

AN UPPER LIMIT ON THE TAU NEUTRINO MASS

Richard D. Ehrlich
CLEO collaboration
Cornell University
Ithaca NY 14853
USA

We use the distribution of total charged energy in three-track τ decay to place an upper limit on the mass of the τ neutrino. Including both statistical and systematic uncertainties, the 95% confidence limit is $m_\nu < 85$ MeV/c².

I. Introduction

Neutrino masses have assumed increasing prominence in recent years. Indeed, several of this workshop's major topics ; e.g., dark matter, the solar neutrino deficit, and double β -decay are deeply connected with the possibility of non-zero mass. Because the τ lepton at 1784 Mev/c² is the most massive charged lepton, one might expect its neutral partner, ν_τ , to be the most massive neutrino. In fact, in the class of theories (see-saw mechanism) where the neutrino mass scales as the *square* of the charged-lepton mass¹⁾, an electron-neutrino mass of 20 eV would imply a ν_τ mass of 125 MeV/c².

Several earlier experiments have presented limits on m_ν ²⁻⁵⁾; here I report results based on a large sample of $\tau^+\tau^-$ events collected at the Cornell Electron Storage Ring (CESR), using the CLEO detector.⁶⁾ The data sample, acquired during 1982-1984, has been used in CLEO's recent determination of the Michel parameter⁷⁾ in τ decay. Both that work and an earlier one⁸⁾ use the characteristic 1-vs.-3 $\tau\tau$ topology (see fig. 1) and discuss details of the event selection criteria. Because of space limitations, these will only be sketched herein.

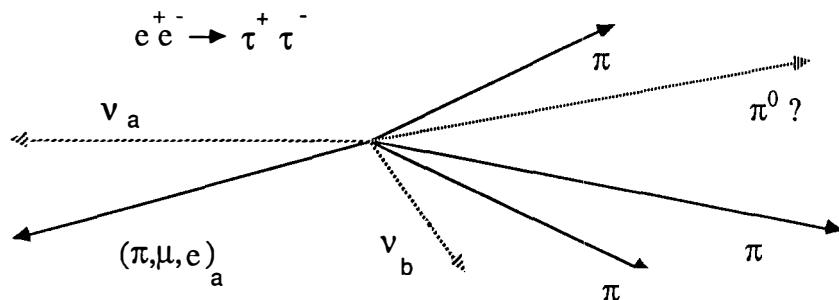


Figure 1 . 1-vs.-3 topology for $\tau\tau$ events .

II. Characteristics of the sample

An integrated luminosity of 128.3 pb⁻¹, accumulated over a range of center-of-mass energy $10.34 < W < 11.18$ GeV, yielded 9135 $\tau\tau$ events of the correct topology which passed the above-mentioned criteria, which are designed to reject QED and hadronic backgrounds. No attempt was made to reject events with one or more photons/ π^0 's. This minimized the dependence upon CLEO's shower detector, which has c.a. 50% solid angle coverage and only modest resolution. Our primary experimental tools were the 1.0 Tesla solenoid and the CLEO drift chamber, which with >90% solid angle and $\Delta P/P = 1.2\% * P(\text{GeV}/c)$, provided high efficiency tracking

and good resolution in the total energy and invariant mass of the 3-track decay. A higher-purity subsample with an identified lepton (e or μ) as the single track was available to allow crosschecks and internal determination of the background fraction and 3-track invariant mass distribution (See Fig.2)

III. Method of analysis and Monte Carlo simulation

The "neutral energy" $E_n = E_{beam} - E_{3\pi}$ is computed for each 3-track decay, where E_{beam} is the beam energy and $E_{3\pi}$ is the sum of the 3-track energies, assuming the tracks to be pions. The E_n spectrum is nearly independent of the particular beam energy. It does depend on the masses of the missing neutrino and of the hadronic system. The low E_n endpoint (the edge of phase space) varies directly with m_ν ; for somewhat larger E_n the spectral shape depends on a higher power of m_ν . For very large E_n the spectrum is featureless and more affected by missing pions than by m_ν .

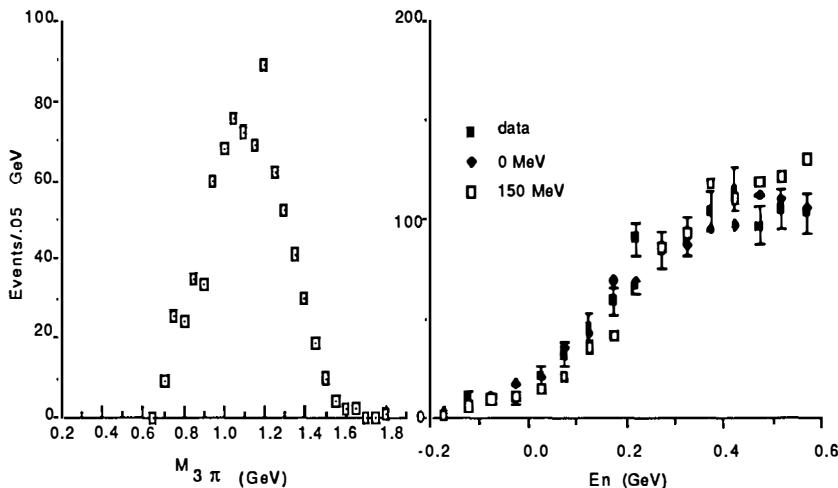


Figure 2. Invariant mass distribution for lepton-tagged events with all particles treated as pions.

Figure 3. E_n spectra for data and for two values of m_ν : 0 (diamonds) and 150 (closed squares).

The E_n spectrum from the data is compared to Monte Carlo simulations in which m_ν is assigned the values 0, 25, 50, 100, and 150 MeV/c². These simulations include realistic branching fractions into ρ 's, A_1 ; etc., initial state radiation down to 5 MeV, and a 22% hadronic background, determined from the relative R values and trigger efficiencies. Various distributions (decay angle, invariant mass) are checked for conformity to the data. The events are weighted so as to yield

3-track invariant mass spectra which are constrained to agree with that derived from the lepton-tagged subsample (Fig. 2). In the comparisons, the "theoretical" distributions are normalized to the total data in the fitted region. Figure 3 shows the two cases of $m_\nu = 0, 150 \text{ MeV}/c^2$ compared to the data, for the range $E_n < 0.6 \text{ GeV}/c^2$.

IV. Results

The data are fitted for four ranges of E_n . For each case χ^2 is plotted versus m_ν and the minimum is found from a parabolic fit. The statistical error in m_ν is found from the curvature of the parabola in the usual way. Averaging these results gives $m_\nu = 31 \pm 25 \text{ MeV}/c^2$ (statistical). Dominant systematic errors are indicated as follows: 1) variation with fitted region (over and above that expected from statistics), $\pm 15 \text{ MeV}/c^2$, 2) absolute momentum scale, $\pm 8 \text{ MeV}/c^2$, 3) π^0 fraction, $\pm 7 \text{ MeV}/c^2$, 4) errors in hadronic mass distribution, $\pm 5 \text{ MeV}/c^2$. Combining errors in quadrature yields $m_\nu = (31 \pm 25_{\text{stat}} \pm 20_{\text{sys}}) \text{ MeV}/c^2$. Following the Particle Data Group procedures, we extract a 95% confidence limit $m_\nu < 85 \text{ MeV}/c^2$. This value is of comparable sensitivity and in agreement with other recent measurements of m_ν .

V. References

1. See, eg., M. Gell-Man, P. Ramond, and R. Slansky in Supergravity, P. van Nieuwenhuizen and D. Z. Freedman eds. (North Holland Publishing Amsterdam, 1979)
2. W. Bacino et al., Phys. Rev. Lett. **42**, 749 (1979)
3. C. Matteuzzi et al., Phys. Rev. Lett. **52**, 1869 (1984), Phys. Rev. D **32**, 800 (1985); P. Burchat et al., Phys. Rev. Lett. **54**, 2489 (1985)
4. S. Abachi et al., Phys. Rev. Lett. **56**, 1039 (1986)
5. H. Albrecht et al., Phys. Lett. **163B**, 404 (1985)
6. D. Andrews et al., Nucl. Instr. and Meth. **211**, 47 (1983)
7. S. Behrends et al., Phys. Rev. D **32**, 2468 (1985)
8. R. Giles et al., Phys. Rev. Lett. **50**, 877 (1983)