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Uncertainty equality with quantum memory and its

experimental verification

Hengyan Wang'**#, Zhihao Ma®, Shengjun Wu®, Wengiang Zheng’, Zhu Cao®, Zhihua Chen’, Zhaokai Li'**, Shao-Ming Fei®'°,

Xinhua Peng ®'>*, Vlatko Vedral'"'? and Jiangfeng Du'>3*

As a very fundamental principle in quantum physics, uncertainty principle has been studied intensively via various uncertainty
inequalities. A natural and fundamental question is whether an equality exists for the uncertainty principle. Here we derive an entropic
uncertainty equality relation for a bipartite system consisting of a quantum system and a coupled quantum memory, based on the
information measure introduced by Brukner and Zeilinger (Phys. Rev. Lett. 83:3354, 1999). The equality indicates that the sum of
measurement uncertainties over a complete set of mutually unbiased bases on a subsystem is equal to a total, fixed uncertainty
determined by the initial bipartite state. For the special case where the system and the memory are the maximally entangled, all of the
uncertainties related to each mutually unbiased base measurement are zero, which is substantially different from the uncertainty
inequality relation. The results are meaningful for fundamental reasons and give rise to operational applications such as in quantum
random number generation and quantum guessing games. Moreover, we experimentally verify the measurement uncertainty relation
in the presence of quantum memory on a five-qubit spin system by directly measuring the corresponding quantum mechanical
observables, rather than quantum state tomography in all the previous experiments of testing entropic uncertainty relations.
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INTRODUCTION

The uncertainty principle is one of the most important principle in
quantum physics. It implies the impossibility of simultaneously
determining the definite values of incompatible observables. The
more precisely an observable is determined, the less precisely a
complementary observable can be known. Based on the distribu-
tions of measurement outcomes, the quantum uncertainty relations
can be described in various ways; see for instance refs, '*'3

The uncertainty principle was first formulated via the standard
deviation of a pair of complementary observables, known as the
Heisenberg’s uncertainty principle’ AxAp = /2 for the coordinate x
and the momentum p in an infinite dimensional Hilbert space. Later
the Robertson—Schrédinger uncertainty inequality®® presented an
uncertainty relation for two arbitrary observables in a finite
dimensional Hilbert space. Instead of the standard deviation of
observables, the uncertainty principle can also be elegantly
formulated in terms of entropies related to measurement bases.
When a quantum system is projected onto a certain basis {|ig) [i=1,
2, ---, d}, where 6 labels the measured observable, the uncertainty of
the measurement results has been characterized by the Shannon
entropy Hy = Zf:] —pilog, p;, where p; is the probability to obtain
the ith basis state |ig). The larger the Shannon entropy Hp is, the
more uncertain the measurement results are. In terms of the

Shannon entropies of the measurement results, the uncertainty
principle can be formulated as Hy + H; > log, 12.4 Here 1/c quantifies
the degree of complementarity of two observables 6 and .

The above uncertainty relations only concern a single quantum
system. By taking the entanglement with a memory system into
account,’ an entropic uncertainty relation in the presence of
quantum memory has been investigated in ref.'>. It has been
shown that for a bipartite state p,p, performing measurements on
one of the subsystems A gives rise to the following relation

S(6]B) + S(1[8) > Iogzg + S(AlB), (1)

where S(A|B) and S(6|B) (S(1]|B)) denote, respectively, the condi-
tional von Neumann entropies of the initial bipartite state psz and
the final bipartite state pgz (0:) after the measurement in the basis
{lie)} {|iz)}). This uncertainty relation was further extended to the
smooth entropy case.'® With considering the entangled quantum
memory, these uncertainty relations have potential applications in
entanglement witnessing and quantum key distributions
(QKD).">'""® However, the above results all concern measure-
ments only on two observables and are given in inequality forms.

In this work, we consider projective measurements based on
mutually unbiased bases (MUBs).'®"** The MUB measurements are
complementary to each other in the sense that any pair of bases
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are maximally unbiased. They are deeply connected to the Born’s
principle of complementarity?' and closely related to the wave-
particle duality.>° A complete set of MUBs consists of at most d
+ 1 observables, where d is the dimension of the state space.
Comparing with the incomplete case, the advantage of a
complete set of MUB measurements is informatively complete?>*
and meaningful in quantum information progressing.?' It is
therefore not surprising that a complete set of MUB measure-
ments is crucial in entanglement detection.?”-® It was also proved
that using a complete set of MUBs is much better than using two
observables in QKD."

In ref.® an entropic uncertainty relation involving d +1 MUB
measurements has been obtained in terms of von Neumann
entropy. However, it only dealt with a single system (in this case
the von Neumann entropy is just the Shannon entropy of the
measurement probability distributions), and the uncertainty
relation is given by an inequality. In fact, the Shannon entropy is
a natural measure of our ignorance regarding the properties of a
classical system, because in classical measurements the observa-
tion removes our ignorance about the state by revealing the
properties of the system which are considered to be pre-existing
and independent of the observation. In contrast to classical
measurements, one cannot say that quantum measurements
reveal a pre-existing property of a quantum system. Therefore, the
Shannon entropy could be thought of as “conceptually” inade-
quate in quantum physics.?® In ref. ?° the authors proposed a new
measure of quantum information, which takes into account that
the only features of quantum systems known before a measure-
ment are the probabilities for various events to occur. It has
significant physical meaning and various applications in quantum
information processing such as quantum randomness, quantum
state estimation, quantum teleportation and quantum metrol-
0gy.>73° Moreover, a series of works have been shown, together
with many applications, that in single quantum system, the sum of
the individual measures of information for MUBs is invariant under
the choice of the particular set of complementary observations
and conserved if there is no information exchange with
environments, 26297343742

In this article, we adopt the information measure proposed in
ref.?® and consider the uncertainty relation in the presence of
quantum memory. Interestingly, we find that if we take a
complete set of MUB measurements into account, we can obtain
an uncertainty equality that the sum of measurement uncertain-
ties over all MUBs on a subsystem in the presence of quantum
memory is equal to a fixed quantity determined by the initial state.
It gives rise to a kind of conservation relation of the uncertainties
related to these MUB measurements. We further show the elegant
applications of our result in quantum guessing game and
quantum random number generation. We also experimentally
verify this uncertainty equality by directly measuring the
uncertainties on a nuclear spin system. Our method avoids the
tomography process and allows one to perform verification
experiments in large quantum systems.

RESULTS

Measurement of uncertainty relations

Let (p1, pa ..., pa) be the probabilities for the d measurement
outcomes. The lack of information about the jth outcome with
respect to a single experimental trial is given by p{1 — p)). The
total lack of information regarding all d possible experimental
outcomes is then given by Z/‘.; pi(1—p) =1~ 27:1 p}. which is
minimal if one probability is equal to a unity and maximal if all the
probabilities are equal. In fact, 1 — 27:1 pj2 is nothing but 1 —Tr
(0%, where p is the state after a quantum (projective) measure-
ment, the linear entropy of the measured state. Therefore, the lack
of information regarding all d possible experimental outcomes can
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be described by the linear entropy of a d-level quantum state
0, Si(p) = 1 — Tr(p?). S,() ranges from 0 (when p is a pure state) to
(d — 1)/d (when p is maximally mixed). Unlike that in ref.5, here
we do not introduce a normalization factor to have a range
between 0 and log, d, so the measure of uncertainty in terms of
linear entropy does not have the unit of a “bit”. However, it
quantifies uncertainty in a natural way: an uncertainty of 0 means
the outcome is 100% certain while an uncertainty approaching 1
means the outcome is almost random.

For a bipartite state psgin a d x D (D = d) dimensional composite
Hilbert space, if system A is projected on to the basis {|ig) |i=1, 2,
---, d}, the overall state of the composite system after the
nonselective measurement®** on A is given as

d
Pes = Z lig) a (i| 4 (iolPaslio)a- @

i=1

We can introduce the conditional linear entropy
5.(61B) := Si(pes) — St(p5) = Tr(pj) — Tr(0gs) €)

as a measure of the uncertainty about Alice’s measurement result
given Bob's state, where the reduced state pg = Tra(pgg) = Tra(0as)
is independent of the measurement basis. It is straightforward to
show that the conditional linear entropy S,(6|B) is always
nonnegative. As an example, suppose pgz is a maximally
entangled pure state. Alice can perform a measurement on her
system in any basis. The possible resulting states of Bob’s system
are orthogonal to each other, and each possible resulting state is
in one-to-one correspondence to Alice’s resulting state. Therefore,
given Bob's state, Alice’s measurement result can be determined
with certainty. In this case S,(0]B) vanishes. If pjz = ZL Vi is
a partially entangled state written in its Schmidt bases, after Alice
measures her system in the Schmidt basis, Bob's possible resulting
states are orthogonal to each other and the Alice’s measurement
result is completely determined without uncertainty when Bob's
state is given. This is also confirmed by the vanishing conditional
entropy as S (pgg) = Si(05) = 3, A7. However, if Alice performs a
measurement on a basis that is not the Schmidt basis, the possible
resulting states of Bob's system are not orthogonal and cannot be
distinguished with certainty, and thus uncertainty of Alice’s
measurement result exists even when Bob's state is known. This
fact is again confirmed by the observation that the conditional
linear entropy is strictly greater than zero in this case. The
conditional linear entropy is thus a good measure of the
uncertainty about Alice’s measurement result given Bob’s state.
It depends on the basis in which the measurement is performed in
general. When Alice tries to find a basis to perform the
measurement on her system so that Bob will know her result
with minimum uncertainty, then using another MUB to perform
the measurement will result in Bob having a large uncertainty
about Alice’s result. However, the whole uncertainty running over
all possible MUB measurements is fixed. This uncertainty relation
is formulated in the following theorem (the proof involves subtle
mathematical techniques, see Method A).

Theorem For any density matrix pag on a composite Hilbert
space H,® Hg of dimension dxD, we have the following
uncertainty equality

d+1 1

> 5u08) = o (Tr(g}) ~ ;Tioks) @
0=1

when a complete set of d+ 1 MUBs exists for the d-dimensional
Hilbert space Hy.

The theorem shows that the total uncertainty related to the
measurements over all d + 1T MUBs of a subsystem is exactly given
by a fixed quantity, dTr(p3) — Tr(p3;), which is determined only by
the initial bipartite state. This quantity is always nonnegative and
can be viewed as the total measurement uncertainty of a
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subsystem, given the state of the other subsystem. Different from
the uncertainty inequality (1) based on the von Neumann entropy,
here we obtain the equality (4). Note that this equality (4) is also
completely different from the one given in ref. *> which is based
on only ONE positive operator-valued measure consisting of
uniformly all the measurement operators of d+ 1 MUBs (see
Remark in Method A). In general, when there are only M MUBs
available or when we are only interested in certain M MUBs, we
always have the following uncertainty inequality,

> s.(61B) >
6=1

With each additional MUB, the lower bound of total uncertainty is
increased by a fixed amount Tr(p3) — 5 Tr(p%s).

To illustrate the implications of the theorem, let us consider that
Alice and Bob are both users of quantum technology. In order to
make a hard decision on whether she should accept Bob's
invitation to see a film, Alice asks Bob to send her a qubit A. Alice
can measure the qubit with the three (Pauli) observables o,, 0, and
0, at her choice. After the measurement, Alice announces her
choice of the observable, and Bob is supposed to guess the Alice’s
measurement results. Alice would accept (deny) Bob's request if
his guess is correct (wrong). Bob tries to gain Alice’s acceptance by
entangling the qubit A with his local qubit B in the preparation
stage. From the theorem, we know that the sum of uncertainties
(of Bob's guess at Alice’s measurement results given the state of B)
in three different cases is equal to the quantity Q = 2Tr(p3) —
Tr(p3) that is completely determined by the initial state paz. Bob
can minimize the quantity Q by preparing an EPR state, thus win
Alice’s acceptance with certainty, a result that cannot be obtained
from an uncertainty inequality like the one based on Shannon
entropy (see Fig. 1).

On the practical side, the theorem also provides possible
applications in quantum random number generation, especially
semi-self-testing quantum random number generators (QRNGS)
which are more robust to device imperfections. In a typical setup
of a semi-self-testing QRNG,**™® Alice and Bob share a quantum
state pup €.g., an EPR pair. If both parties are trusted, the
measurement outcome of one party will be random to the other

- 1)(T(ed) - o)) ©)

(a)

7 A Uncertainty
The total uncertainty
only depends on
c composite system
o
= 2 1 2
E = d(Tr(ps) - ETr(PAB))
B £
. o
. (%]
Quantum
memory
Complete MUBs measurements
(b) z Pap

Alice

S.(x|B) + S,(y|B) + S,(z|B) = 2Tr(p2) — Tr(p3s)

Fig. 1 a Sketch of the proposal. b Illustration of implications of the
theorem. Alice chooses to measure one of the three Pauli matrices
0w 0y, and o, on qubit A, and then informs Bob her choice and
requests him to guess her measurement outcome. In order to guess
Alice’s measurement outcome with less uncertainty, Bob can
entangle qubit A with a local qubit B before sending qubit A to
Alice, so that to minimize the uncertainty
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party when Alice measures in the computational basis and Bob
measures in the diagonal basis. However, if one of the parties is
corrupted, e.g., due to device imperfections, this scheme is
broken. To show this, consider that one party switches to the same
basis as the other party. A common solution is that each party
randomly uses multiple basis, such as o, o,, or o, basis.**™*® Now,
we consider the following semi-self-testing scenario. Alice first
chooses a reference frame, and randomly performs measurements
in one of the MUB basis. The reference frame is assumed to be
reliably chosen, but Alice does not have a free will to randomly
choose her measurement basis, i.e, the basis choice may be
manipulated by an adversary who wishes to corrupt Alice’s
randomness, such as Bob. Hence, the entropy of Alice’s random
outcomes with respect to Bob is the smallest entropy S,(6|B)
among all measurement choices. To maximize this quantity, the
theorem shows that $;(6|B) should be equal for all 6s. Thus, the
maximum  entropy of a semi-self-testing QRNG s
[dTr(pz) — Tr(p2)]/(d + 1). This limit on semi-self-testing QRNGs
also cannot be obtained from an uncertainty inequality. Finally,
note that entanglement-based QRNGs considered here have a
higher randomness generation rate compared to prepare-and-
measure QRNGs,*® and cannot be analyzed by using the tools
developed by Brukner and Zeilinger.?

Experimental verification
To experimentally investigate the uncertainty conservation, a two-
qubit system pap, chosen as the test system, is prepared in the
following states:

1—x
Pas(a, X) = X|Wa) (Wal +Tl4’ (6)
where |,) = cos(a/2)|01) — sin(a/2)[10). These states are mixed
states composed of one pure state with weight x and the maximal
mixed state with weight (1 — x)/4. The parameters a characterizes
the entanglement of the pure part and x characterizes the purity
of the state. When a =71/2 and x = 1, the bipartite state is one of
the Bell states. The other three Bell states can be obtained by local
unitary operations while the linear entropy remains invariant
under such transformations.

The key part of the experiments is to measure the system'’s
(conditional) linear entropy. Similar to the measurement of von
Neumann entropy in previous experiments,”®>' linear entropy can
be indirectly measured by full quantum state tomography.>
However, this is inefficient for large-size quantum systems Since
the linear entropy is dlrectly related to the g)urlty Tr(o?) that can be
directly obtained by Tr(o?) =Tr(V,p ® p)>* with a copy of p, this
allows us to employ an operational and direct way to
experimentally verify the uncertainty conservation relation. Here
the operator V; is the SWAP operation, i.e., V|1(,) = |[Pop1), that
exchanges the states of two subsystems. By using one ancillary
probe qubit to perform the interferometric measurement, we can
directly obtain all the required information of the purities from the
probe qubit, as shown in Fig. 2a.

Physical system. To verify the equation in the experiments, we
used the sample named 1-bromo-2,4,5-trifluorobenzene as a five-
qubit NMR quantum system which consists of two 'H spins and
three '°F spins, dissolved in the liquid-crystal N-(4-methoxybenzy-
lidene)-4-butylaniline (MBBA). Spins Hs and H, are labeled as the
bipartite system pgg, spins F; and F, as the copy system pp, and
spin Fs as the probe qubit pprope. The effective Hamiltonian of the
five-qubit system in double rotating frame is

5
Hnwmr = ZITV,‘O'; + Z

i=1 1<j<k<5

% (i + 2D4) 0%, (7)

where o, is the Pauli operator, v; is the chemical shift of spin-i and
Ji+ 2Dy is the effective coupling constant of spin-j and spin-k.
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Fig. 2 a Quantum circuit of directly measuring the purity. b Molecular structure for NMR quantum register. ¢ Experimental schematic for
verifying the measurement uncertainty relation. MUB measurements are performed on subsystem A to get pgz, and meanwhile the same
process is applied on the mirror subsystem A’. Then controlled-SWAP gates are performed for the measurements of the linear entropies S, (6|B)
in LHS of Eq. (4). The purity information on the original state pgg, i.e., the RHS of Eq. (4), are obtained without MUB measurement in the dashed
lines. The purities of the bipartite system AB: Tr(02;) and Tr(p3,), are obtained by two controlled-SWAP gates C,a, applying on subsystems AA’
and BB’ while only one Cyyap is operated on subsystem BB’ (denoted by the solid line) for the purity of subsystem Tr(p3) and Tr(pg‘e), where

Pzo = Tra(oes)

The molecular structure is shown in Fig. 2b, and the relevant
parameters are shown in Method B.

Experimental procedure. Figure 2c shows the experimental
schematic for verifying the measurement uncertainty relations. It
can be divided into four parts.

1. Preparing initial state. From thermal equilibrium state, we
first initialized the system to a labeled pseudo-pure state
(LPPS)  prpps = 35132 + €087 © |0000) 44,5, (0000]  with
selective-transition method,”* where =107 is the polar-
ization and /3, is the 32-dimension identity matrix. There is
no dynamical and measurement effect on the part of
identity density matrix; thus in the following, we conven-
tionally denote the state with the deviation density matrix,>®
ignoring the identity matrix. Then the product state pag(a, x)
® pap(a, x) was prepared from |0000) 445 (0000|, where pa/
g is the copy of pss. We vary the weight x by rotation with
different angles and a following nonunitary gradient pulse.
The details of initialization process are shown in Method C.

2. Performing MUB measurements. The complete MUB mea-
surements were implemented on subsystem A. For a two-
dimensional system, the simplest case of MUBs are

Mo = {10), 1)}, My = {250, 1040},

_ () 101
sz{ ) o] }

(8)

They are just the eigenvectors of Pauli operators o,,0, and
0,. In NMR, such MUB projective measurements can be
emulated using pulsed magnetic field gradients.>® Without
interfering the unselected systems (B and its copy B'), we
realized the MUB measurements on subsystem A and its
copy A’ by the gradient echo technology,”” i.e., by selective
7 pulses to the other spins, this dephasing operation (i.e.,
projective measurement of g,) can be selectively performed
on some specific spins. It is in principle necessary to refocus
all the evolutions under the internal Hamiltonian during the
gradient echo. However, this sequence can be simplified
when we only care about the purity of the crashed state.
For example, the projective measurement of M, on spin
F, (A and Hy; (A) are accomplished by
Plafs — G, — [l — G, — [7]7,"%, where the evolu-
tions under internal effective coupling Hamiltonian related
to three qubits F,, Hs and Fs are reserved during the pulse
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sequence. However, by some calculations, these undesired
evolutions will lead to an error less than 2[1 — cos(2A6)] =
0.065 on the purity measurements of the subsystem A or A/,
mainly determined by the different evolutions on qubits F;,
Hs due to the different effective coupling constants Jg, ¢, +
2DF1,F5 and JH3,F5 + 2DH3,F5- Here AB = ﬂ[(JFW.F5 + ZDFW.F5) —
(Jra.ps + 2Dn, s )|t, /2 with the duration t;, of pulsed
magnetic field gradient G,. To perform projective measure-
ments of M; and M, on specific spins, we first selectively
rotate the spins with [/2]_, or [m/2], rotations, then

performs the projective measurement of Mo, e.g., Pz =
/2] — P2t and Pt = [;r/2) 2 — phats 56

3. Measuring the purities. After the MUBs on the subsystem A
and A’, performing the quantum circuit in Fig. 2a will give
the purity information on the resulting state pgp after MUBs.
For example, when two controlled-SWAP gates (Cyap) are
applied to both subsystems AA’ and BB, one gets the purity
of the bipartite system AB: Tr(pZs); when only one Cyyap is
applied to the subsystem BB’, one gets the purity of
subsystem B: Tr(pé‘e) with pgje = Tra(pgs), as shown in Fig. 2c.
Likely, the related purities of the original state pag: Tr(0as)
and Tr(p3), are obtained by the similar procedure without
the MUBs. It can be noted the initial state of the probe qubit
is different from the original method in Fig. 2a. We initialize
the probe qubit as o?"’be in our experiment. However, this
will not affect the measure of the purity by the quantum
circuit Ugc in Fig. 23, i.e,

Tr[o8" % Uge (02 © p © p)Ul ] = 2Tr[Va(p ® p)] = 2Tr(p?).

Moreover, since the direct observable in NMR is g,, the final
Hadamard gate can be canceled out by the readout operation.
Therefore, through integrating the NMR spectra of the probe spin
Fs, we directly measure the purities on the related states. By
calculating the linear entropy, both sides of Eq. (4) are obtained
without quantum state tomography.

Experimental results. The experimental results are shown in Fig. 3.
As expected, the sum of uncertainties decreases to zero when the
bipartite system is in maximally entangled state. With certain a,
lower purity corresponds to higher uncertainty. From Fig. 3a, b, we
can see that the experimental results are in accord with theoretical
expectations and the uncertainty conversation relation holds with
high precision. Figure 3¢ shows the final NMR spectra of the probe
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Fig. 3 Experimental results of verifying the measurement uncertainty with the input states pas(a, 1) (@) and pas(11/2, x) (b). Red and blue dots
represent the measured values of LHS and RHS of Eq. (4), respectively. The experimental data are rescaled by extracting the decoherence
effect, shown by filled squares. The original data are shown in Method E. The dark gray curves are theoretical expectations. The bars are
plotted from the infidelity of readout process. ¢ Experimental NMR spectra of probe spin (Fs) for pas(r1/4, 1). From bottom to up, the related
resulting states after measurement are, respectively, Oag, Oxa Oye: Pz8: P8 Pbjx PBly P5lz- d Measured purities of the resulting states shown in (c).
Each purity is obtained from the sum of the integral values of the corresponding peak in (c)

qubit for one certain initial state psg(m/4, 1). The sum of the
integral values of all the peaks is read as the purity of the related
state in our experiment, as shown in Fig. 3d.

In our experiments, to avoid the error accumulation and
alleviate the influence of the decoherence, we used high-fidelity
engineered quantum control pulses, which exploit the gradient
ascent pulse engineering (GRAPE) algorithm,”® to implement the
quantum circuit in the experiments. The experiments for pure
states contain eight GRAPE pulses with the total duration of about
74 ms, while for mixed states, we used 9~11 GRAPE pulses with
total durations of 67—85 ms. We numerically optimized all GRAPE
pulses with considering 5% ratio frequency (rf) field inhomogene-
ity, so that they are more robust in experiments. All GRAPE pulses
used in the experiments have theoretical fidelities above 99.3%.
Numerical simulations show that the imperfection of GRAPE
pulses causes infidelity of 2—4% in the final states. Due to the
short relaxation times of the liquid-crystal sample, the experi-
ments suffer severe decoherence effect. We numerically simulated
the dynamical process and estimated the attenuation factors
caused by decoherence effect in the experiments.>*®® Then we
rescaled the experimental results. The details can be also found in
Method E. In the numerical simulations, we found that transverse
relaxation time T, plays a leading role in the decoherence process,
while the longitude relaxation time T; has little influence. The
imperfection in preparing the labeled PPS also causes some errors.
The highest unexpected peak in the labeled PPS NMR spectrum of
spin F5 is about 3% intensity of the only expected peak.

DISCUSSION

In conclusion, we have derived a novel entropic measurement
uncertainty relation in bipartite systems with a quantum memory.
It has been shown that after a complete set of MUB measurements
on one partite, the total uncertainty on the other partite is exactly
given by the purities of the initial system and the memory.
Substantially different from the previous uncertainty relations with
inequalities, we presented an equality of uncertainty relation for
the case with a quantum memory, which implies direct applica-
tions to quantum random number generation and quantum
guessing games. Moreover, the relation (4) is independent of the
choices of the MUBs. Therefore, the relation (4) gives rise to a kind
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of conservation of measurement uncertainties, in the sense that
(4) is invariant under the transformation of MUBs.

Our theorem gives an uncertainty equality relation for arbitrary
dimensional bipartite systems consisting of a quantum system
and a coupled quantum memory. It should be emphasized that,
even for single-partite systems, it is already quite difficult to obtain
an uncertainty equality relation for high-dimensional case. The
high-dimensional bipartite case is much more complex than the
case of single-partite one.?®?973%3742 Therefore, as one sees in
Method A, it is not surprising that the derivation of our uncertainty
relations needs subtle mathematical techniques.

With the help of one mirror system of the measured system and
one additional probe qubit, we have provided the first experi-
mental verification of this measurement uncertainty relation in an
NMR quantum processor, where the experimental data of
uncertainty quantities have been directly obtained by measuring
the involved entropies without quantum state tomography. This
method allows one to perform verification experiments in large
quantum systems, and deal with the experimental data by
standard statistical and information-theoretical methods. These
results may give rise to significant applications in quantum
information processing such as quantum metrology. For closed
systems, it is well known that uncertainty relation determines the
precision limit of quantum metrology based on complementary
basis. For open systems, with B the environment and A the system
to be measured, our equality presents a complete characterization
of the precision limit for measuring the system under MUBs. Such
precision limit or accuracy determined by uncertainty relations
also appear in quantum computing when quantum gates like
CNOT are physically implemented. Hence our results may high-
light further studies on both fundamental problems in quantum
mechanics and the applications.

METHODS
A: Proof of the theorem

In a d-dimensional Hilbert space H, let {|ig)|i=1,---, d} denote a basis
labeled by 6. A set of M such bases is called mutually unbiased if

ili) P =

foranyi,j=1,2,-,d,and 6,7=1, ---, M with 6 # 7. When d is a power of a

)
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prime number, a complete set of d + 1 MUBs exists. When d is an arbitrary
integer number, the maximal number of MUBs is unknown. For example,
when d = 6, only three MUBs have yet been found. However, for any d > 2,
there exist at least three MUBs. For the purpose of this paper, we only
assume that M MUBs are available in a d-dimensional Hilbert space, where
M is less than or equal to the maximal number of MUBs that can exist.

In a composite Hilbert space H ® H of two qubits, we construct the
following M(d — 1) + 1 states,

d
Z 1)

(10)

® lig)g a1

w i
|¢9k \/—Z I 6/A
with w=e*" k=1, ..,d—1and 6=1, 2, ..., M. Here |i)" denotes the
complex conjugate of |ig) with respect to the computational basis (which
can be chosen as the first basis {|i;)} without loss of generality). It is
straightforward to show that the M(d — 1) + 1 bipartite states defined in
Egs. (10) and (11) are normalized and orthogonal to each other.

Therefore, these M(d — 1) + 1 states can be used for constructing a basis
in the composite Hilbert space H ® H. Since there are at most d”
orthogonal states in a d?*-dimensional space, one has M(d— 1)+ 1 <d?
which implies M<d+1, ie, there are at most d+1 MUBs for a d-
dimensional Hilbert space. When M=d+ 1, i.e, a complete set of d+ 1
MUBs in a d-dimensional space is available, the states defined in Egs. (10)
and (11) constitute a complete basis for the composite Hilbert space
H ® H. On the other hand, when M<d+ 1, one can complete a basis of
the composite Hilbert space by adding p=(d — 1)(d + 1 — M) additional
orthonormal states {|¢po) |[a=1, -+, p}. The projector onto the subspace
spanned by these additional states is denoted by P, i.e.,

M d-1 p
P=1@1— 00O = > |dox)doxl = D [0a)(@al- (12)
6=1 k=1 a=1

It is obvious that P =0 when M=d + 1.
Let T, denote the partial transpose with respect to the computational
basis of the second Hilbert space. One immediately has

(o) (@)™

dz‘” Grl @ ljn) (il (13)

As 971 ki) equals to —1 for i=j and d — 1 when i =}, it is not difficult
to show

d-1 ooy d
(Z |¢9.k><¢a,k> =" lio){io| @ lia) (ia] — %E lie) (ol © ljo) (ig]. (1)
k=1 i= i=

Suppose pag is a bipartite state on the composite Hilbert space Ha ® Hp
of dimension d x D, and suppose {|ig)a} is the 8th MUB in the d-dimensional
Hilbert space Ha, after system A is projected onto the 8th MUB the overall
bipartite state is written as

d
o5 = 3. i o] @1 {ilpralo) . 13

=1
Given a bipartite state psz and a set of M MUBs in H,, we define an
operator

(16)

_ M—1 M
Fas = 1a ® pg T Pas ;Pes
on Ha ® Hp. This operator is Hermitian, and it has the following nice
property.

Proposition When M =d + 1, the operator 45 vanishes: [, = 0. When
M <d, it is nonnegative-definite

Fag > 0. 17)

In order to prove the proposition, we introduce an additional Hilbert
space Hc of dimension d, and introduce a linear map F that maps
operators on Hc to operators on Hy, such that F(|i1)(j1]) = lir) (] (=
1,-++, d). One can easily show that F(|ig)c{jo|) = |io)a (je| for@=1,..., M. Let
]—"1 denote the inverse map, and let peg = F ' (0u5) denote the
corresponding state on H¢ ® Hg with respect to the state psz on
Ha ® Hg. Therefore, the map F : pcg — F(pcg) can also be conveniently
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written via a partial trace over system C

Flocs) = ZT"C{ [lioYa(iol ® lia)c(iol]oca }
= E lio) el © (ielocalje) (18)
ij
= Pas
for any 6 {1, ---, M}. Similarly, pgz can be written as
d
Pes = ch{ [Z lig) 4 {io| ® ie>c<ie|] Pca}- (19
=
Hence
M M . . . X
921 (3Pas — Pog) = 62 Treq 32 lie)a (el ® lis) c (ielocs
- =1 ij
M
- ez Trc{ Yalio] @ lig)c </9\pcg} (20)
=1

_ Tc
= ch{<2 Z:: |¢ek>AC ¢ek> pCB}‘

We have used Eq. (14) to obtain the last equality. From Egs. (13) and (18)
with 8 =1, we also have

1
4P = Trc{(|®>AC<®|)TCpCB}' (21)

From Egs. (20) and (21) and the obvious relation I, ® pg=Trcl(lo ® I0)
Ocsl, We can rewrite M4z as

M
Tag =1la ® Pg — J0as + QZ (30as — PeB)
=1

(22)
=Trc{P}pcs }-

Here the operator Py is the projector defined on H, @ Hc according to
(12), i.e,

M d-1
Pac =101 = O)O] = 3 3 |dox)(doxl
6=1 k=1 23)

M=

‘¢a>AC<‘pa ‘

a:

When M=d+ 1, then p=0, the states |pq)ac in Ha ® Hc do not exist,
both P4c and 45 vanish. When M < d, we have

Fo — Trc{ > (|<pa>Ac<<pa|)“pcg}

= o’é Trc{ (“pa>AC<(paDTCPCB}
rc{(Wa)Ac)T(PCB(((Pa\AC)TC}.

The last equality is due to the fact that operators on H¢ can have cyclic
permutations under the partial trace over C. Let Oq = (|@g)ac) /Pcar
which are operators on Hs ® He ® Hg. Then we have

Tag = i Trc{@a(@a)?}_

04(0,)" always  nonnegative-definite
Ha ® He ® Hp, the operators Trc{Oa(Oa)T}
operators on Hu ® Hg, so is their sum. Therefore 45> 0. This completes
the proof of the proposition.

According to the proposition, 45 is a nonnegative-definite operator
when M < d, and it vanishes when M =d + 1. Hence, for any nonnegative-
definite operator Myz on Ha ® Hp,

Trag(TasMag) > 0

Il
M=

Q
I

(24

Since are operators on

are nonnegative-definite

(25)

when M <d, and the inequality becomes an equality when M=d + 1.
Let Mag = pag Eq. (25) yields

0 < Tras(TasPag)

= Tr(pg) + Y7 Tr(p}s) — Z

§

(26)
r(03s)-
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Therefore,

M M—
=D _Tr(pgs) > ~Tr(pp) ——
6=1

1
Tr(Pje)- (27)

Adding MTr(p3) to the above inequality, we immediately have
M

> (Tr(p3) — Tr(pgs))

6=1

> (1) (T(e8) — 5 Tlo%) ). 28)

The inequality becomes an equality when M =d + 1. Thus, the theorem in
the main text has been proved.

Remark: The approach we admitted here is methodologically similar to
the one used in ref. %° (see also ref. %). In ref. ** an elegant uncertainty
equality has also been presented based on ONE positive operator-valued
measure consisting uniformly all the measurement operators of d+ 1
MUBs. As we take into account all the d + 1 MUB projection measurements
individually, our uncertainty relation is completely different from the one
given in ref. * In fact, the uncertainty relation in ref. *> cannot be applied
to our QRNG self-testing scenario, because the equality derived in ref. *°
holds only when the system is measured in one of the MUBs with
uniformly random probability. While our equality holds no matter whether
the MUB is uniformly chosen. Such a property is crucial in practical QRNG
application, as one needs to restrict the input randomness to choose a
mutually unbiased basis.

B: Quantum register

We used the sample named 1-bromo-2,4,5-trifluorobenzene as a five-qubit
NMR quantum system which consists of two 'H spins and three '°F spins,
dissolved in the liquid-crystal N-(4-methoxybenzylidene)-4-butylaniline.
The structure of the molecule is shown in Fig. 4. Due to the partial average
effect in the liquid-crystal solution, the direct dipole—dipole interaction will
be scaled down by the order parameter®’ In our sample, the partial
average effect makes the direct dipole—dipole couplings of homonuclear
spins much smaller than the difference between the chemical shifts of
related nuclear spins, all the dipole—dipole Hamiltonians are reduced to
the form of o). Therefore, the effective Hamiltonian of the five-qubit
system in rotating frame is

5
Hyvr = Z"V,U'z + Z
i

1<j<k<5

Vs N
= (i + 204) 00, (29)

where o, is the Pauli operator, v; is the chemical shift of spin-i and J; + 2Dj,
is the effective coupling constant of spin-j and spin-k. The relevant
parameters are shown in Fig. 4.

C: Initial state preparation

We first initialized the quantum register into a labeled pseudo-pure state
(LPPS) pipps = €087 ® |0000) 44,5, (0000] + 1/32l3, from the equilibrium
state where € is the polarization about 10>, We just neglected the identity
part because unitary and nonunitary operations all have no influence on it.
We applied 30 unitary operators with the form U = e~ to redistribute
the populations between energy levels i and j. Here Vj; is the single
quantum transition operator between levels i and j, that is, a 32 X 32 matrix
whose elements are zero except for two elements V;(i,j) = V;(j,i) = 1/2.
According to the desired distribution, the angle B; were numerically
calculated. In this produce, the unitary operators generated undesired

(a) (b)

Probe Fs Probe

B R — - B’

H. Wang et al.

coherence terms that were eliminated by a following field gradient pulse
Gz. Accordingly, the LPPS p pps was prepared.

In the following we only consider the deviation part
0P 2 |0000) 45,5 (0000|. The composite system was prepared into the
state

082 @ (a1, X) ® Pap (0, X) = 08P ® (X[ o) (Wal + 1%)(’4)
®(X‘¢a><w:1‘ +]%XI4)-,

from oP"b¢ © |0000)(0000|, where |,) = cos(a/2)|01) — sin(a/2)|10). In the
case of x =1, the bipartite systems are entangled where the rotation angle
a varies from 0 to 71/2 for producing different entanglement. a=0
corresponds to separable state and a =n/2 corresponds to the maximally
entangled state. Setting a =n/2 and scanning x from 0 to 1 with interval
0.25, we prepared the states with different mixedness. In preparing

(a) Fs H, Hy F, F T, Ty
-37477 1915.7 63.5 342.5 144.4 FS 240ms 0.8s

a

©
Fs 2492 -12.8 1556.6 645 Hy 310ms  1.5s

[ o 2479 129.2 1887.4 Hz  313ms  15s
—® -44888 594 F,  174ms  0.6s
Fy Unit: Hz
¢ Wt -47340 F;  180ms  0.8s
(b) 3
= 19F spectrum
> F Fy
2 [
&
E,, |
@ i “ﬂ“‘m‘
e &
z —100 —110 —120 [ppm]
(c) ) 1H spectrum
5 H Hj
5 ‘H4 |H4 ‘ H4
£ Il 4
%D MJMW;;“»\MNKMV Nww\’\"b"\mw‘““-w
< ——T T
= 10 8 6 4 [ppm]

Fig. 4 a Characteristics of the 1-bromo-2,4,5-trifluorobenzene
molecule. The chemical shifts and effective coupling constants (in
Hz) are on and above the diagonal in the table, respectively. The last
two columns show the transversal relaxation times and the
Iongltudlnal relaxatlon times of each nucleus. b, ¢ The thermal
equilibrium '"°F and 'H spectra

O]

Gz

Fig. 5 a Quantum circuit of preparing 62" ® p,s(a, 1) ® pag(a, 1) from LPPS. The rectangles represent single-qubit rotations with angles g,
71/2 and 7 along y-aX|s Gz is the field gradlent pulse along z-axis. b Pulse sequences for preparing 62 ® p,0(11/2,X) @ pag (/2,x) with the
temporal averaging method. The rotation angles 653 4 are arccos|(1 — x)?], arccos[x(1 — X)], arccos[x(1 — x)] and arccos(x?), which are used to

adjust the coefficients of four parts in Eq. (30)
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Labeled PPS , MUB measurements Readout
07" Q Pas0,X) ® pas(at,x)
4 ¥ [ g A A .
Probe Fs
|§| —T— <0,>
A Hy— - — T
B Hs— Uppps — V(a,x) [r] [r]
i
A F, — i — 2] 2!
B Fy | 5 - [r] = [n]
Gz Gz Gz

Fig. 6 Experimental pulse sequence. The LPPS preparation contains one GRAPE pulse and one z-axis gradient pulse. The GRAPE pulse is used
to redistribute the populations and the field gradient pulse is used to eliminate the undesired coherences. The operation V(q, x) is to prepare
the initial state 0P™" ® p,s(a, X) ® pyg (@, ). Its specific form is shown in Fig. 5. The solid blue rectangle is 71/2 rotation along (—y)-axis in x-
measurement and along x-axis in y-measurement. The dashed blue rectangles denote 71/2 rotations with the opposite phases to those in solid
blue rectangles. No need to operate them in z-measurement. The readout part contains two Csap gates applying on subsystems AA’ and BB'.
The dashed C,ap(AA’) is not required in reading out the purity of subsystem B
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Different states p
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Fig. 7 a The original results without rescaling of verifying the measurement uncertainty relation. The bars are plotted from the infidelity of
readout process. b The directly measured purities. The hollow dots are the expected purities. The blue asterisks are the directly measured
purities and the red ones are the rescaled results. The left five figures correspond to purities when the initial bipartite state is ps(a, 1) where a
=0, /8, m/4, 311/8, m/2 from top to bottom. And the right five figures correspond to pas(n/2, x) where x =0, 0.25, 0.5, 0.75, 1 from top to
bottom. In each figure, from left to right, they are Tr(0%;), Tr(p%), Tr(0}), Tr(0Z), Tr(03), Tr[(p3|x)2}, Tr[(pB‘y)z], Tr[(pB‘z)z], where pgg (0=x, y, 2)
are the resulting state after the complete MUB measurements on subsystem A, and pgjg = Tra(0gs)

0P @ 0,5(11/2,X) ® ppg (7/2,x), we divided it into 4 parts, i.e.,
0P @ (17%h) ® (7*h),
0% @ (7212) @ (X[Wn/2) (W ),
02 & (X|Wn/2) (W jal) © (FEh),
02 @ (X|Wn/2) (Wnjal) @ (X[Wr/2) (W2l

and adopted the temporal averaging method®® to realize them. By
summing the four output states, we obtained the desired state

(30
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0P @ 0,5(17/2,X) @ pag(7/2,%). The pulse sequences for the state
preparation are shown in Fig. 5a, b.

D: Experimental procedure

The total experimental procedure is shown in Fig. 6, including the LPPS
preparation, the initial state preparation, MUB measurements and the
readout of the purities. When the measurement is along y-axis, the first and
last rotations in the MUB measurement part should be substituted by

Published in partnership with The University of New South Wales



rotations along x and —x, and the angles remain also 71/2. In the z-axis
measurement case, these two rotations are omitted.

E: The attenuation factors caused by decoherence effect and
experimental measured purities
Even through the high-fidelity GRAPE pulses in experiments, the
experimental results are still severely affected due to the decoherence
due to the long running times comparing to the T, relaxation times of
nuclear spins.

In our experiments, the environmental noises are suitably modeled as
Markovian, and the evolution of the system is given by the Lindblad
master equation

p= *i[HS + HC(U»M + Z (2L0,pLL - LLLuP - PLlLa% (31
a

where Hs is the system Hamiltonian, Hc(t) is the time-dependent external

control Hamiltonian, and the operators L, are Lindblad operators
representing the coupling with the environment. The experiments are

mainly affected by the dephasing process, and therefore L, = \/go‘z’, (a=
1,...,5) and y, = 1/T,, and

p = —ilHs + Hc(t),p] + Y va(0500% — p). 32)

In the experiments, the high-fidelity GRAPE pulses we used are kinds of
shaped pulses consisting of thousands of slices with a constant Hc(t) the
duration of each slice, where &t is 2—25 ps. Consequently, for each slice,
the state of the system can be approximately given by

1
p(ti1) = p(ti + 6t) = Z [:';'e*f["*’sJr"'l’c(tm)]ﬁs"’)(ti)ei[f'l'erf'fc(lm)]<5r‘l:'lf’f7 (33)
a=1 i=0
where the Kraus operations
o = VA1, Ef = /1 =209 (34)

with Aq = (1 + e7%5%) /2,

Therefore, we numerically simulated the experiments, extracted the
attenuation factors caused by decoherence effect and then rescaled the
experiment results for verifying the uncertainty conversation relation in
Fig. 3a, b. The un-rescaled original results are shown in Fig. 7a. From this
we can see that even though the right and left sides of the uncertainty
equation are all reduced, they almost equal each other. Figure 7b shows
the directly measured purities of different states required in the
uncertainty conversation relation.
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