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Uncertainty equality with quantum memory and its
experimental verification
Hengyan Wang1,2,3,4, Zhihao Ma5, Shengjun Wu6, Wenqiang Zheng7, Zhu Cao8, Zhihua Chen7, Zhaokai Li1,3,4, Shao-Ming Fei9,10,
Xinhua Peng 1,3,4, Vlatko Vedral11,12 and Jiangfeng Du1,3,4

As a very fundamental principle in quantum physics, uncertainty principle has been studied intensively via various uncertainty
inequalities. A natural and fundamental question is whether an equality exists for the uncertainty principle. Here we derive an entropic
uncertainty equality relation for a bipartite system consisting of a quantum system and a coupled quantum memory, based on the
information measure introduced by Brukner and Zeilinger (Phys. Rev. Lett. 83:3354, 1999). The equality indicates that the sum of
measurement uncertainties over a complete set of mutually unbiased bases on a subsystem is equal to a total, fixed uncertainty
determined by the initial bipartite state. For the special case where the system and the memory are the maximally entangled, all of the
uncertainties related to each mutually unbiased base measurement are zero, which is substantially different from the uncertainty
inequality relation. The results are meaningful for fundamental reasons and give rise to operational applications such as in quantum
random number generation and quantum guessing games. Moreover, we experimentally verify the measurement uncertainty relation
in the presence of quantum memory on a five-qubit spin system by directly measuring the corresponding quantum mechanical
observables, rather than quantum state tomography in all the previous experiments of testing entropic uncertainty relations.
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INTRODUCTION
The uncertainty principle is one of the most important principle in
quantum physics. It implies the impossibility of simultaneously
determining the definite values of incompatible observables. The
more precisely an observable is determined, the less precisely a
complementary observable can be known. Based on the distribu-
tions of measurement outcomes, the quantum uncertainty relations
can be described in various ways; see for instance refs. 1–13

The uncertainty principle was first formulated via the standard
deviation of a pair of complementary observables, known as the
Heisenberg’s uncertainty principle1 ΔxΔp ≥ ħ/2 for the coordinate x
and the momentum p in an infinite dimensional Hilbert space. Later
the Robertson−Schrödinger uncertainty inequality2,3 presented an
uncertainty relation for two arbitrary observables in a finite
dimensional Hilbert space. Instead of the standard deviation of
observables, the uncertainty principle can also be elegantly
formulated in terms of entropies related to measurement bases.
When a quantum system is projected onto a certain basis {|iθ〉 |i= 1,
2, ⋯, d}, where θ labels the measured observable, the uncertainty of
the measurement results has been characterized by the Shannon
entropy Hθ ¼

Pd
i¼1 �pi log2 pi , where pi is the probability to obtain

the ith basis state |iθ〉. The larger the Shannon entropy Hθ is, the
more uncertain the measurement results are. In terms of the

Shannon entropies of the measurement results, the uncertainty
principle can be formulated as Hθ þ Hτ � log2

1
c.
4 Here 1/c quantifies

the degree of complementarity of two observables θ and τ.
The above uncertainty relations only concern a single quantum

system. By taking the entanglement with a memory system into
account,14 an entropic uncertainty relation in the presence of
quantum memory has been investigated in ref. 15. It has been
shown that for a bipartite state ρAB, performing measurements on
one of the subsystems A gives rise to the following relation

SðθjBÞ þ SðτjBÞ � log2
1
c
þ SðAjBÞ; (1)

where S(A|B) and S(θ|B) (S(τ|B)) denote, respectively, the condi-
tional von Neumann entropies of the initial bipartite state ρAB and
the final bipartite state ρθB (ρτB) after the measurement in the basis
{|iθ〉} ({|iτ〉}). This uncertainty relation was further extended to the
smooth entropy case.16 With considering the entangled quantum
memory, these uncertainty relations have potential applications in
entanglement witnessing and quantum key distributions
(QKD).15,17,18 However, the above results all concern measure-
ments only on two observables and are given in inequality forms.
In this work, we consider projective measurements based on

mutually unbiased bases (MUBs).19–24 The MUB measurements are
complementary to each other in the sense that any pair of bases
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are maximally unbiased. They are deeply connected to the Born’s
principle of complementarity21 and closely related to the wave-
particle duality.25,26 A complete set of MUBs consists of at most d
+ 1 observables, where d is the dimension of the state space.
Comparing with the incomplete case, the advantage of a
complete set of MUB measurements is informatively complete23,24

and meaningful in quantum information progressing.21 It is
therefore not surprising that a complete set of MUB measure-
ments is crucial in entanglement detection.27,28 It was also proved
that using a complete set of MUBs is much better than using two
observables in QKD.19

In ref. 6 an entropic uncertainty relation involving d+ 1 MUB
measurements has been obtained in terms of von Neumann
entropy. However, it only dealt with a single system (in this case
the von Neumann entropy is just the Shannon entropy of the
measurement probability distributions), and the uncertainty
relation is given by an inequality. In fact, the Shannon entropy is
a natural measure of our ignorance regarding the properties of a
classical system, because in classical measurements the observa-
tion removes our ignorance about the state by revealing the
properties of the system which are considered to be pre-existing
and independent of the observation. In contrast to classical
measurements, one cannot say that quantum measurements
reveal a pre-existing property of a quantum system. Therefore, the
Shannon entropy could be thought of as “conceptually” inade-
quate in quantum physics.29 In ref. 26 the authors proposed a new
measure of quantum information, which takes into account that
the only features of quantum systems known before a measure-
ment are the probabilities for various events to occur. It has
significant physical meaning and various applications in quantum
information processing such as quantum randomness, quantum
state estimation, quantum teleportation and quantum metrol-
ogy.30–36 Moreover, a series of works have been shown, together
with many applications, that in single quantum system, the sum of
the individual measures of information for MUBs is invariant under
the choice of the particular set of complementary observations
and conserved if there is no information exchange with
environments.26,29–34,37–42

In this article, we adopt the information measure proposed in
ref. 26 and consider the uncertainty relation in the presence of
quantum memory. Interestingly, we find that if we take a
complete set of MUB measurements into account, we can obtain
an uncertainty equality that the sum of measurement uncertain-
ties over all MUBs on a subsystem in the presence of quantum
memory is equal to a fixed quantity determined by the initial state.
It gives rise to a kind of conservation relation of the uncertainties
related to these MUB measurements. We further show the elegant
applications of our result in quantum guessing game and
quantum random number generation. We also experimentally
verify this uncertainty equality by directly measuring the
uncertainties on a nuclear spin system. Our method avoids the
tomography process and allows one to perform verification
experiments in large quantum systems.

RESULTS
Measurement of uncertainty relations
Let (p1, p2, …, pd) be the probabilities for the d measurement
outcomes. The lack of information about the jth outcome with
respect to a single experimental trial is given by pj(1− pj). The
total lack of information regarding all d possible experimental
outcomes is then given by

Pd
j¼1 pjð1� pjÞ ¼ 1�Pd

j¼1 p
2
j , which is

minimal if one probability is equal to a unity and maximal if all the
probabilities are equal. In fact, 1�Pd

j¼1 p
2
j is nothing but 1− Tr

(ρ2), where ρ is the state after a quantum (projective) measure-
ment, the linear entropy of the measured state. Therefore, the lack
of information regarding all d possible experimental outcomes can

be described by the linear entropy of a d-level quantum state
ρ, SL(ρ)= 1− Tr(ρ2). SL(ρ) ranges from 0 (when ρ is a pure state) to
(d− 1)/d (when ρ is maximally mixed). Unlike that in ref. 26, here
we do not introduce a normalization factor to have a range
between 0 and log2 d, so the measure of uncertainty in terms of
linear entropy does not have the unit of a “bit”. However, it
quantifies uncertainty in a natural way: an uncertainty of 0 means
the outcome is 100% certain while an uncertainty approaching 1
means the outcome is almost random.
For a bipartite state ρAB in a d × D (D ≥ d) dimensional composite

Hilbert space, if system A is projected on to the basis {|iθ〉 |i= 1, 2,
⋯, d}, the overall state of the composite system after the
nonselective measurement43,44 on A is given as

ρθB ¼
Xd
i¼1

iθj iAhiθj �A hiθjρAB iθj iA: (2)

We can introduce the conditional linear entropy

SLðθjBÞ :¼ SLðρθBÞ � SLðρBÞ ¼ Trðρ2BÞ � Trðρ2θBÞ (3)

as a measure of the uncertainty about Alice’s measurement result
given Bob’s state, where the reduced state ρB= TrA(ρθB)= TrA(ρAB)
is independent of the measurement basis. It is straightforward to
show that the conditional linear entropy SL(θ|B) is always
nonnegative. As an example, suppose ρAB is a maximally
entangled pure state. Alice can perform a measurement on her
system in any basis. The possible resulting states of Bob’s system
are orthogonal to each other, and each possible resulting state is
in one-to-one correspondence to Alice’s resulting state. Therefore,
given Bob’s state, Alice’s measurement result can be determined
with certainty. In this case SL(θ|B) vanishes. If ρAB ¼

Pd
i¼1

ffiffiffiffi
λi

p
iij i is

a partially entangled state written in its Schmidt bases, after Alice
measures her system in the Schmidt basis, Bob’s possible resulting
states are orthogonal to each other and the Alice’s measurement
result is completely determined without uncertainty when Bob’s
state is given. This is also confirmed by the vanishing conditional
entropy as SLðρθBÞ ¼ SLðρBÞ ¼

P
i λ

2
i . However, if Alice performs a

measurement on a basis that is not the Schmidt basis, the possible
resulting states of Bob’s system are not orthogonal and cannot be
distinguished with certainty, and thus uncertainty of Alice’s
measurement result exists even when Bob’s state is known. This
fact is again confirmed by the observation that the conditional
linear entropy is strictly greater than zero in this case. The
conditional linear entropy is thus a good measure of the
uncertainty about Alice’s measurement result given Bob’s state.
It depends on the basis in which the measurement is performed in
general. When Alice tries to find a basis to perform the
measurement on her system so that Bob will know her result
with minimum uncertainty, then using another MUB to perform
the measurement will result in Bob having a large uncertainty
about Alice’s result. However, the whole uncertainty running over
all possible MUB measurements is fixed. This uncertainty relation
is formulated in the following theorem (the proof involves subtle
mathematical techniques, see Method A).
Theorem For any density matrix ρAB on a composite Hilbert

space HA⊗ HB of dimension d × D, we have the following
uncertainty equality

Xdþ1

θ¼1

SLðθjBÞ ¼ d Trðρ2BÞ �
1
d
Trðρ2ABÞ

� �
(4)

when a complete set of d+ 1 MUBs exists for the d-dimensional
Hilbert space HA.
The theorem shows that the total uncertainty related to the

measurements over all d+ 1 MUBs of a subsystem is exactly given
by a fixed quantity, dTrðρ2BÞ � Trðρ2ABÞ, which is determined only by
the initial bipartite state. This quantity is always nonnegative and
can be viewed as the total measurement uncertainty of a
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subsystem, given the state of the other subsystem. Different from
the uncertainty inequality (1) based on the von Neumann entropy,
here we obtain the equality (4). Note that this equality (4) is also
completely different from the one given in ref. 45 which is based
on only ONE positive operator-valued measure consisting of
uniformly all the measurement operators of d+ 1 MUBs (see
Remark in Method A). In general, when there are only M MUBs
available or when we are only interested in certain M MUBs, we
always have the following uncertainty inequality,

XM
θ¼1

SLðθjBÞ � ðM� 1Þ Trðρ2BÞ �
1
d
Trðρ2ABÞ

� �
: (5)

With each additional MUB, the lower bound of total uncertainty is
increased by a fixed amount Trðρ2BÞ � 1

d Trðρ2ABÞ.
To illustrate the implications of the theorem, let us consider that

Alice and Bob are both users of quantum technology. In order to
make a hard decision on whether she should accept Bob’s
invitation to see a film, Alice asks Bob to send her a qubit A. Alice
can measure the qubit with the three (Pauli) observables σx, σy and
σz at her choice. After the measurement, Alice announces her
choice of the observable, and Bob is supposed to guess the Alice’s
measurement results. Alice would accept (deny) Bob’s request if
his guess is correct (wrong). Bob tries to gain Alice’s acceptance by
entangling the qubit A with his local qubit B in the preparation
stage. From the theorem, we know that the sum of uncertainties
(of Bob’s guess at Alice’s measurement results given the state of B)
in three different cases is equal to the quantity Q ¼ 2Trðρ2BÞ �
Trðρ2ABÞ that is completely determined by the initial state ρAB. Bob
can minimize the quantity Q by preparing an EPR state, thus win
Alice’s acceptance with certainty, a result that cannot be obtained
from an uncertainty inequality like the one based on Shannon
entropy (see Fig. 1).
On the practical side, the theorem also provides possible

applications in quantum random number generation, especially
semi-self-testing quantum random number generators (QRNGs)
which are more robust to device imperfections. In a typical setup
of a semi-self-testing QRNG,46–48 Alice and Bob share a quantum
state ρAB, e.g., an EPR pair. If both parties are trusted, the
measurement outcome of one party will be random to the other

party when Alice measures in the computational basis and Bob
measures in the diagonal basis. However, if one of the parties is
corrupted, e.g., due to device imperfections, this scheme is
broken. To show this, consider that one party switches to the same
basis as the other party. A common solution is that each party
randomly uses multiple basis, such as σx, σy, or σz basis.

46–48 Now,
we consider the following semi-self-testing scenario. Alice first
chooses a reference frame, and randomly performs measurements
in one of the MUB basis. The reference frame is assumed to be
reliably chosen, but Alice does not have a free will to randomly
choose her measurement basis, i.e., the basis choice may be
manipulated by an adversary who wishes to corrupt Alice’s
randomness, such as Bob. Hence, the entropy of Alice’s random
outcomes with respect to Bob is the smallest entropy SL(θ|B)
among all measurement choices. To maximize this quantity, the
theorem shows that SL(θ|B) should be equal for all θs. Thus, the
maximum entropy of a semi-self-testing QRNG is
½dTrðρ2BÞ � Trðρ2ABÞ�=ðd þ 1Þ. This limit on semi-self-testing QRNGs
also cannot be obtained from an uncertainty inequality. Finally,
note that entanglement-based QRNGs considered here have a
higher randomness generation rate compared to prepare-and-
measure QRNGs,49 and cannot be analyzed by using the tools
developed by Brukner and Zeilinger.26

Experimental verification
To experimentally investigate the uncertainty conservation, a two-
qubit system ρAB, chosen as the test system, is prepared in the
following states:

ρABðα; xÞ ¼ x ψαj i ψαh j þ 1� x
4

I4; (6)

where |ψα〉= cos(α/2)|01〉− sin(α/2)|10〉. These states are mixed
states composed of one pure state with weight x and the maximal
mixed state with weight (1− x)/4. The parameters α characterizes
the entanglement of the pure part and x characterizes the purity
of the state. When α= π/2 and x= 1, the bipartite state is one of
the Bell states. The other three Bell states can be obtained by local
unitary operations while the linear entropy remains invariant
under such transformations.
The key part of the experiments is to measure the system’s

(conditional) linear entropy. Similar to the measurement of von
Neumann entropy in previous experiments,50,51 linear entropy can
be indirectly measured by full quantum state tomography.52

However, this is inefficient for large-size quantum systems. Since
the linear entropy is directly related to the purity Tr(ρ2) that can be
directly obtained by Tr(ρ2)= Tr(V2ρ ⊗ ρ)53 with a copy of ρ, this
allows us to employ an operational and direct way to
experimentally verify the uncertainty conservation relation. Here
the operator V2 is the SWAP operation, i.e., V2|ψ1ψ2〉= |ψ2ψ1〉, that
exchanges the states of two subsystems. By using one ancillary
probe qubit to perform the interferometric measurement, we can
directly obtain all the required information of the purities from the
probe qubit, as shown in Fig. 2a.

Physical system. To verify the equation in the experiments, we
used the sample named 1-bromo-2,4,5-trifluorobenzene as a five-
qubit NMR quantum system which consists of two 1H spins and
three 19F spins, dissolved in the liquid-crystal N-(4-methoxybenzy-
lidene)-4-butylaniline (MBBA). Spins H3 and H4 are labeled as the
bipartite system ρAB, spins F1 and F2 as the copy system ρA′B′, and
spin F5 as the probe qubit ρprobe. The effective Hamiltonian of the
five-qubit system in double rotating frame is

HNMR ¼
X5
i¼1

πνiσ
i
z þ

X
1�j<k�5

π

2
Jjk þ 2Djk
� �

σj
zσ

k
z ; (7)

where σz is the Pauli operator, νi is the chemical shift of spin-i and
Jjk+ 2Djk is the effective coupling constant of spin-j and spin-k.

Alice Bob

Fig. 1 a Sketch of the proposal. b Illustration of implications of the
theorem. Alice chooses to measure one of the three Pauli matrices
σx, σy and σz on qubit A, and then informs Bob her choice and
requests him to guess her measurement outcome. In order to guess
Alice’s measurement outcome with less uncertainty, Bob can
entangle qubit A with a local qubit B before sending qubit A to
Alice, so that to minimize the uncertainty
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The molecular structure is shown in Fig. 2b, and the relevant
parameters are shown in Method B.

Experimental procedure. Figure 2c shows the experimental
schematic for verifying the measurement uncertainty relations. It
can be divided into four parts.

1. Preparing initial state. From thermal equilibrium state, we
first initialized the system to a labeled pseudo-pure state
(LPPS) ρLPPS ¼ 1

32 I32 þ εσprobez � 0000j iABA0B0h0000j with
selective-transition method,54 where ε ≈ 10−5 is the polar-
ization and I32 is the 32-dimension identity matrix. There is
no dynamical and measurement effect on the part of
identity density matrix; thus in the following, we conven-
tionally denote the state with the deviation density matrix,55

ignoring the identity matrix. Then the product state ρAB(α, x)
⊗ ρA′B′(α, x) was prepared from |0000〉ABA′B′ 〈0000|, where ρA′
B′ is the copy of ρAB. We vary the weight x by rotation with
different angles and a following nonunitary gradient pulse.
The details of initialization process are shown in Method C.

2. Performing MUB measurements. The complete MUB mea-
surements were implemented on subsystem A. For a two-
dimensional system, the simplest case of MUBs are

M0 ¼ fj0i; j1ig;M1 ¼ j0iþj1iffiffi
2

p ; j0i�j1iffiffi
2

p
n o

;

M2 ¼ j0iþij1iffiffi
2

p ; j0i�ij1iffiffi
2

p
n o

:
(8)

They are just the eigenvectors of Pauli operators σx,σy and
σz. In NMR, such MUB projective measurements can be
emulated using pulsed magnetic field gradients.56 Without
interfering the unselected systems (B and its copy B′), we
realized the MUB measurements on subsystem A and its
copy A′ by the gradient echo technology,57 i.e., by selective
π pulses to the other spins, this dephasing operation (i.e.,
projective measurement of σz) can be selectively performed
on some specific spins. It is in principle necessary to refocus
all the evolutions under the internal Hamiltonian during the
gradient echo. However, this sequence can be simplified
when we only care about the purity of the crashed state.
For example, the projective measurement of M0 on spin
F2 (A) and H4 (A′) are accomplished by
PF2;H4
z ¼ Gz � ½π�F1;H3 ;F5

x � Gz � ½π�F1;H3;F5
�x , where the evolu-

tions under internal effective coupling Hamiltonian related
to three qubits F1, H3 and F5 are reserved during the pulse

sequence. However, by some calculations, these undesired
evolutions will lead to an error less than 2[1− cos(2Δθ)] ≈
0.065 on the purity measurements of the subsystem A or A′,
mainly determined by the different evolutions on qubits F1,
H3 due to the different effective coupling constants JF1;F5 þ
2DF1;F5 and JH3;F5 þ 2DH3;F5 . Here Δθ ¼ π½ðJF1;F5 þ 2DF1;F5Þ �
ðJH3;F5 þ 2DH3;F5Þ�tGz=2 with the duration tGz of pulsed
magnetic field gradient Gz. To perform projective measure-
ments of M1 and M2 on specific spins, we first selectively
rotate the spins with [π/2]−y or [π/2]x rotations, then
performs the projective measurement of M0, e.g., PF2;H4

x ¼
½π=2�F2 ;H4

�y � PF2 ;H4
z and PF2;H4

y ¼ ½π=2�F2;H4
x � PF2;H4

z .56

3. Measuring the purities. After the MUBs on the subsystem A
and A′, performing the quantum circuit in Fig. 2a will give
the purity information on the resulting state ρθB after MUBs.
For example, when two controlled-SWAP gates (Cswap) are
applied to both subsystems AA′ and BB′, one gets the purity
of the bipartite system AB: Trðρ2θBÞ; when only one Cswap is
applied to the subsystem BB′, one gets the purity of
subsystem B: Trðρ2BjθÞ with ρB|θ= TrA(ρθB), as shown in Fig. 2c.
Likely, the related purities of the original state ρAB: Tr(ρAB)
and Trðρ2BÞ, are obtained by the similar procedure without
the MUBs. It can be noted the initial state of the probe qubit
is different from the original method in Fig. 2a. We initialize
the probe qubit as σprobez in our experiment. However, this
will not affect the measure of the purity by the quantum
circuit Uqc in Fig. 2a, i.e.,

Tr½σprobe
z Uqcðσprobe

z � ρ� ρÞUy
qc� ¼ 2Tr½V2ðρ� ρÞ� ¼ 2Trðρ2Þ:

Moreover, since the direct observable in NMR is σx, the final
Hadamard gate can be canceled out by the readout operation.
Therefore, through integrating the NMR spectra of the probe spin
F5, we directly measure the purities on the related states. By
calculating the linear entropy, both sides of Eq. (4) are obtained
without quantum state tomography.

Experimental results. The experimental results are shown in Fig. 3.
As expected, the sum of uncertainties decreases to zero when the
bipartite system is in maximally entangled state. With certain α,
lower purity corresponds to higher uncertainty. From Fig. 3a, b, we
can see that the experimental results are in accord with theoretical
expectations and the uncertainty conversation relation holds with
high precision. Figure 3c shows the final NMR spectra of the probe

Fig. 2 a Quantum circuit of directly measuring the purity. b Molecular structure for NMR quantum register. c Experimental schematic for
verifying the measurement uncertainty relation. MUB measurements are performed on subsystem A to get ρθB, and meanwhile the same
process is applied on the mirror subsystem A′. Then controlled-SWAP gates are performed for the measurements of the linear entropies SL(θ|B)
in LHS of Eq. (4). The purity information on the original state ρAB, i.e., the RHS of Eq. (4), are obtained without MUB measurement in the dashed
lines. The purities of the bipartite system AB: Trðρ2ABÞ and Trðρ2θBÞ, are obtained by two controlled-SWAP gates Cswap applying on subsystems AA′
and BB′ while only one Cswap is operated on subsystem BB′ (denoted by the solid line) for the purity of subsystem Trðρ2BÞ and Trðρ2BjθÞ, where
ρB|θ= TrA(ρθB)
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qubit for one certain initial state ρAB(π/4, 1). The sum of the
integral values of all the peaks is read as the purity of the related
state in our experiment, as shown in Fig. 3d.
In our experiments, to avoid the error accumulation and

alleviate the influence of the decoherence, we used high-fidelity
engineered quantum control pulses, which exploit the gradient
ascent pulse engineering (GRAPE) algorithm,58 to implement the
quantum circuit in the experiments. The experiments for pure
states contain eight GRAPE pulses with the total duration of about
74ms, while for mixed states, we used 9~11 GRAPE pulses with
total durations of 67−85ms. We numerically optimized all GRAPE
pulses with considering 5% ratio frequency (rf) field inhomogene-
ity, so that they are more robust in experiments. All GRAPE pulses
used in the experiments have theoretical fidelities above 99.3%.
Numerical simulations show that the imperfection of GRAPE
pulses causes infidelity of 2−4% in the final states. Due to the
short relaxation times of the liquid-crystal sample, the experi-
ments suffer severe decoherence effect. We numerically simulated
the dynamical process and estimated the attenuation factors
caused by decoherence effect in the experiments.59,60 Then we
rescaled the experimental results. The details can be also found in
Method E. In the numerical simulations, we found that transverse
relaxation time T2 plays a leading role in the decoherence process,
while the longitude relaxation time T1 has little influence. The
imperfection in preparing the labeled PPS also causes some errors.
The highest unexpected peak in the labeled PPS NMR spectrum of
spin F5 is about 3% intensity of the only expected peak.

DISCUSSION
In conclusion, we have derived a novel entropic measurement
uncertainty relation in bipartite systems with a quantum memory.
It has been shown that after a complete set of MUB measurements
on one partite, the total uncertainty on the other partite is exactly
given by the purities of the initial system and the memory.
Substantially different from the previous uncertainty relations with
inequalities, we presented an equality of uncertainty relation for
the case with a quantum memory, which implies direct applica-
tions to quantum random number generation and quantum
guessing games. Moreover, the relation (4) is independent of the
choices of the MUBs. Therefore, the relation (4) gives rise to a kind

of conservation of measurement uncertainties, in the sense that
(4) is invariant under the transformation of MUBs.
Our theorem gives an uncertainty equality relation for arbitrary

dimensional bipartite systems consisting of a quantum system
and a coupled quantum memory. It should be emphasized that,
even for single-partite systems, it is already quite difficult to obtain
an uncertainty equality relation for high-dimensional case. The
high-dimensional bipartite case is much more complex than the
case of single-partite one.26,29–34,37–42 Therefore, as one sees in
Method A, it is not surprising that the derivation of our uncertainty
relations needs subtle mathematical techniques.
With the help of one mirror system of the measured system and

one additional probe qubit, we have provided the first experi-
mental verification of this measurement uncertainty relation in an
NMR quantum processor, where the experimental data of
uncertainty quantities have been directly obtained by measuring
the involved entropies without quantum state tomography. This
method allows one to perform verification experiments in large
quantum systems, and deal with the experimental data by
standard statistical and information-theoretical methods. These
results may give rise to significant applications in quantum
information processing such as quantum metrology. For closed
systems, it is well known that uncertainty relation determines the
precision limit of quantum metrology based on complementary
basis. For open systems, with B the environment and A the system
to be measured, our equality presents a complete characterization
of the precision limit for measuring the system under MUBs. Such
precision limit or accuracy determined by uncertainty relations
also appear in quantum computing when quantum gates like
CNOT are physically implemented. Hence our results may high-
light further studies on both fundamental problems in quantum
mechanics and the applications.

METHODS
A: Proof of the theorem
In a d-dimensional Hilbert space H, let {|iθ〉|i= 1,⋯, d} denote a basis
labeled by θ. A set of M such bases is called mutually unbiased if

j iθjjτh ij2 ¼ 1
d

(9)

for any i, j= 1, 2, ⋯, d, and θ, τ= 1, ⋯, M with θ ≠ τ. When d is a power of a

Fig. 3 Experimental results of verifying the measurement uncertainty with the input states ρAB(α, 1) (a) and ρAB(π/2, x) (b). Red and blue dots
represent the measured values of LHS and RHS of Eq. (4), respectively. The experimental data are rescaled by extracting the decoherence
effect, shown by filled squares. The original data are shown in Method E. The dark gray curves are theoretical expectations. The bars are
plotted from the infidelity of readout process. c Experimental NMR spectra of probe spin (F5) for ρAB(π/4, 1). From bottom to up, the related
resulting states after measurement are, respectively, ρAB, ρxB, ρyB, ρzB, ρB, ρB|x, ρB|y, ρB|z. d Measured purities of the resulting states shown in (c).
Each purity is obtained from the sum of the integral values of the corresponding peak in (c)
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prime number, a complete set of d+ 1 MUBs exists. When d is an arbitrary
integer number, the maximal number of MUBs is unknown. For example,
when d= 6, only three MUBs have yet been found. However, for any d ≥ 2,
there exist at least three MUBs. For the purpose of this paper, we only
assume that M MUBs are available in a d-dimensional Hilbert space, where
M is less than or equal to the maximal number of MUBs that can exist.
In a composite Hilbert space H�H of two qubits, we construct the

following M(d− 1)+ 1 states,

jΦi ¼ 1ffiffiffi
d

p
Xd
i¼1

ji1iA � i1j i�B; (10)

jϕθ;ki ¼
1ffiffiffi
d

p
Xd
i¼1

ωkði�1ÞjiθiA � iθj i�B (11)

with ω= e2πi/d, k= 1, …, d− 1 and θ= 1, 2, …, M. Here |iθ〉
* denotes the

complex conjugate of |iθ〉 with respect to the computational basis (which
can be chosen as the first basis {|i1〉} without loss of generality). It is
straightforward to show that the M(d− 1)+ 1 bipartite states defined in
Eqs. (10) and (11) are normalized and orthogonal to each other.
Therefore, these M(d− 1)+ 1 states can be used for constructing a basis

in the composite Hilbert space H�H. Since there are at most d2

orthogonal states in a d2-dimensional space, one has M(d− 1)+ 1 ≤ d2,
which implies M ≤ d+ 1, i.e., there are at most d+ 1 MUBs for a d-
dimensional Hilbert space. When M= d+ 1, i.e., a complete set of d+ 1
MUBs in a d-dimensional space is available, the states defined in Eqs. (10)
and (11) constitute a complete basis for the composite Hilbert space
H�H. On the other hand, when M < d+ 1, one can complete a basis of
the composite Hilbert space by adding p= (d− 1)(d+ 1−M) additional
orthonormal states {|ϕα〉 |α= 1, ⋯, p}. The projector onto the subspace
spanned by these additional states is denoted by P, i.e.,

P ¼ I � I � Φj ihΦj �
XM
θ¼1

Xd�1

k¼1

ϕθ;k

�� �hϕθ;k j ¼
Xp
α¼1

φαj ihφαj: (12)

It is obvious that P ¼ 0 when M= d+ 1.
Let T2 denote the partial transpose with respect to the computational

basis of the second Hilbert space. One immediately has

ð Φj ihΦjÞT2 ¼ 1
d

Xd
i;j¼1

i1j ihj1j � j1j ihi1j: (13)

As
Pd�1

k¼1 ω
kði�jÞ equals to −1 for i ≠ j and d− 1 when i= j, it is not difficult

to show

Xd�1

k¼1

ϕθ;k

�� �hϕθ;k j
 !T2

¼
Xd
i¼1

iθj ihiθj � iθj ihiθj � 1
d

Xd
i;j¼1

iθj ihjθj � jθj ihiθj: (14)

Suppose ρAB is a bipartite state on the composite Hilbert spaceHA �HB

of dimension d × D, and suppose {|iθ〉A} is the θth MUB in the d-dimensional
Hilbert space HA , after system A is projected onto the θth MUB the overall
bipartite state is written as

ρθB ¼
Xd
i¼1

iθj iAhiθj �A hiθjρAB iθj iA: (15)

Given a bipartite state ρAB and a set of M MUBs in HA , we define an
operator

ΓAB � IA � ρB þ
M� 1
d

ρAB �
XM
θ¼1

ρθB (16)

on HA �HB . This operator is Hermitian, and it has the following nice
property.
Proposition When M= d+ 1, the operator ΓAB vanishes: ΓAB= 0. When

M ≤ d, it is nonnegative-definite

ΓAB � 0: (17)

In order to prove the proposition, we introduce an additional Hilbert
space HC of dimension d, and introduce a linear map F that maps
operators onHC to operators onHA , such that Fð i1j iChj1jÞ ¼ i1j iAhj1j (i, j=
1,⋯, d). One can easily show that Fð iθj iChjθjÞ ¼ iθj iAhjθj for θ= 1,…, M. Let
F�1 denote the inverse map, and let ρCB � F�1ðρABÞ denote the
corresponding state on HC �HB with respect to the state ρAB on
HA �HB . Therefore, the map F : ρCB ! FðρCBÞ can also be conveniently

written via a partial trace over system C

FðρCBÞ ¼
P
ij
TrC iθj iAhjθj � jθj iChiθj

	 

ρCB

� �
¼P

ij
iθj iAhjθj � hiθjρCB jθj i

¼ ρAB

(18)

for any θ∈ {1, ⋯, M}. Similarly, ρθB can be written as

ρθB ¼ TrC
Xd
i¼1

iθj iAhiθj � iθj iChiθj
" #

ρCB

( )
: (19)

Hence

PM
θ¼1

ð1d ρAB � ρθBÞ ¼
PM
θ¼1

TrC 1
d

P
ij

iθj iAhjθj � jθj iChiθjρCB
( )

�PM
θ¼1

TrC
P
i

iθj iAhiθj � iθj iChiθjρCB

 �

¼ �TrC
PM
θ¼1

Pd�1

k¼1
ϕθ;k

�� �
AC
hϕθ;k j

� �TC

ρCB

( )
:

(20)

We have used Eq. (14) to obtain the last equality. From Eqs. (13) and (18)
with θ= 1, we also have

1
d
ρAB ¼ TrC ð Φj iAChΦjÞTCρCB

n o
: (21)

From Eqs. (20) and (21) and the obvious relation IA⊗ ρB= TrC[(Ia⊗ IC)
ρCB], we can rewrite ΓAB as

ΓAB ¼ IA � ρB � 1
d ρAB þ

PM
θ¼1

ð1d ρAB � ρθBÞ

¼ TrC PTC
ACρCB

� �
:

(22)

Here the operator PAC is the projector defined on HA �HC according to
(12), i.e.,

PAC ¼ I � I � Φj ihΦj � PM
θ¼1

Pd�1

k¼1
ϕθ;k

�� �hϕθ;k j

¼ Pp
α¼1

φαj iAChφαj:
(23)

When M= d+ 1, then p= 0, the states |ϕα〉AC in HA �HC do not exist,
both PAC and ΓAB vanish. When M ≤ d, we have

ΓAB ¼ TrC
Pp
α¼1

φαj iAChφαj
� �TCρCB


 �

¼ Pp
α¼1

TrC φαj iAChφαj
� �TCρCBn o

¼ Pp
α¼1

TrC φαj iAC
� �TCρCB hφαjAC

� �TCn o
:

The last equality is due to the fact that operators on HC can have cyclic
permutations under the partial trace over C. Let Θα � φαj iAC

� �TC ffiffiffiffiffiffiffi
ρCB

p
,

which are operators on HA �HC �HB . Then we have

ΓAB ¼
Xp
α¼1

TrC ΘαðΘαÞy
n o

: (24)

Since ΘαðΘαÞy are always nonnegative-definite operators on

HA �HC �HB , the operators TrC ΘαðΘαÞy
n o

are nonnegative-definite

operators on HA �HB, so is their sum. Therefore ΓAB ≥ 0. This completes
the proof of the proposition.
According to the proposition, ΓAB is a nonnegative-definite operator

when M ≤ d, and it vanishes when M= d+ 1. Hence, for any nonnegative-
definite operator ΠAB on HA �HB,

TrABðΓABΠABÞ � 0 (25)

when M ≤ d, and the inequality becomes an equality when M= d+ 1.
Let ΠAB= ρAB, Eq. (25) yields

0 � TrABðΓABρABÞ

¼ Trðρ2BÞ þ M�1
d Trðρ2ABÞ �

PM
θ¼1

Trðρ2θBÞ:
(26)
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Therefore,

�
XM
θ¼1

Trðρ2θBÞ � �Trðρ2BÞ �
M� 1
d

Trðρ2ABÞ: (27)

Adding MTrðρ2BÞ to the above inequality, we immediately have

XM
θ¼1

ðTrðρ2BÞ � Trðρ2θBÞÞ � ðM� 1Þ Trðρ2BÞ �
1
d
Trðρ2ABÞ

� �
: (28)

The inequality becomes an equality when M= d+ 1. Thus, the theorem in
the main text has been proved.
Remark: The approach we admitted here is methodologically similar to

the one used in ref. 26 (see also ref. 29). In ref. 45 an elegant uncertainty
equality has also been presented based on ONE positive operator-valued
measure consisting uniformly all the measurement operators of d+ 1
MUBs. As we take into account all the d+ 1 MUB projection measurements
individually, our uncertainty relation is completely different from the one
given in ref. 45 In fact, the uncertainty relation in ref. 45 cannot be applied
to our QRNG self-testing scenario, because the equality derived in ref. 45

holds only when the system is measured in one of the MUBs with
uniformly random probability. While our equality holds no matter whether
the MUB is uniformly chosen. Such a property is crucial in practical QRNG
application, as one needs to restrict the input randomness to choose a
mutually unbiased basis.

B: Quantum register
We used the sample named 1-bromo-2,4,5-trifluorobenzene as a five-qubit
NMR quantum system which consists of two 1H spins and three 19F spins,
dissolved in the liquid-crystal N-(4-methoxybenzylidene)-4-butylaniline.
The structure of the molecule is shown in Fig. 4. Due to the partial average
effect in the liquid-crystal solution, the direct dipole−dipole interaction will
be scaled down by the order parameter.61 In our sample, the partial
average effect makes the direct dipole−dipole couplings of homonuclear
spins much smaller than the difference between the chemical shifts of
related nuclear spins, all the dipole−dipole Hamiltonians are reduced to
the form of σizσ

j
z . Therefore, the effective Hamiltonian of the five-qubit

system in rotating frame is

HNMR ¼
X5
i¼1

πνiσ
i
z þ

X
1�j<k�5

π

2
Jjk þ 2Djk
� �

σjzσ
k
z ; (29)

where σz is the Pauli operator, νi is the chemical shift of spin-i and Jjk+ 2Djk

is the effective coupling constant of spin-j and spin-k. The relevant
parameters are shown in Fig. 4.

C: Initial state preparation
We first initialized the quantum register into a labeled pseudo-pure state
(LPPS) ρLPPS ¼ εσprobez � 0000j iABA0B0h0000j þ 1=32I32 from the equilibrium
state where ε is the polarization about 10−5. We just neglected the identity
part because unitary and nonunitary operations all have no influence on it.
We applied 30 unitary operators with the form U ¼ e�iβijV ij to redistribute
the populations between energy levels i and j. Here V ij is the single
quantum transition operator between levels i and j, that is, a 32 × 32 matrix
whose elements are zero except for two elements V ijði; jÞ ¼ V ijðj; iÞ ¼ 1=2.
According to the desired distribution, the angle βij were numerically
calculated. In this produce, the unitary operators generated undesired

coherence terms that were eliminated by a following field gradient pulse
Gz. Accordingly, the LPPS ρLPPS was prepared.
In the following we only consider the deviation part

σprobez � 0000j iABA0B0h0000j. The composite system was prepared into the
state

σprobez � ρABðα; xÞ � ρA0B0ðα; xÞ ¼ σprobez � ðxjψαihψαj þ 1�x
4 I4Þ

�ðxjψαihψαj þ 1�x
4 I4Þ;

from σprobez � j0000ih0000j, where |ψα〉= cos(α/2)|01〉− sin(α/2)|10〉. In the
case of x= 1, the bipartite systems are entangled where the rotation angle
α varies from 0 to π/2 for producing different entanglement. α= 0
corresponds to separable state and α= π/2 corresponds to the maximally
entangled state. Setting α= π/2 and scanning x from 0 to 1 with interval
0.25, we prepared the states with different mixedness. In preparing
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Fig. 4 a Characteristics of the 1-bromo-2,4,5-trifluorobenzene
molecule. The chemical shifts and effective coupling constants (in
Hz) are on and above the diagonal in the table, respectively. The last
two columns show the transversal relaxation times and the
longitudinal relaxation times of each nucleus. b, c The thermal
equilibrium 19F and 1H spectra

Fig. 5 a Quantum circuit of preparing σprobez � ρABðα; 1Þ � ρA0B0ðα; 1Þ from LPPS. The rectangles represent single-qubit rotations with angles α,
π/2 and π along y-axis. Gz is the field gradient pulse along z-axis. b Pulse sequences for preparing σprobez � ρABðπ=2; xÞ � ρA0B0ðπ=2; xÞ with the
temporal averaging method. The rotation angles δ1,2,3,4 are arccos[(1− x)2], arccos[x(1− x)], arccos[x(1− x)] and arccos(x2), which are used to
adjust the coefficients of four parts in Eq. (30)
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σprobez � ρABðπ=2; xÞ � ρA0B0ðπ=2; xÞ, we divided it into 4 parts, i.e.,

σprobez � ð1�x
4 I2Þ � ð1�x

4 I2Þ;
σprobez � ð1�x

4 I2Þ � ðxjψπ=2ihψπ=2jÞ;
σprobez � ðxjψπ=2ihψπ=2jÞ � ð1�x

4 I2Þ;
σprobez � ðxjψπ=2ihψπ=2jÞ � ðxjψπ=2ihψπ=2jÞ;

(30)

and adopted the temporal averaging method62 to realize them. By
summing the four output states, we obtained the desired state

σprobez � ρABðπ=2; xÞ � ρA0B0ðπ=2; xÞ. The pulse sequences for the state
preparation are shown in Fig. 5a, b.

D: Experimental procedure
The total experimental procedure is shown in Fig. 6, including the LPPS
preparation, the initial state preparation, MUB measurements and the
readout of the purities. When the measurement is along y-axis, the first and
last rotations in the MUB measurement part should be substituted by

Fig. 6 Experimental pulse sequence. The LPPS preparation contains one GRAPE pulse and one z-axis gradient pulse. The GRAPE pulse is used
to redistribute the populations and the field gradient pulse is used to eliminate the undesired coherences. The operation V(α, x) is to prepare
the initial state σprobez � ρABðα; xÞ � ρA0B0ðα; xÞ. Its specific form is shown in Fig. 5. The solid blue rectangle is π/2 rotation along (−y)-axis in x-
measurement and along x-axis in y-measurement. The dashed blue rectangles denote π/2 rotations with the opposite phases to those in solid
blue rectangles. No need to operate them in z-measurement. The readout part contains two Cswap gates applying on subsystems AA′ and BB′.
The dashed Cswap(AA′) is not required in reading out the purity of subsystem B

Fig. 7 a The original results without rescaling of verifying the measurement uncertainty relation. The bars are plotted from the infidelity of
readout process. b The directly measured purities. The hollow dots are the expected purities. The blue asterisks are the directly measured
purities and the red ones are the rescaled results. The left five figures correspond to purities when the initial bipartite state is ρAB(α, 1) where α
= 0, π/8, π/4, 3π/8, π/2 from top to bottom. And the right five figures correspond to ρAB(π/2, x) where x= 0, 0.25, 0.5, 0.75, 1 from top to
bottom. In each figure, from left to right, they are Trðρ2ABÞ, Trðρ2xBÞ, Trðρ2yBÞ, Trðρ2zBÞ, Trðρ2BÞ, Tr½ðρBjxÞ2�, Tr½ðρBjyÞ2�, Tr½ðρBjzÞ2�, where ρθB (θ= x, y, z)
are the resulting state after the complete MUB measurements on subsystem A, and ρB|θ= TrA(ρθB)
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rotations along x and −x, and the angles remain also π/2. In the z-axis
measurement case, these two rotations are omitted.

E: The attenuation factors caused by decoherence effect and
experimental measured purities
Even through the high-fidelity GRAPE pulses in experiments, the
experimental results are still severely affected due to the decoherence
due to the long running times comparing to the T2 relaxation times of
nuclear spins.
In our experiments, the environmental noises are suitably modeled as

Markovian, and the evolution of the system is given by the Lindblad
master equation

_ρ ¼ �i½HS þ HCðtÞ; ρ� þ
X
α

2LαρLyα � LyαLαρ� ρLyαLα
� �

; (31)

where HS is the system Hamiltonian, HC(t) is the time-dependent external
control Hamiltonian, and the operators Lα are Lindblad operators
representing the coupling with the environment. The experiments are

mainly affected by the dephasing process, and therefore Lα ¼
ffiffiffiffi
γα
2

q
σαz ; ðα ¼

1; :::; 5Þ and γα= 1/T2α and

_ρ ¼ �i½HS þ HCðtÞ; ρ� þ
X
α

γα σαzρσ
α
z � ρ

� �
: (32)

In the experiments, the high-fidelity GRAPE pulses we used are kinds of
shaped pulses consisting of thousands of slices with a constant HC(ti) the
duration of each slice, where δt is 2−25 μs. Consequently, for each slice,
the state of the system can be approximately given by

ρðtiþ1Þ ¼ ρðti þ δtÞ ¼
X5
α¼1

X1
i¼0

Eαi e
�i½HSþHCðtiþ1Þ�δtρðtiÞei½HSþHCðtiþ1Þ�δtEαyi ; (33)

where the Kraus operations

Eα0 ¼
ffiffiffiffiffi
λα

p
1; Eα1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λα

p
σαz (34)

with λα ¼ ð1þ e�γαδtÞ=2.
Therefore, we numerically simulated the experiments, extracted the

attenuation factors caused by decoherence effect and then rescaled the
experiment results for verifying the uncertainty conversation relation in
Fig. 3a, b. The un-rescaled original results are shown in Fig. 7a. From this
we can see that even though the right and left sides of the uncertainty
equation are all reduced, they almost equal each other. Figure 7b shows
the directly measured purities of different states required in the
uncertainty conversation relation.
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