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Abstract
Quantum sensors based on coherentmatter-waves are precisemeasurement devices whose ultimate
accuracy is achievedwith Bose–Einstein condensates (BECs) in extended free fall. This is ideally
realized inmicrogravity environments such as drop towers, ballistic rockets and space platforms.
However, the transition from lab-based BECmachines to robust andmobile sources with comparable
performance is a challenging endeavor. Here we report on the realization of aminiaturized setup,

generating a flux of 4 105× quantumdegenerate 87Rb atoms every 1.6 s. Ensembles of1 105× atoms
can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beamdirectly into amulti-
layer atom chip that is designed for efficient transfer from laser-cooled tomagnetically trapped clouds.
The attainedflux of degenerate atoms is on parwith current lab-based BEC experiments while offering
significantly higher repetition rates. Additionally, the flux is approaching those of current
interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and
robust design allows formobile operation in a variety of demanding environments and paves theway
for transportable high-precision quantum sensors.

1. Introduction

One of themajor quests inmodern physics is to unify the fundamental interactions of nature.However, none of
the existing theories is widely considered successful so far. Severalmodels, e.g. loop quantum gravity and string
theory, that describe gravity within the same formalism as the other interactions,make quantitative predictions
that can be tested experimentally [1]. A crucial feature of these theories is the prediction of violations of general
relativity (GR) postulates at different accuracy levels, allowing for experimental tests to discriminate them.
Einstein’s equivalence principle (EEP)with its three pillars Lorentz invariance, local position invariance, and the
weak equivalence principle (WEP), is a promising candidate for such tests. Gravitational wave (GW)detection is
another examplewhere precisionmeasurements are expected to test the predictions ofGRon a new level [2].
However, all such endeavors require a new generation ofmeasurement devices that feature the accuracy to probe
for such violations.

In recent years, an excellent degree of control over ensembles of ultra-cold atoms has been demonstrated. By
exploiting thewave character of atomic ensembles that is dominant on such temperature scales, atoms have been
used as highly sensitive probes for a variety of physical quantities such as the gravitational constantG [3, 4] and
thefine-structure constant [5], as well as themeasurement of accelerations [6–8] and rotations [9–13].While
the accuracy of atom interferometers has improved to compete with classical tests, they also serve as
complementary tools, as theymay explore newphysics and the fundamental structure ofmatter in the quantum
regime.

The precision of atom interferometers can scale with the square of the free-fall time, suggesting a substantial
advantage for large fountains [14, 15] andmicrogravity operations [16–18]. Space platforms are expected to
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push the performance of these devices to their ultimate limit [19–21]. Besides the long interrogation times
possible on a spacecraft, they provide a quiet, seismic noise-free platformwith large variations in altitude,
velocity and gravitational potential. All of these ingredients are expected tomake the above-mentioned tests of
fundamental laws very accurate. The next decisive step towards unfolding the true potential of ultra-cold atoms
is hence to realize compact and robust devices that can be used inmobile applications such as gravimetry,
geodesy, geophysics, seismology, navigation and tests of fundamental physics beyond the lab environment.
Proof-of-principle atom interferometry experiments inmicrogravity have been demonstrated in 0 g parabola
flights [16] and in a drop tower facility [18, 22].

State-of-the-art quantum sensors typically operate with laser-cooled atomic ensembles at temperatures of
few μKand cycle rates of about 1 Hz.However, extending the free fall time for high-precision atom
interferometry requiresmuch lower temperatures. In this respect, delta-kick cooled Bose–Einstein condensates
(BECs) are of large interest, as they allow to obtain both low expansion rates and lowdensities, evading themean
field effects. Usually, Bose–Einstein condensation dramatically increases the preparation times to several tens of
seconds, results in a lowflux of atoms and complicates the design of the experiment, compromising its
portability.

The BECmachine described in this paper reconciles a high flux of quantumdegenerate atoms, compactness
and portability. This is achieved by loading a pre-cooled atomic beam froma two-dimensionalmagneto-optical
trap (2D+MOT [23]) directly into amulti-layer atom chip. This novel technique not only eliminates the need for
a standardMOT, employingmacroscopic coil arrangements fromwhere the atoms are subsequently loaded into
the atom chip, but demonstrates atomnumbers competitive with large, conventional assemblies as well as
velocity-filtered thermal sources. Previous experiments loading an atomic beam into a chip trap have not led to
high numbers of captured or condensed atoms [24]. In this paper, we demonstrate the synergy between a high
flux sourcewith tunable velocity profile and a compact chip designwith characteristically low capture volume
and velocity.

With its three layers, the atom chip features an abundance of possible trap configurations, from shallow
confinement for optimal loading, to tight traps for fast evaporation, and an efficient transfer between them. The
capability to optimize each experimental phase allows us to achieve both high numbers of captured atoms and
rapid evaporative cooling in a compact setupwith low power consumption. The assembly is built towithstand
forces of up to 50 g and thereby is suitable forfield operation as well as deployment onmicrogravity platforms
such as drop towers. The concept can easily be adapted for use on ballistic rockets and satellites,making it the
baseline for a spacemission payload [25].

This paper is organized as follows: first, we introduce the experimental setupwith a focus on the vacuum
chambers and the atom chip. The experimentalmethods and performance is presented in section 3. The
performance limiting factors of our current setup are assessed using a theoreticalmodel of the evaporation
process. In section 4, the results in comparison to other fast BEC experiments, both lab-based andmobile, as
well as possible improvements are discussed. In the conclusion, we recall themain results and highlight
application perspectives for the developments presented in this paper.

2. Experimental setup

In this section, we describe the apparatus with focus on themost relevant components of the atom chip based
assembly illustrated infigure 1. The total weight of the setup is 245.8 kg, 98.8 kg of which is owed to the
application specific structure (stringers and platforms).Hence, the payloadmass amounts to 147 kg including a
two layerMuMetal shield around the vacuumchambers (42.6 kg). The footprint of the assembly could be
reduced further using a different support structure. The power consumption of the entire setup in operation is
363.9W.Hence, it can easily be run on commercially available accumulators for several hours at a time.

2.1. Laser system
Ridgewaveguide laser diodes [Eagleyard EYP-RWE-0780–02000] in a compact external cavity diode laser
configuration [26, 27] generate cooling and repumping light for the 87RbMOT.Amaster laser is frequency
stabilized to theD2 line of the rubidium spectrum via saturated absorption spectroscopy, while two other lasers
are subsequently stabilized via frequency offset locks. The cooling light is tuned a few linewidths to the red of the
F F2 3= → ′ = transition, while the repumping light is resonant to F F1 2= → ′ = .

The cooling and repumping light aremixed on two beam splitting cubes and amplified in two tapered
amplifiers (TA) [m2kTA-0780–1000], one for 2D and one for three-dimensional (3D)-MOToperation. Each
TA generates up to 1Wof output power in a cooling to repumping ratio of>10:1. The light is delivered to the
vacuumchambers via polarizationmaintaining single-mode optical fiber splitters [OZ-Optics FOBS-14P-
11111–5/125-PPPPP-770–45/45/9/1, Canadian Instruments 954 Pfixed ratio pmcoupler]. The total light power
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available for 2D+MOToperation is 120 mW,while the 3D-MOT is operatedwith a total power of 92 mW.A
small part of about 2 mWof the cooling light is split off and used for optical state preparation via the
F F2 2= → ′ = transition as well as forfluorescence and absorption imaging via the cooling transition.

2.2. Vacuumchambers
The vacuum setup consists of two chambers separated by a differential pumping stage (see figure 2), allowing for
a pressure difference of up to three orders ofmagnitude. A high vacuum (HV) area (2D chamber) is used for the
atomic source and is operated slightly below the room temperature vapor pressure of rubidium at 10−7mbar. It
generates a pre-cooled beamof atoms towards an ultra-high vacuum (UHV) chamber. TheUHV region (3D
chamber) is used to capture the atoms, cool them to degeneracy and perform atom interferometry. Its pressure

Figure 1.CADmodel of the experimental setup. The assembly consists of four platforms, eachwith a diameter of approximately
65 cm. From top to bottom, they are used for the laser system, vacuumpumps, computer control system and electronics, and the
vacuum chambers.

Figure 2.CADmodels of the vacuum setup (left) and the atom chip setup (right). The vacuum setup consists of two chambers. In the
2D chamber a high rubidiumbackground pressure is created to form a 2D+MOT [23], which generates a beamof pre-cooled atoms.
This beam is injected into the 3D chamber, where an ultra-high vacuum ismaintained.Here, the atoms are collected by a 3D-Chip-
MOT and transferred to puremagnetic traps, formed by the atom chip setup and external bias coils. Atom interferometry aswell as
detection of the atoms are carried out in the 3D chamber. On the right hand side the three layers of the atom chip setup, consisting of
the science chip, the base chip and themesoscopic structures, are shown in an exploded view.
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level ismaintained at <10−10mbar by a 25 l s−1 ion pump [IGPMeca 2000] and twopassive vacuumpumps [VG
Scienta SBST110, SAESGetters CapaciTorrD200].

The chambers aremachined from anon-magnetic titanium alloy [Ti-6AL-4V]. The differential pumping
stage between the two is a threaded copper rodwith an 1.5 mmaperture in the center, which after 10 mm
expands conically with an aperture angle of 8° for another 30 mm.The conical part is partially replaced by a
graphite tube to improve differential pumping. On theHV side, the pumping stage has a 45° cutawaywith a
polished surface that grants upwards of 95% reflectivity at awavelength of 780 nm.

2.2.1. 2D chamber
The 2D chamber has a cuboid shapewith a head section that holds three CF-10 vacuumports for dispensers, a
CF-16 vacuumport to access a rubidium reservoir and awindow [N-BK7] for optical access along themain axis
of the chamber. The inner (outer) dimensions of the 2D chamber are 6 2 2 cm× × (14 7.4 7.4 cm× × ).

The lateral chamberwindows [N-BK7] are anti-reflection (AR) coated on the outside and attached to the
chamber via indium sealing. Each lateral axis has one linearly polarized input beam that is expanded to a
diameter of 18 mm, split into two parallel beams and transformed to circular polarization. After passing the
chamber, rectangular 4λ waveplates, which are AR coated on one and high-reflection coated on the other side,
retro reflect the beams to create two cooling regions along the longitudinal axis. Additionally, a pushing and a
retarding beamare counter-propagating along the longitudinal axis to create a 2D MOT+ configuration. The
retarding beam is reflected off the differential pumping stage and hence has a 1.5 mmcutaway in its center.

Themagnetic fields for the 2D+MOTare provided by four coils in racetrack configuration, generating a 2D
quadrupolefield perpendicular to the atomic beam.

2.2.2. 3D chamber
The 3D chamber has a cylindrical shapewith outer dimensions of ø 102 62 mm× . It has eight viewports on its
lateral surface, seven of which have indium-sealedwindows [N-BK7]with AR coatings on both sides. The
window sizes grant a free aperture of 20 mm.The remaining port holds the differential pumping stage towards
the 2D chamber. The axis perpendicular to the differential pumping stage is used for absorption imaging. The
atoms are illuminated from the lower left viewport and detected via aCCDcamera [HamamatsuC8484–15C]
that sits behind a two-lens imaging systemon the upper right. The horizontal axis is used for a pair ofMOT
beamswhile the vertical axis is used for atom interferometry.

The chamber features a large front window that grants optical access for twomoreMOTbeams. Each of
these beams enters the chamber in an angle of 45° to the plane of thewindow and is reflected by the atom chip
[28]. A large aperture lens system [ThorlabsMAP105050-B] sits in front of thewindow, collecting light emitted
by the atoms onto a photodetector [Hamamatsu S5107].

Three pairs ofHelmholtz coils are attached to the outside of the 3D chamber, one of which is wound around
the chamber itself. The chip setup constitutes the back side of the assembly and provides access to the vacuum
pumps.

2.3. Atom chip setup
Themagnetic fields for trapping the atoms are created by current carrying wire structures in combinationwith
magnetic biasfields [28]. Three layers of wire structures, each featuring a different characteristic wire size, are
used in the atom chip setup.

Thefirst layer holds the largest,mesoscopic structureswhich are constructed fromKapton isolated 0.9 mm
diameter copperwires. These are used in the generationof thequadrupolefield for the 3D-MOTwith aU-shaped
layout [29] that comprises sixwindings of a singlewire.Additionally, three individual copperwires forman
H-shaped structure to generate a Ioffe–Pritchard (IP) type potential, that is used in thefirstmagnetic trap.

The second layer (base chip) features intermediate sized goldwires of 0.5 mmwidth, electroplated onto a
35× 35 mmaluminumnitride substrate. A 25× 25mmchip (science chip) forms the third and final layer with
structures of 50 μmwidth. It is coveredwith a dielectric transfer coating [OIB Jena] to reflect two of the four
MOTbeams, creating amirrorMOTconfiguration [28]. Its reflectivity at 780 nmwasmeasured to be 97.7% at a
45° angle of incidence. The base and science chip feature a set of 4 and 5 parallel wires, respectively, in each case
intersectingwith one central orthogonal wire. They both offer an abundance of possible U-, Z- andH-shaped
trap configurations including dimple traps [30].

Previous experiments have used larger,mesoscopic structures to increase the number of captured atoms
[29].However, the ability to create high trap frequencies with such structures is limited for two reasons. First,
the range of feasible currents that can be applied to the structures is limited. Second, the high trap frequencies
necessary for fast evaporation can only be attained in close vicinity to the structure. The exclusive use of such
mesoscopic structures, therefore, has led to slow evaporation. Other experiments, that employ only small chip
structures typically show fast evaporation performances but are highly limited by the initial number of atoms
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[22]. Our three layer chip is designed to bridge the gap between these two scenarios by using traps composed of
different chip layers to span awide range of trap configurations (seefigure 3).

The entire atom chip setup is located inside theUHV environment andwas assembled using low-outgassing
UHV suitable epoxy adhesives [Epotek 353ND,H77]. The currents of up to 10 A are provided by battery
supplied current drivers [High Finesse BCS 10A], which are rated at a noise level below−108 dB Vrms between 0
and 2500 Hz.

3.Methods and results

This sectionwill outline our loading scheme from generating a high flux of laser cooled atoms, to loading atoms
into various layers of the atom chip, to high efficiency evaporative cooling. The total sequence can be divided
into five steps as illustrated infigure 3.

3.1. Loading of the chipMOT
A2D+MOT [23] provides a beamof pre-cooled 87Rb atoms to the 3D-MOT. Its performancewas characterized
bymeasuring thefluorescence of probe light intersectingwith the atomic beam in the 3D chamber [31]. The
magnitude of the fluorescence signal was used tofind the optimal cooling light detuning of−18MHz and
magnetic field gradient of 19.8 G cm−1. Themagnetic field coils were adjusted individually tomaximize flux
through the differential pumping stage and compensate for small inequalities in laser power balance stemming
from themirrorMOTconfiguration. The performance of the 2D MOT+ does not saturate at the total cooling
laser power of 120 mWthat is currently available in the setup.

The longitudinal velocity profile of the atoms can bemanipulated by changing the pusher-retarder power
ratio (P/R) and the ratio between transverse and axial cooling power (T/A) [31]. The capture velocity of the chip
MOTwas found to be limited to 30 m s−1 by simulating the capture process through solving the equation of
motion of the atoms numerically. This relatively low value is caused by the small beamdiameters of 18 mmand

Figure 3. Source scheme to prepare 4 × 105 quantumdegenerate atoms in 1.6 s. Five absorption images of the atoms illustrate the steps
involved (①–⑤). The chip structures used aswell as themagnetic field calculatedwith amodel of thewire structures are shown below
the images. (The trap bottomhas been substracted for themagnetic traps.) All chip configurations are used in conjunctionwith
external bias fields.① After 500 ms 1× 109 atoms are loaded into aMOTgenerated by themesoscopicU structure. ② The atoms are
compressed andmolasses cooled to 20 μK. ③ 2× 108 atoms can be captured in the initialmagnetic trap, formed by themesoscopicH
and a base chip Z structure.④To improve the evaporation efficiency, the trap is compressed by switching from themesoscopicH
structure to a science chip Z structure, while keeping the base chip Z switched on.⑤During evaporation to BEC the trap is
decompressed once to avoid three-body collisions.
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the fact that themagnetic field only has a true quadrupole shape in the vicinity of the trap center. Therefore, the
velocity profile of the sourcewas tailored to the capture performance of the chipMOT. Themean velocity and
velocity spread of the atomic beam are 22 m s−1 each, for power ratios ofP/R=4 andT/A=18.

The 3D-MOT featuresmagnetic field gradients of B B B( , , ) (20, 20, 6)x y z′ ′ ′ ≈ G cm−1 and a cooling laser
detuning of−20MHz. A total cooling laser power of 92 mW is available, but the optimalMOTperformance is
achievedwith 15 mW in each of the fourMOTbeams.Optimized for highest atomnumber, the initial flux of
atoms into the 3D-MOT is1 109× atoms s−1 and theMOT saturates at 2.5 109× atoms after 4 s.However, the
loading can also be optimized for shorter times, featuring higher initialfluxwhile saturating at a lower total atom
number. A typicalMOT loading phase prepares about1 109× atoms in 500 ms. This phase can be reduced to as
little as 150 mswithout a significant decrease in BECperformance, as the transfer to themagnetic trap is the
most critical step of the loading process.

3.2. CompressedMOT,molasses cooling and optical pumping
AfterMOT loading, the center of the cloud is located at a distance of approximately 3 mm from the chip’s
surface. Severalmeasures are employed to optimize loading into the firstmagnetic trapwhich is centered only
500 μmaway from the atom chip.

Firstly, the cloud is compressed by reducing themagnetic field gradient to 3 G cm−1 and increasing the
detuning to−48MHz. The atoms are then shifted towards the chip by adjusting the biasfield. The entire process
lasts approximately 40 ms. Since the cloud is still around 1 mm in size, it is not possible tomatch the cloud’s and
themagnetic trap’s positions perfectly withoutmoving a portion of the atoms into the chip.

Secondly, the atoms are subjected to a brief period of polarization gradient cooling in an opticalmolasses
[32]. To this end, themagnetic field is switched off and light detuned by−116MHz from the cooling transition is
applied for 2 ms. Thefinal temperature of the cloud is 20 μK. Smallermolasses temperatures can not be obtained
in our setup due to the inherently poor beambalance in themirrorMOT configuration.

Thirdly, the atoms are optically pumped into the (F m2, 2F= = ) state by applying cooling light with a
linear frequency sweep from−265 to−244MHzover 0.73 ms. This state preparation pulse increases the number
of atoms transferred to the initialmagnetic trap by a factor of 3.

3.3. Transfer to initialmagnetic trap
Efficient transfer into the firstmagnetic trap depends on several parameters: co-location of atoms and trap, trap
volume andmodematching.Modematching is achieved byminimizing the change in entropy S 0Δ ⩾ and
thereby heating caused by the transfer. Ideally, the phase space density (PSD) of themolasses cooled cloud,

n
S

N
exp

5

2
, (1)0

3 ⎜ ⎟⎛
⎝

⎞
⎠Λ γ= + −

should be conserved in the thermalizedmagnetically trapped ensemble. Here, n0 is the peak density,Λ the
thermal de Broglie wavelength, 3 2γ = the effective volume of a harmonic trap and S N the entropy per
particle [33].We find that the harmonic approximation is valid for the cloud sizes and temperatures in question.
So if we assume instantaneous transfer and that the initial cloud is normally distributed [34] withwidth σ and
temperatureT, wefind that the optimal harmonic trap frequency is given by:

f
k T

m

1

2
, (2)B

πσ
=

where kB is the Boltzmann constant andm the particlemass [30]. In our case, an optimal transfer would require
trap frequencies around 6 Hzwhich is not feasible in the presence of gravitational sag. Instead, wefind optimal
transfer into a IP type trapwith trap frequencies (62, 58, 8.2)Hz, generated by themesoscopicH structure, a base
chip Z structure and the bias coil.

Overall, we observe an increase in temperature by a factor of 2 aswell as a transfer efficiency of 25% for
saturatedMOTs. The efficiency deteriorates with the number of atoms, i.e. smaller clouds can be transferred
more efficiently. The highest number of atoms transferred is 2 108× .

In summary, we are limited by the spatialmismatch of cloud and trap center, the inability to use the correct
trap frequencies and the depth of themagnetic trap. Both the spatialmismatch and the gravitational sag can be
circumvented by operating the experiment inmicrogravity, where shallow enough traps can be used at larger
distances from the atom chip.

3.4. Transfer tofinalmagnetic trap
Once the atoms are confined in amagnetic trap and have reached thermal equilibrium, they are transferred
adiabatically to the final trap configuration in two steps. Firstly, the atoms are loaded into a superposition trap of
the base chip Z structure and a science chip Z structure, by simultaneously switching off themesoscopicHwhile
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switching on the science chip over 25 ms. Afterwards, the trap is compressed by increasing the bias current and
the atoms are pulled closer to the chip over 100 ms. Thefinal trap features trap frequencies of (1783, 1779, 20.6)
Hz and the temperature increases to 180 μK.The initial PSD is 10−5 at an elastic collision rate of 500 Hz.

3.5. Evaporative cooling to BEC
After transfer to thefinalmagnetic trap, the atoms are cooled towards the critical temperature for Bose–Einstein
condensation by selectively removing atomswithmore than the average energy from the trap using radio
frequency (RF) photons [35–37]. To this end, anRF source is connected to a dedicatedU-structure on the base
chip. Starting from18.8 dBm, the output power is continually attenuated to < 1 dBmat the end of the
evaporation sequence.

Since the initial temperatureT ismuch higher thanTc, the energy ϵ of the ensemble follows a Boltzmann

distribution f n( ) e k T
0

3 Bϵ Λ= ϵ− , while the distribution of atoms in the trap is governed by the density of states

g ( ) 2( )2 3ϵ ϵ ω=  . Here ω is the geometricalmean of the trapping frequencies. The total number of atoms can
thus be obtained from

N g fd ( ) ( ) (3)
0

∫ ϵ ϵ ϵ=
∞

and the number of atoms up to a given threshold energy tϵ can be expressed as [38]:

N N g f

N
k T k T
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2
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Applying anRF knife with frequency f limits the total energy for trapped atoms to

( )m h f f k T (5)t F 0 Bϵ η= − =

by coupling atomswith higher energies to untrapped states and thus evaporating them from the trap.Here, f0 is
the resonance frequency at the bottomof the trap and η is called the truncation parameter. The distribution (4)
can bemeasured by truncating at various energies and recording the remaining number of atoms. Fitting
equation (4) to the data yields the total number of atoms, the trap bottom frequency and the temperature (see
figure 4).

After truncation, the ensemble rethermalizes through elastic collisions and arrives at another energy
distributionwith lower temperature. To remove the same amount of energy over time, η is held approximately
constant and f is ramped down exponentially.We break down the exponential frequency ramp into five linear
ramps to bemore flexible towards the conditions in each phase and optimize the efficiency of the cooling process
step by step.

Generally, it is desirable to use a truncation parameter as high as possible to keep atom loss to aminimum.
However, in the presence of other lossmechanisms the optimal truncation parameter and therebymaximal

Figure 4.Cumulative atomnumber distribution over the truncation parameter k TBη ϵ= . The solid line is a fit of equation (4) to
atomnumber data acquired by truncating the distribution at various energies. For efficient evaporative cooling, truncating at energies

4.59 η> is desirable. Forminimal atom loss the truncation energies should exceed 8 η. The results are in good agreement with time-
of-flight (TOF)measurements despite thefit not being perfectly representative of the data for energies larger than 4 η. The deviation
stems from the fact that truncating at higher energies leads to cooling.
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evaporation efficiencymust be obtained from a comprehensivemodel of the process. The efficiency found
experimentally for our optimized sequence is depicted infigure 5(a).

3.5.1. Efficiencymodel
Thefigure ofmerit for efficient evaporative cooling is the ratio between the change in PSD to the change in atom
numberN of the ensemble:

N

dln(PSD)

dln( )
. (6)γ = −

If we assume perfect forced evaporation, i.e. every atomwith an energy higher than k TBη is immediately
evaporated, there is a simple relation between the truncation parameter η and γ

R
R

( , )
3 ( )

1 ( )
1, (7)γ η

α η
λ η

=
−

−

for a 3Dharmonic potential [39].Here, α is the ratio between a change in temperature and a change in atom
number, λ the ratio between the time constant of the evaporation and the elastic collision time andR the ratio of
elastic to inelastic collisions. The functions ( )α η and ( )λ η are independent ofR and can be obtained from a

Figure 5.Evaporation performance. Figure 5(a) shows the phase space density of the ensemble over the atomnumber after each of the
linear RF ramps. The γ factor has been averaged over the ramps in each trap configuration (dark blue and light blue). Figure 5(b) plots
themodeled efficiency R( , )γ η for the respective values ofR shown in figure 5(c). The attained efficiencies are close to themaximum
values predicted by themodel. The entire sequence is performed deep in the runaway regime bounded by Rmin.
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suitablemodel [39]. For arbitrary values of η these functions need to be expressed in terms of incomplete gamma
functions P n( , )η 5 to reflect the truncated Boltzmann distribution of the energy [40, 41]:

P P P R

R P P P R

R P P P

( )
1 (5, ) (3, ) (4, ) 3 (3, )

3 (3, ) 3(1 (5, ) (3, ) (4, )) (1 (3, ))
,

( ) 2 [1 3(1 (3, )) ( )] (3, ) (3, ) 4 (4, )e . (8)

α η
η η η η η η

η η η η η η
λ η η α η η η η η
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Using equations (7) and (8), the evaporation efficiency R( , )γ η for perfect forced evaporation in a 3Dharmonic
potential has been plotted infigure 5(b) for the two trap configurations in use and their respective value ofR.

3.5.2. Collision rates
Having derived analytical expressions for ( )α η and ( )λ η , it is evident from equation (7), that in a systemwhere η
can be chosen arbitrarily, themaximumefficiency maxγ only depends onR, the ratio of good to bad collisions.

The good collisions are those between two trapped atoms in the same spin state which lead to
rethermalizationwithout atoms being lost from the trap. This process has the per atom rate elΓ . The relevant
inelastic processes are collisionswith atoms from the background gaswith rate bgΓ and inelastic three-body
collisions with per atom rateΓ3-body. This leaves uswith the final ratio

R . (9)el

loss

el

bg 3 body

Γ
Γ

Γ
Γ Γ

= =
+ ‐

Since bgΓ is generally constant over the evaporation process,maximizingRmeans increasing the elastic collision
rate asmuch as possible while staying dilute enough to not give rise to three-body collisions. For this reason, the
trap is initially compressed to trap frequencies of (1783, 1779, 20.6) Hz tomaximize the elastic collision rate. As
the ensemble growsmore andmore dense, the trap is decompressed to trap frequencies of (701, 696, 23.3) Hz
after four ramps of evaporation, at the onset of three-body collisions. These two trap configurations are color
coded in dark blue and light blue, respectively, infigure 5.

However, in the presence of other lossmechanisms, e.g. due to the limited trap depth,R canmore generally
denote the ratio of the lifetime of the ensemble over the elastic collision time. For the data presented, the lifetime
in the trap averaged over the entire sequence wasmeasured to be 2.84 s.

If the elastic collision rate is to stay constant or increase during evaporation (runaway evaporation), a lower
limit forR can be specified [39]:

R
( )

( ) 1
. (10)min

λ η
α η

=
−

Figure 5(c) plots the theoretical bounds set by Rmin using equations (8) and (10), together with themeasured
values ofR for each step of the evaporation sequence. The runaway regime for a 3Dharmonic potential starts at

4.59η > . Beyond a truncation energy of 8η = , Rmin starts to increase rapidly as very few atoms populate the
high energy tail of the distribution. Operating in this quasi-static regime offersminimal atom loss but generally
requires lifetimes>30 s at the trap frequencies we employ.

While we are operating close to themaximumefficiency as predicted by themodel, we are clearly limited by
the lifetime of the ensemble. Higher efficiencies and atomnumbersmay be obtained if the vacuumquality can be
improved and the evaporation sequence can bemaintained in the quasi static regime.

4.Discussion and comparison

Since thefirst demonstration of BEC in 1995, the cycle time of generating quantumdegenerate gases has
decreased steadily. The fastest BECmachines published to date are compared infigure 6. These experiments
either employ an atom chip (circles) or a dipole trap (squares) for fast and efficient evaporation. Recently, BEC
machines are not only getting faster but have also becomemuchmore compact [22, 42]. They have since crossed
the divide from lab experiments tomobile and transportable devices (semi-filled symbols).

The fastest previously reported apparatus features a repetition rate of 1 Hzwith 1.5 104× atoms in the
condensed phase, using an atom chip [43]. The fastest BEC in a dipole trapwas produced in 3.3 swith an atom
number of 3.5 105× [46]. To study the overall performance of our setup, we optimized the BECproduction for
three scenarios: fast BECproduction①, BEC at 1 Hz repetition rate②and highest atomnumber in the BEC③.
The shortest production time can be achieved by reducing theMOT loading time to 350 ms and the duration of
the evaporation to 450 ms.Within a total time of 850 ms the apparatus is able to produce BECs of 4 × 104 atoms.

5
These functions are related to the Euler gamma functionΓ via P a

a
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For a direct comparisonwith the previously fastest BECmachine, we optimized the atomnumber at a
production rate of 1 Hz.With aMOT loading time of 450 ms and a duration of the evaporation of 500 ms, we are
able to produce ensembles of 1 105× atoms. The experimental sequence for the highest atomnumber in the
BECwas presented in the previous chapter.

These results can be improved further, both in terms of speed and atomnumber. The biggest handicap for
the data presentedwas the vacuumquality and thereby the lifetime of the atoms. Improving the vacuumquality
could reduce theMOT loading time to as little as 100 ms. A similar improvement can also be achieved by
increasing the 2D cooling laser power. An increase in lifetimewould also lead to higher evaporation efficiencies
and thus higher atomnumbers. Another approach to increase the atomnumber in the BEC is to improve the
modematching of the laser cooled atomswith the initialmagnetic trap, resulting in a higher initial PSD. This
could be achieved by reducing themolasses temperature further or by operating the experiment inmicrogravity,
where the optimalmodematching conditions can bemet thanks to the absence of gravitational sag.
Consequently, producing BECs of 106 atoms at a 1 Hz rate seems feasible if these technical issues are addressed.

While our setup produces the highest atomnumber overall among the fastest BECmachines, itsflux of
condensed atoms is also on parwith the best lab-based devices [49, 50]. As a result, the advances presented in this
paper are not only of interest formobile applications but any experiment that benefits fromhigh repetition rates.
Therefore, we anticipate a vast range of applications for our source: the reduction of the BECproduction time by
one order ofmagnitude immediately leads to a significant improvement on the sensitivity of atom
interferometers, afieldwhere great efforts aremade to designmachines with high data rate [51]. It is also of great
interest for studying non-classical correlations in BECs and hence for quantumoptics experiments with atoms
in general. State-of-the-art quantum enhancedmagnetometers [52–54]would be three times to one order of
magnitudemore sensitive, reaching the sub-pT/ Hz regime. Any experiment requiring large statistics, for
example tomonitor correlations in quantummany-body systems [55, 56], would dramatically benefit from
such a source by dividing the total time to take the data by a factor 3–10.However, the use of the source is not
restricted to fundamental physics, but provides a new tool for Earth observationwith improved accuracy in
geodesy and geophysics.

The ability to demonstrate such brilliant BEC sources formobile devices is at the heart of current precision
sensor proposals. Indeed, these experiments rely on a dramatic increase of the interferometry times compared to
state-of-the-art realizations. Recent proposals for testing fundamental laws or detectingGWs in atomic
fountains [57], drop towers [22], parabolic flights [16] or spacemissions [19–21] rely on total times offlight of
several seconds. A thermal cloud of typically 109 atoms at a temperature of 1 μK reaches sizes of a few tens ofmm
after such durations. In contrast, a BECof 106 atomswould expand to only a fewmmas confirmed by pioneering
experiments [14, 18]. This featuremakes degenerate atomic ensembles an exquisite source for high-contrast
interferometry experiments onmacroscopic timescales. At these scales, themeanfield effects associatedwith
substantial dephasing in trapped or short-time atom interferometers are dramatically reduced [15]. In fact,
expanding a BEC froma typical size of 50 μmto 1mmsuppresses the effects of interactions by 4 to 5 orders of
magnitude.

Moreover, using our experimental design in precision interferometry offers some intrinsic advantages
related to BECoperation. Indeed, the smallmomentumwidth of degenerate atoms is a clear gainwith respect to
the efficiency of atom–light interaction based beam splitters, since the phase sensitivity of an atom

Figure 6.Comparison of the fastest BECmachines. Circles denote atom chip based experiments [42–45], squares indicate
experiments using dipole traps [46, 47]. The diamond symbol indicates a Sr experiment reported in [48]. Semi-filled symbolsmark
compact and transportable setups. The results of this work are represented by three cases,①–③.
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interferometer is fundamentally limited by the fidelity ofmomentum transfer in an atom-based sensor [58].
This holds true evenmore formagnetic and optical lensing techniques, where themode quality of BECs is
mandatory to reach extremely low expansion rates necessary for the reduction of themost relevant systematics.
Operatingwith thermal ensembles results in orders ofmagnitude larger cloudswith dramatically increased
aberration effects [59].

The advantages stated abovewould be compromised if the cycle timeswould be identical to the ones of
traditional BEC experiments.With the current device, it is possible to integrate down to a desired target accuracy
quite efficiently. For example, the state-of-the-art accuracy (10−13) forWEP tests can be obtained after 4 h of
integration for interferometry times ofT = 2 s.

5. Conclusion

We studied the performance of a new generation of compact BECmachines relying on the use of atom chips.
Despite the significantminiaturization, the device is able to deliver aflux of quantumdegenerate 87Rb atoms
comparable to the best laboratory experiments. Depending on the experimental need, several scenarios with
different atomnumbers and cycle times could be performed. A detailed study of the route to BEC, from
background atomic vapor to the final chip trap, was presentedwith key device-specific techniques illustrated.
The unprecedented compactness of the experimental payload confirms the possibility to embark quantum gas
sensors inmicrogravity platforms such as drop towers, parabolic flights or sounding rockets.Moreover, it
announces the era of utilizing atom interferometers in space in extended free fall. Several recent proposals
anticipate an outstanding sensitivity of space-borne quantum sensors testing fundamental theories and
principles.
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