Journal of King Saud University Computer and Information Sciences
https://doi.org/10.1007/s44443-025-00057-8

(2025) 37:57

ORIGINAL PAPER O‘)

Check for
updates

Asynchronous distribution scheme of group quantum keys based
on max heap in classical network

Dexin Zhu'2
Jun Zheng'

- Zilong Zhao? - Huanjie Zhang? - Zhiging Zhou? - Yuanbo Li2 - Jian Zhao? - Lijun Song? -

Received: 22 February 2025 / Accepted: 7 May 2025
© The Author(s) 2025

Abstract

With the advancement of the information age, various information-based products have become increasingly prevalent, leading
to a corresponding rise in the volume of data requiring encrypted transmission. Consequently, secure key distribution has
become particularly critical, especially in large-scale communication scenarios. Considering practical limitations such as
offline availability and low performance among communication participants, we propose an asynchronous group quantum
key distribution scheme based on a max heap structure and blockchain technology within classical networks. In this scheme,
quantum keys serve as group communication keys, and the encrypted transmission of quantum keys is facilitated through
a max heap constructed according to user information. Specifically, during the initialization phase, users upload relevant
information to the Key Distribution Center (KDC), while in the key distribution phase, the blockchain stores encrypted
temporary group keys, enabling asynchronous access. The proposed scheme not only reduces performance consumption for
users within the group but also leverages the intrinsic properties of the max heap to dynamically balance loads. Moreover, the
scheme achieves both forward and backward secrecy and demonstrates favorable performance in terms of storage efficiency
and computational cost.

Keywords Blockchain - Group key distribution - Max heap - Quantum key

1 Introduction

With the rapid advancement of internet technologies, an
increasing amount of information exchange is being con-
ducted electronically. Ensuring the secure transmission of
such information has thus become an important challenge. In
multi-user environments, such as video conferences, social
media group chats, and Internet of Things (IoT) scenarios,
the transmitted information often passes through insecure
public channels, enabling attackers to eavesdrop and inter-
cept messages sent and received by users. This scenario can

< Dexin Zhu
3220215219 @bit.edu.cn

School of Cyberspace Science and Technology,
Beijing Institute of Technology, Beijing 100081, China

College of Computer Science and Technology,
Changchun University, Changchun 130022, Jilin, China

Jilin Engineering Laboratory for Quantum Information
Technology, Changchun Institute Of Technology,
Changchun 130022, Jilin, China

Published online: 05 June 2025

result in the leakage of private user data, potentially caus-
ing significant harm. Therefore, effective measures must be
implemented to secure message transmission. A common
approach to addressing this issue is encrypting messages
before transmission. However, a critical prerequisite for such
encryption is ensuring that all participating users possess a
consistent shared session key (Houzhen et al. 2023).

Quantum Key Distribution (QKD) (Lo et al. 2014; Piran-
dola et al. 2020) is a secure key-exchange technique that
leverages the principles of quantum mechanics, enabling two
remote communication parties to generate and share a ran-
dom, secure key over an insecure communication channel.
This key can subsequently be utilized for message encryp-
tion and decryption. Nevertheless, practical implementations
of QKD currently face several challenges, including imper-
fections in photon sources, finite-key effects, and hardware
limitations. Consequently, QKD technology remains primar-
ily in the scientific research phase rather than the stage of
commercial deployment, indicating that numerous technical
and theoretical aspects still require verification and optimiza-
tion.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s44443-025-00057-8&domain=pdf
https://orcid.org/0000-0001-9526-4030

57 Page2of17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

In comparison, classical approaches for distributing quan-
tum keys presently exhibit significant advantages: First,
classical methods rely on well-established mathematical the-
ories and standardized protocols, thus avoiding the need
for complex physical devices for quantum state manipu-
lation. This leads to lower deployment costs and better
compatibility with existing communication infrastructures.
Second, classical key-distribution processes demonstrate
higher tolerance to fluctuations in hardware parameters,
such as wavelength stability of the photon source and
detector efficiency (Diamanti and Leverrier 2015), thereby
circumventing limitations associated with fiber-optic attenu-
ation and environmental disturbances prevalent in quantum
channels. Third, by integrating post-quantum cryptographic
algorithms (Alléaume et al. 2014), classical methods can
achieve forward secrecy and adequately meet the practical
requirements of short- to medium-distance communication
scenarios, especially those involving resource-constrained
environments such as IoT terminals. This complementarity
implies that, until quantum technology matures sufficiently,
the coordinated development of classical and quantum key-
distribution systems will serve as an essential strategy for
building a multi-layered security framework.

In group-oriented services, two primary approaches exist
to achieve the sharing of group keys: group key distribution
and group key agreement. In group key agreement schemes,
a set of entities cooperatively generates the group key. In
contrast, group key distribution schemes involve a trusted
third party, known as the group manager, who determines
the group key and securely distributes it to authorized enti-
ties. For scenarios where infrastructure or semi-infrastructure
environments are available, group key distribution schemes
are generally preferred due to their efficiency, as well as ease
of deployment and maintenance (Chien 2021).

In traditional group key distribution schemes, a KDC is
typically employed to generate and distribute group keys.
However, this approach inevitably introduces the problem
of a single point of failure, reducing the robustness of
the system. Moreover, existing schemes generally rely on
pseudo-random numbers rather than true randomness for
generating group keys, posing potential security risks (Cheng
et al. 2024). Furthermore, most current group key distribu-
tion schemes require all participants to remain continuously
online. Nevertheless, in practical scenarios, many battery-
powered devices enter sleep mode periodically to extend
their operational lifetimes, making continuous online avail-
ability challenging to achieve (Rahimi and Chrysostomou
2019). Thus, designing asynchronous group key distribution
schemes that accommodate intermittent participant avail-
ability remains a challenging research issue. Blockchain
technology, an emerging distributed and tamper-resistant

@ Springer

data storage approach, has been widely adopted across
various domains such as cloud computing and smart grids
(Li et al. 2019). It presents a novel solution path for imple-
menting asynchronous group key distribution.

To address the aforementioned challenges, this paper pro-
poses a group quantum key distribution scheme based on
blockchain technology and a max heap structure. In our
proposed scheme, the KDC is solely responsible for gen-
erating temporary group keys, thereby significantly reducing
the impact of potential KDC failures on the overall sys-
tem. Pre-stored quantum keys in the Quantum Key Cloud
Server (QKCS) serve as the group keys, while blockchain
technology is utilized for secure data storage and transmis-
sion, ensuring the system’s distributed nature and traceability.
Users can asynchronously extract or recover the group quan-
tum key at any time according to their needs. The primary
contributions of this paper are as follows:

(1) We propose a temporary group key generation method
based on a max heap structure, which allows efficient
key updates through simple shift operations. In scenarios
where the KDC'’s performance is insufficient to support a
large number of group members concurrently, we utilize
node identifiers from the max heap structure as indicators
of user capability. Thus, users with higher performance
can dynamically share the workload of the key distribu-
tion process, effectively balancing the load on the system.

(2) The proposed scheme achieves asynchronous operation.
Specifically, after users upload their information to the
KDC, they can transition to an offline state. Upon recon-
necting, users only need to retrieve the temporary group
key from the blockchain to decrypt the group quantum
key ciphertext stored in the Quantum Key Cloud Server.
Additionally, if users lose their local copy of the group
quantum key, they can seamlessly recover the identical
key upon reconnecting.

(3) Our scheme minimizes the computational burden on
users by primarily employing lightweight XOR opera-
tions, significantly reducing the computational cost for
resource-constrained participants.

The remainder of this paper is organized as follows. In
Section 2, we provide a comprehensive analysis of exist-
ing solutions presented in the literature. Section 3 introduces
the necessary background knowledge, followed by our nota-
tion definitions, system model and threat model presented
in Section 4. In Section 5, we describe the details of our
proposed scheme. The correctness, security, and security
properties of the proposed scheme are analyzed thoroughly
in Section 6. Section 7 presents the performance evaluation
of our scheme. Finally, we conclude the paper in Section 8.

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Page3of17 57

2 Related works

Group key schemes can generally be classified into two
main categories: group key agreement schemes and group
key distribution schemes. Group key agreement schemes
involve cooperation among all group communication par-
ticipants to jointly establish a shared group key, inde-
pendently of any trusted central authority. The group key
is collectively determined by group members themselves
(Chen et al. 2021). In 2020, Gan et al. (2021) proposed
an attribute-based asymmetric group key agreement pro-
tocol, in which users are not required to reveal personal
information within the group. Instead, they need only sat-
isfy the same number of attributes and perform mutual
authentication with the key generation center to ensure legiti-
macy in mobile-terminal participation. Rawat and Deshmukh
(2020) presented a Group Key Agreement Protocol (GKAP)
based on tree structures and elliptic curves. Their proto-
col employs a divide-and-conquer approach, splitting groups
into smaller subgroups organized as tree structures. This
method exhibits resistance to passive attacks, collaborative
attacks, and man-in-the-middle attacks, and ensures both
forward and backward secrecy. In 2022, Bracken (2022)
proposed a single-round, lightweight elliptic curve-based
alternative using Qu-Vanstone elliptic curve certificates,
allowing group members to authenticate themselves indepen-
dently. Naresh et al. (2022) introduced a blockchain-based
two-party elliptic curve Diffie-Hellman key agreement pro-
tocol, subsequently extending their approach to an n-party
key agreement scheme. They presented a blockchain-based
dynamic authenticated group key agreement protocol, where
a Privacy-Preserving Smart Contract (PPSC) acts as a group
controller in the first round, generating pairwise shared keys
with each member. In the second round, the PPSC calculates
partial group keys and distributes them to respective mem-
bers. Upon receiving their partial group keys, group members
multiply the received product with their own shared keys to
derive the final group key. Wang et al. (2022a) proposed
a blockchain-based lightweight, computationally efficient,
and secure key management method for smart grids. They
redesigned the blockchain-enabled smart grid architecture by
clearly defining various entity roles and developed a pairing-
free authenticated group key agreement scheme. Xu et al.
(2022) proposed an anonymous authentication and dynamic
group key agreement scheme based on blockchain technol-
ogy and token mechanisms. Each member can apply for a
time-sensitive token during initial authentication, and sub-
sequent authentications require only verification of token
validity, significantly reducing computational and commu-
nication costs. Wang et al. (2022b) proposed a two-round
dynamic authenticated group key agreement protocol based

on LWE, proving its security under standard attack models.
In 2023, Zhang et al. (2023a) introduced a single-round
dynamic authenticated asymmetric group key agreement
protocol with sender non-repudiation and privacy. They
demonstrated its security against chosen-ciphertext attacks
under the assumption that the computational Diffie-Hellman
and k-bilinear Diffie-Hellman exponent problems are com-
putationally infeasible. Chhikara et al. (2023) developed a
novel blockchain-based group key agreement protocol that
RSU as semi-trusted entities, substantially reducing process-
ing delays, queuing delays, and deployment costs. Zhang
et al. (2023b) proposed a threshold authenticated group key
agreement (TAGKA) protocol capable of handling group
member disconnections. Considering the temporary discon-
nection of drones, they further designed a key recovery
protocol that allows temporarily disconnected drones to
retrieve the updated group key once their communication
links are restored. Yang et al. (2023) proposed a dynamic
group key agreement scheme based on short signatures
(GKA-SS), utilizing bilinear pairings to execute signature
and verification processes. Formal security proofs showed
the scheme’s resistance to both active attacks within the ran-
dom oracle model and passive attacks. In 2024, Cui et al.
(2024) introduced a C-V2X-based dynamic group authenti-
cation and key agreement protocol named V2X-GKA. This
protocol leverages cryptographic techniques, such as ECDL
and DBDH, to effectively mitigate risks associated with cer-
tificate forgery and key theft. By integrating authentication
and group key agreement mechanisms, the protocol facili-
tates dynamic member management and secure key updates
without requiring complete re-execution of the protocol.
Group key distribution schemes involve a trusted third
party, known as the Group Key Manager (GKM), which
determines the group key and securely distributes it to all
group members (Xiong et al. 2019). Yildiz et al. (2021)
proposed a lightweight group authentication and key distri-
bution (PLGAKD) protocol based on Physical Unclonable
Functions (PUF), factorial trees, and the Chinese Remain-
der Theorem (CRT). In the PLGAKD protocol, PUF pro-
vides lightweight identity authentication and key distribution
among group members, while factorial trees and CRT help
reduce both the number of keys stored in nodes and the vol-
ume of transmitted messages during key updates. Harn et al.
(2021) introduced a novel key distribution scheme wherein
the basic key distribution protocol requires only logical XOR
operations. Kumar et al. (2020) proposed an efficient central-
ized group key distribution protocol designed to minimize
the computational cost of the key server during key updates.
Additionally, they presented an extended clustering-tree-
based CGKD protocol that balances member computational
cost during key recovery, exhibiting excellent scalability and

@ Springer

57 Page4of17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

effectively accommodating significant fluctuations in group
membership. Hougaard and Miyaji (2022) presented the first
SIDH-based constant-round tree-type group key exchange
protocol, achieving linear communication and storage com-
plexity. Taurshia et al. (2022) proposed a novel Group Key
Management scheme for Low Resource Devices (GKM-
LRD), employing an SDN-assisted trusted key management
server as a central entity providing key management services
for groups inIoT applications. Harn et al. (2022) proposed the
first lightweight authenticated group key distribution scheme
relying solely on logical operations. Their scheme can be
constructed upon any existing authenticated pairwise key dis-
tribution protocol. Gebremichael et al. (2022) introduced a
lattice-based one-way function that can be inverted via appro-
priately designed lattice trapdoors. Leveraging the concept of
“bad/good” lattice bases, they proposed a novel approach to
couple multiple private keys into a single public key, subse-
quently employing this public key to encrypt group messages.
The scheme demonstrates clear advantages, notably specu-
lative resistance against potential quantum computing-based
attacks. Luo et al. (2023) presented an ITS group authentica-
tion scheme that requires fewer keys in QKD networks. In this
protocol, multiple QKD network nodes collaborate as a group
to achieve authentication. Abdmeziem et al. (2024) proposed
an asynchronous ratcheting tree (ART) implementation
based on blockchain technology. They introduced a novel
asynchronous certificate creation method that leverages
smart contracts to realize the distributed nature of blockchain,
additionally incorporating a reputation mechanism to address
the heterogeneity of resource-constrained IoT devices.

3 Preliminaries
3.1 Max heap

A heap is a specialized form of complete binary tree com-
monly used in computer science. By definition, a heap is a
complete binary tree in which all levels are fully filled except
possibly the last, which is filled from left to right as com-
pletely as possible. A heap in which the root node contains
the maximum value among all nodes is referred to as a max
heap. Let k(i) denote the value of the i-th node in the max
heap. In this context, k(1) represents the value of the root
node. The max heap property ensures that the values satisfy
the conditions k(i) > k(2i) and k(i) > k(2i + 1) for all
applicable indices i.

3.2 Blockchain

Blockchain is a decentralized and distributed ledger system
that operates over a peer-to-peer network. It enables secure

@ Springer

storage and verification of transactions without the need for
a centralized authority (Garcia et al. 2024). Fundamentally,
blockchain is a distributed data structure, conceptually sim-
ilar to a linked list, composed of a sequence of blocks (or
nodes). Each block contains a field that stores the hash value
of the preceding block, thereby forming a cryptographic
link between blocks (Kemmoe et al. 2023). Blockchain is
characterized by decentralization, transparency, security, and
immutability. It employs advanced cryptographic algorithms
to ensure data privacy and integrity, making it highly resis-
tant to unauthorized access. In addition, blockchain supports
smart contracts-self-executing programs whose instructions
are stored on the blockchain and are publicly accessible.

3.3 Difficulty problem

Let E(IF,) be a cyclic elliptic curve group over a finite field
I, with a base point g €), of prime order 7.

Elliptic Curve Computational Diffie-Hellman (ECCDH)
Problem. Leta, b €), be randomly selected scalars. Given
the tuple (g, [alg, [P]g), it is computationally infeasible to
determine [ab]g without knowledge of both a and b.

4 System model

4.1 Notation

To facilitate the performance analysis of the proposed
scheme, we first introduce several essential notations. The

definitions of the mathematical notations used throughout
this paper are summarized in Table 1.

Table 1 Mathematical notations definition

Notations Definitions

params Parameters published by system initialization
GID; Group Identifier

U; user i

ID; user i’s identity information

T Timestamp

At Time gap

h Hash Function

Ki, Ky, Ky public key of user i, KDC and QKCS

ki, s, q private key of user i, KDC and QKCS

I, ® Concatenation, XOR operation

CH;, MACy, Group Authentication Parameters

QOH QKCS obtains data identification on blockchain
skf“, skka The shared key between the KDC and user i, the

shared key between the KDC and the QKCS

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Page50f17 57

4.2 System model

The system consists of four entities: (1) users; (2) KDC; (3)
blockchain; (4) quantum key cloud server. The system model
is illustrated in Fig. 1.

(1) Users: Users are the entities participating in secure group
communication. Each user submit his identity and public
key information to the KDC and subsequently retrieves
the temporary group key from the blockchain. This tem-
porary group key is then used to decrypt the group
quantum key ciphertext stored on the QKCS, thereby
enabling secure group communication.

(2) KDC: The KDC is responsible for authenticating user
identities and generating a temporary group key based
on identity information, public keys, and other relevant
parameters. The KDC then applies an XOR operation to
the temporary group key and uploads the encrypted result
to the blockchain, where it can be accessed by users and
the QKCS.

6.Users get quantum key
ciphertext

(3) Blockchain (BS): The BS is used to store encrypted tem-
porary group keys. It executes smart contracts, and based
on the parameters provided by users, returns the corre-
sponding ciphertext of the temporary group key.

(4) QKCS: The QKCS stores the group quantum key gener-
ated by the QKD network. It encrypts the group quantum
key using the temporary group key provided by the KDC
and makes it available for secure retrieval by authorized
users.

4.3 Threat model

This subsection outlines the rational assumptions underly-
ing the proposed scheme and defines the adversary’s attack
capabilities.

Following the attack model presented in Garcia et al.
(2024), we assume that the adversary is capable of eavesdrop-
ping on and tampering with all messages transmitted over
insecure public channels. Therefore, the scheme must ensure
that the protocol operates correctly even if the adversary

<

X

Users

1.Publishing parameters
uolewIo Ul
uolssiwisuedy paydAnulyz

QKCS

::(I)i:
A

wauaydp 183 OOV

Fig.1 System model

3.Temporary group key
ciphertext

@ Springer

57 Page6of17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

obtains such information, and more importantly, that no
secret data can be disclosed. In addition, we make the fol-
lowing reasonable assumptions about the system:

(1) Malicious nodes may exist within the group and attempt
to impersonate legitimate members. To address this, the
scheme is designed so that nodes participate in the group
key generation process and verify the legitimacy of other
group members using verification information stored on
the BS by the KDC. This mechanism effectively prevents
forgery.

(2) The KDC and the QKCS are assumed to be fully trusted
entities. The KDC is responsible for constructing, but not
extracting the temporary group key, while the QKCS can
encrypt and transmit the group quantum key but similarly
cannot extract it.

5 Specific plan

5.1 System initialization

represent the identity information of the users, where I D;
corresponds to the identity of user i. Similarly, let GID =
{GID,GID,,---,GID,} denote the group identifiers,
with GI1D; indicating the identifier for group j. When user
i joins group G1Dj, his group-specific identity is denoted
by 1 Dl.GIDj . The QKCS possesses a private key g and a cor-
responding public key K, = [¢g]g. Prior to any user joining
a group, the KDC is responsible for pre-storing the users’
identity set I D, the corresponding group identifiers GI D,
and the public key K, of the QKCS to facilitate group user
authentication and key distribution. It is assumed that n users
Ui(1 <i < n)intend to join group GI D;. Figure 2 outlines
the overall process from initialization to the key distribution
phase. The detailed steps are described below.

(1) During this phase, the KDC executes the following pro-
cedures:

Step 1: A large prime number p is selected at random, and
an elliptic curve E defined by the equation y> =
x3 + ax + b mod p is adopted, where a,b € F)
and I, denotes a finite field of order p, with the
discriminant A = 4a34-27b% # 0.Let G be acyclic

We denote the nusers as U = {Uy, U», - - - , U}, where user additive group over E, and designate a generator g
i is represented by U;. Let ID = {IDy,ID>,---, 1Dy} of G.
Fig.2 Initialization and key Users KDC BS QKCS
distribution
1 h 000
| | | I
i params | i params i
L ! i !
; i : I
Verify :T, =T, < At i : i
: » | .
> ! |
: (MAC, ,K } : ! |
! I !
[verify : MAC, == MAC, ,ID, == ID, | I
I I > I
! | <CH,,GK,,, ®skl"> | , !
[I . | — 2 I
: . <QH,GK,, ®sk> | ,
! | I GK,,, ® sk |
[I | » |
: 5 CH, . . »
! ! L GK,,, =GK,,, ®sk' @ sk"
[I = :
i GKlemp @ Sk’.ku | | = GK“’”’I’ ® Gqu H GID./’
| i i
ku ku' N .
GKWP = Ktemp @ sk, D sk; [|
! ! ! GID,
! ! i =
c :
I
I
i
i
i
I

@ Springer

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Page70f17 57

Step 2: A time interval At is specified, within which users
must complete the group joining process. Requests
exceeding this interval are considered invalid.

Step 3: A random number s is selected as the KDC’s private
key, satisfying 0 < s < p, and its public key is
computed as Ky = [s]g.

Step 4: A timestamp 77 is generated, and a secure hash func-
tion 4 : {0, 1}* — {0, 1} is chosen, where [denotes
the output length. The system parameters are then
published as params = {G.g,p. K, At T,
GIDj, h}.

(2) Each user U;, (1 < i < n) within group GID;
must deliver their identity / D; and public key K; to
the KDC within the designated time window. The
actions required from each user are as follows:

Step 1: The user obtains the current timestamp 7> and con-
firms that 75 — T1 < At. If this condition holds, the
process continues; otherwise, it terminates.

Step 2: A private key k; is selected such that 0 < k; < p,
and the corresponding public key is computed as
K; = [kilg.

Step 3: By combining their identity / D; and the group iden-
tifier GI1 D, theuserderives CH; =h (IDi||GIDj),
and then determines MACy, = CH; @ ID;. The
value C H; serves as a locator for retrieving nec-
essary parameters on the BS to reconstruct the
temporary group key, while M ACy, supports the
KDC in authenticating group membership. The tuple
{MACy,, K;} is then forwarded to the KDC.

Once the information is submitted, the user can asyn-
chronously obtain the group quantum key without the need to
remain continuously online. When access to the group quan-
tum key is required, the user can fetch the encrypted data
from both the BS and the QKCS, and subsequently recover
the group quantum key through decryption.

5.2 Key distribution phase

In this stage, the KDC engages in lightweight operations
to authenticate group members and prepare the temporary
group key. The key is derived through the combination of
identity information, public credentials, and cryptographic
parameters, then concealed via XOR operations and recorded
on the BS. Group members retrieve this encrypted material
through predetermined access values and reconstruct the tem-
porary group key.

(1) The KDC undertakes the following procedures:

Step 1: The current timestamp 73 is acquired, and the con-
dition 73 — T} < At is checked. If satisfied, the
process advances.

Step 2: Given each input pair {MACy,, K;}, the KDC
reconstructs CH;, = h(ID;|GID;), calculates

MAC,;I, = CHZ-/ @ ID;, and restores ID;. =
C Hi/ @® M ACy,. Verification proceeds only if both
MAC]; == MACk,' and ID; ==]D; are con-
firmed.

Step 3: Upon successful validation, a random index d; sat-
isfying 0 < d; < p is assigned to each user U;, and
all indices are organized into a max heap structure.
Define a list L indexed by GIDj, storing entries
[d;, IKC;], where IKC; = {ID'™ ki, CH).
For example,

GID; ={[10,IKC],[8,IKC>],[6, IKC3],[4,IKC;

I,[1, 1K Cs]}
complies with the max heap logic (illustrated in
Fig. 3).
Step 4: Forall 1 <i < n, calculate node; = h ([d;]1K;) &
GID;

ID; "’||[d;]g. The temporary group key is aggre-
gated by the expression: GKjepmp = node; ®
noder, ® - -- ® node,,.

Step 5: Derive the shared secrets skf‘” = [s]1K; and sk =
[s]1K,,respectively. Construct the hash value QH =
h (Ky|sk*||GIDj). Let CH, and QH serve as BS
indexing keys, and post the encrypted entries: <
CH,, GKiomp®ski >, < QH, GKomp®sk e >.

(2) The QKCS proceeds as follows:

Step 1: Determine skkq/ = [¢]Kj, then compute QH/ =

h (Kq ||skkq/||G1Dj>.

Fig.3 Logical structure of 5 users in group G1D;

@ Springer

57 Page8of17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Step 2: With QH " as a reference key, extract GKyepmp @
sk*4 from the BS and derive the ter/nporary key by:
GKiemp = GKiomp ® kX @ sk .

Step 3: Retrieve a group quantum key G Ky, and produce
the ciphertext C = GKemp @ GKyrl|GID;.

(3) Each user follows these steps:

Step 1: Compute the shared key ské‘“/ = [ki] K.

Step 2: Referencing C H; as an index, recover GK;epmp @
skf“ from the BS and calculate: G Kemp =G Kemp®
skf” &) skf“,.

Step 3: Retrieve C from the QKDS using GID; and deter-
mine: GK x = GKemp @ C.

5.3 Single user join

When anew user Uy, 41 intends to join group G1 D, the KDC
must first register the user’s identity I D, +1 and generate a
current timestamp 7. The user U, transmits his identity
ID, 1 and public key K11 to the KDC.

(1) The user completes the following steps:

Step 1: Randomly select a private key k,41 such that 0 <
kn+1 < p, and compute the corresponding public
key Ky+1 = [ku+1lg-

Step 2: Following the same procedure as in Section 5.1 (2)
Step 2, compute C Hy11 = h (I Dy41||GID;) and
MACy,,, = CHyy1 @ IDy4q. Submit the tuple
{MACkn+l , Kut1 } to the KDC.

(2) The KDC performs the following procedures:

Step 1: Acquire the current timestamp 75 and ensure that
Ts — Ty < At holds.

Step 2: Compute CH,;H =h (IDnH ||GID,-), MAC

kn+1
= CH,,, ® IDyy1, and ID,,, = CH, | &

M ACy,,, . Verify whether MAC];”+1 == MAC,,,
and ID, | == ID;-H'
Step 3: Upon validation, the KDC handles the identity

1 Df LDj and public key K,y of user U,y based
on the authentication results, and assigns a new
index dp4+1 with 0 < dy4+1 < p. Following the
update logic of a max heap, the user is inserted
into the list L under group GID;. Suppose Up+1
is placed at position m, the group entry becomes:
GID; = ({ldi,IKCy],---,[du-1,1KCp_1]
[dn-i-la IKCn+l]a [dma IKCm]a) [dn» IKCn]}
As an illustrative example, if the group previously
holds:

’

GID; =({[10,IKC1],[8,IKC3],[6, IKC5],[4,IKC3

.[1, 1K Cs]},

@ Springer

and a new user is inserted with index 7, the updated
structure (as per Fig. 4(a) and (b)) becomes:

GID; ={[10,1KC],[8, IKC2][7,1KC7],[4, IKCy

1,[1,IKCs], [6, IKC3]}.

Step 4: Update the temporary group key. Compute node,, 11
GIDj .
= h ([dpt11Kny1) @ 1D, 17 |[dy41]g. and derive

skﬁ_”H = [s]K,+1. Then calculate the updated
temporary group key: GK,,,, = GKiemp ®

noden+1 @ dyy1. Finally, update the BS with the
new key mappings: < CH,./, GK;emp &) skf‘“ > <
QH,GK,,,, ®skk > (1 <i <n+1).

(3) The QKCS updates the group quantum key as fol-

lows:
Step 1: Retrieve GK @ sk¥ from the BS via OH /, then

recover the updated key: GK,,,,, = GK;emp @
skka @ skk‘f/.
Step 2: Select a new group quantum key GK gk’

pute the ciphertext: C' = GKiomp @ GK(;kHGIDj.
(4) The newly joined user U, 4 obtains the group quan-
tum key as follows:

Step 1: Compute skﬁ’fH = [kn+1] K;.

@ @ -
-

/

temp

’

and com-

(a)

(b)

Fig. 4 (a) User number 7 joins group GID;. (b) User number 7 suc-
cessfully joins the group GID;

Journal of King Saud University Computer and Information Sciences (2025) 37:57 Page9of17 57
Step 2: All users (including U, 1) retrieve GK;emp @ skl{‘” with the new entries: < CHi/, GK,/emp ® skf” >, <
. . ’ ’ .
from the BS using CH; and derive: GK,emp = OH, GK,emp ® skka >, (1 <i<n).

GKypp ® sk @ sk .
Step 3: Based on GIDj, each user accesses C' from the
QKCS and computes: GK;]k = GK,/emp Yol

5.4 Single user leave

When user Uy, intends to leave group G1Dj, the following
procedures are initiated:

(1) User U,, transmits his leaving information to the KDC
in encrypted form. Specifically, they utilize the tempo-
rary group key G K;epmp as the encryption key within a
symmetric encryption algorithm to protect the message
containing / Dg 'P; ,GIDj,and K,,, forming the cipher-
text: Cpy = EGRyony (IDyy' |G D 11K).

(2) Upon receipt of C,,, the KDC undertakes the following
operations:

Step 1: Decrypt Cy, with GKepp and verify the informa-
tion. Once validated, the KDC locates the corre-
sponding record [d,,, I KC,,] in list L for group
GIDj, and removes it. A new random integer
d with 0 < d < p is generated. The list
for group GIDj is then reorganized to maintain
max heap consistency. Assuming the removal does
not alter entry order, the group content becomes:
GID; = {ld,IKC\],- -, ldm-1,1KCp_1],
[dn+1, IKCp11l, -+, [dyn, I KC,]}. For example,
as illustrated in Fig. 5, starting from: GID; =
{[10, IKC1],[8, IKC3][6, IKC3], [4, [KCy4],

[1, IKCs5]}, and removing the user with index 8,
the updated group becomes:

GID; ={[10,IKC1],[4, IKC4], [6, IKC3], [1, IKCs]}.

/

Step 2: Compute the new temporary group key by: GK,,,,,,
= GKiemp ® d. Subsequently, the BS is updated

Fig.5 User number 8 leaves the
group GID;

(3) The QKCS proceeds as follows:
Step 1: Access GK, @® sk from the BS via QH, and

temp
!’

compute: GK,,,,,,, = GK,/emp @ skh @ skka'.
Step 2: Retrieve a new group quantum key G K ; «» and form
the ciphertext: C' = GK;emp @ GK;kHGIDj.

(4) The remaining users derive the updated group key
as follows:
Step 1: Eachuser U;, (1 <i < n) retrieves GK

4 k
temp @ Ski “
using CH; and calculates: GK,,,,, = GK;emp ®
skf” ® ski-‘“ .
Step 2: Then, using GI D, each user accesses C’ from the
QKCS and computes: GK;k = GK;em‘,, ®C

5.5 Multiple users join

When m users U;, (n < i < n + m) wish to join group
GIDj, the KDC must pre-register their identity information
and generate a timestamp 7. Each user U; submits his iden-
tity I D; and public key K; to the KDC.

(1) Eachuser U;, (n < i < n + m) performs the following:

Step 1: Select a private key k; such that 0 < k; < p, and
compute the public key K; = [ki]g.

Step 2: AsinSection5.1(2),compute CH; =h (ID,- IGI Dj)
and M ACy, = C H;®1 D;, then transmit { M ACy, , K; }
to the KDC.

(2) The KDC undertakes the following operations:

Step 1: Acquire the current timestamp 77 and verify that
T — Te < At.

Step 2: For each user, compute CHZ./ =h (IDi||GIDj),
MAC, = CH;®ID;,and ID, = CH; ® MAC, ,
then validate whether MAC,;, == MAC, and
ID; == ID;.

Step 3: After successful validation, the KDC constructs
a placeholder node [0, 0,0, 0] and appends it to
the GID; list to separate max heap structures.

[8,IKC,] leave
onc) ()

@ Springer

57 Page100f17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Then, it builds a local max heap for the new
users, randomly assigning indices d; for each,
ensuring 0 < d; < p, and updating the group
content: GID; = {[d1,IKC1],---,[dn, IKC,],
[0’ O]a [dn—s—l’ IKCn—i—l]a) [dn+n1’ IKCn+m]}-
Step 4: For each new user, compute node; = h ([d;]K;) ®
1 D;||[d;]g and shared key sk = [k;]S. Then com-
pute the updated temporary group key: GK ,/emp =
GKiemp®node, 1@ - -®nodey . Update the BS
with: < CH;, GK,,,,,®sk/" >, < QH, GK,,,,,®
skkt > (1 <i <n+m).
(3) The QKCS executes:
Step 1: Retrieve GK , @ sk* using QH and compute

temp
GKiomp = GKiopp @ skka @ skkd
Step 2: Generate GK gk and form: C = GK
IGID;.

(4) The user proceeds as follows:

’

temp

& GK,,

Step 1: New users U;, (n < i < n + m) calculate skf."‘ =
[ki]S. /
Step 2: All users U;, (1 < i < n + m) retrieve GK,emp @

skf via CH; and compute: GKypyy = G Koy ®
skb @ sk

Step 3: Using GIDj, all users access C' and calculate:
GK = GKippp ®C

This paragraph explains the advantages of reconstructing a
new max heap for newly joined users. Since user joining
events require updates to the heap structure, our scheme gen-
erates a local max heap independently for each newly formed
user subgroup, rather than reconstructing the entire global
heap. User dynamics such as joining are thus confined to
operations on the local max heaps. This divide-and-conquer
heap management design significantly reduces the time com-
plexity of user modification operations, thereby improving
the efficiency of group quantum key updates.

5.6 Multiple users leave

When m users leave the group simultaneously, they trans-
mit their leaving information encrypted under the current
temporary key. The KDC decrypts and verifies this informa-
tion, and after deleting the corresponding entries, generates
a new random number d’ with 0 < d’ < p and com-
putes: GK,/emp = GKiemp @ d". Update the BS with:
< CH;.GK,,,,®sk’" >, < QH,GK,,,, ®sk" > (1 <
i < n—m). Then, repeat (3) and (4) from Section 5.4 so that
all remaining users acquire the updated group quantum key.

@ Springer

6 Correctness and security analysis
6.1 Correctness analysis

This section provides a correctness analysis of the proposed
scheme, demonstrating that, under the assumption of no
computational errors, users within the same group can consis-
tently derive an identical group quantum key from the KDC.

Theorem 1 The proposed scheme ensures correctness.

Proof Let the public-private key pairs of the users, the KDC,
and the QKCS be (K, k;), (K, s),and (K, g), respectively.
Let g be a base point on the elliptic curve. The following
relations hold:

(ki1 Ky =[s1K; = [ski1g (D
[g1 Ky =[s1K,; =[sqlg ()

After generating the temporary group key G K¢, the KDC
computes the values G K;emp © skl]f” and GKyepmp @ skka
where skf” = [s]K; and sk*¥ = [s]K,, and publishes them
to the BS using the access identifiers C Hi/ and QH, where
CH, = h(ID;|GID;), OH = h(K,|sk*|GID;), to
put < CHi/, GKiemp © skl{‘” >, < QH,GKemp @ skka >
. Consequently, the following BS entries are made: <
CH,,GKiemp ® sk >, < OH,GKomp ® skk >.
Both the user and the QKCS can retrieve their respec-
tive ciphertexts using their identifiers. Since users compute
CH;, = h (IDi||GIDj), and the server computes QH/ =

h <Kq ||Skk‘7/||GIDj>,withskkq/ = [¢]K,bothvalues align

with the BS identifiers C Hi/ and QH. By combining the
retrieved values with the shared secrets (as shown in (1)
and (2)) and leveraging the properties of XOR, both the user
and the QKCS can derive an identical temporary group key
GK temp-

After obtaining G K;epmp, the QKCS encrypts the group
quantum key GKg; with GK;epp and appends the group
identifier GIDj, resulting in the ciphertext distributed to
users. Since all group members obtain the same G K¢ and
GIDj, they can consistently recover the same group quan-
tum key G K. This concludes the proof. O

6.2 Formal security analysis

(1) Security model
We modify the I N D — C P A model from Paper (Lee et al.
2024) to suit the security model of our scheme.
Initialization: Let SP be the system parameters. The
challenger runs the key generation algorithm to generate a

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Page110f17 57

public-private key pair (pk, sk), and sends pk and S P to the
adversary. The challenger retains sk to respond to encryption
queries from the adversary.

Stage 1: The adversary queries adaptively selected plain-
texts, and the challenger returns the encrypted results of these
plaintexts to the adversary.

Challenge: The adversary outputs two distinct messages,
m1, my, both chosen adaptively. The challenger randomly
selects ¢ € {1, 2}, then computes the challenge ciphertext
CT* = E[SP, pk,m.] and sends it to the adversary.

Stage 2: This stage is the same as Stage 1, except that no
encryption queries are allowed on message m 1, m..

Guess: The adversary outputs a guess ¢ for ¢ Ifc=cis
correct, the adversary wins the game.

The advantage of the adversary in winning the game,
denoted as ¢, is defined as follows:

5:2(Pr[c/:c]—%>.

(2) Security Proof

This section presents a security analysis and proof of the
proposed scheme based on the notion of IND — CPA.

The scheme does not consider the issue of long-term pri-
vate key leakage; instead, we focus on analyzing and proving
the security of the temporary group key generation process.
We reduce the security of our scheme to the hardness of Prob-
lem ECCDH. Specifically, if an adversary A is capable of
breaking the proposed scheme, we can leverage this adver-
sary to solve Problem ECC D H, thereby demonstrating the
security of our scheme.

Theorem 2 Assume that the hash function H is modeled as a
random oracle. If the ECC D H problem is computationally
hard, then the proposed scheme is provably secure under the
I N D-C P A security model, with a reduction loss of L = qp,
where qp denotes the number of hash queries made to the
random oracle.

Proof Assume there exists an adversary A that can break the
scheme with advantage ¢ in time ¢ under the /IND-CPA
security model. We construct a simulator R that uses A4 to
solve the ECC D H problem.

Givenan ECC DH instance (g, [alg, [b]g) onacyclic group
(G, g, p), the simulator R interacts with A as follows while
controlling the random oracle:

Initialization: Let the system parameters be SP =
(G, g, p), and let H be a random oracle. R sets the public
key of a particular user 6 as Ky = [a]g, with corresponding
private key @ = a, and identity information I Dg. The public
key is directly derived from the given problem instance.

Stage 1: The adversary A adaptively selects plaintexts for
encryption queries, and the challenger returns their corre-
sponding ciphertexts. During this stage, A also makes hash

queries. The simulator R maintains a hash list to record all
queried values and their corresponding responses, initially
starting as an empty list.

When A makes its i-th hash query with input x;, the sim-
ulator checks whether x; already exists in the hash list. If
it does, R responds with the previously stored value. Oth-
erwise, R randomly selects y; € {0, 1}", sets H(x;) = v,
returns y; as the response to the query, and appends the pair
(xi, y;) to the hash list.

Challenge: A outputs two messages m; = ID; and
my = I D> of equal length to be used in the challenge. Here,
m represents the identity information of user Uj, and my
represents the identity information of user U. Both U and
U join the same group GID;, each accompanied by the
same set of n users. Assume that the target user 6 is one of
the n users.

The simulator R randomly selects R € {0, 1}" and com-
putes the challenge ciphertext CT™* as follows:

User U; and the n group users compute the challenge
ciphertext CT,; as:

node; = h([di1K;) & ID_ ™ lldilg. (1<i<n+2,

P £2, 0 £6)
nodeg = Rl|[dplg
GK,’Z,Inp =nodey ®nodes @ --- ®nodeg @ - -+ D nodey12

Let skf" = [s]K; foralli suchthat 1 <i <n+2andi # 2.
Then,

CT, = GKy,

temp

® skf”

User U, and the n group users compute the challenge cipher-
text CT,,, as:

node; = h(ld;1K:) & 1D ™ ||d;lg, 2 <i<n+2,

i +0)
nodey = R||[dglg
GK,"Z%W =node, ®nodes ® --- ®nodeg @ --- ®nodepiy

Let sk’ = [s]K; for all i such that2 < i < n + 2. Then,

CTy, = GK[p2,, ® skt

temp
If it holds that 2([b]Kg) = R & I Dy, then we can write:
nodey = h([b]Kg) & I Dy ||[b]lg

In this case, the value of nodey used in the challenge cipher-
text can be interpreted as being computed from the random

@ Springer

57 Page120f17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

value b. Therefore, if [b]Ky is not queried to the random
oracle by the adversary, the challenge ciphertext will be com-
putationally indistinguishable from a valid ciphertext and
thus appears legitimate from the adversary’s point of view.

Guess: Aoutputs a guess or returns L. The challenge hash
query is defined as follows:

Q" = [b]Kp = [ablg.

The simulator randomly selects a value x from the hash list

(X1, 91), (X2, ¥2) .+, (xgy+ ¥q) and treats it as the chal-
lenge hash query. It then uses this value to solvethe ECC D H
problem.

Indistinguishability of the Simulation: The correctness
of the simulation process has been demonstrated above.
The randomness in the simulation includes all random val-
ues generated during key generation, hash oracle responses,
and challenge ciphertext construction. From the adversary’s
perspective, these values appear uniformly random and
independent. Therefore, the simulation is computationally
indistinguishable from a real attack scenario.

Adversarial Advantage in Breaking the Challenge Cipher-
text: If h([b]Ky) = R @ I Dy, then the challenge ciphertext
CT,,, corresponds to message my, and C7,; corresponds
to message my. However, if the adversary does not query
[b]1K g to the random oracle, the value & ([b]Kg) remains hid-
den and uniformly random. As a result, the adversary gains
no advantage in distinguishing the challenge ciphertext, and
the challenge remains secure.

Reduction Advantage and Time Complexity: Let T denote
the time required for simulation. Then the simulator R
solves the ECCDH problem within time (r 4+ T5) with an
advantage of (¢/qp), where ¢ is the success probability of
adversary 4 and gy is the number of hash queries made to
the random oracle.

6.3 Non-formal security analysis

(1) Forward Secrecy
In the proposed scheme, the temporary group key
G Kemp and the group quantum key G Ky are updated
whenever a user U; joins or leaves the group. Even if
the current G K¢y, is compromised, the attacker cannot
infer previous keys due to the randomness introduced by
the KDC, which assigns each user a fresh random index
d; during initialization, joining, and leaving operations.
Moreover, the group quantum key G Ky itself is gener-
ated with inherent randomness. Therefore, the proposed
scheme satisfies forward secrecy.

(2) Backward Secrecy
Analogous to the forward secrecy case, even if the current
G K emp is exposed, the attacker cannot deduce any future
temporary group keys. This is due to the randomized

@ Springer

index d; generated by the KDC during each membership
update. The randomness embedded in G K also ensures
that backward secrecy is preserved.

(3) Asynchrony
In our scheme, once user U; has transmitted their identity
I D; and public key K; to the KDC, they are no longer
required to remain online. When the group quantum key
GK i is needed, the user can retrieve the temporary
group key G K. from the BS and download the cipher-
text C from the QKCS. By decrypting C with GK;epp,
the user obtains G K . Hence, the scheme supports asyn-
chronous access.

(4) Resistance to Man-in-the-Middle Attack
In the proposed scheme, the index d; used to gener-
ate G K;emp is randomly assigned and never transmitted.
Therefore, an attacker cannot forge the group key based
on any transmitted information. Moreover, since recon-
structing GK;emp requires the user’s private key k;, it
is infeasible for an attacker to impersonate a legitimate
user without possessing this key. As a result, the scheme
is resilient to man-in-the-middle attacks.

(5) Anonymity
The scheme guarantees anonymity since user U; retrieves
G K41 independently by accessing parameters from the
BS and the QKCS. The process is conducted without
revealing or learning the membership status (joining or
leaving) of other users Uj, j # i. Thus, anonymity is
preserved.

(6) Immutability As users retrieve the group key GKiemp
from the BS, the immutability of BS data ensures that
this information cannot be altered by malicious parties.
Consequently, the integrity of the group key is preserved,
and the proposed scheme upholds the immutability prop-
erty.

7 Performance evaluation

In this section, we assess the performance of our proposed
scheme in terms of both storage and computational costs.

Table 2 Computation cost of Scheme

Symbol Description Time (ms)
th hash 0.000350
pa elliptic curve point addition 0.084967
tpm elliptic curve point multiplication 1.844129
Lsym symmetric encryption or decryption 0.006487
tox shift operation 0.000077
tmod modular operations 0.000134

Journal of King Saud University Computer and Information Sciences (2025) 37:57 Page130f17 57
Table 3 Storage cost Scheme Single User KDC BS QKCS
-1
L— (= 1)!
Yildiz f+3 5n+3+n;+l§11. (t—1! ~
ne=[{n—(@—=DY/-D]
=1
1— (=1
Sudheeradh t42 6n+2+n; +]gl I —(@—=1)! B
ne=[{n— -0/t -]
Ours 6 5n+5 42 5

We conducted experiments using the Python program-
ming language. The elliptic curve operations, such as point
multiplication and point addition, were performed via the
ECPy library. Symmetric encryption and decryption were
carried outusing AES-256 provided by the cryptography
library. Hash computations were implemented with SHA-
256 from Python’s hashlib module. Shift and modular
operations were coded manually. All experiments were run
on a platform equipped with an Intel(R) Core(TM) i9-
14900HX @2.20 GHz processor, 16GB of RAM, and the
64-bit version of Windows 11 (version 23H2).

We denote the average execution time of each operation as
follows: #; for hash computations, ¢, for elliptic curve point
addition, t,,, for elliptic curve point multiplication, #y,, for
symmetric encryption or decryption, fex for shift operation,
and 7 mog for modular operations. Since XOR and concate-
nation operations incur negligible costs, their computational
cost is excluded from our analysis. For storage cost evalua-
tion, we let C represent the cost of storing a single data item.
Accordingly, the cost of storing n such items is nC. We con-
ducted 1000 trials for each of the six operations mentioned
above and averaged the results. The performance outcomes
are summarized in Table 2. Following this, we present a com-
parative analysis of our scheme against those proposed by
Yildiz et al. (2021) and Sudheeradh et al. (2024), focusing
specifically on users’ storage and computation costs.

2500

—&=—Yildiz
—&— Sudheeradh
—H—Ours

2000

a
=]
S

Storage cost

=)
S
S

-

500

=
o

0 20 40 60 80 100 120 140 160 180 200
Number of group users

(2)

0

In this section, we present a theoretical evaluation of the
performance of the proposed scheme.

7.1 Storage cost

We assume the presence of n users and compare the storage
cost of corresponding entities in our scheme with those in
the schemes proposed by Yildiz et al. (2021) and Sudheer-
adh et al. (2024). The comparison results are summarized in
Table 3. In this table, ¢ denotes the height of the factorial tree
used in the schemes of Yildiz et al. (2021) and Sudheeradh
et al. (2024), and the unit of data is represented by C.

In our scheme, each user is required to store their pri-
vate key, group identifier, the public key of the KDC, the
temporary group key, the access identifier for retrieving data
from the BS, and the user’s shared key. Thus, the storage cost
per user is 6C, and the total user-side storage cost is 6nC.
The KDC stores essential information for each user node,
including the user’s index, identity, and public key, access
identifiers for BS retrieval by users and the QKCS, its shared
keys with each user and the QKCS, its own private key, group
identifier, and the temporary group key. Hence, the KDC’s
total storage cost amounts to (57 4+ 5)C. The BS stores the
access identifiers and encrypted parameters required for users
and the QKCS, leading to a storage cost of (2n + 2)C. The
QKCS maintains its own private key, group identifier, public

2500 T T
— & Yildiz /

—&— Sudheeradh
—b—Ours

2000

1500 V.

/
1000 ‘j/
d

|Ed

0 20 40 60 80 100 120 140 160 180 200
Number of group users

(b)

Total storage cost

Fig.6 (a) Comparison of user storage costs. (b) Comparison of user total storage costs

@ Springer

57 Page140f17 Journal of King Saud University Computer and Information Sciences (2025) 37:57
Table 4 Computation cost of initialization and key distribution phase Table 6 Computation cost of leaving phase
Scheme Single User KDC Scheme Single user Original KDC
leave single user
Yildiz 3tym + 3t (3n + Dtgym + 3nty
Sudheeradh Atgym + 31 Sntgym + 4nty, Yildiz - 3tsym + 3th + tmod % (12 - ’) tmod + Lsym
Ours Zme + 1y Bn + 1)tpm + (n+ Dy Sudheeradh — tsym + th + tmod % (12 - [) tmod + fsym
Ours Lsym - th +log(n)tex

key of the KDC, the access identifier used to retrieve data
from the BS, and its own shared key, resulting in a total cost
of 5C. Therefore, the overall storage cost for our scheme is
(13n 4 12)C. In contrast, the storage cost for the schemes of
Yildiz and Sudheeradh are given respectively as:

((r +8)n 43+ (" "*”ﬂ + Z I —(t — 1)V>
C,

((t+8)n+2+(e 4 Zl'— (t — 1)')

C.

Figure 6(a) and (b) presents a comparative analysis of
user-side and total storage costs under increasing numbers of
users for our scheme versus those of Yildiz and Sudheeradh.
As shown in Fig. 6(a) and (b), our scheme exhibits a slower
growth rate in both user and overall storage costs as the num-
ber of users increases. This efficiency arises from our max
heap-based design, where each user occupies a single node,
and all nodes collectively contribute to the generation of the
temporary group key. In contrast, the other two schemes rely
on storing users as leaf nodes in a factorial tree. During group
key updates, users and the key server must store additional
metadata that records the absolute path from leaf to root,
which increases storage costs as the number of users grows.

7.2 Computation cost

We assume the number of users ranges from 1 to 2000, and we
summarize the computational costs of our proposed scheme
as well as those of Yildiz et al. (2021) and Sudheeradh et al.
(2024) during the initialization and key distribution phase, the
user joining phase, and the user leaving phase. The detailed
comparisons are presented in Tables 4, 5, and 6, respectively.

In the proposed scheme, during the initialization and key
distribution phases, each user performs two elliptic curve
point multiplications: one to generate their public key and

Table 5 Computation cost of joining phase

Scheme Newly added Original single =~ KDC
single user user
Yildiz Btsym +3th toym + 21, Stsym + 5tn
Sudheeradh Isym Tsym Tsym + 1
Ours 2tpm + 1ty - 3tpm + th +log(m)tex

@ Springer

one to compute the shared key, along with a single hash
operation. Consequently, the per-user computational cost is
2tpm + t, and the overall user-side computational cost is
2ntpy +nty,. During the key distribution phase, the KDC per-
forms n hash operations. To construct the temporary group
key, it performs 2n elliptic curve point multiplications, and
encrypting the temporary group key requires an additional
n+ 1 point multiplications and one hash operation. Thus, the
KDC’s computational cost is (3n + 1)t,;, + (n + 1)#;. The
BS merely stores parameters and does not incur any compu-
tational cost. The QKCS performs one elliptic curve point
multiplication and one hash operation, resulting in a compu-
tational cost of #,,,; + ;. Hence, the total computational cost
of our scheme is (5n + 2)tp, + (2n + 2)t,. For compari-
son, the total computational costs of the schemes by Yildiz
and Sudheeradh are (6n + 1)t;y,, + 6nt, and ntgyy, + Tnty,
respectively.

In the new user joining phase of our scheme, the newly
joining user performs two elliptic curve point multiplications
and one hash operation, while the existing users only perform
XOR operations, which are negligible in cost. Thus, the total
user-side computational cost is 2¢p, + ;. The KDC per-
forms three point multiplications, one hash operation, and
approximately log(n) exchange operations, leading to a cost

5
—+=—Yildiz
4.5 [|—©&— Sudheeradh
—P>— Ours
4
% 3.5
£
2 3
o
525
s
3 2
€
S
O15
1
0.5
ok & & & & N & EN & o b

0 10 20 30 40 50 60 70 80 90 100
Number of group users

Fig.7 Computation cost of a single user in Initialization and key dis-
tribution phase

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Page150f17 57

0

— = Yildiz
—5— Sudheeradh
60 -|—>—ours

50

40

30

Computation cost(ms)

20

10

2/9/4
—

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of group users

(a)

0

—&— Yildiz
—&— Sudheeradh
60 | —>—oOurs

a
S

I
S

Total computation cost(ms)
@
8

n
S

\

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of group users

(b)

o

Fig.8 (a) Computation cost during joining phase. (b) Total computation cost during the joining phase

of 3tpm + tn + log(n)tey. The BS and the QKCS are only
involved in data storage and XOR operations, respectively,
both incurring negligible computational costs. Therefore, the
total cost of this phase is 5tp,, + 21, + log(n)t.. The corre-
sponding costs in the schemes of Yildiz and Sudheeradh are
(n + Ditgym + 2n + 6)ty, and (n + 1)tgy, + 14, TEspectively.

During the user leaving phase, the departing user encrypts
their own information using the current temporary group key,
yielding a cost of #;y,,. Non-departing users only perform
XOR operations, which are negligible. The KDC performs
one decryption and log(n) shift operations, resulting in a cost
of tyym + log(n)t... Thus, the total cost of the user leaving
phase is 215y, + log(n)t,x. The schemes of Yildiz and Sud-
heeradh have respective computational costs of:

|
3 (r2 - t) fmod + tsym + (1 — 1) Btsym + 3th + £ mod),

(tz - t) mod + Isym + (n — 1)(tsym + th + mod)

R —

70

— = Yildiz
—&— Sudheeradh
60 1| —>—oOurs

50

40

30

Computation cost(ms)

20

-

)/Q/e/e

0 —

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of group users

(c)

Figure 7 presents a comparison of the per-user compu-
tational cost during the initialization and key distribution
phases for the three schemes. As observed in the figure, the
per-user computational cost of our scheme is slightly higher
than that of the other two. This is primarily because our
scheme adopts elliptic curve point multiplication in the con-
struction of the shared key, whereas the other two schemes
utilize symmetric encryption, which is computationally less
intensive.

Figure 8(a) and (b) illustrate the comparison of user-side
and total computational costs during the user joining phase
for the three schemes. In our scheme, only the newly added
user needs to perform elliptic curve point multiplications and
a hash operation, while existing group members only execute
XOR operations to update the group key. As a result, the
user’s computational cost remains independent of the total
group size. Furthermore, the KDC computes a new shared
key for the joining user and updates the temporary group
key, while the BS and QKCS perform update operations with
negligible computational cost. Thus, the total computational

70

—&—Yildiz
—&— Sudheeradh
['|—P—Ours

-3
S

o
S

IS
S

W
S

Total computation cost(ms)

N
S

=)

o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of group users

(d)

Fig.9 (a) Computation cost during leaving phase. (b) Total computation cost during the leaving phase

@ Springer

57 Page160of17

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

costis only related to the newly added member. In contrast, in
the schemes proposed by Yildiz and Sudheeradh , the KDC
must generate parameters and encrypt them for distribution
to all users. Each user must also participate in updating the
group key. Consequently, as the number of group members
increases, both the user-side and total computational costs
increase accordingly.

Figure 9(a) and (b) illustrate the comparison of user-side
and total computational costs during the user leaving phase
for the three schemes. In our proposed scheme, when a user
leaves, the departing user only needs to encrypt their informa-
tion with the temporary group key and transmit it to the KDC.
After decryption, the KDC updates the temporary group key.
Non-departing users simply perform lightweight XOR oper-
ations to complete the key update process. Therefore, both
user-side and total computational costs remain independent
of the number of users in the group. In contrast, the schemes
proposed by Yildiz and Sudheeradh rely on the Chinese
Remainder Theorem (CRT) to update keys upon the user
leaving. Their computational costs are directly tied to the
height of the tree structure employed, and thus both user-
side and total computational costs increase proportionally
with the number of users.

8 Conclusion

In this paper, we propose an asynchronous group quantum
key distribution scheme over classical networks based on
a max heap structure. Leveraging the inherent randomness
of quantum keys, we designate them as the communica-
tion group key. On this basis, we construct a temporary
group key using a max heap derived from user contributions,
which enables dynamic load balancing across heterogeneous
devices in networked environments such as the Internet of
Things (IoT). Furthermore, we utilize BS to store interme-
diate parameters, thereby achieving the asynchronous nature
of the proposed scheme. Finally, we provide a comprehen-
sive security and performance analysis, demonstrating that
our scheme outperforms existing approaches in terms of effi-
ciency and adaptability.

Author Contributions Dexin Zhu: Methodology, Software, Writing -
Original Draft. Zilong Zhao: Software, Writing - Original Draft. Huan-
jie Zhang: Software, Visualization. Zhiqiang Zhou: Software. Yuanbo
Li: Software. Jian Zhao: Investigation. Lijun Song: Methodology. Jun
Zheng: Conceptualization, Methodology, Writing - Original Draft.

Funding This work is funded by the National Key Research and Devel-
opment Program of China under Grant 2023YFC3305404, the Educa-
tion Department of Jilin Province with grants No. JJKH20251102KJ,
the Science and Technology Department of Jilin Province with grants
No. 20250102045JC, 20250102055JC.

Data Availability Enquiries about data availability should be directed
to the authors.

@ Springer

Declarations

Conflicts of Interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other
third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

Abdmeziem MR, Nacer AA, Deroues NM (2024) Group key man-
agement in the internet of things: handling asynchronicity.
Future Gener Comput Syst 152:273-287. https://doi.org/10.1016/
J.FUTURE.2023.10.023

Alléaume R, Branciard C, Bouda J, Debuisschert T, Dianati M, Gisin
N, Godfrey M, Grangier P, Langer T, Liitkenhaus N, Monyk C,
Painchault P, Peev M, Poppe A, Pornin T, Rarity JG, Renner
R, Ribordy G, Riguidel M, Salvail L, Shields AJ, Weinfurter H,
Zeilinger A (2014) Using quantum key distribution for crypto-
graphic purposes: a survey. Theor Comput Sci 560:62-81. https://
doi.org/10.1016/J.TCS.2014.09.018

Braeken A (2022) Pairing free asymmetric group key agreement pro-
tocol. Comput Commun 181:267-273. https://doi.org/10.1016/J.
COMCOM.2021.10.011

Chen C, Deng X, Gan W, Chen J, Islam SH (2021) A secure blockchain-
based group key agreement protocol for iot. J Supercomput
77(8):9046-9068. https://doi.org/10.1007/S11227-020-03561-Y

Cheng T, Liu Q, Shi Q, Yang Z, Wang C, Zhang X, Xu P (2024)
Efficient anonymous authentication and group key distribution
scheme based on quantum random numbers for vanets. IEEE Inter-
net Things J 11(13):23544-23560. https://doi.org/10.1109/JIOT.
2024.3384993

Chhikara D, Rana S, Singh G, Mishra D, Kumar N (2023) Blockchain-
based partial group key agreement protocol for intelligent trans-
portation systems. IEEE Trans Veh Technol 72(12):16701-16710.
https://doi.org/10.1109/TVT.2023.3299705

Chien H (2021) Self-healing group key distribution facilitating
source authentication using block codes. Secur Commun Net-
works 2021:2942568-1294256811. https://doi.org/10.1155/2021/
2942568

Cui B, He W, Cui Y (2024) A dynamic C-V2X anonymous authentica-
tion and group key agreement protocol. Int J Inf Sec 23(4):2977-
2989. https://doi.org/10.1007/S10207-024-00876-2

Diamanti E, Leverrier A (2015) Distributing secret keys with quan-
tum continuous variables: principle, security and implementations.
Entropy 17(9):6072-6092. https://doi.org/10.3390/E17096072

Gan Y, Wang B, Zhuang Y, Gao Y, Li Z, Zhang Q (2021) An asym-
metric group key agreement protocol based on attribute threshold
for internet of things. Trans Emerg Telecommun Technol 32(5).
https://doi.org/10.1002/ETT.4179

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/J.FUTURE.2023.10.023
https://doi.org/10.1016/J.FUTURE.2023.10.023
https://doi.org/10.1016/J.TCS.2014.09.018
https://doi.org/10.1016/J.TCS.2014.09.018
https://doi.org/10.1016/J.COMCOM.2021.10.011
https://doi.org/10.1016/J.COMCOM.2021.10.011
https://doi.org/10.1007/S11227-020-03561-Y
https://doi.org/10.1109/JIOT.2024.3384993
https://doi.org/10.1109/JIOT.2024.3384993
https://doi.org/10.1109/TVT.2023.3299705
https://doi.org/10.1155/2021/2942568
https://doi.org/10.1155/2021/2942568
https://doi.org/10.1007/S10207-024-00876-2
https://doi.org/10.3390/E17096072
https://doi.org/10.1002/ETT.4179

Journal of King Saud University Computer and Information Sciences

(2025) 37:57

Page170f17 57

Garcia JCP, Bracken A, Benslimane A (2024) Blockchain-based group
key management scheme for iot with anonymity of group mem-
bers. IEEE Trans Inf Forensics Secur 19:6709-6721. https://doi.
org/10.1109/TIFS.2024.3414663

Gebremichael T, Gidlund M, Hancke GP, Jennehag U (2022) Quantum-
safe group key establishment protocol from lattice trapdoors.
Sensors 22(11):4148. https://doi.org/10.3390/S22114148

Harn L, Hsu C, Xia Z (2021) Lightweight and flexible key distribu-
tion schemes for secure group communications. Wirel Networks
27(1):129-136. https://doi.org/10.1007/S11276-020-02449-2

Harn L, Hsu C, Xia Z (2022) General logic-operation-based lightweight
group-key distribution schemes for internet of vehicles. Veh
Commun 34:100457. https://doi.org/10.1016/J.VEHCOM.2022.
100457

Hougaard HB, Miyaji A (2022) Authenticated logarithmic-order super-
singular isogeny group key exchange. IntJ Inf Sec 21(2):207-221.
https://doi.org/10.1007/S10207-021-00549-4

Houzhen W, Wanying Q, Qin L, Chunwu Y, Zhidong S (2023)
Identity based group key distribution scheme. J Comput Res
Dev 60(10):2203-2217. https://doi.org/10.7544/issn1000-1239.
202330457

Kemmoe VY, Kwon Y, Hussain R, Cho S, Son J (2023) Leveraging
smart contracts for secure and asynchronous group key exchange
without trusted third party. IEEE Trans Dependable Secur Comput
20(4):3176-3193. https://doi.org/10.1109/TDSC.2022.3189977

Kumar V, Kumar R, Pandey SK (2020) A computationally efficient
centralized group key distribution protocol for secure multicast
communications based upon RSA public key cryptosystem. J King
Saud Univ Comput Inf Sci 32(9):1081-1094. https://doi.org/10.
1016/J.JKSUCL2017.12.014

Lee J, Oh J, Kwon DK, Kim M, Kim K, Park Y (2024) Blockchain-
enabled key aggregate searchable encryption scheme for per-
sonal health record sharing with multidelegation. IEEE Inter-
net Things J 11(10):17482—17494. https://doi.org/10.1109/JI0T.
2024.3357802

Li X, Wang Y, Vijayakumar P, He D, Kumar N, Ma J (2019)
Blockchain-based mutual-healing group key distribution scheme
in unmanned aerial vehicles ad-hoc network. IEEE Trans Veh
Technol 68(11):11309-11322. https://doi.org/10.1109/TVT.2019.
2943118

Lo H, Curty M, Tamaki K (2014) Secure quantum key distribution.
Nature Photon 8(149):595-604. https://doi.org/10.1038/nphoton.
2014.149

Luo Y, Mao H, Li Q, Chen N (2023) An information-theoretic secure
group authentication scheme for quantum key distribution net-
works. IEEE Trans Commun 71(9):5420-5431. https://doi.org/10.
1109/TCOMM.2023.3280561

Naresh VS, Allavarpu VVLD, Reddi S (2022) Provably secure
blockchain privacy-preserving smart contract centric dynamic
group key agreement for large WSN. J Supercomput 78(6):8708—
8732. https://doi.org/10.1007/S11227-021-04175-8

Pirandola S, Andersen UL, Banchi L, Berta M, Bunandar D, Colbeck R,
Englund D, Gehring T, Lupo C, Ottaviani C et al (2020) Advances
in quantum cryptography. Adv Opt Photon 12(4):1012-1236

Rahimi P, Chrysostomou C (2019) Improving the network lifetime
and performance of wireless sensor networks for iot applications
based on fuzzy logic. In: 15th International conference on dis-
tributed computing in sensor systems, DCOSS 2019, Santorini,
Greece, May 29-31, 2019. IEEE, Piscataway, NJ, USA, pp 667—
674. https://doi.org/10.1109/DCOSS.2019.00120

Rawat AS, Deshmukh M (2020) Tree and elliptic curve based effi-
cient and secure group key agreement protocol. J Inf Secur Appl
55:102599. https://doi.org/10.1016/J.JISA.2020.102599

Sudheeradh K, Jahnavi NN, Chine PN, Kasbekar GS (2024) Efficient
and secure group key management scheme based on factorial trees
for dynamic iot settings. IEEE Access 12:5659-5671. https://doi.
org/10.1109/ACCESS.2024.3350780

Taurshia A, Kathrine GJW, Souri A, Vinodh SE, Vimal S, Li K, Ilango
SS (2022) Software-defined network aided lightweight group key
management for resource-constrained internet of things devices.
Sustain Comput Informatics Syst 36:100807. https://doi.org/10.
1016/J.SUSCOM.2022.100807

Wang Z, Huo R, Wang S (2022a) A lightweight certificateless group
key agreement method without pairing based on blockchain for
smart grid. Future Internet 14(4):119. https://doi.org/10.3390/
FI114040119

Wang Z, Yang Z, Li F (2022b) A two rounds dynamic authenti-
cated group key agreement protocol based on LWE. J Syst Archit
133:102756. https://doi.org/10.1016/J.SYSARC.2022.102756

Xiong H, Wu Y, LuZ (2019) A survey of group key agreement protocols
with constant rounds. ACM Comput Surv 52(3):57-15732. https://
doi.org/10.1145/3318460

XuZ,Liang W, LiK, XuJ, Zomaya AY, Zhang J (2022) A time-sensitive
token-based anonymous authentication and dynamic group key
agreement scheme for industry 5.0. IEEE Trans Ind Informatics
18(10):7118-7127. https://doi.org/10.1109/T11.2021.3129631

Yang Z, Wang Z, Qiu F, Li F (2023) A group key agreement protocol
based on ECDH and short signature. J Inf Secur Appl 72:103388.
https://doi.org/10.1016/J.JISA.2022.103388

Yildiz H, Cenk M, Onur E (2021) PLGAKD: A puf-based lightweight
group authentication and key distribution protocol. IEEE Inter-
net Things J 8(7):5682-5696. https://doi.org/10.1109/JI0T.2020.
3032757

Zhang R, Zhang L, Choo KR, Chen T (2023a) Dynamic authen-
ticated asymmetric group key agreement with sender non-
repudiation and privacy for group-oriented applications. IEEE
Trans Dependable Secur Comput 20(1):492-505. https://doi.org/
10.1109/TDSC.2021.3138445

Zhang Z, Li X, Wang Y, Miao Y, Liu X, Weng J, Deng RH (2023b)
TAGKA: threshold authenticated group key agreement proto-
col against member disconnect for UANET. IEEE Trans Veh
Technol 72(11):14987-15001. https://doi.org/10.1109/TVT.2023.
3287487

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/TIFS.2024.3414663
https://doi.org/10.1109/TIFS.2024.3414663
https://doi.org/10.3390/S22114148
https://doi.org/10.1007/S11276-020-02449-2
https://doi.org/10.1016/J.VEHCOM.2022.100457
https://doi.org/10.1016/J.VEHCOM.2022.100457
https://doi.org/10.1007/S10207-021-00549-4
https://doi.org/10.7544/issn1000-1239.202330457
https://doi.org/10.7544/issn1000-1239.202330457
https://doi.org/10.1109/TDSC.2022.3189977
https://doi.org/10.1016/J.JKSUCI.2017.12.014
https://doi.org/10.1016/J.JKSUCI.2017.12.014
https://doi.org/10.1109/JIOT.2024.3357802
https://doi.org/10.1109/JIOT.2024.3357802
https://doi.org/10.1109/TVT.2019.2943118
https://doi.org/10.1109/TVT.2019.2943118
https://doi.org/10.1038/nphoton.2014.149
https://doi.org/10.1038/nphoton.2014.149
https://doi.org/10.1109/TCOMM.2023.3280561
https://doi.org/10.1109/TCOMM.2023.3280561
https://doi.org/10.1007/S11227-021-04175-8
https://doi.org/10.1109/DCOSS.2019.00120
https://doi.org/10.1016/J.JISA.2020.102599
https://doi.org/10.1109/ACCESS.2024.3350780
https://doi.org/10.1109/ACCESS.2024.3350780
https://doi.org/10.1016/J.SUSCOM.2022.100807
https://doi.org/10.1016/J.SUSCOM.2022.100807
https://doi.org/10.3390/FI14040119
https://doi.org/10.3390/FI14040119
https://doi.org/10.1016/J.SYSARC.2022.102756
https://doi.org/10.1145/3318460
https://doi.org/10.1145/3318460
https://doi.org/10.1109/TII.2021.3129631
https://doi.org/10.1016/J.JISA.2022.103388
https://doi.org/10.1109/JIOT.2020.3032757
https://doi.org/10.1109/JIOT.2020.3032757
https://doi.org/10.1109/TDSC.2021.3138445
https://doi.org/10.1109/TDSC.2021.3138445
https://doi.org/10.1109/TVT.2023.3287487
https://doi.org/10.1109/TVT.2023.3287487

	Asynchronous distribution scheme of group quantum keys based on max heap in classical network
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Max heap
	3.2 Blockchain
	3.3 Difficulty problem

	4 System model
	4.1 Notation
	4.2 System model
	4.3 Threat model

	5 Specific plan
	5.1 System initialization
	5.2 Key distribution phase
	5.3 Single user join
	5.4 Single user leave
	5.5 Multiple users join
	5.6 Multiple users leave

	6 Correctness and security analysis
	6.1 Correctness analysis
	6.2 Formal security analysis
	6.3 Non-formal security analysis

	7 Performance evaluation
	7.1 Storage cost
	7.2 Computation cost

	8 Conclusion
	References

