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Abstract—This research explores the quantum implementation of three crucial hashing algorithms, namely Secure Hash Algorithm
1 (SHA-1), Message Digest 5 (MD5), and Secure Hash Algorithm 256 (SHA-256), within the context of network security for future
networks. Quantum Cryptography, an emerging field, combines Cryptology and Cryptanalysis, presenting exciting prospects for secure
communication. Our study focuses on the design and implementation of SHA-1, MD5, and SHA-256 algorithms specifically tailored for
Quantum Computers. The primary objective is to investigate the time required to construct a hash and the bit rate at which a hash
value can be transmitted. A comprehensive analysis of these three quantum algorithms is performed, with a particular emphasis on
their performance in comparison to their classical counterparts. Experimental comparisons reveal that the execution time for gSHA-
1, gMD5 and qSHA-256 significantly exceeds that of classical parts. Notably, our findings indicate a dependency of the implemented
algorithms’ execution time on the processor’s speed. This research sheds light on the potential capabilities of quantum algorithms
in the realm of network security and contributes valuable insights to the ongoing discussions surrounding quantum cryptography. An
intriguing discovery arising from this study is the observation that quantum MD5 exhibits quicker execution times than quantum SHA-1
and quantum SHA-256. However, contrasting the classical scenario, where cSHA-1 demonstrates quicker execution than cMD5 and
cSHA-256, it becomes evident that classical and quantum performance across these algorithms diverges markedly. This highlights
a notable contrast in the behavior of these algorithms, thereby underscoring the potential dissimilarity rather than similarity between
classical and quantum performances. The results underscore the need for further exploration to optimize the performance of quantum
hashing algorithms, ensuring their viability in practical applications for future networks.

Index Terms—Quantum Cryptography, Hash Function, Quantum SHA-1, Quantum SHA-256, Quantum MD5, Hash Function, Digital
Certificate.
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1 INTRODUCTION

He process of hashing is important to cryptography.
Cryptography is a method for protecting messages and
data that are transmitted over the internet. We are aware
that the amount of data that is currently accessible over the
world wide web is increasing exponentially, and in order
to protect this kind of data, we will provide a fingerprint
as proof of its genuineness. The communication Digest
algorithm is one example of a method that can be used to
build a master fingerprint for the purpose of providing an
authentication code for a communication. (hash value) [28].
Various hashing algorithms exist, paralleling the diver-
sity of encryption methods, though some are more com-
monly utilized than others. Examples of prevalent hashing
algorithms encompass MD5, SHA-1, SHA-2.

The MDS5 algorithm utilises a 128-bit message as a mea-
suring tool for data integrity; the user provides this message
in order to generate a fingerprint message; the message’s
length can vary, but the most important thing is that it
be irreversible. The Father of this algorithm is Professor
Ronald L. Rivest of MIT [23]. This algorithm works the best
on devices that are either 32 bits or 16 bits. It is possible
to expand the compatibility of this algorithm to include
64 bit machines as well;, however, the architecture of this
type of scheme makes it likely that it will be fairly slow.

e Prodipto Das is with the Department of Computer Science, Assam Uni-
versity, Silchar, India PIN 788011.
E-mail: prodipto.das@aus.ac.in

(]

Manuscript received ..., 2023; revised ..., 2023.

The MD5 algorithm is an expansion of the MD4 method,
which was significantly faster due to the fact that it only had
three rounds, whereas the MD5 algorithm has four rounds,
making it significantly slower. The function is a one-way
hash that deals with the security features of the data.

The hash value is frequently referred to as the message
digest, and the data that need to be encoded as the message.
The SHA algorithm is used for data integrity, message
authentication, and digital certificates.The SHA algorithm
is developed by N.IS.T. and used with digital signature
applications, is a fingerprint that identifies the data [10].

Succeeding SHA-0, SHA-1 is the subsequent iteration of
the Secure Hash Algorithm series, yielding 160-bit outputs.
As the limitations of MD5 became apparent, SHA-1 saw an
increase in adoption. Notably, it received FIPS 140 compli-
ance status.

Rather than being a single algorithm, SHA-2 is an en-
semble of hashing methods, including SHA-224, SHA-256,
SHA-384, and SHA-512, with each variant characterized
by its output size. Though superior in terms of security
features compared to SHA-1, SHA-2 hasn’t achieved the
same widespread adoption.

Because of the increasing number of people who use
the internet on a daily basis, it is essential to ensure that
a complete file has been successfully downloaded via peer-
to-peer (P2P) servers or networks. Because there is already
a file with the same name, locating the original can be fairly
challenging; hence, the message digest plays a significant
part in the type of downloads in question. It is possible
for these kinds of files to be associated with a message



authentication code, which demonstrates that the source has
been verified. If this is not the case, the file types delay
the warning that a verified source could not be located, or
vice versa. Both algorithms operate according to the same
principle, although their structures are different [23] [20].

Since the message is shorter than 264 bits, Secure Hash
will be able to process it successfully. The result of SHA
is the message digest, and the length of these kinds of
communications is 160 bits. (32 bits extra than MD5).

The purpose of this study is to create three quantum al-
gorithms based on the classical components that are already
in existence. This will be accomplished by building a variety
of quantum circuits and analysing their performance to
determine whether or not the results are comparable to the
classical components or whether or not they produce new
results. Because genuine chips may be obtained without
cost using the IBMQ platform, which makes use of NISQ
technology, the experimental study that needs to be done
on the proposed work is carried out using that platform.

1.1 SECURE HASHING ALGORITHM 1

The SHA algorithm is a cryptographic hash method used in
digital certificates and for ensuring data integrity. It acts like
a unique fingerprint for data and was crafted by N.IS.T.
as a U.S. Federal Information Processing Standard (FIPS).
Its primary purpose is digital signature applications. [22].
SHA-1 or Secure Hash Algorithm 1 is a cryptographic hash
function which takes an input and produces a 160-bit (20-
byte) hash value known as a message digest. It is most
often used to verify a file has been unaltered. SHA-1 is now
considered insecure since 2005 [24].

Algorithm 1 SHA-1 [26]

1: procedure SHA-1(input string) > Take the input string

2: Padding:> Add padding so the final message length
is a 64-bit multiple of 512.

3: Appending length:
appended

4: Divide the Input into 512-bit blocks:> Partition the
input into blocks of 512 bits each

> Calculate the length to be

5: Initialize chaining variables: > Set up 5 chaining
variables, each 32 bits, totaling 160 bits.
6: Process Blocks:

e Duplicate the chaining variables
e Segment the 512 bits into 16 sub-blocks
o Execute 4 rounds, with each having 20 steps.

7: end procedure

1.2 MESSAGE DIGEST 5 ALGORITHM

The efficiency of this algorithm varies with the size of the
message. Though it necessitates an 8-bit message length and
works rapidly, it’s also compatible with extensive messages.
Step 1: Padding bits and Append Length

It’s essential to pad bits starting with "1” and ending with "0’
until the length is congruent to 448 mod 512. Subsequently,
a 64-bit integer representing the original message’s bit
length is added. The resultant message, after padding, has

a length of 512N, with N being an integer.

Step 2: Divide the input into 512-bit blocks

The padded message gets divided into N continuous 512-bit
blocks, denoted as m1, m2, ... mn.

Step 3: Initialize chaining variables

Four 32-bit numbers are initialized as chaining variables,
symbolized as (A,B,C,D) in the hash:

A =01172d 43

B =89 ABCDEF

C =FE DC BA 98

D=76543210

Step 4: Process blocks

The contents of the buffers (A, B, C, and D) are combined
with input words through four auxiliary functions (W, X,
Y, Z). This process encompasses four rounds, with each
having 16 fundamental operations. The processing block
P interacts with the buffers (A, B, C, and D), leveraging
message word M[i] and constant K[i]. "< << s” symbolizes
a binary left shift by s bits. Four IRF (info related functions)
accept three 32-bit word inputs, yielding a 32-bit word
output. They employ logical operators like AND, OR, NOT,
and XOR:

Q(A,S,D)=ASvnot (A)F

W (A, S, D) = AS v S not (F)

E (A, S, D)= A xor S xor F

R (A, S, D) =S xor (A v not (F))

Every bit of A, S, and D is totalitarian and helps to balance
each bit of Q (A, S, D). Functions (A, S, and D) labeled as P
operate in “bitwise parallel” to ensure that if similar bits of
D, E, and F are autarchic and balanced, each bit of W (A,
S,D),E(A,S, D), and R (A, S, D) will be totalitarian and
balance.

Step 5: Hashed Output

MDS5 undergoes four rounds, producing a 128-bit hash.

1.3 SECURE HASHING ALGORITHM 256

The SHA-256 is a variant of the SHA-2 (Secure Hash Algo-
rithm 2) series, developed by the National Security Agency
in 2001 to replace SHA-1. It is a patented cryptographic
function delivering a 256-bit output. While MD5 yields 128-
bit hash values, SHA-2 offers versions generating various
hash lengths, with SHA-256 being the most prevalent, pro-
ducing 256-bit results. Notably, compared to MD5, SHA-
2 offers enhanced security, particularly regarding collision
resistance [1]

1.4 PARAMETERS USED FOR MD5 AND SHA
ALGORITHM

A. Parameters of MD5.

Below equation shows a single MD5 operation.

1)Default Parameters

a=b + ((a + Process P (b, ¢, d) + M[i] + t[k]) ij; s)

Here:- a, b, ¢, d = are Chaining variables

Process P=A non linear operation

M[i] =For M[q x 16 + i ], which is the ith 32-bit word in
the qth 512-bit block of the message t[k]=a constant jjjs
=circular-left shift by s bits [2].

2) Actual Parameters.

Key Length: 64 bits, 128 bits, 256 bits , 512 bits



Algorithm 2 MD5 [23]

Algorithm 3 SHA-256 [1]

L M=({Y0Y1l,.......... ,Yn—1) > Message
to hash after padding. Each Yi is a 32-bit word and N is
a multiple of 16 MD5 (M)

2: (AB,CD) <« (0x67452301, Oxefab89 , 0x98badcfe ,
0x10325476 ) > initialize (A,B,C,D)

3: fori + 0to1/16 — 1 do

4: X; < Y16,y > Copy block I to X

5: for j <+ Oto 15 do

6: W; +— Xo(j) > Copy X to W

7: for z + 0to 63 do

8: (Q4,Q3,Q2,Q1) — (A,D,C,B) > initialize
Q

9: Round0(Q , W) Round1(Q , W) Round2(Q ,
W) Round3(Q, W) > Rounds0,1,2and 3

10: (A,B,C, D) + (Q60 + Q4,63 + Q1,Q62 +
Q1,Q61+ Q3)

11: end for

12: end for

13: end for

Require: n >0V z #0
Ensure: y = x"

14: y<+1

15: if n < 0 then

16: X+ 1/z

17: N+ —n

18: else

19: X<+

20: N<+n

21: end if

22: while N # 0 do

23: if N is even then

24: X+~ XxX
25: N < N/2
26: else[ N is odd]
27 y<—yxX
28: N+ N-1
29: end if

30: end while

Block Size: 128 bits

Cryptanalysis: Resistance Strong against Digital Certificate
and very fast on 32 bit machines Security Secure

Rounds: 4

Steps: 16

B. Parameters of SHA.

Below equation shows a single SHA operation.

1) Default Parameters.

abcde(e+process p_s5(a)+WI[tl+k[t]),a,s30(b), ¢, d

Here:- a, b, ¢, d, e =chaining variables

Process p =status of logical operations st =jjj

WI[t] =derived other 32 bits bytes

K[t]=five additives constants are defined [2] [3].

2) Actual Parameters.

Key Length: 128 bits

Block Size: 160 bits

Cryptanalysis: Resistance Strong against Digital Certificate.
Rounds: 4

Total Steps: 20

1: procedure SHA-256(input string)
string of varying length

2: Padding;: > Add Padding to the end
of the genuine message so that the length is 64 bits less
than the exact multiple of multiple of 512.

3: Appending length: > In this step the
excluding length is calculated and appended at the end
of the original input text

4: Divide the Input into 512-bit blocks: > In this step
Input is divided into 512 bit blocks

5: Initialize chaining variables: > In this Step
8 chaining variables are initialized. 8 chaining variables
of 32 bit each=160 bit of total And 64 additive constants
are also initialized.

6:  Process Blocks:

> Take the input

e Duplicate the chaining variables
¢ Segment the 512 bits into 16 smaller blocks
o Execute the sub-block operations over 64 cycles.

7: end procedure

1.5 Literature Review

After a decade of exhaustive research on quantum com-
puting, it has become a reality, and researchers and indus-
try experts are giving extensive focus to it. As reported
by “Quantum Supremacy” [2], quantum computers easily
solve problems in exponentially less time. On the other
hand, quantum computers can expose the privacy and
security of encrypted data for real life information and
communication systems. Therefore, exploration of quantum
computing and computers is advancing rapidly [18].

In 2017, IBM Quantum Experience (IBMQ), the quantum
computing research initiative of IBM, first launched a 5 qubit
quantum computer in cloud service (QISKit, IBM, 2018).
IBM QISKit is a software platform developed by IBM that
accelerates research on QC. The dreams of Richard Feynman
and Toffoli is becoming a reality [5]; [27]. Superposition,
interference, and entanglement are exciting and spooky
phenomena.

A great number of works have been documented in the
most recent advancements in post-quantum cryptography
(PQC). A variety of research projects, such as PQCrypto,
SAFEcrypto, CryptoMathCREST, and PROMETHEUS, in
addition to various standardisation initiatives, have been
addressing the topic of post-quantum cryptography, which
is currently a popular research topic. These initiatives have
been laid out at a variety of different levels. Above all else,
the National Institute of Standards and Technology (NIST)
of the United States Government is working on developing
post-quantum public-key crypto systems. To date, there
have been two phases of this project, and it is anticipated
that the first standard draughts will be delivered between
the years 2022 and 2024 [4].

Despite the prevalence of quantum computers, tradi-
tional cryptographic algorithms such as codes, hashes, lat-
tices, and multivariate techniques remain secure, there were
challenges in cryptography in the 1990s decade brought
about by the invention of the Shor and Grover algorithm.



These challenges allowed popular algorithms such as RSA
(1978), Diffie-Hellman (2002), and Elliptical curve (1985) to
be cracked [17].

A network platform that is immune to quantum attacks
is essential at this point in time. In this vein of thought,
other than the work being undertaken by NIST, the Internet
Engineering Task Force (IETF) has published a Request for
Comment (RFC) that can give a modification for quantum
resistance to the Internet Key Exchange that is extensively
used (IKE). In a similar vein, both the International Orga-
nization for Standardization (ISO) and the United States
Federal Information Processing Standards (FIPS) have de-
veloped programs that check to see if cryptographic mod-
ules are used in a network in a way that is accurate and
trustworthy. The International Organization for Standard-
ization is participating in the Horizon 2020 project known as
PQCRYPTO (Post-Quantum Cryptography for Long-Term
Security). The Federal Information Processing Standards
Organization (FIPS) has published a draught road map for
post-quantum hardware/software module evaluations [30].

PQC algorithms are currently the primary area of con-
centration for research groups working in the field of quan-
tum cryptography. The post-quantum algorithms use super
singular isomorphy, ring learning with errors, and coding
as its quantum-resistant cryptographic primitives [3]

In a research study by [8], the performance of three
different hash function algorithms — SHA-1, SHA-256, and
SHA-512 — was examined on an Intel Core Processor 2nd
Generation. The goal was to figure out which algorithm
works faster when applied to specific tasks.

Another investigation, discussed in [21], delved into
the security of VSAT satellite communications using the
MDS5 algorithm. Additionally, a simulation of VSAT satellite
communication was carried out on a regular computer using
the Montogomery algorithm.

In the realm of [13], the focus was on developing a quan-
tum computer simulator that mimics the behavior of a real
quantum computer. This simulator is skilled at generating
data that mimics quantum-level processes.

Advancements in quantum cryptography spurred an
assessment of various cryptographic systems to understand
their resistance against quantum attacks, as explained in [3].

For newcomers in the field of quantum mechanics, [7]
introduced an innovative way to learn about quantum ma-
chines and their operations.

Exploring the role of a single photon particle in quan-
tum cryptography, [9] highlighted how precisely controlled
photon emissions from a laser can be used for secure com-
munication.

In a retrospective analysis, [25] looked back at the state
of quantum cryptography in 2009 and its impact on network
security.

The use of photon particles and Shor’s algorithm for
secure cryptographic techniques was discussed in [16].

An examination of the potential of quantum cryptogra-
phy to replace classical cryptography in the future has been
discussed in [11].

Comparing Classical and Quantum Cryptography tech-
niques using various algorithms was the main focus of [15].

The breakthrough algorithm designed by Shor, which
exposes vulnerabilities in classical cryptography, was dis-
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cussed in [6], along with protocols for secure communica-
tion using single photons.

[19] delved into the security requirements of communi-
cation systems from a quantum cryptography perspective.

In the book [12], Chapter 4 explored how the MD5
algorithm works and compared it to MDA4.

Lastly, [14] covered essential hash functions such as
MD-5, SHA-1, SHA-256, SHA-512, and SHA-384, offering
a comprehensive overview of their features and roles in

cryptography.

1.6 Contributions

This paper proposes the method of designing various quan-
tum circuits by using available quantum gates and using
these circuits to develop quantum versions of three classical
algorithms. This paper discusses the detailed framework for
designing quantum SHA-1, quantum MD5, and quantum
SHA-256 algorithms. The algorithms for quantum versions
of SHA-1, SHA-256, and MD5 are presented. Further, this
paper presents the complete steps to designing various
quantum circuits, and these circuits can be further used for
designing any classical algorithm for quantum computers.

1.7 Organization of Paper

In this research work, quantum versions of the three clas-
sical algorithms are implemented to compare their perfor-
mance. The algorithms are executed on the IBMQ quantum
experience QISKit software platform. The proposed quan-
tum circuits are implemented using a cloud service in the
actual chip ibmq_16_melbourne, ibmq_belem, and ibmqx4
quantum computers (QISKit, IBM, 2018).
The rest of the paper is organized as follows.

2 IMPLEMENTATION

The reason for selecting SHA-1, SHA-256, and MD5 algo-
rithms for this research work is that SHA-1, SHA-256, and
MD5 algorithms are probably the most well-known and
widely used hash functions. Since 2005, SHA-1 and MD5
algorithms have not been considered secure against well-
funded opponents. The target of this work is to find any
changes in quantum versions over the classical algorithms.

For the sake of working with quantum computers on
the level of individual circuits, pulses, and algorithms, this
article makes use of the open-source software development
kit known as Qiskit. It offers tools for the creation and
manipulation of quantum programmes, as well as the exe-
cution of these programmes on prototype quantum devices
on IBM’s Quantum Experience or on simulators running
on a local computer. In order to construct the quantum
SHA-1 algorithm on our local computer, we make use of
IBM’s QASM simulator. For scientific computing, we make
use of Anaconda, and we use Jupyter in order to interface
with Qiskit. This method takes as input a variety of various
combinations of text, numerals, and special characters, each
of which can be any length. The goal is to determine how
much of a discrepancy in output time can be attributed
to differences in the length of the inputs. The same input
is carried out in a number of different ways so that the
difference in execution time can be observed.



2.1 Implementation of Quantum Circuits
2.1.1

When performing an XOR operation, the result will always
be zero if there are any two bits that are identical. If not, the
answer is yes. We are able to create the XOR circuit by using
the CNOT gate.

A C-not gate is utilised in the construction of the quan-
tum XOR logic gate. The operation of a C-not gate is
identical to the operation of a traditional XOR gate in every
respect. Therefore, in order to create a quantum XOR gate,
all we had to do was first put our input layer, which differs
depending on the input of the user, and then put a C-not
on the layer that came after it, which would result in XOR
outputs depending on the input. This was all there was to
it.

Implementation of Quantum—-XOR Circuit

Therefore, if the inputs are the same, such as 00 or 11, the
circuit will create the output 0, and if the inputs are not the
same, such as 01 or 10, the circuit will produce the output 1.
When performing an XOR operation, the result will always
be zero if there are any two bits that are identical. If not, the
answer is yes. We are able to create the XOR circuit by using
the CNOT gate.

Algorithm 4 Quantum—-XOR Algorithm

1: procedure QUANTUM-XOR(a,b) > Two inputs a and b
2: gc + QuantumCircuit(2,1)

3 qc.reset(range(2))

4: if a == 1 then

5: ge.x(0)

6 else

7 if b == 1 then

8 ge.xz(1)

9: end if
10: end if
11: ge.cx(0,1)
12 ge.measure(1,0)
13:  backend + Aer.get_backend('aer_simulator’)
14: job <« backend.run(qc,shots < 1,memory <

True)

15: output <— job.result().get_memory()[0]
16: return gc, output > —

17: end procedure

In the Circuit diagram, first layer is an input layer.

Fig. 1: Circuit diagram of Q-XOR

21.2

In the AND operation, if both bits are 1 only, then the output
is one. Otherwise, it is 0. Using the CCNOT gate, we can
design the AND circuit.

Implementation of Quantum—-AND Circuit

5

The quantum AND is designed with the help of three
qubits and one classical bit. The first layer will be our input
layer, followed by a CNOT gate in the next layer. The input
layer will use a not gate depending on the input, and a reset
gate will be used in the 3rd qubit, g2, which will reset its
value after each round. The circuit is designed in such a
way that when the output is 11, it will only result in 1 as
output; otherwise, it will produce 0 as output for another
combination of inputs.

Algorithm 5 Quantum-AND Algorithm

1: procedure QUANTUM—-AND(a, b) > Two inputs a and b
2: gc < QuantumCircuit(3,1)

3 qc.reset(range(3))

4: if a == 1 then

5: ge.z(0)

6: else

7 if b == 1 then

8 ge.xz(1)

9: end if
10: end if
11: ge.ccx(0,1,2)
12: ge.measure(2,0)
13: backend <+ Aer.get_backend('aer_simulator’)

14: job <« backend.run(qc, shots < 1,memory <
True)

15 output + job.result().get_memory()[0]

16: return gc, output > Return a&&b

17: end procedure

Circuit Diagram:
In the following diagram the first layer is an input layer.

Fig. 2: Circuit diagram of Q-AND

2.1.3 Implementation of Quantum—-NOT Circuit

The NOT operation simply alters the qubit, i.e., if we input
1, then the output is 0, and vice versa. Using the concept
of the CCNOT gate and some helping qubits, we can design
the NOT gate. A total of 3 qubits are necessary for NOT gate
implementation.

For attaining the properties of quantum NOT, the use of
the given NOT gate is sufficient. But we have designed our
own quantum NOT gate, which consists of 3 qubits and 1
classical bit. The qubits q1 and g2 are just helping qubits,
while the qubit q0 will intake the input given by a user. So,
by arranging the qubits as above, when the input is 0, the
output will be 1, and when the input is 1, the output will be
0.

Circuit diagram: In the following diagram, the first layer
is the helping layer, which is fixed. Here, we have used the



Algorithm 6 Quantum-NOT Algorithm

Algorithm 7 Quantum-OR Algorithm

1: procedure QUANTUM-NOT(a) > Input a
2: gc + QuantumClircuit(3,1)

3 qc.reset(range(3))

4: ge.xz(1)

5: gc.xz(2)

6 if a == 1 then

7 ge.z(0)

8 end if

9: ge.ccx(0,1,2)
10: ge.measure(2,0)
11: backend <+ Aer.get_backend('aer_simulator’)
12: job <« backend.run(qc, shots < 1,memory <

True)

13:  output + job.result().get_memory()[0]
14: return gc, output > Return la

15: end procedure

identity gate, which is actually the absence of a gate. It does
not impact the output result. The second layer is our input
layer, where the first qubit will hold the input bit.

Fig. 3: Circuit diagram of Q-NOT

2.1.4 Implementation of Quantum—OR Circuit

In the OR operation, the output is zero only when both input
bits are 0. Otherwise, for all combinations of input bits, the
output is always 1. Using the CCNOT gate, we can design
the OR gate.

The quantum OR gate is designed with the help of three
qubits and one classical bit. The first layer is the same as
that of quantum AND. But there is an inclusion of a helping
layer in quantum OR, which consists of two not gates in
qubits q0 and q1, and an identity gate in q2, which will help
convert the inputs into our desired outputs. The output of
this layer will pass through a cc-not gate and a c-not gate.
The result of designing such a gate will be that when the
inputs have at least one 1, the output will always be 1, and
only when the input is 00, the output will be 0.

The quantum OR circuit is shown in Fig. 4, where the
first layer is a helping layer and the second layer is our
output layer. Finally, after applying the CCNOT, we are just
inverting the output value using the Pauli-X gate.

1: procedure QUANTUM-AND(a, b) > Two inputs a and b
2: gc + QuantumClircuit(3,1)

3: qc.reset(range(3))

4: gc.z(0)

5: ge.xz(1)

6: if a == 1 then

7: ge.z(0)

8: else

9: if b == 1 then
10: ge.xz(1)
11: end if
12: end if
13: ge.ccx(0,1,2)
14: qe.x(2)
15 gc.measure(2,0)
16:  backend + Aer.get_backend('aer_simulator’)
17: job <« backend.run(gc,shots < 1,memory <

True)

18: output <— job.result().get_memory()[0]
19: return gc, output > Return al|||b

20: end procedure

Fig. 4: Circuit diagram of g-OR

2.1.5

To implement the adder, we have used the concept of a
full adder. The Full Adder is the adder that adds three
inputs and produces two outputs. The first two inputs are
A and B, and the third input is an input carried as C-IN.
The output carry is designated as C-OUT, and the normal
output is designated as S, which is SUM. A full adder logic
is designed in such a manner that it can take eight inputs
together to create a byte-wide adder and cascade the carry
bit from one adder to another.

To execute quantum addition, two circuits have been
devised, the Sum Circuit and the Carry Circuit.

The Carry Circuit is shown in Fig. 5, where the first layer
is the input layer. The q[0] qubit will hold the carry bit, and
q[1] and q[2] will hold the input bits. q[3] is a helping qubit.

Implementation of Quantum-Addition Circuit

Fig. 5: Circuit diagram of Carry

On the identical inputs, the carry circuit will compute
the carry and the sum circuit will compute the sum.

Circuit Design: In the following diagram, q[0] holds the
carry bit, q[1] and q[4] will have the same input bits, and
q[2] and q[5] will hold the same input bits.

One of the more difficult circuits to construct was the
quantum addition circuit. It has six qubits and two classical



Algorithm 8 Quantum-CARRY Algorithm

Algorithm 9 Quantum-SUM Algorithm

1: procedure QUANTUM-CARRY(a, b, output) > Three

inputs a, b and output

2: gc + QuantumClircuit(4,1)
3: qc.reset(range(4))
4: if output == 0 then
5: ifa ==1and b == 1 then
6: ge.x(1)
7: qc.x(2)
8: else if a == 1 and b == 0 then
9: ge.xz(1)
10: else if a == 0 and b == 1 then
11: ge.x(2)
12: end if
13: else if output == 1 then
14: if a ==1and b == 1 then
15: ge.z(0)
16: ge.xz(1)
17: qec.x(2)
18: else if a == 1 and b == 0 then
19: ge.z(0)
20: ge.xz(1)
21: else if a == 0 and b == 1 then
22: ge.z(0)
23: ge.x(2)
24: else if a == 0 and b == 0 then
25: ge.z(0)
26: end if
27: end if
28: gc.barrier()
29: ge.ccx(1,2,3)
30: ge.cx(1,2)
31: gc.ccx(0,2,3)
32: ge.barrier()
33: ge.measure(3,0)
34: backend <+ Aer.get_backend('aer_simulator’)
35: job <« backend.run(gc, shots < 1,memory <
True)
36:  output < job.result().get_memory()[0]
37: return gc, output > Return CARRY

38: end procedure

bits. The q0 is used to hold the addition’s carry bits, while
the designs of ql and q2 are identical to those of g4 and g5.
The carry is calculated using the qubits ql1, q2, and g3, as
well as two cc-not gates and one c-not gate. And the sum
is accomplished with the assistance of qubits q4 and g5, as
well as two c-not gates.

The sum circuit is shown in Fig. 6, where the first layer
is the input layer. The q[0] qubit will hold the carry bit
generated from the carry circuit, and q[1], q[2] will hold
the input bits to compute the sum.

1: procedure QUANTUM-SUM(a, b, carry) > Three inputs
a, b and carry

2 gc + QuantumClircuit(3,1)
3 qc.reset(range(3))
4 if carry == 0 then
5: if a ==1and b == 1 then
6: ge.xz(1)
7 qc.x(2)
8 else if a == 1 and b == 0 then
9: ge.xz(1)
10: else if ¢ == 0 and b == 1 then
11: ge.x(2)
12: end if
13: else if carry == 1 then
14: ifa ==1and b == 1 then
15: ge.z(0)
16: ge.xz(1)
17: qe.x(2)
18: else if a == 1 and b == 0 then
19: ge.z(0)
20: ge.xz(1)
21: else if ¢ == 0 and b == 1 then
22: ge.z(0)
23: ge.x(2)
24: else if a == 0 and b == 0 then
25: ge.z(0)
26 end if
27: end if
28: ge.cx(1,2)
29: ge.cx(0,2)
30: qe.barrier()
31 ge.measure(2,0)
32: backend <+ Aer.get_backend('aer_simulator’)
33: job <« backend.run(qc, shots < 1,memory <+
True)
34:  output < job.result().get_memory()[0]
35: return gc, output > Return SUM

36: end procedure

Fig. 6: Circuit diagram of Sum

Modified Quantum Adder circuit is created by joining the
Sum and Carry circuits together.



Algorithm 10 Quantum-ADDER Algorithm

1: procedure QUANTUM-ADDER(a, b, output) > Three
inputs a, b and output
2: gc + QuantumClircuit(6,2)
3: qc.reset(range(6))
4: if output == 0 then
5: if a ==1and b == 1 then
6: ge.x(1)
7: qc.x(2)
8: gec.x(4)
9: ge.x(5)
10: else if ¢ == 1 and b == 0 then
11: ge.xz(1)
12: ge.x(4)
13: else if a == 0 and b == 1 then
14: ge.xz(2)
15: ge.x(5)
16: end if
17: else if output == 1 then
18: if a ==1and b == 1 then
19: ge.z(0)
20: ge.xz(1)
Algorithm 11 Quantum-ADDER Continue
21: ge.x(2)
22: ge.x(4)
23: ge.x(5)
24: else if a == 1 and b == 0 then
25: ge.z(0)
26: ge.xz(1)
27: ge.x(4)
28: else if a == 0 and b == 1 then
29: ge.z(0)
30: ge.x(2)
31: ge.x(5)
32: else if a == 0 and b == 0 then
33: ge.z(0)
34: end if
35: end if
36: ge.barrier()
37: ge.ccx(1,2,3)
38: ge.cx(1,2)
39: gc.ccx(0,2,3)
40: ge.barrier()
41: ge.cx(4,5)
42: gc.cx(0,5)
43: ge.barrier()
44:  gc.measure(3,0)
45:  gc.measure(b,1)
46: backend + Aer.get_backend(’aer_simulator’)
47: job <« backend.run(gc,shots < 1,memory <
True)
48:  output < job.result().get_memory()[0]
49: add = output[0 : 1]
50: output = output|l : 2]
51: return gc, output > Return

52: end procedure

Circuit Design: In the following diagram, q[0] holds the
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carry bit, q[1] and q[4] will have the same input bits, and
q[2] and q[5] will hold the same input bits.

Fig. 7: Circuit diagram of modified q-Adder

2.1.6 Quantum Mod Algorithm

When we are trying to find mod 2", then using the AND
operation, we can easily compute the remainder. Suppose
we want to find X mod 2". For this, we need to follow the
following procedure:

1) Find 2™ -1
2) Thendo X AND 2™ — 1

This method work only if we are finding the mod 2.

2.2 Implementation of Quantum SHA-1 Algorithm

The input taken for this algorithm consists of different
combinations of text, numbers, and special characters of
different lengths. The motive is to check the difference
in output time due to variations in the length of inputs.
The same input is executed multiple times to visualise the
difference in execution time.



Algorithm 12 Quantum-SHA-1 Algorithm

Algorithm 13 Quantum SHA-1 Continue

1: procedure QUANTUM-SHA-1(InputMessage)
kind of string of any length
2: Take the input string and convert into its correspond-
ing equivalent binary code.
Add Padding
ap < dig + 1
while len(ap)%512 # 448 do
Ap <+ Ap+0
end while
Count the total length of the message and convert it
into binary equivalent.
7: ap_length < msg_length mod 254
8: tot_length < ap + ap_length
9: n < 512
10:  Chunks — [tot_lengthli : i+
n] foriinrange(0, len(tot_length), n)]
Initialize 5 chaining variables and 4 additive constants.

> Any

11: cv0 +’01100111010001010010001100000001'20320920989

12: cvl +'11101111110011011010101110001001’

13: cv2 +'10011000101110101101110011111110’

14: cv3 +'00010000001100100101010001110110’

15: cv4 +'11000011110100101110000111110000

16: f1+ 0

17: f2 4+ cvl

18: f3+ cv2

19: f4+ cv3

20: f5+ cvd

21: ck0 +’ 01011010100000100111100110011001'[0 <
t <19

22: ckl +’ 01101110110110011110101110100001'[20 <
t < 39]

23: ck2 «' 10001111000110111011110011011100'[40 <
t < 59]

24: ck3 «+' 11001010011000101100000111010110°[60 <
t <79

25: for I = 0 to len(Chunks) do

26: n 4 32

27 ch < chunksll]

28: for ! = 0to len(ch,n) do

29: chu = chli : i+ n]

30: end for

31: for ¢ = 16 to 80 do

32: MIt] «+ ROTL1(M[t — 3] @ M[t —8 @
Mt —14] @ M][t — 16])

33: end for

34: fort = 0 to 80 do

35: if ¢ < 19 then

36: F + (B&&C)||~(B&&D)

37: else if (t > 19 && ¢ < 39) then

38: F—~BQCQD

39: else if (t > 39 && t < 59) then

40: F + (B&&C)||(B&&D)||(C&& D)

else if (t > 59 && t < 79) then

42: F+— (BQCQD)

43: end if

44: Addl + (F + cvd)mod23?

45: Shfts < ROTL5(cv0)

46: Add2 + (Addl + Shft5)mod23?

47: cvl < cv0

48: Add3 «+ (Add2 + M[t])mod23?

49: Add4 + (Add3 + K t])mod23?

50: cv0  Add4

51: Shft30 < ROTL30(cvl)

52: cvd  cv3

53: cvd — cv2

54: cv2 + Shft30endfor(0, 80)

55: end for

56 cv0 + (cv0 + f1)mod23?

57 cvl + (cvl + f2)mod23?

58: cv2 + (cv3 + £3)mod23?

59: cv3 + (cvd + f4)mod23?

60: cvd = (cvb + f5)mod23?

61: end for

62: f1+ 0

63: 2+ cvl

64: 3+ cv2

65: f4 <+ cv3

66: f5+ cvd

67: return output
68: end procedure

> Return 160 Bit Hash

The algorithm described above is the same as the classi-
cal SHA1. The only difference is that instead of performing
simple classical addition, XOR, AND, NOT, OR, and mod,
we used quantum addition, XOR, AND, NOT, OR, and mod
operations.
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The implementation of Quantum MD?5 is done with the help
of IBM Quantum and Qiskit. IBM Quantum is a platform
that allows users to access quantum computers and build
quantum circuits. Qiskit is an SDK tool that can be used
in Python to implement quantum circuits. With the help of

Implementation of Quantum MD-5 Algorithm



these two, the required quantum circuits were designed and
implemented.

Algorithm 14 Quantum-MD5 Algorithm

1: procedure QUANTUM-MD5(InputM essage)
kind of string of any length
2: Take the input string and convert into its correspond-
ing equivalent binary code.
ap + dig + 1
while len(ap) %512 # 448 do
Ap <+ Ap+0
end while
Count the total length of the message and convert it
into binary equivalent.
ap_length < msg_length mod 254
9: tot_length < ap + ap_length
10: n < 512

> Any

> Add Padding

*

11:  Chunks — [tot_lengthl[i : i+
n] foriinrange(0, len(tot_length), n)]

12: Initialize 4 chaining variables and 64 additive con-
stants.

13: cv0 +'01100111010001010010001100000001’
14: cvl +'11101111110011011010101110001001’
15: cv2 +'10011000101110101101110011111110’
16: cv3 +' 00010000001100100101010001110110’
17: f1+ 0
18: f2+ cvl
19: f3+ cv2
20: f4 <+ cv3

21 K+ ]

22: for I = 0 to len(Chunks) do

23: n 4 32

24: ch < chunksll]

25: for ! = 0to len(ch,n) do

26: chu = chli : i+ n]

27: end for

28: for t = 16 to 80 do

29: MIt] «+ ROTL1(M[t —3] @ M[t —8 @
Mt —14] @ M][t — 16])

30: end for

31: fort = 0 to 80 do

32: if t <19 then

33: F + (B&&C)||-(B&&D)

34: else if (t > 19 && t < 39) then

35: F+~BQCWD

36: else if (t > 39 && t < 59) then

37: F + (B&&C)||(B&&D)||(C&& D)

38: else if (t > 59 && t < 79) then

39: F+—(BQCYD)

40: end if

41: Addl + (F + cvd)mod23?

42: Shfts <+ ROTL5(cv0)

43: Add2 <+ (Addl + Shft5)mod23?

44: cvl < cv0

10

Algorithm 15 Quantum MD5 Continue

45: Add3 + (Add2 + M [t])mod23?
46: Add4 + (Add3 + K[t])mod23?
47: cv0 < Add4

48: Shft30 «+ ROTL30(cvl)

49: cvd + cv3

50: cv3  cv2

51: cv2 < Shft30endfor(0, 80)
52: end for

53: cv0 + (cv0 + f1)mod23?

54: cvl + (cvl + f2)mod23?

55: cv2 + (cv3 + f3)mod23?

56: cv3 + (cvd + f4)mod23?

57: cvd = (cvb + f5)mod23?

58: end for

59: fl+ cv0

60: f2+ cvl

61: f3+ cv2

62: f4+ cv3

63: f5 < cvd

64: return output
65: end procedure

> Return 128 Bit Hash

The aim of the work is to implement the MD5 algorithm
in a quantum computer, report the resulting hash value
along with the execution time after executing on multiple
different processors, and compare the execution time with
qSHA-1 and qSHA-256 .

The aforementioned algorithm is the same as standard
MD?5. The sole difference is that instead of performing sim-
ple classical addition, XOR, AND, NOT, and OR operations,
quantum addition, Q-XOR, Q-AND, Q-NOT, and Q-OR
operations are used.

Quantum MD-5 Algorithm Steps

Steps to implement MD5 algorithm in quantum computer
are:

Step 1: Padding

Before starting the MD 5 algorithm, padding of the input
message is needed. The input message needs to be a multi-
ple of 512. If the message is not a multiple of 512 then we
calculate how many bits are missing.

Case I

If the missing bits are more than 64 bits from it being
a multiple of 512 then we pad the message by adding 1
followed by 0s until the message is a 64 bit less than a
multiple of 512. In the remaining 64 bits we append the
original size of the message block. This is done to increase
the complexity of the input message block.

Case II:

If the missing bits is less than 64 bits from it being a multiple
of 512 then we pad the message by 1 followed by 0Os until
the message is 64 bits less than the next multiple of 512.
(Eg: if message is of size 450 bits than we will pad it with 1
followed by Os till its of the size 960 so it can be exactly 64
bits less than the next multiple of 512 that being 1024 in this
case.)

Step 2: Chunking up of the Padded Message

1) After the padding is done the message block is
divided into chunks each of size 512 bits.



2) Each 512 bits chunk is then divided into 16 sub-
block each of size 32 bits.

3) In this algorithm we save those chunk values in an
array M.

Step 3: Initialize buffer, shift values and constant values
The MD 5 algorithm uses 4 chaining variables or buffers
each of size 32 bits each. These buffers have hexadecimal
values. These buffers are:

cv1:0x67452301(&#39;011001110100010100100011000

00001&#39;)

cv2:0xefcdab89 (&#39;111011111100110110101011100

01001&#39;)

cv3:0x98badcfe (&#39;100110001011101011011100111

11110&#39;)

cv4:0x10325476 (&#39;000100000011001001010100011

10110&#39;)

and also save these values in final cvl = cvl final_cv2
= ¢v2, final_cv3 = ¢v3 and final_cv4 = cv4 for later use.
We initialize these buffer values in binary for our easy of
execution later. Similar to the chaining variables we also
initialize the number of bits that needs to be circular left
shifted for every round in an array.

shift = [7,12,17,22,7,12,17,22,7,12, 1
22,5,9,14,20,5,9, 14, 20, 5,9, 14, 20, 5,9, 1
23, 4,11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10,
15, 21, 6, 10, 15, 21, 6, 10, 15, 21]

And all the 64 different constant that needs to be used
for every round in the algorithm.

7,22,7,12,17,
4,20, 4,11, 16,
15, 21, 6, 10,

K= [0xd76aa478, 0xe8c7b756, 0x242070db, Oxclbdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, Oxffff5bb1, 0x895cd7be, 0x6b901122,
0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562,
0xc040b340, 0x265e5a51, 0xe9b6c7aa, 0xd62f105d,
0x02441453, 0Oxd8ale681, Oxe7d3fbc8, 0x21elcde6,
0xc33707d6, 0xf4d50d87, 0x455al4ed, 0xa9e3e905,
Oxfcefa3f8, 0x676£f02d9, 0x8d2adc8a, 0xfffa3942, 0x8771f681,
0x6d9d6122, 0xfde5380c, Oxadbeead4, Ox4bdecfa9,
0xf6bb4b60, Oxbebfbc70, 0x289b7ec6, Oxeaal27fa,
0xd4ef3085,  0x04881d05, 0xd9d4d039, 0xe6db99e5,

0x1fa27cf8, Oxcdac5665, 0xf4292244, 0x432aff97, 0xab9423a7,
0xfc93a039, 0x655b59¢3, 0x8f0ccc92, Oxffeff47d, 0x85845dd1,
0x6fa87e4f, Oxfe2ce6e0, 0xa3014314, 0x4e0811al, 0xf7537e82,
0xbd3af235, 0x2ad7d2bb, Oxeb86d391]
L=[1,6,11,0,5,10,15,49,14,3,8,13,2,7,12,5,8,11,14,1,4,7,10,13,
0,3,6,9,12,15,2,0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9]
Step 4: Start the loop and implement the operation of per
round

1) We start a loop for each 512 bits chunk.

2) Inside that loop, we start another loop for each
round from 0-64.

3) Under that loop we start to implement operation as
round recommendation.

For round (0-15):

We first perform the operation F(B,C,D) = (B AND C) OR
(NOT B AND D).

(B AND C) is done by using the values cv2 and cv3 and
using algorithm 4 to generate “final AND”.

(NOT B) is done by using the value cv2 and using the
algorithm 2 to generate “finalNOT”.
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(NOT B AND D) is done by using the value finaINOT and
cv4 and using algorithm 4 to generate “finalAND2”.

(B AND C) OR (NOT B AND D) is done by using the
value final AND and finalAND2 and using the algorithm 3
to generate “finalPer”.

For round (16-31):

We perform the operation G(B,C,D) = (D AND B) OR (NOT
D) AND C)

(D AND B) is done by using the values cv4 and cv2 and
using algorithm 4 to generate “finalAND”.

(NOT D) is done by using the values cv4 and algorithm 2 to
generate “finaINOT”.

(NOTD AND C) is done by using the values finaINOT and
cv3 and using algorithm 4 to generate “finalAND1".

(D AND B) OR ((NOT D) AND C) is done by using the val-
ues “finalAND” and “final AND1” and using the algorithm
3 to generate “finalPer”.

For round (32 - 47):

We perform the operation H(B,C,D) = B XOR C XOR D

(B XOR C) is done by using the values cv2 and cv3 and
using algorithm 1 to generate “finalXOR1".

(B XOR C XOR D) is done by using the values finalXOR1
and cv4 to generate “finalPer”.

For round (48 - 63):

We perform the operation I(B,C,D) = C XOR (B OR NOTD)
(NOT D) is done by using the value cv4 and algorithm 2 to
generate “finalNOT".

(BOR NOT D) is done by using the values cv2 and finaINOT
and using algorithm 3 to generate “finalPerl”.

(C XOR (B OR NOT D) is done by using the values cv3 and
finalPerl and using algorithm 1 to generate “finalPer”.
First Addition

We perform the operation A + (result of F(B,C,D) or
G(B,C,D) or H(B,C,D) or I(B,C,D)) by using the values cv1
and final Per and algorithm 5 to generate “sm”.

Modulo operation is done by using the values sm and
(011111111111111111111111111111111) and using algorithm
4 to generate ‘final’.

Second Addition

We perform the operation (result of first addition) + M.

For round (m = 0-15):

We take the value of M to M[m] and using the value of final
and algorithm 5 to generate “sm”.

For round (m = 16-63):

We take the value of M to M[L[m — 16]] and using the value
of final and algorithm 5 to generate “sm”.

Modulo operation is done by using the values sm and
(011111111111111111111111111111111) and using algorithm
4 to generate ‘final’.

Third Addition

We perform the operation (result of second addition) + K.
Here we using a function namely “binaryNUM’ imple-
mented earlier which converts the hexadecimal constant
values to binary.

So, we take the values binaryNUM(K[m]) and final and
using algorithm 5 to generate “sm”.

Modulo operation is done by using the values sm and
(011111111111111111111111111111111) and using algorithm
4 to generate ‘final’.

Then we circular left shift the “final” value by shift[m]
values to generate “shft30”.



Fourth Addition

We perform the operation (shft30) + cv2 by using the values
shft30 and cv2 and using the algorithm 5 and 6 to generate
“sm”.

Modulo operation is done by using the values sm and
(011111111111111111111111111111111) and using algorithm
4 to generate ‘final’.

After fourth addition we save the result as following:

cvl = cv4

cvd = cv3

cv3 =cv2

cv2 = final

This process is repeated for 64 rounds, after that the final
values of cvl,cv2,cv3 and cv4 go through the following
process:

Addition between cvl and final cvl is done by take the
value cvl and final cvl and using the algorithm 5 to gener-
ate “sm”.

Modulo operation is done by using the values sm and
(011111111111111111111111111111111) and using algorithm
4 to generate ‘final’. The final value is saved in both cv1 and
final _cvl.

This process is repeated for cv2 and final cv2, cv3 and
final_cv3, cv4 and final_cv4.

This concludes the operation for chunk — 1. If there are
multiple chunks then this whole process is repeated again
for each chunk.

After that the values of final_cv1, final_cv2, final_cv3 and
final cv4 is appended together to generate the resulting
hash value of the algorithm.

2.4 Implementation of Quantum SHA-256 Algorithm

To implement SHA-256 in a quantum computer, the below
circuit 8 is used to perform the addition with the help of 4
qubits and 2 classical bits. The first layer is the input layer,
where qubits q[0] and q[1] are used to hold the two input
bits, and qubit q[2] is used to hold the carry bit. The qubit
q[3] is a helping qubit that is initially initialised to zero.
At first, the CCNOT gate was applied to q[0], q[1], and q[3],
then the CNOT gate was applied to q[0] and q[1]. After that,
again, the CCNOT gate was applied to q[1], q[2], and q[3],
followed by the CNOT gate, which was applied to q[1] and
q[2]. After applying the gate, the next task is to measure the
qubits. To do so, the measure gate is applied to q[3] and q[2],
and their values are stored in the c[0] and ¢[1] classical bits,
respectively. The classical bits c[0] and c[1] store the values
of sum and carry, respectively.

S
)
e

Fig. 8: Circuit diagram of q-Adder for SHA-256
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Algorithm 16 Quantum-SHA-256 Algorithm

1:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:
31:
32:

33:
34:
35:
36:

procedure QUANTUM-SHA-256(InputString)
kind of string of any length
Take the input string and convert into its correspond-
ing equivalent binary code.
Add Padding
ap « dig + 1
while len(ap)%512 # 448 do
Ap <+ Ap+0
end while
Append length
Count the total length of the message and convert it
into binary equivalent.
ap_length < msg_length mod
tot_length < ap + ap_length
Divide the input into 512 bit blocks
n < 512
Chunks — [tot_lengthl[i : i+
n] foriinrange(0, len(tot_length), n)]
Initialize 7 chaining variables and 64 additive con-
stants.
cv0 <" 01101010000010011110011001100111’
cvl +"10111011011001111010111010000101’
cv2 +"00111100011011101111001101110010’
cv3 +'10100101010011111111010100111010’
cv4 +'01010001000011100101001001111111/
cv5 ' 10011011000001010110100010001100
cv6 <+’ 00011111100000111101100110101011’
cv7 ' 01011011111000001100110100011001’
f1+ 0
f2+ vl
3+ cv2
f4+ cv3
f5+ cvd
f6 < cvb
f7 4+ cvb
f8 + cu7
k < ['01000010100010100010111110011000°,"011100010
01101110100010010010001°,/101101011100000011111011110
011117,/11101001101101011101101110100101",/001110010101
01101100001001011011”,"010110011111000100010001111100
01’,/10010010001111111000001010100100","10010000101111101
111111111111010’,/°101001 00010100000110110011101011",101
111101111100110100011111101117, oeeeiiieiiiiiiiiieis "110001
10011100010111100011110010°] > 64 constants K, one for
each step. First 32 bits of the fractional sections of the
cube roots of the first 64 prime numbers, from 2 to 311
Process the blocks
for [ = 0 to len(Chunks) do
n < 32
ch + chunks]l]
Chunks —
n] foriinrange(0,len(ch),n))
Preparing the Message Schedule
fort = 16 to 64 do

> Any

264

[ch[i : i+

msg < H?SG (chut_2)+chut_7+]_[§56 (chui—7)+chui_16

chu.append(msg)
end for




37: for m = 0 to 64 do

38: a(cv0, cvl, cv2) + (cvOAcvl) @ (—cv0Acv2)

39: B(cvd, cvb, cvb) <+ (cvd A cvd) @ (cvd A
cv6) @ (cv5 A cvb)

40: addl <250 kn+B(cvd, cvb, cv6))%4294967296

41: add2 + a(cv0, cvl, cv2) + cv7)%4294967296

42: add3 <+ (add2+%258 cv4)%4294967296

43 add4 « (add3 + K[m])%4294967296

44 adds + (add4 + chulm])%4294967296

45: add6 + (addb + cv3)%4294967296

46: add? « (add5 + add1)%4294967296

47: cvT < cvb

48: cvb < cvd

49: cvd — cvd

50: cvd <+ addb

51: cv3 +— cv2

52: cv2 +— cvl

53: cvl <+ cv0

54 cv0 + addT7

55: end for

56: end for

57: cv0 < (cv0 + f1)%4294967296
58: fl+ cv0

59:  cvl + (cvl + £2)%4294967296
60: f2 4+ cvl

61: cv2 < (cv2 + f3)%4294967296
62: f3+ cv2

63: cv3 < (cv3 + f4)%4294967296
64: f4+ cv3

65  cvd + (cvd + f5)%4294967296
66: f5+ cv4

67 cvb <+ (cvd+ £6)%4294967296
68: f6 < cvb

69: cv6 < (cvb + f7)%4294967296
70: f7 4 cvb

71: v <+ (cv7 + f8)%4294967296
72: f8 + cv7

73: return output
74: end procedure

> Return 256 Bit Hash

3 EXPERIMENTAL RESULTS AND ANALYSIS

The execution times of the algorithms that were imple-
mented using Qiskit (@SHA-1, gMD5, and qSHA-256) are
much slower when compared to the execution times of
the traditional algorithms. It's possible that the execution
of quantum circuits in a classical computer is one of the
reasons why quantum computers have a slower execution
time. Another possibility is that quantum computers solve
their operations bit-by-bit, which takes a significant amount
of time and is another reason why quantum computers
have a slower execution time. However, the prospect of
running encryption on a quantum computer rather than a
classical computer opens the door to future research into
the enhancement and invention of encryption methods that
are both better and more robust.

3.1 Experimental Results of Quantum MD-5

It has been confirmed that the MD5 algorithm can be im-
plemented on a quantum computer after implementation.
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However, the execution time is longer when compared to
traditional MD5. This could be due to a variety of factors
influencing the execution time.

MDS5 Algorithm

Enter Text
12ditva]

Generate

Text:  12ditvap
Length of Text in Bits: 64
Chunks: 1

Generated Hash:  16ADF3297C 5074EE3809775B3708245E
Length of Hash in Bits: 128

Elapsed Time: 25.785524196243286

Fig. 9: Result 1

MDS Algorithm
Enter Text
@12#Abc12.ndei"&]

Generat

Text  @12%Abcl2ndei’&%
Length of Text in Bits: 136
Chunks: 1
Generated Hash:  C21939586904095€ 5063CFRFD26DA02

Length of Hash in Bits 128

Elapsed Time: 24.473258018493652

Fig. 10: Result 2

MD5 Algorithm
Enter Text
A% %55 A %ol _« JB(*SRQISHSRBS A 8N+ (B) A A/ (A RIS NN SRS O RER R A BN
%%EAAY
Generate
Text:  AAKSIARL_+) (B (A SR@ISHERDE A 8) NWEY A A/ (A RESHASH RPN

Length of Text in Bits: 640
Chunks: 2

Generated Hash:  CB1ES9ETBGFIAECIBDZET02330DBIBAF
Length of Hash in Bits: 128

Elapsed Time: 49.09487036732178

Fig. 11: Result 3

MDS5 Algorithm

Enter Text
HGFDDRTHHJAQERYTUUORJOIYIUTIYGHVBGCFGSTWRDFNVECGFDRE TFHIGDE TYRYUGGGIYGIH
i

GHGGIGGUYFGFDRYUTTTIUITGU|
Generate

Text  HGFDDRTHHJAQERYTULOPIOIVIUTIYGHVBGCFGSTWRDFNVBCGFDRETFHIGDETYRYUGE
Length of Text in Bits: 800
Chunks: 2

Generated Hash:  EOC51CCECTOFFED1E42D5512E1D39473
Length of Hash in Bits: 128

Elapsed Time: 48.638508558273315

Fig. 12: Result 4



Figures 9, 10, 11, and 12 with various lengths of inputs
always provide a fixed length of 128 bits of output. There
will be different hashes for different inputs.

In table 1, the output is calculated using various sizes of
input. Regardless of the input sizes, the output of the g-MD5
method is always a fixed size of 128 bits with hexadecimal
digits. For each input, a separate hash is used. Table 2
shows the execution timings for the same input when run on
different CPUs. A faster CPU will reduce the amount of time
required. The execution time is determined by the machine’s
power. Two distinct processors use the same input and carry
it out; the execution times of these two processors are shown
in figure 13. According to the findings, it appears that the
duration of the execution is directly proportional to the
type of processors that were employed. This means that a
powerful processor should make the execution time shorter.
The execution time is determined by the machine’s power.

Execution Time of Quantum MDS5 in Two Different Processors

@ Intel Core i3-5005U CPU @ 2.00GHz
90 Intel Core i5-8300H CPU @ 2.30GHz

801
701
60

50

Execution Time in Seconds

40 1

30 1

2 4 6 8 10
SI.No. of Message to be Hashed

Fig. 13: Execution time for different processors

In table 3, several inputs are taken and run many times,
with the execution time recorded. The execution time dou-
bles as the number of 512-bit chunks rises.

From the above results, we can come to the conclusion
that MD5 can be implemented in a quantum environment.
Both properties of MD5, i.e., producing a 128-bit output
hash for any given input length and also producing the
same output hash for the same input, are being followed
by the designed algorithm. The execution time is directly
dependent on the number of chunks formed by the input
message. The execution times almost double when the num-
ber of chunks is increased from 1 to 2. The execution time
also depends on the processor’s power. There is a significant
decrease in execution time just by switching to a better and
faster-performing processor.

3.2 Experimental Results of Quantum SHA-1

For the sake of dealing with quantum computers on the
level of individual circuits, pulses, and algorithms, this
article makes use of an open source software development
kit called Qiskit. It is designed to help developers create,
edit, and test quantum programmes that can be executed
on IBM’s Quantum Experience prototype devices or locally
on computer simulators. These programmes can also be
performed on IBM’s Quantum Experience. In order to im-
plement the quantum SHA-1 algorithm on a local computer,
the IBM QASM simulator is used.
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The QASM simulator, which is included in QiskitAer, is
used to simulate the quantum circuit. It is necessary to exe-
cute the circuit a great number of times so that a compilation
of statistics regarding the distribution of the bitstrings can
be made. Through the use of the shots keyword, the excute
function allows the user to choose the number of iterations
that will be performed on the circuit. 1024 different shots
were taken for this piece of work.

The SHA-1 algorithm that was discussed earlier is iden-
tical to the one that was just described. The only thing that
is different is that rather than executing a straightforward
classical addition, XOR, AND, NOT, OR, AND MOD, quan-
tum addition is employed along with the corresponding
operations of XOR, AND, NOT, OR, and MOD. The process
of doing quantum addition makes use of the idea of a
Full Adder, in which two circuits were created, one for the
purpose of computing CARRY and the other for the purpose
of computing SUM. The SUM and CARRY circuits can do
quantum addition.

The Qiskit implementation of the SHA-1 algorithm ex-
ecutes far more slowly than the regular SHA-1 method,
which is denoted by the notation g-SHA-1. The execution of
quantum circuits on a conventional computer is most likely
one of the elements behind the slower processing speed of
quantum computers.

Due to a phenomenon known as quantum parallelism,
which results from superposition, quantum computers can
achieve quadratic or exponential gains in solution speed
when compared to classical computers. Some probabilistic
operations can be carried out faster by quantum parallelism
than by traditional methods. However, quantum comput-
ing does not provide such a boost for all problems, and
researchers are still figuring out where it is most useful.
For some types of difficulties, quantum computing has the
potential to provide astonishing results [29].

Execution Time of Quantum SHA-1 in Two Different Processors

@ Intel Core i3-5005U CPU @ 2.00GHz
Intel Core i5-8300H CPU @ 2.30GHz

Execution Time in Seconds

40

2 4 6 8 10
Sl.No. of Message to be Hashed

Fig. 14: Execution time for different processors

In table 4, execution time is calculated for different inputs.
When the number of 512-bit blocks increases, execution time
doubles.

In table 5, for the same input, when we execute the same
input on different processors, we get two different execution
times. A higher processor will take less time. Execution time
is dependent on the power of the machine.

Two distinct processors use the same input and carry it
out; the execution times of these two processors are shown
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TABLE 1: Hashes of gMD5 with Various Inputs

SL. | INPUT INPUT OUTPUT HASH (hexadecimal) OUTPUT
No. LENGTH LENGTH
(bits) (bits)
1. | 12dltvqp 64 16 A0F3297C5074EE3809775B3708246E 128
2. | @12#Abcl2.ndei*&% 136 (C21939586904095E5963CFBFD288DA(02 128
3. (A,/O$#$$%*&%(;; &%$&$% 280 BE27D500AF1DFDAFC0577FA3573B9832 | 128
“&#(&)(+)
4. | ABNYGFTRVVHGFGFGFGCGHD | 280 BE65B41172A064C8B5D671FAF8630F4A | 128
FDDDDGFDCCFDD
5. | 124894897465465468787897874687 | 280 AEB56E86B870B41A6361DE5ADAB26176 | 128
87987
6. | abbdcgufrhurfghvdnbvcfdsndcgsd | 280 590F31282042 222BB4D6063 43E52A869 128
gchgs
7. | abbdcgufrhurfghvdnbvctdsndcgs | 440 73102D5A44357 6AD7A9DA434 OF5304C | 128
dgchgsdcnvdbecmbdgbwdbnbvdv
8. | 1556787128798600364712149535487 | 488 3221CF855982B8126535384462CB0771 128
878794554547845457874211647 244
9. | Y% %o(+_+)(&*("$USH%$*&*)+) | 640 CB1E99E7B6FOAEC38D2E702330DBI9BAF | 128
(&)***/ [ —/*("%$$%"$# SVt ###$%
#3"&% %% &>
10. | HGFDDRTHHJAQERYTUIJOPJOIY | 800 E0C51CC8C70FFED1E42D5512E1D39473 | 128
IUTJYGHVBGCFGSTWRDENV
BCGFDRETFHJGDETYRYUGGG]
YGJHGHGGJGGUYFGFDRYUTTT
IUITGUII
TABLE 2: Execution Time of Q-MD5 in two Different Processors
SL. | INPUT Intel® Core™ | Intel® Core™
No. i3-50005U CPU | i5-830056H CPU
@ 2.00 GHz @2.30 GHz
1. | 12dltvgp 51.76 26.11
2. | @12#Abcl 2.ndei*&% 48.34 26.27
3. | %55 $%* &% (" * & %$& 5% &#* (&) (+) 50.05 25.94
4. | ABNYGFTRVV HGFGFGFGCG HDFDDDDGFDC CFDD 49.63 26.09
5. | 1248948974 6546546878 789787468 787987 49.25 26.06
6. | abbdcgufrh urfghvdnbv cfdsndcgsd gchgs 48.85 25.99
7. | Abbdcgufrh urfghvdnbv cfdsndcgsd gchgsdcnvd bembdgbwd bnbvdv | 48.99 27.67
8. | 1556787128798600364712149535487878794554547845457874211647244 | 92.63 56.44
9. | "% Y(+_+)(&*("PYSH %0$ &) +) (&) ) [ —/* ("% $$ % $#$ % 93.93 55.41
HHHSYoH#E &% %% &*
10. | HGFDDRTHHJA QERYTUIJOP] OIYIUTJYGHV BGCFGSTWRDF | 95.85 55.44
NVBCGFDRETF HJGDETYRYUGG GJYGJHGHGG JGGUYFGFDR
YUTTTIUIT GUII

in figure 14. According to the findings, it appears that the
duration of the execution is directly proportional to the
type of processors that were employed. This means that a
powerful processor should make the execution time shorter.
The execution time is determined by the machine’s power.

3.3 Experimental Results of Quantum SHA-256

The Qiskit implementation of the SHA-256 algorithm exe-
cutes far more slowly than the regular SHA-256 method,
which is denoted by the notation q-SHA-256. The execution
of quantum circuits on a conventional computer is most
likely one of the elements behind the slower processing
speed of quantum computers. In table 6, the output is
calculated using various sizes of input. Regardless of the

input sizes, the output of the -SHA-256 method is always a
fixed size of 256 bits with hexadecimal digits. For each input,
a separate hash is used. In table 6, for the same input, when
we execute the same input on different processors, we get
two different execution times. A higher processor will take
less time. Execution time is dependent on the power of the
machine.

Two distinct processors use the same input and carry it
out; the execution times of these two processors are shown
in figure 15. According to the findings, it appears that the
duration of the execution is directly proportional to the
type of processors that were employed. This means that a
powerful processor should make the execution time shorter.
The execution time is determined by the machine’s power.



TABLE 3: Execution Time for different inputs in Q-MD5

SL.| INPUT No. of | T-1 T-2 T-3 T-4 T-5 Avg
No. 512- Time
bit
chucks
1. | 12dltvgp 1 2722 | 2644 | 2592 | 2559 | 2539 | 2611
2. | @12#Abc12.ndei&% 1 2590 | 2537 |2626 |2780 |26.05 | 2627
3. | %$#$5%& % ( 1 25.67 | 25.68 | 27.41 24.45 26.55 25.94
4. | ABNYGFTRVVHGFGFGFGC 1 2476 | 2621 | 2581 | 2640 |2731 | 26.09
GHDFDDDDGFDCCFDD
5. | 12489489746546546878789787 1 2648 | 2455 | 2781 | 2558 | 2587 | 26.06
468787987
6. | abbdcgufrhurfghvdnbvcfdsnd 1 25.07 | 2619 | 2678 |27.00 | 2493 | 2599
cgsdgchgs
7. | abbdcgufrhurfghvdnbvcfdsnd 1 2538 | 2671 | 2872 [2996 |27.61 |27.67
cgsdgchgsdenvdbembdgbwdb
nbvdv
8. | 155678712879860036471214953 | 2 5731 |56.17 | 5559 |5892 | 5421 | 5644
548787879455454784545787421
1647244
9. | T%SH Y%(+_+)(&*("$YS#H % & | 2 5381 | 5379 | 5421 | 5561 |59.66 | 5541
N+ (&) [ /¥ (%0$$% " $#$ %
HHHS Yot S & %0 % Yo&* " —
10. | HGFDDRTHHJAQERYTUIJO 2 55.72 | 5712 | 55.85 | 53.59 | 54.95 | 55.44
PJOIYIUTJYGHVBGCFGSTW
RDFNVBCGFDRETFHJGDET
YRYUGGG]YGJHGHGGJGGU
YFGFDRYUTTTIUITGUII
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3.4 Performance Analysis Between Quantum SHA-1 ,

Quantum MD-5 and Quantum SHA-256

Fig. 15: Execution time of qSHA-256 for different processors

Execution Time of Classical SHA-1, MD5 & SHA-256 in Seconds

0.009 -

0.008 +

0.007 4

0.006

Execution Time in Seconds

0.005 4

0.004 4

® Classical SHA-1
Classical MD5
@ Classical SHA-256

Sl. No. of the Message

T
10

Fig. 16: Execution time of cSHA-1, cMD5 and ¢SHA-256 for
the same inputs

Execution time difference between classical SHA-1, classical
MD5 and classical SHA-256 for the same inputs is given
in the figure 16. In table 9, it can be seen that qSHA-256
is taking more time then gMD5 and qSHA-1 for the same
arbitrary input.
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TABLE 4: Quantum SHA-1 execution time with respect to no. of 512 bit blocks

Message To be Hashed No. Execution| Output
of 512 | Time in
bit Second
blocks
1. | 12dltvgp 1 35.43 F6ADSOFDFC7B71BB6DA3FE5360120C9C30CEAB2C
2. | @12#Abc12.ndei&% 1 35.14 DF8B25E1F725044094BDE19EF8 9B63F944B37C4
3. | %$#5$%& % (" & %P&S %" &H#(&)(+) 1 35.99 5C7F397FD10ADA476 AA09F6BE4C0411B36376EF9
4. | ABNYGFTRVVHGFGFGFGCGHDFD | 1 35.47 9A94549E690300CE7E74278EB7BD2EOBD8911AAB
DDDGFDCCFDD
5. | 12489489746546546878789787468787987| 1 35.90 1573BF989E94CA61B489D5A A61ED4BF7E9A89161
6. | Abbdcgufrhurfghvdnbvcfdsndcgsdgchgsl 35.12 A215E938CAE939D8D1CF14B160EC3A5C29D78273
7. | Abbdcgufrhurfghvdnbvcfdsndcgsdge | 1 36.41 6E670ABBA04F9CC4F40863D957BF57C54B215A87
hgsdenvdbembdgbwdbbvdyv
1556787128798600364712149535487878 | 2 75.11 1A6A96068298FEF1627426E74249E613A02460C1
794554547845457874211647 244
e$ 2 75.98 8BA00DD2C87C7D8555414B7FBD5EF06B331EA6A2
HGFDDRTHHJAQERYTUIJOPJOIYI | 2 77.28 3AEE40FCC411779C9CDE43690 DOCB896B890237
UTJYGHVBGCFGSTWRDENVBCG
FDRETFHJGDETYRYUGGGJYGJHG
HGGJGGUYFGFDRYUTTTIUITGUII

TABLE 5: Quantum SHA-1 execution time in two different Processors

Message To be Hashed Execution Time in Sec-
onds of two different Pro-
Cessors
Intel® Core™ [ Intel® Core™
i3-5005U CPU | i5-8300H CPU
@ 2.00GHz @ 2.30GHz
1. | 12dltvgp 67.27 35.43
2. | @12Abcl2.ndei*&% 67.71 34
3. | %55 $%* &% (" &%$Q& "$%* & #*(&)(+) 67.75 35.99
4. | ABNYGFIRVVHG FGFGFGCGHDFD DDDGFDCCFDD 67.05 35.47
5. | 124894897465 465468787897 87468787987 67.45 35.90
6. | Abbdcgufrhur fghvdnbvcfd sndcgsdgchgs 68.01 35.12
7. | Abbdcgufrhurfghvdnbvcfdsndcgsdgchgsdenvdbemb dgbwdbnbvdv 67.51 36.41
8. | 15567871287986003647121495354878787945545478454578 74211647244 134.34 75.11
9. | T%$H# %(+_+)(&H($/S5H% QP &*)+¥) (&) / /—/*("%$ 134.58 75.98
$%"SHS Yo Q#HH#HE Yot $ & V0% % &
10. | HGFDDRTHHJAQE RYTUIJOPJOIYI UTJYGHVBGCFGS TWRDEN- | 134.22 77.28
VBCGFD RETFHJGDETYRY UGGGJYGJHGHGG JGGUYFGFDRYUT
TTIUITGUIL
Execution Time of Quantum SHA-1, MD5 & SHA-256 in Seconds The execution time difference between qSHA_L qSHA-256,
Ty " and gMDS5 for the same inputs is given in figure 17. If we
® Quantum SHA-256 observe the figure 16, then classical SHA-1 is taking less

time than classical MD5 and classical SHA-256, but in the
case of quantum version comparison, quantum MD5 is tak-
ing less time than quantum SHA-1 and quantum SHA-256
in figure 17, which is the reverse of classical comparison. A
new thing that was found through this work is that qMD?5 is
taking less time than qSHA-1 and qSHA-256. But in the case
of classical comparison, cSHA-1 takes less time than cMD5
and cSHA-256. One thing that can be said from this work is
that the classical performance and quantum performance of

2 3 o 8 10 any algorithm may not be similar, but rather opposite.
Sl. No. of the Message

5 8]
=]
=] S

Execution Time in Seconds
=
Q
]

50 4

ig. 17: Execution time of qSHA-1, gMD5 and qSHA-256

for the same inputs
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TABLE 6: Output Hash With Various Inputs of SHA-256

SL. | INPUT INPUT OUTPUT HASH (hexadecimal) OUTPUT
No. LENGTH LENGTH
(bits) (bits)
1. | 12dltvqp 64 127 A9EC06672D107D40CEEEF6F83D3A16| 256
EB646A5929CBC1D47E0A995715CADF7

2. | @12#Abc12.ndei*&% 136 B6728E5F88E71761 ADAECO0DFOE80B07 | 256

7942240E86 AE8BBB9D68542A617F54EB

3. | %S$#$$%* &0 (**&%$&S$% 280 351A2322829AED78FA29B0B1AC34E0A93 | 256
&t (&) (+) 25461EF4492FBS ASBCOBF35E3F514B2

4. | ABNYGFTRVVHGFGFGFGCGHD | 280 BBFEF4BBC89E506A7418E0FB730C90A3C | 256
FDDDDGFDCCFDD ECDCEC4552B060A7 AC98238EE09A30C

5. | 124894897465465468787897874687 | 280 D9BIE71A2128332CCFA6FC6D6C912AF02| 256
87987 67C7819ED3CBE4EF1E2BADDSA3AE4FB

6. | abbdcgufrhurfghvdnbvcfdsndegsd | 280 39C8B2B6A A43549292CFA649EB06C946 | 256
gchgs D349CE0A8BFD18CF33DF89A497 A5BB07

7. | abbdcgufrhurfghvdnbvcfdsndcgs | 440 1B25E1F3F4C5B3324064B557484466A3D1 | 256
dgchgsdcenvdbembdgbwdbnbvdy C3CA4A114916002C959CC73E256E82

8. 1556787128798600364712149535487 | 244 A1314F2708AC51CA451196A4CDA092DC | 256
878794554547845457874211647 C7B655A97B6E5SBC1B826ED48FA86C214

9. | T%H Yo(+_+)(&*("$UHH %S &*)+¥) | 640 FB5B840462711405E6EB50D275BBCIO3CA | 256
(&)*™*/ [ —/*("%$$%"$# %ot ##S %0 05A AF010F8B7F98563379EDA7553C5F
#$" & %% % &*"

10. | HGFDDRTHHJAQERYTUIJOPJOLY | 800 56DF90F802B0513COF8C624FB359CDBE4 | 256
IUTJYGHVBGCFGSTWRDFNV 56A014D76D52D844A ADC9DO00AE65711
BCGFDRETFHJGDETYRYUGGG]

YGJHGHGGJGGUYFGFDRYUTTT
IUITGUII

4 CONCLUSION

From the experimental results, it can be concluded that the
proposed qSHA1, gSHA-256, and MD5 run successfully in a
quantum environment. The execution time of the proposed
algorithms is directly proportional to the number of chunks
formed by the input message. The execution time doubles
when the number of chunks is increased from 1 to 2. The
execution time also depends on the processor’s speed. In the
experiment, it is observed that the classical part is faster than
the quantum part. However, the number of cycles per unit
time in the proposed quantum algorithms is higher than
that of the classical algorithms. Hence, there is a possibility
to reduce the execution time of the proposed algorithm by
using optimization techniques. The reason for the longer
execution of the proposed algorithms may be due to the
execution mix-up between classical computers and quan-
tum computers. Since the inputs are sent from the classical
computer to the quantum simulator, the results are coming
back to the classical computer. In the future, when a pure
quantum computer is implemented, the real-time execution
may be measured.

In this paper, the detailed comparison of quantum
versions of the SHA-1, SHA256, and MD5 algorithms is
presented in Table 9. Interestingly, the proposed quantum
algorithms have the same message digest as their classical
counterparts. The major contributions of this paper are
the implementation of certain functions and the design of
their circuits purely using quantum gates. The functions
implemented for basic qubit additions, XOR, AND, NOT,
and OR operations are available in a classical computer and
are often used for the implementation of hash algorithms.

Further, from Table 4, it is clear that execution time gets
almost doubled, when the number of blocks increases from
1 to 2. Also, from Table 5, we can conclude that execution
time varies greatly depending on the type of machine. In
the Intel processor i5, the execution time is almost reduced
to half as compared to that of the Intel i3 processor. Finally,
it is concluded that the proposed algorithms take between
35 and 70 seconds on average. In the future, when the
quantum computer is fully functional, these algorithms will
run efficiently. Future research can be further extended to
optimize the proposed algorithms to reduce the overall
execution time.

4.1 Future Work

It's paramount to highlight that the circuits constructed
within this research lay a robust foundation for the evo-
lution of novel algorithms in the upcoming years. These
circuits aren’t just static; they offer avenues for optimization
through potential rewiring to boost their execution speeds.

This work provides a crucial stepping stone for quantum
cryptography enthusiasts and researchers. In an era where
Post Quantum Encryption (PVE) is becoming increasingly
vital, our algorithm acts as a pivotal reference. We eagerly
invite the academic and research community to leverage our
foundational quantum circuits, not only to amplify their
efficiency but to innovate, pushing boundaries to attain
optimal execution times and fortify quantum cryptographic
methodologies.



TABLE 7: Comparison Table of Quantum SHA-256 execution time in two different Processors

19

SI. | Message To be Hashed Execution Time in Sec-
No. onds of two different Pro-
cessors
Intel® Core™ [ Intel® Core™
i3-5006U CPU | i5-8300H CPU
@ 2.00GHz @ 2.30GHz
1. 123456 186.69 129.66
2. | abcfbcewhiufthiwue kbdfhebfhb 159.38 125.77
3. 13135446ddftbjhk hghggkugkgh 159.77 129.875
4. CGJFGFFRYTEGJHLK UUKBCDDYFJOJUOU 159.52 127.07
5. SHTSTEY]BJPJOJHF12 51354cxgfdtgdg$b& 159.59 127.72
6. | N&(F%&$#Q@H$% _)(*&To$$@$@%H#5$ 160.23 129.67
7. hfbhksweg AHGIGG*&(* %%%" &*16547 454546478 AGhhdgygh 160.11 129.07
8. HedingerhbqwdigdB 14987448784R %% %#4 6585889848r27676 | 289.41 251.11
46855%&$9
9. | "% Y%+ )& (SUSBIHS@SS &) ) (&) [ — (%% 12132 75.98
$%" SHS % S@SHH#H#H#S Yot $"& Yo% Yo&* ™
10. | HGFDDRTHHJAQE RYTUIJOPJOIYI UTJYGHVBGCFGS TWRDEN- | 124.85 77.28
VBCGFD RETFHJGDETYRY UGGGJYGJHGHGG JGGUYFGFDRYUT
TTIUITGUII
TABLE 8: Execution Time Comparison between three Hashing Algorithms
SL. | INPUT SHA-1 @ 2.00 | MD5 SHA-256
No. GHz
1. 12dltvgp 0.0039970 0.0059965 0.00492545
2. 12# Abc12.ndei&% 0.0039784 0.0060489 0.0049682
3. %b#5$%* &% ( *&%0$@&S % & #*(&)(+) 0.0039149 0.0059879 0.0049334
4. ABNYGFTRVV HGFGFGFGCGH DFDDDDGEFDC | 0.0039153 0.0059733 0.0049799
CFDD
5. 124894897 46546546878 78978746 8787987 0.0039633 0.0060735 0.0049166
6. | abbdcgufrh urfghvdnbvc fdsndcgsdg chgs 0.0039975 0.0059971 0.0049993
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