical samples are independently drawn. If the requirements of

the Mann-Whitney test are met, then the one-tailed z-test can be applied on its

outcome u.

4.3 Cross correlation

To fully exploit the network sensitivity, we can resort to a standard technique: the

linear time-domain cross-correlation. This is particularly true in the case of events

occurring simultaneously on two different detectors.

Such approach is the base of a coherent consistency test on the coincident

triggers produced by LIGO ETGs [71]. In fact, the LIGO interferometers have

similar sensitivity curves and a relatively small mis-alignement: when coping with

similar waveforms, the method is greatly simplified.

Cross-Correlation for coherent analysis of coincident event is a blind search,

in fact, it makes no a priori assumptions on the incoming gravitational signal

waveform. Furthermore, it allows suppression of false events without reducing the

detection efficiency of the pipeline.

Given two finite series {xi} and {yi} with i = 1, ..., N , we recall the well-known

linear correlation coefficient r as:

r =

N∑
i=1

(xi − x̄) (yi − ȳ)

√
N∑

i=1

(xi − x̄)2

√
N∑

i=1

(yi − ȳ)2

. (4.2)

This latter quantity measures the degree of correlation between the two time

series: a value |r| close to unity means a complete correlation (or anti-correlation);

while a value |r| close to zero means that the two series are uncorrelated.

Two hypotheses : H0, ({xi} and {yi} are uncorrelated); H1 ({xi} and {yi}
are correlated). In case of null hypothesis, the r-statistic is normally distributed

around zero, with standard deviation σ = 1/
√

N , N being the degrees of freedom.

The significance S of null hypothesis is the probability that |r| is larger than what

actually measured in case of H0: S turns out to be

S = erfc

(
|r|

√
N

2

)
, (4.3)
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where erfc is the Complementary Error Function 1.

The Confidence C on the rejection of H0, i.e. on retaining H1, is then:

C = − log10(S). (4.5)

4.4 Coherent network search

Finally, we discuss the coherent network search method. With this method, the

outputs from all the detectors in the network are linearly and coherently combined

using their phase information: either by maximizing a network likelihood for the

presence of a specified signal in the different data streams or by an excess power

search. If noise from the individual detectors of the network are not correlated,

then the probability of observing a specific set of data on the different detectors

is simply proportional to the sum of the log-likelihood ratios of each detector.

The method can be seen as a vector matched filter and, under the assumption of

gaussian noise, the coherent analysis can be made optimal in the sense of Wiener

filter theory.

4.4.1 Network geometry

We adopt the following reference frames:

• a network frame (X,Y,Z), centered on Earth: the Z axis aligned along the

geographical north, the X axis pointing at the Γ point of Aries and Y chosen

to have a left-hand frame. Any source direction in the sky is then found

through the polar angles (θ,φ);

• local frames (Xα, Yα, Zα), which are the coordinate frames attached to the

detectors of the network. For bar detectors, we choose n̂ unit vector along

the bar axis, while for interferometers m̂1 and m̂2 unit vectors lying along

the arms;

• wave frame, which has the Zw axis aligned along the propagation direction

of the wave. Xw and Yw are the axes of the polarization (Ψ) ellipse of the

wave. We then introduce the wave tensor, Wij.

1

erfc(x) =
2√
π

∞∫

x

e−t2dt (4.4)
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Rotations of coordinates from one frame to the other are expressed by means

of the Euler angles of an orthogonal rotation matrix O(θ, φ, ψ):

xα = O (φα, θα, ψα) · xnetwork

xw = O (θ, φ, Ψ) · xnetwork,
(4.6)

where φα, θα and ψα are the Euler angles between the local and the network frames;

given the detector latitude λ and longitude β, the orientation ψα, the earth angular

velocity ω⊗ and the Universal Time Coordinate tUTC , these angles can be written

as:

{
θα = ω⊗tUTC

φα = π/2− β
(4.7)

Similarly, θ, φ and Ψ are the Euler angles between the wave and the network

frames; these angles are directly related to the source coordinates Right Ascension

RA and declination δ through the relations:

{
θ = δ + π/2

φ = R.A.− π/2
(4.8)

As the gw signal at α-th detector is the projection of the gw wave tensor over

the detector tensor, we write the geometrical factor, the so-called beam pattern

function of α-th detector as:

sα (θ, φ, Ψ) =

{
ninjWij (for bars)(
mi

1m
j
1 −mi

2m
j
2

)
Wij (for interferometers)

(4.9)

The detector output Xα(ti) is then a function of the signal template fα and the

the antenna pattern sα, and is given by:

Xα (ti) = Asα (θ, φ, Ψ) fα

(
ti − t0 − r̂α · k̂

c

)
. (4.10)

where A is the wave amplitude, sα (θ, φ, Ψ) is the previously defined beam pattern

function, and fα is the gw waveform convoluted with the detector transfer function;

the function is time-shifted of the delay at the α-th detector with respect to the

Network frame.

4.4.2 Template-based search

We begin calculating the log-likelihood function Λ of the network with respect to

an impulsive plane wave of amplitude A impinging the detectors, then we look for
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Figure 4.2: Reference frames: 1) the incoming wave reference frame, 2) the detector

local frame and the earth centered network frame.

the minimum value of Λ over the burst gravitational wave parameters. This is

equivalent to the χ2 statistic of the data of the detectors in the network obtained

by a fit to a given planar gravitational wave burst. The network log-likelihood is

given by

χ2 ≡ Λ(A, t0, k̂, Ψ) =
1

2

N∑
α=1

MN∑
i,j

µα,ij [xα (ti)−Xα (ti)] [xα (tj)−Xα (tj)] , (4.11)

where µα,ij is the inverse of the cross-correlation matrix of the α-th detector noise,

xα(ti) is the data set of length MN to be searched for the signal template. For any

given sky direction k̂, arrival time t0 and polarization Ψ , the logarithmic likelihood

of the network has to be minimized. It can be shown that Λ reaches a minimum

when the amplitude A is simply the weighted sum of the optimal estimates on the

single detectors [62]





Aopt (t0, ϑ, ϕ, Ψ) =
N∑

α=1

Aα(t0,ϑ,ϕ,Ψ)
σ2

α

/
N∑
α

1
σ2

α

σα =

(
1
2π

+∞∫
−∞

|fα (ω)|2 /Sα (ω) dω

)−1/2

,

(4.12)
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where σα is the standard deviation of the noise in the α-th detector and Sα(ω)

is the spectral density of the noise. From the above equation, one can see that

the weighted sum automatically selects which detector in the network to consider

in the analysis. This procedure would reduce the contribution of less sensitive

detectors, as far as the signal template is concerned.

To properly determine the amplitude, arrival time and χ2 estimators, we have to

assume that the detector noise is a linear superposition of deterministic signals,

either gw or environmental events, and quasi-stationary noise. The gaussianity of

the data can be checked a priori by performing Monte Carlo simulations where

signals with known waveforms are injected into the detector noise. The hypothesis

testing of signal detection with the network is based on the overall χ2. The rejection

of the null hypothesis is usually achieved by means of a threshold crossing of some

signal parameters (eg. amplitude), which corresponds to the sole (and unavoidable)

non-linear operation within the framework of the proposed search. The single

threshold value will also fix the global false alarm and false dismissal probabilities.

A coherent network search can be set up as follows:

1. Any detector in the network can raise a trigger;

2. All the detector in the network should exchange a short stretch of whitened

data wαi around the trigger, together with the adopted whitening filter;

3. For a given template, the χ2 statistic of the network can be then determined

substituting the values calculated in equation 4.12 into the expression

χ2 =
N∑

α=1

Mα∑
i

w2
αi

ς2
α

− (Aopt (t0, ϑ, ϕ, Ψ))2

σ2
opt

, (4.13)

where ςα and σopt are the standard deviation respectively of the Aopt whitened

data wαi;

4. Once the likelihood function is calculated, two thresholds (decided through

signal injections studies) can be applied to the χ2 and A2
opt outcomes, to

determine the presence or absence of a genuine gravitational wave signal.

To further test gravitational wave events versus spurious excitations, we can

resort to the distinctive properties of the Riemann tensor (transverse and trace-

less) associated to a planar gravitational wave. It can be shown that there are

3 quantities, the eigenvalues of the polarization tensor Wij, which are invariant
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under the group of spatial rotation O(3) [72]. These quantities are basically the

linear, quadratic and cubic combinations of the detector outputs. They are random

variables whose distributions can be calculated by means of a Monte Carlo, which

uses the noise distributions and orientation information of the individual detectors

in the network.

4.4.3 Non-Template search method

As it is extremely difficult to obtain trustful gravitational waveforms, it may be

necessary to use blind searches, such as the excess power method [53] or the

TFCLUSTER [52]; both of them rely on the same simple concept: one has to

compare the power of the data in a given time-frequency domain to the estimated

noise power. This kind of search is non-linear but it can be demonstrated to be

optimal under the hypothesis that the signal prior is constant [54]. Since these

techniques do not require the signal to have a specific form, random noise glitches

are much more likely to meet the detection criteria than a signal search such as

the matched filter.

A possible implementation of a coherent network gw analysis is to combine all

data streams as a synthetic response of the network [73], [74]:

Y =
N∑
i

aiT (τi)yi, (4.14)

where ai is a set of real coefficients to be calculated, τi are the time shifts of the

detectors with respect to the network frame,T is the time-shift operator, yi is the

data of the i-th detector and N is the number of detectors in the network.

The search algorithm is defined as follows:

1. for any given gw incoming direction θ,φ and polarization Ψ, ai and τi are the

solutions arising from the minimization of a system of equations constrained

to obtain the maximum SNR;

2. with the calculated coefficients the synthetic response Y is formed;

3. the network power P = |Y|2 is then calculated and taken as detection statis-

tic;

4. the largest among all the P -values, which cross a threshold, fixes the energy,

the incoming direction and the polarization of the candidate event.
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This method is an optimal generalization of the blind searches yet developed for

single detectors, such as the Excess Power method [53] and TFclusters [52], so that

it can process coherently data from a network of detectors.

4.5 Summary and Discussion

The search for coincidence triggers is the most straightforward method one could

use to search for burst gravitational waves. This analysis has been widely used in

the past and is well understood. However, the problem of comparing homogeneous

trigger parameters among interferometers and resonant-mass detectors is quite

complex and requires more investigation.

The externally triggered search, on the other hand, would use triggers from

resonant-mass detectors to trigger a search in two or more interferometers. It makes

no assumption about the waveform of the gravitational wave signal. Moreover,

because this search is comparing the statistics of a large number of cross-correlated

segments, it is in effect digging into the noise of interferometric detectors.

The Cross-Correlation method has been already applied, as a consistency test,

to the data around the events of the three LIGOs, but a generalization to non-

parallel detectors with different sensitivity curves is still not accomplished.

The use of a sole threshold makes the coherent network search an extremely

powerful method. A single threshold greatly increases the overall efficiency of

the network. It overcomes the intrinsic limits connected with the ambiguity of

parameter estimation in single detectors and allows for a stronger χ2 statistical

analysis. The efficiency of ”OR” logic network is greatly increased with respect to

an ”AND” logic one, because it allows to detect even those signals which happen

to cross the threshold in only one detector in the network, to be detected.
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Chapter 5

Conclusions and perspectives

The second AURIGA run is proving the feasibility of a nearly quantum-limited

(few hundreds of ~) gravitational wave detector. The sensitivity and reliability

of this second-generation acoustic detector could be compared with the working

interferometers’ ones.

Moreover, two different analysis pipelines have been implemented in AURIGA

data analysis, corresponding to different approaches to the problem of detection:

• the so-called ”standard” analysis, which is based on the matched filter to

enhance a given waveform in the data stream and make use of devised algo-

rithms to select candidate events and to estimate their parameters;

• the blind search, which looks for a power excess in a given time window and

rely on a quadratic form of the data as a detection statistic.

The performances of these two pipelines of Event Trigger Generators have been

tested on simulated data in case of gaussian stationary noise. Such test has been

carried out either for the timing accuracy and the low biases on the estimated

amplitudes or for the False Alarms and False Dismissals.

This approach, although simplified, has led to a novel and precise characteri-

zation of the two analyses within the framework of the new hardware setup.

However, unless that new hardware upgrades improve the AURIGA detector

behavior as for the non-stationarity, both pipelines analyses will suffer from big

losses in terms of duty cycle. In fact the analysis will be restricted to well operating

periods. Indeed large excesses of false alarms, mainly due to spurious environmen-

tal noises, will occur.
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As a consequence, the major task to be accomplished is to test the two pipelines

in real non-stationary conditions, as regards either the adaptiveness and the ro-

bustness of parameters estimation or the characterization of False Alarm rates and

False Dismissals.

The encouraging results yet achieved by this initial phase of the new detector

AURIGA and the new implementations of data analysis methods will hopefully

produce an afterthought on ground-based gw research towards a more coordinated

international effort.

In this perspective, multi-detector data analysis methods will soon play a lead-

ing role in the gw searches.

This thesis work, far from solving the major problems related to a network

data analysis, such as the combination of information from different detectors, is

intended to be a brief review of the main possible multi-detector methods. It is of

paramount importance that as soon as possible a large international collaboration

be set to implement a multi-detector data analysis.

Whether this search will be a simple coincidence analysis among event lists

from different detectors, as already done by IGEC for resonant bars [66], or it

will have some ”flavor” of coherent analysis, is yet not clear, mainly depending on

the complexity of the problem, but also on the mutual relationships among the

different groups.

Overall the results given in this thesis push towards the implementation of a

coherent blind search, which should exploit the full potentials of a network of gw

detectors: future work will be devoted to this aim.
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Appendix A

ROC (Receiver Operating

Characteristic curves )

ROC curves were developed in the 1950’s as a by-product of research into mak-

ing sense of radio signals contaminated by noise, hence the name receiver-operating

characteristic. More recently they have been used by medical researchers in decision-

making statistics. Central to the idea of ROC curves is the idea of a cutoff level.

Let’s imagine that we have two statistical populations.

A good algorithm of decision will have both a small fraction false dismissals,

FD, as a small fraction false alarms, FA. By varying a threshold on some param-

eter of a known population, and measuring the error on the outliers, a Receiver

Operating Characteristics curve (ROC-curve) is obtained. This curve shows how

the fraction of false alarms varies for varying fraction false dismissals. The smaller

these fractions are, the more this algorithm is to be preferred. Traditionally the

acceptance (1-FD) is plotted versus the FA probability, as shown in figure 1.

Although the ROC curve gives a very good summary of the performance of

an algorithm, it is hard to compare two ROC curves. One way to summarize a

ROC curve in a single number, is the Area Under the Curve, AUC. This integrates

the fraction FA over varying thresholds (or equivalently, varying fraction of FD).

Larger values indicate a better separation between target and outliers. Note that

for the actual application of the algorithm a specific threshold (or equivalently

fraction of FD) has to be chosen. That means, that only one point of the ROC

curve is used. It can therefore happen that for a specific threshold an algorithm

with a lower AUC might be preferred over another with an higher AUC, but with

a larger fraction of FA for that specific threshold.
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Figure A.1: An example of a ROC curve. Two distributions: target (red) and outliers

(blue). Moving the threshold along the parameter axis, you get different fractions of FA

and FD: by drawing these ordered couples of values (FA, 1-FD) one produces the ROC

curve.
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Appendix B

Karhunen-Loève expansion

B.1 Introduction

A well-known result of the theory of integral equations, is that the correlation

matrix, R, is bounded, symmetric and positive definite. Thus, it has a spectral

decomposition and can be written in terms of its eigenvalues, λn, and eigenvectors,

ϕn, namely

Rαβ =
N∑

n=1

λnϕ
n
αϕn

β (B.1)

where N is the dimension of the matrix and

Rαβϕn
β = λnϕn

β (B.2)

with the eigenvalues λn > 0. Due to the symmetry and the positive definiteness

of the covariance kernel, its eigenfunctions are mutually orthogonal with respect to

both the usual inner product and with respect to the inner product derived from

the covariance function and form a complete set; if we choose the eigenvectors to

be orthonormal, we set a basis in the space RN and any data vector lasting less

then N samples can be written as

x =
N∑

n=1

cnϕn (B.3)

which is the so-called discrete Karhunen-Loève Expansion (The expansion was

derived independently by a number of investigators (Karhunen, 1947; Loève, 1948;

Kac and Siegert, 1947). ) [48], [76], [77] and the coefficients, cn are uncorrelated.
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As for the Fourier expansion, which is a special case of KLE, the Parseval’s theorem

holds,

x · x =
N∑

n=1

c2
n (B.4)

and it is immediate to show that

E[cncl] = λnδnl = σ2
n (B.5)

E[x · x] =
N∑

n=1

Rnn =
N∑

n=1

λn. (B.6)

This expansion has been used extensively in the fields of detection, estimation,

pattern recognition, and image processing as an efficient tool to store random

processes .
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