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Abstract We propose a renormalizable theory based on the
SU (3)C × SU (3)L ×U (1)X gauge symmetry, supplemented
by the spontaneously broken U (1)Lg global lepton number
symmetry and the S3 × Z2 discrete group, which success-
fully describes the observed SM fermion mass and mixing
hierarchy. In our model the top and exotic quarks get tree
level masses, whereas the bottom, charm and strange quarks
as well as the tau and muon leptons obtain their masses from
a tree level Universal seesaw mechanism thanks to their mix-
ing with charged exotic vector like fermions. The masses for
the first generation SM charged fermions are generated from
a radiative seesaw mechanism at one loop level. The light
active neutrino masses are produced from a loop level radia-
tive seesaw mechanism. Our model successfully accommo-
dates the experimental values for electron and muon anoma-
lous magnetic dipole moments.

1 Introduction

Despite of the excellent agreement of the Standard Model
(SM) predictions with the experimental data, there are sev-
eral problems that do not find explanation within its frame-
work. Among them are the observed pattern of SM fermion
masses and mixing angles, the tiny values of the light active
neutrino masses, the number of SM fermion families, the
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electric charge quantization and the anomalous magnetic
moments of the muon and electron. Addressing these issues
requires to consider extensions of the SM with enlarged par-
ticle content and symmetries. In particular, theories based
on the SU (3)C × SU (3)L ×U (1)X gauge symmetry (3-3-1
models) [1–52] , have received a lot of attention since they
answer some of the open questions of the SM, such as, for
example, the number of SM fermion families and the electric
charge quantization. Adding discrete symmetries and extend-
ing the scalar and fermionic content of such 3-3-1 models
allows addressing the observed SM fermion mass and mix-
ing hierarchy. Furthermore, if one considers 3-3-1 models
where the fermions do not have exotic electric charges, the
third component of the SU (3)L leptonic triplet will be elec-
trically neutral. This allows the implementation of a low scale
linear or inverse seesaw mechanism producing the tiny light
active neutrino masses and sterile neutrinos with masses at
the SU (3)L ×U (1)X symmetry breaking scale, thus making
the model testable at colliders.

Imposing discrete symmetries allows one to forbid tree
level masses arising from the Standard Yukawa interactions
for the SM fermions lighter than the top quark. To generate
such masses, one has to consider heavy vector-like fermions,
mixing with the SM fermions lighter than the top quark, as
well as gauge singlet scalar fields. Their inclusion in the par-
ticle spectrum of the model is crucial for the implementation
of the Universal and radiative seesaw mechanisms needed to
generate the masses for the SM fermions lighter than the top
quark, thus explaining the SM charged fermion mass hierar-
chy. In addition, the heavy vector like leptons can provide an
explanation for the anomalous electron and muon magnetic
moments, which is not given within the context of the SM.
A study of such g − 2 anomalies in terms of New Physics
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and a possible UV complete explanation via vector-like lep-
tons is performed in [53]. Also in Ref. [54], it was shown
that the g − 2 anomalies can be explained using a minimal
supersymmetric SM assuming a minimal flavor violation in
the lepton sector. Theories involving extended scalar sector
[53–70] as well as vector like leptons [71], heavy Z ′ gauge
bosons [51,72], and conformal extended technicolour [73]
have been proposed to explain the g − 2 anomalies. In this
work we will consider a renormalizable theory based on the
SU (3)C × SU (3)L ×U (1)X gauge symmetry, supplemented
by the spontaneously broken U (1)Lg global lepton number
symmetry and the S3 × Z2 discrete group. We choose S3

symmetry since it is the smallest non-Abelian discrete sym-
metry group having three irreducible representations (irreps),
explicitly, two singlets and one doublet irreps. This symme-
try has been shown to be useful in several extensions of the
SM, for obtaining predictive SM fermion mass matrix tex-
tures that successfully describe the observed SM fermion
mass and mixing pattern [12,19–21,74–103] . In the pro-
posed model, the top and exotic quarks get tree level masses
whereas the masses of the bottom, charm and strange quarks
as well as the tau and muon charged lepton masses are pro-
duced from a tree level Universal Seesaw mechanism. The
masses for the first generation SM charged fermions are gen-
erated from a one loop level radiative seesaw mechanism
mediated by charged vector like fermions and electrically
neutral scalars. The light active neutrino masses are produced
from a one loop level radiative seesaw mechanism. Unlike the
3-3-1 models of Refs. [19–21,31,32,37,42,45,50] , where
non renormalizable Yukawa interactions are employed for the
implementation of a Froggat Nielsen mechanism to produce
the current SM fermion mass and mixing pattern, after the
discrete symmetries are spontaneously broken, our proposed
model is a fully renormalizable theory with minimal parti-
cle content and symmetries where tree level Universal and a
one-loop level radiative seesaw mechanisms are combined
to explain the observed hierarchy of SM fermion masses
and fermionic mixing parameters. Furthermore, unlike Refs.
[19–21,31,32,37,42,45,50] our current work has an expla-
nation for the electron and anomalous magnetic moments.
In our current model, the charged vector-like leptons which
mediate the tree level Universal and one-loop level radiative
seesaw mechanism that generates the SM charged fermion
mass hierarchy, make contributions to the measured values of
the muon and electron anomalous magnetic moments, thus
providing a connection of the fermion mass generation mech-
anism and the g−2 anomalies, which is not given the models
of Refs. [19–21,31,32,37,42,45,50] . Our model is consis-
tent with the low energy SM fermion flavor data and success-
fully accommodates the experimental values of the muon and
electron magnetic dipole moments.

The content of this paper goes as follows. The model is
introduced in Sect. 2. The model predictions for the muon

and electron anomalous magnetic moments are discussed in
Sect. 3. Section 4 is dedicated to the quark masses and mix-
ings. Lepton masses and mixings are analyzed within the
model in Sect. 5. The generation of neutrino masses is dis-
cussed in Sect. 6 . Conclusions are given in Sect. 7.

2 The model

We consider a renormalizable extension of the 3-3-1 model
with right handed Majorana neutrinos, where the SU (3)C ×
SU (3)L × U (1)X gauge symmetry is supplemented by the
spontaneously broken U (1)Lg global lepton number sym-
metry and the S3 × Z2 discrete group, the scalar sector is
enlarged by the inclusion of several gauge singlet scalars
and the fermion sector is minimally augmented by the intro-
duction of heavy electrically charged vector like fermions.
Such electrically charged vector like fermions are assumed
to be singlets under the SU (3)L gauge symmetry, thus
allowing to easily comply with collider constraints as well
as with the constraints arising from electroweak precision
tests. The left and right handed components of such vec-
tor like fermions have the same transformation properties
under the different group factors of the model thus allow-
ing to build mass terms for these fields invariant under
the SU (3)C × SU (3)L × U (1)X × S3 × Z2 group. The
scalar and fermionic content with their assignments under the
SU (3)C × SU (3)L ×U (1)X × S3 × Z2 group are shown in
Tables 1 and 2 , respectively. The dimensions of the SU (3)C ,
SU (3)L and S3 representations shown in Tables 1 and 2 are
specified by the numbers in boldface. It is worth mentioning
that the set of vector like fermions T̃n (n = 1, 2), Bi and
Ei (i = 1, 2, 3) is the minimum amount of exotic fermions
required to generate the tree level masses via Universal see-
saw mechanism for the bottom, charm and strange quarks as
well as the tau and muon as well as one loop level masses for
the first generation SM charged fermions, i.e., the up, down
quarks and the electron. To implement such tree level Uni-
versal and radiative seesaw mechanisms we have introduced
the gauge singlet scalars ξn (n = 1, 2) and ϕ. In addition,
the remaining gauge singlet scalars σi (i = 1, 2, 3) are cru-
cial to generate the Majorana mass terms necessary to radia-
tively produce the light active neutrino masses. The vector
like fermions mix with the SM charged fermions lighter than
the top quark thus giving rise to a tree level Universal seesaw
mechanism that produces the masses for the bottom, charm
and strange quarks as well as the tau and muon charged lep-
ton masses. The first generation SM charged fermions, i.e.,
the up, down quarks and the electron get their masses from
a one loop level radiative seesaw mechanism mediated by
charged vector like fermions and electrically neutral scalars.
In addition, light active neutrino masses are generated from a
one loop level radiative seesaw mechanism mediated by the
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right handed Majorana neutrinos and the electrically neutral
components of the SU (3)L scalar triplet χ . The smallness of
the light active neutrino masses is attributed to a small mass
splitting of the χ1R and χ1I scalar fields, which originates
from the trilinear term A

(
χ†ησ3 + h.c

)
of the scalar poten-

tial given in Appendix B. Thus, the trilinear coupling A has to
be sufficiently small to provide a natural explanation for the
tiny masses of the light active neutrinos. In Sect. 6 we discuss
a symmetry-based condition for technically natural smallness
of the parameter A. Notice that the U (1)Lg global lepton
number symmetry is spontaneously broken down to a resid-

ual discrete Z
(Lg)

2 by the vacuum expectation value (VEV)
of the U (1)Lg charged gauge-singlet scalars σi (i = 1, 2, 3)
having a nontrivial U (1)Lg charge, as indicated by Table 1.

The residual discrete Z
(Lg)

2 lepton number symmetry, under
which the leptons are charged and the other particles are
neutral, forbids interactions having an odd number of lep-
tons, thus preventing proton decay. The massless Goldstone
boson, i.e., the Majoron, arising after the spontaneous break-
ing of the U (1)Lg symmetry, does not cause problems in the
model because it is a SU (3)L scalar singlet.

In addition, our model does not have fermions with exotic
electric charges. Thus, the electric charge in our model is
defined as follows:

Q = T3 + βT8 + X = T3 − 1√
3
T8 + X . (1)

Furthermore, the lepton number has a gauge component as
well as a complementary global one, as indicated by the fol-
lowing relation:

L = 4√
3
T8 + Lg, (2)

being Lg a conserved charge associated with the U (1)Lg

global lepton number symmetry.
In our model the full symmetry G experiences the follow-

ing spontaneous symmetry breaking chain:

G = SU (3)C × SU (3)L ×U (1)X ×U (1)Lg × S3 × Z2
vχ ,vξ ,vϕ ,−−−−−→

SU (3)C × SU (2)L ×U (1)Lg

vη,vρ−−−→
SU (3)C ×U (1)Q ×U (1)Lg

vσ ,vσ3−−−−→
SU (3)C ×U (1)Q , (3)

where the different symmetry breaking scales fulfill the hier-
archy:

vχ ∼ vξ ∼ vϕ � vη, vρ � vσ ∼ vσ3 , (4)

with v2
η+v2

ρ = v2, v = 246 GeV. We assume that the scale vχ

of spontaneous SU (3)L × U (1)X gauge symmetry break-
ing is about 10 TeV or larger in order to keep consistency
with the collider constraints [104], the constraints from the

Table 1 Scalar assignments under SU (3)C × SU (3)L × U (1)X ×
U (1)Lg × S3 × Z2

χ η ρ ξ ϕ σ σ3

SU (3)C 1 1 1 1 1 1 1

SU (3)L 3 3 3 1 1 1 1

U (1)X − 1
3 − 1

3
2
3 0 0 0 0

U (1)Lg
4
3 − 2

3 − 2
3 0 0 2 2

S3 1′ 1 1 2 1′ 2 1

Z2 −1 1 1 −1 −1 1 1

experimental data on K , D and B-meson mixings [105] and
Bs,d → μ+μ−, Bd → K ∗(K )μ+μ− decays [9,106–109]

In principle, the hierarchical VEV pattern (4), being
unprotected by any symmetry, can be affected by large radia-
tive corrections. The common remedy against this issue is to
assume that our model is embedded into a more fundamental
setup with additional symmetries protecting the hierarchy up
to the Planck scale. The well-known examples of such setups
are supersymmetry and warped five-dimensions. Formula-
tion of the corresponding ultraviolet completion is beyond
the scope of the present paper and will be done elsewhere.
One can also be concerned about the classical stability of
the scalar potential at the vacuum configuration (4). The lat-
ter must belong to the minimum of the model scalar poten-
tial shown in Appendix B. This means that the scalar mass
squared matrices in the vacuum ( 4) are positively definite.
Having at our disposal a large number of free parameters in
the scalar potential (B1) it is reasonable to expect that this
condition can be easily satisfied in a wide range of the model
parameter space. In Sect. 3 we show that this is true for the
benchmark point (17) used for the analysis of (g − 2)e,μ.

The SU (3)L triplet scalars χ , η and ρ can be expanded
around the minimum as follows:

χ =
⎛

⎜
⎝

1√
2

(
χ0

1R + iχ0
1I

)

χ−
2

1√
2
(vχ + ξχ ± iζχ )

⎞

⎟
⎠ ,

η =
⎛

⎜
⎝

1√
2
(vη + ξη ± iζη)

η−
2

1√
2

(
η0

3R + iη0
3I

)

⎞

⎟
⎠ ,

ρ =
⎛

⎜
⎝

ρ+
1

1√
2
(vρ + ξρ ± iζρ)

ρ+
3

⎞

⎟
⎠ , (5)

The SU (3)L fermionic antitriplets and triplets are

QnL =
⎛

⎝
Dn

−Un

Jn

⎞

⎠

L

, Q3L =
⎛

⎝
U3

D3

T

⎞

⎠

L

, LiL =
⎛

⎝
νi
li
νci

⎞

⎠

L

,

n = 1, 2, i = 1, 2, 3. (6)
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Table 2 Fermion assignments under SU (3)C×SU (3)L×U (1)X×U (1)Lg ×S3×Z2. Here BL ,R = (
B1(L ,R), B2(L ,R)

)
, EL ,R = (

E1(L ,R), E2(L ,R)

)
,

LL = (
L1(L), L2(L)

)
, NR = (

N1(R), N2(R)

)
, n = 1, 2 and i = 1, 2, 3

QL Q3L UnR U3R Di R TR JR T̃L T̃R BL BR B3L B3R LL L3L li R EL ER E3L E3R NR N3R

SU (3)C 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1

SU (3)L 3 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1

U (1)X 0 1
3

2
3

2
3 − 1

3
2
3 − 1

3
2
3

2
3 − 1

3 − 1
3 − 1

3 − 1
3 − 1

3 − 1
3 − 1

3 −1 −1 −1 −1 0 0

U (1)Lg
2
3 − 2

3 0 0 0 −2 2 0 0 0 0 0 0 1
3

1
3 1 1 1 1 1 −1 −1

S3 2 1 1′ 1 1′ 1′ 2 2 2 2 2 1 1 2 1 1′ 2 2 1 1 2 1′

Z2 1 1 −1 1 −1 −1 1 1 1 1 1 1 1 1 1 −1 1 1 1 1 1 −1

where l1,2,3 = e, μ, τ .
With the field assignment specified in Tables 1 and 2, the

following quark and lepton Yukawa terms arise:

− L(q)
Y = yT Q3LχTR + yJ

(
QLχ∗ JR

)
1 + yU Q3LηU3R

+mT̃

(
T̃ L T̃R

)

1
+ mB

(
BL BR

)
1 + mB3 B3L B3R

+xT
(
QLρ∗T̃R

)
1 +

2∑

n=1

z(U )
n

(
T̃ Lξ

)

1′ UnR

+xB
(
QLη∗BR

)
1 +

3∑

j=1

z(D)
j

(
BLξ

)
1′ DjR

+yBQ3LρB3R +
3∑

j=1

x (D)
j B3LϕDjR + H.c, (7)

−L(l)
Y = xE

(
LLρER

)
1 +

3∑

j=1

z(l)j
(
ELξ

)
1′ l j R

+yE L3LρE3R +
3∑

j=1

x (l)
j E3Lϕl j R

+mE
(
EL ER

)
1 + mE3 E3L E3R

+xN
(
LLχNR

)
1 + yN L3LχN3R

+h1N

(
NRNC

R

)

2
σ + h2N

(
NRNC

3Rσ
)

1′

+h3N

(
NRNC

R

)

1
σ3 + h4N N3RNC

3Rσ3 + H.c.

(8)

We consider the following VEV configurations for the S3

doublets:

〈ξ 〉 = vξ (1, 0) , 〈σ 〉 = (
vσ1 , vσ2

)
, (9)

which are consistent with the scalar potential minimization
equations for a large region of parameter space [20,90,110].

3 Muon and electron anomalous magnetic moments

The current experimental data on the anomalous dipole mag-
netic moments of electron and muon ae,μ = (ge,μ − 2)/2
show significant deviation from their SM values

�aμ = aexp
μ − aSM

μ

= (26.1 ± 8) × 10−10 [111–117] (10)

�ae = aexp
e − aSM

e

= (−0.88 ± 0.36) × 10−12 [118] (11)

Here we analyze predictions of our model for these observ-
ables. The leading contributions to �ae,μ arising in the model
are shown in Fig. 1. The diagrams involve the electrically
neutral physical CP even H0

i (i = 1, 2, 3, 4) and CP odd
A0 scalar as well as heavy exotic charged EL ,R leptons. The
physical CP even scalars arise from the combinations of ξρ ,
ξ1R , ξ2R , ϕR whereas the CP odd scalar corresponds to ζρ .
By ξ1R,2R we denote real part of the two components of the
scalar S3-doublet gauge singlet ξ . Similary, the real part of
the scalar S3-singlet gauge singlet ϕ is denoted by ϕR . Anal-
ogously, E1,2 are two components of the leptonic S3-doublet
gauge singlet EL ,R . The fields ξρ and ζρ are contained in the
SU (3)L scalar triplet ρ, which interacts with l , the second
component of the leptonic triplet LL . It is worth mention-
ing that, in view of the large amount of parametric freedom
of the model scalar potential in Eq. (B1), we are restricting
to a particular benchmark scenario were the SU (3)L scalar
triplet ρ and the gauge singlet scalars ξ and ϕ do not fea-
ture mixings with the remaining scalar fields η, σ and σ3.
Such benchmark scenario is consistent with the decoupling
limit where the CP even neutral component of the SU (3)L
scalar triplet η mostly corresponds to the 126 GeV SM like
Higgs boson. Another motivation for such benchmark sce-
nario is the fact that the VEV of the SU (3)L scalar triplet
χ is much larger than the VEV of the SU (3)L scalar triplet
ρ, thus allowing to neglect the mixing angles between those
fields since they are suppressed by the ratios of their VEVs,
as follows from the method of recursive expansion of Ref.
[119]. Due to the same argument, the mixing angles of the
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Fig. 1 Leading Loop Feynman
diagrams contributing to the
muon and electron anomalous
magnetic moments. Here E1,2,
are components of the S3
-doublet and j = 1, 2, 3, 4

ρ, ξ and ϕ scalar fields with the gauge singlet scalars σ and
σ3 can be neglected as well.

In this framework, the scalar potential terms contributing
to the Yukawa couplings of the fermions E1 and E2 with the
scalar fields are shown in Appendix C. Let us note the the
following peculiar pattern of mixing in the scalar sector. The
fields ρ, ξ and ϕ do not mix with η, σ and σ3, while ϕ mix
with ζρ through the the complex parameter κ in the scalar
potential (B1). In view of this we find that the scalar mass
matrix in the basis ξρ , ξ1R , ξ2R , ϕ, and ζρ has the form:

M2 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

m2
11 m2

12 0 m2
14 0

m2
21 m2

22 m2
23 m2

24 0
0 m32 m33 m34 0

m2
41 m2

42 m2
43 m2

44 m2
45

0 0 0 m2
54 m2

55

⎞

⎟⎟
⎟⎟⎟⎟
⎠

(12)

with the matrix elements m2
i j given in Appendix C. Once the

basis is changed by a rotation matrix R, the physical scalar
field masses mH0

1
, mH0

2
, mH0

3
, mH0

5
and mH0

A
can be found

numerically.
Thus, in our model the muon and electron anomalous mag-

netic moments are given by:

�aμ,e =
4∑

i=1

∑

�=H0
i ,A0

�aμ,e(�), (13)

The analytical form for the neutral scalar contribution at one
loop to �aμ,e can be found in [22,120–122]. Using these
results we write the contributions of the neutral scalars � =

H0, A0 as follows:

�aμ = w2
μ

m2
μ

8π2

⎧
⎨

⎩

4∑

i=1

(
RT

)

1i

(
RT

)

2i

G(l)
S

(
mE2 ,mH0

i

)

m2
H0
i

+
(
RT

)

55

(
RT

)

25

G(l)
P

(
mE2 ,mA0

)

m2
A0

}

(14)

�ae = w2
e

m2
μ

8π2

⎧
⎨

⎩

4∑

i=1

(
RT

)

1i

(
RT

)

3i

G(l)
S

(
mE1,mH0

i

)

m2
H0
i

+
(
RT

)

55

(
RT

)

35

G(l)
P

(
mE1 ,mA0

)

m2
A0

}

(15)

where the loop function is given by:

G(l)
S,P (mE ,m�)

=
∫ 1

0
dx

x2(1 − x ± εl E )

(1 − x)(1 − xλ2
l�) + xε2

l Eλ2
l�

, � = H0, A0

(16)

with l = e, μ and λl� = ml/m�, εeE = mE1/me, εμE =
mE2/mμ. Besides that, the plus and minus signs for the loop
function GS,P (�) of Eq. (16) stands for the scalar (CP-even)
and pseudoscalar (CP-odd) contributions, respectively. The
quantities wl (l = e, μ) are the Yukawa couplings for the
interaction wl El �.

The experimental values of the muon and electron anoma-
lous magnetic moments shown in Eqs. (10) and (11) can be
successfully reproduced at 2σ level for the following bench-
mark point:
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vη = vρ ≈ 174 GeV vχ ≈ 2851 GeV vξ ≈ 1414 GeV

vφ ≈ 6992 GeV κr ≈ −0.630 κi ≈ −0.614

λ2 = λ10 ≈ 7.251 λ12 = λ13 ≈ 0.310

λ18 = λ34 ≈ −0.264 λ35 = λ38 ≈ −0.229 (17)

The scalar and charged exotic leptons masses along with the
Yukawa couplings are

mH0
1

≈ 5786 GeV mH0
2

≈ 5338 GeV mH0
3

≈ 2750 GeV

mH0
4

≈ 2498 GeV mA0 ≈ 1100 GeV mE1 ≈ 611 GeV

mE2 ≈ 1368 GeV wμ ≈ 0.228 we ≈ 1.719
(18)

Note that this benchmark point locates in the domain of the
model parameter space corresponding to the minimum of
the scalar potential due to the fact that all the scalar masses
are real (see also Appendix C). In this benchmark point the
muon and electron (g−2) -experimental anomalies have the
values

�aμ = 2.68714 × 10−9 (19)

�ae = −8.64531 × 10−13 (20)

The opposite signs of these quantities is due to the pseudo
scalar A0 contributions to the loops in Fig. 1 leading to the
minus sign in the term −εl E of the loop function (16). Note
that E2 and E1 contribute separately to the muon and electron
(g− 2), respectively, without any cross-contributions. Thus,
selecting appropriate values for the exotic lepton masses
mE1,2 we can accommodate the experimental sign difference
(19), (20). The fact that me � mμ makes the required sign
difference valid in a wide range of the model parameter space.
To show this, let us vary the model parameters within 15%
around the benchmark point (17) and the charged exotic lep-
ton masses in a range from 200 to 1200 GeV. The resulting
�aμ,e − mE2,1 scatter plots are shown in Fig. 2. As can be
seen, the model indeed can explain the experimental values
of muon and electron anomalous magnetic moments simul-
taneously in a wide range of its parameter space.

4 Quark masses and mixings

From the quark Yukawa interactions in Eq. (7), we find that
the up-type mass matrix in the basis (u1L , u2L , u3L , T L ,

T̃ 1L , T̃ 2L) versus (u1R, u2R, u3R, TR, T̃1R, T̃2R) is given by:

MU =

⎛

⎜⎜
⎝

�U 02×1 02×1 AU

01×2 mt 0 01×2

01×2 0 mT 01×2

BU 02×1 02×1 M̃T

⎞

⎟⎟
⎠ ,

AU = xT

(
1 0
0 1

)
vρ√

2
, BU =

(
0 0

z(U )
1 z(U )

2

)
vξ ,

mt = yU
vη√

2
= a(U )

3
v√
2
, M̃T = mT̃

(
1 0
0 1

)
,

�U =
(

ε
(U )
11 ε

(U )
12

ε
(U )
21 ε

(U )
22

)
vρ√

2
,

ε
(U )
1n = 1

16π2

λρ†ρξ2λξ3ϕxT z
(U )
n vϕv2

ξ

mTm2
ξ2

[
C0

(
mξη

mB
,
mReξ2

mB

)

−C0

(
mζη

mB
,
mImξ2

mB

)]
, n = 1, 2,

ε
(U )
2n = 1

16π2

λρ†ρξ2xT z
(U )
n vξ

mT

[
C0

(
mξη

mB
,
mReξ2

mB

)

−C0

(
mζη

mB
,
mImξ2

mB

)]
, (21)

whereas the down type quark mass matrix written in the
basis (d1L , d2L , d3L , J 1L , J 2L , B1L , B2L , B3L)-(d1R, d2R,

d3R, J1R, J2R, B1R, B2R, B3R) takes the form:

MD =
⎛

⎝
�D 03×2 AD

02×3 MJ 02×3

BD 03×2 MB

⎞

⎠ , AD =
⎛

⎜
⎝

xB
vη√

2
0 0

0 xB
vη√

2
0

0 0 yB
vρ√

2

⎞

⎟
⎠ ,

BD =
⎛

⎜
⎝

0 0 0
z(D)

1 vξ z(D)
2 vξ z(D)

3 vξ

x (D)
1 vϕ x (D)

2 vϕ x (D)
3 vϕ

⎞

⎟
⎠ ,

MJ = y(J ) vχ√
2

(
1 0
0 1

)
, MB =

⎛

⎝
mB 0 0
0 mB 0
0 0 mB3

⎞

⎠ ,

�D =
⎛

⎜
⎝

ε
(D)
11 ε

(D)
12 ε

(D)
13

ε
(D)
21 ε

(D)
22 ε

(D)
23

ε
(D)
31 ε

(D)
32 ε

(D)
33

⎞

⎟
⎠

vρ√
2
,

ε
(D)
1i = 1

16π2

λρ†ρξ2λξ3ϕxBz
(D)
i vϕv2

ξ vη

mBm2
ξ2

vρ

C0

(
mξη

mB
,
m Reξ2

mB

)
,

ε
(D)
2i = 1

16π2

λρ†ρξ2 xBz
(D)
i vξ vη

mBvρ

C0

(
mξη

mB
,
mReξ2

mB

)
,

ε
(D)
3i = 1

16π2

λρ†ρϕ2 xBz
(D)
i vϕ

mB
C0

(
mξρ

mB
,
mReϕ

mB

)
,

i = 1, 2, 3, (22)

where as seen from Eqs. (21) and (22), the �U and �D sub-
matrices are generated at one loop level. The one loop level
Feynman diagrams generating the �U and �D submatrices
are shown in Fig. 3. In addition, the following function has
been introduced:
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(a) (b)

Fig. 2 Correlation plots of the �aμ,e and the mass of the exotic fermion mE2,1 respectively at 1σ (red), 2σ (brown) and 3σ (purple)

C0 (m̂1, m̂2)

= 1
(
1 − m̂2

1

) (
1 − m̂2

2

) (
m̂2

1 − m̂2
2

)

{

m̂2
1m̂

2
2 ln

(
m̂2

1

m̂2
2

)

−m̂2
1 ln m̂2

1 + m̂2
2 ln m̂2

2

}
. (23)

As seen from Eqs. (21) and (22), the exotic heavy vector
like quarks mix with the SM quarks lighter than top quark.
The masses of these exotic quarks are assumed to be much
larger than the SU (3)L × U (1)X symmetry breaking scale.
As a result, charm, bottom and strange quarks acquire their
masses from the tree-level Universal seesaw mechanism,
while the masses of the up and down quarks are generated
by the one-loop radiative seesaw mechanism. Thus, for the
SM quarks we obtain the following mass matrices:

M̃U =
(

�U + AUM−1
T̃

BU 02×1

01×2 mt

)

=

⎛

⎜⎜
⎝

ε
(U )
11

vρ√
2

ε
(U )
12

vρ√
2

0

ε
(U )
21

vρ√
2

+ xT z
(U )
1 vξ vρ√
2mT̃

ε
(U )
22

vρ√
2

+ xT z
(U )
2 vξ vρ√
2mT̃

0

0 0 mt

⎞

⎟⎟
⎠ , (24)

M̃D = �D + ADM
−1
B BD

=

⎛

⎜⎜
⎝

ε
(D)
11

vρ√
2

ε
(D)
12

vρ√
2

ε
(D)
13

vρ√
2

ε
(D)
21

vρ√
2

+ xBz
(D)
1

vξ vη√
2mB

ε
(D)
22

vρ√
2

+ xBz
(D)
2

vξ vη√
2mB

ε
(D)
23

vρ√
2

+ xBz
(D)
3

vξ vη√
2mB

ε
(D)
31

vρ√
2

+ yBx
(D)
1

vϕvρ√
2mB3

ε
(D)
32

vρ√
2

+ yBx
(D)
2

vϕvρ√
2mB3

ε
(D)
33

vρ√
2

+ yBx
(D)
3

vϕvρ√
2mB3

⎞

⎟⎟
⎠ . (25)

These mass matrices contain several model parameters.
While free, they still satisfy certain conditions in our model.
In fact, vev’s vξ,η,ρ obey the inequality (4) expressing the
hierarchy of symmetry breaking in our model. The ε

U,D
i j

parameters, defined in Eqs. (21) and (22), contain typical
loop suppression and specific dependence on the vev’s, exotic

masses, the Yukawas and a quartic coupling. We require the
latter to satisfy the perturbativity condition. With this in mind
we can speak about natural values of the matrix elements
corresponding to the values of the model parameters in a
range not involving an ad hoc hierarchy of the dimension-
less couplings. Let us show that within this natural range
the model accommodates the observable values of the SM
quark masses and mixings. To this end we consider a partic-
ular natural benchmark scenario consistent with the above-
mentioned conditions. We choose:

vξ = λ4 vmT̃

vρ

= λ5 vmB

vη

, vϕ = λ3 vmB3

vρ

,

ε(U )
nm = b(U )

nm λ8 v

vρ

,

ε
(D)
i j = b(D)

i j λ7 v

vρ

, i, j = 1, 2, 3; n,m = 1, 2, (26)

where v =
√

v2
ρ + v2

η = 246 GeV is the electroweak sym-

metry breaking scale. We use the Wolfenstein parameter
λ = 0.225 for characterization of the hierarchy between
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Fig. 3 One-loop Feynman
diagrams contributing to the
entries of the SM quark mass
matrices. Here, n = 1, 2 and
i = 1, 2, 3

the parameters defining mass matrix elements. As discussed
above, we consider the hierarchy, which stems from the
model structure rather than from strong tuning of the dimen-
sionless couplings. Then the coefficients b(U )

nm and b(D)
i j , con-

structed from the Yukawa and quartic couplings, are O(1)

-numbers. In the scenario (26) the exotic quarks T̃ and B
are heavier than the scale of the first stage of the symmetry
breaking (3). As we mentioned earlier, these exotic quarks
must be very heavy for the Universal Seesaw mechanism to
operate in our model.

Thus, in the benchmark scenario (26) the SM quark mass
matrices take theform:

M̃U =
⎛

⎜
⎝

b(U )
11 λ8 b(U )

12 λ8 0

b(U )
21 λ7 + a(U )

21 λ4 b(U )
22 λ7 + a(U )

22 λ4 0
0 0 mt

⎞

⎟
⎠

v√
2

=
⎛

⎜
⎝
b(U )

11 λ8 b(U )
12 λ8 0

c(U )
21 λ4 c(U )

22 λ4 0
0 0 mt

⎞

⎟
⎠

v√
2
, (27)

M̃D =
⎛

⎜
⎝

b(D)
11 λ7 b(D)

12 λ7 b(D)
13 λ7

b(D)
21 λ7 + a(D)

21 λ5 b(D)
22 λ7 + a(D)

22 λ5 b(D)
23 λ7 + a(D)

23 λ5

b(D)
31 λ7 + a(D)

31 λ3 b(D)
32 λ7 + a(D)

32 λ3 b(D)
33 λ7 + a(D)

33 λ3

⎞

⎟
⎠

v√
2
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Table 3 Experimental MZ -scale values of the quark masses [123,124]
and CKM parameters [125]

Observable Experimental value

mu(MeV ) 1.45+0.56
−0.45

mc(MeV ) 635 ± 86

mt (GeV ) 172.1 ± 0.6 ± 0.9

md (MeV ) 2.9+0.5
−0.4

ms(MeV ) 57.7+16.8
−15.7

mb(GeV ) 2.82+0.09
−0.04

sin θ
(q)
12 0.225

sin θ
(q)
23 0.0421

sin θ
(q)
13 0.00365

J (3.18 ± 0.15) × 10−5

=
⎛

⎜
⎝
b(D)

11 λ7 b(D)
12 λ7 b(D)

13 λ7

c(D)
21 λ5 c(D)

22 λ5 c(D)
23 λ5

c(D)
31 λ3 c(D)

32 λ3 c(D)
33 λ3

⎞

⎟
⎠

v√
2
, (28)

where

a(U )
21 = xT z

(U )
1 , a(U )

22 = xT z
(U )
2 ,

a(D)
2i = xBz

(D)
i , a(D)

3i = yBx
(D)
i , i = 1, 2, 3.

(29)

The model has 13 dimensionless parameters in the quark
sector. This allows us to reproduce precisely the central
experimental values of 10 quark observables, shown in
Table 3. The corresponding values of the model parameters
are:

b(U )
11 = c(U )

21 = 1, b(U )
12 � 2.773,

b(U )
22 � 1.001, a(U )

3 � 0.989,

b(D)
11 � −1.335 + 0.929i, b(D)

12 � 1.217 + 1.314i,

b(D)
13 � 2.112 − 0.929i,

c(D)
21 � −0.869, c(D)

22 � −0.438,

c(D)
13 � 0.860,

c(D)
31 � −0.707, c(D)

32 � −1.001,

c(D)
33 � 0.707. (30)

An important point for us is that all these values are of the
order of one. As we previously discussed, this means that the
hierarchy of the quark masses and mixings originate in our
model from its internal structure – symmetries and field con-
tent – without the need for strong tuning the dimensionless
couplings.

5 Charged lepton masses and mixings

From the charged lepton Yukawa interactions in Eq. (8)
we find the charged lepton mass matrix Ml in the basis
(l1L , l2L , l3L , E1L , E2L , E3L) versus (l1R, l2R, l3R, E1R,

E2R, E3R) given by:

Ml =
(

�l Al

Bl M̃E

)
, �l =

⎛

⎜⎜⎜
⎝

ε
(l)
11 ε

(l)
12 ε

(l)
13

ε
(l)
21 ε

(l)
22 ε

(l)
23

ε
(l)
31 ε

(l)
32 ε

(l)
33

⎞

⎟⎟⎟
⎠

vρ√
2
,

Al =
⎛

⎝
xE 0 0
0 xE 0
0 0 yE

⎞

⎠ vρ√
2
,

Bl =
⎛

⎜
⎝

0 0 0

−z(l)1 vξ −z(l)2 vξ −z(l)3 vξ

x (l)
1 vϕ x (l)

2 vϕ x (l)
3 vϕ

⎞

⎟
⎠ ,

M̃E =
⎛

⎜
⎝

mE 0 0

0 mE 0

0 0 mE3

⎞

⎟
⎠ ,

ε
(l)
1i = 1

16π2

λρ†ρξ2λξ3ϕxE z
(l)
i vϕv2

ξ

mEm2
ξ2

[
C0

(
mξρ

mE
,
mReξ2

mE

)

−C0

(
mζρ

mE
,
mImξ2

mE

)]
,

ε
(l)
2i = 1

16π2

λρ†ρξ2xE z
(l)
i vξ

mE

[
C0

(
mξρ

mE
,
mReξ2

mE

)

−C0

(
mζρ

mE
,
mImξ2

mE

)]
,

ε
(l)
3i = 1

16π2

λρ†ρϕ2xE z
(E)
i vϕ

mE

[
C0

(
mξρ

mE
,
mReϕ

mE

)

−C0

(
mζρ

mE
,
mImϕ

mE

)]
, i = 1, 2, 3. (31)

where as seen from Eq. (31), the �l submatrix is generated
at one loop level according to the Feynman diagrams shown
in Fig. 4.

As follows from Eq. (31), the very heavy vector like
charged leptons mix with the SM charged leptons. The
former are assumed to have masses much larger than the
SU (3)L ×U (1)X symmetry breaking scale. Therefore, anal-
ogously to the quark sector, the tau and muon masses are gen-
erated by the tree level Universal seesaw mechanism, while
the electron mass arises from the one loop level radiative
seesaw mechanism. Consequently, SM charged lepton mass
matrix takes theform
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Fig. 4 One-loop Feynman
diagrams contributing to the
entries of the SM charged lepton
mass matrix. Here i = 1, 2, 3

M̃l = �l + Al M̃
−1
E Bl

=

⎛

⎜⎜
⎝

ε
(l)
11

vρ√
2

ε
(l)
12

vρ√
2

ε
(l)
13

vρ√
2

ε
(l)
21

vρ√
2

− xE z
(l)
1

vξ vρ√
2mE

ε
(l)
22

vρ√
2

− xE z
(l)
2

vξ vρ√
2mE

ε
(l)
23

vρ√
2

− xE z
(l)
3

vξ vρ√
2mE

ε
(l)
31

vρ√
2

+ yE x
(l)
1

vϕvρ√
2mE3

ε
(l)
32

vρ√
2

+ yE x
(l)
2

vϕvρ√
2mE3

ε
(l)
33

vρ√
2

+ yE x
(l)
3

vϕvρ√
2mE3

⎞

⎟⎟
⎠ . (32)

In order to show that our model can naturally accommo-
date the experimental values of the charged lepton masses
we use the extended benchmark scenario (26) assuming
mE = mT̃ ,mE3 = mB3 . Then we have

vξ = λ5 vmE

vρ

, vϕ = λ3 vmE3

vρ

,

ε
(l)
i j = b(l)

i j λ9 v

vρ

, i, j = 1, 2, 3. (33)

Here the one-loop contributions ε(l) are estimated from their
definitions in (31). Accordingly, the coefficients b(l) are con-
structed from the Yukawa and scalar quartic coupling. Thus,
in the benchmark scenario (33) the SM charged lepton mass
matrix reads:

M̃l =
⎛

⎜
⎝

b(l)
11λ9 b(l)

12λ9 b(l)
13λ9

b(l)
21λ9 + a(l)

21 λ5 b(l)
22λ9 + a(l)

22 λ5 b(l)
23λ9 + a(l)

23 λ5

b(l)
31λ9 + a(l)

31 λ3 b(l)
32λ9 + a(l)

32 λ3 b(l)
33λ9 + a(l)

33 λ3

⎞

⎟
⎠

v√
2

=
⎛

⎜
⎝
c(l)

11λ9 c(l)
12λ9 c(l)

13λ9

c(l)
21λ5 c(l)

22λ5 c(l)
23λ5

c(l)
31λ3 c(l)

32λ3 c(l)
33λ3

⎞

⎟
⎠

v√
2
, (34)

where

a(l)
21 = −xE z

(l)
1 , a(l)

22 = −xE z
(l)
2 , a(l)

23 = −xE z
(l)
3 ,

(35)

a(l)
31 = yE x

(l)
1 , a(l)

32 = yE x
(l)
2 , a33 = yE x

(l)
3 ,

(36)

c(l)21 = b(l)
21 λ4 + a(l)

21 , c(l)22 = b(l)
22 λ4 + a(l)

22 , c(l)23 = b(l)
23 λ4 + a(l)

23 ,

(37)

c(l)31 = b(l)
31 λ6 + a(l)

31 , c(l)32 = b(l)
32 λ6 + a(l)

32 , c(l)33 = b(l)
33 λ6 + a(l)

33 ,

c(l)1i = b(l)
1i , i = 1, 2, 3. (38)

The matrix in the second equality of Eq. (34) is shown for
convenience in order to explicitly display the hierarchy of
the matrix elements of M̃l . To fit the measured values of the

123



Eur. Phys. J. C           (2021) 81:191 Page 11 of 17   191 

SM charged lepton masses [125], we solve the eigenvalue
problem for the SM lepton mass matrix (34) and find the
following solution:

c(l)
i j =

⎛

⎜⎜
⎝

−1.13637 −1.03665 −0.866907
−0.658689 −0.525883 1.08155
0.900883 −0.32514 −0.312796

⎞

⎟⎟
⎠ (39)

An important point is that all the elements of this matrix
constructed from Yukawa couplings are ∼ O(1). This means
that the observed hierarchical charged lepton mass spectrum
can be naturally reproduced in our model without significant
tuning of the coupling constants.

6 Neutrino mass generation

The neutrino Yukawa interactions give rise to the following
neutrino mass terms:

−L(ν)
mass = 1

2

(
νCL νR NR

)
Mν

⎛

⎝
νL
νCR
NC
R

⎞

⎠ + H.c, (40)

where the neutrino mass matrix Mν is

Mν =
⎛

⎝
M1 03×3 03×3

03×3 M2 Mχ

03×3 MT
χ μ

⎞

⎠ , (41)

with the submatrices M1 and M2 generated at one loop level,
whereas the submatrices Mχ and μ appearing at tree level.
They are given by:

Mχ =
⎛

⎝
xN 0 0
0 xN 0
0 0 yN

⎞

⎠ vχ√
2
,

μ =
⎛

⎝
h3Nvσ3 − h1Nvσ1 h1Nvσ2 h2Nvσ2

h1Nvσ2 h3Nvσ3 + h1Nvσ1 −h2Nvσ1

h2Nvσ2 −h2Nvσ1 h4Nvσ3

⎞

⎠ .

(42)

The light active neutrino mass matrix is generated by the
loop diagrams shown in Fig. 5 and is given by:

M̃ν = M1 =
⎛

⎝
x2
N F

(
μ22,mχ1R ,mχ1I

)
μ22 −x2

N F
(
μ12,mχ1R ,mχ1I

)
μ12 xN yN F

(
μ23,mχ1R ,mχ1I

)
μ23

−x2
N F

(
μ12,mχ1R ,mχ1I

)
μ12 x2

N F
(
μ11,mχ1R ,mχ1I

)
μ11 −xN yN F

(
μ13,mχ1R ,mχ1I

)
μ13

xN yN F
(
μ23,mχ1R ,mχ1I

)
μ23 −xN yN F

(
μ13,mχ1R ,mχ1I

)
μ13 y2

N F
(
μ33,mχ1R ,mχ1I

)
μ33

⎞

⎠ , (43)

Fig. 5 One-loop Feynman diagram contributing to the entries of the
light active neutrino mass matrix. Here i, j, k, n = 1, 2, 3

with the loop function of the form [126]:

F (m1,m2,m3)

= 1

16π2

[
m2

2

m2
2 − m2

1

ln

(
m2

2

m2
1

)

− m2
3

m2
3 − m2

1

ln

(
m2

3

m2
1

)]

.

(44)

In the limit where μ2
i j � m2

χ1R
,m2

χ1I
, the light active neutrino

mass matrix becomes:

M̃ν � m2
χ1R

− m2
χ1I

8π2
(
m2

χ1R
+ m2

χ1I

)

⎛

⎝
x2
Nμ22 x2

Nμ12 xN yNμ23
x2
Nμ12 x2

Nμ11 xN yNμ13
xN yNμ23 xN yNμ13 y2

Nμ33

⎞

⎠ .

(45)

All the elements of this mass matrix are free parameters
and, therefore, our model does not predict specific values
of neutrino masses and mixing. However, in our model, the
small value of the overall neutrino mass scale is natural. As
seen from Eq. (45), the smallness of this scale is attributed
to a small splitting �m2

χ between the masses of the χ1R

and χ1I scalar fields, which originates from the quartic term
γ
(
χ†ησ3ϕ + h.c

)
, so that �m2

χ ∼ γ v2
ϕ . (see Appendix B).

Requiring smallness of the parameter κ , we must guarantee
its stability with respect radiative corrections, i.e. its techni-
cal naturalness. Checking the model Lagrangian, we observe
that in the limit γ → 0 it acquires an extra symmetry, protect-
ing this parameter from large radiative corrections. Here we
do not need to specify this group completely and just give
its minimal non-trivial subgroup. This is Z3 with the field
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assignment, where all leptonic fields as well as the scalar

fields σ and σ3 have a charge equal to ω = e
2π i

3 , whereas the
remaining fields are neutral under this symmetry. This sym-
metry is broken by the coupling γ . Therefore, in our model
small masses of the light neutrinos are technically natural,
being protected by this accidental symmetry. As a result, the
components χ1,2 of the scalar SU (3)L -triplet can be suffi-
ciently light to provide a non-trivial phenomenology.

7 Conclusions

We have constructed a renormalizable theory based on the
SU (3)C × SU (3)L ×U (1)X gauge symmetry, supplemented
with the spontaneously brokenU (1)Lg global lepton number
symmetry and the S3 ×Z2 discrete group, consistent with the
low energy SM fermion flavor data. In our model, the parti-
cle spectrum of the 3-3-1 model with right handed Majorana
neutrinos is enlarged by the inclusion of gauge singlet scalars
and charged exotic vector like fermions, which are crucial for
the implementation of the tree level Universal seesaw mech-
anism that produces the masses for the bottom, strange and
charm quarks as well as the tau and muon lepton masses.
The top and exotic quarks obtain their tree level masses from
renormalizable Yukawa interactions, whereas the first gener-
ation SM charged fermion masses are generated from a one
loop level radiative seesaw mechanism. The masses for the
light active neutrinos arise from a radiative seesaw mecha-
nism at one loop level. The natural smallness of the overall
neutrino mass scale is guarantied by an accidental softly bro-
ken symmetry. Our model successfully explains the hierarchy
of the fermion masses and mixings as well as accommodates
the current experimental deviations of the electron and muon
anomalous magnetic moments from their SM values.
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Appendix A: The S3 discrete group

The S3 discrete group contains 3 irreducible representations:
1, 1′ and 2. Considering (x1, x2)

T and (y1, y2)
T as the basis

vectors for two S3 doublets and (ý) is an S3 non trivial singlet,
the multiplication rules of the S3 group for the case of real
representations take the form [127]:

(
x1

x2

)

2
⊗

(
y1

y2

)

2
= (x1y1 + x2y2)1 + (x1y2 − x2y1)1′

+
(
x2y2 − x1y1

x1y2 + x2y1

)

2
, (A1)

(
x1

x2

)

2
⊗ (

ý
)
1′ =

(−x2 ý
x1 ý

)

2
,

(
x́
)
1′ ⊗ (

ý
)
1′ = (

x́ ý
)
1 . (A2)

Appendix B: The scalar potential

The renormalizable scalar potential of our model takes the
form:

V = −μ2
χ (χ†χ) − μ2

η(η
†η) − μ2

ρ(ρ†ρ) − μ2
ξ (ξξ)1

−μ2
ϕϕ2 − μ2

σ (σ †σ)1 − μ2
σ3

(σ
†
3 σ3)

+
(
κϕηiχ jρkε

i jk + H.c.
)

+ γ
(
χ†ησ3ϕ + h.c

)

+λ1(χ
†χ)(χ†χ) + λ2(ρ

†ρ)(ρ†ρ) + λ3(η
†η)(η†η)

+λ4(χ
†χ)(ρ†ρ) + λ5(χ

†χ)(η†η) + λ6(ρ
†ρ)(η†η)

+λ7(χ
†η)(η†χ) + λ8(χ

†ρ)(ρ†χ) + λ9(ρ
†η)(η†ρ)

+λ10 [(ξξ)1]2 + λ11 [(ξξ)1′]2 + λ12 [(ξξ)2(ξξ)2]1

+λ13ϕ
4 + λ14

[
(σ †σ)1

]2 + λ15

[
(σ †σ)1′

]2

+λ16

[
(σ †σ)2

]2

+λ17(σ
†
3 σ3)

2 + λ18(ξξ)1ϕ
2 + λ19 [(ξξ)1] (σ †σ)1

+λ20 [(ξξ)1′] (σ †σ)1′ + λ21 [(ξξ)2] (σ †σ)2

+λ22(ξξ)1(σ
†
3 σ3) + λ23ϕ

2(σ †σ)1 + λ24(σ
†σ)1(σ

†
3 σ3)

+λ25

[
(σσ)1(σ

†
3 σ

†
3 ) + h.c

]
+ λ26ϕ

2(χ†χ)

+λ27(ξξ)1(χ
†χ) + λ28(σ

†σ)1(χ
†χ)

+λ29(σ
†
3 σ3)(χ

†χ) + λ30(ξξ)1(η
†η) + λ31ϕ

2(η†η)
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+λ32(σ
†σ)1(η

†η) + λ33(σ
†
3 σ3)(η

†η)

+λ34(ξξ)1(ρ
†ρ) + λ35ϕ

2(ρ†ρ) + λ36(σ
†σ)1(ρ

†ρ)

+λ37(σ
†
3 σ3)(ρ

†ρ) + λ38
{[

(ξξ)2 ξ
]
1′ ϕ + h.c

}

+λ39

[
(ξξ)2(σ

†σ3) + h.c
]

+λ40

[
(σ †ξ)1′ϕσ3 + h.c

]
(B1)

where λi (i = 1, 2, . . . , 40) are dimensionless parameters,
whereas μχ , μη, μξ , μϕ , μσ , μσ3 , f and A are dimensionful
parameters. Here χ , ρ and η, the SU (3)L scalar triplets and
the remaining fields are SU (3)L scalar singlets. The scalar
fields σ and σ3 are complex, wheras ξ and ϕ are real.

Appendix C: The scalar potential and scalar mass matrix
entries for the g-2 contribution

The scalar potential that contributes to g − 2 anomalies is
given by:

V CP = −μ2
ρ(ρ†ρ) − μ2

ξ (ξξ)1 − μ2
ϕϕ2

+
(
κϕηiχ jρkε

i jk + H.c.
)

+λ2(ρ
†ρ)(ρ†ρ) + λ10 [(ξξ)1]2 + λ11 [(ξξ)1′]2

+λ12 [(ξξ)2(ξξ)2]1 + λ13ϕ
4 + λ18(ξξ)1ϕ

2

+λ34(ξξ)1(ρ
†ρ) + λ35ϕ

2(ρ†ρ)

+λ38
{[

(ξξ)2 ξ
]
1′ ϕ + h.c

}
(C1)

with the complex quartic coupling κ = κr + iκi introducing
CP-violation in the scalar potential. We need it in order to
mix ϕ with ζρ . The scalar potential minimization equations
allow us to express the μρ , μξ and μϕ parameters as follows:

μ2
ρ = 1

2

(
κrvηvϕvχ

vρ

+ λ34v
2
ξ + 2λ2v

2
ρ + λ35v

2
ϕ

)
(C2)

μ2
ξ = 1

2

(
2 (λ10 + λ12) v2

ξ + λ34v
2
ρ + λ18v

2
ϕ

)
(C3)

μ2
ϕ = 1

2

(
κrvηvρvχ

vϕ

+ λ18v
2
ξ + λ35v

2
ρ + 2λ13v

2
ϕ

)
(C4)

The potential (C1) generates the entries of the scalar mass
squared matrix M2. In the basis ξρ , ξ1R , ξ2R , ϕ, ζρ these
entries are given by:

m2
11 = 2λ2v

2
ρ − κrvηvϕvχ

2vρ

(C5)

m2
12 = m2

21 = λ34vξ vρ (C6)

m2
14 = m2

41 = 1

2
κrvηvχ + λ35vρvϕ (C7)

m2
22 = 2 (λ10 + λ12) v2

ξ (C8)

m2
23 = m2

32 = −2
√

2λ38vξvϕ (C9)

m2
24 = m2

42 = λ18vξ vϕ (C10)

m2
33 = 2λ10v

2
ξ − 3λ12v

2
ξ − 2λ38vϕvξ (C11)

m2
34 = m2

43 = −√
2λ38v

2
ξ (C12)

m2
44 = 2λ13v

2
ϕ − κrvηvρvχ

2vϕ

(C13)

m2
45 = m2

54 = −1

2
κivηvχ (C14)

m2
55 = −κrvηvϕvχ

2vρ

. (C15)

From these expressions one can see that by the appropriate
choice of the signs of the quartic couplings it easy to guar-
antee positive definiteness of the mass squared matrix (12)
and, therefore, that the extremum conditions (C2)–(C4) cor-
respond to the minimum of the potential (C1).
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