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Summary

The Standard Model (SM) of particle physics is an extremely successful theory, making ac-
curate predictions across many orders of magnitude in agreement with experiments. However,
there exists solid evidence that the SM is not a complete description of Nature, calling for
physics beyond the SM (BSM). Due to the absence of direct signals of new physics states in
experiments in recent years, evidence is growing that BSM physics is either very heavy or
light and weakly coupled. In this thesis, we will use effective field theories (EFTs), which are
well-suited to describe the effects of heavy particles at low energies.

In Part I, we study CP violation in the SM and SMEFT extended with light sterile
neutrinos. We construct the generating set of flavour invariants in the ¥SM that allows us
to express any observable as a polynomial of those invariants. This is in particular useful to
study CP violation, as the invariants allow us to express the necessary and sufficient conditions
for CP violation in a flavour basis-invariant way. Then, we extend the results to the EFT
interactions, where we study different scenarios for the generation of neutrino masses. We
find that the form of the EFT flavour invariants and their suppression with the scale of new
physics changes drastically depending on the nature of the neutrino masses.

In Part II, we study different aspects of symmetry breaking in the EFTs of axionlike
particles (ALPs). An essential property of ALPs is their shift symmetry rooted in their pseudo-
Nambu-Goldstone nature. We study the implications of imposing this symmetry in the
leading order effective Lagrangian by reformulating well-known matrix relations, that enforce
the symmetry in the leading order EFT couplings, into flavour-invariant order parameters of
shift symmetry, which allow us to properly impose the power counting of the theory in the
presence of a softly broken shift symmetry, which is otherwise not possible.

Using the Hilbert series, we count the number of operators appearing in the ALP EFT
with and without a shift symmetry above and below the electroweak scale. We use this
information to construct operator bases for the EFTs, generalise the matrix relations imposing
shift symmetry to higher order and construct the leading order CP-odd flavour invariants.

The axion solution to the strong CP problem can be spoiled by new sources of CP viol-
ation in the ultraviolet in the presence of small instantons. Parameterising new sources of
CP violation in the SMEFT, we construct CP-odd SMEFT flavour invariants featuring the
strong vacuum angle, necessarily appearing in instanton computations. We show that the
invariants explicitly appear in the instanton computations and vice-versa that they can be
used to systematise the computations. Using these results, we derive bounds on different
small instanton and SMEFT flavour scenarios.
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Zusammenfassung

Das Standardmodell (SM) der Teilchenphysik ist eine duferst erfolgreiche Theorie, die iiber
viele Grokenordnungen hinweg genaue Vorhersagen in Ubereinstimmung mit Experimenten
macht. Es gibt jedoch stichhaltige Beweise dafiir, dass das SM keine vollstédndige Beschreibung
der Natur ist, was Physik jenseits des SM erfordert. Da in den letzten Jahren keine direk-
ten Signale fiir Zustdnde neuer Physik in Experimenten gefunden wurden, mehren sich die
Hinweise, dass die Physik jenseits des SM entweder sehr schwer oder leicht und schwach gekop-
pelt sein muss. In dieser Arbeit werden wir effektive Feldtheorien (EFTs) verwenden, die gut
geeignet sind, die Effekte schwerer Teilchen bei niedrigen Energien zu beschreiben.

In Teil I untersuchen wir die CP-Verletzung im SM und in der SMEFT erweitert mit
leichten sterilen Neutrinos. Wir konstruieren die erzeugende Menge von Flavourinvarianten
im vSM, die es uns ermoglicht, jede Observable als Polynom dieser Invarianten auszudriicken.
Dies ist insbesondere niitzlich um CP-Verletzung zu untersuchen, da die Invarianten es er-
moglichen, die notwendigen und hinreichenden Bedingungen fiir CP-Verletzung flavourbasisin-
variant auszudriicken. Anschliefiend weiten wir die Ergebnisse auf die EF'T-Wechselwirkungen
aus, wo wir verschiedene Szenarien fiir die Erzeugung von Neutrinomassen untersuchen. Wir
stellen fest, dass sich die Form der EFT-Flavourinvarianten und ihre Unterdriickung mit der
Skala der neuen Physik drastisch mit der untersuchten Art der Neutrinomassen &dndert.

In Teil II untersuchen wir verschiedene Aspekte der Symmetriebrechung in den EFTs
von axionartigen Teilchen (ALPs). Eine wesentliche Eigenschaft von ALPs ist ihre Shift-
symmetrie, die in ihrer Pseudo-Nambu—Goldstone-Natur begriindet ist. Wir untersuchen die
Auswirkungen dieser Symmetrie auf die fithrenden effektiven Operatoren, indem wir bekannte
Matrixbeziehungen, die eine Shiftsymmetrie fiir die EFT-Kopplungen erster Ordnung erzwin-
gen, in flavour-invariante Ordnungsparameter der Shiftsymmetrie umformulieren, die ermé&g-
lichen das Powercounting der Theorie bei einer leicht gebrochenen Shiftsymmetrie korrekt zu
implementieren. Mit Hilfe der Hilbertreihe zéhlen wir die Anzahl der Operatoren, die in der
ALP EFT mit und ohne Shiftsymmetrie oberhalb und unterhalb der elektroschwachen Skala
auftreten. Wir nutzen diese Information, um Operatorbasen fiir die EFTs zu konstruieren,
die Matrixbeziehungen, die eine Shiftsymmetrie erzwingen, auf héhere Ordnung zu verallge-
meinern und die CP-verletzenden Flavourinvarianten fithrender Ordnung zu konstruieren.

Die Losung des starken CP-Problems durch das Axion kann durch neue Quellen der
CP-Verletzung im Ultravioletten in Anwesenheit von kleinen Instantonen gestort werden.
Nachdem wir neue Quellen der CP-Verletzung in der SMEFT parametrisieren, konstruieren
wir CP-verletzende SMEFT-Flavourinvarianten mit dem starken Vakuumwinkel, der not-
wendigerweise in den Instanton-Berechnungen auftaucht. Wir zeigen, dass die Invarianten
explizit in den Instantonberechnungen erscheinen und umgekehrt, dass sie zur Systematisier-
ung der Berechnungen verwendet werden konnen. Mit den Ergebnissen leiten wir Limits fiir
verschiedene kleine Instanton- und SMEFT-Flavourszenarien ab.

iii



v



Acknowledgements

The work presented in this thesis would have never been possible without the many people
supporting me along the way. I want to start by thanking my supervisor, Christophe Grojean,
for giving me the opportunity to pursue my PhD in his group. I am deeply grateful for the
countless discussions, that greatly improved my understanding and most importantly intuition
for BSM physics. Thank you for the constant encouragement given to me throughout the last
three years, which sometimes was much needed, and for the many opportunities given to me
during my PhD. I could not have imagined a nicer PhD experience.

Furthermore, I want to thank Andreas Weiler for sparking my interest in QFT and particle
physics in his great lectures and for allowing me to work on an interesting Master’s project
in his group, which was the starting stone for my journey to Hamburg.

I am grateful to my collaborators, Ravneet Bedi, Quentin Bonnefoy, Tony Gherghetta,
Christophe Grojean, Guilherme Guedes, Damien Leflot, Di Liu, Alejo Rossia, Pham Ngoc
Hoa Vuong and Chang-Yuan Yao for all the time invested together into great work, the
fruitful discussions in meetings which, despite sometimes happening during unpleasantly late
times, were always very productive, and all the things I was able to learn through interactions
with you.

Huge thanks go to the members and former members of the DESY BSM pheno group, who
I had the honour to overlap with during my time at DESY: Fady Bishara, Quentin Bonnefoy,
Emanuele Gendy, Christophe Grojean, Guilherme Guedes, Minyuan Jiang, Damien Leflot,
Di Liu, Camila Machado, Gabriel Massoni Salla, Paula Pilatus, Jasper Roosmale Nepveu,
Alejo Rossia, Pham Ngoc Hoa Vuong and Chang-Yuan Yao. Thank you for making the time
at DESY such a nice experience with the interesting discussions during lunches and coffee
breaks, the bouldering and table tennis sessions, our traditional Sunday dinners and the fun
trips in and around Hamburg. I am grateful to Chang-Yuan, Guilherme, Hoa, Jasper and
Minyuan for proofreading parts of this thesis.

I am also very happy to have met many interesting and knowledgable people at workshops,
conferences and summer schools, which are too many to name here. Thank you for the pleasant
atmosphere provided during those meetings. I also want to thank the Berkeley theory group
for their hospitality during my 2-month stay by involving me in their group activities in- and
outside of physics.

I am deeply grateful to my family and friends for their constant support throughout my
many years of studying physics. Thank you, in particular, for keeping my work-life balance
in check and for the nice breaks in the form of holidays spent together.

Finally, this thesis would have never been possible without the unconditional love and
constant support from my partner, Sarishma. Thank you for accompanying me throughout
all the tough times and for all the wonderful moments spent together. I am very grateful to
have you on my side and now look back with great happiness to my unsuccessful house hunt
in Brighton ended by a simple but life-changing Facebook message.



vi



Declaration of Independent Work

I declare that I have completed the thesis independently using only the aids and tools specified.
I have not applied for a doctor’s degree in the doctoral subject elsewhere and do not hold
a corresponding doctor’s degree. I have taken due note of the Faculty of Mathematics and
Natural Sciences PhD Regulations, published in the Official Gazette of Humboldt-Universitéat
zu Berlin no. 42/2018 on 11/07/2018.

Hamburg, 15 July 2024 Jonathan Kley

vii



viii



List of Publications

This dissertation is largely based on the following publications and preprint

[1] Q. Bonnefoy, C. Grojean and J. Kley, “Shift-Invariant Orders of an Axionlike Particle”,
Phys. Rev. Lett. 130, 111803 (2023), arXiv:2206.04182 [hep-ph].

[2] C. Grojean, J. Kley and C.-Y. Yao, “Hilbert series for ALP EFTs”, JHEP 11, 196
(2023), |arXiv:2307.08563 [hep-ph]!

[3] R. Bedi, T. Gherghetta, C. Grojean, G. Guedes, J. Kley and P. N. H. Vuong, “Small
instanton-induced flavor invariants and the axion potential”, JHEP 06, 156 (2024),
arXiv:2402.09361 [hep-phl].

[4] C. Grojean, J. Kley, D. Leflot and C.-Y. Yao, “The flavor invariants of the vSM”,
(2024), |arXiv:2406.00094 [hep-ph], submitted to JHEP, under review.

Chaptercontains all the results published in Ref. |[4|. Chapter reports on some unpublished
work in progress in collaboration with Christophe Grojean and Chang-Yuan Yao, building on
the results of Chapter Chapter@contains results from Ref. |1]. Chaptercontains results
from Ref. [2|. Chapter [8|is mostly based on Ref. |3|. In particular, some figures and tables
contained in this dissertation have previously appeared in these articles.

In addition, the following publication and preprint not included in this thesis were pub-
lished during the completion of this PhD project

[5] J. Kley, T. Theil, E. Venturini and A. Weiler, “Electric dipole moments at one-loop in
the dimension-6 SMEFT”, Eur. Phys. J. C 82, 926 (2022), arXiv:2109.15085 [hep-ph].

[6] Q. Bonnefoy, J. Kley, D. Liu, A. N. Rossia and C.-Y. Yao, “Aligned Yet Large Dipoles:
a SMEFT Study”, (2024), arXiv:2403. 13065 [hep-ph], submitted to JHEP, under

review.

X






Contents

1 Introduction

2 Theoretical Foundations
2.1 The Standard Model and Beyond . . . . . ... ... ... ... ... ... ...
2.1.1 The Standard Model . . . ... ... ... ... .. ...... . ......
2.1.2 CP Violation in the Standard Model . . . . . ... ... ... ... ....
2.1.3 Peeking at What Lies Beyond . . . . . . ... ... ... ... .....
2.2 Effective Field Theory . . . . . . . . . . . .
2.2.1 Operator Bases . . . ... ... . ...
2.2.2 Matching and Running . . . . ... ... .. .0 oo
2.2.3 The Standard Model Effective Field Theory . .. ... ... ... .. ..
2.3 Neutrino Masses . . . . . . . . . . e
2.4 Axions and Axionlike Particles . . . . . . ... ... ... ... ...
2.4.1 The Axion Solution to the Strong CP Problem . .. ... .. ... ...
2.4.2 Benchmark Models of the QCD Axion . . . . . ... ... ... ......
2.4.3 The EFT of Axions and Axionlike Particles . .. .. ... .. ... ...
2.5 Group Invariants and the Hilbert Series . . . . . ... ... ... .........
2.5.1 Invariants Under Internal Symmetries . . . . . ... ... ... ... ...
2.5.2  Invariants for EFT Operator Bases . . . . . . ... ... ... .......
2.6 Topological Field Configurations: Instantons . . . ... ... ... ........

I CP Violation in the Presence of Massive Neutrinos

3 The Flavour Invariants of the Standard Model Extended with Sterile
Neutrinos
3.1 Introduction . . . . . . . . . . ..
3.2 Building an Invariant Basis for the ¥SM . . . . . . ... ... ... ... ...
3.2.1 Hilbert Series of the ¥SM . . . . . . ... ... ... . ... . .....
3.2.2 Constructing the Invariants . . . . ... ... .. ... ... ........
3.2.3 A Primary Set for the vSM . . . .. ... ... .o
3.3 The Seesaw Limit . . . . . . . . . ...
3.4 Conditions for CP Conservation . . . . . . .. ... ... ... ... ........
Appendices to Chapter 3
3.A Parameterisation of Flavour Matrices . . . . . . . . .. ... ... ... ......
3.A.1 Standard Parameterisation. . . . . .. ... ... ... ... ... .. ...

3.A.2 Algebraic Parameterisation . .. ... ... ... . ... ... ... .

X1



3.B Results for Multi-Graded Hilbert Series and Plethystic Logarithm . . . . . ..
3.B.1 Model withny=ny=3 .. ... .. ... ... ... ... ... ...
3.B.2 Model withny=ny=2 .. ... ... ... ... ... .. ... ...
3.B.3 Model withny =2, np=3...... ... ... ... ... ... ...

3.C List of Invariants . . . . . . . . . ..

3.D Hilbert’s Nullstellensatz . . . . .. .. ... ... .. ... ... ... .. ...,

3.E CPC Conditions for ny =ny=2 ... ... ... ... ....... . ...
3.E.1 Minimal CPC Set for ny =ny=2 .. .. ...... ... ...... . ...
3.E.2 Pseudo-Real Couplings . . . . ... ... ... ... ... ... ... ...

4 The Flavour Invariants of the SMEFT with Massive Neutrinos
4.1 The Weinberg Operator . . . . . . . . . . . . .
4.2 Sterile Neutrinos with Lepton Number Conservation . . . . ... ... ... ...
4.3 Sterile Neutrinos without Lepton Number Conservation . . . . . ... ... ...
Appendices to Chapter 4
4.A List of YSMEFT Operators . . . . . .. ... ...

5 Conclusions to Part I

II Symmetry Breaking in ALP EFTs

6 The Shift-Invariant Orders of an Axionlike Particle

6.1 Introduction . . . . . . . . .

115
115

6.2 Flavour-Invariant Order Parameters for the Breaking of an Axion Shift Symmetry[117]

6.2.1 Parameter Counting with and without a Shift Symmetry . . ... ...
6.2.2 Flavour Invariants in the Lepton Sector . . . . . ... ... ... .....
6.2.3 Flavour Invariants in the Quark Sector . . . . ... ... ... ... ...
6.2.4 Complete Set of Linear Invariants . . . .. ... ... ... ........

6.3 Examples and Properties . . . . ... ... ..o
6.3.1 Matching to UV Models . . ... ... ... ... ... .. ... .. ...
6.3.2 Connection to CP Violation . . . . ... ... ... ... ..........
6.3.3  Shift Invariance Below the Electroweak Scale or for a Non-Linearly Real-

ised Electroweak Symmetry . . . .. ... ... . o oL

6.4 Renormalisation Group Evolution . . . . .. ... ... ... ... ... ...,
6.4.1 Renormalisation Group Running Above the Electroweak Scale . . . . .
6.4.2 RG Running Below the Electroweak Scale and EDM Bounds . . . . ..
6.4.3 ALP-SMEFT Interference and Sum Rules . . ... ... ... ......

6.5 Couplings to Gluons and Non-Perturbative Shift Invariance . ... ... .. ..
6.5.1 Non-Perturbative Order Parameter . . . . . . . .. ... ... ... ....
6.5.2 RGrunning . . . . . . .. . .

Appendices to Chapter 6

6.A Useful Matrix Relations . . . . ... ... ... ... .. ..
6.A.1 Commutator Relations Used in Section[6.2.3]. . . . ... ... ... ...

xii

118
119

130
132
132
139
141
142
143



6.A.2 Details on Decomposition of Invariants Generated by RG Flow . . . . .

7 The Hilbert Series of ALP EFTs

7.1 Introduction . . . . . . . . .

7.2 Hilbert Series Techniques for ALP EFTs

7.2.1 Implementing the ALP Shift Symmetry . . . . . ... ... .. ... ...
7.2.2 Conventions . . . . . . . . . ...
7.3 aSMEFT . . . .
731 aSMEFTpq . . ... ... .
732 aSMEFTpe . . ... ... o

7.3.3 Taking the Shift-Symmetric Limit
7.3.4 CP Violation in the aSMEFT

TA1 ALEFTPQ . o o oottt
T42 ALEFTpg . o oottt

7.4.3 CP Violation in the aLEFT

7.5 Application: Positivity Bounds in the ALP EFT . . ... ... ... .......

Appendices to Chapter 7

7.A  Operator Basis for the aSMEFT up to Mass Dimension 8. . . . . ... .. ...
7.A.1 With Shift Symmetry . . . . .. ...
7.A.2 Without Shift Symmetry . . . . .. ... ... ... ...

7.B  Operator Basis for the aLEFT up to Mass Dimension 8 . . . . . ... ... ...
7.B.1 With Shift Symmetry . . . . . . ... L
7.B.2 Without Shift Symmetry . . . . . ... ...

7.C Details on the Basis Change from the Derivative to the Yukawa Basis . . . . .

7.C.1 ALP-Dependent Operators

7.C.2 SMEFT Operators . . .. . ... ... ..
7.C.3 List of Additional Relations in Yukawa Basis . . . . .. ... ... ....

8 Small Instanton-Induced Flavour Invariants and the Axion Potential

8.1 Introduction . . . . . . . . .

8.2 Flavour Invariants Featuring 0qcp

8.2.1 A Basis of Determinant-Like Flavour Invariants . . . . .. ... .. ...

8.3 The Interplay of Topological Susceptibilities and Flavour Invariants . .. . . .

8.3.1 Topological Susceptibilities

8.3.2 Relevance of Determinant-Like Flavour Invariants . . . . . ... ... ..
8.3.3 Four-Quark Operator . . . . . ... ... ... ... .. ...
8.3.4 Semileptonic Four-Fermion Operator. . . . . ... ... ... ... ....

8.3.5 Higher-Order Invariants and Selection Rules . . . . ... ... ... ...

8.4 Constraints on Dimension-6 CP-violating Operators . . . . ... ... ... ...
8.4.1 Bounds from Induced € . . . . . .. .. ... ... ...

Appendices to Chapter 8

8.A Evaluating Loop and Collective Coordinates Integrals . . . . . ... ... .. ..

xiii



8.A.1 Four-Quark Operator . . . . .. ... ... .. ... ... ..........
8.A.2 Semi-Leptonic Operator . . .. ... ... ... ... ... .........
8.A.3 Gluon dipole operator . . .. ... ... ...

9 Conclusions to Part IT and Closing Words

Bibliography

Xiv






Introduction

Since the early days of humankind, humans have tried to find patterns in their environment
striving to understand better the world they live in. From the motion of planets and stars on
the night sky and simple mechanical principles to Newtonian gravity and electromagnetism to
the understanding of subatomic physics, special relativity and quantum physics, this curiosity
has slowly developed into a robust scientific method of modelling phenomena observed in
Nature and vigorously testing our current best understanding of those phenomena. In this
endeavour, we managed to understand the principles that govern our universe at smaller and
smaller scales by reducing the dynamics at the current scale to a minimal model among the
relevant degrees of freedom.

At the top of these decades and centuries of research lies the Standard Model (SM) of
particle physics, our current best understanding of fundamental physics at the smallest length
scales. With the discovery of a 125 GeV boson at the LHC |7} 8| in 2012 all constituents of the
Standard Model (SM) [9-20]| have been detected in experiment. The model is incredibly suc-
cessful as it can predict cross sections of scattering experiments across 14 orders of magnitude
in agreement with experimental measurements [21|. Its best prediction, the prediction of the
anomalous magnetic moment of the electron 22|, is in agreement with experiment |23| to an
astonishing twelve significant digits. With this outstanding understanding of particle physics
on the one side, there are also a handful of phenomena in Nature that cannot be understood
within the SM. On the one side, there exist serious problems of the SM, like dark matter,
neutrino masses, the matter-antimatter asymmetry and the fundamental quantum theory of
gravity, which are all phenomena observed in Nature that cannot be explained within the SM.
On the other hand, the Standard Model is also troubled by some aesthetic issues, all boiling
down to our lack of understanding the value of certain parameters, which include the strong
CP problem and the hierarchy problems.

Hence, new physics beyond the SM (BSM) is needed to explain these discrepancies between
the SM and the phenomena we observe in Nature. Inspired by the successful reductionist view,
that physics at higher and higher energy scales can be reduced by symmetry and explained by
fewer and fewer parameters, the hope for a theory of everything that in the most optimistic
case can explain Nature with just a single input parameter has prevailed. In this spirit,
many theories have been put forward in the last few decades trying to explain some of the
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discrepancies of the SM. However, after the discovery of the Higgs boson, no direct observation
of new physics states have been made in experiment.

Without a clear sign of new physics effects at particle colliders or other experiments in
recent years, it is becoming clear that the mass of any BSM particle is either beyond current
direct reach or the particles are light and very weakly coupled. A well-suited consistent ap-
proach in the case of heavy new physics are effective field theories (EFTs), where only the
light known particles appear as dynamic degrees of freedom. All effects of the heavy particles
are captured effectively in the interactions among the light degrees of freedom with generic
coefficients. The advantage of this approach is that it is mostly model-independent, where
the only assumption lies in the knowledge of all relevant light particles and the symmetries
that govern their interactions. This allows for a systematic study of classes of well-motivated
ultraviolet (UV) completions without having to specify all the details of the theory. A partic-
ularly interesting class of new physics are models providing new sources of charge-parity (CP)
violation, which introduces differences between particles and their antiparticles. Finding new
physics with a sizeable source of new CP violation would bring us a step closer to understand-
ing the baryon asymmetry, which if generated via baryogenesis in the early universe requires
significant violation of CP, beyond the CP violation in the SM, as formulated in the Zakharov
conditions |24].

The EFT of the Standard Model, the Standard Model Effective Field Theory (SMEFT), is
constructed by combining all SM fields into operators invariant under the Poincaré symmetry
and gauge symmetries of the SM. Considering the operators that do not break lepton and
baryon number, which are expected to be good symmetries up to very high energy scales, the
SMEFT already has 2499 free parameters, out of which 1149 transform under CP and 1350
do not transform under CP, at the leading order. In the light of this enormous number of free
parameters it would be useful to have an organising principle of the couplings, which is based
on our knowledge of the SM instead of making some assumptions about the UV physics. Since
most of the free parameters of the SMEFT are due to the fact that the SM fermions come in 3
generations, one curious observation is that the only flavourful SM couplings, the SM Yukawa
couplings are hierarchical with the Yukawa coupling of the electron being 3. ~ 3-107% and the
Yukawa coupling of the top being y; ~ 1 |25|. Furthermore, the elements of the mixing matrix
in the quark sector of the SM are rather small, yielding a further suppression of flavourful
couplings.

Another simple but important observation is that observables should be independent of the
mathematical basis chosen to compute them, in particular the flavour basis. Hence, building
objects from the Wilson coefficients and the SM Yukawa couplings that are invariant under
flavour transformations combined with the suppression of the SM Yukawa couplings could
yield a good organising principle for the Wilson coefficients, in particular the CP-odd ones we
are interested in. There are several questions that need to be answered: How do the CP-odd
flavour invariants of commonly used EFTs look like and how can they be constructed? Are
the EFT flavour invariants constructed in this way really the fundamental objects appearing
in computations or do they appear enhanced or suppressed by other quantities?

As mentioned previously, there could also exist light new physics that has escaped our
experiments up to this point due to their very feeble couplings to the SM particles. Two
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examples that we consider in this thesis are axions (and axionlike particles (ALPs)) and
light sterile neutrinos, which are solutions to the strong CP problem and the non-existence of
neutrino masses in the renormalisable SM, respectively. When these particles are added to the
spectrum of light particles used to construct the EFT, the number of free parameters usually
also increases rapidly with the number of flavours and understanding if heavy physics related
to the appearance of these particles at low energies can bring new sources of CP violation is
of interest.

One of the defining properties of the axion is its shift symmetry rooted in its pseudo-
Nambu—Goldstone nature. In the EFT, this property is usually implemented by only coupling
the axion derivatively to other fields. However, in EFTs there exist certain redundancies that
allow us to trade derivatives acting on fields by other terms that contain more fields instead of
the derivatives. Moreover, in the presence of a soft breaking of the axion shift symmetry also
non-derivatively coupled interactions of the axions to other fields have to be added. It then has
to be addressed how the shift-preserving and shift-breaking interactions can be disentangled
after taking into account the redundancies due to the derivative couplings.

Furthermore, if new sources of CP violation exist in the UV, they can affect the axion
solution to the strong CP problem, which is constructed to remove the CP violation present
in the Lagrangian describing the strong interactions. Parameterising the new sources of CP
violation in the SMEFT, an immediate question is whether the contributions of the CP-
violating parameters in the SMEFT come in a flavour-invariant form as conjectured earlier.

In this thesis, we will try to answer these questions. As it will turn out, flavour invariants
will play a central role in approaching many of these issues systematically. The thesis is split
into two parts. In Part (I} we will study CP violation in the SM extended with light sterile
neutrinos and its effective theory in the language of flavour invariants. In Part we will
study different aspects of symmetry breaking in the effective theory of axionlike particles with
the help of flavour invariants and the Hilbert series.

In Chap.|2| we introduce the Standard Model and reasons to search for physics beyond the
SM, CP symmetry, the concept of effective field theories, the Hilbert series and other useful
tools from invariant theory, flavour invariants and topological field configurations in QFT, in
particular instantons. These are concepts that will be used throughout this thesis. In partic-
ular, the material introduced in Secs. andcovers material relevant for the whole thesis.
Secs. andserve as an introduction to Part of the thesis and Secs. and
introduce concepts used in Part of this thesis.

In Chap. 3| based on Ref. |4| we study the ¥SM, the SM extended with three generations
of sterile neutrinos. In an attempt at categorising the sources of CP violation in the vSM,
we construct the algebraic ring of flavour invariants built from the flavourful couplings of
the theory. We find that there are 459 invariants, out of which 251 are CP-odd and 208 are
CP-even that can generate all invariants in the theory as polynomials of them. Using these
invariants, we study the seesaw limit of the theory, where the heavy Majorana mass of the
sterile neutrinos decouple. Furthermore, in the spirit of the Jarlskog invariant, we formulate
the conditions for CP conservation in the theory. We also find some non-trivial cancellations
in the plethystic logarithm, a tool from invariant theory that is used to count the number of
invariants in the theory and the polynomial relations among them. For two generations of
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neutrinos, determining the roots of the CP-odd invariants is feasible in a given parameterisa-
tion. This allowed us to identify a set of pseudoreal couplings, which have irremovable phases
but are still CP-even. This can be easily verified with the flavour invariants.

In Chap. [4] we extend the findings of the ¥SM in Chap. (3| to the effective operators of
the theory studying the sources of CP violation through flavour invariants. We find, that in
the absence of sterile neutrinos, the dimension-5 Weinberg operator of the SMEFT only gives
rise to flavour invariants at dimension 6 and in order to find flavour-invariant sources of CP
violation, one has to consider flavour invariants of dimension 8. For sterile Dirac neutrinos,
the flavour structure of the vYSMEFT is the same as the one of the quark sector of the SMEFT.
Then, more phases of the leptonic operators in the SMEFT become physical, because of the
presence of the Yukawa coupling to the right-handed neutrinos. This is also true for the
vSMEFT with Majorana sterile neutrinos. Due to the new source of lepton number violation,
the phases in the SMEFT Weinberg operator can already appear at dimension 5 as flavour
invariants, while the phases of all other additional ¥YSMEFT operators also appear at the
leading order in the power counting in a flavour-invariant way.

In Chap. |5| we conclude Part [I[| by summarising our findings and giving an outlook on
future research directions.

In Chap. @ based on Ref. |1| we characterise the shift symmetry of an axionlike particle
in the leading order of the effective theory. To this end, we reformulate well-known matrix
relations into flavour-invariant quantities. Unlike the matrix relations, they only explicitly
depend on couplings of the EFT and the SM Yukawa couplings, are flavour basis-independent
and allow to implement the power counting of the shift symmetry-breaking and -conserving
part of the theory in a straightforward way. We compute the renormalisation group (RG)
equations of the invariants, which form a closed set of differential equations. Furthermore,
we perform a matching to UV model to illustrate some features of the invariants. Using
the invariants, we can show that shift symmetry in the EFT has a close connection to CP:
conservation of CP almost implies conservation of the shift symmetry. We also construct
the invariants in an EFT with a non-linearly realised electroweak (EW) symmetry and below
the EW scale. The construction below the EW scale allows us to apply our invariants to
computations of atomic EDMs, where we can derive sum rules on the contribution of the
axionlike particle to the EDM based on the invariants. We derive further sum rules with the
invariants by considering the contribution of the ALP EFT to the RG running of the SMEFT.

In Chap.|7| based on Ref. [2| we study the implications of the shift symmetry of the ALP
on the higher order effective interactions. To this end, we compute the Hilbert series of the
ALP EFT with and without a shift symmetry for the ALP and above and below the EW
scale. We find a relation between the Hilbert series of the EFT with and without a shift
symmetry, that allows us to show that there exist no further equation of motion redundancies
like those at dimension 5 exacerbating the implementation of the power counting of the sectors
of the ALP EFT with and without a shift symmetry. Using, the Hilbert series, we perform an
explicit counting of the operators based on their transformation under CP and divided into
operators, which break and conserve baryon and lepton number. Based on these numbers,
we build an operator basis for the ALP EFT with and without a shift symmetry for the
ALP and above and below the EW scale. We construct a complete set of flavour invariants
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capturing the leading sources of CP violation in the theory and derive the matrix relations
beyond dimension 5, that impose the shift symmetry in the ALP EFT. As an application of
our operator basis, we derive positivity bounds for the dimension-8 Wilson coefficients in the
ALP EFT above the EW scale.

In Chap. [8] based on Ref. [3] we study how the axion solution to strong CP problem can
be spoiled by new sources of CP violation in the UV. For ordinary QCD these effects are
suppressed by the scale separation of the QCD scale and the scale of BSM CP violation. This
changes in the presence of small instantons, which become important if QCD is modified in
a way where the strong coupling increases again in the UV. We construct a set of CP-odd
SMEFT flavour invariants featuring the QCD vacuum angle 6 better suited for computations
in instanton backgrounds. Parameterising the sources of CP violation with the SMEFT,
we can show that the axion potential computed from the path integral in the instanton
background is proportional to the newly constructed CP-odd SMEFT flavour invariants when
all flavourful couplings are kept generic in the computations. Vice-versa, the invariants can
be used to systematise the complicated instanton computations. Utilising the bound on the
instanton-induced offset of the axion potential minimum implied by the experimental bound
on the neutron electric dipole moment, we analyse the constraints imposed on different small
instanton and SMEFT flavour scenarios.

In Chap. @ we conclude Part [II| by summarising our findings and giving an outlook on
future research directions. There, we also conclude the whole thesis by coming back to the
questions asked throughout this introduction.






Theoretical Foundations

In this chapter, we will introduce all of the technical concepts and tools, we will use through-
out this thesis. In Sec.[2.1]we will review the basics of the SM with a focus on CP violation
and will give motivations to look for BSM physics. In Sec. we will introduce the idea
of effective field theory and the most important EFT concepts used in this thesis. We will
also introduce the Standard Model effective field theory there. In Sec. we will review the
generation of neutrino masses, one of the strong motivations for BSM physics. We will show
different ways of generating neutrino masses and give a brief overview over neutrino oscilla-
tions, which can be used to probe neutrino masses. In Sec. we will give an introduction
to axions, which are a solution to the strong CP problem. We review the axion mechanism,
present some benchmark models of the QCD axion and introduce the EFT of axions and
axionlike particles. In Sec. we will formalise the concept of invariants in particle physics
and introduce important tools from invariant theory like the Hilbert series, the plethyistic
logarithm and conformal representation theory. We will show how these tools can be applied
to flavour invariants and invariants under gauge and the Poincaré symmetry, simplifying the
task of building an operator basis. Finally, in Sec. we will introduce topological field con-
figurations and in particular instantons. The material introduced in Secs. and covers
material relevant for the whole thesis. Secs. and [2.5.1] serve as an introduction to Part
of the thesis and Secs. and introduce concepts used in Part of this thesis.

2.1 The Standard Model and Beyond

2.1.1 The Standard Model

The development of the Standard Model of particle physics spans centuries of theoretical and
experimental efforts of measuring particle physics phenomena and describing those phenom-
ena in the most minimal way in the framework of quantum field theory (QFT). As such,
the SM is a combination of the electroweak theory, which unifies the weak and electromag-
netic interactions, and quantum chromodynamics, which describes the physics of the strong
interactions. The Lagrangian of these theories, describing particle physics with cross-sections
spanning several orders of magnitude can be written down in the following incredibly compact
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Fields | L=(vp,er) e Q=(up,dr) uw d H
SU(3). 1 1 3 3 3 1
SU(2)y, 2 1 2 1 1 2
vap | 4 a4 33

Table 2.1: The SM particle content and its transformation properties under the SM gauge group SU(3). x
SU(2)r xU(1)y following the conventions of Ref. [26|. For each gauge group there exists a multiplet of gauge
bosons transforming in the adjoint representation of the group.

way

1 1 1
Loy == BB - 1Wl{wa Y ZGZ‘,,GA’“” + D, H'D'H + p? |H? - X|H|*
- ~ o ~ g2 _ (2.1)
+ Y iy - (LY.He+ QY Hu+ QY;Hd+h.c.) + 023 Gf G
P=Q,u,d,L,e 32m

where I = 1,2,3 and A = 1,...,8 are indices of the adjoint representation of SU(2); and
SU(3)., respectively. With H we denote the combination H; = € H and GAm = 1/26’“’""5(}§B7
where the es are the 2-index and 4-index totally anti-symmetric tensors. Furthermore, we
have suppressed flavour indices of the fermions which come in 3 generations in the SM,
making the Yukawa couplings Y, 4. 3 x 3 matrices in flavour space. The covariant deriv-
ative for a field in the fundamental representation of the SM gauge group is defined as
D,¢ = (8M +ig1Yy B, + iggTIWJ + iggTAGf) #, where T4 are the SU(3) generators, 7! are
the SU(2) generators and Yy is the hypercharge of the field ¢.

After electroweak symmetry breaking (EWSB), where the Higgs acquires a vacuum ex-
pectation value (VEV) v, the fermions and electroweak gauge bosons receive a mass through
the Yukawa couplings of the Higgs to the fermions and the Higgs kinetic term, respectively.
We can perform a singular value decomposition on the fermion mass matrices and absorb the
appearing unitary matrices by redefining the fermion fields with unitary matrices. We find
that we can write the Yukawa couplings as follow

}/é = diag(yea y,uu yT) ) Yu = dlag(yua Ye, yt) ) Yd = VCKMdiag(ydv Ys, yb) (22>

where Vogw is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which in the standard para-
meterisation looks as follows

-0

C12€13 $12C13 s1ze”"
—_ '6 6

VokM = | —s12¢23 — c12523513€"  Cc12¢03 — S12523513€"°  Sa3C13 | - (2.3)

i0 i0
512823 — C12€23513€ —C12823 — 812€23513€ C23C13

We have chosen to work in the so-called up-basis, where the up-type Yukawa coupling is exactly diagonal
and the CKM matrix Vekm appears in the down-type Yukawa. By making a further redefinition of the quark
fields on can also make the opposite choice, where the down-type Yukawa is exactly diagonal and VéKM appears
in front of the diagonal up-type Yukawa.
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Here, the s;; and ¢;; are the sine and cosine of the mixing angle of generation ¢ and j and o
is the CKM phase. The CKM matrix appears due to the misalignment of the left-handed up-
and down-type quark fields, appearing together in the left-handed quark doublet () above the
scale of electroweak symmetry breaking. While removing the unitary matrices appearing in
the singular value decomposition of the Yukawa couplings, the misalignment of the left-handed
quark fields leaves the combination Vogym = UuLUdTL, where U; are the unitary matrices used
in the quark field redefinitions to remove unphysical parameters in the Yukawa couplings.

The presence of the CKM matrix in the SM has important physical implications. As
we will see in the next section, the presence of the phase § in the CKM matrix violates a
fundamental symmetry of quantum field theory, CP symmetry.

2.1.2 CP Violation in the Standard Model

Effects of CP violation have first been observed in decays of Kaons |27|. Even though all
experimental findings at current accuracy can be explained by the CP violation sourced by
the SM [25], its origin is still unclear. Understanding effects of CP violation is extremely
important, as it might help us understand some potentially hidden structure in the SM quark
Yukawa sector that allows us to give an explanation to the so-called flavour puzzle of the
SM. Furthermore, it is a vital ingredient in understanding why there exists more matter than
antimatter in our universe and how it has been generated in the early universe [24|. We will
discuss these issues in more detail below. In this section, we will first lay the ground for
understanding the violation of CP in general QFTs and in particular the SM.

To understand this symmetry better, let us study its effect on the Yukawa sector of the
SM. Under CP transformations, fermions and scalars transform as follows |28|

(CP)Y(t,)(CP) = ey CPT (¢, -2)

(CP)p(t,3)(CP) = gl (t, -7) (2.4)

where C' is the antisymmetric charge conjugation matrix. Let us first ignore the choice of re-
defining the phase of the fields through a CP transformation. Applying these transformations
without the rephasing to the Yukawa sector of the SM yields the following conditions on the
Yukawa couplings

Yu,d,e = Y*,d,e (25)

u

if CP is to be a good symmetry of the model. This means that the phase in the CKM matrix
has to vanish in order for the SM to preserve CP. This is the well-known result that imaginary
couplings give rise to CP violation. The rest of the SM Lagrangian can be checked to be CP
invariant in the form of Eq. up to the last term which we will study below.

If we now also take the rephasing possibility of the CP transformation in Eq. into
account, we can see that we have to slightly modify the condition in Eq. (2.5). In fact, since
the fermions in the SM come in flavour multiplets, we can define a CP transformation up to

a unitary matrix in flavour space

(CPYYi(t, )(CP)' = Uiy Cof (8, -7), (2.6)
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where U is a unitary 3 x 3 matrix in flavour space Such a CP transformation is called a
generalised CP transformation. They have been formally introduced in Ref. |29] and have first
been used in Refs. [30} 31| in left-right symmetric models. The condition of CP conservation
is modified to

Yu,d,e = U;,Yz;d,eURa (27)

where Up gy is the unitary 3 x 3 matrix from transforming the left-handed (right-handed)
field in the Yukawa interactions. The modified statement about the conservation of CP is
that there must exist a flavour basis where the Yukawa couplings are real for CP to be a
symmetry of the Lagrangian Eq. should only be used in the ‘mass basis’ of the theory,
where all allowed flavour transformations have already been used to remove unphysical degrees
of freedom from the Lagrangian.

With this more general definition of CP it would be convenient to still have a simple
relation for CP violation like Eq. (2.5), that does not depend on generic unitary matrices
and is instead a basis-independent measure of perturbative CP violation in the SM. This is
achieved by the Jarlskog invariant |347736

Ji=ImTr ([ X, XaI%) = 6(y7 - v2) (i - vi) (W2 - ve) (Wi - v2) (vi —va) (W2 —v) T, (2.8)

where X, g =Y, dYJd and J = 3120125130%3523023 sind. Incredibly, the Jarlskog invariant
captures all possibiliéies of preserving CP perturbatively in the SM; it is zero when CP is
preserved and non-zero when CP is violated. Hence, it acts like an order parameter for
perturbative CP violation in the SM. One can easily check that the Jarlskog invariant is not
only zero when the CKM phase vanishes but also when there exist texture zeros in the CKM
matrix that let J vanish or when quark masses are degenerate or vanishing. This is due to
the fact that texture zeros and vanishing or degenerate quark masses lead to a larger exact
symmetry group of the SM w.r.t. the case of generic Yukawa couplings, allowing for additional
rephasings that can remove the CKM phase from the Lagrangian.

There is another source of CP violation in the SM Lagrangian that we have neglected so
far. The last term in Eq. , the so-called #-term, is also CP—Violating This can be easily

2This unitary matrix allows for new exact flavour symmetries of the Lagrangian. Indeed, applying CP
twice on the Lagrangian gives rise to a transformation in flavour space by the matrix UU*. The ordinary CP
transformation is the one, where UU”* = 1. However one can also define an order n CP transformation by
demanding that (UU*)™ = 1.

3In the presence of discrete symmetries not even that has to hold true. In that case there can exist pseudo-
real couplings with complex entries which cannot be removed in any basis, yet they still conserve CP. This is
due to the fact that because of the discrete symmetry the Lagrangian parameters are such that they can be
turned into their complex conjugate by this discrete transformation. Combining a CP transformation with
this discrete transformation leads to CP conservation. For more details see Rﬁ& 32}|33| and App. W

4We will derive the form of the invariant more systematically later in Sec.|2.5.1| where we will also discuss
the cases where the exact flavour symmetry group of the SM is increased, leading to CP conservation.

5Note, that in principle there could also be a corresponding term for the other SM gauge fields. There is no
corresponding term for the hypercharge gauge boson B, because there is no non-trivial way of wrapping a U (1)
gauge boson configuration on the symmetry group of the 4-dimensional space-time boundary (in mathematical
language: the corresponding homotopy group is trivial) [37|. The SU(2)r 6-term can be rotated away in the
SM due to the chirality and anomaly structure of the SM. Indeed, SU(2) only has a mixed anomaly with
B+ L transformations. Since, all SM interactions are B + L-conserving, the electroweak §-angle can be rotated
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seen by appreciating that the kinetic term of the gluons preserves CP. The only difference to
the 0-term is the 4-dimensional Levi-Civita symbol €*#79 which behaves as a tensor density
under space-time transformations. Tensor densities transform with the determinant of the
transformation matrix |41]. While C leaves the Levi-Civita tensor unchanged, the parity
transformation represented by P =diag(1,-1,-1,-1) yields a non-trivial transformation

B0 °r det Pe®PV0 = B0 (2.9)

However, this term does not appear in perturbation theory as it can be written as a total
derivative which vanishes at the boundary unless some non-trivial boundary conditions are
imposed. We will explore topological configurations with such non-trivial boundary conditions
in Sec. and their appearance in models of new physics in Chap. |8| The 6-term is at the
centre of one of the yet unsolved problems of the SM. Even though it is allowed by the SM
gauge symmetries and even anthropic arguments only give weak bounds on its coefficient [42],
CP violation is measured to be absent in the strong interactions to large accuracy. Indeed,
the best measurement of CP violation in the strong interaction, the electric dipole moment
(EDM) of the neutron implies the incredible bound of |43E|

6510717, (2.10)

where we have defined the physical # parameter 6 = 6+arg det (Y, Yy), which is invariant under
rephasings of the SM quark fields. On the other hand, the 6 parameter is expected to be of
O(1) from a naturalness point of view. This discrepancy is known as the strong CP problem.
Its most famous solution is the axion which we will explore in Sec. and aspects of it in
Part |L1] of this thesis.

2.1.3 Peeking at What Lies Beyond

Let us now look at the problems of the SM, that could give a hint in our search towards a
theory of everything. The problems of the SM can be loosely put into two categories: serious
problems of the SM, where the theory does not reproduce phenomena observed in Nature and
aesthetic problems of the theory, where the SM works perfectly fine as a phenomenological
description of Nature, but we are unsatisfied with some of its features. Let us start with the
first category.

One problem of the SM is that it does not explain the neutrino masses in Nature observed
in neutrino oscillations. Indeed, due to the gauge structure of the SM, no masses are generated

away and has no physical effect in the SM |3840|. This can change in UV completions of the SM, where B+ L
is violated.

5Note, that this value is due to an analysis where the f-term is taken as the single source for the neutron
EDM. While this is a good approximation in the SM due to the flavour suppression of CP violation in the
SM, this must not hold true for BSM physics. There, CP violation could be less (or even not at all) flavour
suppressed and has only evaded detection so far due to its decoupling behaviour going as E/A, where E is
the energy scale of the experiment and A is the scale associated with the new physics. Effects of heavy new
physics on the neutron EDM through other sources than the 6 term have been studied in effective theories in
Refs. |5]|44H48].
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for the left-handed neutrinos vy, of the SM. Only at the non-renormalisable level of the SM
Lagrangian neutrino masses can be generated, as we will explore in Sec.

Another issue is that the SM does not give an explanation for the baryon asymmetry of
the universe, based on the observation that there exists much more matter than anti-matter
in the universe. This can be understood with the mechanism of baryogenesis, explaining an
excess generation of baryons in the early universe, if the Zakharov conditions |24| hold true.
These require sizeable CP violation (beyond that provided by the SM, which is too small for a
successful baryogenesis), baryon number violation and a state of non-equilibrium between the
baryon number-violating reactions, such that more baryons than anti-baryons are generated.

The SM also does not have a dark matter candidate accounting for the 27% [49| of the
total energy density in the universe that exists in the form of matter that can only have
very feeble interactions with electromagnetic radiation. Effects of the dark matter can be
observed in rotation curves of galaxies |50| or through gravitational lensing effects of light
around galaxies [51].

Another mystery of Nature is what the fundamental quantum theory of gravity looks like
and if it can be unified with the other forces of Nature. We know that our current geometrical
understanding of gravity thanks to Einstein is just an effective theory that should break down
at the Planck scale, where quantum effects of gravity become strong |52|. However, it is highly
questionable if such scales can ever be directly probed experimentally. Therefore, trying to
understand the phenomena of gravity to high precision in an effective approach might help
us learn about its UV quantum theory.

Furthermore, even though the SM itself is by now well-tested, some details of it are not
fully understood yet. For instance, in the strong sector the details of QCD confinement are
yet to be fully appreciated and in the electroweak sector, for example, it has not been verified
yet if the realisation of electroweak symmetry breaking is indeed linear as in the SM or if it
should be of non-linear nature, which can be probed by the tri-linear coupling of the Higgs
boson [53].

Let us now come to the aesthetic problems of the SM, which can all be summarised by
our dissatisfaction of not understanding the value of parameters of the SM. For instance, it
is a mystery, why the Yukawa couplings are hierarchical and why they come in the existing
hierarchy. This is also referred to as the flavour puzzle. Even though it seems strange that such
a hierarchy should exist, it does not diminish the power of the SM at describing phenomena,
but it leaves us unsatisfied because we would like to have an explanation for those hierarchies,
ideally in terms of a dynamic theory that reduces the amount of parameters necessary to
describe Nature.

The same is true for the strong CP problem. We are unsatisfied with the smallness of the
0 parameter. What is even more puzzling in the case of the strong CP problem is that the
symmetry which could in principle forbid the #-term is broken in the SM. Hence, the vacuum
angle 0 could take on any large value that would not change Nature drastically.

There are another two hierarchy problems related to the quantum corrections of mass
parameters in QFT. The first one is the smallness of the cosmological constant compared to
the Planck mass and the other problem is the smallness of the Higgs mass compared to the
Planck mass.
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We will only comment on the second one here, because it is more straightforward to pin
down in QFT. The smallness of the Higgs mass compared to the Planck mass is called a
hierarchy problem because the Higgs receives quantum corrections to its mass, which unlike
the mass of gauge bosons or fermions are not protected by any symmetry in the SM. Therefore,
these corrections can naively be as large as the Planck mass or should at least be as large
as the mass of the new physics resonances we expect to resolve the problems of the SM. For
the Higgs mass to be at its physical value, some tuning is required between the bare mass
in the Lagrangian and the quantum corrections which can be much larger than the tree-level
contribution should new physics be sufficiently heavy.

However, in theories where the Higgs mass is not predicted by the theory and is just an
input parameter, as is the case of the SM as a phenomenological description of the Higgs
sector, the quantum corrections just amount to redefining this arbitrary input parameter. In
theories where the Higgs mass is predicted and correlated with other quantities in the theory,
the tuning problem is a real problem in keeping the prediction of the Higgs mass close to its
measured value while still keeping consistency with all other predictions of the theory with
measurements. Therefore, a more useful question might be to understand the fundamental
theory behind the phenomenological description of the Higgs sector in the SM, that provides
explanations for the details of breaking of EW symmetry, the stability of the Higgs potential
and in particular, the origin of the Higgs mass.

Indeed, the SM does not have any fundamental problems as a QFT, like Landau poles or
unitarity problems |54/, and could therefore work up to extremely high scales to make accur-
ate predictions for phenomena observed in particle physics, excluding the serious problems
discussed above.

Many theories have been proposed to address the problems listed in this section, however
in recent years no direct signal of new particles have been found in experiments. There are
two ways to add new physics while evading detection with current experiments. New physics
could either be light and extremely weakly coupled, such that even though we could directly
produce the new particles, the production cross-section is extremely small. BSM physics
could also be heavy, such that we can not produce it directly and we can only study the
effects of the heavy new physics by performing experiments to high precision in order to find
the new physics as small deviations from the theoretical prediction of the SM. In this thesis
we approach both of these scenarios by accepting the extreme success of the SM and taking its
effective nature seriously. We will study both decoupling heavy new particles in the effective
theory of the SM, but will also study two cases, where light particles exist that have to be
included in the effective description of physics at low energies. In the next section, we will
introduce the concept of effective field theories in more detail.

2.2 Effective Field Theory

In our endeavour of finding the fundamental theory of Nature it can be useful to take a step
back and take a precise look at our current understanding of phenomena. In fact, we do this
all the time in our every day life as a physicist. When trying to understand the macroscopic
properties of an electric circuit we would never start to think about the details of “how every
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single electron moves along the circuit”, which become irrelevant at macroscopic distances,
but instead use quantities like its resistance and Ohm’s Law. There are many more examples
of this among all of Physics, like the multipole expansion in Electrodynamics |55/, where a
complicated charge configuration can be approximated at long distances, or the Ginzburg-
Landau theory |56 in condensed matter theory, which is a phenomenological description of
type-1 superconductors, modelling them without the knowledge of the underlying Cooper
pairs, which are the degrees of freedom of the more fundamental Bardeen—Cooper—Schrieffer
description of superconductors. All of these examples have one common feature: there is a
separation of two characteristic scales, which we will call Ay and Ag > A in the following.
This scale separation allows to study the physics at the low scale A;, with the relevant degrees
of freedom decoupled from the high scale Ay, as we will see in a second. We will use this
basic concept in the context of QFT, to describe similar problems as we have just discussed
in the realm of particle physics, where a separation of two or more characteristic scales exists.

There are two ways to use EFTs, the bottom-up and the top-down approach. In the top-
down approach the full theory is known and an EFT can be helpful to reorganise the theory in
terms of the relevant degrees of freedom — this is for example the case in chiral perturbation
theory (yPT) of QCD —, to improve the convergence of the perturbative expansion — this
is often used in flavour physics to resum large logarithms —, or to study certain kinematical
setups of particle interactions of interest at colliders — this is for instance done in soft collinear
effective theory. In the bottom-up approach the full fundamental theory at a high energy scale
is not known. Instead, the effective theory is constructed by considering the known particle
spectrum and all symmetries of the theory at low energies. Then, the effective theory can be
used to investigate phenomena of Nature precisely in order to find small deviations from what
we think is the current best theory of Nature to get some hints about a more fundamental
theory instead of looking for new physics directly.

Let us discuss a more specific example that is of high historical importance showing that
EFTs have been used well before their technical development — Fermi’s 4-fermion interactions.
For a long time physicists were puzzled by the nuclear 5 decay, which lets a neutron decay to
a proton, an electron and an anti-neutrino — an at the time unknown particle. In the advent
of quantum field theory, it was Fermi’s genius to postulate this new particle and describe
the S decay as an interaction between the four mentioned particles [57}58|. In our modern
understanding, the theory can be understood as the transition of a down-quark to an up-quark
in the neutron with the simultaneous emission of the electron and neutrino. This interaction
can be described by the Lagrangian

Lermi = Gp dpyur vpy*er +hec. (2.11)

which is local, i.e. all fields interact at a single point space-time point. We want to stress
here that this interaction of four fermions only contains left-handed fermions. With the
development of the SM, we have understood the interactions to come from the charged current
interactions of the W boson with the left-handed quark and lepton doublets in Eq. (2.1). In
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the SM, the process can be described by the following transition amplitude

u v

144 .9 <. —iguy(.g_y )
= —i—=dv"Pru| —2- | —i—=0~7"Pre]| , 2.12
(ﬂ”L)me%y Vit 212

where d,u,v,e are external spinors of the fermions, Pr = # with +° the fifth gamma
matrix and we have used the propagator of the W boson in Feynman gauge. Expanding the
propagator of the W boson in the small quantity p? /m%/v <« 1 allows us to understand the
Lagrangian in Eq. as the effective interaction of the charged current interactions of the
SM mediated by the W boson. Note, that the effective 4-fermion interaction is a local contact
interaction at a single space-time point. Hence, at low energies we can understand the effects
of the heavy resonance as a space-time local interaction by shrinking down the propagator of
the heavy resonance, as the propagating heavy new particle can no longer be resolved at low
energies. Indeed, at low energies from the point of view of the Fermi Lagrangian in Eq. ,

we see
u v

=iGp (dy"Pru) (77" Pre) . (2.13)

d e

Should on the other hand another effective operator made from all the low-energy degrees
of freedom below the electroweak scale have been measured in experiment, we could have
learned about its origin through the Lorentz and gauge structure of this effective interaction. A
charged heavy scalar, for example, would have generated the effective operator drug vr.eg+h.c.
at low energies instead.

At this point we should question ourselves where the effective theory is valid. The series
expansion of the propagator obviously only makes sense when the energy scale of the process

p? is much small than the mass of the W boson. The characteristic scale of the theory set by

Gp ~ % yields an energy scale of about A ~ 300 GeV for the effective theory. Furthermore,

taking the EFT in Eq. at face value, the theory will run into unitarity issues (i.e.
probabilities will be larger than 1, making the theory nonsensical) at a scale 47TG;—,%. This is
an important point because p? ~ m%/v is where the heavy particle goes on resonance, whereas
G is the characteristic scale of the 4-fermion interaction. Comparing the couplings in the

effective and the full theory, we find that

Gr g° 1
Db S——— 2.14
V2 Sm%V 202 ( )

Therefore, parametrically my ~ gG *, which for a perturbative coupling g is much lower than

[SIE

the characteristic scale of the theory. In summary, even though the theory only breaks down
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_1 _1
at a scale 471G ;,?, the theory is UV-completed at a scale my < G .*, where the heavy particle

goes on resonance, and should only be trusted to the scale of the lightest new resonance.

All of these aspects have been formalised in the last few decades. The use of EFTs to
describe the effects of heavy new particles at energies well below their mass is based on the de-
coupling theorem [59]. However, there are exceptions to this theorem, in particular in the case
of chiral theories including couplings to the Higgs. One famous example is a fourth sequential
generations of chiral fermions, which receive their mass from the Higgs mechanism. Because
their mass generation is connected to the electroweak sector, they can never be decoupled
from the theory. In the meantime this scenario has been ruled out experimentally |60} 61]. A
catalogue of such non-decoupling particles can be found in Ref. [62].

Excluding such cases and working in a bottom-up approach the most general EFT can be
built by considering the known particle spectrum at low energies and building all operators
allowed by the Poincaré, gauge symmetries and optionally other global symmetries that one
believes should be considered Then, the EFT Lagrangian can be written down generically
in the following way

0D (A
Lerr =LY+ Y Cyj(d)(AHv M)# ;
d>a,i A%

(2.15)
where £ collects all the relevant and marginal couplings among the light degrees of freedom,
d is the mass dimension of the respective operator and Ay and Ay are the characteristic low-
and high-energy scales. p is the so-called matching or renormalisation scale, where the heavy
particles are integrated out from the theory and is often chosen to be the heavy scale p ~ Ag.
Finally, Ci(d) are the so-called Wilson coefficients of the effective operators, modelling the
correct non-analytic behaviour of the full theory at low energies in terms of only the light
degrees of freedom that enter the effective operators (’)Z.(d).

We naturally expect the Wilson coefficients to be of O(1) at the matching scale and
because only the light degrees of freedom appear in observables at low scales, we have (O(d)) ~
A‘z“l for Green’s functions with an insertion of an effective operator of mass dimension d. Since
the effective operators O(® of mass dimensions d are suppressed by A;}d_4), we can organise
our computations in the EFT by the parameter

A= — <1, (2.16)

which is called the power counting of the EFT. Even though this observation is quite simple,
it is an important and powerful aspect of effective theories.

"For example, the SMEFT is often used under the assumption of exact lepton and baryon number conserva-
tion (which are accidental symmetries of the SM Lagrangian), even though there exist operators at dimension
5 and 6 in the SMEFT breaking those symmetries explicitly. These symmetries are, however, only violated at
very high scales above ~ 10'* GeV in theories like grand unified theories {63, making them good symmetries
in practice.
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2.2.1 Operator Bases

While constructing the higher-dimensional operators there are some redundancies that one
should keep in mind in order not to work with an over-complete set of operators.

Integration by parts redundancies The first redundancy is rather straightforward and
concerns the use of integration by parts (IBP) in effective actions. As the action is defined as
the space-time integration over the Lagrangian density, one can always redefine the Lagrangian
in a way where the action is left invariant together with possible integral transformations. We
will discuss this for IBP transformations following an example presented in Ref. [64|. We define
a generic effective theory with an operator basis containing two Poincaré and gauge-invariant
operators O 2 satisfying the following relation

01 =03 +0,0% . (2.17)
In the action, we can then write with generic Wilson coefficients
§> [ d's 101+ 0= [ d'a C1(02+0,04) + G0z = [ d'a (C1+Cr) 0

(2.18)
v ¢ dwCm,0f = [ d's cjo;.
ov |4
Here, n,, is a normal vector of the boundary OV of the integration volume V. We have used
Gauss’s law and the fact that all fields do not have support on the integration boundary
at infinity. In the last step we have simply redefined the arbitrary Wilson coefficient of the
operator.

It is evident that only one of the operators has to be kept in a non-redundant operator
basis. We say that the two operators are equivalent by IBP if they have a redundancy as
in Eq. (2.17). The physical interpretation of this is more straightforward by studying the
amplitudes with an insertion of those operators. The redundancy in Eq. leads to a
relation between the amplitudes of the operators of the following form [64]

Fi ({pi}) NFQ({pi})+(Zpi,,u)F?ft({pi}) ) (2.19)

where the F; are polynomials of the momenta p;. Hence, IBP redundancies correspond to
momentum conservation > ; pf =0 at the level of the amplitudes.

Equation of motion redundancies The other more involved redundancy are equation of
motion (EOM) redundancies that can be removed when S-matrix elements instead of Green’s
functions are computed. This is due to the fact that imposing the kinematic on-shell relation
in S-matrix elements reduces the amount of independent Lorentz invariants that can appear,
allowing the same physics to be captured by a smaller amount of operators. One can prove that
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operators including the classical EOM of the theory can be removed via field redefinitions |65
which we will show here for a single scalar field along the lines of Ref. [67|. With the path
integral

Z[J] = f Dge'f £o1Te (2.20)

of a QFT in mind, the fields can be understood as mere integration variables and redefinitions
of them are allowed. One particularly useful class of field redefinitions that can be used to
remove the EOM redundancy we just mentioned are those proportional to the EOM of the
field obtained by varying the action g—g. It is quite straightforward to see that operators

proportional to the EOM
0S

@ )

cannot contribute to S-matrix elements and can instead be traded for operators with less

0[¢] = Fl¢] (2.21)

derivatives, reducing the size of the overall operator basis significantly. To see this we simply
employ the following Ward identity for Green’s functions that will later be reduced to S-matrix
elements

(O1T {6 (1) ... (2)0[0]}H0) =i 30 6 (& = &) (OIT{d (1) ... $la7) .. $(wn) F(2:)]}0).
' (2.22)
To obtain the S-matrix element, the LSZ reduction formula has to be applied putting all
external particles on their mass shell. In order to do this, the Green’s function has to be
multiplied by inverse propagators p? —m? for every external particle cancelling the poles in
the propagators of the external particles. However, each term in the sum on the right-hand
side of Eq. misses one of these poles due to the contact term in the form of the 6-
function. Hence, S-matrix elements with insertions of operators proportional to the classical
EOM of the theory vanish and these operators can be excluded from the operator basis. The
proof for fermions and vector fields goes along the same lines and we will not show it here.

Note, that this does not hold true when calculating (off-shell) Green’s functions as a vital
step in the proof was putting the fields on shell and amputating the external propagators. In
that case, EOM operators have to be kept and this enlarged basis is usually called an off-shell
or Green’s basis with respect to the physical or on-shell basis mentioned before.

Besides the redundancies mentioned so far, there exist also redundancies due to relations
in the different group algebras under which the fields transform. For instance, there exist
Fierz identities among 4-fermion operators due to relations in the Clifford algebra, which
relate certain operator structure reducing the amount of operators that have to be considered
in a complete operator basis. Similar relations also exist for the gauge groups.

There is one last redundancy connected to the choice of operator basis, which is relevant
to radiative loop computations with insertions of effective operators. In dimensional regular-

8Removing redundant operators will generally lead to infinite (in the sense of having a 1/e pole in dimen-
sional regularisation) anomalous dimensions of fields or Green’s functions with remaining infinities (because
the corresponding operator structures acting as counter terms have been removed via field redefinitions) |66].
Once the S-matrix is computed, these infinities will drop out as expected since the S-matrix is invariant under
field redefinitions. For an example of such an infinite field redefinition that yields infinite Green’s functions,
see the end of Chapter 6 of Ref. [67|. We have encountered a similar example in Ref. |5|.
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isation |18|, where divergent integrals are regulated by going to d = 4 — 2¢ dimensions, some
identities used to simplify Dirac and Lorentz structures appearing in computations change.
For instance, in 4 dimensions Tr (y#4") = 4n*", while in d dimensions Tr (y#~+") = (4 -2¢)n*".
Whenever these additional e pieces hit 1/e poles in loop computations before € is taken to
zero, the finite terms are changed. Evanescent operators exactly capture the additional pieces
proportional to € coming from identities of space-time dimension-dependent objects in the
operator basis. They live in d dimensions and disappear when ¢ is taken to zero.

2.2.2 Matching and Running

In this section, we will introduce important technical aspects of EFTs that will be used
throughout this thesis: matching and running. In short, matching is the process of linking
the effective theory to specific UV models by expressing the Wilson coefficient in terms of
fundamental UV parameters and we denote as running the handling of the behaviour of Wilson
coefficients under the change of energy scales, which can be used to resum large logarithms
that can appear in computations.

Matching We have already seen one example of matching in the Fermi theory above, but
will state the procedure in more generality here. The goal of matching is to determine the
Wilson coefficients of the effective theory, such that the effective theory models the behaviour
of the full theory at low energies without including the heavy degrees of freedom. There are
different approaches to achieve this. The simplest approach, that traditionally has been most
popular, is the one of matching renormalised on-shell matrix elements. For the matching, as
many independent processes are chosen as there are independent Wilson coefficients in the
EFT at a given precision. Then, the renormalised on-shell amplitudes of the full theory and
the effective theory are equated at the matching scale s

IMEET (par) = iMES () (2.23)

where the amplitude in the full theory is expanded in the low energy scale(s) divided by
the heavy mass scale of the particle that is integrated out and in the EFT the amplitude is
computed only with the operators up to the mass dimension needed to reach the accuracy
of interest. To leading order, only the tree-level amplitudes of the EFT and full theory are
considered and the Wilson coefficients are determined in terms of the full theory couplings.
If a higher accuracy is desired, the amplitudes for the given processes used for the matching
have to be computed to a higher loop order, after which the Wilson coefficients are again
determined as a function of the full theory parameters. To get accurate EFT results, the scale
dependence of the Wilson coefficients should be considered, as will be discussed below.
Another possibility is functional matching, in which the heavy particles are directly integ-
rated out in the path integral. This is why matching is also often referred to as integrating
out the heavy particle from the theory. Arguments based on the path integral approach are
often used to perform the tree-level matching between the full theory and the EFT. Let us
define a simple UV theory with action Syv (¢, ), where ¢ is a light field and ® is a heavy



20 2.2 Effective Field Theory

field, that can be integrated out from the theory as follows
etSEFT(9) / DP Suv(e®) (2.24)

To obtain the leading tree-level matching we can expand the UV action around its classical
configuration, that dominates the path integral. To this end, we compute the classical equation
of motion of the heavy field %&@ =0 and formally solve it for the heavy field ® = ®.(¢).
Plugging the classical solution for the heavy field back into the action yields the tree-level-
matched effective action of the theory

SEET (0) = Suv(e, @ = Be(9)) (2.25)

corresponding to the saddle point approximation of the path integral. To obtain the loop-level
matching, we have to also consider the quantum fluctuations n around the classical solution
®.. of the heavy fields, i.e. we split ® = ®. + 7. Then, we find |68|
ePSEFT(0) _ iSuv(6,P=Pc) f’Dn exp £52_S|q>_q> 772 +(’)(7]3) . (2.26)
2092 7F
which is a Gaussian integral in the quantum fluctuations that can be solved systematically |69|

70]. Recently, some computer programmes have been developed, both based on diagrammatic
matching |71] and functional matching |72+74|, that automate the matching procedure.

Running Usually, observables are measured at low scales, while the EFT operators are
generated by integrating out some heavy particles at comparably high scales. Therefore, it is
important to correctly keep track of the scale dependence of the Wilson coefficients to make
accurate predictions for observables in terms of the EFT parameters. To keep track of the
scale dependence of the Wilson coefficients, one defines the so-called renormalisation group
equation (RGE) of the Wilson coefficients C;

W =G, (2.27)
where ;5 is the anomalous dimension of the Wilson coefficients. We want to emphasise here,
that in the RGE of Wilson coefficient C; other Wilson coefficients C; can appear, which is
usually denoted as operator mixing. This has the important consequence that even if some
Wilson coefficient vanishes at the matching scale, it can be generated by the appearance of
another Wilson coefficient in the RGEs, which is non-zero at the matching scale. The RGEs
of an EFT can be computed by removing the UV divergences appearing in loop computations
by a renormalisation procedure of the couplings and fields of the theory. In particular, we
defind’]

30 =\/Ze®, CO =z uC (2.28)

9Here and in the following, C' and Z¢ can be matrices in the space of EFT operators.
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where the superscript (0) denotes bare objects, while the objects without a superscript are the
renormalised couplings and fields. Furthermore, € = (4 — d)/2 is the regulator of dimensional
regularisation, n is an integer that depends on the mass dimension of the operator to be
renormalised and the Z; are the renormalisation constants of the couplings and fields. By
demanding that the bare coupling does not depend on the scale of renormalisation, we find

dc© Md(/ﬂ“ZCC) _

ac dz
(ne +O (ZC)‘IM—C) W ZeC 0. (2.29)
du du du du

After simplifying this expression, we find

dC 1dZco dC
— =-neC - (Z, —u—->=0C 2.30
" eC - (Zc) ac M an (2.30)
which can be used to compute the RGE of the EFT, by renormalising the theory at a given
loop order to obtain the renormalisation constant Z¢ and subsequently evaluating Eq. (2.30)
with the explicit expressions. The RGEs of the EFT Wilson coefficients are indispensable at
making accurate predictions within the EFT and are, for instance, commonly used to resum

2 \P
terms with large logarithms of the type (1(5)?; log ﬁ—g) 167,175
L

Note, that in EFT computations the RGEs are often used to estimate the EFT contribution
to processes. Here, the ‘leading log’ approximation is used, where Eq. (2.27) is solved by
evolving the Wilson coefficient with the presciption

Ci(Ar) ~ Ci(Am) +i5C; log(j\\—f) (2.31)
from a high scale Ay (where the EFT is matched to another EFT or a UV-complete theory)
to the low scale Ay, where observables are computed. Then for a sufficient separation of
scales, the logarithm in the expression gives the dominant piece, whereas the finite threshold
correction C;(A g ) at the matching scale is often ignored. However, depending on the operator,
the logarithm does not always have to become extremely large. For instance, taking the scale
of new physics Ag to be 10 TeV and roughly take 100 GeV for the heavy particles in the SM,
we get

A2 10 TeV \?
log ——— w log [ ————) = 21og(100) ~ 10. 2.32
Bz, 8 ( 100 Gev ) 0g(100) (232)

Therefore, assuming a rational term of O(1) gives a correction of O(10%). Moreover, when
an operator does not run under the RG flow at all, the finite threshold contribution can even
be the leading piece. We have studied this in Ref. |5/ in the context of electric dipole moments
at 1-loop in the SMEFT.

A comment about the renormalisability of EFTs is in order. It can be shown that a
sufficient but not necessary condition for a theory to be renormalisable is, that it only con-
tains operators of mass dimension 4 and lower. This can be done by counting the so-called
superficial degree of divergence |76|. A proof was first sketched by Dyson for quantum electro-
dynamics |77 and later formalised and generalised to other theories (see for instance Ref. |78]).
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From a modern point of view of renormalisability, a theory is renormalisable when enough
renormalisation constants in the theory exist to absorb all divergences that appear in perturb-
ative loop computations, even if an infinite number of those constants is needed |79|. In this
sense effective theories are also renormalisable. Starting from a 4-dimensional Lagrangian,
that we know is renormalisable by considering the superficial degree of divergence, one can
start adding effective operators at the next order in the power counting. By inserting a single
power of these operators into loop diagrams, one can absorb all UV divergences by absorbing
them into the counterterm of these operators. An apparent problem appears when two or
more of these operators are inserted. Then, UV divergences are generated that can only be
absorbed by adding a counterterm from an operator that appears at the mass dimension that
is obtained by summing the mass dimension of the inserted operators. Therefore, more and
more operators have to be added to absorb all divergences and the theory seems to become
non-predictive.

To resolve this apparent problem, one has to keep the power counting of EFTs in mind.
On top of the small couplings of the renormalisable Lagrangian that are used as an expansion
parameter in perturbation theory of QFTs, the EFT is also an expansion in its power counting
parameter. As mentioned before, in an EFT computation the working precision in the power
counting is always specified and any effects that are more suppressed in the power counting
of the EFT can be ignored. Therefore, multiple insertions of EFT operators that seem to be
problematic can actually be ignored at a fixed working precision and no counterterm operator
of higher mass dimension has to be added. Thus, the renormalisability of EFTs is saved.

2.2.3 The Standard Model Effective Field Theory

As was made clear throughout this chapter, we know that new physics beyond the SM must
exist. However, no clear direct signal has been observed in recent years in experiments guiding
us the way to the right UV completion, that resolves (some of) the issues of the SM. In this
case, the effective nature of the SM should be taken seriously, and the higher order interactions
among the SM degrees of freedom should be taken into account, which effectively capture the
effect of some decoupled heavy new physics. In this setup, one can look for deviations of
measurements from the SM prediction in a fairly model-independent way. There is another
useful aspect of the SMEFT: it can be used as a book keeping tool for new physics models.
Should at some point an experimental anomaly with substantial significance be found, the
SMEFT can be used to easily identify which UV completions can lead to such an anomaly
thanks to dictionaries |80} [81] translating between the SMEFT operators, in terms of which
the anomaly can be easily computed at the leading EFT order, and specific (simplified) UV
completions.

In the following, we will assume that the electroweak symmetry is linearly realised, i.e. we
will work with the Higgs doublet of the SM. Some UV models require a non-linear realisation
of the EW symmetry group, which does not allow for a matching of these models to the
SMEFT (82, 83|. Instead, an EFT based on the gauge group SU(3).xU (1)en, should be built,
where the physical Higgs h is treated as a singlet under the gauge group independently of the
Goldstone modes of the EW gauge bosons, which are packaged into a matrix of Goldstone
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bosons U = exp (ir'r?/v) [84]. This EFT is usually referred to as the chiral SM effective
Lagrangian or the Higgs effective field theory (HEFT).

Assuming that EW symmetry is indeed realised linearly, the SMEFT Lagrangian can be
obtained by constructing all operators made from the SM fields allowed by Poincaré and SM
gauge symmetries and removing all IBP and EOM redundancies. The SMEFT Lagrangian
can be expanded as follows

£ r6)
Lsmert = Lsm + Tt (2.33)

A
where the power counting of the theory is simply E/A with E the characteristic energy of
the process under consideration and A the characteristic scale, where new physics is expected
to appear. Due to recent experimental non-observations of new particles beyond the SM we
expect A > E, making the SMEFT expansion well-behaved.
At mass dimension 5 only one operator is allowed by Poincaré invariance and the SM
gauge symmetries. This is the so-called Weinberg operator |63]

05 =(L°H*) (H'L) , (2.34)

providing a Majorana mass for the left-handed SM neutrinos after EWSB. This operator
breaks lepton number and is therefore often excluded from SMEFT analyses.

At mass dimension 6 all hell breaks loose and there exist 84 operators for one generation
of fermions and 3045 operators for the three generations present in the SM [85]. A first
basis at dimension 6 has been constructed a few decades ago [86], but has only been made
completely non-redundant in the last decade |87|. With the development of tools like the
Hilbert series and methods based on Young tableaux, operator bases up to dimension 12 have
been derived [88+93].

Furthermore, the 1-loop RGEs for the dimension-6 Wilson coefficients in the Warsaw
basis have been computed in Refs. [94197|, which are invaluable in making accurate SMEFT
predictions at low energy scales (compared to where new physics is expected), where all
experiments conducted by humanity run.

Before we continue with discussing CP violation in the SMEFT, we first want to discuss
how to use EFTs in practice. In this thesis we will use EFTs in the bottom-up approach,
where the following procedure should be adhered to. At first, the desired accuracy of the
computation is fixed, both in the loop expansion and the EFT power counting. Fixing the
accuracy in the power counting fixes the mass dimension up to which operators should be
kept in the EFT after which a complete and non-redundant operator basis can be built.

For a desired precision of A\? = v2/A% ~ 0.1%, A can be at most up to a few TeV, in which
case logarithms generated by the scale dependence of Wilson coefficients are relatively small
log (A/my ) ~ 3 |68]. To achieve per mille level precision in the loop counting, it is sufficient
to compute up to the 1-loop order. Hence, for an operator which is typically generated at
tree-level |98|, processes should be computed at 1-loop accuracy, whereas for operators which
are generated at higher loops tree-level accuracy is sufficient.

To reduce the complexity of the EFT, which in light of the 3045 Wilson coefficients of the
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SMEFT at dimension 6 is often desirable, some minimal assumptions can be made about the
UV physics. Usually, lepton and baryon number are assumed to be conserved, motivated by
the non-observation of such processes to high accuracy. Since most of the complexity in the
SMEFT comes from the flavourful Wilson coefficients, many assumptions concern the flavour
sector of the UV scenario. Some common assumptions are flavour-universal couplings — where
all flavourful couplings are proportional to the identity—, minimal flavour violation (MFV) |99+
101] — where the SM Yukawa couplings are taken to be the only flavourful parameters in the
Uf and an anarchic flavour scenario — where all entries of the flavourful Wilson coefficient
matrix are simply of O(1). Another possibility is to focus on some sector of the EFT, like
the Higgs sector, for which the assumption of strong coupling in the UV, for instance, allows
for the organisation of the operators into the SILH basis [102].

Then, sufficiently many observables are computed in the EFT to constrain all the free
parameters in the EFT at the given accuracy and after potentially applying some assumptions
about the UV. One can either perform a global fit in the bottom-up approach to study small
deviations from the SM predictions or set one-operator bounds by only turning on one operator
at a time to get a feeling for the limit on the scale of new physics. In the top-down approach
one can integrate out specific models and study their behaviour at low energies.

A particularly interesting class of UV completions are those which come with additional
sources of CP violation w.r.t. the SM. CP is violated by the weak interactions in the SM,
hence it should not come as a surprise if there exists more CP violation in BSM physics.
Indeed, there are many good motivations to look for CP violation beyond the SM. On the one
hand, CP violation from BSM physics is necessary to understand the baryon asymmetry of the
Universe through baryogenesis. On the other hand, we have never been closer to identifying
if there is CP violation in the neutrino sector, which also necessarily hints at new physics,
because interactions giving rise to neutrino masses do not exist within the SM (c.f. Sec. .
Furthermore, the strong CP problem is another problem connected to this symmetry, that
calls for further study.

Another important aspect is that due to the flavour suppression of CP violation in the SM
captured by the Jarlskog invariant, most CP-violating observables have a tiny SM background.
This makes them exceptional probes of new physics, as any signal in the big window to the
SM background would be a clear sign of new physics. Some key CP-violating observables
are EDMs of leptons and composite objects like nucleons and atoms, CP violation in meson
systems, and asymmetries of differential cross sections with respect to CP-odd triple products
measured at particle colliders. Hence, it is an important task to study CP-violating new
physics in a systematic way by employing EFT tools, which we will discuss now in the context
of the SMEFT.

CP violation in the SMEFT The non-renormalisable interactions of the SM degrees of
freedom give rise to new sources of CP violation, that effectively capture the sources of CP
violation of decoupling UV theories with a linearly realised EW symmetry. At dimension

OMFV can be understood as having flavour-universal couplings in the UV, which after matching at the UV
are evolved to low energies with the RGEs of the EFT. Since the only non-trivial flavour tensors in the RGEs
will be the Yukawa couplings, the Wilson coefficients at a lower energy scale will follow MEF'V.
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5, the Weinberg operator contains 6 CP-odd couplings that can be identified by applying
the CP transformation rules introduced in Eq. . At dimension 6 there already exist
1149 CP-odd couplings for the three generations of fermions in the SM [97|. Out of these,
six correspond to bosonic operators and the remaining sources of CP violation come from
operators with fermions, subject to the ambiguity of a choice of flavour basis resolved by
the Jarlskog invariant in the SM. Since all observables should not depend on any choice of
mathematical basis, they should be expressible in terms of flavour invariant quantities which
are independent of the choice of a flavour basis, capturing all source of CP violation in the
SMEFT at a given order in the EFT expansion. For instance, many observables in particle
physics are defined through scattering processes, which are characterised by (differential)
scattering cross sections and quantities derived thereof, which depend on the modulus square
of the matrix element. When a computation is performed in the SMEFT, the leading order
SMEFT correction will usually appear at dimension 6 and the amplitude including the leading
order correction to the SM can be written as M = My + Mg, where My is the SM piece and
Mg is the SMEFT piece. Then, the square of the matrix element reads

IMJ? = | My + Mg|* = [IMy]* + 2Re (M4Mg)+(’)(%). (2.35)
Here, the dominating piece of the SMEFT corrections is usually the interference piece between
the SM and the SMEFT, if the process allows for an interference between the SM and SMEFT
contributions and if the dimension-8 contributions are more suppressed than the interference
term, which is usually the case. The invariants also give hope for an organising principle
as to which sources of CP violation are the most important, due to the flavour suppression
introduced by the SM Yukawa couplings appearing in the flavour invariants.

Therefore, it will be interesting to construct objects which are linear in the CP-odd
dimension-6 Wilson coefficients and do not depend on the choice of flavour basis. Such a
categorisation has recently been performed in Refs. [103| |104|, which we will briefly review
here. The goal is to construct a minimal set of flavour invariants capturing the sources of
CP violation in the SMEFT at O(1/A%). Inspired by the Jarlskog invariant, the SMEFT
invariants should also capture all sources of CP violation in the case of an increased exact
flavour group of the SM due to degenerate masses or texture zeros in the CKM matrix.

To show that a constructed set of flavour invariants captures the necessary and sufficient
condition for CP conservation in the presence of a given effective operator, we will use the
transfer matrix introduced in Ref. [103| making use of the linearity of the flavour invariants
in the Wilson coefficient. The transfer matrix is defined as the linear map between the entries
of the Wilson coeflicients arranged into a vector and the invariants

7,(C)=T,Ci, (2.36)

where 7 is the transfer matrix and C’l = (ReCy1,ReCiy ..., ImC11,ImCy2 ...) is the vector
of the entries of the Wilson coefficient, which we have shown here for an operator with a
fermion bilinear. The transfer matrix has a block-diagonal form 7 = (TR T! ), where for the
majority of this thesis we will ignore the block 7 because it corresponds to the CP-even
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EFT flavour invariants. Due to the linearity of the transfer matrix in the Wilson coefficient,
it can only depend on the SM Yukawa couplings. By checking if the block 77 of the transfer
matrix has full rank, i.e. the rank is equal to the number of phases in the Wilson coefficients
that cannot be removed by field redefinitions, for rando numerical values of the Yukawa
couplings, we can check if the set indeed captures all necessary and sufficient condition for CP
conservation. For more details see Ref. [103|, where also the maximal ranks for all CP-odd
operators in the Warsaw basis of the dimension-6 SMEFT are given.

We will discuss three examples to illustrate the main results of Ref. |103|. For the first
example, we will discuss the Yukawa-like operator O, g = |H IQQ]:I u, whose Wilson coeflicient
has nine complex parameters. All of the nine CP-violating parameters are physical and cannot
be removed with flavour transformation from the Lagrangian. Hence, we can find nine flavour
invariants that capture those sources of CP violation

Loooo (CurrYy)) s L1ooo (CurrYy)) s Lotoo (Cunr Yy )
L1100 (CurrYy ) s Lotio (CurYy ) s Lasoo (CurVy)) (2.37)
Lo220 (CuHYJ) s L1220 (CuHYJ) s Lo122 (CuHYJ) .

Here, L(C) is defined as Lgpa(C) = ImTr (X2XXX4C). Together with the Jarlskog in-
variant Jy defined above, the roots of these invariant capture the necessary and sufficient
conditions for CP conservation in the SM extended with the operator O,y. We want to
note here, the flavour suppression of some of these invariants due to the smallness of the SM
Yukawa couplings. Comparing them to the Jarlskog invariant shows that new CP violation
could well be less suppressed than in the SM, given that the EFT scale suppression together
with the flavour suppression in the SMEFT invariants is not as severe as that of the Jarlskog
invariant in the SM. This is also true for non-zero Jy4, as is realised in Nature, where the
simple presence of a new CP-even flavour structure in the UV, is enough to have CP violation
less suppressed than in the SM |104|. We want to highlight another aspect here, which the
SMEFT invariants make transparent: just like in the SM, CP violation is a collective effect
in the SMEFT, which requires the conspiracy of several Lagrangian parameters in order for
the symmetry to be violated.

As the second example, we consider the hermitian operator (9(13, whose Wilson coefficient
due to the hermitian property only has three off-diagonal CP-odd parameters. Again, all
sources of CP violation are physical and can be written in a flavour-invariant way

L1100 (01(}3) » L2200 (01(}3) ;L1122 (C[(};) : (2.38)

Note, that the first invariant in this set contains terms which have the least amount of SM
Yukawa couplings among the invariants in this set and hence is the least suppressed by small
quantities. Therefore, in a computation, we would expect this invariant to appear earliest
in computations, due to its small amount of SM coupling insertions, and also be the most
important numerically, since it is the least suppressed. However, one has to keep in mind,

"The values have to be random in a way where they do not give rise to exact flavour symmetries of the
renormalisable SM Lagrangian.
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that these SMEFT invariants could still appear in observables divided by other SM flavour
invariants, such that the hierarchy of which is the most important invariant could be changed.
In Chap. |8} we will show a scenario, where all the SMEFT flavour invariants indeed appear
in computations without further suppressions by other SM invariants.

Finally, we want to discuss the lepton dipole operator O.p, whose Wilson coefficient also
allows for nine phases. If one tries to write down all possible CP-odd flavour invariants linear
in the Wilson coefficient, one will find the following set of invariants

ImTr (CepY)), ImTr(XcCepYd), ImTr(X2CepY)). (2.39)

Due to the structure of the lepton Yukawa sector, no other independent CP-odd flavour invari-
ants can be written down at the leading order in the dimension-6 SMEFT Wilson coefficient.
Hence, at the leading order not all phases in this leptonic Wilson coefficient can appear in a
flavour-invariant way in observables. We will call phases which can appear in flavour invari-
ants linear in the Wilson coefficients primary phases and all phases which can only appear
in a flavour-invariant way at higher orders in the EFT secondary phases. Due to this non-
interference effect in the leptonic sector of the SMEFT, only 705 out of the 1149 sources of
CP violation can appear in a flavour-invariant way at the leading order in the EFT [103].
This has recently been confirmed by a Hilbert series counting of CP-violating couplings in the
SMEFT [105].

This changes in the presence of neutrino masses. Depending on the Dirac or Majorana
nature of this mass term, the non-interference effect at the leading order in the EFT could be
lifted, as we will explore in Chap.

2.3 Neutrino Masses

Due to SU(2) 1, gauge invariance, the left-handed neutrinos v, appearing in the lepton doublet
L do not receive a mass term in the renormalisable SM. This follows directly from the fact
that all fermion mass terms in the SM are chiral and the left-handed neutrino does not have
a right-chiral partner as all other SM fermions do. Indeed, expanding the Higgs in the lepton
Yukawa coupling in Eq. around its VEV, we find (only keeping terms proportional to
the VEV)

V2

but no corresponding term including the neutrino vy,. This is in contradiction with measure-

Lsv 2> -LY,He+h.c.=-eY,—Ppe+h.c., (2.40)

ments of neutrino oscillations [106} 107, which are only compatible with massive neutrinos.

There are two fundamentally different ways to realise a mass for the neutrinos. The first
one can be understood by going to low energies, where the left-handed neutrino is a singlet of
the SM gauge group. Them, one can write down a mass term even without adding any new
matter to the theory

1
L, =vidvy - (5DLmyui + h.c.) . (2.41)

If one tries to find the UV roots of this operator in terms of the building blocks which linearly
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realise the electroweak symmetry, the search will only be successful at the non-renormalisable
level with the Weinberg operator Os introduced in Eq. (2.34). This term gives rise to a
Majorana mass term for the left-handed neutrino

2
Lv>o DLial/L + (0505 + hC) = DLi(?Z/L - (172 U2i5

vp + h.c.) , (2.42)

where we have again only kept terms proportional to the Higgs VEV. The most simple UV
completions of this term are the seesaw models, where a heavy singlet right-handed neut-
rino [1081113|, a heavy SU(2) triplet right-handed neutrino [1144117| or an SU(2) triplet
scalar |118| is added to the theory, generating the Weinberg operator at tree level when integ-
rated out. There are also models generating the neutrino masses at loop level, going under
the name of scotogenic models [115}|119+121|. See also Refs. [1221124]| for systematic studies
of the radiative generation of the Weinberg operator at higher loop orders and Ref. [125| for
a review of radiative neutrino mass models.

The other possibility is to add a light right-chiral partner of the left-handed neutrino to
the theory. This light sterile neutrino allows to write down the following Lagrangian

_ _ - 1 -
Losm = Lsm + NiN - (LYNHN + 5NCMNN + h.c.) , (2.43)

which goes under the name of ¥SM [126+130| in the literature. Just like in the SM, the
additional couplings that are added to the theory by extending it with right-handed neutrinos
can introduce new sources of CP violation in the theory. This calls for a basis-invariant study
of CP violation as we have discussed for the SM in Sec. CP violation in the neutrino
sector is particularly interesting, as current experimental measurements are not yet conclusive
about the size or even existence of CP violation in the neutrino sector. We will study this in
more detail now.

After applying a single value decomposition on the matrices appearing in the Lagrangian
a mixing matrix, like the CKM matrix in the quark sector appears. The exact form of the
matrix depends strongly on the mechanism responsible for neutrino mass generation and in
particular the Majorana or Dirac character of neutrinos. We will discuss this in detail in
App. Here, we will restrict ourselves to the case, where there exist 3 light Majorana
neutrinos at low energies. This is for instance the case when the mass of the SM neutrinos is
generated through the Weinberg operator by some UV completions like the seesaw mechanism.
Then, the mixing matrix, the Pontecorvo-Maki-Nakagawa—Sakata (PMNS) matrix, can be
written as follows in the standard parameterisation [25]

c12€13 512€13 si3e” @) e 0 0

5

UpMNS = | —s12¢3 — C12593513€™  C12co3 — S12513503€™  sozcrs || 0 e 0, (2.44)

)

. 5
512523 — C12C23513€"°  —C12523 — S12€23513€"  C23C13 0 0 1

which is a CKM-like matrix with 3 mixing angles and a phase, which we will refer to as the
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Dirac phase, multiplied by another matrix with two more phases. The two phases 7o are
only present due to the Majorana character of the neutrinos which does not allow to rotate
them away by rephasings of the fields. If instead there exist light right-handed neutrinos and
lepton number is conserved, i.e. a Majorana mass term is forbidden, the Lagrangian of the
theory is that in Eq. with My set to zero. Then, the lepton Yukawa sector has the
same structure as that of the quark sector and the PMNS matrix has the same form as the
CKM matrix.

The PMNS matrix has important physical consequences. If the PMNS matrix is non-
trivial, it will lead to oscillations of neutrinos between different flavour states. We will briefly
review this effect here following the review in Ref. [25]|. Let us define a weak neutrino eigenstate
v, related to the mass eigenstates v; by the PMNS matrix

va) = Ugilvi) - (2.45)

After the state is produced by the weak interaction, we can evolve the state in time in its
mass basis. After some time ¢, where the neutrino has travelled a distance L = t we can
describe the state as

Va(t)) = Ugilvi(t)), (2.46)

where we assume that the wave function of the neutrino is simply that of a plane wave
lvi(t)) = e7*Fit|1;(0)). Starting with a neutrino in the weak eigenstate |v,), the probability of
a neutrino being in the flavour state |vg) after some time ¢ has passed is

Pag = {plva(®) = U8 Ui vslvi ()P (2.47)

Taking the neutrinos to be relativistic and approximately of the same energy, i.e. |p;| ~|p;| =
p~ E, we can expand the energies of the neutrinos appearing in the time evolution as follows
2

ms

Then, assuming proper normalisation of the neutrino mass states we find for the oscillation

probability
3 ) 3
Pag=6ap—4 Y. Re(UniUjUiUsj)sin® (Xij) +2 > Im(UasUp3UzUps) sin (2X55)
i,j=1,i<j i,j=1,i<j
(2.49)
(m2-m?)L . . . .
where X;; = —77—. Measurements of these oscillations allow to constrain the difference

in the square of the masses, as well as the mixing angles and Dirac phase of the PMNS
matrix. Measurements can either be made by using neutrinos generated in the sun, which
requires the prediction of the neutrino flux of the sun, or neutrinos from nuclear reactors,
which allow for an easier estimate of the flux due to the better controlled environment, and

subsequently detecting them with large detectors sensitive to the elusive particles. Note here,

2Due to their small mass we can take neutrinos to be relativistic.
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Figure 2.1: Feynman diagram of a neutrinoless double beta decay, which is only possible due to the Majorana
nature of the intermediate neutrino.

that the measurements only allow to measure the difference in the square of the masses of the
neutrinos. Current measurements are compatible with a hierarchical neutrino mass spectrum:
m3 —m? < m3 —m3 [25|, which allow for a normal ordering (mj < mg < mg) or an inverted
ordering (mg << mj < mg). The mass itself can only be measured by other means. The
KATRIN experiment, for instance, looks for tiny deviations in the tail of the energy spectrum
of beta decays of tritium (which has a particularly low-energetic beta decay) to determine the

effective mass m2 = ¥, |Ue;[*m?. The current best limit by KATRIN is m, < 0.8 eV [131].

The Dirac phase can be determined by measuring the probability of a neutrino to oscillate
from one flavour to another and taking the difference to the same oscillations with anti-
neutrinos [132|. Because the probability of the anti-neutrino oscillations is the same as those
for neutrinos computed in Eq. after replacing U — U, we find

3
Pag-Psg=4 > Im(UaiUzUx;Us;)sin (2X55) - (2.50)

(A
i,j=1,i<j

Note, that this expression is proportional to the reduced equivalent of the Jarlskog invariant
in the neutrino sector, which is defined in the same way as the Jarlskog invariant of the quark
sector in Eq. . This calls for an analysis of these measurements in terms of invariants. To
this end, we construct a generating set of invariants for the #SM in Chap. Note also, that the
Majorana phases drop out of the expression in Eq. , because the same Majorana phase
multiplies a whole column of the CKM-like matrix in Eq. (2.44). The measurement of the Dirac
phase is extremely difficult. Even though good progress is made by oscillation experiments, the
phase is still not known to high accuracy. Curiously, current measurements in normal ordering
of neutrino masses is still compatible with the CP-conserving point ¢ = 7 [133|. Measuring
a non-zero value for one of the phases in the neutrino sector could help understanding the
matter-antimatter asymmetry via leptogenesis [134].

The Majorana nature of neutrinos can be determined in neutrinoless double beta de-
cays [135}/136|. As can be seen in Fig. this process is only possible when the neutrino has
a Majorana mass compatible with the lepton number-violating nature of the decay nn — ppee.
To date, no experimental evidence of these decays have been found and the current best limit
for the half-life of such a process has the impressive value of Tg” >2.3-10% years |137|.



2.4 Axions and Axionlike Particles 31

2.4 Axions and Axionlike Particles

2.4.1 The Axion Solution to the Strong CP Problem

We have already introduced the strong CP problem in Sec. In summary, it is the
question why the f-parameter, the coefficient of the term GW@“” , is so small. By now, the
probably most famous solution to the strong CP problem is the axion solution. The idea is
to dynamically relax the parameter to zero, by introducing a new particle whose potential is
such that it is minimised for § = 0. To achieve this, a new U(1) symmetry — often referred
to as Peccei-Quinn (PQ) symmetry — is postulated in the UV, which is spontaneously broken
by the VEV of a scalar field |138139|. This gives rise to a Goldstone boson [140, |141], the
axion, which due to its Goldstone nature does not have a potential and is therefore a priori
massless. In order to generate a potential for the axion field a, which relaxes 6 to zero, the PQ
symmetry needs to have a mixed anomaly with QCD, yielding the interaction aGG between
gluons and the axion, adding to the QCD 6-term as follows

Lo (i+é)Gé. (2.51)
Jfa
It is now convenient to make use of the shift symmetry of the axion to absorb 6 into the axion
field. When QCD confines, the term a/f,GG will give rise to a periodic potential for the
axion breaking the shift symmetry of the axion to a discrete symmetry U(1) - Zy(with N
the anomaly factor of the mixed QCD-PQ anomaly) |142| , minimised at zero. Historically,
instantons — semi-classical topological tunnelling solutions of QCD to be studied in more
detail in Sec. below — were thought to have a major role in the confinement dynamics of
QCD. Therefore, some early attempts of computing the QCD axion potential made use of
large-sized, i.e. low-energy, QCD instanton configurations, leading to the well-known cosine
potential [20} 143} 144]

8w

Via)osce %5 (1 - cos —) (2.52)
Ja

where f, is the axion decay constant. This potential is evidently minimised at {a/f,),=6 =0

and thus, the strong CP problem is solved. We will however see in Sec. that instantons are

no longer reliable, when the QCD coupling becomes non-perturbative (as can be seen from

the exponential in Eq. ) and xPT should be used instead to compute the potential of

the axion [145|. In that case, the potential was found to be |145] |146]

dmymg . 2( a )
= 1- = 2.
M fi \/ (i +mg)? S 2f, )’ (253)

which is aligned with the instanton cosine potential but has a significantly different form.

As for the instanton-induced potential it can also be easily checked that the potential in

Eq. (2.53) is minimised at {(a/f,),= 6 = 0, hence solving the strong CP problem. Expanding
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the potential in Eq. (2.53) to quadratic order gives the well-known mass relation |140|

dmymyg
ala =\ 77— Mxlr, 2.54
Mafu =\ s (2.54)

making the QCD axion extremely light compared with to particles appearing in the SM.
Including next-to-leading order (NLO) corrections to the potential, the QCD axion has a
mass of my ~ 5.7 ,ueVlOI;# [145]. Due to the lightness of the axion and its generic (as we
will see below) weak coupling to the SM particles, axions are also a prime candidate for dark
matter [144,|147+150.

It has been proven |151] that CP is preserved in parity-conserving vector-like theories
such as QCD with a 6-term and extended by an axion. This is of course no longer true
in the SM, which is a chiral theory and has additional sources of CP violation through the
CKM matrix as we saw earlier. These sources can feed into the axion potential and off-set
its minimum. These contributions are called misaligned contributions as they are not aligned
with the potential generated by QCD and will give corrections to the minimum. The aligned
corrections are phase-aligned with the QCD axion potential and only change the mass of the
axion with respect to the QCD axion. We will study these effects later in Chap. |8] where
we study small size, i.e. high-energy, instanton contributions to the axion potential with new
sources of CP violation in the UV parameterised by SMEFT operators.

Another important aspect, that relates to the Goldstone nature of the axion as well, is the
fact that the U(1) symmetry is by construction anomalous and hence, not a good symmetry
of the Lagrangian (see for instance Ref. [142| for a recent review). Furthermore, in the most
common constructions the PQ symmetry is a global symmetry of the Lagrangian. It has been
shown [152+163|, that quantum gravity does not allow for exact global symmetries and will
introduce irreducible corrections to the axion Lagrangian of the form

¢7’l
= (2.55)

Pl
where ¢ ~ faeiﬁ is the scalar that Higgses the PQ symmetry. At the current experimental
accuracy for the bound on the # parameter, these interactions break the axion solution to
the strong CP problem unless n 2> 14 |164]. This usually goes under the name of the azion
quality problem in the literature, questioning the existence of a PQ symmetry that has a
sufficiently high quality in suppressing PQ-breaking interactions enough in order for the strong
CP problem to still be solved at the accuracy dictated by experiment. Common solution to
this problem are introducing accidental discrete symmetries — such that the terms allowed
to appear in Eq. (2.55) are harmless —, considering a composite axion — where instead of a
PQ scalar, the axion arises from a composite operator, which has a high quality if its scaling
dimension is sufficiently large —, or introducing the axion through a higher-dimensional gauge
field — where the shift symmetry is then protected by the gauge symmetry respected by
quantum gravity [142].

To close this section, we also want to briefly present alternative solutions to the strong

CP problem. The simplest solution is the massless up-quark solution, where the vanishing
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of a quark mass introduces a chiral symmetry allowing to rotate the f-term away and thus
rendering it unphysical. This solution has been ruled out by lattice simulations of quark
masses, proving that all quarks are massive [25) 165|. Another popular class of solutions is
based on spontaneously breaking an explicit CP or P symmetry in the UV. The first model
based on this construction is the Nelson-Barr model |166||167|.

2.4.2 Benchmark Models of the QCD Axion

Soon after the idea of the axion emerged, efforts were made to come up with UV realisations
of the mechanism. There are three noteworthy models we will present in the following of
which the last two are often used as benchmark models for the QCD axion.

The Weinberg—Wilczek model The Weinberg-Wilczek (WW) model |140}141] is prob-
ably the simplest UV realisation of an axion model based on the SM gauge group. The model
is extending the SM with another Higgs doublet to a Two-Higgs-Doublet model (2HDM)

L>QgiHiu+QgoHad +h.c.+ V(Hy, Hy), (2.56)
which allows for a PQ symmetry of the form
uw— ey, d- e’ﬂd, Hy —> e "“Hy, H,— e P H, . (2.57)

After both of the Higgs doublets receive a VEV vy and vy, respectively, there exists one linear
combination of scalars which is CP-odd and, as the Goldstone boson of the spontaneously
broken PQ symmetry, does not receive a potential

a=-sinf ImHY + cos 8 ImHY . (2.58)

Here, HiO is the neutral component of the Higgs bosons and tan 8 = v1/vy. In the model the
axion decay constant can be computed to be |140} |141]

fa= %sin%, (2.59)

where v = /v% + v% is the EW scale. Due to the closeness of the axion decay constant in this
model to the EW scale v ~ 246 GeV the model (and simple variations of it) have quickly been
ruled out by experiment |150].

The Kim—Shifman—Vainshtein—Zakharov model In the Kim—Shifman—Vainshtein—Za-
kharov (KSVZ) model {168} |169], the SM is extended by a single heavy vector-like quark
Q = Q1 ® Qp, transforming as (3,1)p under the SM gauge group and a singlet complex scalar
®, which has the role of decoupling the PQ breaking scale from the EW scale. This set-up

allows for the following Lagrangian

Lxsvz = LsM + 00700 + QilpQO - (yo®QLQp +h.c.) -V (||, |H|), (2.60)
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where a bare mass term QQ has been forbidden by imposing the discrete symmetry Qr —
-Qr,9r — Qpr,® - —® [168|. This Lagrangian has an accidental PQ) symmetry, realised as

O —€%Q1,0p — e Qp, & > 2P . (2.61)
The potential of the scalars
V(®,H) = —p3|®F = pyf| H? + A H|" + Ao|®[* + Apra| O H[? (2.62)

is such that the PQ symmetry is broken at a scale f by the VEV of ®. It is convenient to
parameterise the scalar in polar coordinates around its VEV

1

V2

where the axion can be identified with the massless angular excitation a, while as usual, the

d=—(f+p)e'T, (2.63)

radial excitation p receives a large mass and can be integrated out. After spontaneous PQ
breaking, the Yukawa coupling of the heavy quarks now has the following dependence on the
axion ;

Yol A i%

Lrsvz 2 ——=QrQgre f +h.c.. 2.64

> (2:64)
After performing a chiral transformation Q; — etal (2f) Qr,Qr — e~/ (2f) Qg on the heavy
quark anomalously changing the Gé—term, the heavy quarks are PQ neutral and can be
integrated out from the model. Generated by this chiral transformation, we recognise the
familiar axion-gluon interaction term

g3

a
-G
3272 f

Lxsvz 2 (2.65)

which after confinement of QCD gives a potential to the axion that solves the strong CP
problem.

The Dine—Fischler—Srednicki—Zhitnitsky model The Dine-Fischler—Srednicki-Zhitnit-
sky (DFSZ) model [170}/171] is a slight modification of the WW model, where the axion decay
constant is decoupled from the EW scale by adding an additional singlet complex scalar @ to
the model which transforms as a singlet under the SM gauge group and a PQ charge of +1.
The scalar potential can then be written as

V(Hy, Hy, ®) = V(|Hy|,|Hal,|®|, |HI Ha|) + \H] Hy®'? + h.c. (2.66)

Depending on the type of 2HDM, there are several ways to couple the two Higgs doublets to
the SM fermions. Choosing for definiteness a type-I 2HDM, we have the following Yukawa
couplings

EDFSZ ) —QYquu - QYdHQd - .Z/Y;ng +h.c.. (267)
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The potential of the scalars is now chosen such that all scalars receive a VEV. We can
parameterise the scalars in polar coordinates around their VEVs

v a1 vy 92 [0 1 ;e
Hio>—e" , Hyo —e 2 , Po—¢ o, (2.68)
V2 0 V2 1 V2

where we have neglected the radial and charged modes and we choose ve > v1 2 in order to
decouple the scale of spontaneous PQ breaking from the EW scale. In the DFSZ model, the
PQ symmetry is realised through the rephasing symmetry of the scalar sector, allowed by the
interactions in its potential. The corresponding Goldstone boson from spontaneously breaking
the PQ symmetry of the theory can be identified by constructing the current corresponding
to the spontaneously broken PQ symmetry [150} (172|

§P9 = -Qe®110,® - QUH|i 0, Hy - QoHYi 0, Ho — > Quibyut), (2.69)
peSM

where the @); are the PQ charges of the theory, that can be fixed from the PQ invariance of
the scalar potential given the PQ charge of ® and the requirement that the PQ current is
orthogonal to the hypercharge current [150|. The axion field and its decay constant can be
identified with |150|

a= iZQwiai, 2= Q. (2.70)
a g 7
such that for in’a = faOua, the axion field is compatible with the Goldstone theorem
(OIj,fQ’a]a) = ifopu. By definition, the axion does not appear in the potential. Hence, all
interactions with SM particles are dictated by the Yukawa couplings. After EWSB and reex-
pressing the phases in the scalar doublet in terms of the axion field a, the axion-dependent
Lagrangian looks as follows

L> —ﬂLMueinfiauR - JLMdeiQinadR - éLMeeinfiaeR +h.c.. (2.71)

By performing a chiral rotation on the fermion fields ¢ - exp(iays)1, the axion-dependent
phase in front of the fermions can be removed at the cost of generating an interaction with
the gauge fields

2

2 a ~ e a ~
EDng(@+@) gSQ—GG+ng (Ncqul +Ncq§Q2+qgQ1) 5
2 2 )32, 3272 1,
e (2.72)
=N oGy 2 FF
32n2 f, 3272 f,

where F' is the field strength of the photon field and the ¢; are the electric charges of the
fermions. Furthermore, in the last step we have defined the SU(3). and U(1). anomaly
factors N and FE, which in the KSVZ model take the values N =3 and F = 8 after fixing all
PQ charges.
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The kinetic terms of the fermions are also not invariant under the axion-dependent chiral
rotations. After performing the field redefinitions, they generate the following interactions
between axions and fermions

0,a 0,a - 0,a
Lyt ysu + Qo dytysd + QoL

T 2f, 2/,

ev'vyse. (2.73)

Note here, that unlike in the DFSZ model where the extra scalar was coupled to a heavy
vector-like quark, in the KSVZ model the axion has tree-level couplings to the SM fermion
fields at the leading order in the EFT power counting. In the KSVZ model those are only
generated at the loop-level or appear at higher orders in the EFT power counting through the
interactions between the axion and the vector-like quark after integrating it out.

The axion decay constant in the model is found to be |150]

f2=v3 +v%sin?28, (2.74)

a

which again allows to arbitrarily decouple the DFSZ axion from the EW scale, as compared
to Eq. (2.59) for the WW axion.

2.4.3 The EFT of Axions and Axionlike Particles

In the last two models, the axion decay constant f is decoupled from the EW scale and can
become large, making the axion weakly coupled and hard to detect. Therefore, these axions
have been dubbed invisible axions in the literature. In these models, the PQ symmetry is
introduced by some heavy new physics at a large scale f and the axion appears as a Goldstone
boson of the spontaneously breaking the symmetry, making it extremely light. Therefore, an
EFT description of these models with the axion added to the light degrees of freedom is
appropriate. Furthermore, in the models we just looked into, the axions do not only come
with the topological coupling to gluons that is necessary to solve the strong CP problem,
but also other couplings to fermions and other gauge bosons. This motivates us to define
a more general class of an azion-like particle (ALP), that is the pseudo-Nambu—Goldstone
boson (pNGB) of a spontaneously broken U(1) symmetry and can have couplings to any SM
particles but no longer has to solve the strong CP problem. From here on, we will call an axion,
which solves the strong CP problem, a ‘QCD axion’ and a pNGB of a spontaneously broken
U(1) symmetry, which can but does not necessarily have to solve the strong CP problem,
simply an ‘axion’ or an ‘ALP’.

ALPs are ubiquitous in many BSM theories and are therefore well-motivated BSM can-
didates to look for. It is convenient to study them in a model-independent way by considering
an EFT of the ALP together with all other SM degrees of freedom. Here, in the usual EFT
spirit, the particle spectrum and the symmetries of the theory have to be taken into con-
sideration. The particle spectrum is that of the SM extended by a real scalar transforming
as a singlet under the SM gauge group but is subjected to a shift symmetry. Following the
CCWZ construction |173}174| for the pNG of the PQ symmetry. The shift symmetry is

13We include an explicit mass breaking the shift symmetry softly, i.e. no further shift-breaking couplings
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most easily implemented by coupling the ALP derivatively to the SM fields. This yields the
following Lagrangian at leading order |175|

2

1 my, 0 - .
L=LsM + S0,ad"a - —2a + LS GO+ C G, G
f sz,e,Qﬂhd f (2.75)
a I y5i/1,uv a LY 1
+CaV~V?WMVW w +C@B?BHVB# +O(ﬁ)

In this Lagrangian we have already removed a redundant coupling between the axion and
Higgs bosons 0"a (H Ti(l_))uH ) by carrying out a global hypercharge transformation |175]. Fur-
thermore, some of the derivative couplings to fermions can be removed due to the conservation
of baryon number and lepton family number in the SM, which is the subgroup U (1)%1 xU(1)p
of the flavour group of the free SM fermions U(3)g x U(3)y x U(3)a x U(3)r x U(3). left in-
variant by the SM Yukawa couplings. Due to these symmetries, there are four classically
conserved current

8uj§7Li =0, (2.76)

which can be used to remove some of the diagonal couplings of the derivative couplings of
the ALP to fermions. One convenient choice introduced in Ref. [176| is to remove the ‘11’
component of Og and all diagonal components of Oy..

The generic couplings introduced in Eq. , might look familiar from the discussion
of the benchmark models discussed in Sec. where the interactions had more specific
coefficients. This shows once again the advantage of EFTs: performing the analysis of ob-
servables in the EFT or studying features of the EFT allows us to make statements about
a plethora of models (in the case of axions all the previously discussed models and many
more) in a relatively model-independent way. That is why ALP EFTs have been subject to
meticulous study and have been used to constrain new physics scenarios featuring axions in
a model-independent way, for instance, by studying observables in flavour physics |177H191]
or observables at colliders like the LHC [192+211].

It can sometimes be convenient to work in another basis, where the axion is not derivatively
coupled to fermions but instead has the following couplings

2

1 m, ~ . )
L=50uadta-—2a"+ Caé%GﬁvGA’W + CQW%WLWI oy CGE%BWBW
(2.77)
@OV, Hu+ OV . 1
- (QVufiu+ Q¥yHd + LY. He +he) +O (F) ,

This change of basis can be achieved by applying a chiral rotation on all fermions ¢ — 1/1+iC’¢%,
where the Cy, are the Wilson coefficients of the derivatively coupled ALP-fermion interactions
in Eq. (2.75). On a first look this Lagrangian does not look shift-invariant. However, once

will be generated perturbatively, making the axion a pseudo-NGB.

4 All of these symmetries are anomalous at the quantum level and hence, effectively linear combinations of
the fermionic operators Oy are turned into linear combinations of bosonic operators O, 5,0, coupling the
ALP to gauge fields [176].
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the fermionic Wilson coefficients ffu’d’e fulfil the relations |176}|194} 212} 213|

Y, =i(Y.Co ~ CrYe), Yug=i(YuaCua—CoYua), (2.78)

the Lagrangian is shift-symmetric at the leading order in the EFT. These relations are com-
plicated matrix relation in flavour space, depending on five generic hermitian matrices. Hence
in Chap. @ we will make an effort in recasting these relations into simple algebraic relations
that allow to clearly implement the power countings of the shift-symmetric and shift-breaking

sectors of the EFT, which clearly is not possible in the form of Eq. (2.78).

Furthermore, it is an important task to systematically construct an operator basis beyond
the leading order in Eq. and find the conditions of the form of Eq. (2.78), that encode
shift symmetry beyond the leading order in the EFT. We will perform this task in Chap.
and will introduce an important tool for the construction of an operator basis in the following
section.

2.5 Group Invariants and the Hilbert Series

Physics and particle physics in particular is heavily based on the use of symmetries to reduce
unphysical degrees of freedom to an efficient description of nature. Hence, a prevalent task
in theoretical physics is to find objects which are invariant under the action of a group.
Due to the restrictiveness of the symmetries used, it is often possible to perform this task
by brute force by exhausting all possible contractions among objects transforming under a
given group. However, in more complicated theories where objects transform in involved
representations, the symmetry group is very complex or when the number of objects (and
their allowed combinations) that transform under the group grows, this task can become
increasingly difficult.

For this reason, physicists have started to borrow tools from mathematical invariant the-
ory |64, |214+216/ that take care of this counting task for EFT operator bases, i.e. invariants
under Poincaré and gauge symmetry, as well as with the EOM and IBP redundancies removed,
and invariants under internal symmetries, like flavour invariants.

The problem at hand is the following. Given a set of parameters x that transform in the

representation R of a group G
-2 =R(g)x, geg, (2.79)

an invariant I is defined as a combination of these parameters which does not transform under
the action of the symmetry

I(x) & 7(2') = Z(). (2.80)

The task is to count how many independent invariants, that can be formed from the set of
parameters, exist. To be more concrete, let us start with a simple example. Let ¢ be a
complex field transforming under a U(1) symmetry

b —e%p. (2.81)
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It is a simple exercise to construct all possible invariants of ¢ under this U(1) symmetry, by
noticing that the combination
T=¢¢" (2.82)

is invariant. All other invariants are just powers of this simple invariant and we can define a

generating functional of the invariants

1+Z+T2+T%+.-- = 1

= — 2.83
—, (28)

that counts all invariants that can be built out of ¢. Eq. is the so-called Hilbert series of
the theory. For more complicated theories where it is hard to keep track or even construct all
possible invariants under a given group, the Hilbert series will become invaluable in counting
all possible invariants that can be built from combinations of the objects transforming under
a given group. The question is how to compute the Hilbert series efficiently and how to
interpret its form. We will discuss this in more detail below.

There are two scenarios we have in mind here. The first one is the counting and con-
struction of flavour invariants that are made of tensors transforming under some symmetry
group. These kind of invariants only have algebraic redundancies among them complicating
the counting of the non-redundant ones. The other slightly more complicated case is that of
finding an operator basis for EFTs. Finding an operator basis for on-shell computations, which
is finding invariants under the gauge and Poincaré group, is complicated by the existence of
IBP and EOM redundancies discussed in Sec. These highly non-trivial constraints call
for more theoretical effort expanding the Hilbert series used for Lie groups to remove these
additional redundancies.

2.5.1 Invariants Under Internal Symmetries

As introduced earlier, one important task in particle theory is to find the invariants under
the action of internal symmetry groups, which for our purposes are always Lie groups. There
exist some useful definitions and language in the literature to organise the construction of
invariants. We will introduce them here along with some important results from invariant
theory, mostly following Refs. |64} |217H220|. Some of the material presented here has also
appeared in Ref. [4].

One important class of such symmetries are approximate symmetries of a Lagrangian
which become exact in the limit of some vanishing Lagrangian parameter. Such softly broken
symmetries can be formally reinstated in the Lagrangian even in the presence of the breaking
parameters. This is done by promoting the breaking couplings to fields and making them
transform under the symmetry, such that the Lagrangian is formally invariant under the
action of the symmetry. The parameters are said to transform spuriously under the symmetry
and are often called spurions. At the end, the spurion fields receive a VEV corresponding to
their physical value, allowing to systematically take into account the breaking effects of the
symmetry. A theory that only contains couplings which increase the exact symmetries of the
theory when being sent to zero, is called technically natural [221]. As a result, any correction

of the parameter must again be proportional to the parameter, such that the symmetry is



40 2.5 Group Invariants and the Hilbert Series

UB)e UB)u UB) UB)L UB)e

Yo 34 3.1 1o 1 1o
Y, 3.1 1y 3_1 1 1p
Ye 1 1 1 3.1 3.4

Table 2.2: Spurionic transformation behaviour of the SM Yukawa couplings Yy, .. under U(3)°, the largest
flavour group allowed by the kinetic term of the SM fermions. The subscripts of the SU(3) representations
denote the charge under the U(1) part of the flavour symmetry.

still preserved in the limit of taking the coupling to zero.

One example for such a symmetry are flavour symmetries in the SM. Taking the SM
Lagrangian in Eq. , one can recognise that the SM Lagrangian has an exact U(3)g x
U(3)uxU(3)g xU(3)r x U(3), flavour symmetry, when Y, 4. - 0. This symmetry can be
reinstated in the presence of finite Yukawa couplings, by letting the SM Yukawa couplings
transform as indicated in Tab. under U (3)5 One interesting question is, what are the
invariant objects one can built from these transforming building blocks. This will for instance
give us a basis independent measure for CP violation in the SM, the Jarlskog invariant that
was introduced earlier.

At this point it is useful to introduce some notation and jargon commonly used in the
invariant literature. As flavour invariants are polynomials of the parameters in the theory,
not all possible invariants that can be built from the flavourful couplings in the theory will
be independent. One useful definition is the one of the generating or basic set of invariants,
which is a minimal set of invariants that allows to express all other invariants in the theory as
a polynomial of them. This set always has finite cardinality for reductive groups |217}|219|. If
any invariant can be expressed as a polynomial of the invariants in the generating set, we will
call that relation an explicit relation. This is opposed to the polynomial relations that still
exist among the generating invariants. Indeed, the generating set may still be algebraically
dependent and there can exist relations of the form

P(Th,....,Tm) =0, (2.84)

referred to as syzygies in the invariant literature.

Among the set of generating invariants, there exists a set of invariants that are algebraically
independent, the so-called primary invariants. Their algebraic independence implies that
there exist no syzygies among only the primary invariants. A non-trivial result is that the
number of physical parameters, i.e., the minimal number of parameters that are left after all
transformations allowed by the symmetry group of the theory are used, is equal to the number
of invariants in the primary set |217-219].

Information about all of these invariants is encoded in the Hilbert series, which we now

5This is also an example of a technically natural coupling. When the Yukawa couplings go to zero, the
Lagrangian has a U(3)® chiral symmetry. Therefore, corrections to the Yukawa couplings in the SM must
again be proportional to Yukawa couplings, keeping the corrections small.
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define more carefully as

H(q) = 2@% (2.85)

where ¢; is the number of invariants that can be built from the given set of building blocks
labelled by the parameter ¢ at a given order i. One important property of the Hilbert series
is that it can always be written as a fraction of two polynomials |219:

H(q) = /1\)%‘ (2.86)

The numerator and denominator come in a special form. The numerator is palindromic, i.e.
N(q) = t?N(1/q), where p is the highest power of ¢ in AM(¢) and all terms in N (q) come
with a positive sign. The denominator is of the form D(q) = [T (1 - ¢%), where m counts
the total number of factors in the denominator and d; gives the total power of spurions in
the invariant. It can be shown that each of the factors in the denominator corresponds to an
invariant in the primary set [217/219|. Furthermore, for a trivial numerator, i.e. N'(q) =1,
the generating set is equivalent to the primary set and the ring is called a free ring.

The Hilbert series can be straightforwardly generalised to a theory with several different
couplings. In a theory with n couplings the Hilbert series is defined as

H(Gr, - qn) = D 2 Cipin -G (2.87)
i1=0 in=0

where the coefficient ¢;, ;, now counts the number of invariants containing the spurions
(q1,---,qn) to the power (iy,...,i,). The multi-graded Hilbert series is no longer guaranteed
to come in the form of Eq. with a palindromic numerator with positive terms and
the denominator counting the number of primary invariants. This information can still be
retrieved by taking the single-graded limit of the Hilbert series, H(q1,...,qn) > H(q,-..,q).

From the discussion up to here, it is not clear how to compute the Hilbert series. One prac-
tical way to compute the Hilbert series for reductive Lie groups is the Molien-Weyl formula,
which for a single coupling transforming in the representation R of the group G is defined as

o gk zk,...,zk
(q) = [ da exp(Zq i d))ffduc; PE[xr(1,-oza)ia) . (289)

k=1 k

Here, dug is the Haar measure of the group, xg(z1,...,24) = Tr (g(z1, ..., 24)) is the character
of the representation R of the group G of rank d, defined as the trace over a group element
g € G, and we have defined the plethystic exponential in the last step. Even though this
formula looks complicated, there is a simple interpretation of it. The characters of compact

165trictly speaking, this is only true when the polynomial ring of the flavour invariants is Cohen-Macaulay,
which is the case for the flavour invariant rings studied in this thesis.
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Lie groups are orthonormal with respect to integration of the Haar measure of the group

[d/,LG (2’1,. . .,Zd) XR (21,... ,Zd) X}%/ (Zl,... ,Zd) = 5R,R’ . (2.89)

To achieve our goal of finding all invariants of a group, we can simply use this property to
project onto the singlet representation of the group, i.e. plugging x5 = 1 into Eq. (2.89).
The left-over task is to construct all possible combinations of characters capturing all pos-
sible tensor products of the representations of the building blocks. This is exactly what the
plethystic exponential does. Hence, the integration over the Haar measure simply projects
out all the invariant combinations of representations defined by the transforming parameters
of the theory, that are generated by the plethystic exponential, yielding all singlets under
the group. The Molien-Weyl formula can be generalised for a theory with several couplings
transforming in different representations R;

H(Qla-“aQn):[dNGHPE[XR,-(Zla-'-azd)§(h]- (2.90)
=1

To compute the characters and Haar measures of the Lie groups in this thesis, we will make
use of the maximal torus of the groups. For a connected Lie group G, like U(N), any g € G can
be expressed as an element of the maximal torus 7' = U(1)**%(®) 'ie Jhe G:h ' ghe T |64,
222|. In the following, we will mostly work with the group U(N). Let us derive the character
for U(3) as an example. Following what we have just discussed, the maximal torus of U(3)
is U(1)? and a matrix representation will have the following form [222]

diag (ewl,eiez,e%) , Bi23€R. (2.91)

We can define z, = ", which are the parameters of the maximal torus integrated over in the
Molien-Weyl formula. Then, the character of the fundamental of U(3) is simply

X?](g) = Trdiag (21, 22, 23) = 21 + 22 + 23, (2.92)
and similarly we find for the character of the conjugate representation
X?](g) = Trdiag (21_1, 2t 25t ) =2t Zot + 250 (2.93)

The corresponding Haar measure can be found in Ref. |64|, which together with the explicit
form of the character will allow us to compute the Hilbert series by solving the integral in the
Molien—Weyl formula.

Another useful function is the so-called plethystic logarithm, which is the inverse function
of the plethystic exponential that we have just defined, i.e., PE™*(f(z)) = PL(f(z)) and is
defined as follows

[ee]

PL[f (21,...,an)] = D, () log [f (z7,...,2°x)] , (2.94)

n=1 N
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where p(n) is the Mobius function defined as

0 n has repeated prime factors
p(n) =41 n=1 . (2.95)

(-1)7 n is product of j distinct prime numbers

For concreteness and for later reference, we will discuss the construction of the invariants
of the SM Yukawa couplings with the help of the Hilbert series here, which has first been
achieved in Ref. [218]. We have just computed the characters of the representations the
building blocks transform under (c.f. Tab. . Together, with the Haar measure found in
Ref. |64] we can evaluate the Molien—Weyl formula in Eq. and solve the integrals by
making use of the residue theorem. We find for the Hilbert series of the SM Yukawa couplings

B 1+u8db
(- (- (1-eS)(L-u?)(I-uh)(1-uS)(1-B)(1-d)(1-d°)
1
- 2B (1 - )1 - w2dD) (1 - utd?)

H(e, u,d)

(2.96)

From the denominator of the Hilbert series, one can read off that there exist in total 13
primary invariants. These correspond to the three charged lepton masses and the six masses
of the quarks, as well as the three mixing angles and the phase in the CKM matrix. One
can furthermore observe, that the algebraic structure of the lepton sector invariants are those
of a free ring, while the numerator of the Hilbert series shows that there exists one further
invariant in the quark sector of the SM at the order YuﬁYd6 in the quark Yukawa couplings,
which must have a syzygy at the squared order, since this is the only term appearing in the
numerator of the Hilbert series. Constructing these invariants explicitly, one finds [218|

Tr(X.), Tr(x2), Tr(X?) (2.97)

e
in the lepton sector and

Tr(X,), Tr(X2), Tr(XJ) Tr(Xs), Tr(X37), Tr(X))
Tr(X.Xq), Tr(X2X4), Tr(X.X7), Tr(X2X7)

u

(2.98)

in the quark sector for the primary set of invariants, capturing the magnitude of all parameters
in the SM Yukawa couplings. The additional invariant at order Y,9 YdG is the Jarlskog invariant

Ju =TIm Tr ([Xu, Xa]%) (2.99)

which only captures the sign information of the CKM phase [218|. This is compatible with
the fact that there exists a syzygy of the Jarlskog invariant allowing to express its square JZ
in terms of the primary quark invariants. Therefore, only the Jarlskog invariant itself but
not its square can contain physical information |218|. We can also compute the plethystic
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logarithm of the SM flavour invariants. We find,
PL(u,d,e) = e +et+eS +u +ut +ub+ 2 +d* + dS +u2d? +utd® +u? d* +ut d +uSd® —u'2d™ (2.100)

Here, one helpful property of the plethystic logarithm is apparent: One can simply read off
the number of generating invariants and the syzygies among them from the coefficients of the
terms in the plethystic logarithm. Here, the positive terms correspond to generating invariants
and the negative terms correspond to the syzygies among them [223}224|.

The plethystic logarithm is not always as simple in the SM. Indeed, the plethystic logar-
ithm is only a finite polynomial with the above interpretation of the terms, if the underlying
ring has the structure of a complete intersection ring. This is the case when the difference in
the number of generating invariants and the number of syzygies is equal to the number of al-
gebraically independent invariants; otherwise it is called a non-complete intersection ring |219|
220|. In a non-complete intersection ring the terms have to be interpreted slightly differently.
There, the leading positive terms, i.e., all positive terms up to the first term with a negative
sign in the plethystic logarithm, can be identified with the basic invariants, while the leading
negative, i.e., the first negative terms that appear after the leading positive terms, correspond
to the syzygies.

We also want to note here that in more complicated rings, the regions where positive and
negative terms appear are no longer necessarily as well-separated as in what we have discussed
up to here. We will see in Chap. |3| that in theories with more complicated representations
or symmetry groups, the interpretation of the positive and negative terms in the plethystic
logarithm have to be slightly changed, where the coefficient of each term in the plethystic
logarithm should count the difference between the number of generating invariants and the
number of syzygies among the generating invariants instead |4/ |220].

2.5.2 Invariants for EFT Operator Bases

Another case where the counting of invariants becomes complicated quickly is in the case
of operator bases for EFT operators. What complicates matters further is the fact that the
invariants, that can be formed under the Poincaré and gauge group, the EFT is based on, do
not yield a minimal operators basis. In particular, the EOM and IBP redundancies discussed
in Sec. are still present in the counting if the previously shown form of the Hilbert series
is applied. Furthermore, the Lorentz group SO(3,1) in Minkowski space is a non-compact
group, meaning that the orthonormality condition of the characters can no longer be utilised
to project onto the singlet of the group. In order to correctly count the operators in an EFT
operator basis with all these redundancies removed, some further steps have to be applied. In
this section, we will briefly review all the required machinery to address these issues following
Refs. |64,|85(215} [225,|226|. Some of the material presented here has also appeared in Ref. |2|.

For the construction of an operator basis for EFTs, the basic logic behind the Hilbert
series is the same as for the construction of flavour invariants: we want to find invariants
under the action of the Poincaré and gauge group for a given number of fields and derivatives
transforming under these groups. Denoting the field spurions as {¢;} and and the derivative



2.5 Group Invariants and the Hilbert Series 45

spurion as D, we can schematically write the Hilbert series as

H(D,{di}) = . ijcrk o1 oD, (2.101)

15T

where ¢y = ¢, .y, x counts the number of independent operators with & derivatives D and
r; fields (;52

As before, the Hilbert series can be computed from the Molien-Weyl formula, based on the
fact that the characters are orthogonal with respect to the integration over the Haar measure
of the group and using the plethystic exponential as a generating functional of all possible
tensor products of representations that can be built in the theory. Due to the different spin
statistics of fermions and bosons, the plethystic logarithm only has to be slightly modified |64,
214]

PE [¢r xr(2)] =exp(2%(i1)r+l¢ﬁxR(zr)) , (2.102)

where the spurions of the fermionic fields receive the additional minus sign. As for the flavour
invariants in a theory with several couplings, the full plethystic exponential is defined as the
product of the plethystic exponentials of the fields PE[{¢;}] = IT; PE[¢;] without showing
characters explicitly.

The situation becomes more involved with the additional constraints that have to be
imposed on the Poincaré and gauge invariants due to EOM and IBP redundancies mentioned
in Sec. It was found in Ref. |64, that the representations of the conformal group can
be used to address these issues. We will briefly sketch the idea here with the example of a
scalar field and refer the reader to Ref. |64 for a detailed discussion.

In QFT, we work with local fields, that interpolate between a single particle state excited
by the field and the vacuum. The first observation we want to make is about which objects
built from a single scalar field can appear in a correlator between a single particle state and
the vacuum. Due to Wigner’s classification of representations of the Lorentz group, a single
particle state of a massive scalar ¢ can be specified by its mass p? = m?, its spin (which is
just zero) and additional quantum numbers o. We denote this state by |p) here, suppressing
the potential dependence on other quantum numbers. Then, the interpolating fields between
this state and the vacuum are [64]

(Ol¢|p) ~ ™7
(0|10, 8lp) ~ ppe” "
<0|a{u18u2}¢|p) ~ P{uPuay€

(2.103)

ipxr

where the traceless and anti-symmetric components have been removed. The trace component

2

is just p?> = m?, simply reducing derivatives of the field to the field itself, and the anti-

symmetric component vanishes trivially. Motivated by this, we define the single-particle
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module of the scalar field

¢

0
Ry = @ , (2.104)

01y Opupy @

and similar modules can be defined for fermion and vector fields. The next step is to implement
these building blocks into a character of a group, so they can be used in the Hilbert series
to construct singlets of the group. It turns out that these modules can be identified with the
representations of the conformal group SL(2,C) = SU(2) x SU(2).

Using the state-operator correspondence of conformal field theories, we can organise oper-
ators into irreducible representation of the conformal group. These representations have the
following form

O,

8#1 O
Riag = ; (2.105)
O0p, 0, Oy

where O is some operator, which we will call primary, of spin [ and scaling dimension A and
the remaining components are called the descendants of ;. The conformal representation
Ry is reminiscent of the 1-particle module we have defined in Eq. .

To build operators containing several (different) fields, we will use tensor products of the
single particle modules to build all possible Lorentz invariant operators from the fields

n

& O

d o0
i ~ . (2.106)

0111 0y1} o |o*0

Then, as for the flavour invariants, we can use conformal representation theory to project
out the singlets under the conformal group which correspond to the first entry in the tensor
product of the single particle modules. As for the flavour invariants, we will define plethystic
exponentials as generating functionals for the single particle modules in order to generate all
possible tensor products of the given fields and its descendants. The characters appearing in
the generating functionals of the representations of the conformal group are |64'

Nan (D) = 3 DA g s 1 () (@) = D) P(D, ) (2.107)

n=0

"Here, only the symmetric tensor product of derivatives (c.t. Sym”(%, % ) is considered, because the anti-

symmetric part simply yields the field strength of the gauge fields appearing in the covariant derivative, which
are taken into account separately.
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for a primary operator transforming in the representation Rpa ;; under the conformal group.
11
2>2
group X:(x) is the character of the spin [ representation of SO(4) and z are the coordinates

Here, D denotes the derivative spurion living in the ( ) representation of the Lorentz

of the maximal torus representation of the conformal group SL(2,C). In the last step we have
defined the generating function of symmetric products of the vector representation

1
(1-Dz1)(1 - Dayl)(1 - Daa)(1 - Da3t)’

P(D,x) = %ansymn(%é)(x) = (2.108)
which will frequently appear later. One can intuitively understand the character formula
by looking at the form of the conformal representation. The descendants are generated by
successively applying derivatives to the primary operator. This is exactly what is summed
over in Eq. (2.108). The first term in the sum corresponds to the primary operator, the
second term corresponds to one derivative applied to the primary operator and so on. P as
the generating function of symmetric products of the vector representation can be understood
as the generator of the descendants of a primary operator.

The character for the single-particle module of a scalar ¢ presented in Eq. with
spin [ = 0 and scaling dimension A =1 according to Eq. then simply reads

X0 (D;z) =DP(D, z). (2.109)

The character for fermion and vector fields can be obtained in a similar fashion from Eq. (2.108).
This will allow us to construct all possible Lorentz and gauge invariant operators. The next
step is to address the redundancies introduced by IBP and the EOM, which as it turns out
can also be done using conformal representation theory. For definiteness we will continue
discussing the EOM and IBP redundancies with the example of a scalar field.

EOM Redundancies To remove EOM redundancies in the Hilbert series construction, we
have to find a way to remove terms of the form {82¢,8M162¢, ...} from the single particle
module of the scalar (and similar terms for fermion and vector fields, see Ref. |64|) by the
help of conformal characters.

We have already done this earlier in the single-particle module, when removing the p? = m?
pieces, which are exactly the pieces which are redundant by the EOM on-shell. In order to
implement this for the Hilbert series, we have to find a way of removing the corresponding
entries from the conformal character. This is done by a so-called shortening condition to the
character, which exactly removes the EOM-redundant pieces. To remove the EOM-redundant
terms, we simply have to remove all the terms where two derivatives are contracted from the
character of the full conformal character of the scalar. This is achieved by applying the
following shortening condition to the character of the full conformal representation of the

8Note that the Lorentz group is non-compact, and its characters are not orthonormal, making it in-
compatible with the orthonormality condition that is used in the Molien-Weyl formula to compute the Hil-
bert series. Therefore, we will work in Euclidean space, where the Lorentz group SO(4) is isomorphic to
[SU(2)r ® SU(2)r]/Z2, which is compact and has orthonormal characters. The covariant derivative D trans-

forms in the fundamental (%, 1) representation of [SU(2). ® SU(2)r]/Z>.
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scalar introduced in Eq. (2.109)

= da = da _ 2
X¢ (D;x) :TLZ:%D”J“ Xsymn(%é)(ac)—;::zl)m XSymn—2(%7%)(x) =D(1-D*) P(D,z), (2.110)

which now has all EOM-redundant terms removed. This formula can again be understood
intuitively. The only way to raise the scaling dimension of an operator while keeping its
its spin structure the same is to add contracted derivatives. Therefore, the second term in
Eq. exactly removes a term which has the same scaling dimension as the previous
operator but two derivatives less in the symmetric tensor product of derivatives. These are
exactly the EOM-redundant terms for a scalar that we wanted to remove for each entry in the
conformal representation of the scalar. The EOM redundancy for fermion and vector fields
can be removed in a similar fashion. The next step is to remove the IBP redundancies.

IBP Redundancies We have to take special care to correctly remove IBP redundancies
from the Hilbert series counting. Once again, we can make use of the power of conformal
representation theory to get rid of the redundancies, for which we will only give hand-wavy
arguments here and leave the detailed explanation to Ref. |64].

The removal of IBP redundant operators relies on the fact that the tensor product of
all traceless single-particle modules, which are generated by the plethystic exponentials to
construct all possible EOM-reduced operators, can again be organised in the form of conformal
primary operators and their descendants

n

o) o’
00, 00’ Vi1
20| ~5loo| @11

It turns out that the scalar primaries that appear after reorganising the tensor product of
all traceless single-particle modules, are exactly the independent operators with all IBP and
EOM redundancies removed. Hence, the task of removing the IBP redundancies changes
to removing the descendants of the scalar primaries. But we know how the descendants
of a primary operator are generated: by repeatedly applying derivatives on the primary,
which is done by the generating functional P, which generates symmetric tensor products of
derivatives. Therefore, removing the descendants simply amounts to inverting the action of
the generating functional P on the tower of descendants. For the Hilbert series, this has the
consequence that the plethystic exponential of all representations of fields, which generate all
possible operators as the tensor products of the single particle modules, has to be multiplied

by 1/P.
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The Hilbert Series without EOM and IBP Redundancies The final expression of
the Hilbert series can be organised as follows

H(Dv {d’z}) = f dpiLorentz f d,ugauge% H PE I:'Z%XZ:I + AH(D, {¢z}) , (2.112)

where {¢;} corresponds to all spurions in the theory, and the character y; should be understood
as the character of the single particle module Ry,. The conformal characters of Ry, are
weighted with the scaling dimension d;, therefore, each spurion ¢; in the plethystic exponential
comes with D~%. Note here, that the second term in Eq. (2.112) appears due to a subtlety
in using the conformal characters to remove the EOM redundancies. While the characters
corresponding to the ordinary representations of the conformal group have some notion of
orthonormality, this is no longer true after applying the shortening conditions on them that
removes the EOM-redundant terms |64]. This can be understood by observing that Eq.
is a linear combination of the character of the ordinary conformal representations, hence the
shortened characters no longer have to be orthonormal. This is taken care of by the term AH
in Eq. (2.112), which can be computed for any EFT given its expression in Ref. [64]. For the
Hilbert series of EF'T operators these terms are usually irrelevant because they just appear
at mass dimension 4. As we will see in Sec. if there exist some field spurions with an
unusual power counting, this can change.

In order to calculate the Hilbert series defined in Eq. (2.112), the conformal characters
for different fields implemented in their single particle modules, as well as the Haar measures
for the different groups appearing in the EFT construction are needed. The characters for
the most important representations under the conformal group as well as the characters for
the representations and the Haar measures of the most common Lie groups used in particle
physics can be found in Refs. |64} [85].

C and P transformations Because the CP symmetry is a main subject of study of this
thesis, we will also introduce here a way to count operators separately, which have different
transformation properties under CP. The inclusion of CP into the Hilbert series has first been
discussed in Ref. [64] and subsequently used in studies of various theories [105} 227} |228|.
Here, we will present an overview of the necessary ingredients for integrating CP into the
Hilbert series framework.

C and P transformations can be understood as transformations on the representations of
the Lorentz and gauge group. Hence, they are symmetries of symmetries and effectively split
the Lorentz group and gauge group into two disconnected groups

Lorentz = Lorentz » I'p = {Lorentz, Lorentz x P} = {Lorentz,, Lorentz_}, (2.113)
gauge = gauge x I'c = {gauge, gauge xC} = {gauge,, gauge_}, .

where 'y = {1, X} are the elements of the parity groups. In order to count all operators
transforming even and odd under CP, we require building blocks with definite CP transform-
ation under the two branches of the symmetry group we just defined. This is not the case
for the SM fields, that are among the degrees of freedom appearing in the EFTs of interest
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later For instance, the left-handed quark doublet @ transforms into its conjugate QT under
a CP transformation. Therefore, following Ref. [105], for any field spurion ¢ we will use the
combination ¢ = ¢ @ ¢ as building blocks in the Hilbert series. Then CP-even operators
O + OCP and CP-odd operators @ — O°F are both counted by the same operator @, made
from the new building block ¢.

The invariants of the two branches of the symmetry group split by CP can be counted
by two Hilbert series, which are slight modifications of the Hilbert series we have presented
in Eq. li to account for the CP transformations. The Hilbert series of the two branches
read as follows |64

RCRTA N p— dugaugexz)mp STIPE| o ()| (200

HP.(6) = [ iy, () [ s (5555 1] E'[pd xzw,x,z)], (2.115)

where x = (21, x2) parameterises the Lorentz group and z = (2.1, 2¢,2, 2w, 2y’ ) are the para-
meters of the SM gauge groups SU(3). x SU(2)w x U(1)y. The Hilbert series H, counts the
invariants under the action of the group SO(4)xSU(3)xSU(2)xU (1), while H_ counts the in-
variants under the action of the parity-transformed group (SO(4)xSU(3)xSU(2)xU(1))xCP.

The characters x; in the two branches of the Hilbert series can be obtained from those
previously shown. In particular, the character x* of the newly defined spurion ¢ is given by
the sum of the characters of the spurion and its conjugate. In addition, since the plus branch
of the gauge and Lorentz group is the part of the group which is unchanged by C and P
transformations, the group measures and momentum generating functional P, of H, are the
same as those of the full Hilbert series H. On the other hand, H_ counts the invariants of
the part of the Lorentz and gauge group which transform under C and P transformations.
These additional parity transformations can be included by a folding technique |64} [227|.
After applying this technique, the Haar measure and character of the negative branch of the
Lorentz group are found to be Lorentz_ = Sp(2), while their Haar measure and characters for
the SU(3). part of the gauge group are S’(j@s_ =Sp(2). A detailed derivation can be found
in Ref. [64].

There is one difficulty for the characters in the odd branch. In the derivation of the
Molien-Weyl formula, the fact that the representation matrix of the group element can al-
ways be diagonalised on the maximal torus representation. Then, for g € G it is easy to see,
that Tr (¢P(21,...,2n)) = x(2},...,20). It can be shown, that after the folding procedure
that is necessary to compute the characters of the parity-odd branches, the vector repres-
entation of matrix for any parity-odd element has two eigenvalues, which are not parameters
of the maximal torus representation, but instead just +1 and -1 [64]. Then, the identity
Tr (¢P(21,-..,2n)) = x(z],...,2%) obviously no longer holds true, as for odd powers these last

YFor a real singlet (pseudo-)scalar a, like that axion we will consider later, the spurion a itself can be used
as a building block, as the scalar transforms into itself up to a sign under CP transformations.

20WWe have omitted the AH terms here. As in Eq. (2.112)), these terms should be added to obtain the correct
final form of the Hilbert series, as we will discuss later in Sec.
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two eigenvalues cancel, but for even powers they do not |227|. Instead, the characters for the
single particle modules in terms of the characters of the gauge and Lorentz group, appearing
in the odd and even powers in the plethystic exponential, should be [105]

odd power: xI' (D, z)x¢ (%), even power: Xfy (D, z)x¢ (%), (2.116)

where XZP * is the character corresponding to the Lorentz group, and X@c* is the character
of the gauge groups. We have introduced some new notation here, which appears in the
folding procedure to obtain the characters of the minus branch of the Lorentz and gauge
group. During the folding procedure, some parameters become redundant and the characters
depend on fewer parameters, which we denote as Z = x; and Z = (2.1, 2w ). This is due to the
fact that after diagonalising the matrix representation on the maximal torus (c.f. Eq. )
of the negative branch of the symmetry group, one of the eigenvalues is +1, corresponding
to the parity part of the group. Then, the character of the representation will depend on
one less parameter with respect to the group without the parity transformation [64|. The
corresponding momentum generating functional P_ of the minus branch is defined as

1
(1-Dx1)(1-Dagl)(1-D2)

P_(D,%) = (2.117)

As indicated in Eq. , the even-power characters are the same as those of the positive
branch x™ (D, x, z) = x* (D, z, Z) after setting the parameters which are rendered redundant in
the folding procedure are set to unity, i.e. Z = (z1,1) and Z = (2.1, 1, 2w, 1). It turns out that
for the SM particle content, all of the characters appearing in odd powers of the plethystic
exponential vanish because none of the SM particles are transformed into themselves under
CP transformations |105|. For a singlet scalar, like the axion we will discuss later, this no
longer holds true and the terms in the odd powers of the plethystic exponential are non-
vanishing [64}227]. We will discuss this in Sec. where we will also show how to encode
the shift symmetry of the ALP in its character.

After introducing all the technicalities on how to include CP in the Hilbert series counting,
we are now ready to present the Hilbert series for the CP-even and CP-odd operators of the
given EFT. They can be obtained as different combinations of the Hilbert series of the plus
and minus branch introduced above

1 1
Heven = 5(%+ + /H*) ) Hodd = §(H+ - ,H*) s (2118)

where the full Hilbert series, is of course simply given by the part of the Lorentz and gauge
group which is left invariant by C and P transformations H = Heven + Hodd = H+-

CP-violating operators These expressions presented in Eq. (2.118) allow us to obtain
the counting of all CP-even and CP-odd operators in the EFT. However, we have found in
Secs. andthat not all CP-odd operators must necessarily be CP-violating due to fla-
vour transformations which allow to remove CP-odd parameters from the Lagrangian. In the
presence of physical Yukawa couplings as they are measured in nature, the SM Lagrangian
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has an accidental exact flavour group U (1)%1 x U(1)p corresponding to the lepton family
numbers and baryon number, which leaves all couplings in the SM Lagrangian invariant.
These rephasings can then be used on the non-renormalisable operators to remove CP-odd
parameters from them, if the operator is not invariant under at least one of the U(1) trans-
formations. Therefore, it would be ideal to include this effect in the Hilbert series and count
truly CP-violating operators instead of CP-odd operators.

Following Ref. |105], this can be achieved by implementing these rephasing invariants as
global symmetries of the fermion fields as is done for the spurions appearing in the flavour
invariants and integrating over the additional U(1)s to project out the singlets under the
rephasings. For EFTs based on the SM particle content, this will simply amount to adding
the four U(1) symmetries corresponding to the lepton and baryon numbers U(l)%i xU(1)p,
as was just mentioned.

Later in this thesis, we will also construct effective theories below the electroweak scale,
where the heavy particles of the SM, the W, Z, H and top quark are integrated out and SU(2)
is spontaneously broken, rendering the left-handed up- and down quarks independent of one
another. Then, the exact flavour group in the presence of the fermion masses is increased to
U2 xUQ)S xU (1)2i, corresponding to lepton and quark family numbers, which are no
longer broken by the CKM matrix at the level of the renormalisable Lagrangian. There is
no U(1) symmetry in the neutrino sector due to the Majorana nature of the allowed mass
term ppvf at low energies. Therefore, an additional N, + Ng+ N, of U(1) integrals have to
be calculated, one for each active fermion flavour in the effective theory which has not been
integrated out yet. Looking at Eq. (2.116), we can immediately realise that the rephasing
acts trivially on the negative branch of the gauge group and the additional U(1) integrals
only have to be added to the positive branch. Putting everything together, we find that the
Hilbert series of the CP-violating operators can be computed by |105]

Hepy = (U(1) inv. Hy) —H-. (2.119)

2.6 Topological Field Configurations: Instantons

In this section, we will briefly review topical field configurations in QFT and in particular
instanton configurations. This section is mainly based on Refs. |37|229+231|, while other
good references for the subject are Refs. |142) [232:234|. We will work in Euclidean space
throughout this section by performing a Wick rotation 2% — .

Most QFT computations in the context of high-energy particle physics are done in per-
turbation theory by expanding around the saddle-point of the action in the path integral,
maximised by the classical field configuration. Here, the action is split into its free, kinetic
part Sp and an interaction part Siy, which can be organised in terms of a small coupling
constant ¢, which dictates the validity of perturbation theory. For a real scalar ¢ we can

write the path integral of such a scenario as follows

f Dep e S061-05im (9] (2.120)
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where we have factored the coupling g out of the interacting action From this action we
can compute correlation functions by expanding the exponential of the interacting action.
For instance, we can compute the time-ordered vacuum correlator with an insertion of some
operator O as follows

2 02
(0|T{O(2)}|0) = f D e~ Holel=05mlelo (1) = f D e 0l?] (1 — gSint + % +0 (g3)) O(z)
(2.121)
where subsequently the propagator of the free field in Euclidean space
Az - x2) = f Do el (21)d(22) (2.122)

is used to evaluate the correlator in Eq. (2.121) after all possible contractions of the fields are
considered.

There exist however also physical effects, which can never show up in perturbation theory
due to their topological nature. As we have already mentioned earlier in Sec. one such
effect appears in the pure Yang-Mills QCD part of the full SM Lagrangian presented in
Eq. . In Euclidean space, the corresponding action reads

2
SvM = / dz (iGﬁVGA’“U +1i0qQcp 3373_(2 GﬁuéA’”V) (2.123)
due to the 6 term. We are interested in performing semi-classical approximations, because we
know how to perform computations with such configurations. Therefore, we are interested in
topological configurations of the theory in Eq. with finite Euclidean action Sg, which
maximises the Euclidean path integral weighted by exp (-Sg) [37]. One can rewrite the 6
term as the total derivative of the Chern-Simons current j{q [230]

GA GAW = g, ehvo (G;j‘G;{, - B pArCaAGHGS ) = 9t (2.124)

which makes it clear that it cannot ever show up in perturbation theory due to Gauss’s law
assuming that the gauge fields are such that the field strength falls off sufficiently quickly that
it goes to zero on the integration boundary, making the action of the theory finite.

The most straightforward way of satisfying this condition is that the gauge fields them-
selves are zero on the boundary G;ﬂbn =0 Another way to obtain vanishing field strengths
on the boundary is considering gauge transform of the zero gauge field solutions |37

(Gulna) = UGulya U +UBU = UO,U™ (2.125)

where U = exp (iaATA) is an element of the SU(3). gauge group and we have used that
the untransformed gauge fields vanish on the boundary. We call field configurations, which

2INote, that there could of course be several interactions with different couplings in Sins for a real scalar ¢.
We use this simplified situation here where there is a single interaction with the coupling g to exemplify the
principles of perturbation theory.
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are the gauge transform of a vanishing gauge field, pure gauge configurations. There are
different choices of gauge transformations in Eq. (2.125) and we should come up with a way
of classifying the different solutions in an attempt of finding a structure.

To understand the solutions in Eq. better, it is helpful to notice that they are
mappings of the boundary of Euclidean space-time, i.e. a three-dimensional hypersphere S3,
into the gauge group [37|. It turns out, that for any simple Lie group G such mappings can be
continuously deformed into mappings of an SU(2) subgroup of G [235|. Since, furthermore
SU(2) is topologically equivalent to S° |230|We are essentially looking for mappings of S,
as the boundary of Euclidean space-time, onto S2, the gauge group space. These mappings
of §% onto itself can be classified in an intuitive way by counting how many times one sphere
covers the other sphere, i.e. how many times one has to wind around one sphere to wind
around the other sphere once. Mathematically, this is expressed in terms of homotopy groups
7T (G), which classify the mappings of an n-sphere S™ onto a group G. The relevant group
for a 4-dimensional Euclidean space-time is the third homotopy group of S denoted by

m3(5%) =1Z. (2.126)

We call topological field configurations following this mapping instantons@ As a consequence
we can put the topological solutions into equivalence classes labelled by a single QQ € Z. We
will refer to this number as the winding number or topological charge of the configuration
and it can be computed directly from the gauge configuration as follows |37]

2
g3 4 A AA, v _
Jo.2 f 'z G, G () =QeZ. (2.127)

This has important consequences for the vacuum structure of the theory. We can identify a
vacuum state, where the field strength tensor G}, vanishes, with a pure gauge configuration
with winding number n and the corresponding state labelled by |n) [150]. As discussed before,
any further gauge transformation can change the winding number of the vacuum. Hence, the
true vacuum should be the super position of all the topological configurations. We define the
combination |236|

0= ey (2.128)

n=—oo

which we call the § vacuum. Here, 6 € [0,27) is the vacuum angle, which as we will see now
can be identified with the 6 term in the action Eq. .

We will now compute the dependence of the vacuum energy on 6, which will allow us to
understand how to resolve the strong CP problem. To perform these computations we will

22This can be appreciated by defining an SU(2) matrix M = Al +iBo, with o the vector of Pauli matrices
and A and B are 4 real parameters. Imposing that MM =1 and det M = 1, yields the condition A% +B? =1,
which describes a 3-dimensional sphere [230].

2We can understand other topological solutions of QFT in a similar way. Monopoles can be understood
by mappings of the two-dimensional spatial boundary into the gauge group, vortices as a mapping of a one-
dimensional boundary into the gauge group and domain walls or kinks, with a co-dimension of one. They can
all be classified by the respective homotopy group |234].
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work with a specific gauge configuration, featuring all the properties discussed above — the
Belavin—Polyakov—Schwarz—Tyupkin (BPST) instanton |237|. This instanton configuration
has winding number ) = +1 and can be understood as the field configuration which interpol-
ates between a vacuum with winding number n and one with winding number n+ 1. Working
in the regular Landau gauge, the gauge field of the BPST instanton solution based on an
SU(2) gauge group has the following form [237|

Capv, M7V€{17273}

(m—ﬂ?o)u —Oay, p=0
Gu(x) =204t ———=, Napv = . 2.129
H( ) apy (a;—xo)2+p2 apy +5a;u v =0 ( )
0, p=v=0

Hence, a = 1,2,3, t* are the generators of SU(2) and 14, are the 't Hooft 1 symbols |143].
To obtain the instanton solutions for an SU(N) gauge theory, the SU(2) solution can be
embedded into the SU(N) group. In the following, we will work with the minimal embedding,
where the SU(2) instanton solution in embedded into the upper left corner of the SU(N)
generators of the fundamental representation. With the @ = 1 instanton solution also comes
an anti-instanton solution with opposite topological charge Q = —1. The corresponding gauge
field has the same functional form as the instanton solution in Eq. , where the 't Hooft
symbols denoted by 7, for the anti-instantons are modified as dqu, 0o — —0Oapu, dar With
respect to the original 7.

The BPST instanton solution in Eq. is parameterised by its location given by the
Euclidean four-vector zfj and its size p, as well as the 3 gauge parameters a® corresponding to
gauge transformations of the vector potential in Eq. (2.129). Those parameters are referred
to as the collective coordinates of the instanton solution. Later, we are interested in QCD
instantons based on the SU(3). group. In the embedding of the SU(2) instanton solution
into an SU(N) group, there is the freedom in choosing an SU(2) subgroup of SU(N), into
which the solution is embedded [230]. We will work with the minimal embedding, which puts
the SU(2) instanton solution in the upper left corner of the SU(N) solution |231|

asU@
GRrM = , (2.130)
0 0

corresponding to the following choice of generators of the fundamental representation of
SU(N) |230|

0 110 1 010
1 1
le5 1 olo|, T?°== : T3=5 0 -1]0 |, (2.131)
0 0|0 0 010

where the zeros outside of the matrix in the upper left corner fill up the remaining entries of
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the N x N matrices. For instance, for SU(3), which will use in the computations below, the
generators are simply the first three Gell-Mann matrices T% = 1/2\%, a = 1,2, 3. After choosing
this embedding, there is still the freedom to perform general SU(N) gauge transformations on
the solution, where only the subgroup of SU(N) transformations generates a new solution,
which leaves the embedding invariant. Performing an SU(N) gauge transformation U on

Eq. (2.130),

aSU@
G -y ut, (2.132)
0 0

it is straightforward to see, that there is a subgroup U € SU(N -2)xU (1) of gauge transform-
ations acting only on the zeros in Eq. , that leaves the solution invariant. Hence, in
total, for an SU(2) instanton solution, we have 5 parameters from the translations (changing
the instanton centre zf)) and dilatations (changing the instanton size p) as well as 3 paramet-
ers from the group transformations, that yield new instanton solutions. After embedding the
SU(2) solution into the SU(N) group, there are an additional N2~1-((N-2)2-1)-1=4N-5
parameters describing the freedom of gauge transformations after the embedding |231].

Later while performing computations, we will mostly work with the field strength, which
for the instanton solution in Eq. (2.129) reads

02

G, =—-4n. . 1% )
N (S ERY O

(2.133)

An important property of the (anti-)instanton configurations is that their field strength is
(anti-)self-dual
G =+Gu, (2.134)

where the plus is for the instanton solution and the minus sign appears for the anti-instanton
solution. This is easy to see by requiring that the Euclidean action [230)

a LA A 2ol magw L maN2_ 8T Loy a A4 2
[ dtagenete = [ata Gl e (Gl -GL) =@ + 5 [ da (Gl -GL)
(2.135)
be minimal. Looking at the last equality this is clearly the case when Eq. is satisfied.
Note, that we have used the definition of the topological charge () in the second step. The

(anti-)self-duality property of the instanton solution also ensures that the classical equation
of motion is fulfilled [230|

~ 1 1
D“Gﬁy = D“Gﬁu = 5EWPUDMC;A,po— = oo (DMGA,pa L DPGATE DJGA,W) =0, (2.136)

due to the Bianchi identity used in the last step. Plugging a BPST instanton of topological
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charge in the Yang-Mills action yields the following finite action

872 .
SBPST,Q = g—2|Q| +iQbqep - (2.137)
3

Two comments are in order. Firstly, the expression in Eq. clarifies why we only
considered the @) = £1 instanton solutions, as they dominate the path integral proportional
to exp (-SppsT). Furthermore, this equation also makes it clear that the instanton is a
non-perturbative effect, because its action is proportional to inverse powers of the gauge
coupling g3, which could never be generated in perturbation theory. Note however, that
the gauge coupling still needs to remain in the perturbative regime for the semi-classical
approximation we made earlier still to hold true. Indeed, the semi-classical approximation
works best when the Fuclidean action in Eq. is large, i.e. when g3 is small [142]. That
is why instantons cannot be used reliably in QCD at low energies, opposed to the early hopes
of understanding non-perturbative QCD analytically by use of them. Later this was referred
to as an “IR embarrassment” by Coleman |37|. This is alleviated in computations of QCD at
finite temperature, where the temperature acts as a lower IR cut-off in the integral over the
instanton size |238].

After the discussion of all the properties of the BPST instanton, we are finally ready to
compute the vacuum energy density F(#) of the theory, which in the limit of large 4-volumes
V4 is related to the Euclidean generating functional Z[#] as follows |150)|

Z[0] = lim e EOVa (2.138)

‘/4—)00

where the generating functional of the BPST 1-instanton solution is

_8x2

4 1 9 A S
Z[@]:[DGH exp(fd x(—ZGG+1932W2GG ~efe 3 (2.139)

where we have used the semi-classical approximation in the last step and ignored all quantum
fluctuations around it. Adding the generating functional of the anti-instanton solution to this
and summing over all possible instanton configurations with topological charge @ in the dilute
gas limit, where the instantons and anti-instantons are well-separated, yields [37|

_ gm

E(f) = -2Ke % cosf, (2.140)

where K is a constant generated by the integration over the instanton zero modes.

We have discussed in Sec. that we can relax the vacuum angle 6 to zero by making it
dynamical. Indeed, the potential in Eq. (2.140) generated for such a dynamical #-angle would
be minimised at zero (assuming a solution for the cosmological constant problem), solving the

24This solution can be obtained by taking the gauge transformation U that generates the 1-instanton pure
gauge field by G, = USU™ and taking it to the Qth power [230]. The gauge transformation obtained that
way will generate a charge-@) instanton gauge configuration with the same “pure gauge” mapping.
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strong CP problem. We already discussed earlier that instantons are not reliable in the regime
where QCD confines. Hence, we cannot use the computations presented here to compute the
potential of the QCD axion. Indeed, as discussed in Sec. XPT should be used to compute
the QCD axion potential instead. There could however be configurations in the UV, which
change the gauge coupling of QCD in a such a way, that instanton effects become important
again while still being reliable [239]|. In such cases, the instanton configurations can change
the potential of the QCD axion presented in Eq. , increasing the mass of the axion for
UV contributions which are aligned with the QCD potential or even destroy the solution to
the strong CP problem if they are misaligned.

Misaligned contributions are generated in the presence of new sources of CP violation in
the UV and we will study them in the SMEFT framework in Chap. This requires us to
discuss the presence of fermions charged under the gauge groups responsible for the instantons.
The Euclidean action of the massless quarks of the SM reads

S¢=fd4m/7f(—iw)wf, (2.141)

whose EOM is the Dirac equation. To study the influence of the instantons on the massless
quarks, we will expand the fermions in eigenmodes of the Dirac operator

iy = N, (2.142)

where the )\, are the real eigenvalues of the Dirac operator and we have expanded v =
Yoo w(”)ff[”) with ¢(") the wave function of the nth eigenmode and 51(;) are Grassmannian
vectors. Then, for the zeroth eigenmode, also called zero mode for short, we have

P @ =i (@ +igs@) @ =0. (2.143)

Plugging in the explicit @ = 1 BPST solution for the vector gauge field in Eq. (2.129), we
find that the zero mode of the quark fields also has a special functional form in the instanton
background. In regular Landau gauge, the zero modes read as follows [230}232]

0
b2y =[] = 2 - 373 . ok =€, (2.144)
xr] T(z-z0)2+p?]"" \g

where a = 1,2 and k = 1,2 are the spin and colour indices, respectively. They are entangled
by the Levi-Civita symbol as was also the case for the gauge field solution in the instanton
background. The zero modes are normalised to unity [ dz w(O)Tz/J(O) = 1. Note, that only
the right-handed chiral fermions XTL, X R Treceive a non-vanishing contribution in the instanton
background, while only the left-handed Weyl fermions receive a contribution in the anti-

instanton background.

To compute the additional contributions to the vacuum energy or the potential of the
axion for a dynamical vacuum angle in Chap. [8| we have to compute correlators with different
operator insertions in the instanton background in Euclidean space, which we will do directly
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from the path integral. We will follow the seminal paper by 't Hooft [143| expressed in the
notation of Ref. [240|. Then, a correlation function with an insertion of an operator O can be
computed directly from the path integral by integrating over all gauge fields A, ghost fields
7, scalars ¢ and fermions ) of the SM as follows

>‘ f DAMD?]'DF]D(#D¢TD¢DZE 67SE0|1-inst. (2 145)
1-inst. f DAanDﬁDQbD(ﬁTleD& e=98 Agl=0 ' .

(0[00

To simplify the computation of this correlator, we can make several simplifications thanks to
the semi-classical instanton background we work in. First, all fields not taking part in the
instanton dynamics, i.e. those which are not charged under SU(3)., can be treated as in
ordinary perturbation theory as laid out at the beginning of this section by expanding the
interacting action in its small coupling and using the definition of the propagator to contract
all fields.

Second, all other fields which are involved in the instanton dynamics are split into their
zero modes and non-zero modes as explained throughout this section. Splitting, G = G(O) + G/
for the gluon fields and 1 = ¢(®) + ¢/, where the fields with a superscript (0) are the zero
modes of the fields, which can be found in Egs. (2.129) and (2.144) and the primed fields are
the non-zero modes. We then expand the action to second order in the fields around their

semi-classical background
S = S0 (p) + f DI AN (2.146)
i

where @ collects all the non-zero modes of the gluon fields, ghosts and quarks. Sy contains
only zero modes of the fields partaking in the instanton dynamics, however it can still con-
tain non-zero modes of other fields not charged under the group, like the Higgs or lepton
interactions.

We will start by performing the integration over the non-zero modes of the fermions. We
want to emphasise again, that we only keep the non-zero modes up to quadratic order here
but for instance ignore the Yukawa interactions between non-zero modes of quarks with the
Higgs, which we simply expand to zeroth order in the small perturbative coupling. Splitting
the fermions into zero modes and non-zero modes, changes the path integration measure as
follows |240|

DYDY = [ [0 del 1| de Dy Do (2.147)
f

Here, 1/1;0) are the zero mode wave function from Eq. (2.144), where f collects all internal
indices like flavour indices or gauge indices of other groups not partaking in the instanton
dynamics, and dg}o),déj(co) are Grassmann integration measures. The action of the zero modes
simply vanishes by definition of the zero modes. The remaining integral over the non-zero
modes is Gaussian and simply yields a determinant, which was first computed in Ref. [143]
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and contributes to the instanton density dy(p) to be defined below. In total, we find

N
f DYDY — =5 Vr (o) +2Na(1/2) f ﬁ(pdgj(ﬁ)dgj@), (2.148)
f=1

where « is a function defined in Ref. [143|, that we will numerically evaluate below, when we
give the final result for the instanton density. Note, that %N ¢ is the fermion contribution to
the 1-loop QCD p-function.

Next, we perform the integration over the quadratic action of the non-zero modes of the
bosonic fields, i.e. in our case the gluon fields and their ghosts. This will lead to a determinant
of the bosonic matrices M¢; that has to be computed. We will just give the result here and
refer to Ref. [143| for the details. The action of the zero modes will simply reduce to that of
Eq. for the bosonic contributions, where replacing the functional integration over the
zero modes with the collective coordinates gives rise to a Jacobian. In total we find

/ DA, DiyDij — ¢~ faco f dizo / 9 i1 (o). (2.149)
p

where dn(p) is the instanton density which appears after integrating over the non-zero modes
of the gauge fields and parameterising the zero modes in terms of their collective coordinates.
We find for the instanton density

872 2N 2/ 2
ino) e (T ) e, (2.150)
g

where the factor g?(1/p) in the exponential is the running gauge coupling induced by the
integration over the non-zero modes as we saw more or less explicitly for the fermions in
Eq. . Including both the contributions of the gauge fields and fermions, the full running
is given by

8 82 1. 2

7r
= —bolog (pu), bo=—N-=Ny. (2.151)
9*(1/p) g5 (w) 3 3

2N
The prefactor (89%2) is due to the Jacobian arising when the gauge field zero modes are

parameterised in terms of the collective coordinates. Here, the gauge coupling should be
understood as the bare coupling and any running effects are effectively of two-loop order in
the computation. Finally, the first term also comes from the integration over the non-zero
modes on top of the beta function giving the running coupling. The factor C[NN] reads as
follows |143|[240H242|

Cre N 0.292N

O e S TTE ) T :

(2.152)

where C] ~ 0.466, Cy » 1.678 and the integration over the fermion non-zero modes yields the

0.292N;

factor e Note, that Co and the exponential factor are scheme-dependent [143|. Here,

we have shown them in the Pauli—Villars regularisation scheme.
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The Flavour Invariants of the Standard Model Ex-

tended with Sterile Neutrinos

3.1 Introduction

In Sec. we have introduced different ways of generating the neutrino masses observed in
Nature. In both the ¥SM and the type-I seesaw model right-handed neutrinos are introduced,
which generate the neutrino masses either by their direct small couplings to the SM degrees of
freedom in the vSM, or via the seesaw mechanism if their Majorana mass is large. Either way,
by adding new flavourful couplings to the theory, new perturbative sources of CP violation
are added to the Lagrangian. Since, the status of CP violation in the lepton sector is not yet
fully determined, it is an interesting task to classify the new sources of CP violation by using
flavour invariants, as was introduced in Sec. [2.1]for the CKM-phase of the SM.

To this end, we will use the Hilbert series and related tools from invariant theory intro-
duced in Sec. to count the number of generating invariants and the relations among
them. The set of generating invariants will in principle allow us to express any observable
in the theory as a function of the invariants. This is particularly interesting for CP-odd ob-
servables as they could reveal the intricate structure of flavourful CP violation in the theory
through the invariants. For instance, demanding that the flavour-invariant CP-odd structures
are generated in perturbation theory, allows us to make statements about the order in the
couplings at which certain phases can appear in observables. As we will see in the following
sections, the invariants will also allow us to easily differentiate between the Dirac and Major-
ana nature of the mass term and allow us to make statements about the theory in the seesaw
limit. Here, we can show that while all parameters present in the effective theory of the vSM
appear suppressed with only one or two powers of the heavy Majorana mass, they can only
appear in a flavour-invariant way with a suppression of two and four powers of the Majorana
mass.

Invariants have been used both in UV complete theories [218] 220| [243H255| and EFTs
to characterise the parameters of the theory with respect to CP [103] 104} 2561258|. Some
problems which are closely related to the analysis presented here have been previously invest-
igated in the literature. In particular, the vSM with only two generations of charged leptons
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SUB)L=xUM) SUB)exU(1)e SUBINxU)N || U(1)Lresn
Y. 3.1 3.1 1 0
Y 3.1 10 3,4 0
My 1o 1o (3®53)_2 -2
X =Y. Y] (38@3) 1o 1o 0
Xy =YNY) (3®3) 1o 1o 0
Xy = My M, 1o 1o (3®3)o 0

Table 3.1: The flavour transformation properties of the relevant Yukawa matrices and Majorana mass matrix
treated as spurions. The subscripts of the SU(3) representations denote the charge under the U(1) part of the
flavour symmetry group. Furthermore, ® denotes the symmetric tensor product of the simple representations.
The charges of all spurions under Abelian lepton number transformations are indicated in the last column.
We also show the transformation properties of X., Xn and Xjs, which will be used in following sections.

and neutrinos has been studied in Ref. |218| and the case of adding two generations of right-
handed sterile neutrinos to the SM has been treated in Ref. [252|. There, the authors also
use the flavour invariants to formulate the necessary and sufficient conditions for CP violation
(CPV) in the model. The Hilbert series of the ¥SM with three generations has previously been
reported on in Refs. |224] 257|. Our main result will be the construction of the generating
set of flavour invariants of the VS which allows us, for instance, to capture the sufficient
conditions for CP conservation (CPC) in the theory. Unlike in the SM, where the generating
set of invariants only contains 14 invariants (c.f. Sec. , the number of generating jumps
to 459 invariants for three generations of sterile neutrinos, even though the number of flavour-
ful physical parameters only approximately doubles. This reveals the rich algebraic structure
of the flavourful sector of the ¥SM, captured by these invariants. As a consequence of the
complicated algebraic structure of the non-complete intersection ring, there are non-trivial
cancellations in the plethystic logarithm which is often used to count invariants given a set of
building blocks and their transformation properties. Hence, one should take care when solely
relying on these tools from invariant theory to build a complete basis of flavour invariants.

3.2 Building an Invariant Basis for the vSM

We have introduced the Lagrangian of the ¥SM, the SM extended with three generation of
sterile neutrinos, whose flavourful structure we will study here, in Eq. (2.43). We will repeat

'Note, that the ¥SM has the same structure as the type-I seesaw model, where the only difference is the
value of the parameters. Since we will keep all parameters generic here, we will refer to the theory as the vSM
here for brevity.

2In principle 2 generations of sterile neutrinos are enough to generate the observed neutrino masses at low
energies [259|. As mentioned before this case has been treated in Ref. [252|.
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it here for convenience
_ _ 1 _
Losn = Lsv + NidN — (LYNHN + §NCMNN + h.c.) . (3.1)

The kinetic term of the ¥SM Lagrangian in Eq. is invariant under U(3) flavour trans-
formation, one for each of the fermion flavour multiplets. In the following, we assume that this
flavour symmetry is only softly broken by the Yukawa couplings and Majorana mass term.
Then, we can promote all flavourful couplings to spurions under this symmetry, formally
reinstating the symmetry in the Lagrangian. The spurious transformations of all flavourful
parameters in the theory can be found in Tab. From the tranformations of the Majorana
mass matrix My one can immediately read off that its presence breaks lepton number, as
universal rephasings of N are broken by the Majorana character of the mass term. As a
consequence, there will be additional physical Majorana-type phases in the spectrum of the
theory.

Whenever needed, we will work in an explicit parameterisation of the flavourful matrices.
One minimal parameterisation which only contains as many parameters as there are physical
parameters in the theory is given b

Y, = diag (Ye, Yy, yr) s Yn =V -diag (y1,y2,93) - W', My = diag (mq1,ma,m3) ,  (3.2)

where
Vv :U(912’ 9137 9237 6) : dla‘g (1’ ei¢1 ’ ei¢2) ) W= dlag (17 e’bdﬂ ’ e“ﬂz) : U(9127 0137 9537 5,) ) (33)

and U (012,613, 023,0) has the same form as the CKM matrix defined in Eq. with a phase
¢ €[0,27) and three mixing angles 0;; € [0, 7/2]. ¢12 €[0,27) and ¢] , € [0,7) are additional
phases. This parameterisation correctly captures the 9 mass parameters, 6 mixing angles and
6 phases of the theory. A detailed counting from a symmetry perspective can be found in

Tab.

By setting the Majorana mass term My to zero, we can recover Dirac masses for the
neutrinos, as discussed in Sec. Then, the Yukawa sector of the theory has the same
structure as that of the SM quark sector and the mixing matrix W and the phases ¢;2
become unphysical. In this case the PMNS matrix arises in the same way as the CKM matrix
in the quark sector of the SM.

Another interesting limit is the seesaw limit, where the Majorana masses are large and
hence the Majorana component of the fermions can be integrated out, generating light neutrino
masses for the left-handed SM neutrinos, as discussed in Sec. Due to the existence of
the Majorana mass term, some rephasings are not allowed, and the two additional Majorana
phases become physical.

3A detailed discussion about this parameterisation can be found in Ref. |218] and App. There, new
parameterisations, which are more convenient for the study of the algebraic properties of polynomial rings,
are introduced.
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Real Parameters Imaginary Parameters Total

Y., YN, My 2x9+6 2x9+3 45
Ur, U, Un 3x3 3x6-3 24
Difference 15 6 21

Table 3.2: Number of physical parameters in the generic vevs of the flavour spurions Ye, Yn, Mn of the vSM
presented in Tab. Note here, that Ur,U.,Un € SU(3) because the lepton numbers are broken by the
presence of the vev of M as discussed in the main text and cannot be used to remove imaginary parameters,
hence the ‘-3’ in the second column.

3.2.1 Hilbert Series of the vSM

Before we start with the construction of the generating and primary set of invariants, we
will first perform a counting of them using the Hilbert series and plethystic logarithm to set
our expectations. To this end, we use the Molien—Weyl formula introduced in Eq. to
calculate the Hilbert series for the flavour invariants of the ¥SM with the spurion content
Y., Yy and M NE| For the evaluation of the Molien—Weyl formula, we need the characters of
the flavourful building blocks appearing in the invariants, constructed from the fundamental
and anti-fundamental representations, and the Haar measure of U(3). We have computed the
characters in Egs. and and the Haar measure can be found in Ref. |64|. They
read

3
XU(3) =2z1+29+ 23,

i@ =5 T2 (3.4)
d _ i ﬁ dzi _(2’2 —Z1)2 (23—2’1)2 (23 —22)2
HUG) = ) il 2miz; 222222 '

From these, the characters for the representations of the flavourful Lagrangian parameters of
the ¥SM can be constructed following Tab. For instance, the character for Yy is given by

Xyy = X2(3)L(zl, 29, Z3)X(3](3)N(Z47 25,26) = (21 + 22 + 23) (z;l + zgl + zgl) ) (3.5)

and the characters for all other spurions can be obtained in the same way. Then, we compute
the Hilbert series evaluating the expression for the Molien—-Weyl formula in Eq. , where
we first use the same grading for all spurions to obtain the ungraded Hilbert series. The
calculation amounts to solving the complex integral over the six variables z1, ...,z over the
contour |z = 1, which can be done by calculating the residues. The same calculation has
been presented before and we refer to Refs. [224) 257| for the details. We split the Hilbert
series into its numerator and denominator to study their form separately. The numerator of

4To make My dimensionless like the other flavourful couplings in a theory, we divide it by the only other
mass scale in the problem, the Higgs vev v. Only then, invariants with a different number of insertions of My
can be compared.
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the Hilbert series reads

N(q) =

1+¢*+5¢5 +9¢% +22¢"° + 61¢'% + 126¢™ + 273¢'6 + 552¢'® + 1038¢%°

+1880¢%2 + 3293¢%* + 544145 + 8712¢8 + 13417¢%° + 19867¢%2 + 28414¢>* + 393514%¢
+52604¢%° + 682204 + 85783¢*% + 104588¢** + 123852¢6 + 142559¢*8 + 159328¢°°
+173201¢°% + 183138¢°* + 188232¢°° + 188232¢° + 183138¢%" + 173201¢°%% + 159328¢%*
+142559¢56 + 123852¢58 + 104588 + 85783¢72 + 68220¢"* + 52604¢ % + 39351¢™®
+28414¢% + 19867¢% + 13417¢%* + 8712¢%% + 544148 + 3293¢™° + 18804¢°% + 1038¢**
+552¢%0 + 273¢”8 + 126¢'%0 + 61¢'°% + 22¢'%* + 9¢190 4 5¢108 4 110 4 114, (3.6)

which is of palindromic form The denominator is
D) = (1-) (1-4) (1-¢") (1-¢%)" (1-0")" (1-4")" (1- )" (1-4")8T)

As expected, the powers of the factors in the denominator add up to 21, the number of
physical parameters in the ¥SM which is also the cardinality of the primary set. Our result
of the ungraded Hilbert series is consistent with those found in Refs. |224] [257]. We have
furthermore calculated the multi-graded Hilbert series with different parameters {e,m,n}
counting the degrees of the couplings {Y., My, Yn}, which we only show in App. due
to its length. To obtain these results a Mathematica code that can efficiently calculate the
Hilbert series was developed, which we will also use later in Chap. to compute the Hilbert
series for operator bases in ALP EFTs. The code will shortly be published as a Mathematica
package under the name CHINCHILLA [260).

Furthermore, we can compute the ungraded plethystic logarithm by plugging the ungraded
Hilbert series in Eq. . We find

PL[H(q)] =3¢* + 5¢* + 9¢° + 10¢® + 19¢'% + 40¢'? + 66¢™* + 92¢'6 + 70¢'® - 124¢*°

- 703¢%% - 2039¢%* - 4391¢%° — 7472¢%® - 852240 + 590¢°% + O (). (3:8)

The plethystic logarithm is a non-terminating series and we only show terms up to order 32.

At higher orders, both positive and negative terms will appear repeatedly in an infinite series,

which implies that the flavour invariants of the ¥SM form a non-complete intersection ring.
In the usual interpretation of the plethystic logarithm, the leading positive terms in

® Note that both in the numerator in Eq. and in the denominator in Eq. a term (1+ q2) can be
factorised, which would slightly simplify the Hilbert series. However, if this factor were to be simplified, the
Hilbert series would take a rational form with a numerator featuring some negative terms, in contradiction
with the positivity requirement announced earlier for the ungraded Hilbert series. This hints at a more general
class of modifications that can be applied to the Hilbert series. Indeed, both numerator and denominator can
always be multiplied by a factor (1+¢*)™, if there exists a factor (1-¢*)™ (where m < n) in the denominator.
This multiplication removes a factor of (1 - qk)m from the denominator while introducing a new factor of
(1 -¢**)™. The total number of factors in the denominator does not change, and the numerator keeps its
palindromic form with positive terms. This freedom indicates that there is ambiguity in determining the form
of the Hilbert series if there is no further requirement of the Hilbert series. Accordingly, the interpretation of
the Hilbert series changes, as now a primary invariant and some of the syzygies are shifted to different degrees
in the spurions.
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Eq. suggest that there exists a total of 314 generating invariants. However, during
the explicit construction of the invariants later, we will find that this number is incorrect.
While constructing the invariants, we find discrepancies between the number of invariants
suggested by the plethystic logarithm and the number of independent irremovable generating
invariants, first at order 16, where the counting of generating invariants exceeds the 92 in-
variants suggested by the plethystic logarithm. This is due to the non-complete intersection
nature of the ring, resulting in non-trivial cancellations between the number of generating
invariants and the number of syzygies. To make this discussion more concrete, we will discuss
explicit examples in the next section. It is worth noting that a similar cancellation was ob-
served in a low-energy neutrino model in Ref. [220], which also corresponds to a non-complete
intersection ring. We can understand these cancellations as follows.

For a sufficiently simple invariant ring, the orders in the plethystic logarithm, where neg-
ative terms indicating syzygies and positive terms indicating generating invariants appear,
are well-separated. As the ring becomes more complicated, either due to a more complic-
ated group structure or due to larger or more involved representations obtained as the tensor
product of simple representations, more invariants are needed to describe the full algebraic
structure of the ring. Hence, there exist more generating invariants at higher orders and
the positive terms in the plethystic logarithm extend to higher orders. Then, assuming that
syzygies among the lower-order generating invariants still appear at a similar order as in less
complicated rings, there will be an overlap between the regions of positive and negative terms.
This overlap results in cancellations between the number of generating invariants and the num-
ber of syzygies. Therefore, caution should be taken when using the plethystic logarithm as
the sole mean to count the number of generating invariants and the number of syzygies in a
non-complete intersection ring. Observing a negative term in the plethystic logarithm does
not necessarily imply the absence of generating invariants, but rather indicates the presence
of more syzygies than generating invariants. Hence, the coefficient in the plethystic logarithm
1s the difference between the number of generating invariants and the number of syzygies.

There exist further redundancies in the ungraded plethystic logarithm, which can appear
due to the overlap of the regions where positive and negative terms appear. The coefficients
in the ungraded plethystic logarithm can be subject to cancellations from terms which have
a different grading for the same total order in the multi-graded plethystic logarithm but
cancel once the ungraded limit is taken. In this sense, we can not naively assume that the
leading positive terms in Eq. correctly counts all generating invariants as is the case
in a complete intersection ring. Hence, the multi-graded plethystic logarithm (see App.
will be our main guide in what follows to check if the correct number of generating invariants
and syzygies was found at a given order in the spurions. We will furthermore assume that
the generating invariants are all captured by the terms before the pure negative orde]ﬁ in
the multi-graded plethystic logarithm, as was conjectured in Ref. [252|. The pure negative
terms occur at order 26 in Eq. (3.55) in the ¥SM, so the generating set should only contain
invariants up to order 24. However, to test if the conjecture holds true, we also construct
invariants up to order 26 to see that indeed no generating invariant can be found at this pure

®In the multi-graded plethystic logarithm, we organise the terms according to their order in the ungraded
plethystic logarithm. In a given order, if all terms are negative, it is called a pure negative order.
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All possible flavour invariants
516’101 invariants

Eliminating redundancies order by order
using relations of the form I = P(I’ € Sgen)

Generating set of invariants Sgen
generates all invariants in the theory polynomially.
459 invariants

208 CP-even | | 251 CP-odd

) ; Replace M} — My
Denominator o | Hilbert’s Nullstellensatz

Hilbert series Identify C5,Cg, C7 substructures
Primary set of invariants Sprim Minimal CPC set SS.E]C
captures physical parameters in the theory. captures CPC conditions.
21 invariants unknown number

Primary set of invariants in the seesaw limit
captures physical parameters in the EFT.

12 invariants ~ S}2 (includes only C5 to any order)
. . (Cs}
without power counting . . 51 .
21 invariants ~ S{Cs‘Cs} (includes C5 and Cg to any order)
3 invariants ~ Sff (at mass dimension 4)

with power counting { 12 invariants ~ SéQ (at mass dimension 6)

21 invariants ~ S2!  (at mass dimension 8)

Figure 3.1: Flow graph of different invariant sets that appear in the analysis alongside the algorithms that
are used to obtain one set from another. The number in the top box correspond to all single trace invariants
up to a total order of 26 in all spurions. We find 208 CP-even and 251 CP-odd invariants that make up
the generating set of the ring defined by the Lagrangian parameters and their transformation properties. A
complete list of these invariants can be found in App.|3.C| The 21 algebraically independent invariants are
selected from the CP-even generating set to form the primary set. These invariants accurately capture the 21
physical parameters of the theory. To determine the CPC conditions, the CP-odd invariants are selected from
the CP-odd generating set. However, our program fails to find the minimal set due to the complexity of the
theory. Detailed explanations on Hilbert’s Nullstellensatz can be found in App. In the seesaw limit, we
replace M} — Mpy' for the generating invariants, and identify invariants with substructures of Cs,Cs and C7
as defined in Eq. . The number of primary invariants with and without considering the total suppression
of the invariants in the heavy Majorana mass is obtained by calculating the Jacobian rank of the identified
invariants. A detailed analysis can be found in Sec. where the primary sets S and S are shown explicitly.

negative order. As we will see below, our analysis supports this conjecture.

3.2.2 Constructing the Invariants

Although the plethystic logarithm can be used as a guide regarding the number of generating
invariants and their spurion content, their specific form remains unknown. While it is possible
to construct invariants manually for some simple models without any further help, in the
case of complicated invariant rings like the ¥SM with hundreds of generating invariants, it
becomes unfeasible to construct invariants manually and find the explicit relations among the
all possible invariants, which reduce them to the generating set. As mentioned earlier, what
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Figure 3.2: The flavour invariant graph that can be used to construct all possible single-trace flavour invariants
in the ¥SM. A single-trace invariant can be associated with any closed walk following the arrows. Note that
the graph for the SM has a “holomorphic” structure, i.e., it has two separated branches involving separately
only fields or only their conjugates. This changes in the vSM, where the transformation properties of the
Majorana mass My connect the holomorphic and anti-holomorphic branches. More details can be found in
the main text.

complicates things even more in sufficiently complicated invariant rings is, that the orders at
which generating invariants and syzygies appear in the plethystic logarithm might overlap,
leading to cancellations of terms in the plethystic logarithm. To construct a generating set,
one therefore cannot solely rely on the information provided by the plethystic logarithm.
Instead, we will start by constructing all possible invariants by brute force up to the first
purely negative order, which due to the conjecture presented earlier is the highest order where
generating invariants are expected. We perform the construction with a graph-based method,
which we will introduce in this section, with the objective of eliminating redundant invariants
with explicit relations and creating a generating set. Subsequently, we will further reduce this
generating set to a primary set, capturing the physical degrees of freedom of the theory. In
a last step, we aim to find the minimal set of invariants that determines the necessary and
sufficient condition for CPC, based on the CP-odd generating invariants of the theory. We

have summarised this process in a flow graph in Fig. (3.1

Flavour Invariants from Closed Walks in a Graph To systematically perform the
construction of all possible flavour invariants up to the order suggested by the plethystic
logarithm, we introduce the concept of the flavour invariant graph, inspired by Ref. [261].
The corresponding graph for the ¥SM is shown in Fig. where the disconnected lepton
sector and quark sector are shown in the top and bottom panels, respectively. In each graph,
the nodes in the graph are labelled by the fields and their conjugates, which are connected by
the flavourful couplings in the theory according to their transformation properties following
Tab. Following the transformation properties allows to write down the following basic
elements of the graph

F; Ej
Y
O—>0
where the arrow labelled with flavour matrix Y, going from vertex 7 to vertex j, labelled
with the fields F; and F} respectively, indicates that the flavour matrix Y transforms as
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Y -U FiYU;j under the flavour group. The numbers at the vertices are only for labelling
purposes, which will allow us to write down the invariants in a compact form later. F; should
simply be understood as the field at vertex ¢ and should not to be confused with the flavour
index of the fermion. As an example, the graph in Fig. allows us to read off Y, - U, LYQUJ
and Y. — UL*Y;UJ* = U;Y;Ug, where we have used that Uy« = U;.

Second, following the directional flow of the arrows, allows us to construct covariants under
the flavour group, which are matrix products of the simple flavourful couplings of the theory.
Passing through the vertices following the arrows, one creates “paths”, which if they include
repetitions of the same vertices and edges are dubbed “walks” in mathematical terminology.
To every walk, one can associate an object with specific transformation under the flavour
group. For instance, in the graph below, starting from vertex i and following the sequence of
arrows until reaching vertex j,

the product of flavour matrices X = Y;...Y, will transform as X - U FiX U;j. To give
another example from the ¥SM, following the graph in Fig. We can simply read off that
the combination YJYN has the following transformation properties under the flavour group

T T T
Y)Yy ->UYY\Uy.

Finally, we can use the walks to systematically build invariants. This is done by demanding
that the walk be closed and ends at its starting vertex. If we choose ¢ = j in the last example,
we have X - Up X UIT%’ which allows us to construct the single-trace invariant Tr(X ) under
the action of the group. As a result, flavour invariants are mapped to closed walks in the
graph, and vice-versa one can identify a closed walk with each single-trace invariant in the

theory

Let us discuss a couple more examples to make this connection clear and familiarise
ourselves with the notation. One can construct the following two invariants in the vSM
corresponding two invariants in the quark and lepton sectors of the theories (the red paths

"One can also find other forms of flavour invariants, but they can always be mapped to the single-trace
invariants presented here [3}|103]|.
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represent closed walks on the graphs denoted by the black arrows connecting the vertices)

~8>9->8->T7->8

~ (Y, Yiv,v)),

L N*

~ Te( Yy Mg My My My YY)

Here, we have given the walks as a chain of numbers corresponding to the vertices that are
passed through, which will be convenient later to present the more complicated invariants in
a concise way. We only show here simple examples of walks in subsets of the vSM graph.
Due to the cyclicity of the trace, the invariant associated to a closed walk is independent of
the starting vertex, eg. 8 > 9 >8 > 7 >8=7—->8 > 9 > 8 > 7 for the first example
above. Based on this, we will always rotate the numbers in the chain to arrange them in the
lexicographically smallest order in the following. Furthermore, since the last vertex in a closed
walk is always identical with the first vertex, the last number in the chain can be omitted. To
further shorten the notation, the arrow can be removed from the chain of numbers resulting
in an integer representation of the walk notation. By following this approach, all single trace
invariants are uniquely represented as integers. For instance, the two invariants above are
represented by the two integers 7898 and 234343, respectively.

One important difference between the SM and the vSM flavour sector is the inclusion
of the Majorana neutrino mass My, which connects the parts of the flavour graphs with
conjugate fields to the one without conjugate fields (c.f. Fig. . Indeed, in the quark sector
there are two separate parts and closed walks have a “holomorphic” or “anti-holomorphic”
structure, i.e. they involve either the fields or their complex conjugate at the vertices, but
never mix both. Using the hermiticity of the matrices and trace relations, one can show
that the invariants built from both parts of the invariant graph are equivalent (see Ref. [4]
for details). The introduction of the Majorana neutrino mass term My connects the two
conjugate parts, complicating the flavour sector of the theory and allowing for many more
independent invariants.

In the Dirac limit, My — 0, the flavour structure of the ¥vSM lepton sector reduces to
that of the SM quark sector by identifying Yy ~ Yy, Ye ~ Yy, thus their flavour invariants have
the same form. We have already constructed the flavour invariants of the SM quark sector in
Eq. , which can be mapped to those of the ¥SM in the Dirac limit by the replacement
Yu d YN, Yd d Yé.

For non-zero and finite My, we can systematically enumerate the closed walks corres-
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ponding to all single-trace flavour invariants up to arbitrarily high order. In particular, we
are interested in the invariants constructed by the walks up to order 26 in the flavour spur-
ions, which is the first pure negative order in the multi-graded plethystic logarithm of the
vSM sufficient to obtain a set of generating invariants [252|. The details of the brute-force
algorithm utilised to construct all the 516’001 single-trace invariants up to order 26 can be
found in Ref. [4]. Among all those single-trace invariants, there are still lots of redundancies,
some of which can be immediately removed with the following simple relations.

e Transpose redundancy

Every walk Wy = 4j...kl in the graph of the ¥SM is accompanied by another walk
with primed vertices in reverse order Wy = 'k’ ... 5'i’, where v’ = 7 — v for the graph
in the lepton sector. The reversed order walks correspond to the flavour invariants,
where the transposed matrix is used for all matrices appearing in the invariant and it
can be eliminated with the following trace identity Tr (AT) = Tr (A) For instance,

)
e Conjugate redundancy

The walk W7 defined above is also associated with another walk W3 =¢'5"...k’l". The
invariants generated by these two walks are conjugate to each other. Thus, both Tr(A)
and Tr(A*) will be generated in our construction. As the CP properties of Re Tr(A) and
Im Tr(A) are more transparent than those of Tr(A) and Tr(A*), we will trade Tr(A)
and Tr(A*), which are generated by the graphs, with Re Tr(A) and Im Tr(A), whenever
a complex invariant is found.

e Cayley—Hamilton theorem

The Cayley-Hamilton theorem, along with its simple variations (see Refs. |4} [218]),
enables us to eliminate invariants by establishing relations among them. Note that the
theorem is not fully utilised here, as there are more complex variations for products of
matrices, that are not easy to employ in practice. To remove the remaining redundancies,
we will implement a generic numerical algorithm.

The details of the redundancies are discussed in Ref. |[4]. After all of these redundancies are
eliminated, a set of 8’666 invariants remains, which still has many explicit relations among
its invariants and hence does not form a generating set.

Construction of the generating set After prereducing the set of invariants, we system-
atically construct a generating set order by order in the spurions. To this end, we construct
a candidate generating set only containing the lowest order invariants. Then, we add the
invariants at the next order to the set and search for explicit relations of these newly added
invariants in terms of the other invariants added at lower orders. Whenever an explicit rela-
tion is found, the corresponding invariant is removed from our set. When the algorithm has
eliminated all explicit redundancies at a given order, it continues constructing relations at the
next order including all the invariants that have survived the algorithm up to this point in its
preliminary generating set, until the maximum order 26 is reached. After the algorithm has
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completed, all explicit redundancies among the invariants are removed and a generating set
of invariants is found. In order to remove all explicit redundancies systematically, we have
implemented a numerical algorithm (for details see Ref. [4]), turning the complicated problem
of finding polynomial relations among invariants into a problem of solving finite system of
linear equations. This algorithm has been used in different forms in Refs. |1} 103} 220} |250|
before and was adapted for this work to avoid redundant syzygieﬁ By using this method,
we are able to generate all possible polynomial relations among the invariants at each degree,
including both explicit relations and syzygies among the generating invariants, which allow
us later to verify our numbers of generating invariants and syzygies against the numbers in
the plethystic logarithm.

After running the algorithm up to order 26, our final set of generating invariants for the
vSM contains 459 invariants, out of which 208 are CP-even and 251 are CP-odd. We want
to stress again that any invariant in the ¥SM can be expressed as a polynomial of these 459
flavour invariants. Hence, as observables should be independent of any mathematical basis,
including the flavour basis, they should in principle be expressible in terms of these invariants.
In the following sections, we will further reduce the generating set to a primary set, which
captures all physical parameters in the theory. Additionally, we aim to reduce the CP-odd
generating set to a minimal CPC set, that captures all necessary and sufficient conditions for
CPC in the vSM (c.f. Fig. . The full generating set of invariants, split into its CP-even
and CP-odd parts, can be found in Ref. |4]. In the following, we will work with this generating
set and label the ith invariant in the CP-even (CP-odd) subset of the generating set by Z;(/7;).

Explicit relations and syzygies To verify that our generating set is indeed complete, we
can use the numbers in the plethystic logarithm to cross-check them against the numbers of
generating invariants and syzygies found in the previous steps. To this end, we require both
the number of generating invariants and szyzygies at all orders in the spurions to compute
the difference between them which can be compared with the prefactors of the terms in
the plethystic logarithm. The algorithm outlined earlier in this section provides all of this
information. Here, the most difficult part is to identify the non-redundant syzygies which
cannot be expressed as a combination of other syzygies appearing at earlier orders and other
generating invariants or syzygies.

To exemplify this step, we show some examples for polynomial relations found by the
algorithm, including both explicit relations and syzygies. Our program scans and checks all
terms in the plethystic logarithm from lowest to highest order. Prior to order 12, our reduced
invariant set exactly reproduces the prefactors of the corresponding terms in the plethystic
logarithm. Therefore, no polynomial relations are found up to this order and all invariants up
to this point are generating invariants. At degree e%n’ in the spurions, two invariants are found
in our pre-reduced set, given by Z = ReTr(XJQVXerNXe) and Jio = ImTr(XJQVXgXNXe),
where X and X, are defined in Tab. but the corresponding term in the multi-graded

8Redundant syzygies are those which have previously appeared in the algorithm at a lower order in the
spurions and are multiplied by another syzygy, which has previously appeared, or some invariant of the
generating set (or a sum of both), hence reappearing at a higher order. These kind of syzygies evidently do
not carry any new information. This is also discussed in Ref. [250|, where the term “old relation” is used.
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plethystic logarithm in Eq. has the following form +e®nS. Therefore, either one of the
invariants must be expressible as a polynomial of all previous invariants in the set, hence is
not a generating invariant, or there exists a syzygy at the order leading to a cancellation with
the number of generating invariants. Indeed, our algorithm finds an explicit relation, which
allows us to rewrite the CP-even invariant Z as a polynomial of other lower-degree CP-even
invariants

67 = T3T; — Ty T6L; — 3T3L7 T3 + 3T3T10T7 — ToTyTy + TyTi Ty +

3.10
+3I§Il3l—1 - 31'31.181-1 + IgI@Ig - IgIH + 31.121—13 + 3171.18 . ( )

Hence, the CP-even invariant is redundant, while no explicit relation for the CP-odd invariant
J1o and no syzygies for the lower order invariants can be found at the same order. As a
consequence, we can successfully reproduce the number in the plethystic logarithm.

Finding this cancellation was expected, as J1¢ is the equivalent of the Jarlskog invariant in
the lepton sector obtained by exchanging all quark Yukawa couplings with the corresponding
lepton Yukawa coupling and its related CP-even invariant is known to be redundant |218|.
Note, that Ji¢ is the only CP-odd generating invariant in the ¥SM that has no dependence
on My, consistent with the fact that there is only a single new source of CP violation in the
vSM for conservation of lepton number.

Running our algorithm up to order 14, the number of generating invariants agrees with
the numbers indicated by the prefactors in the multi-graded plethystic logarithm. Only at

8

degree m®n®, we run into another mismatch. At this order, there exist a total of 10 invariants

in the pre-reduced set, but we only find 9 explicit relations. As a result, we are left with one
invariant J7g that cannot be written as any polynomial of other invariants and hence should
be identified as a generating invariant. However, there exists no term in the multi-graded
plethystic logarithm in Eq. at degree m®n®, suggesting that no generating invariants
exist at this order. But, as we mentioned in Sec. there can be non-trivial cancellations

between the number of generating invariants and syzygies. Indeed, we also find another

8

relation at degree m®n®, which is given by

3T2T4 - 3T ThoTs — STSTsTs + 12T, T5 I T + 8T T10Ts + 12T5T16T5 — 24T5T16Ta+
+ 30T5T3T2 — 18T5T3T3 + 36T 15 — 6I2T6T5 + 6o TeT10Ts + STST14Ts — 12ToTsT14Ta+
— 8T10T14T3 + 10511515 — 18Ty T5 1155 — AT10T15T5 — 60T T L6 L5 — 1272 To0Ts+
+ 24T To0Ts — 24T53T01 Ta + 24T5To1 T3 + 24T TosTs — 24To T3 T3 + 8T Lo T T3+ (3.11)
~ 12T, T5T6 T8 T3 — 8TeTsT10T3 — 24Ta T T14T3 + 24T T T14 T3 — 48T TR T 513 + 2415 T Ty 5 T3+
+ A8T2T16Ts — 1213 T6T16 T3 + 24T5TsT16 T3 + 24T0T14 L1613 + 48T0 Ty 5Ty T3 — 16T5T19T3+
+ 24Ty T5T19T3 + 16Z10T10T5 + 48T0 T TooTs — 48T 6 Ta0 L3 + 48T TsTo1 T3 — 48T Lo L3+
+ A8T3 Tpr T3 — A8T5Tor Ty — ASTTos T3 — 48Ty T30 T3 + 3T2Ts — 615 LeTs + 65T Te + 6I5L7,+
— 6I5TE, + 24T5 T — 12T5TE — 12T6T5 + 24Ty + 1215, — 3ThT2Tio + 12T, T3 T 4+
+ UL T2 T 5 — 10L5T6Ty5 + 18T Ts TeThs + AL TyoT1s + 1210 T T L1 — 24T T14T 16+
— 4T T5Th6 + 24T T Thg — 24T5TsThg — 24ToT16T1g — 24T D00 + 12L5T6Tog — 24T5 L6 Too+
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— 48IQI15IQO - 241.21-141-21 + 61-31-26 - 622I5226 - 121—101-26 - 481-21-81-27 + 481161-274-
+ 24114I28 - 241221-38 + 2415:[38 + 481—81'39 + 24I2I55 + 12j12 =0 y

As no invariant enters linearly in this polynomial relation, it is a syzygy among lower-order
invariants — not an explicit redundancy of an invariant. It only depends on the square of a
single CP-odd invariant JZ and can therefore be interpreted in the same way as the syzygy
of the Jarlskog invariant in the SM quark sector, presented in Sec. It states that J;
only gives information about the sign of the corresponding phase, its magnitude is already
captured by another CP-even invariant. Therefore, the square of J; does not contain any
additional information and should be expressible in terms of other invariants.

Hence, combining the two findings we have
PL (e,m,n) > +mSn® —mBn?, (3.12)

explaining the non-trivial zero in the plethystic logarithm. At higher degrees in the spurions
even stronger cancellations appear, that can even generate negative terms at orders where a
(large) number of generating invariants exist. Some examples are

PL (e,m,n) 2(21 - 1) e*m*n® + (3-1) e?m*n'? + (3-6) 2m®n'? + (2-6) 2m®n®, (3.13)

where we have used (ng —ns) as a coeflicient to indicate the n, generating invariants and n,
syzygies at the corresponding degree.

Although there may be challenges when identifying generating invariants and syzygies, as
long as the terms in the plethystic logarithm are correctly interpreted, we are able to determine
the correct number of the generating invariants and syzygies at each degree. Our algorithm
accurately generates the terms in the plethystic logarithm up to order 24 based on the new
interpretation of the plethystic logarithm. However, at order 26, there are some mismatches
due to “redundant syzygies”, which are not simply products of syzygies that appeared at a
lower order in the spurions. We discuss how to address these mismatches in detail in Ref. |4].
The order 26 is the first order that only has negative terms in the multi-graded plethystic
logarithm. We have also confirmed that there are no further generating invariants at this
order, as all the invariants are found to be a polynomial of lower order invariants.

We have carefully cross-checked the number of generating invariants and the syzygies
among them at each degree of [emn] with the terms in the multi-graded plethystic logarithm
shown in Eq. , finding agreement for all of them. We want to stress again that the coef-
ficients of all terms in the plethystic logarithm in this new interpretation should be presented
as (ng —ns) as shown and described around Eq. . According to the new multi-graded
plethystic logarithm, one can easily read off the correct number of generating invariants and
syzygies at each degree. Due to its length, we will not show the plethystic logarithm in this
new form here but it can be found in a table in Ref. |[4| and the counting for the ungraded
orders is presented in Tab. With this table, the ungraded plethystic logarithm shown in
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Order 246 8 10 12 14 16 18 20 22 24 26  Total

a CP-even 3 5 9 8 12 17 25 33 41 34 17 4 0 208
en.
CP-odd 0 0 0 2 7 23 41 61 61 42 13 1 0 251
Syz. 000 0 O O O 2 32 200 733 2044 4391 7402

PL=Gen.-Syz. 3 5 9 10 19 40 66 92 70 -124 -703 -2039 -4391 -6943

Table 3.3: The number of generating invariants and syzygies from order 2 to order 26, where the generating
invariants are split into CP-even and CP-odd in the counting. The difference between the number of generating
invariants and number of syzygies precisely aligns with the terms in the ungraded plethystic logarithm shown in
Eq. . In the last column, we list the total number of CP-even, CP-odd generating invariants, syzygies, and
their difference. In the complete intersection ring, the difference between the number of generating invariants
and number of syzygies should be the Krull dimension, which is 21 in our theory. The negative number shown
here featuring a non-complete intersection ring.

Eq. (3.8) can be rewritten as follows

PL[H(¢)]= (3-0)¢>+(5-0)g*+(9-0)¢5 + (10-0)¢®+ (19-0) ¢** + (40 - 0) ¢*?
+(66 - 0) g + (94 - 2) ¢'% + (102 - 32) ¢'® + (76 - 200) ¢*° (3.14)
+(30 - 733) ¢%2 + (5 - 2044) ¢** + (0 - 4391) ¢* + O(¢*®) .

Comparing with Eq. , one can easily see that the coefficients in the plethystic logarithm
computed there are exactly the same as those shown here.

At higher orders, the coefficients in the plethystic logarithm can no longer be connected
to meaningful quantities like the number of generating invariants or the number of syzygies
at a given degree |220||223|. For instance, at order 28, we can find two positive terms

PL (e,m,n) > +6m'*n!t + 4m'p12, (3.15)

However, all invariants constructed by brute force at these two degrees are redundant after
applying the Cayley—Hamilton theorem. Therefore, there is no generating invariant, and these
two positive terms are meaninglessﬂ We have also checked this explicitly by constructing the
invariants at order 26 and checking that they can be expressed as polynomials of the generating
set. Hence, we are confident that the algorithm can be terminated at the first pure negative
order 24, as conjectured in Ref. [220]. Note, that identifying all independent syzygies at
each order is technically not necessary to obtain the generating, for which it is sufficient to
construct the explicit relations. Additionally counting the syzygies is only necessary, if the
plethystic logarithm is used to cross-check the number of generating invariants.

9All terms in the non-terminating plethystic logarithm of a non-complete intersection ring after the leading
negative terms have — to our knowledge — no meaning for the construction of a generating set beyond the fact
that they appear in a special form of the Hilbert series, the so-called Euler form [223|. In this form the Hilbert
series can be written as H(q) = [12, (1—¢™) ™", where it can be shown that the b, are exactly the coefficients
in the plethystic logarithm PL[H (q)] = Yo bng™.
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3.2.3 A Primary Set for the vSM

The next step after identifying the generating set is to reduce it to a primary set of algebraically
independent invariants, that captures all physical parameters of the theory. To simplify
this task, we can use the denominator of the Hilbert series as a guide, but in principle any
algebraically independent subset of the generating set works as a primary set. The invariants
of the primary set capture all physical parameters in the theory. In order to keep redundancies
at a minimum from the start, we choose the candidate sets with cardinalities equal to 21, which
is the number of physical parameters in the case of the ¥SM. One way to check if a candidate
set is algebraically independent is to calculate the Jacobian with respect to all parameters in a
given parameterisation of the Lagrangian, for which we will use the algebraic parameterisation
from Eq. (3.47). If the rank of the Jacobian is equal to the number of physical parameters
in the theory, a set of algebraically independent invariants is found. Following this procedure
we find the following primary set

Ii=Tr(Xe), To= Tr(Xn), Ty = Tr (Xn), Is = Tr(X3,), Zs = Tr(X3),

Ir = Tr (XeXn), Ts = Tr (Zun), Lo = Tr(X2), Tio = Tr (X XR), Tis = Tr (X2 XN),
Tis = Tr (XNZun), Tos = ReTr (X XNZmN), Tos = TI“(XeQZMN),

Tya = Tr X2V MRYIYRMYE), Tas = Tr (XY MRYI XYM Y, (3.16)
Tz = Tr (XY MYy Xy Y My YY), Too = ReTr (X, X\ Yy MyYy X Vi MY,

Toa = Te( X2V MRV XY MY, Tos = ReTr (X2X RV My Y Vi My YY),

Trg = Tr (XY My Yy XYy My YY), Tot = Re'Tr (X2X3 Y My My MYV MY

where Z; is the i¢th invariant in the CP-even set presented in Ref. [4|, and we have defined
Xe = Y.YD X = YY), Xar = My M}, and Zyy = Yy MM Y. We want to stress again,
that the set of algebraically independent invariants is not unique. In particular, there are
many sets that are compatible with the denominator of the ungraded Hilbert series and have
a Jacobian rank of 21. As was mentioned earlier, the Hilbert series does not have a unique
form, which also reflects the freedom in choosing a primary set of invariants. For our set of
primary invariants, we have only chosen to only include CP-even invariants from the generating
set. However, it is also possible to include CP-odd invariants, provided they are algebraically
independent, which is for instance done for the seesaw effective field theory in Ref. [257]. It
might sound strange at first that CP-even invariants can be used to capture CP-violating
parameters of the theory. However, the primary invariants only capture the absolute value
of the physical parameters. Hence, the sign of the phases in the theory are mot described
by the primary invariants. This is a well-known result in the quark sector of the SM [218],
where the Jarlskog invariant has to be added to the set of primary invariants to complete the
generating set of invariants, enabling the expression of all observables in the theory in terms
of flavour invariants. As already explained earlier, the square of the Jarlskog invariant, i.e.,
the square of the sign of the CKM phase, is in turn expressible in terms of CP-even invariants
in agreement with the statement that the square of a sign is trivial.
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In addition, we have chosen the orders of the invariants in our primary set to follow those
of the denominator of the Hilbert series in Eq. . For instance, the first term (1 - ¢2)? of
the denominator in Eq. indicates that there should be 3 invariants of order 2. However,
following our discussion in footnote |[5| one can change the numbers in the denominator of
the Hilbert series by multiplying the numerator and denominator of it with the same factor
(1 +¢*)™. In this case, other algebraically independent subsets of the generating set with
cardinality 21 can function as a primary set.

3.3 The Seesaw Limit

The flavour structure of the ¥SM also captures that of the type-I seeaw model, assuming
that instead of the mass being light we take the seesaw limit, where My is taken to be much
larger than the electroweak scale v, allowing for an EFT description of the model. In this
scenario, the heavy neutrinos can be integrated out for which we match the model to the low-
energy effective theory with only the light left-handed SM neutrinos. The seesaw limit can
be captured by the invariants presented in this chapter by making the observation that My!,
appearing in the EFT description, transforms in the same representation as Mjy,. Hence, by
replacing My, — Mg,l we can recycle the invariants presented here to analyse this limit. After
the replacement several flavour structures appear in the invariants, which can all be identified
with the matching to Wilson coeflicients at different orders in the EFT. In particular, we
have |80} 262]
S vy

Cs
A2
Cr
A3

~ Yo (MEM)YT

* 1T
~ N(MNMNMN) YN’

where C5, Cg and C7 are the Wilson coefficients of the Weinberg operator 63|, the operator
Ogl) in the Warsaw basis [87| and the operator Ol(il)D in Ref. [88], respectively

As before, it is useful to work with the invariant graphs to get an insight into which kind
of structures can appear in the flavour invariants. The relevant graph for the theory in the
see limit is shown in Fig.|3.3] The graph features two types of Wilson coefficients Cr;r and
Cpr+ as an example, where Cp;r — UrCpprUL and Cp v — ULC'LLTU;J respectively. In
our case, Crrr ~ C5,C7 and Cpr+ ~ Cg. This shows that the graph approach serves as a
general method for constructing flavour invariants and proves to be useful in both UV and
EFT studies. Furthermore, the graph in the EFT allows for a clearer understanding of the
structure of the invariants. For instance, whenever invariants in the EFT with the Wilson

0Note, that at mass dimensions higher than 5, there are other operators that can appear in the matching.
(’)22 at dimension-6 and Ol(?{)D at dimension-7 are only examples of an operator that receives a contribution
from the matching of the ¥SM to the SMEFT |262|. Our choice of Wilson coefficients ensures the lowest
overall suppression of the invariants with the Majorana mass.
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Figure 3.3: The flavour invariant graph that can be used to construct all possible single trace flavour invariants
in the seesaw limit of the ¥SM, where Cs, Cs and C7 are the Wilson coefficients of the Weinberg operator |63,
the operator Ogl) in the Warsaw basis |87 and the operator Ol(fI)D in Ref. |88, respectively, and they transform
as Cs 7 — ULC’SJULT and Cs — ULCGU}E. We show in the main text that it is sufficient to consider C5, Cs and
C'7 to capture all parameters of the full theory.

coefficient C5 are constructed, a closed walk in the graph can only be obtained when C7 is
also included. Following this conclusion, it becomes clear that all constructed invariants are
suppressed with an even number of inverse Majorana masses.

We can make several interesting observations with our generating set of invariants in the
seesaw limit. Keeping only the invariants with the least suppressed EFT structure correspond-
ing to C5 as well as Y, computing the rank of the Jacobian with respect to all parameters in
a chosen parameterisation, yields a rank of 12. This corresponds to the six masses, three mix-
ing angles and three phases that appear in the low-energy theory of three flavours of charged
leptons and the left-handed SM neutrinos with a Majorana mass term £ > -1/2vym,v§ +H.c..
Out of all invariants surviving in the seesaw limit, there are a total of 15 invariants, containing
only C'5 alongside Y,. Among them, a set of 12 algebraically independent invariants is given
by the following invariants

8{1?/‘5} = {I{’ IA’L’ Isl)v Z{4v 152’ I?,>4’ IZ,’;57 Ié47 I’,797 ‘-71,017 L71,687 j2,21} ) (3'18)

where Z/(J/) can be obtained from our generating invariants Z;(7;) (c.f. list in Ref. |4]) by
the replacement My — Mj}l. We introduce the notation S to indicate that we only keep
invariants with structures ¢, yielding a rank-r primary invariant set.

If we include invariants with structures corresponding to Cg in Eq. (3.17) in addition to
the previous case, we find that the rank of the Jacobian of the invariants increases to 21, in
agreement with the total number of physical parameters in the ¥SM. We choose the primary
set to be

8{255,06} = S{lg’s} U {Ié? Ii?? Ié5? L72,0a *75,87 \76,27 j1,24’ j1,257 J1,89}' (319)

This has previously been noted in Ref. [257|, where this analysis is performed in the effective
theory of the seesaw model. There, the authors claim that the physical parameters of the full
theory can be fully described with flavour invariants of the EFT by only keeping structures
in the invariants corresponding to the Wilson coefficient C5 and Cg. Here, we come to the
same conclusion in the full theory of the ¥SM.

Note that, up to now we have not considered the power counting of the effective theory,

i.e., we allowed for invariants with several insertions of the C5 structure to obtain the ranks of
12 and 21 without adding any higher order Wilson coefficients which could appear at the same
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order in the power counting. Indeed, working in the effective theory by taking the seesaw limit,
one should work consistently to a certain order in the power counting of the theory, which in
the EFT of the seesaw model is defined by the characteristic scale of the process divided by
the Majorana mass. By counting the number of insertions of My consistent with the power
counting of the EFT, we find that one cannot reach rank 12 and 21 at dimension 5 and 6,
respectively. Instead, without any insertions of My, one can reach rank three, corresponding
to the masses of the charged leptons with the following primary set

Si={T, T}, T}, (3:20)

where 5’5 is the rank-r primary set of invariants at mass dimension d. At mass dimension 6,
i.e. with 2 insertions of My, rank 12 can be reached, for which we construct the following
primary set

5»(%2 = 34:13 U {Ié, {47 Ii?? 2527 1-557 ‘34’ é57 Ié47 249} : (3'21>

At dimension 8, i.e. with 4 insertions of My, one can reach rank 21, with the following
primary set
Sgl = Sé2 U {1167 Iél? I£47 IéZ? Ié?? Iéla IL"{>37 1487 I{IQ} : (3'22)

This set also includes invariants with the structure of C7. Hence, even though all the in-
formation about the ¥SM is in principle contained in the Wilson coeflicients C5 and Cg, this
information can only be accessed in a flavour invariant way at higher mass dimensions. Con-
sidering the power counting of the theory, full rank is first reached at dimension 8 by also
considering the structure of C7 in the invariants instead of going to higher mass dimensions
beyond dimension 8 by only including the structures of the Wilson coefficients C5 and Cg.
We have summarised the results in the bottom panel of Fig. (3.1

3.4 Conditions for CP Conservation

The Jarlskog invariant of the SM quark sector is well-established as the order parameter of
perturbative CP violation in the SM. As such, it captures all possible ways of perturbatively
conserving CP in the SM as its roots, not only including vanishing phases but also cases of
degenerate masses or texture zeros in the CKM matrix, which make the CKM phase unphysical
and removable from the Lagrangian. In the same spirit we aspire to find a minimal set of
Jarlskog-like CP-odd invariants which capture all CPC conditions in the vSM.

Some previous work in this direction has been completed in the literature for the vSM
with different numbers of lepton flavours. In Ref. |[218|, the generating set for the ¥SM with
only two generations of right-handed neutrinos and charged leptons (ny = ny = 2) has been
shown, but the discussion of CPC conditions has not been expanded on. In Ref. [252|, the
minimal seesaw model with two generations of right-handed neutrinos and three generations
of charged leptons (ny = 2,n5 = 3) has been discussed. However, the discussion of CPC
conditions is provided only with some assumptions about the parameter spectrum. For the
three-generation case (ny =ny = 3), the discussion of CPC conditions is still lacking, as the
generating set has not been constructed, although the Hilbert series has been calculated in
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Refs. [224}|257]. In Ref. [246|, without using the Hilbert series and explicit construction of the
generating set, six CP-odd invariants are provided to characterise CPV effects of the three
generation case. Also there, assumptions are made regarding the parameter spectrum of the
theory.

Another advantage of the flavour invariants is that they incorporate all CPC conditions
as their roots. Hence, they can be used to obtain the conditions even in complicated theories
where some conditions are sometimes hard to identify using symmetry arguments. One such
example is the case of pseudoreal couplingswhich we present for the vSM with 2 generations
of leptons in App. There, it turns out that even though the theory has irremovable phases,
it is still CP-conserving given that a polynomial relation among parameters of the theory is
fulfilled. This polynomial relation is one of the roots of the invariants but is impossible
to obtain from symmetry arguments. As a result, studying CPC conditions through the
generating CP-odd invariants provides a more reliable approach. In the following, we will
define the minimal invariant set that captures the CPC conditions, and propose useful methods
to find it. However, due to the complexity of the invariant structure of the »SM, finding the
proposed minimal set in general can be challenging. The main goal of this section is to
establish a framework for studying the CPC conditions, with the final solutions to these sets
left for future work.

The CP-odd invariants in the generating set Sgen act as generators of all CPV observables.
The vanishing of these invariants establishes the necessary and sufficient conditions for CP
conservation in the theory. However, the CP-odd generating set does not necessarily have to
be the minimal set with this property. The CP-odd generating set is required to generate any
value of the CP-odd invariants in a given parameterisation, while the set that can determining
the presence of CPV only needs to capture all ways of conserving CP in its roots. In principle,
the latter set should be a subset of the CP-odd generating set, and from now on, we will call
it the CPC set. We will call a CPC set with the minimal amount of invariants while still
having all the properties of such a set, the minimal CPC set Sgﬁlc.

By definition, the minimal CPC set captures all CPC conditions as roots of its invariants
and all other CP-odd invariants in the generating set vanish automatically on these roots

jmin = 07 vu.7min € SSIEIC S ‘.7 = 0, vj € Sgen/SSlElC. (323)

The most straightforward method to find such a minimal CPC set is to solve for the common
zeros of polynomials in a candidate minimal CPC Set and subsequently apply the solutions
to the other CP-odd invariants to check whether they will vanish. However, this is not
practical for complicated polynomials. Without directly solving the polynomial equations,

"By pseudo-real couplings, we denote a set of couplings which have irremovable phases but still conserve
CP. This is the case in models with discrete symmetries, when the effect of a CP transformation on the
Lagrangian parameters can be undone by a field redefinition, even if there exists no basis where all couplings
can be made real. This has been previously noted in the context of Three Higgs Doublet Models |32| and toy
models with more involved discrete symmetry groups |33|.

12We have done this for the generating set of the ¥SM (ny = ns = 2) using the package Macaulay2 |263|,
for which the complete set of CPC conditions are listed in App. However, it is still difficult to obtain the
common zeros of the subset of the generating invariants, thus we can not determine the minimal CPC set.
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one can also use syzygies to determine whether other invariants are automatically zero given
that all invariants in a minimal set are set to zero. This approach was e.g. followed in
Ref. |250], where the author found some syzygies that can determine the minimal CPC set in
the 2HDM. Here, we will show that a specific form of syzygy can help to determine whether
an invariant will vanish.

The problem of finding the common zeros of polynomials is closely connected to Hilbert’s
Nullstellensatz [264{266/, a theorem that establishes a fundamental relationship between geo-
metry and algebra. We have presented this theorem and relevant mathematical terms in
App. In this section, we will employ Hilbert’s Nullstellensatz to reframe the problem of
identifying the minimal CPC set. We define an invariant ring, or more generally a polynomial
ring R :=Q[x1,...,2,], where x5 are the parameters in the theory. The CP-odd generat-
ing invariants are polynomials in this ring, Js, J1, ..., Jm € R. Hilbert’s Nullstellensatz states
that if an invariant J, vanishes on all the common zeros of the [J1, .. ,,, then there exist some
integer ¢, such that J! is a subset of the ideal I := (J1,...,Jm), i-e.,

j;:f1\71+"'+fmjma f’iERa (324)

where f; are the ring elements, i.e., they are polynomials of the parameters. However, since
Js and Ji,. m are elements in the invariant ring, f; should also be invariants. They can be
parameterised by the generating invariants in a polynomial form

m
I =N P T)Ti, i%s. (3.25)

i=1
Therefore, Hilbert’s Nullstellensatz tells us that if a CP-odd invariant 7, is redundant in the
presence of a given CPC set, there must exist a syzygy of some power of Js that can be used
to eliminate this invariant. For example, in Ref. |250| syzygies are used to identify the CPC
conditions in the 2HDM. There, the syzygies of the type shown in Eq. can be obtained
at order J2 and there is no need to discuss the syzygies for different limits of the parameter

spectrum as presented in their analysis.

It is possible to come up with an elimination algorithm based on the Hilbert’s Nullstel-
lensatz to find the minimal CPC set. However, the problem of finding a syzygy like Eq. ,
or in more mathematical language, determining whether an ideal [J! is a subset of another
ideal I := (J1,...,Jm) highly relies on the calculation of the Grobner basis, which is compu-
tationally quite expensive in complicated polynomial rings. The undetermined power ¢ also
introduces a lot of complexity in this problem. There are different methods and packages that
are suitable for this problem. As outlined in Ref. |4|, the syzygy problem can be converted
to a finite system of linear equations, which can be addressed using standard linear algebra
techniques. However, some high-degree syzygies lead to very complex linear systems that can
not be easily solved. Some software systems are devoted to studying the algebraic geometry
and commutative algebra, such as Macaulay2 |263| and Singular |267|. In addition, there is
the Mathematica function PolynomialReduce, which is however also based on the expensive
determination of a Grobner basis. Despite the capabilities of these packages, they failed to
generate results within a reasonable time frame for the three-generation case of the vSM.
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Although we were unable to construct the minimal CPC set for the theory with three
generations of fermions, we did identify some example of syzygy that follows the form shown

in Eq. (3.25). For instance,

2770 = T (2342 — 2006 — T Zs — TuZs) + T3 (4Ts6 — AT13To + L33 + I5.T3)

3.26
+ 271 (T1Ta = Fsa) - 2T11. 005 + 215, (3.26)

one can find that if {71, T3, Ja, J11, J13} is set to zero, then Ji4 = 0 automatically, which
means if we include the list of five invariants in the CPC set, the inclusion of Ji14 is no longer
necessary.

In addition, we also find that some CP-odd invariants must be added to the minimal
CPC set. Specifically, if only one CP-odd invariant J; in the generating set is non-zero
under a specific parameter spectrum, it necessarily has to be added to the minimal CPC
set as it contains all ways of conserving CP in that theory. We have found 3 such cases
where only one CP-odd invariant is non-zero. The first is the limit My — 0 where the
theory is reduced to a copy of the SM quark sector. Then the analogue of the Jarlskog
invariant Jig9 = ImTr(XZQVXSX NXe) is the only non-vanishing CP-odd invariant and has
to be included in the minimal CPC set. The other 2 cases are found under the spec-
trum {My - my1,Y. — 0} and {My — mpy1,Yny — yn1} which force us to add J7sq =
Im Tr(YNYJLYNM;VYfVF Y];MNYJLYNM;YJ@YJ;YJ@Y];MNYJ@) and
Jost = I Te( X2V MRV X 2V MUY XY MYy XYy MY ) to the minimal CPC set
respectively. It is interesting that we have to rely on the highest-order invariant Jo51 to
establish the CPC conditions of the theory (c.f. the full invariant list in Ref. |4]).

We want to emphasise one point here. The parameters of the neutrino sector are not
measured well enough today to even exclude that one of the neutrinos is massless. Therefore,
having a set of flavour invariants which determines the CPC conditions without assumptions
on the spectrum is important to make general statements about the theory that hold true for
all possible experimental results.
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Appendices to Chapter 3

3.A Parameterisation of Flavour Matrices

3.A.1 Standard Parameterisation

The parameterisations of the flavour matrices in the lepton and quark sectors have been
discussed in detail in Refs. [218]261|. Because we use slightly different conventions here, we
will discuss the reduction of the flavour matrices to a minimal parameterisation here. The
fermionic part of the Lagrangian is given by

_ 1 _ ~ _ -
L4> Z Uipv — [5 (NCMyN)+ LYNNH + LY.eH + QY uH + QYydH + H.c.] , (3.27)
7

where the kinetic term sums all fermion fields ¥ = {Q, L, u, d, e, N }. Performing a single value
decomposition on the matrices we have

Ye=VeVe W], Yy=VxVyWl, My=ViMyVy, 3.28)
Y=V, YWl Ya=v,Vywl,

where ?N’e,u,d and M, ~ are diagonal matrices with real and non-negative entries. Vy, Wy with
f =N,e,u,d and V}; are unitary matrices. Using appropriate flavour transformation on the
gauge fields most of this matrices can be removed and we can reduce the matrices to the
following form

Y.=Y,, Y=V ¥yW' My=My, (3.29)
V=Y., Yi=VokuYa, '
where Voxa = VJ Vy is the CKM matrix, describing the misalignment of the up- and down-
type quark mass basis. Vg, = VJVN in the lepton sector arises in the same way and describes
the misalignment between the lepton Yukawa matrices. The existence of the Majorana mass
matrix in the lepton sector introduces another mixing matrix W = V](,TWN, which describes
the mismatch between the diagonalisation matrices of Yy and Mpy. For a lepton number-
conserving Dirac neutrino mass, My is set to zero and only the mixing matrix Vi will be
present in the theory, which can be directly identified with the PMNS matrix, which in this
case has the same form as the CKM matrix without any additional phases.
From Eq. , by assuming that the flavour matrices have no degenerate or vanishing
eigenvalues the diagonalisation matrices will at least have a column phase redefinition
freedom, V; — er@f W - er@f, f={N,e,u,d} and Vy, - V{nn. Applied to Eq. (3.29)

131f there are degenerate or vanishing masses, the exact flavour group of the renormalisable Lagrangian
might increase. In that case, more parameters can be absorbed by performing field redefinitions rendering
these parameters unphysical. Ideally, these parameters should always be removed in the parameterisation,
such that the most minimal parameterisation is used in practice.
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this implies N _
62¢f}7f€71®f = ?f, T]N]/W\NT]N = ]’W\N s (330)

where Ef = diag(dy,, ¢f,, @) f = N,e,u,d are diagonal matrices of phases, and 7y is a
diagonal matrix with eigenvalues +1. Under these rephasings, the mixing matrices transform
as _ _ _ _ _

VoM = 6_i¢“VCKM6i®d , Vi — 6_i¢eVL6i¢N , W UNWGi(I’N , (3.31)

Then, the 3 x 3 unitary matrix can be parameterised as
Us = €26 U (01, 013, 022, 6)e™® | (3.32)

where ¢ is an overall phase, U = diag(0,1,12) and P = diag(0, ¢1,¢2), and U(612,013,023,9)

takes the standard form

1 0 0 Cc13 0 8136_i(5 ci2 S12 O
U(912a 613) 9237 6) =]0 C23 593 0 1 0 -s19 c12 0], (333)
0 —823 (€23 —8136@'(s 0 C13 0 0 1

where s;; = siné;;, ¢;; = cosb;;, and 6;; € [0,7/2],6 € [0,27).

Due to the rephasings in Eq. (3.31), the additional phases in the unitary matrix Voxwm
can be absorbed, and it will take the form introduced in Eq. (2.3). The quark sector has the
following number of parameters

Matrices Masses Angles Phases

—

Y. 3 0 0
Y, 3 0 0
Vexkm 0 3 1
Total 6 3 1

There are a total of 10 parameters, consisting of 6 quark masses, 3 mixing angles, and 1 phase.

In the lepton sector, the mixing matrices can be parameterised as follows

VL :ei(pei@U(91279137923’5)61'@, (3 34)
W = V12U (0,04, 0hs,6")e . '

Since Vz, and W share the same rephasing matrix ®, we can use this freedom to remove
either ® or ® in Eq. (3.34) at will. Using the rephasings ®, and ®x to remove the phases in
Vi, and the phase ¢’ in W in Eq. (3.34), without loss of generality, the mixing matrices take
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the following form

Vi = U(f12,013,095,0), W = ¢V 2U(0),,0]4,055,6")e™ . (3.35)
Instead, we could also move one of the phase matrices to Vr,

Vi = U(b12,013,023,0)e'™ . W = € V12U(8]5,0)5,05,5"). (3.36)

This corresponds to the most general parameterisation of the mixing matrices V7, and W and
we will work in this basis without loss of generality. To be specific, we use the following

parameterisation of the flavour matrices
Y; = dla’g (yea Yus yT) ) YN = VL : dlag (yl)y27y3) ' WT, MN = dlag (mlu ma, m3) ; (337)

with Vi and W defined in Eq. . We summarise the number of parameters in each matrix
in Tab.

For a more comprehensive discussion, we refer to Ref. [218|. There, also the cases ny =
ny =2 and ny = 2,ny = 3 in the lepton sector are discussed. For ny = n; = 2, all flavour
matrices are 2 x 2 matrices and they can be parameterised as follows following a similar

discussion
Y. = diag (ye, yu) , Yy =V, - diag (y1,42) - W', My = diag (m1,m2) , (3.38)
with
cosf sinf _ . . . cosa  sina
vy = -diag (1,€'?), W =diag(1,€e?)- . (3.39)
—sinf cos6 -sina  cosa

For ny =2,ny = 3, Yy is a 3 x 2 matrix, and My is a 2 x 2 matrix. Then, the flavour

matrices can be parameterised as

y1 0
Y; = dla'g (y€7 yua yT) ) YN = VL ‘10 Y2 |- WT: MN = dlag (mlu m?) ) (340)
0 0

where V;, and W are given by

4 . cosa  sina
Vi = U(612, 013,023, 6) - diag (1,¢", 1), W = diag(1,¢'?)- . (341

—sina cos«

in analogy to the parameterisation in Eq. (3.36), where the last phase in P is unphysical,
because it is multiplied by zeros in Yn.
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Matrices Masses Angles Phases

My  3[2](2) 0 0
Yy 3[2](2) 0 0
Y, 3[2](3) 0 0
VI, 0 3[11(3) 3[1](2)
w 0 3[1](1) 3[1](1)
Total  9[6](7) 6[2](4) 6[2](3)

Table 3.4: The number of masses, mixing angles and phases in the parameterisation of the lepton sector for
the case of ny =ny =3 [nn =ny =2](ny =2,n5 = 3).

In the Dirac limit, My is set to zero, and we can simply set W = 1. In the case of
ny = ny = 3, the matrix V;, will become the PMNS matrix Vpyns, which takes the same
standard form as Vcgky. The parameterisation is given as

Y. = diag (Ye, Y- yr)» YN = U(012,613,023,9) - diag (y1,y2,y3) - (3.42)

Similarly, for ny =ny = 2, it can be parameterised as

] cosf sinf .
Ye = diag (ye,yu),  Yn = -diag (y1,92) , (3.43)
—sinf cos6

where the phase of V7, in the Majorana case can be removed by the rephasing of the right-
handed neutrino N. For ny =2,n; = 3, the parameterisation is given by

y1 0
Ye = dlag (yea Yus yT) ) YN = U(9127 ‘9137 9237 5) 10 Y2 1> (344)
0 O

where the phase e’ in Eq. (3.41) can be absorbed by the field N in the Dirac case. The
parameters in the Dirac limit are summarised in Tab.

3.A.2 Algebraic Parameterisation

The parameterisation described above is favoured for its phenomenological relevance, as
Yukawa matrices are factorised into eigenvalues and mixing matrices, which aligns with ex-
perimental observables. However, when exploring the algebraic structures of invariants, the
inclusion of trigonometric functions introduces complexity. The use of sine and cosine as ob-
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Matrices Masses Angles Phases

Yn 3[2](2) 0 0
Yoo 3[2(3) 0
VPMnNs 0 ]
]

0
[1]3) 1[0](1)
]

3
3[11(3) 1[0](1)

Total  6[4](5)

Table 3.5: The number of masses, mixing angles and phases in the parameterisation of the lepton sector for
the case of ny =ny =3[ny =ny =2](ny =2,ny = 3) in the Dirac limit.

jects in the polynomial expansion of flavour invariants can complicate the exploration of these
structures. Consequently, alternative parameterisations that are more suitable for polynomial
expressions are needed.

One possible solution is to parameterise the trigonometric functions. A frequently used
parameterisation for the unit circle is

1-¢2

(0= u(D)

2t ,
I with t € (—o0, +00). (3.45)
However the point (-1,0) on the unit circle can only be obtained in the limit ¢ - co. Another
parameterisation that can cover the whole circle is given by

1-6t2+t 4t — 4¢3

z(t) = ————, t)= —————, withte(-1,1]. 3.46

) 1+2t2 +t4 y(t) 1+2t2 +t4 ( ] (3.46)

Thus the sine and cosine functions in the mixing matrices of our above parameterisation can

be replaced with z(t) and y(t) respectively. However, this parameterisation may introduce
new complexities, as it leads to rational polynomials.

Following the parameterisation in Eq. (3.37), it is possible to work with the diagonal basis

of both Y, and My while leaving Yx undiagonalised

i1 Ci2 cC13
Y, = diag (yeayu’y'r)y Yy = 21 C22 C23|> My = diag (m17m27m3) s (347)

r31 €32 (€33

where 7;; and ¢;; are general labels for real and complex parameters respectively. The phases
of the first column of Yy are absorbed by the rephasing of the charged lepton ﬁelds In
this parameterisation all invariants are expressed as polynomials of simple variables, making
it easier to analyze the algebraic structures of the theory. It is easy to see that the number

1471t is not necessary for the rephasing degree of freedom to target the first column, any phase in each row
of Yn can be eliminated.
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of parameters in this parameterisation is still 21, which is the same as the physical paramet-
erisation in Eq. (3.37). Similarly, for ny = ny = 2, we can parameterise the flavour matrices
as

) Tl C12 )
Y. = diag (Ye, yp) , Yy = , My = diag (mq1,ms2) . (3.48)

r21 €22

For ny =2,ny = 3, the parameterisation is given by

ri1 o C12
Ye = diag (Ye; Yusyr), YN =|ro1 cop |, My =diag(mi,m2) . (3.49)
31 €32

The mapping between these two parameterisations can be found by solving equations built
from the entries of Yy, which will not be shown here.

In the Dirac limit where the Majorana mass term My is set to 0, the parameters in
Yukawa matrix Yn can be further reduced by the field redefinition of right-handed neutrino
N, which is explained in detail in Ref. [4|. We find

T11 0 0
}/6 = dla’g (y€7 yua yT) ) YN =] 7T21 T929 0 . (350)
31 €32 T33

We find there are exactly 10 real parameters in this parameterisation, as expected. Similarly,
for ny =ny = 2 the flavour matrices are parameterised as

. T11 O
Ye = diag (Ye,yp), YN = . (3.51)
21 T22
For ny =2,ny = 3 the parameterisation is given by
T11 0
Y, = diag (y€7 Yus yT) , Yy = 91 T22 | - (352)
31 €32

3.B Results for Multi-Graded Hilbert Series and Plethystic Logarithm

3.B.1 Model with nny =n;y =3

In Egs. (3.6) and (3.7), we have presented the ungraded Hilbert series, where the same grading
is used for all spurions. However, the information encoded in the ungraded Hilbert series is not
enough for analyses, where the plethystic logarithm is used to count the number of generating
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invariants and syzygies at each order. Therefore, in this section, we present the multi-graded
Hilbert series, where the single spurion ¢ in Eqs. and is traded for multiple spurions
e, m and n, corresponding to the spurions of the flavour matrices Y., My and Yy respectively.
The denominator of the multi-graded Hilbert series is given as follows

D(e,m,n) = (1-e*)(1-m?)(1-n?)(1-e")(1-m*)(1-nH)(1-e*n?)2(1 -m?n?)
(1-eS(1-m®)(1-n%(1-e*nh)(1- e4n2)(1 - m2n4)2(1 -m*n?)(1 - e?m?n?)

(1-m2n®) (1 -m*n*)(1 - e2m?*n?)(1-e 4n2)(1 e*m?n?) (1 - m?n®) (3.53)
(1-e*m?n®)(1-e'm?n*)(1 - e4m4n2)(1 erm?n®) (1 - e*mint)(1 - eSm2n?)
(1-e*mn®) (1 - eSm?n*) (1 - Emtn?),

while there are 6582 terms in the numerator, which goes up to order O([emn]!?®) in total
powers of spurions. Due to its length we only show the terms up to O([emn]?®) below

N(e,m,n) =1-e*n?+2mint +elnt + 2¢*m

At 36t m2nt + 3m*n® + 3mOnC + mBnt + 5e2m2nd + 7e2m*nb + 3¢2m
+4e*mn® + 5etmnt + Sm2nt + mAnt0 + 3mOn® + mBnb + 3¢2m2n ' + 9e2mAnd

+6e2mOnb + 2mPn? + 4e*m?n® + 10e*m*nb + 5e*mbn? + 3¢5m2nb And

2 2.6

n* +2m*nb + 2mn? + 4e’m?n

4 6 4

+4e’*m

+3e%m

+m* '+ mnt0 + 3m3n® + e2m2n'? + 5e2m*n'0 + 9e m6n8 +22m3nS + e*m2nt0
+ 16erm*n® + 10e*mnb + 2e*m3n? + 4e5m?n® + 8e5m*nb + 3e5mOn? + 2e3m2nb
+eSmint + mEn'® + m1%® + 2mn!? + 6e2mOnt® + 7e?mSn® — 2m!10n" (3.54)

+10e*m*n'0 + 19e*mbn® + 4e*mBnb + eSm2n'0 + 14e5m*n® + 8e5mn® + SmBn?

+e3m2n® + 5e8m*nb + 2e8mOnt + e%m2n8 — mnt + 2m 0010 + m 208 - 3e2min'?

6,12 8 10+26 mlOnS e277112”6 4 2 14+664 4 12+15€4 6 10

+12¢*m®n® - 2¢AmOnS — Sm2nt? + 9eSmint?

+9e m4n8 +4em5n0 + BmBnt - 21%m%n® + 2¢

+2e2mn'? + 5e’m

+16e8m5n® + 2e5m3n®
10,,4,,6 _ 16,16

_ 268m2n10

_ 2m8n14 + m12n10

—2e2mAn10 _ 462mBn + 3¢2m3n12 1+ 2e2m 19010 _ 26t Antt 1 6edmbnl2 + 7etmSnl0

—etmOn® = 2e*m 200 — 2¢5m2nt + 2e5m*nt? + 13e°m®nt? + 8e5mBn® — 3¢5m1%nb

- 3e3m?n!? + 3e®mInt? + 8e¥mOn® + 2e3m®nb — 2e19m2nt0 - 3e9mIn® — 2mn®

816 _ 10,14 _ 2,418 _9.26,.16 _ .28 14 _ 210,12 g2 1210

v etmAn0 Z 10etmbnt4 — 5etmSnl2 7e4m10n10 3em12n8 _ 7e8mAnt4 4 26616512
— e8mBn10 — 968,108 _ 966,,12106 _ 982014 _ 4e8m4n12 4 9268mOnl0 + 3e8mBnS

_ 9268100 _ 9010,,2,,12 _ 10,410 _ 3,10,.6,.8 9,12, 4,8 g.10,16 _ 12 14
MMt Z o201 _ 7028016 _ 106210014 _ 5021212 | 9,214,100 _ 15,.4,,6,,16
— 33t mBnt — 22¢4m 0012 — 13e*m 200 — e*m n® - 2e5m*nt% - 21e8mSn !

2166 8 12 1666m10n10_466m12n8_11€8m4n14_1568m6n12 1568 8 10

—668m10n8—268m12n6 610m2n14 9610 4 12 8610 6 10 5610m8n8—610m10n6

- 3e2mOn® — e m*n® + O([emn]®®).
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It is worth noting that the multi-graded Hilbert series lacks certain properties of the ungraded
Hilbert series, such as a matching number of factors in the denominator with physical observ-
ables and a palindromic form in the numerator. As already mentioned in footnote [5| there
is an ambiguity when determining the form of the ungraded Hilbert series, which makes the
plethystic logarithm more helpful in our case, since it is unique for both the ungraded and
multi-graded Hilbert series.

The invariants in our theory form a non-complete intersection ring making the plethystic
logarithm a non-terminating series as a result. According to Eq. , the plethystic logar-
ithm can only be calculated up to some given order in the spurions. However, as we discussed
in Sec. we are only interested in the terms in the plethystic logarithm up to the first
purely negative order, which we find to occur at order O([emn]?). The plethystic logarithm
up to this order is given by

PL(e,m,n) = (62 +m? + n2) + (64 +mt +nt+e?n?+ mznz) + (66 +m® +nb +e2nt

+e'n? +2mnt + min? + 62m2n2) + (e4n4 +mZn® + 3m*nt + 3¢2m?nt + 2min?

+e4m2n2) + (m2n8 +2m*n8 + 2mOn® + 5e2m2nb + 4e?m*n? + 4e*m?nt + e4m4n2)
64 3m*n® + 3mnb + m¥n* + 5¢2m2n® + 9¢2m*n®
At 4 266m2n4) + (m4n10 +3m%n® + m®nb + 3¢?m
+8¢2mSn® + 2mBnt + 9¢*m?n® + 14e*m? 6

+68m2n4) + (m4n12 + m6n10 + e2m2n12 + 8€2m

6pt + 7etm?nb

4TL8

+3e*m
2,10

+ (e6n
+6em +11e2m
n* + 6e8m?n + 3e5min?

+8e2m%n® + 3e2m®nb

nS + 5e*m
4,10
+6e*m2n'0 + 20e*m*n® + 13e*m®nb + 2e*mBnt + 8¢5m2n® + 13e8m*nS
+3e5mOn? + 3e8m?2nb + 268m4n4) + (262m4n12 +3etm?n'? + 11e*m*n !0
+11e*m5n® + 5e*mBn’ + 5e5m2nt0 + 18¢5m*n® + 13e5m®nb + SmBnt + 4e3m2n8
400+ 2e8mOn? + e%m2nb = 3mBnt? - 3m1%n8 - 3e2mnt0 — 4e2mBn®
8+ 7¢8mOnb + mBnt + 3¢0m*nb

—mSn — 9mBnt2 — 8m %10 — 4m 218 — 2e2mAnt — 91e2mn12 — 3262m8n10

~14>m'%n® — 2m2nb — 9¢*m*n'? — 28e*mOnt? — 18e*mBn® — 2¢*mOn"

—e6m4n10) + (368m8n6 +2e0m%n8 — mSnt® —10m8n't - 18m!%n'? — 9m!2n10

—2mMn® = 2e2m*nt® - 34e>mntt — 76e2m®nt? - 55¢2m!'Ont0 — 12e2m'2ns

—27e*m*n' = 103e*mn'? = 109¢*mBn'0 - 39¢4m'0n® — 2e*m!2n’ — 2¢5m2nt4
~45¢5m*n'? - 83e5mOn1® - 35¢°mBn® - 3¢5m!OnS - 6e¥m?n'? - 21e8m*n 10 (3.55)
_0e3m5n8 — 4610210 _ elom4n8) + (610m8n6 ~ 12012 _ 11mBnl6  90m 10,14

—21m 202 - 5mMnt0 - 8 — e2mint® - 33¢2mOnt% - 110e>m®n!* - 116e2m'On!?
—48¢*m 2 nt0 — 5e2mn® — 31e*m*nt® — 174e*mOnt - 284e*mBnt? - 162¢*m !0t
-33e*m2n8 — Sm2n'® — 87eSmin* = 261e5m5n'? — 226e5mBn'® - 59¢5m10n8

—2e5m12nb - 8e®m2n' — 94e®m*n'? — 134e®mn'? — 483 m®n® - 2e3m10n

~10e'%m2n'? = 32e19m4 010 — 15 0m5n8 — 3e12m2n !0 - 2612m4n8) + (—5m8n18

_19m10n16 _ 16m12nl4 _ 7m14n12 _ m16n10 _ 2262m6n18 _ 105€2m8n16

+8e®m

—e2m10n6) + (266m6n8 +4e5m3n® + 9¢8m
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~149e2m 90 = 88¢2m!2n'? — 20e2m n'0 — e2m!on® - 21e*m*n'® - 192e*mn '
—424e*mBnt* = 371e*m%n!? - 130e*m 200 - 13¢*m*n® - 96eSm*n'® — 448e0mntt
—603e°m®n'? — 303e9mn10 — 45¢5m12n® - 5e¥m2n'% - 161e3m*ntt — 417e3mOnt?
—314e3m®nt? = 708 m ' %n® - 2¢3m2n — 120920t - 108¢%m*n'? - 1406 9m5n°
4020808 — 10106 _ gp12,,2,,12 _ 93,12,.4,,10 _ 12,68 14,210 _ el4m4n8)

+0 ([emn]gs) ,

where the terms are grouped by parentheses at each order. We can see that the terms in
O([emn]?®) are all negative.

Under the Dirac limit, the Hilbert series can be obtained by setting m — 0, which will
have a very simple form as has been found for the quark sector in Eq. after setting
e—>0,u—>n,d—e

H(e,n)=(1+ e6n6) X (3.56)
1
* (1-e2)(1-et)(1-€b) (1 -n2)(1-n?)(1-nb)(1-e2n2)(1-e*n?)(1-e2nt) (1-eint)’

The ungraded Hilbert series is given by

1+q12

H = )
O e - (-0

(3.57)

The Dirac case corresponds to a complete intersection ring, and the multi-graded plethystic

logarithm has finite number of terms, which are given as follows

PL(e,n) =e?+et + S +n2+nt+nb +e2n? + etn? + e?nt + e'nt + S0l —e'2n1? . (3.58)

The corresponding ungraded plethystic logarithm can be obtained by setting e,n — ¢, which
has the following form
PL(q) = 2¢° + 3¢ + 4¢° + ¢® + ¢"* - ¢**, (3.59)

where the positive terms correctly capture the 10 CP-even and 1 CP-odd invariants, while
the negative term indicates there is a syzygy at order 24.

3.B.2 Model with ny =ng =2

For completeness, we also show the Hilbert series for the case ny = ny = 2, which has already
been presented in Ref. [218|. The numerator and denominator are given by

N(e,m,n) =1 +2¢*m?nt + m*n* + 2mint + e*mInt + 2m?n® + e?m?nb — 2mSn’+

- e4m6n6 - 62m4n8 - e4m4n8 - 66m4n8 - 264m6n8 - 66m8n12 y

D(e,m,n) = (1 - 62) (1 - 64) (1 - m2) (1 - m4) (1 - n2) (1 - 62n2) (1 - m2n2) X

(1 - 62m2n2) (1 - n4) (1 - m2n4) (1 - e4m2n4) .

(3.60)
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The ungraded Hilbert series is

B 1+q6+3q8+2q10+3q12+ql4+q20
= 3 : .
(1-¢*)"(1-¢*)"(1-¢5) (1-¢'0)

H(q) (3.61)

The multi-graded plethystic logarithm is given by

PL(e,m,n) =2 +mZ+n?+et+mt+ e+ mPn® + 0t + 2mPn® + mPnts

+2e2m2nt + mint + etm?nt + 2mint + 2mnb + *mint+ (3.62)

+e*m?n® — e2mOn® — 2m*n® — O([emn]'®).

As before, the plethystic logarithm is also a non-terminating series for two generations. There-
fore, the theory corresponds to a non-complete intersection ring. However, the pure negative
order appears already at O([emn]*), the 18 lower order terms in plethystic logarithm are all
positive, and they correspond to the generating set presented in Eq. (3.66).

3.B.3 Model with nny =2, ny=3

For the case of ny = 2,ny = 3, the Hilbert series has been calculated in Ref. |252|. For
completeness, we also provide it here. The numerator and denominator of the multi-graded
Hilbert series are given by

2 2 2 4 4, 4 2 4 4, 4 4

N(e,m,n):1—e2n2+64n4+262m nt+2etm?nt + 285m0t + mInt + 2mint + 2etmint+

+ e6m4n4 + 68m4n4 + 62m2n6 + 610m2n6 - 62m4n6 - e4m4n6 - 366m4n6+

—e3m*nb - eOm*nb — 2mbnb — 2e2mbnb — 2e5mn’ — 2e8mOn — OmSnb+

et m2n® — eSm2n® — eBm2nd — e19m2n8 — e12m2n® — e2min® — etmind+

- 3em*n® — Smin® - 3e1%m*n® — eZm*n® — e m*n® — e*mn® + SmOnl+

—eSmGnS +610m6n8 —el2m6n8 +66m8n8 +68m8n8 +610m8n8 _61077127110+

+etm* % £ Sm*nt0 + 2e8m*nt0 + 2e2mAntY + e Anl0 4+ 10mAn 10y

+2e5mOnt0 + 3e19mOnt0 + 261 4mOnt0 — 2e8mn!? — 3e2mOn!? — 210012+

e SmBnt2 — BmBnl2 — 96108012 _ 9014812 _ 416,812 _ 18,8 12

+ 612m10n12 _ 612m4n14 —614m4n14 _616m4n14 +€10m6n14 _ 612m6nl4+

+ el4m6n14 _ el6m6n14 + 618m6n14 + 68m8n14 + 610m8n14 + 3612m8n14+

+614m8nl4 +3€16m8n14 +€18m8nl4 +€20m8nl4 +610m10nl4 +612m10nl4+

+ 614777,107114 + 616m10n14 + 618m10n14 + 612m6n16 + 2614m6n16 + 2@16m6n16+

+2618m6n16 +€20m6n16 +€12m8n16 +el4m8n16 +3616m8n16 +618m8n16+

+ 020,816 _ 12,1016 _ 20, 10,16 _ 14,8 18 _ 16,8 18 o 18 8 18

— 20,818 _ 022,818 _ 916,10, 18 _ 5,18 10,18 _ 520, 10,18 _ 18, 12,18

+ 620777,127’120 _ 622m12n22, (363)

D(e,m,n) = (1 - 62) (1 - m2) (1 - n2) (1 - 64) (1 - m4) (1 - n4) (1 - 62n2)2 x
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(1 - m2n2) (1 - 66) (1 - 62n4) (1 - e4n2) (1 - m2n4) X

(1 - eQanQ) (1 - e4m2n2) (1 - e4m2n4) (1 - 68m2n4) ,
which in the single-graded limit have the following form

N(q) =1+¢*+q" +2¢° + 6¢° + 10" + 18¢"% + 23¢"* + 28¢'% + 31¢"® + 34" + 32¢**+
+34¢°" + 31¢%° + 28¢°° + 23¢™ + 18¢°* + 10¢** + 6¢°° + 2¢%° + ¢ + ¢ + ¢, (3.64)

D(g) = (1-¢*)" (1-¢") (1-¢°) (1-¢*) (1-¢") (1-¢") -
The multi-graded plethystic logarithm is given by

PL(e,m,n) = +m?+n®+et+mtee®n?emin? +nt+ e +etn® + 2mn? + 2nt+

+m?nt +e*m2n? + e'nt + 22m2nt + mAnt + 3etmZnt + 2mint + 2m2nb+

+2e5m2nt £ 2etmnt + e5n8 + 24 m2nb + BmZnt + Smint + 2e5mnS+

—2mOn0 — 2mn® + Bmint + 2e3m2n’ — Sm*nb - 2e*mOnb — Sm2nl+

6n8 8, 8 10, 2 6—266m6n6 8, 2 8—866 4.8

—5etmin® - 2¢2m -mn-+e mn —e"mn mn 4+

- 6etmOn® - 2m®n® — Sm?n1? - 2etmInt0 - 2mSn!® - O([emn]*®).  (3.65)
The plethystic logarithm is also non-terminating, indicating that the algebraic structure of
the flavour invariants is that of a non-complete intersection ring. The pure negative order
appears at O([emn]?"), and the generating set can be obtained considering invariants up to
O([emn]'®) as shown in Ref. [252] or in terms of our invariants in Eq. (3.67).

3.C List of Invariants

Due to its length, we refer to Ref. [4] for the full set of invariants and will give the sets for a
reduced number of flavours here. For the theory with ny =ny = 2, the generating set can be
formed with the invariants

Gen.(ny =ny =2): {I1,1,23,14,15, L6, L7, 18, L14, 17, L22, I35, J1, T2, T5, T, Jog, T31 }
(3.66)
which is also shown in Ref. [218] with a different convention. For the theory with ny =2,n¢ =
3, the generating set is given by

Gen.(nn =2,ny =3): {Z1,22,13,24,T5, L6, 17,13, L9, L12, L13, L14, L17, 18, L2, Ios,
T34,135, 54, L7g, J1, T2, T5, T7, Jo, J10, J26, J28, J29, T31, J32, Tes, J70, T72, (3.67)
Jis2, J133, J134, J195 ) -

The above generating set has already been shown in Ref. [252|, but the commutation notation
is equivalently represented by taking imaginary part in our notation.

We can also easily identify that the primary invariants shown in Eq. (3.16) correspond to
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the invariants

Primary set : {Z1,Z»,73,15,1¢, L7, 28, L9, 112,113, L15, L23, L5, T34, I35, Lu7, I50, Lsa, Les, L79, Lo1 } -
(3.68)
In the Dirac limit, the generating set will be reduced to have only 11 invariants, which are
given by
Gen.(DiraC hmlt) . {Il,Ig,I4,IG,I7,Ig,1'11,112,1'13,118,jlo} . (369)

There is a one-to-one correspondence between these invariants and the invariants in the quark
sector as shown in Eq. (2.98). For completeness, we also show the walk notations of generating
flavour invariants in the quark sector, they are given by

Gen.(Quark sector): {78,89,7878,8989, 7898, 787878,898989, 789898,

3.70
787898, 78789898, [Q787898789898} . ( )

These walks are based on the graph shown in left bottom panel of Fig.

3.D Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz |264266/, a fundamental result in algebraic geometry, establishes a
profound connection between polynomial equations and the geometry of algebraic varieties.
The traditional formulation of Hilbert’s Nullstellensatz often involves a polynomial ring and
its associated ideals. Consider the polynomial ring R = k[x1, 22, ..., x,] in n variables over the
field k& (a mathematical structure that generalises the concept of numbers). This ring consists
of polynomials in the variables x1, o, ..., z, with coefficients in k. We will now introduce the
fundamental mathematical concepts required for presenting Hilbert’s Nullstellensatz.

e Ideal

An ideal T in the polynomial ring R is a subset of polynomials, which satisfies

(1) 0el.
(2) If f,gel, then f+gel. (3.71)
(3) If fel and g€ R, then fgel.

e Variety

Given an ideal I, the variety V(I) is the set of common zeros of all polynomials in I.
Formally, a point (aq,as,...,a,) lies in the variety V(1) if and only if every polynomial
in I evaluates to zero at that point

V(I)=A{(a1,a2,...,a,) | f(a1,a2,...,a,) =0 for all fel}. (3.72)

e Radical of an Ideal
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The radical of an ideal I, denoted by v/T, is the set of all polynomials ¢ such that some
power of g belongs to I. Mathematically, v/T is defined as

VI={g|gFel for some k>1}. (3.73)

Hilbert’s Nullstellensatz asserts that for any algebraically closed field &, there is a bijective
correspondence between the points of a variety V(I) and the radical ideals /I defining the
variety. Formally, this correspondence is expressed as

Ideal(V (1)) = V1T, (3.74)

where Ideal(V'(I)) denotes the ideal of polynomials vanishing on the variety V' (I).

In a more polynomial-centred language, Hilbert’s Nullstellensatz can also be formulated
differently. If a polynomial p vanishes on the variety V(I), it belongs to Ideal(V(I)), and,
by Hilbert’s Nullstellensatz as shown in Eq. , it also belongs to v/I. According to the
definition of /T, there exists s > 1 such that p® € I, which can thus be expressed as

P’ = fipr + fap2 + o+ frnbm, (3.75)

where f; € R and p; are the defining polynomials of I. This equation essentially states that if p
is vanishing under the common zeros of the defining polynomials of the ideal I, then some s-th
power of the polynomial p can be expressed as a combination of these defining polynomials.

3.E CPC Conditions for ny =ng =2

3.E.1 Minimal CPC Set for ny =ny=2

The simplified model with two generations of fermions serves as a good example for the
algebraic studies. In Ref. |218], the authors find the following 6 CP-odd invariants in the

generating set
Ji =TT (My Y YN VLYYV MR ) ~ 7o
Jo =TT ( My My Y{ YN MY Y3 My ) ~ Jh
Js =TT (MZ MY LYY YN MY Y My ) ~ T 76)
Jy = ImTr (MNYT Y Y vy My vy YN) T '
Js =TT ( My M3 My Y Y Y Yy MY Y YY) ~ T
(M

Jo = ImTr ( My Y YN Y VY vy My vEY YTYN) Jog

which we have translated to our notation. Although the CP-odd generating set is small, it is
still difficult to find the common zeros of the polynomials based on usual methods. However,
the invariants can also be considered as ideals in the polynomial ring of the theory. In this
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section, we will analyse these ideals with the software package Macaulay?2 [263| based on the
parameterisation in Eq. . To simplify the notation, we take r11 = a,721 = ¢,c19 = b+ pi
and ¢y = d+qi. Therefore, the polynomial ring is defined as R := Q[ye, yu, m1,m2,a,b,¢,d,p, q]
and all CPV effects can be characterised by the ideal I defined by the six CP-odd invariants,
ie., I =(J1,...,Js). The vanishing set denoted by V(I) captures all the CPC conditions.
The problem of finding common zeros is equivalent to finding the irreducible components of
the ideal.

According to Hilbert’s Nullstellensatz, the ideal of all polynomials that vanish on the
common zero set V (I) is the radical of the ideal /T, which can be calculated by the radical
function in Macaulay2. The CPC conditions are captured by the minimal primes of the radical

{{a.p), (g a), {p.c), {(c,a), {¢,b), (d,a), (d,b), {m1,a), (m1,c), (ma,a), (ma2,c),
(ma,m1), (m1,ye = yu), (M2,Ye = yu), (ma,dp-0bq), (m2,dp-bq), (3.77)
(m1—=m2,Ye = yu)s (Ye = Yu,ab+cd), (ye —yu,ap+cq),

(my—mag,abc® —a®cd+b*cd-abd® +cdp® —abg®)}.

These solutions have been simplified assuming physical values for all parameters. The CPC
conditions can be obtained by setting the generators of the ideals to 0. For instance, the first
ideal in the above set indicates that there is one condition p = ¢ = 0 that can lead to CPC,
which is just the trivial solution of vanishing phases. In the algebraic geometry picture, all
these conditions are fundamental objects, and they correspond to points, lines, surfaces, etc.
In addition, each of these conditions has a connection to the special spectrum and enlarged
symmetries of the theory.

As we explore the CPC conditions using the Macaulay?2 package, we also find that without
introducing Js, we can still derive the CPC conditions in Eq. . This suggests that J3
must be redundant when determining the CPC conditions. This is indeed observed by the
syzygy approach based on Hilbert’s Nullstellensatz. The redundant Js in our notation is J7

(refer to Eq. (3.76) for the mapping). If we use the generating set shown in Eq. (3.66), we
can find the following syzygy

277 = (I3 - I5) T3 + 21 Js1 - (3.78)

Therefore, J7 vanishes given that J; = J> = 0. We have also attempted to find similar syzygies
for other CP-odd invariants at their square order in the generating set. However, no other
syzygy could be found, and we also observed that at higher orders, the syzygies are not easy
to solve. Thus, we can conclude that the minimal CPC set is given by {Ji, Jo, J4, J5, Jg} up
to square order based on Hilbert’s Nullstellensatz.

By analysing the polynomial ring, it is also possible to generate the conditions leading
to a special spectrum with a larger exact symmetry group, yielding unphysical phases. The
conditions leading to unphysical phase of p or q can be obtained by the elimination of variables,
and the relevant function in Macaulay?2 is called eliminate. By eliminating the CP-odd
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variable p or ¢, one can find the following conditions

unphysical p: {{(g), (¢}, (m1), (m2), {(m1-m2), (ye —ypu), (d,b), (d,a)}, (3.79)

unphysical g¢: {<p>’ (a>7 <m1>v (mQ}a (ml_m2>’ (?/e‘%)v <d’b>’ <C,b>},

where the unphysical conditions such as (mj + mz) is removed. The above conditions can
also be calculated with the more physical parameterisation in Eq. (3.38). They are given as
follows

unphysical ¢: {(sinp), (sinp—1), (sinp+1), (sina), (sina—1), (sina+ 1),

(ma), (ma), (m1-ma), (y1-y2)}, (3.80)

unphysical ¢: {(sin@), (sina), (sina—1), (sina+1), (sinf), (sind—1),
(Sin9+1>7 (ye_yu)a <m1_m2>7 <y1)7 <y2)7 (yl_yQ)}‘

By exploring these special conditions and their combinations, one can obtain all of the special
spectra with enlarged symmetries that can be used to remove phases in the theory.

3.E.2 Pseudo-Real Couplings

There are some highly non-trivial conditions in the solution list in Eq. . For instance, the
last one shows that the mass degeneracy of m1 = mo and a vanishing of a specific combination
of the matrix elements of Yy can lead to CPC. One set of parameters that solves these
conditions is

mi=mo=1, ye=1, y, =2, a=6, b=2, ¢=3, d=4, p=8, ¢=5, (3.81)
which corresponds to the following flavour matrices

10 6 2+8i 10
Y, = . Yy= . My = . (3.82)
0 2 3 4+5i 0 1

With this setup, we can check that all CP-odd invariants are vanishing, and there is no CP
violation. However there are two complex numbers in Yy, that cannot be made real by field
redefinitions. Such a scenario of CP conservation in the presence of irremovable complex
parameters was previously noted in Ref. [32}|33||103| as pseudo-real couplings in the context
of Three Higgs Doublet Models and toy models with complicated discrete symmetries. This
can be understood as follows. Since My has degenerate eigenvalues, there is an O(2) freedom
for the field redefinition of NV, while, because Y. has non-degenerate eigenvalues, there is only
a rephasing freedom for the field L. By applying these field redefinitions, we find that the
phases in Yy can not be removed. However, we can find the following field redefinition that
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can map Yy to Y

e 0 \)[a b+pi)fcosf sind a b-pi
. = ) (3.83)
0 e?J\c d+qi]\sind -cos6 c d-qi

Note that My and Y, are real and diagonal in this basis, thus they are also mapped to
their complex conjugate under this field redefinition. This indicates that the Lagrangian
is symmetric under CP transformations up to a field redefinition, which is referred to as a
generalised CP symmetry [268}269|. Hence, even though there are irremovable phases present
in the theory, CP is still conserved for this set of parameters. These special CPC conditions
are correctly captured by the CP-odd flavour invariants, as they are all vanishing in these
cases. In other words, all CPC conditions, no matter how special they may appear, can be
obtained by setting CP-odd generating invariants to zero.

Note, that for a specific value of the rotation angle that solves Eq. for the explicit
example in Eq. (3.81), a discrete symmetry is defined that leaves the Lagrangian invariant.
Furthermore, the generalised CP transformation that imposes Eq. (3.83), is of order 2, since
both the rephasing matrix and the rotation matrix fulfil AA* = 1, indicating a trivial flavour
symmetry. There are additional cases in Eq. that result in pseudo-real couplings. For
example, one can verify that the ideal (ye —yu,ap+ cq) corresponds to another discrete sym-
metry that leads to pseudo-real couplings. In general, if the condition involves the phases
non-trivially, meaning the phases can be set to certain constrained non-zero values, the coup-
lings will be pseudo-real in such scenarios.

!®For the choice of parameters shown in Eq. (3.81), we find 6 = 2arctan(3), a = 7 + arctan(4/3), 8 = 37/2.



The Flavour Invariants of the SMEFT with

Massive Neutrinos

In Sec. we have introduced CP-odd flavour invariants capturing all sources of CP viola-
tion in the SMEFT at dimension 6, following the discussion in Refs. [103}/104|. There, we have
neglected all neutrino masses, which is incompatible with our observation of massive neutrinos
in Nature. We have already introduced the most popular possibilities for generating neutrino
masses in Sec. and constructed their generating set of flavour invariants in Chap. In
this section, we want to extend this discussion to the non-renormalisable interactions.

There are three different possibilities we want to discuss. First, we want to consider the
option of leaving right-handed sterile neutrinos aside and generating a Majorana mass term
for the left-handed SM neutrinos through the Weinberg operator, which is generated by some
heavy lepton number-violating new physics. Subsequently, we will consider the EFT of the
vSM, which we have studied in Chap. Here, we will differentiate two cases: in the first
case, we will not allow for lepton number-breaking terms in the Lagrangian; hence, only Dirac
neutrino masses are allowed. In the second case, we will also allow for Majorana masses for
the sterile right-handed neutrino.

4.1 The Weinberg Operator

Let us start with the pure SMEFT case, where now the Weinberg operator
05 =(L°H*)(H'L) , (4.1)

at dimension 5 is allowed, which we have ignored previously due to its breaking of lepton
number. For an anti-symmetric charge conjugation matrix C, the Wilson coefficient Cs of
the Weinberg operator is a symmetric matrix and hence, contains 6 CP-even and 6 CP-odd

101
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parameters. Due to its transformation properties under the U(3), flavour grou
Cs ~ (3L ®s 3L) 5, (4.2)

where the representations are those of the non-Abelian part of the flavour group, ®; is the
symmetric tensor product of the simple representations and the subscript denotes the Abelian
flavour charge, the flavour invariants of the Weinberg operator in the presence of all other SM
and SMEFT dimension-6 operators have to be at least quadratic in C5. Indeed, we can write
down the following generic form for the invariants

19 = Tr (Csx2C: X7, (4.3)

where X, = Y;YJ and a,b = 0,1,2, since any higher power can be removed by virtue of the
Cayley—Hamilton theorem. It turns out that all of these invariants are real, i.e. at dimension
6 there exist no flavour-invariant sources of CP violation in the Weinberg operator. This is
easy to show by computing the conjugate of the invariant

(1) = ((Csxecs X)) = Tr (X0 X2C8) = Tr (CsX2CEXY) = 10) (44)

where we have used Tr(A) = Tr(AT), the fact that C5 and X, are symmetric and hermitian,
respectively, and the cyclic property of the trace.

Due to the transformations properties of C'5, more invariants can only be written down by
using four insertions of C5 and its conjugate. These invariants can be written in the following

generic form
18), = Tr (Cs X2 X0 O XECE X2) (4.5)

where again a,b,c,d = 0,1,2. Only now, some of the invariants have imaginary parts and
hence, capture sources of CP violation. Since the invariants are no longer linear in the Wilson
coefficients, we can no longer directly make use of linear algebra to check the independence
of the invariants. We can however still define a transfer matrix by spanning a vector space
with all possible imaginary combinations of 4 entries of the C5, which are exactly the terms
appearing in Iéjlb), ed For instance, taking the Wilson coefficient vector in Eq. to have
the entries of the form Im (C)*Re (C) and Im (C) Re (C)?, while all other terms correspond
to the real block of the transfer matrix. Computing the rank of the transfer matrix for the
invariants of the structure in Eq. , one find that the set

o Iaor Tdor Ione: Toes Dz (4.6)
captures the necessary and sufficient condition for CP conservation in the SM extended with
the Weinberg operator. Note, that if one goes to this order in the EFT expansion also
flavour invariants with single insertions of the Wilson coefficient of dimension-8 operators,
double insertions of the Wilson coefficient of dimension-6 operators and double insertions of

!The operator is a singlet under the remaining subgroups of the U(3)® flavour group of the SM.
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the Wilson coefficient of the Weinberg operator with the insertion of the Wilson coefficient
of dimension-6 operators should be considered. For instance, considering the Yukawa-like
operator Cepr, we can write

Tr (Cs X Cen Y XPCI X)) | (4.7)
capturing the sources of CP violation in the interference between an operator insertion of Ogl)
and twice the Weinberg operator in a given observable. Here, one should keep in mind that all
necessary and sufficient condition for CP conservation are already captured by the previously
considered invariants. However, the additional invariants could still appear in computations

and capture sources of CP violation in a certain way that is not captured by the previously
considered invariants.

4.2 Sterile Neutrinos with Lepton Number Conservation

As alluded to at the beginning of this chapter, another possibility to generate neutrino masses
is to add right-handed sterile neutrinos to the theory. Assuming that all particle masses are
light, the right-handed neutrinos should be added to the low-energy particle spectrum, which
has to be taken into account when constructing the EFT of the theory. Since the right-
handed neutrinos are singlets under the SM gauge group, a Majorana mass term is in principle
allowed for the Weyl fermion, breaking the accidental lepton number rephasing symmetry of
the renormalisable SM. Therefore, we will split the analysis into two parts. First, we consider
lepton number to be a good symmetry of the SM Lagrangian extended with the right-handed
neutrino N as well. The remaining Lagrangian is that of the ¥SM introduced in Eq.
with My set to zero

£ySM,Dirac = ESM + NZ@N - (I:YNI:{N + h.C.) y (4.8)

which after EWSB gives rise to a Dirac neutrino mass. Note also, that adding a lepton
number-conserving right-handed neutrino to the SM Lagrangian essentially makes the lepton
Yukawa sector a copy of the quark Yukawa sector. The relevant operators of the v'SMEFT in
the case of conserved lepton number are those in Tab. without those labelled by L.

In this case, we can simply recycle some of the results from Ref. [103|, where the CP-odd
flavour invariants with the non-trivial flavour structure of the quark sector was discussed. One
thing should be kept in mind here. In Ref. [103], a Froggatt-Nielsen (FN) model [270] was
utilised to organise the flavour sector of the SM and SMEFT flavourful interactions. We will
introduce the model in more detail later, but the main points can be summarised as follows.
In the FN construction a complex singlet scalar is postulated in the UV, which has a fixed
charge of —1 under a new global U(1) group. The components of the SM fermion flavour
multiplets take different charges under the U(1) group such that effective operators of the
fermions with the new scalar are generated by demanding that the Lagrangian be invariant
under the action of the new U(1). The U(1) is then spontaneously broken by the VEV of the
scalar field, such that the VEV divided by the scale, where the effective operators between the
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scalar and the SM fermions are UV completed, matches A = sinf. ~ 0.22 (with 6. the Cabibbo
angle) reproducing the SM flavour structure. In Ref. [103], this construction is extended to
the non-renormalisable interactions of the SMEFT, such that the hierarchies in the flavour
sector are explained by a single parameter. This parameter can be used to organise the flavour
invariants by their leading power in A.

In the lepton sector of the vSMEFT this is no longer possible, since the values of the
neutrino masses (and their Majorana or Dirac character) are unknown. Hence, any FN model
would be extremely model-dependent. Hence, we have to find another way to organise the
importance of the flavour invariants of the Y'SMEFT. We will do this in a second below. Let
us first discuss what we can learn about the CP-odd vSMEFT invariants at dimension 6 from
the results of Ref. [103].

Let us start by counting the CP-odd parameters of the lepton number-conserving dimension-
6 operators in the vYSMEFT in Tab. The operators Orng, Oune, Onw and Onp are
all generic operators with one fermion bilinear. Hence, they each have 9 CP-odd parameters.
In addition, the hermitian operator Oy has 3 CP-odd parameters. The 4-fermion operat-
ors can be categorised as follows. The operators Ogyne, OrnLe, OrnQd, Oragn and Ogunr,
are generic 4-fermion operators without any symmetry relations; hence they each come with
81 CP-odd parameters. The operators Oy, Oyn, Oan, Orn and Ogn are “hermitian”, i.e.
Cijkl = C;ilk’ They each come with 36 CP-odd parameters. Due to only IV appearing in Onpn
this “hermitian” operator has the following other symmetries Cjjx; = Cijit = Ciixj = Crisj due to
Fierz identity and the fact that the two currents can trivially be exchanged; hence the Wilson
coefficient of the operator only contains 15 CP-odd parameters. In total, we have 639 CP-odd
parameters in the Wilson coefficients of the dimension-6 lepton number-conserving VSMEFTEl
Applying the findings of Ref. [103|, we can make the qualitative statement that all of these
phases are primary phases, which can be written down in a flavour basis-invariant way as the
imaginary part of a trace of combinations of ¥YSM Yukawa couplings and a single insertion of
the Wilson coefficient. Those are the physical phases, that can appear in the interference term
between the renormalisable and non-renormalisable contribution to an amplitude, schemat-
ically shown in Eq. (2.35). Together with the results derived in Chap. |3| this construction
allows us to impose the conditions for CP conservation at the renormalisable level of the the-
ory. Then, all the remaining conditions formulated as imaginary flavour invariants captures
the true sources of CP violation in the UV parameterised in the vYSMEFT.

In order to explicitly construct the invariants, an organising principle similar to the FN
model for the SMEFT has to be chosen, such that for a given operator a set of invariants
out of all possible constructible invariants can be selected parameterising the leading flavour-
invariant phases of the effective operator. The FN model was a good choice for the SMEFT,
as it parameterised the flavour hierarchy of the SM in the single parameter X singling out the
invariants that yield a complete set with maximal rank at the lowest possible order in A\. We
briefly want to discuss several choices for an organising principle of the ¥YSMEFT invariants
here.

2This number corresponds to the operators, where at least one right-handed neutrino fields appears in the
effective operators. The SMEFT operators, which technically are also part of the vYSMEFT are not included
in this number.
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Even though the flavour charges of an FN model cannot be fixed like in the SM fermion
sector due to the lack of knowledge about the mass generation of neutrino masses, one can
make well-motivated assumptions about the neutrino mass spectrum and its origin to con-
struct a generalised FN model that also includes the neutrino sector along the lines of what
was, for instance, done in Ref. [271]|. This would be the natural generalisation of the analysis
performed in Refs. [103} 104| even though a large model dependence is introduced thanks to
our ignorance of the neutrino mass spectrum.

Another possibility is to simply count the insertions of couplings in the flavour invariants.
This is motivated by the less hierarchical PMNS mixing matrix in the neutrino sector, which
unlike in the SM quark sector would lead to less drastic suppression of higher order invariants
in the Yukawa couplings, determined by powers of A in the FN-type models. Furthermore,
if these invariants are expected to be generated in perturbation theory, more insertions of
Yukawa couplings would naturally correspond to a higher loop suppression. Here, one obstacle
would arise when the lepton number-breaking Majorana mass is taken into account: should
an insertion of the Majorana mass My (divided by the only other scale in the problem v to
make it dimensionless) be prioritised over an insertion of Yy or vice-versa?

We will finish the discussion by constructing a complete set of flavour invariants for
the class of operators, which have a single chirality-changing bilinear, i.e. the operators
Orni, Ogne, Onw and Opnp, taking Onp as a proxy. Following Ref. [103|, we define the
generic invariant

Lapea(C) = ImTr (XY X2 X5 X20) (4.9)

where a,b,c,d = 0,1,2. Then a complete set of invariants for the class of chirality-flipping
single-bilinear operators is

Loooo(CnBYY),  Liooo(CnsYy), Lowoo(CnsYyh),
Li1oo(CnBY),  Loo(CnsYy),  Lasoo(CyeY:),
L0220(CNBY]J{[)7 L1220(CNBY]1L[)7 L0112(C’NBY]$)-

Here, we have made the assumption that, in the spirit of the Jarlskog invariant, the invariants
should also capture cases of degenerate Yukawa eigenvalues as well as texture zeros in the
CKM matrix. Then for instance, the inclusion of both Llooo(CNBY]i,) and LQOOO(CNBY]TV)
is not allowed because they are related by a syzygy in the limit where y; — 0, even though
no enlarged exact flavour symmetry of the renormalisable SM Lagrangian exists in this limit,
that would allow for the removal of one of the complex parameters in Cpg. All phases in all
other Wilson coefficients are also physical and a complete set of single-trace flavour invariants
can be constructed for them. The explicit construction of a complete set based on one of the
criteria laid out above is left for future work.
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4.3 Sterile Neutrinos without Lepton Number Conservation

In this section, we will allow for lepton number-breaking terms in the Lagrangian. Then, the
renormalisable Lagrangian will be that of the full ¥SM including the Majorana mass term

_ 1 - _ -
Losm = Ly + NigN - (ENCMNN + LYNHN + h.c.) . (4.10)

In addition, more operators are allowed at the non-renormalisable level already at mass dimen-
sion 5. These operators can be found in Tab. For an anti-hermitian charge parity matrix
C the Wilson coefficient of the operator Oy is symmetric, i.e. it has 6 CP-odd parameters,
and the Wilson coefficient of the operator Onnp is anti-symmetric, i.e. it has 3 CP-odd
parameters. In Sec. the Weinberg operator which has a similar fermion structure could
not built flavour invariants at the linear order in the Wilson coefficient due to the absence of
a lepton number-breaking interaction in the renormalisable SM Lagrangian. This changes in
the ¥SM with lepton number breaking. The 9 CP-odd parameters of the two operators can
all be captured in terms of flavour invariants as we will show in a second. Another comment
is in order about the Weinberg operator Os. Using the renormalisable couplings of the vSM,
we can construct the following object

Y]\?Cg;YNNMNN(?)N ®g gN)_Q , (4.11)

that transforms in the same way as the Majorana matrix under the flavour group. Hence,
using My, one can build CP-odd invariants at the leading order in C5. Defining Xy = Y}Q}Y}V7
which transforms as a 3 ® 3 under U(3)y, as well as X/ = MNM}:,, we can write down the
following invariants

Labea(Yy CsYn) = ImTr (X3 X5, X5 X5, Y CsYn) (4.12)

In the presence of a Majorana mass term and lepton number-violating operators of the
vSMEFT for some operators no closed form for the invariants exists. Then, it can be useful to
use the graph-based methods introduced in Chap. to construct the invariants systematically.
The corresponding graph for Cs can be found in Fig. Using the transfer matrix method
for the invariants in Labcd(Y]:\? C5Yy) allows for the construction of a complete set of primary
invariants for C'5 in the presence of sterile neutrinos with a Majorana mass term.

Assuming that baryon number is still a good symmetry, one more operator can be con-
structed at dimension 6, which we have labelled as Onynyny in Tab. This operator has
many redundancies (Ojjp = Opiij = Ojitt = —Oiptj — Oujr) due to the exchange of the two
currents, the hermiticity of the Wilson coefficients and a Fierz identity. Hence, this 4-fermion
operator only contains 6 CP-odd phases, which can all be captured by flavour-invariants at
the leading order in the Wilson coeflicient.

Hence, comparing with Sec. 15 more phases appear by allowing for lepton number
violation, which together with the renormalisable parameters of the ¥SM can all be expressed
as flavour invariants linear in the Wilson coefficients. In addition, the lepton number-breaking



4.3 Sterile Neutrinos without Lepton Number Conservation 107

Cs

Figure 4.1: The flavour invariant graph for the Wilson coefficient of the SMEFT Weinberg operator Os in the
presence of sterile neutrinos with a Majorana mass term.

Majorana mass term of the sterile neutrino permits the construction of CP-odd invariants of
the Weinberg operator for all 6 phases contained in the Weinberg operator.
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Appendices to Chapter 4

4.A List of vYSMEFT Operators

WEH? ‘ WX

Ox H'HN°N | Oyxg N°o"NB,,

Table 4.1: Dimension-5 operators of the vYSMEFT, the SMEFT extended with three generations of light right-
handed sterile neutrinos [272|. Both of these operators break lepton number. Only operators with at least
one right-handed neutrino field are kept.

P2 H3 + h.c. Pt
OLnu (LHN)(H'H) Onn (NY*N)(N7,N)
W?H?D Ocn (ev*e)(NuN)
Onn (N4“N)(H'iD, H) Oun (") (N7, N)
Oune(+h.c.)  (Nvte)(H'iD,H) Oan (dy*d)(Nv,N)
Y?HX +he. Ogune(+h.c.)  (dy"u)(Nyge)
Onw (Lo, N)rIHW i OLn (LY*L)(Nv,N)
Ong (Lo N)HB" Oqn (@"Q)(NyuN)
LnB+he. Ornre(+h.c.) (LN)e(Le)
ONNNN (N°N)(N°N) Ornqa(+hc.)  (LN)e(Qd))
LoB+he. Orion(+h.c.) (Ld)e(QN)
Oain  €ijeape(QLCQY)(d5N) | Oguni(+h.c.) (Qu)(NL)
OuddN €afo(Ugdg)(dgN)

Table 4.2: Dimension-6 operators of the YSMEFT, the SMEFT extended with three generations of light right-
handed sterile neutrinos. Only operators with at least one right-handed neutrino field are kept. Adapted from
Ref. [272].
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In the first half of Part 1 of this thesis, we have studied the algebraic structure of the fla-
vourful couplings of the vSM, the SM extended with three generations of sterile neutrinos,
by constructing its set of generating flavour invariants. As a guide for the construction of the
invariants, we have first calculated the Hilbert series and plethystic logarithm of the flavour
invariants. Unlike the quark sector of the theory, whose flavourful couplings form a complete
intersection ring, the lepton sector of the ¥SM forms a non-complete intersection ring and
care has to be taken in the interpretation of the coefficients in the plethystic logarithm. In
a non-complete intersection ring, the otherwise well-separated regions with positive terms —
indicating the number of generating invariants of the theory at each order in the spurions —
can overlap with the negative terms — indicating the number of syzygies among the generating
invariants at each order in the spurions, leading to cancellations.

Therefore, we have approached the construction of the invariants using a brute force
algorithm centred around a graph-based method, which maps all single-trace invariants to
a unique graph and vice-versa. Then, all invariants in the theory can be constructed based
on the graphs and reduced to a generating set by finding the explicit relations among the
invariants with a numerical algorithm. By also keeping track of the syzygies among the
generating invariants, which can be found with the same algorithm, the number of generating
invariants and syzygies can be cross-checked against the plethystic logarithm order by order
in the spurions. We find that the generating set consists of 459 invariants, out of which 208
are CP-even and 251 are CP-odd. The generating set can be further reduced to a primary set
of 21 invariants, which captures the physical parameters in the ¥vSM Lagrangian.

Since the seesaw models of type-I and type-III have the same flavour structure as the
vSM, we can use the flavour invariants to study the seesaw limit. This is done by identifying
M&l appearing in the seesaw limit with My, present in our generating set of invariants.
Considering structures in the flavour invariants that match to the Wilson coefficients at the
leading and next-to leading order in the seesaw EFT, we showed that 12 and 21 parameters,
respectively, are captured by the reduced generating set. Here, the number 12 corresponds
to the number of masses, mixing angles and phases in the low-energy theory leptons, while
the remaining parameters are captured by effective operators in the low-energy theory. If the
power counting of the EFT, i.e. the total suppression of the invariants with the Majorana
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mass, is also taken into account, we find that the 12 and 21 physical parameters can only be
captured in a flavour-invariant way with a total suppression of two and four powers of the
Majorana mass.

In the spirit of the Jarlskog invariant, we have defined a minimal set of CP-odd flavour
invariants, the minimal CPC set, that captures the necessary and sufficient conditions for
conservation of CP in a flavour-invariant way, independent of a flavour basis or any assump-
tions about the parameter spectrum of the theory. This is particularly interesting for the
neutrino sector because the parameters of the theory of neutrino mass generation are only
known to low precision or for some only upper bounds exist. Reducing the set of CP-odd
generating invariants to a minimal set is a difficult task, which we only managed to complete
for the theory with two generations of leptons, while the three generation case was impossible
to complete by our means. The roots of the flavour invariants in the minimal CPC set of
the two generations case allowed us to identify an interesting set of pseudoreal couplings fea-
turing phases, which are not removable by flavour transformations, while the theory is still
CP-conserving. This can be appreciated in a straightforward way using the CP-odd flavour
invariants, which all vanish when evaluated on this set of couplings.

In the second half of the first part of this thesis, we have extended the results of Chap.
to the couplings in the effective interactions of the theory. In a first step, we considered the
SMEFT in the presence of neutrino masses through the Weinberg operator. There, we have
found that the parameters in the Wilson coefficient of the dimension-5 Weinberg operator can
only appear in a flavour-invariant way at dimension 6 and in particular, the phases in the
Weinberg operator can only appear at dimension 8 as flavour invariants.

Then, we have added right-handed sterile neutrinos to the field content corresponding
to the vSMEFT, both with and without lepton number breaking. In the Dirac case, where
only lepton number-conserving interactions are added, the ¥YSMEFT has the same structure
as the quark sector of the SMEFT. Therefore, the classification of the invariants follows the
same reasoning as the one of the SMEFT CP-odd invariants. The only point that has to be
addressed is that the ordering principle used for the SMEFT — a Froggatt-Nielsen model —
has to be changed, as there does not exist a working Frogatt—Nielsen model in the neutrino
sector due to the lack of knowledge about the parameters to be described. We have suggested
alternatives that will be used in a more complete analysis of the vSMEFT invariants. Note,
that in the SMEFT some phases in the Wilson coefficients of the leptonic operators could not
appear in a flavour-invariant way at the leading order in the EFT with only one insertion of
the Wilson coefficient. This changes in the presence of the Yukawa coupling of the SM fields
to the right-handed neutrinos in the flavour invariants, which breaks lepton family number
allowing to project out more phases from the leptonic SMEFT Wilson coefficients. Then, all
phases of the leptonic SMEFT operators can be expressed in a flavour-invariant way with only
one insertion of the Wilson coefficient. In addition, the ¥YSMEFT has more operators with
right-handed sterile neutrino. We have argued, that all phases of these Wilson coefficients
can appear in a flavour-invariant way with only one insertion of the Wilson coefficient.

When a Majorana mass term is added, the same is also true for the ¥SMEFT operators
breaking lepton number: all phases appearing in the Wilson coefficients of these operators
can be written in a flavour-invariant way with only one insertion of the Wilson coefficient.
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Furthermore, due to the additional source of lepton number-breaking through the Majorana
mass, the phases in the SMEFT Weinberg operator can now also appear in a flavour-invariant
way with only one insertion of the Wilson coefficient of the Weinberg operator.

The work presented in the first part of this thesis can be extended in several ways. First, it
would be interesting to connect the invariants of both the ¥SM and ¥*SMEFT to observables.
One good candidate is the difference between the oscillation probabilities of neutrinos and
their antineutrinos, which as shown in Eq. (2.50) should be proportional to the CP-odd
invariants of the theory. Furthermore, as already announced in Sec. a complete analysis
of the CP-odd flavour invariants will appear in a future publication.
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Symmetry Breaking in ALP EFTs
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The Shift-Invariant Orders of an Axionlike Particle

6.1 Introduction

As alluded to in Sec. axions are a prime candidate to settling the strong CP problem,
while at the same time also solving the dark matter problem and are prevalent in many BSM
models. A vital property of ALPs in solving these issues is their pPNGB nature, realised by an
approximate shift symmetry of the axion field. This shift symmetry allows axions to receive
their potential from QCD, enabling the resolution of the strong CP problem and making the
axion a good candidate for (ultra-)light dark matter |144|. The presence of these features
depends on the parametrically closeness to a shift-symmetric point and the desired features
become more exact as the point is approached.

On the other hand, there are also good reasons to study some explicit breaking of the
symmetry. For instance, quantum gravity does not allow for exact global symmetries (see
Sec. leading to Planck scale-suppressed correction to the axion potential and its inter-
actions with other particles. Suppressing these interactions is necessary in any model with
pNGBs and goes under the name of axion quality problem. Furthermore, shift breaking can
be a key aspect of model building: In the relaxion mechanism [274|275| an explicit breaking
term is needed to scan the Higgs mass parameter and resolve the Higgs hierarchy problem.
Shift-breaking scalars have also been used in the study of collider anomalies [276]|. Therefore,
it is important to study these effects both from a phenomenological and more formal point of
view. As axions can appear in a multitude of well-motivated BSM theories, it is convenient
to work with the EFT introduced in Sec.

As pNGBs, axions are generically light and can therefore be produced and contribute to
processes at all energy scales of interest for high-energy physics. In addition, they arise in very
diverse UV models, and can couple to all particles of the SM in all the ways compatible with
their pNGB nature. Therefore, in a bottom-up approach, their couplings are essentially free
parameters, up to the constraints imposed by the pNGB shift symmetry, which is precisely
what an EFT approach encodes. For these reasons, axion EFTs have been systematically

!These effects can become much larger than naively expected when heavy particles are present in the
UV above the scale of spontaneous PQ-breaking. Integrating them out can significantly lower the scale of
gravity-induced breaking effects |273| worsening the axion quality problem.
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studied since the early days of axion physics [172} |175|, and are for instance used in the
context of flavour physics |1777191]| or LHC observables |192+211].

In this chapter, we want to systematically study the effects of the breaking of the axion
shift invariance due to the axion couplings to SM fermions. We will work in the Yukawa basis
introduced in Sec. for which we will repeat the relevant part here for convenience

1 Mio 5 e m - 1
L=Lsu+y (Oua) (0" a) - — - 7 (QY,Hu+ QY Hd+ LY,He +h.c.)+ 0O (F) , (6.1)
where f is the axion decay constant (we henceforth take f > v, the electroweak scale), ffu,dﬁ

are generic complex matrices in flavour space, H = ic? H* and Ly contains the SM couplings,
whose fermionic sector reads

Lsmo Y iy - (QY Hu+QY,Hd+ LY. He +h.c.) . (6.2)
1heSM

The axion couplings in Eq. do not preserve shift symmetry in general. The main goal of
this chapter is to construct simple relations which allow us to identify when these couplings
can be interpreted as the shift-invariant couplings of an axion, and also quantify the deviations
from the shift-symmetric point.

As shown in Sec. this question is usually answered by starting from the Lagrangian
where the axion is derivatively coupled to fermions, making the axion shift symmetry a — a+¢f
manifest

1 oua - 1
£= Lo+ 5 (Bpa) (') + L T ey + 0 (F) , (6.3)
peSM

and performing a field redefinition that maps the Wilson coefficients of the Lagrangian in
Eq. to those of Eq. imposing the constraints on the couplings |212| 213|. These
constraints can also be understood only in terms of the operator basis of Eq. , where
the shift invariance is never manifest, by absorbing a shift of the axion via appropriate field
redefinitions of the fermions |213|.

As we will see in a second there are severe issues with these conditions: given a set of
couplings, one has to check whether a set of complicated matrix equations can be solved.
In addition, they do not allow to differentiate between approximate and badly broken shift
symmetries, nor to identify a power counting parameter which suppresses the breaking.

Here, we will present explicit simple algebraic relations on the Wilson coefficients of the
EFT Lagrangian in Eq. , which can be directly evaluated given a set of couplings and
immediately yield an answer. These relations to be constructed below vanish iff the axion
shift symmetry is preserved and whose size quantifies how badly it is broken, hence those
quantities are order parameters of the breaking of the axion shift symmetry.

This is very similar in spirit to finding the Jarlskog invariant for CP violation in the SM,
instead of scanning possible field redefinitions which absorb unphysical complex Lagrangian
parameters, as discussed earlier. It may therefore not come as a surprise that our conditions
are expressed in terms of flavour invariants, namely combinations of Lagrangian parameters
which are left unchanged under fermion field redefinitions in flavour space. This allows us to
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encode the physical collective effects associated to the presence or absence of the axion shift
Symmetry.

Beyond explicit axion couplings to fermions, the CP-even axion-gauge bosons couplings
are also flavourful when the PQ and the gauge symmetries have mixed anomalies. They do
not break the shift symmetry at the perturbative level, but the gluon coupling does so at
the non-perturbative level, as is crucial in QCD axion solutions to the strong CP problem.
Therefore, we also study the order parameter for this non-perturbative breaking.

6.2 Flavour-Invariant Order Parameters for the Breaking of an Axion Shift

Symmetry

We will approach the problem laid out in the previous section by asking the question under
which condition the couplings f/u,d,e in the Yukawa basis of the ALP to the SM fields describe
the couplings of a shift-symmetric axion. Furthermore, we want to identify the paramet-
ers, which break the shift symmetry and formulate them in terms of flavour-invariant order
parameters of shift symmetry breaking.

We will start from the well-known relations derived earlier in Eq. 2.78

3CQ u,d,1,c hermitian, such that: qu,d =i(Yy,dCua— CoYud) » Y, =i(Y.C. - CLY,) . (6.4)

However, these conditions are implicit, as they require a scan over all hermitian matrices
Co,ud,L.e. Therefore, it is an extremely hard task for a given set of Y and SM Yukawa
couplings to identify specific entries of the couplings matrices as the parameters breaking the
axion shift symmetry, which should be sent to zero in order to recover the symmetry exactly.

Instead, we find it useful to deal with a set of algebraic conditions on Yu,d,e encoding the
same information as the relations in Eq. but do not implicitly depend on other unknown
matrices Cy. In this section, we thus identify explicit, independent, necessary and sufficient
conditions on the entries of Y/u,d,e in Eq. for the axion shift symmetry to hold. We focus on
the experimentally relevant flavourful couplings of the SM, where all quark and lepton masses
are non-vanishing and non-degenerate and where no texture zeros appear in the CKM matrix.
Throughout most of this analysis, we neglect neutrino masses but will briefly comment on
non-zero neutrino masses later in Sec. [6.3.2]

In some parts of this analysis, it can be useful to work in a specific flavour basis for the
SM Yukawa couplings, for which we choose the following convention

Yy = diag(Yu, Ye,s ye) 5 Ya = Vorw - diag(ya, ys, vp) s Ye = diag(ye, Yu, yr) - (6.5)

From this basis the mass basis can be reached by performing the field redefinition d; —
Vexkmdr-
Before we start constructing the order parameters for shift breaking, we want to remind the

2Note, that shift symmetry correlates the coupling of operators at higher order in 1 /f couplings involving
several axion fields and the same operator at 1/f with only one axion field. We will study this systematically
using the Hilbert series in Chap.
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reader that the axion-dependent field redefinition translating between the bases in Eq.
and Eq. also introduces shifts between the axion couplings to gauge fields |212| due
to the mixed anomalies with the gauge group of the SM. These shifts depend on flavourful
couplings and hence, can be naturally expressed using flavour invariants. The gluon coupling
is particularly interesting, as it is a main driver of axion shift breaking in the regime of non-
perturbative QCD. In the following, we will first focus on the fermionic couplings of the axion,
but will come back to the gluon coupling in Sec.

6.2.1 Parameter Counting with and without a Shift Symmetry

To set our expectations before starting with the construction of the relations on }7”76578, we
will fist do a counting of the number of relations that we expect by comparing the free
parameters in the operator bases of Eq. and Eq. , that are irremovable by fields
redefinitions. It is helpful to count parameters separately according to their behaviour under
the CP transformations introduced in Eq. . Since the axion is a pseudoscalar (i.e. it
receives an additional sign w.r.t. the scalar in Eq. ), real ffw in Eq. 1} and imaginary
Cy in Eq. correspond to CP-odd couplings in the mass basis.

In the case of an explicitly broken shift symmetry, the EFT in the Yukawa basis of Eq.
should be used, where the couplings Y are arbitrary complex 3 x 3 matrices. However, not
all of the parameters in these matrices are physical because the presence of the lepton family
numbers U(1)r, as exact symmetries in the SM can be used to remove two phases among
those of ffeﬁj. Instead, the independent rephasing-invariant quantities are }76”, a,rg(f/e,ij }Nfeﬂ)
(1 < j), ffm]‘ and arg(ffeigﬁggf@gl). In total, they yield 16 independent quantities, 7 CP-
odd and 9 CP-even. In the quark sector, the baryon number rephasings, which are an exact

symmetry in the SM, also leave the couplings of the effective operators invariant. Hence, all
parameters in the quark sector of the EFT in Eq. (6.1) are physical and one finds 2 x 9 = 18
CP-even and 2 x 9 = 18 CP-odd couplings in the quark sector.

When the shift-symmetry is exact, we can work in the derivative basis of Eq. , where
2 hermitian matrices Cp, . in the lepton sector and 3 hermitian matrices Cg 4 4 in the quark
sector parameterise all couplings of the axion to fermions. The lepton number rephasings
can once more be used to remove two of the off-diagonal phases As discussed in Sec.
operators of the form d,aJ" in the derivative basis, for any conserved fermionic current of
the SM J#, can be traded for couplings of the axion to the SM gauge fields aX X. Hence, the
baryon and lepton family numbers of the SM, allow to remove one diagonal entry of either
Cq,Cy and three out of Cr .. In total, there are 9 CP-even and 4 CP-odd couplings in the
lepton sector, as well as 17 CP-even and 9 CP-odd couplings in the quark sector.

Comparing the counting in the two Lagrangians, we expect 7 -4 = 3 CP-odd relations
and 9 -9 = 0 CP-even relations in the lepton sector together with 18 -9 = 9 CP-odd relations
and 18 — 17 = 1 CP-even relation in the quark sector, that characterise the presence of a shift
symmetry in the basis of Eq. . The different countings are summarised in Table

*The rephasing-invariants now read Cre.i;, [c1/e,i5| (i < ), arg(Ce,i;Cr,ji) (i < j) and arg(Cr,120L,25CL 31)-
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Shift-sym. WCs Cg y.ar.. Generic WCs Yy 4. # constraints

CP-even CP-odd CP-even CP-odd CP-even CP-odd
Quark sec. 17 9 18 18 1
Lepton sec. 9 4 9 7 0 3

Table 6.1: The number of physical coeflicients at dimension 5 in the EFTs of Eq. and Eq. , and
numbers of constraints that Y, 4. have to fulfil in order to respect an exact shift symmetry. A detailed
counting can be found in the text.

6.2.2 Flavour Invariants in the Lepton Sector

We will now start deriving the relations, starting with the lepton sector, where the constraints
turn out to be simpler than in the quark sector. We start from the matrix relation that maps
the derivative basis to the Yukawa basis of the EFT

Y, =i(YeCe - CLY,). (6.6)
For non-vanishing lepton masses, Y, is invertible and one can solve the equation for Ce,
Ce=-iY, ' (Y, +iCLY,) . (6.7)

Imposing that the anti-hermitian part Ce(ah) ~Cp — CZ of C, vanishes leads to constraints,
here expressed in the flavour basis of Eq. (6.5), where Y, is diagonal and real

Y... Y*. . )
3C; hermitian s.t. —L + 2% 4 iCL i [yed _ &] =0 Vi,j . (6.8)
ye»i ye7j yeﬂ’ ye:j

When i = j, the second term vanishes and Cp, disappears from the expression, revealing
constraints only referring to the couplings Ye, namely that }76“ is purely imaginary. The
constraints imposed by Eq. for i < j and i > j are complex conjugates of one another.
Therefore we can analyse the two cases in one go by focusing on the case i < j, which can be
solved by a suitable choice of Cp,

.ye,te,ij +YeiY,
Cri=0, Crijic=1 > 5 .
ye,j - ye,z‘

(6.9)

This simply defines a hermitian matrix Cp, bringing no further constraints. Therefore,
Eq. only imposes 3 conditions on Y, in order for it to describe a shift-symmetric ax-
ion, given that Cf,C, are hermitian matrices. This is consistent with our previous counting
of the free parameters in both EFT bases at the beginning of this section.

So far, we have only obtained the constraints in a specific flavour basis. However, it is
an easy task to express the statement that the ffe,ii should be purely imaginary in a flavour-
invariant way. By flavour invariant we mean here, that the relations are unchanged by the
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SUB)q SUB)u SUB)a SUB)L SUEB)e

V., 3 3 1 1 1
e 3 1 3 1 1
Y, 1 1 1 3 3

Table 6.2: Flavour transformation properties of the dimension-5 ALP Yukawa couplings treated as spurions
under the flavour group. The SM Yukawa couplings transform similarly under SU(3)® and their behaviour
under the transformations can be found in Tab.

transformations of the flavour symmetry group, whose spurious action on the Lagrangian
parameters of Egs. and are given in Table In the language of flavour invariants,
the constraints on Y, read

ReTr( X212V, vf) =0, (6.10)
where we have defined X, = YeYJ. Later on, we will also repeatedly use Xu’d = Yu’de’d. We
want to stress again, that this quantity identifies the flavour-invariant, hence physical, order
parameters of shift-symmetry breaking in the lepton sector.

6.2.3 Flavour Invariants in the Quark Sector

We will continue with the quark sector, where the presence of the left-handed quark doublet )
requires a simultaneous treatment of the up- and down-type quark couplings. The couplings
ffu’d describe a shift-symmetric axion when

3CQ.u.q hermitian s.t. Yy, 4= i(Yy 4Cua - CoYua) - (6.11)

In analogy to the lepton case above, we can solve for C, ¢ when no mass vanishes. Imposing
hermiticity of the matrices C,, 4 leads to the following constraints, once more expressed in the

flavour basis of Eq. (6.5)

ifu,i]’ ?J,ji - Yu,j Yu,i
.- Vo T Yuy Q0 [y T Yy o
Jeg hermitian s.t. . - or ’ ’ ’ =0Vij7,
VM ki Ya ki | Ydki VOKM,kj +ic klv* Vv ‘(yd,j _ Yd,i
Ya.i Ya; QKLY CKM, ki " CKM,lj \ Yas  va,
(6.12)

where we implicitly sum over k,l. As before, the dependence on the hermitian matrix Cg cor-
responding to the left-handed field disappears in the ¢ = j equations. The implied constraints
are identical to those found for the leptons and can be expressed in a flavour-invariant way
as follows

ReTr( X2y vT )-0. 6.13
u,d d

u,d” u,

However, the presence of Cg in the relations of both the up and down sector implies further
conditions. They can be derived by first solving for the off-diagonal entries of Cg using the
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relation involving Y,

%
.yu:qu,ij + Yu,iYy ji

CQijji<j =1 R , (6.14)
yu,j “Yui
which can be inserted in the equations for Y, to obtain
VéKM,kin,kj . YdfkiVCKM,kj
Yd,i Yd,j
; * o YtV + Yk Vi Yaj  Ydi
+i )| Couk Virmnr Verxmps +1 ), 5% Vexa ki Ver,ij -=21=0
k Ik Yul =~ Yuk Ydi Ydj
(6.15)

for ¢+ < j. For a generic CKM matrix, these three complex equations depend on two free
real parameters, given by the differences cq rr —cg i, and they yield four independent genuine
constraints on f’u,d. We would like to emphasise that these four conditions are collective effects,
namely they only make sense when both the up- and down-type Yukawa couplings are present.
We will illustrate this feature with explicit UV completions in Sec. Together with the
conditions in Eq. , we therefore find 10 conditions on the entries of ?u,d (consistently
with our earlier counting), 4 of which entangle the up and down sectors.

It is difficult to write the remaining constraints in a flavour-invariant way, given the
expressions we have found in the explicit flavour basis of Eq. . Therefore, we reconsider
the matrix relations of Eq. and will try to rewrite the relations we have just found in the
specific flavour basis in a flavour-covariant form. The implicit relations for shift-symmetric
axion Yukawa couplings

ffu,d = Z‘(Yvu,dcu,al - CQYu,d) ) (616)

can be solved for C), 4 assuming that the quark Yukawa couplings are non-vanishing
Cua =Yy g (Yua+iCqYua) - (6.17)

When the quark Yukawas Y, 4 are full rank matrices, the vanishing of the anti-hermitian part
of C, 4 implies the following commutator relation

[eq Xo] =i (VY + v, ), (6.18)

with X, = YIYJCJr and = = u,d. This commutator relation will be our main building block
in constructing flavour invariants by exploiting well-known trace relations with commutators
appearing in the traces. For instance, we can reproduce the constraints in Eq. by using
the fact that for any two matrices A, B

Tr(A"[A,B])=0 VneZ, (6.19)

which implies
=i (X7 [eq, Xo]) = Te (X7 (VY + Y, ¥,1)) =0 (6.20)
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For x = u,d,e and n = 0,1, 2, these equations correspond to the diagonal constraints we have
found above. Additional trace identities presented in App. enable us to derive more
flavour invariants encoding the remaining conditions.

We want to quickly recapitulate what we have achieved so far. The matrix relations
in Eq. impose the presence of a shift symmetry on the generic couplings f’u’d@ in the
effective interactions of a scalar a and the SM fermions. Hence, if these relations are imposed
on the generic couplings, a shift symmetry for the axion will be present in the EFT. We
have reformulated these conditions into a commutator relation in Eq. . Hence, if shift
symmetry is imposed on the EFT, this commutation relation must hold true. Lastly, we
managed to show using well-known trace relations, that if the commutator relations hold
true, the trace of certain combinations of the SM Yukawa couplings Y}, 4. and the dimension-
5 Yukawa couplings f/u,d,e must be zero. In summary, the 13 trace relations we have found
are order parameters of shift symmetry breaking.

6.2.4 Complete Set of Linear Invariants

More trace relations can be used to construct flavour invariant quantities that encode the rela-
tion. To capture the relations encoding the shift symmetry of the ALP, as many independent
trace relations with the corresponding behaviour under CP have to be found, as were counted
in Sec. Eventually, we consider the following set of flavour invariants, linear in ffu’dye

e ~

I() = Re Tr (YUYJ) ,  IP=ReTr (Xui/uyj) ; IV =ReTr (XiY“YJ) ’
I(gl)  ReTr (?deT) 7 1—152) - ReTr (defdyj) , Ic(l?’) =ReTr (Xjfdej) ,
1) =ReTr (X7, Y] + X, V,]),
12, =ReTr (X2¥,¥] + {X,, X}V, Y1), (6.21)
I, = ReTr (X7, Y] + {X,, X }¥,¥]),
1) =ReTr (X,X,X,¥,v] + X, X, X, V,v]),

@ ZImTr([Xu,Xd]2 ([xo VY] - [Xu,?de])) :

for the quarks and

I§1>:ReTr(ferj), I§2>:ReTr(Xeife§;T), I§3>:ReTr(X§Y€YJ) (6.22)

for the leptons. These invariants vanish if the EFT in the Yukawa basis describes a shift-
symmetric ALP and their vanishing also provides a sufficient condition for the presence of
a shift symmetry. To show this we take advantage of the linearity of the invariants in the
dimension-5 Wilson coefficients i/u,d,e and use the transfer matrix introduced in Eq. .
The rank of the transfer matrix, which amounts to the number of independent conditions
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associated with the set of equalities 14 =0 VA can be computed immediately from its defining
equation and is found to be 13, 10 in the quark sector and 3 in the lepton sector. This
is again in agreement with the counting performed in Sec. Therefore, the invariants
in Egs. — vanish if and only if }7”7(176 describe the couplings of a shift-symmetric
axion. We also want to stress again that they are algebraic and — unlike the complicated
matrix relations in Eq. — only depend on the Wilson coefficients in the Yukawa basis of
the EFT. Hence, for a given set of values for the SM and effective ALP Yukawa couplings,
evaluating the set of invariants is sufficient to discriminate between shift-invariant or shift-
breaking couplings at the leading order in the EFT.
Note, that the set for the quark sector in Eq. (6.21) is not minimal as it contains the
11 invariants but only captures 10 independent conditions. Indeed, the invariants can be
arranged into a vanishing linear combination, where the coefficients depend only on the SM
flavour invariants derived in Sec. of this thesis. Therefore, a subset of 10 non-redundant
invariants can be found whose transfer matrix still has maximal rank. This is, for instance,
achieved by the following set,
0,180,101 1609 10 1@ 116 10 623
In the following we will still work with the redundant set as it is easier to show that the set
is closed under RG flow by projecting onto a minimal set after performing the RG evolution.
Let us end this section by stressing that our conditions apply beyond the non-redundant
operator basis of Eq. . In a redundant operator basis where both derivative coupled and
operators from the Yukawa basis are present, our set of invariants still captures all sufficient
and necessary conditions for the breaking of the ALP shift symmetry. This can be appreci-
ated by using the linearity of the invariants in the Wilson coefficients. We can project the
derivatively-coupled interactions onto the Yukawa basis and split the couplings into two parts

y =y ®Q  y®Q) (6.24)

where the couplings induced by Y (PQ) regpect a PQ symmetry and can therefore be written
as in Eq. . Our set of invariants vanishes by construction on the Y (PQ) and, thanks to
their linearity

L4 (V)= 14 (YO9) . (6.25)

They therefore capture the sources of PQ breaking in the theory, irrespective of any shift-
invariant couplings which are additionally present.

6.3 Examples and Properties

In this section, we illustrate the use of our invariants, highlight some of their properties, and
comment on their connection to CP symmetry. More precisely, we confirm in Sec. that
our invariants capture the sources of shift symmetry breaking, as well as their collective nature,
when the axion EFT is matched to UV models. We then connect in Sec. [6.3.2] our invariants
to CP-odd invariants used in the study of CP violation, and we finally repeat in Sec. the
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analysis in the low-energy EFT below the electroweak scale and in the EFT based on a non-
linearly realised EW symmetry. The absence of weak interactions, which arrange left-handed
(LH) up- and down-type quarks into a doublet, implies that the IR conditions are looser than
those which hold in the EFT above the EW scale with more UV information.

6.3.1 Matching to UV Models

To illustrate some features of our invariants, we will match some simple flavourful axion
models to the ALP EFT, confirming that the invariants capture the sources of PQ breaking
and their collective nature. Here, we focus on shift-breaking perturbations of models which
possess an exact PQ symmetry.

Axiflavon/Flaxion Model Let us start with the axiflavon/flaxion model |2771279] in
which the Froggatt—Nielsen and Peccei-Quinn mechanisms are realised through the same
spontaneously broken U(1). In the model, a newly introduced complex scalar ¢ — the flavon
— is subject to the following effective interactions with the SM ﬁeld

i

& )(IQZ- —dd; _

d ¢\ o
e (5 )

~ qr;—qe; _
Qinj + a% (M QiHUj +af (M) ’ LiHej +h.c. (6.26)

with M the cut-off of the model and the ¢; € R are the charges of the SM fields under the
U(1), where a charge of +1 is assigned to the flavon and the Higgs is taken to be neutral.
The symmetry is broken by the VEV (¢) = f of the complex scalar, which in the model
also determines the hierarchy of the SM Yukawa couplings. After spontaneous symmetry
breaking, the flavon field can be linearly parameterised around its VEV ¢ = % (f+s+ia)
and the field a can be identified as the axion of the theory. Expanding the above Lagrangian
in the unbroken electroweak phase we obtain for the interactions of the axion with the SM
particles

L = ? (Y (a0, -~ aa,) QiHdj + Y (40, = u;) QiHuj + Y5 (ar, - qe;) LiHej) +hee. (6.27)

where Ylf = afj (ﬁ)qz“iqzm are the SM Yukawa couplings. The axion EFT couplings can
simply be read off from this Lagrangian by comparing with Eq. (6.1)

}N/u;ij = Z}/z_q; (QQZ - Quj) 9 i/d,ij = ZY@? (QQZ - de) ) Yfe,zy = Z}/zj (QL, - er) . (628)

The Lagrangian in Eq. (6.26) is constructed to be Peccei-Quinn invariant, hence all couplings
in Eq. l} must correspond to a shift-symmetric axion This is consistent with the fact

4This effective Lagrangian can be UV-completed in a theory of vector-like fermions of mass M which couple
to the SM fermions and ¢ [270}|280].

®Beyond the precise model discussed in this section, Eq. describes any set of shift-symmetric axion
couplings in the flavour basis which diagonalises the PQ symmetry, i.e. where it acts as a phase shift on
each flavour independently. This basis is the one which diagonalises all couplings ¢ in Eq. , which read
Cy,ij = —qy,; 0ij for each fermion field .
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that our invariants I vanish when evaluated on the above couplings. For instance,
I = _Im Ty ([diag (qo) Y" - Y"diag (qu)] Y"T) =0, (6.29)

due to the cyclicity of the trace and the fact that the imaginary part of the trace of a hermitian
matrix vanishes. All other invariants in the set evaluated on the Wilson coefficients matched
to the model vanish as well. The invariants become non-zero when a generic Peccei-Quinn
breaking term is introduced

1a

—E%zef (BLQiHd; + BLQiHuj + B LiHe;) + h.c. (6.30)

which we give a generically different power counting e than the Peccei-Quinn invariant Lag-

rangian (these couplings can originate from terms as in Eq. , but where the charged

Qop; ~ Qep; ~ n;’; violate the PQ symmetry and «, — ea’). We can match this Lagrangian

at tree level to the ALP EFT defined in Eq. , yielding

Yo = Y5 (0, = qu,) + €8s, Yaij = iY5 (a, - aa;) +i€B,  Yeij =Y (qr, - ge, ) + i€
(6.31)

Plugging this into our invariants I yields expressions of the form

{I}Ieminimal set = fo(}/;ja 6ija Qi) (632)

where the f; are complicated polynomials of the parameters of the theory (the dependence
in €, B;; and g; is linear, due to the linearity of our invariants). It can easily be checked that
taking the shift-symmetric limit € — 0 makes all invariants vanish, as expected.

We can further confirm that our invariants act as order parameters of the ALP shift-
symmetry and illustrate their features by considering more specific realisations of the PQ-
breaking term. For instance, let us add to Eq. (6.26) the term

90, ~%u; _
~Lpe = 515510 (%) “ QuHuy +he. (6.33)

This shifts the SM Yukawa and axion couplings with respect to those of the PQ-symmetric
axiflavon model as follows

Yaij = Yuii + 4001051, Yuij = Yuij + i(qg, - q;j)y'5i15j1 ; (6.34)
with ¢y’ = (ﬁ)q%iqul o', hence
Buij = (40, = au, — [9Q; = ¢u; 1)y 011051 (6.35)

in the language of Eq. (6.30). Then, one finds that all our invariants are proportional to the
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one quantity which violates the PQ symmetry, namely qg, — qu, — [qé21 -q, 1]. For instance,

1) = (a1 = au = [a, -~ 4, ]) I (y'Y117) - (6.36)

From this expression it is clear, that the invariants are exactly zero when the PQ symmetry
is restored and deviate from it proportionally to the spurion which breaks the symmetry.

The collective nature of shift-breaking effects in the EFT can be illustrated well by consid-
ering the couplings in Eq. , where we add a term to the Lagrangian such that we modify
qQ, ~ qbl only in the up-type quark coupling but not in the same coupling to the down-type
quarks. In this case, the quantity q’Q1 - qq, violates the PQ symmetry, but it is only resolved
by invariants which are sensitive to the collective nature of PQ breaking, namely those which
simultaneously involve Y, and Yy. Indeed, the change q0, ~ qbl is a mere relabelling from
the perspective of the up-type quarks alone, but it breaks PQ when the down-type quarks are
taken into account. Consistently, we have

1) = -Im Tr ([diag (¢5) Y* - Y"diag (q.)] Y1) =0, (6.37)
where qu =qq, +n (qé21 - qu), whereas for instance

1

1
1) = 5 (a0, — g, ) [Xu Xaly - (6.38)

Weinberg-Wilczek Model Another class of UV models that can embed an axion are
two-Higgs-doublet models (2HDM) (see e.g. [281] for a review), like the WW model we have

introduced in Sec. For definiteness, we consider the WW model with a 2HDM of type
IT with the following PQ-preserving Lagrangian in the quark sector

—£= QYW Hiu+ QY Y Hyd + hoc.. (6.39)

The scalar potential is chosen to be invariant under a global U(1) PQ symmetry. This fixes
the PQ charges gg, of the Higgses up to a global normalisation. The non-vanishing difference
qm, — qH, allows us to introduce PQ-breaking in the Yukawa sector, as we will see below.
After integrating out the massive Higgses as well as removing the gauge Goldstone bosons,
one can describe the axion couplings as well as the fermion mass terms by the replacement

Hy=e7 g with H = 02z ol b0l (6.40)
v v

As discussed in Sec. the PQ-breaking scale can be decoupled from the EW scale by
introducing another scalar as is done in DFSZ-like models. Here, we work with a WW-
type model to simplify the illustration of properties of the invariants. The replacement of
the Higgs with the remaining angular excitation around its VEV reproduces the appropriate

. PQ . . PQ
PQ transformations, H; — e'*PQ%i H; for apq the transformation parameter, since a —
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a+2mapqf. We find as expected that our invariants vanish, when they are evaluated on the
Wilson coefficients subject to the following matching expressions

Y, = %Yu(l) , Yg= %Yd@) ) Yu = —iqH, Yu, f/d = 1qH,Yq - (6.41)

The Lagrangian can be amended in a way where it breaks the PQ symmetry, highlighting
different aspects of our invariants. Starting with

—ﬁ% = Yu(’%J)QZﬁQUJ + h.c. with Yu(zj) = (51'15]'1}/%&(721)1 , (6.42)
the Yukawa and axion couplings of the PQ-preserving Lagrangian are shifted as
Y, = 2yW L 2y @ v o gy DY gy, 27 @ (6.43)
v v v v

The invariants featuring only up-type couplings are then proportional to real /imaginary parts
of (qm, — qHQ)Yu(’QI)17 as expected given the different ways to obtain an exact PQ symmetry in

this sector (for a generic Yu(l)). We find, for instance
Vv Vv .
1 = (g, - i) g2 Ty (YOO = ~(an, —qHQ)%Im(qui)lYu(}l)l ). (6.49)

As in the Froggatt—Nielsen case, we can illustrate the collective nature of the shift symmetry.
To show this let us further assume that Yu(ll)] = 0, which is such that the up-type quark
couplings do not violate the PQ symmetry until the down-type quarks are taken into account.

Indeed, we find

M=o, (6.45)
whereas, for instance, one of the invariants including both up- and down-type couplings eval-
uates to 1

1 V1V
Izsd) = _2_7; (QH1 - qHQ) 7 [Xu,Xd]ll : (6.46)

Weakly Broken PQ Symmetry Let us close by making a general statement for any
model with an approximate PQ symmetry, characterised by a small breaking parameter e:
the invariants of Eqs. — are all e-suppressed. This follows from the linearity of our
invariants emphasised at the end of section Indeed, in models with a weakly-broken
PQ symmetry, the Yukawa couplings are split into

y =y®PQ , y®a) (6.47)

where YPQ) = O(e) and YPQ) respects an exact axion shift symmetry, i.e. our invariants
vanish when evaluated on Y (PQ). Due to the linearity of the invariants, they are suppressed

by € as claimed.
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6.3.2 Connection to CP Violation

The possibility to reintroduce CP violation through the axion, which is constructed to solve
the strong CP problem, has mostly been disregarded in the literature and has only gained
more attention recently |189| 2821288| (for a recent review see Ref. [289]). There is a close
interplay between leading order CP violation and shift symmetry in the ALP Lagrangian.
Adapting the results of Ref. [103|, we find the following necessary and sufficient conditions
for CP to be conserved in the quark sector of the Yukawa basis of the ALP EFT

Ji = Loooo (Y2 Y,) = Liooo (Y, Y,)) = Loioo(Y, Y,
= L1100(Y,Y)) = Lo110(Y, Y,!) = Lagoo(Y,Y,)) (6.48)
= Lo22o(Y,Y)) = L1220 (Y, Y)) = Lo122 (Y, Y, ) = 0

with Labcd(é) = ReTr (XngX{ngCN'), x =u,d and Jy is the Jarlskog invariant, capturing all
perturbative CP violation in the SM. If this is compared with our set of shift symmetry invari-

ants in Eq. (6.21), we find that all invariants but IS;) can be expressed as combinations of the
CP-o0dd invariants. For instance, I5" = Loooo(Y,'Y,) and 1)) = Loioo(YY,) + Ligoo (V] Y,).
Therefore, most sources of leading order shift-breaking in the ALP EFT also source CP vi-

olation, hence CP conservation almost implies axion shift symmetry. This connection is only

4)
Iud ’

included in order to obtain a full rank transfer matrix. Furthermore, the connection holds

spoilt by namely the one CP-even shift-symmetric invariant of our set that has to be
exactly in the lepton sector of the EFT.

In the degenerate cases, where the flavour symmetry of the SM is enlarged with respect to
U(1)pxU(1)r,, CP conservation implies shift invariance at the level of the coefficients which
can interfere with the dimension-four coefficients, i.e. at the level of observables computed at
O(1/f). It is however not sufficient for observables computed beyond that order. See Ref. |1}
for more details.

Conversely, an exact shift symmetry also correlates sources of CP violation in the axion
EFT. E.g., requiring that I'}) vanishes implies that Loioo(YY,) = —Ligoo(Y]Y,). These
correlations, that emerge from the collectiveness of shift breaking, have an impact on CP-
violating observables like EDMs and allow us to relate the contributions of up- and down-type
quarks to those observables. If a sufficient amount of data from CP violating observables is
available to constrain all parameters in the quark sector, these correlations would allow us
to distinguish a shift symmetric ALP, for which the correlations are present, from a non-
shift symmetric ALP. We will study the implications of axion shift invariance on EDMs in
Sec.

It is also interesting to understand why there are exactly 9 CP-odd and 1 CP-even para-
meters which capture the shift-breaking interactions in the quark sector of the ALP EFT at
the leading order. One can first notice that this is exactly the same number of parameters as
there are physical parameters in the quark sector of the renormalisable Lagrangian (captured
by the flavour invariants presented in Eq. ), but with opposite CP parity due to the
ALP being a pseudoscalar.

This is true as well in the much simpler lepton sector, but also holds true for more complic-
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ated theories with more fermions coupled to the ALP. Let us briefly demonstrate this with the
example of sterile neutrinos added to the SM, both with a Yukawa coupling and a Majorana
mass term, as we studied earlier in Chaps. |3|and For instance, adding 3 generations of
sterile neutrinos to the EFT, yields 9 masses, 6 mixing angles and 6 phases, i.e. 15 CP-even
and 6 CP-odd physical parameters in the lepton sector of the renormalisable theory (see e.g.
Ref. |261]). The light sterile neutrinos N also have to be added to the particle spectrum
considered in the construction of the EFT. The EFT Lagrangian in the lepton sector in the
derivatively coupled basis has the following form

0,0 - 0 a,a -
Lo oL+ 0 te + PENONARN (6.49)
f f f
After performing an ALP-dependent field redefinition, we can also switch to the Yukawa basis
Lo % (LY.He+ LYNHN + N°MyN +h.c.) . (6.50)

As discussed before, one can impose relations on the couplings of the second Lagrangian
such that it captures the same physics as the first Lagrangian. We will not construct them
explicitly here, but will just count the number of physical parameters in both Lagrangians to
obtain the number of relations that have to be imposed, as we have also done for all other
couplings in Sec. The first Lagrangian has 3 hermitian coupling matrices C., Cr,Cly,
i.e. 3x6 CP-even and 3 x 3 CP-odd couplings. Because the Majorana mass term N¢MyN
of the sterile neutrinos breaks lepton (family) number, there are no conditions of the form
Oug* = 0 that have to be imposed. The second Lagrangian has 2 generic coupling matrices
Y., Yy with 2 x 9 CP-even and 2 x 9 CP-odd parameters, while the symmetric coupling My
has 6 CP-even and 6 CP-odd couplings. Again, because lepton (family) number is broken,
no rephasings are allowed and all couplings remain physical. Comparing the two EFTs, we
find a discrepancy of 6 CP-even and 15 CP-odd couplings which exactly corresponds to the
number of physical parameters in the renormalisable Lagrangian of the theory with opposite
CP parity.

This correspondence between the number of physical parameters in the renormalisable
Lagrangian and the number of shift-breaking parameters in the leading interactions of the
ALP EFT can be understood by considering the field redefinitions that make the ALP EFT
in the Yukawa basis shift-invariant [213|. A shift of the ALP a — a + ¢ in the Yukawa basis
of the EFT can be removed by performing a flavourful field redefinition ¢ — cwﬁw. The field
redefinition redefines the SM Yukawa in such a way, that it will force the Wilson coefficients
to be exactly of the form of Eq. . Therefore, for each physical parameter present in the
Yukawa couplings at dimension 4, one has the freedom to remove a parameter at dimension 5.
Furthermore, if there is a degeneracy in the mass spectrum at dimension 4 that increases the
exact flavour group of the renormalisable Lagrangian, one also has more freedom to remove
parameters at dimension-5, preserving this correspondence even for degenerate spectra. This
however does not mean that if CP conservation is imposed at dimension-4 that the single
CP-even shift-breaking coupling at dimension 5 will automatically vanish. The parameters at
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dimension 4 only enter a relation with the dimension-5 parameters by the field redefinition
and the same behaviour under flavour transformations. It is exactly this behaviour under
flavour transformations that allows us to remove more parameters in the case of a degenerate
spectrum at dimension 4. Setting the phase of the CKM matrix to zero does not increase
the flavour symmetry and therefore the independent parameter at dimension 5 cannot be
removed.

Therefore, imposing CP conservation on the EFT with shift-breaking operators does not
yield a shift-symmetric EFT as one might expect. This can be seen in a straightforward way

from the invariants in Eqgs. (6.21) and (6.22). The real and imaginary part of the invariant

immediately indicate the behaviour of the given constraint under CP.

Note that this correspondence only holds for the leading order interactions that are of
the same form as the corresponding mass term that is exploited to remove the shift-breaking
terms by the use of field redefinitions. We will explicitly study these higher order interactions

in Chap.

6.3.3 Shift Invariance Below the Electroweak Scale or for a Non-Linearly Realised

Electroweak Symmetry

As we have seen throughout this chapter both in the construction of the invariants and
their matching to UV completions, the conditions for shift symmetry are affected by gauge
interactions. Indeed, the presence of electroweak interactions generated entangled conditions
in the quark sector. Therefore, it is interesting to run the same analysis in the low-energy
EFT below the electroweak scale, where the heavy particles of the SM, the W, Z, h bosons
and the top quark ¢ are integrated outﬁ
Below the scale of electroweak symmetry breaking, the gauge interactions reduce to those
of electromagnetism and QCD, and the mass terms in the dimension-4 Lagrangian reads as
follows
L> —aLmuuR—JLmddR—éLmeeR+h.c. , (6.51)

where m,, 4. are (2x2,3x3 and 3 x3) complex matrices. The derivatively coupled dimension-
five couplings to the axion are identical to those of Eq. (6.3), except that now ¢ € {(u,d,e)r g}
The couplings of a generic pseudoscalar to the fermions read

Lo —% (’L_LLﬁLuuR+JLThddR+éLmeeR+h-c') ) (6'52)

in analogy to Eq. , with the notable difference that the up- and down-type quark sectors
are decoupled. Due to this decoupling, entangled relations like those in the quark sector in
the EFT above the EW scale no longer exist, because the left-handed quarks are no longer
forced into an SU(2) doublet. Following our previous analysis, it follows immediately that
all conditions encoding the shift symmetry come in the form of those in the lepton sector of

50ur discussion also applies to the EFT, where the top quark is kept in the theory, as long as no electroweak
couplings contribute. In that case, all matrices remain 3 x 3 complex matrices in flavour space.
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the EFT above the EW scale

Ig(ciJrl,IR) - Tr(X;:O,I,...,szlmxml) -0, (6.53)

where x = u,d,e, N, =2,Ny,. =3 and here X, = mmml
The number of constraints in the IR reduces with respect to that in the UV because there
are no longer conditions connecting the up- and down-sectors. This is not very surprising
because we have derived the UV conditions under the assumptions that the axion couples to
the degrees of freedom of the SM, which linearly realise the EW symmetry SU(2)r x U(1)y.
However, the most general UV resolution of SU(2)r, x U(1)y may need to be phrased using
the language of non-linear realisations of symmetries |173||174|, which can be applied to the
EW symmetry [84] and its extension to axion couplings |194|. In the case of a non-linearly
realised EW symmetry, the Goldstone bosons which generate the longitudinal components of
massive W and Z bosons have to be treated independently of the physical Higgs h. Using
the CCWZ construction, one conveniently packages the Goldstone boson multiplet 7@ of the
spontaneously broken symmetry into a matrix U as follows
U =™l (6.54)
where ¢ are the Pauli matrices and v is the EW VEV. U has convenient transformations
under SU(2)r, xU(1)y,
U — eilar+a®e® /2 (6.55)

and the physical Higgs scalar h is independently added to the theory as a gauge singlet. The
usual linear realisation can be recovered by defining

0
H=U : (6.56)

v+h

V2

and using H only to write couplings.

When U and h are treated independently, as it is the case for non-linear realisations, one
can supplement the Lagrangian of Eq. (6.3) by additional shift-invariant fermionic operators
at dimension five (see |194| for a complete treatment)

Io) _
W@ SN Gey Ty, T=UosU' (6.57)
Foyiqe

By working in unitary gauge where U = 1, it is clear that these operators allow one to
decorrelate the couplings of the different components of an SU(2); doublet. The axion-
fermion couplings of the generic basis of Eq. (6.1) now map to

_ - _ - 0
a QLU [KQ+G3KQ] UE + LU [KL-i-UgKL] . (6.58)
f dr €R
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While more structures can be added in the derivatively coupled basis of the EFT in the scenario
of a non-linearly realised EW symmetry, the number of building blocks for the invariants is
unchanged with respect to Eq. (6.1). This is easily seen by identifying

YVoa=Kg+Kqg, Y.=Kp-Ky. (6.59)

Therefore, the conditions to be shift-invariant in a non-linear realisation of the EW symmetry
correspond to three copies (for u,d,e) of the lepton conditions of Eq. .

Since a pure IR study of the shift invariance property has to capture both of these scenarios,
it cannot reproduce more than three copies of lepton-like conditions. Nevertheless, assuming
a matching to a linear phase of the EW symmetry and an exact axion shift symmetry, we will
show in sectionthat more conditions remain valid at leading order under the RG flow.

6.4 Renormalisation Group Evolution

In previous sections, we presented flavour-invariant order parameters for the breaking of the
axion shift symmetry. As any complete set of order parameters, it should be closed under the
RG flow which preserves symmetries of the Lagrangia This is what we show in section
In section we descend to the IR EFT below the electroweak scale and find that the
relations inherited from the UV under tree-level matching are maintained by the RG running
below the electroweak scale, although they do not strictly follow from shift symmetry in the
IR. We also revisit EDM bounds on CP-violating axion couplings under the assumption of an
approximate shift symmetry. Finally, in section We illustrate the use of our invariants by
working out sum rules on the axion-induced RG running of SMEFT operators at dimension-

Six.

6.4.1 Renormalisation Group Running Above the Electroweak Scale

To verify the completeness of our set of invariants, we can calculate their RG evolution under
which the set should be closed. Using the RGEs of the components [212} 213 of the invariants
yields for the lepton invariants
9 = 29,10 + 612 + 2Tr(X) (19 + 3157 - 1)),
[® = 4y, 1P + 91 +2Tx(X2) (I§1> +3(15" - 151>)) : (6.60)
I = 67,1 + 1210 4 2Te(X2) (10 + 315" - 1))
where I = 16772;12‘% and we have introduced a short notation for the wave function renorm-

alisation ~y, = —14—59% - %g% + Tr (Xe +3(Xy + Xg)), which appears in a generic manner in all
RGEs.

"This is for instance the case for the flavour invariants of the quark sector [290] of the SM and the lepton
sector of the SM with Majorana neutrino masses [220}|253|.
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The invariant Ie(4) = ReTr (ngereT) appearing in the RGE of Ie(g) is not independent of
the invariants in Eq. , since due to the Cayley-Hamilton theorem the nth power of any
n x n matrix can be can be expressed in terms of lower powers and traces of lower powers of
the matrix. For a 3 x 3 matrix A, the Cayley-Hamilton theorem has the form |218|

A= ATrA- %A((’I‘rA)z ~-TrA%) + %1((1&«,4)3 -3Tr A TrA+2Tr A®), (6.61)
which allows us to reexpress 16(4) as follows

I® = Tr(X ) I® - % (TrX)? - Tr X2) 1 + % (TrXe)? -3 Tr X2Tr X +2Tr X2) I8V
(6.62)
Therefore, the set of RGEs in Eq. does indeed form a closed set of differential equations
and hence the set of lepton invariants in Eq. is complete.

For the quark sector we find the following set of RGEs

B9 = 29,180 + 61 - 310 — 2 Te(X,,) (19 + 315 - 1)),

i®) = 4y, 1P + 01 - 31C) —2Tr(X2) (I§1> +3(15" - Ifﬂ)) ,

i = 6y, 1) + 12100 - 31, - 2Te(x3) (189 + 3(1Y - 1)),

i§9 = 29,189 + 6157 310 + 2Te(x) (19 + 3150 - 1))

I = 4y, 1P+ 91 318+ 21e(x3) (180 + 3(1Y - 1))
)

19 = 69,180 + 1218 - 31+ 2 To(X3) (10 + 308" - 100)) (6.63)

-(1 1
Izgd) =2(7, + Vd)Iz(Ld) ,

12, = (4, + 29 )15, + 31, - 615 - 2T (X, X X,) (189 + 3(15) - 1))

ud,u

I‘(2)

= (v + 29 L + 31y = 615 + 2 Tr(Xa X Xa) (1) +3(1Y - 1))

(3 3
Iz(Ld) =4(y, + ’Yd)Iz(Ld) ;

. 1
19 =6 (1, 90+ 5 T+ X)) 16 = I T ([0, X0 (10 + 109,

where we have again introduced a short notation for the wave function renormalisation =, =
—179% - 293 - 8g% + Tr(X. + 3(Xu + Xg)) and 74 = - 397 — 293 — 893 + Tr(Xe +3(Xu + X4)).
The invariants 1154) ,154) appearing in the RGEs of the quark invariants are of the same
form as 16(4) and can be decomposed in the same way into invariants which are in the
set. In addition, the RGEs generate two more invariant structures, I = ReTr ((XuXqu +
{Xd,Xi})f/uYuT + Xi’f/de) and I (= I),(u <> d)), which can be decomposed into invariants
which are already in the set and therefore vanish iff the couplings come from a shift invariant
axion. For details on the decomposition and the form of I ;7 4 in terms of invariants in the set,

see App.[6.A.2]

We also want to highlight the form of the RGE of the CP-even invariant It(;cll) which is
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strongly constrained since Iqﬁ) is the only CP-conserving invariant in the set. The invariant
can only flow into itself and a set of CP-odd invariants multiplied by the Jarlskog invariant
Jy=ImTr([X,, Xq]*) where the set of CP-odd invariants is further constrained by the mass

dimension of Il(ﬁl). This is exactly what we find in Eq. (6.63) up to the prefactors of the terms,

which can only be determined by an explicit computation.

The minimal set in Eq. , which gives a full rank transfer matrix even for degenerate
fermion masses, contains the sum of IQ(;’) and Iég), which — as shift-breaking invariants them-
selves — evolve independently under RG flow as can be seen in Eq. . Therefore, the RG
evolution will not only generate 1753) +I(§3) , which is contained in the minimal set in Eq. (6.23),

but also 1153) —I(gg) and the set only closes under RG flow if the difference can be decomposed in
terms of invariants in the minimal set. Following numerical techniques described in Refs. [220|
250} 1252|, we indeed find a CP-odd relation including all 11 invariants in the redundant set
at dimension 1 of a similar form as Eq. that allows us to decompose the difference
of 1153) and I;g) in terms of the remaining invariants. However, since at dimension 12 there
exist many monomials built from the SM flavour invariants the relation is very complicated
and we will not present it here.

Thanks to this relation we can always find a minimal set of invariants that is closed under
RG flow. This is still true when the relation becomes trivial due to some of the SM Yukawa
couplings being degenerate or the CKM having texture zeros, since the number of necessary
relations is sufficiently small and we can start with a smaller minimal set for which it is
straightforward to compute that it is closed under RG flow.

6.4.2 RG Running Below the Electroweak Scale and EDM Bounds

Now, we will turn to the discussion of the RG running of shift-breaking flavour invariants in the
quark sector below the electroweak scale. This will allow us to connect them to experiments
which mostly run at scales of a few GeV. We have derived the conditions for shift invariance in
the IR in Eq. , and, using the expressions of Ref. [213| for the RGEs of the dimension-5
Wilson coefficient, it is straightforward to work out the RGEs of the associated set of flavour
invariants to the leading order in 1/f

I = —12(1+ n)(ge® + Crg3) IS, (6.64)

N2-1 4
2N, ~ 3’
g3 are the electromagnetic and the SU(3)¢c coupling constants, respectively. The running

with z = u, d, g, the electric charge and Cpg = with N, the number of colours. e and

is therefore consistent with the fact that, assuming an exact axion shift symmetry at the

IQE”’IR) will continue to vanish at any scale where the EFT

matching scale, the invariants
expansion is meaningful.

We explained in Section that the IR conditions for shift symmetry do not correlate
the up and down sectors due to the absence of SU(2)y gauge interactions below the EW
scale. Nevertheless, in a top-down approach assuming a matching to a linear phase of the

EW symmetry and an approximate axion shift symmetry, it is possible to tune all UV flavour

$Where the dimension is defined such that dim(X,,4) = 1 as well as dim(f/u’dYJ,d) =1
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invariants in Eq. at the matching scale to very small values, including those which do
not belong to the IR set. Including higher order corrections in the EFT below the EW scale,
corresponding to the axion-independent part of the EFT, we then find that the RG flow
to smaller energies respects the power counting imposed at the matching scale by the shift
symmetry, at leading order.

Since we integrate out the top, it is convenient to use a flavour basis, which describes mass
eigenstates in the up sector, such as the basis of Eq. (6.5). The matching relations between
the couplings in Eqgs. (6.1) and (6.2) and those in the IR basis of Egs. (6.51) and (6.52) then
read

L L ~ v T \/ ~ UV ox2

ﬂdiag(yd,ys,yb) ;o My = ﬁdiag(yu,yc) ;Mg = EVCKMYd ) M= EN

(6.65)
where v is the Higgs VEV and M?*2 refers to the first two rows and columns of any matrix M.

myg =

When the shift symmetry is exact in the EFT above the electroweak scale, namely that the
relations in Eq. (6.4) hold, the matching conditions in Eq. (6.65) imply that, at the matching
scale, all the UV invariants keep on vanishing when one replaces Y, Y, with YUIR, YuIR, where

Y2><2 0 R }72x2 0
yR=|"" . YR . (6.66)
0 O 0 O
Y2><2 0
This follows from the fact that, in a basis such as that of Eq. (6.5) where Y, = | “ ,
0 Yi
we can perform the same construction
i (YRR 4 hee) = [co, VIRYRT] (6.67)

as we have done in the UV in Eq. (6.18). As an example, we apply this replacement to the

)

simplest UV invariant which connects the up and down sectors, Iq(uli , which yields

(LIR) _ Tyt s ot S Ty =
I, =Re Tr(VCKMmddeCKMmumu + VCKMmddeCKMmumu) =0, (6.68)

where the sum over the elements of CKM matrix only runs over the first two rows.

In order to study the fate of Ii;’m) under RG running, we need to fully express the
flavourful couplings in it in terms of IR data. In particular, factor of Voka appear in the
invariant, which does not exist in the renormalisable Lagrangian below the electroweak scale.
Instead, we have to map it to non-renormalisable couplings generated when the SM particles
are integrated out from the theory. Indeed, integrating out the W boson at tree level from the
SM (supplemented by the couplings of Eq. ), one finds at O(1/v?) only one four-quark
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operator which depends on the CKM matrixﬂ

4 _ 7 VI,LL V1,LL
£> _v_2VCKM,;DTVC*KM,tsuL7p'7MdLJ‘dL,8’7MuL7t = LuddU,prstOuddumrst ’ (6'69)
as well as a semi-leptonic operator containing a single CKM matrix. Using the four-quark
operator, where the tensor product of two CKM matrices is less suppressed, we can therefore
reexpress our UV invariant Iﬁl’m) as

Iqilli,IR) o Re (Lxdléil;;rst [(mdm:;)rs (muml)tp + (mdmg)rs (muml)tp]) (6.70)

where every quantity appearing is now a genuine IR coupling. Assuming an axion shift
symmetry, tree-level matching imposes Iﬁi’IR) = 0 at the electroweak scale, and it turns out
that it remains zero at lower energies (at least to the one-loop, leading-log and O(1/(fv?))
order that we checked). Indeed, RG running of the axion couplings at O(1/f) [213| implies

that

i[O, )+ (nd), (mnd), ]

= ~12(2Crg3 + (45 + 42)€*) [(mdmjz) (vl ), + (ami) (m“mj‘)tp] !

rs

(6.71)

which keeps the set of invariants closed under the part of the RG flow induced by the axion
couplings. The operators generated by integrating out the heavy particles from the SM at tree
level are all of the type vector current-vector current [291}292|. Therefore, we can restrict
the RG running of the four-fermion operator parameterising the effects of the CKM matrix at
low energies at O(1/v?) immensely. Indeed, the vector-vector Wilson coefficients, which we
generically denote Ly, do not contribute to the running of coefficients of another kind (such
as scalar, tensor or dipole operators). They run into themselves, other L,,s and structures
such as dpsLyyrsw. Therefore, flavour invariants of the form

T = ot CR. i
Re (Lprst [(mdmd)m (mumu)tp + (mdmd)m (mumu)tp]) (6.72)
run into themselves, identical invariants with other L,,s as well as invariants of the form
T S, CA, | f
Re (5pthrsw [(mdmd)rS (mumu)tp + (mdmd)rs (mumu)tp]) : (6.73)

This second kind of invariants runs into itself as well as structures where 0y Lyyrsw = OptOrs Lwzzw
(due to the properties of the CKM matrix), where the last factor can be taken out of the real

V1,LL
uddu,prst

form with the operators O Ll OVELL of the LEFT basis of [291], and their Wilson coefficients with

ud,prst’ ~ ud,prst

V1,LL [VS8,LL . VI1,LL  _ 1 »VI1,LL V8,LL V8,LL  _ ¢p V1, LL _ 1 »~V8,LL
Lud,prst’Lud,prst’ More prec1sely, Ouddu,prst ~ Ne Oud,ptsr+201z.d,ptsr and Ouddu,prst ~ Ne Oud,ptsr N Oud,ptsr’
V8,LL

uddu,prst

9 After performing spinor and colour Fierz identities, we can identify the operator © and its octet

where the octet operator O

. V1,LL
the RG running of O ;.-

is not generated by integrating out the W at tree level but will appear in
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part due to the hermitian properties of the vector-vector operators. Finally, invariants of
the form Lyzz only run into themselves. Therefore, taking into account the running and
the boundary conditions of the 4-fermion operators at the matching scale, these IR flavour-
invariant structures form a RG-closed space.

In particular, if they all vanish at the matching scale, they all remain equal to zero
at lower energies at the order that we checked. Similarly, if they are suppressed by a small
parameter at the matching scale, they remain suppressed by that parameter at lower energies.
In addition, as anticipated above, the fact that they vanish (or are suppressed) follows from
an exact (or approximate) axion shift symmetry. This symmetry is of course not broken by
integrating out the heavy particles from the theory but instead the correlations introduced
by the SU(2) gauge symmetry get pushed to higher mass dimensions in the low-energy EFT.
Indeed, at the matching scale, all L5 have a flavour structure given by combinations of
VCKM@TVSKMJS’ VoM, prdst and 0p0,5. Hence, at the matching scale, the above IR invariants
are proportional to combinations of Iqﬁl’m) and Tr(m dmL)L(Ll’IR) + Tr(mumz)fc(ll’m) and all
vanish for an exact shift symmetry. Therefore, assuming an exact (or approximate) axion
shift symmetry in the UV makes all the above IR invariants, in particular Ii;’m , vanishing
(or small) at the matching scale as well as at any lower energy.

The stability of the constraints under RG flow allows us to use them at low energies, and to
identify the impact of an approximate shift symmetry on bounds on the couplings of Eq.
derived from observables. The consequences are twofold: (i) the fundamental parameter space
constrained by the bounds is reduced, and (ii) sum rules between different observables are
predicted. We illustrate these two aspects by reanalysing the bounds derived in |282|, where
the authors study electric dipole moments and allow for shift-breaking couplings in the generic
basis of Eq. .

Bounds on the ALP couplings can be set using experimental bounds on the spin precession
frequency wtno of the polar molecule ThO, the neutron EDM d,, and the EDM dy of the

diamagnetic atom '"9Hg
wrho < 1.3mrad/s (90% C.L.) ,

dp <1.8x10% ecm (90% C.L.) , (6.74)
digg <6x 10 ecm (90% C.L.) .

The expressions of these quantities are given in Ref. [282] in terms of the coupling m of
Eq. , as well as CP-even and odd couplings of the axion to gluons and photons, under
the assumption that the axion mass is of order a few GeV'’s so that the axion can be integrated
out while QCD can still be treated perturbatively.

Let us study the fate of these bounds when the axion shift symmetry is approximate.
More precisely, we assume that any shift-breaking coupling is generated by particles at the
PQ scale f and that a single spurion € breaks the PQ symmetry. For instance, this suggests
writing m2 = O(ef?) for the axion mass, or Z = O(e€) for any of our shift-breaking invariants
Z. Working in the basis where masses are diagonal and real, the e-scaling of the IR invariants

100\ atching to our notations, ys and yp of Ref. |282| are respectively the hermitian and anti-hermitian parts
of m, for each kind of fermion.
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imply for instance that
(i, + 1} )ii = O(e) (6.75)

for any fermion species x, reducing the number of coefficients contributing at the considered
accuracy in €. Additionally, CP-odd axion-gluon or axion-photon couplings break the shift
symmetry, and are therefore O(¢). The EDM of mercury is a function of the EDM of the
neutron EDM, as well as effective electron-neutron four-fermion operators [282|. All of these
can in turn be mapped to effective operators of electrons coupled to quarks and gluons. After
integrating out the axion at 1-loop, one can identify the shift invariants in the matching
contributions of these effective operators appearing in the expressions of the EDMs. Hence,
working at order O(e?/f?) (we also assume v?/f? < € and count loge = O(1)), one obtains
from Ref. [282] that

dpg ~ 4 x 1074d,,, (6.76)

which is an example of a sum rule between observables following from the axion shift-
symmetry.
The only remaining combinations induced at 1-loop by a shift-symmetric axion above the

QCD scale, which cannot immediately be identified with our invariants, are the axion-induced
EDMs d; and chromo-EDMs diC of fundamental fermions v;, which read |282|

(mm™tm).. (6.77)

k23

d; c c
- =W@idi, d = Wlm
with @; the electric charge. The same combination of quark (chromo-)EDMs enters d,, and
dpg, hence the related bounds yield constraints on the same combination of fundamental
parameters m, which turn out to be of very similar magnitude.

The other bounds of Eq. (6.74) yield more independent bounds on the EDMs of funda-

mental fermions. For instance, the bound on wryo turns into a bound on the electron EDM
d. $107%ecm . (6.78)
It is natural to expect that the contribution of the tau lepton dominates and one finds

‘ Im (meTmTe)

2
mr

f 2
= |IH1 (CL’13Ce,31)| S 1.4 (m) s (679)

where we expressed the bound in terms of the CP-violating couplings of Eq. , which can
be used at O(e”) we are interested in, while at higher orders in € also potential shift-breaking
terms can contribute which are not captured by the Cg 4.1, Similarly, the bounds on d,
and dyg reduce to bounds of similar magnitude on the same combination of quark EDMs, ,

2 1
(50.784(28) - 0.55(28)) d - (1.10(55) - 50.294(11)) dS $107%%cm . (6.80)

" This follows from the generic form of axion couplings at O(e®) given in Eq. ll and it can be checked
in the Froggatt—Nielsen or 2HDM examples above that, generically, me,13 ~ O(1)m..
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Although the combined coefficient of the up-contribution suffers from large uncertainties, it
is numerically suppressed (~ 0.03), so that its top-mediated component does not dominate
over the bottom contribution in the respective expressions of di 4 due to the numerical value
of mp/m; which is ~ 0.02. Therefore, we expect the generic bound to combine the top and
bottom contribution. For illustration purposes, let us assume that the bottom contribution
dominates, which at O(e®) leads to

Im (ﬁldbﬁ Lbd) ( f )2
—————— [ =|Im <11x10( ——— | . 6.81
‘ mg ‘ (CQJSCC[’M)‘ * 107GeV ( )

In addition, the e-scaling of IS{IR) of Eq.(6.70) further correlates the entries of m which

contribute to the different EDMs. However, this does not generate more sum rules between
observables at O(e’/f?). In the meantime, the analysis presented here has been performed in
more details in Ref. [286, making use of the invariants presented in this chapter.

6.4.3 ALP-SMEFT Interference and Sum Rules

If the presence of an axion is detected, it will be crucial to learn more about its couplings,
in particular to SM fermions. However, those may be difficult to probe, and indirect probes
will play an important role in constraining them. The axion-induced RG running of couplings
between SM particles is a good example, as it will generically deviate from that of a situation
without any axion.

Assuming no further light degree of freedom, the couplings of SM particles can be captured
by the SMEFT. The presence of an axion induces an RG evolution of the dimension-6 pure
SMEFT couplings driven by the dimension-5 axion couplings [293|, which deviates from that
in the pure SMEFT [94197|. In this section, we will discuss how to extract information about
properties of the axion from these deviations. Our invariants will allow us to immediately
identify implications of the axion shift symmetry, in the form of flavour-invariant sum rules
on the RG evolution of the SMEFT Wilson coefficients.

We define the terms sourcing the deviations from the SMEFT RGEs induced by the ALP

EFT as follows |293],
dCPMERT _ . SMEFT ~SMEFT _ __ S (6.82)

dp 7 ’ C(Amf)?

I

In particular, those source terms which only contain one flavourful axion coupling or which
contain a tensor product of two axion couplings will be useful, as they will allow us to im-
mediately connect them to our invariants. For instance, we can use the following source
terms |293|

Sua = —4igs?uCGg, Sac = _4i98?dCGG’
Suw = =igaYuCww, Saw = ~ig2YaCww, (6.83)
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to write

Im Tr (X2’1’2SIGYIT) = _4gsCGGI£1’2’3)
I Tr (X0128,, V1) = ~g2 Gy 129 (6.84)
Im Tr (X2’1’25$BYJ) = ~01(yq +y)Cpl M)
with x = u,d and all Wilson coefficients which have not been defined previously can be found
in Tab. Furthermore, we can use the source terms in Eq. (6.83) which only depend on the

type of the fermion through the dimension-5 Yukawa to write down relations for the mixed
invariants. For the gluon source terms we find e.g.

I Tr (X, X, X8, + X, X,X,8,,Y)) = -49.Cal’y (6.85)
and similar expressions for the W-boson source terms. Furthermore, we can find relations in

terms of our invariants where the ALP-fermion couplings appear in tensor products. This is
the case for some 4-fermion operators. E.g. combining the source terms [293|

(), = 3 (32),, (7)., + iotuau: i (6.86)

with z = u,d we can find the following relation

(1) 1 _ Yu Tr(X.) (1) T
Re( (Squ )prst (Yu )tp (Yu)rs Yd Tr(Xd) (Sqd )prst (Yd )tp (Yd)rs
_ 1 ((151))2 ~ Yu Tr(Xy) (I(l))Q) 7
N yaTr(Xq) \*
where the y; are the hypercharges of the SM fermions. Finally, with the source term [293]

(Ste) g =2 (72),, (7)., (653

(6.87)

we can write
Re ((SledQ)prst (Yj)rp (Yd)ts) - —2[(51)[5[1). (6'89)

The sum rules of this type give zeroes in the RG evolution of the SMEFT Wilson coefficients if
the ALP is shift symmetric, i.e. the RG evolution of the precise combination of SMEFT Wilson
coefficients appearing in the sum rule is completely determined by SMEFT Wilson coefficients.
Said differently, observing RGEs compatible with the SMEFT for the combinations of Wilson
coefficients entering the above sum rules suggests that the axion shift symmetry is weakly
broken. The uncertainty in the measurements of the SMEFT coefficients quantifies which

room there remains for non-vanishing invariants, i.e. for shift-symmetry breaking.
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SMEFT ALP EFT
Ogri = Qo TqrH g Gl Oaq = §Gu, G
Ogrw = Qo™ 0! qrH (g) Wy, Oww = §W, WH!
Ogp = Q0" uH (g) By Opp = $BuB"

Olar = (QuQ) (dr7"qr)
Oleag = (Le) (dQ)

Table 6.3: Additional EFT operators of the SMEFT and ALP EFT as defined in Ref. [293| that enter in the
sum rules and have not been defined previously. qr stands for u,d and H,y = H, H4) = H.

6.5 Couplings to Gluons and Non-Perturbative Shift Invariance

Previously, we have focused on the breaking of shift-invariance which arises at the perturbative
level. This is for instance relevant for interactions which induce axion potentials at the tree
or loop levels, as is often discussed in the axion quality problem or relaxion literature. We
have, however, neglected axion couplings to gauge bosons of the SM gauge group SU(3)¢ x
SU(2)w x U(1)y, and in particular to gluons. The latter do not break the shift symmetry
at the perturbative level, but they do so non-perturbatively, as we will explore in the context
of small instantons in Chap. of this thesis. Furthermore, the coefficient of these couplings
change upon the transformation of the two bases discussed throughout this chapter. Hence,
a vanishing coupling in one basis might become non-zero in the other basis. In this section,
we will work out conditions for the axion couplings to remain shift-symmetric when gluons
are taken into account.
To this end, we add the following term to the Lagrangian of Eq.

ng§ a
1672 f

r(GuG™) (6.90)

and to that of (6.3) the same term with Cy — C'g(s) . We use explicitly different notations for
clarity, since both couplings will appear in the same relations when we match between the
two operator bases. The overall normalisation is chosen consistently with naive dimensional
analysis, also keeping in mind the origin of Cg,C!gS) in UV theories with heavy anomalous
fermions, which are such that Cy, Cg(s) =0(1).

The gluon coupling breaks the shift symmetry non-perturbatively, unless at least one quark
is massless. In that case, a shift of the axion field a — 2mapqf is equivalent to a shift of
0qcp — 2mapq, which can be absorbed with an appropriate chiral transformation of the
massless quark. Therefore, we assume here that all quarks are massive, so that there are
no chiral symmetries of the spectrum, and fqcp is physical. Le. the theory differentiates
between different values of the axion VEV (a) and the shift symmetry is broken, generating
an axion potential.

We now follow the same logic as in the perturbative case: we look for quantities which
must vanish for the shift invariance to hold non-perturbatively, which are therefore order
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parameters for the non-perturbative breaking.

6.5.1 Non-Perturbative Order Parameter

Let us first assume, that the axion shift symmetry is exact at the perturbative level. Then, the
couplings of the axion to fermions comes in the basis of Eq. , where all fermion couplings
are invariant under a shift of a. At the non-perturbative level, C’gs =0 is required to cancel
the gluon-induced shift-breaking contributions to the axion potential.

However, as in previous sections, we want to identify order parameters in the most general
operator basis, where they could be non-zero in realistic models. This means that we want
to derive the equivalent of the condition Cés) = 0 in terms of the couplings of Eq. . For
that, we need to account for anomalies when we change the operators basis from Eq. to
Eq. with the following field redefinition

Y =e Ty (6.91)

for each chiral fermion field ) of the SM. This transformation is anomalous and generates the
following matching relation between the coupling to gluons,

Cy = C8) + Tr (20 - Cy — Cy) (6.92)
When the gluon couplings do not break the PQ symmetry, Cg(s) =0 and one ﬁnd
Cy=Tr(2Co-Cy-Cy) . (6.93)

Once more assuming that all Yukawa couplings are non-zero, we can use the matching condi-
tions of Eq. (6.4) to substitute the coefficients C; for the Y;

Cy—iTr (Y, 'Y, +Y;'Y,)=0. (6.94)

Note that our assumption of massive quarks make the Yukawa matrices invertible and the
expression meaningful. This expression yields an extra condition for a perturbative shift
symmetry to remain valid even non-perturbatively in g3, in the basis of Eq. . The right-
hand side of the above expression is constrained to be imaginary due to our conditions for
perturbative shift-invariance of Eq. , so we find that the new condition is CP-even and
reads I, = 0 for

I,=Cy+ImTr (Y, 'Y, +Y;'Y,) . (6.95)

When all the perturbative invariants of Eqs. (6.21)-(6.22) vanish, i.e. when there exists an
exact PQ symmetry at the perturbative level, I, captures the mixed anomaly polynomial
of that symmetry with SU(3)¢. This can easily be seen in the axiflavon/flaxion model of

12For obvious reasons, this relation looks similar to those used to compute perturbative corrections to the
6 term in various EFTs [288|/294].
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Eq. (6.26), where

Iy =3 (24Q; = Qu; — 9d;) - (6.96)

The invariant I,, which features couplings from the up and down sectors, highlights a new
kind of collective breaking at the non-perturbative level, which is consistent with the fact that
mixed PQ anomalies can be cancelled by balancing non-vanishing contributions in different
quark sectors.

In addition, the derivation never referred to the invariants which correlate the up and down
sectors in Eq. and are absent in Eq. , therefore it is valid below the electroweak
scale, up to the replacements Y, Y — m,m to match the notations of section m

6.5.2 RG running

By, once more, using the RGEs of the Standard Model and axion Yukawa couplings above
the electroweak scale [212||213|, we can show that all contributions to the running of this
invariant cancel at the one-loop level

p—2=0. (6.97)

Let us stress that we chose a scaling in Eq. similar to that of [212|, where Cy already
comes with a one-loop factor g3/(167?). This allowed us to account for the anomalous shift
without loop-factor hierarchies in Eq. . However, when working out the RGEs as in
Ref. |213|, we also need to account for anomalies and their contribution to the running of Cj.
One can show, that with the other normalisation, the invariant has a non-zero RGE, which
is only proportional to the invariant itself. This is shown in detail in Ref. [1].
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Appendices to Chapter 6

6.A Useful Matrix Relations

6.A.1 Commutator Relations Used in Section [6.2.3

The simplest commutator identity one can write down using three matrices A, B, C is
[A,BC|=[A,B]C+B[A,C] . (6.98)
Using Eq. and the fact that the trace of a commutator vanishes, we obtain
=i Tr (X [eq, X, ]+ X [eq, X, ]) = T (X, (VY + v, V) + (> @) = 0. (6.99)

It is straightforward to generalise the identity in Eq.(6.98) to four and five matrices and
obtain identities at higher order in X, 4. For any four matrices A, B,C, D we have

[A,BCD]=[A,B]CD+B[A,C]D+ BC[A,D]. (6.100)
Identifying A = cg, B = X,,,C = D = X; and tracing over both sides gives
T (X5 (VY] + ¥, V1) + (X, X, ) (Vy] + v,v))) =0 (6.101)

This expression is not symmetric under v <> d, allowing us to find another independent
condition by exchanging u < d,

Tr (X2 (V,v) + Vv ) + (X, X (VY] + v, v 1)) 0. (6.102)
The following identity involving five generic matrices A, B,C, D, E,
[A, BCDE] = [A,BICDE + B[A,C] DE + BC[A,D] E + BCD[A,E] , (6.103)
allows us to find a fourth condition
Tr (XX, X, (VY + v, 00) + X, x,X, (Vy]+ v, 7)) (6.104)

and the final condition which we consider derives from applying the Jacobi identity on

Eq. (6.18),

(X, T¥] + Y7 - [X, Vvl + v, 7] - _Z-([Xu,[CQ,Xd]HXd, [XU,CQ]])

e [ ]]

(6.105)
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so that Eq. yields
T ([ X, X, ([X, V) +vov]] - [xe vl + v vi])) = 0. (6.106)
We only make use of the condition where n = 2.

The above expressions can be made more compact by noticing that, for any two hermitian
matrices H,, Hg, we can write

7 vty 7 vy i) - c vty vt
T (H, (VY + Y, 90 + Hy(Vy ]+ Y, VD)) = e (B9, Y]+ v, VIH] + (uo )

) o ) (6.107)
=Tr(H,Y,Y)+ T (H,Y,Y]) +(uo d)=2ReTr (H,Y,Y]) + (ued) .
For two anti-hermitian matrices A,, A4, one similarly finds
vty 7 vty ) < 2 7yt
Tr (A, (VY] + Y, V1) + A,(V Y]+ Y,V ])) = 2im T (4,7, ¥]) + (werd) . (6.108)

6.A.2 Details on Decomposition of Invariants Generated by RG Flow

In the RGEs of the invariants we find invariants which naively are not in the minimal set.
However they can be decomposed into invariants in the set which we will show here in detail.
Apart from 1154) , Ic(l4) which can be decomposed in an analogous way as 16(4), the RG evolution
also generates, I;, = Re Tr((XuXqu + {Xd,Xj}) ?UYJ + Xi’f/deT) and I} (= I (u < d)),
which are redundant as we will see now. As before we can construct the invariants generated
by the RG flow of the original set by using again the commutator relation in Eq. (6.103)
with A = ¢g,B=C =FE = X,,,D = X, for I;, and A = cg,B=C=FE = X4,D =X, for
I'. To see that the invariants are not independent of the invariants in Eq. we have to
employ the Cayley-Hamilton theorem. Multiplying Eq. by A, taking the trace, replacing
A — A+ B+C and only keeping terms of order A2BC we find the following relation [218]|

0 =Tr(A)* Tr(B) Tr(C) - Tr(BC) Tr(A)? - 2Tr(AB) Tr(A) Tr(C) - 2 Tr(AC) Tr(A) Tr(B)
+2Tr(ABC) Tr(A) + 2 Tr(ACB) Tr(A) - Tr(A%) Tr(B) Tr(C) + 2 Tr(AB) Tr(AC)
+Tr(A?) Tr(BCO) + 2 Tr(C) Tr(A’B) + 2 Te(B) Tr(A*C) - 2 Tr(A’BC) - 2 Tr(A*CB)
-2Tr(ABAC).

(6.109)

By identifying A = X,,, B = X4,C = f/uYJ the last three single trace terms in Eq. (6.109) are

the same as the terms containing fquJ in I},. Using this decomposition and Eq. (6.61) for the
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X3 term in I! we find

I :%Igw (Tr(Xu)? Tr(Xq) - Tr(X2) Tr(Xg) + 2 Tr(X2X,) - 2 Te(X,,) Tr(XuXa))
# 21 (Tr(X,Xa) = Tr(X) TH(X0)) + 2T (X I + - (Tr(X2) = Te(X,)%) 1)

T (X)IE), + é (Tr(X,)? -3 Tr(X2) Tr(X,) +2Te(X2)) 1§V
(6.110)

and a similar decomposition for I}.



The Hilbert Series of ALP EFTs

7.1 Introduction

In Chap.[6] we have made a first step in understanding PQ-breaking effects in the EFT of ALPs
by formulating the breaking effects in flavour-invariant order parameters. In this chapter, we
want to carry on this analysis by explicitly studying how these effects are encoded in operators
at higher mass dimensions. One main realisation of the work in the previous chapter was that
the same operators coupling the ALP to fermions describe both shift-breaking and shift-
preserving interactions. This made it difficult to impossible to give the interactions their
appropriate power counting which can be very different as the scales of spontaneous and
explicit PQ-breaking are usually well-separated. Here, we want to study if this mixing between
the shift-breaking and shift-preserving sector continues at higher mass dimensions. To this
end, we will build an operator basis for a pseudoscalar with and without a shift symmetry
coupled to the SM degrees of freedom.

The operator basis we derive could prove useful for phenomenological as well as theoretical
studies. Most analyses study the leading dimension-5 interactions of the ALPs, while some
also consider effects from higher dimensional operators at dimension 6 [188} 196, |295{297|
and dimension 7 [196/ 296} 298|. In particular, the analyses at dimension 7 use an incomplete
basis, which may lead to the omission of contributions from other operators that could alter
the results of these studies. On the more theoretical side, the operators at dimension 8 are of
interest for the discussion of positivity in the context of the ALP EFT. Furthermore, it could
be of value for matching calculations [299] to have a complete set of operators beyond the
leading interactions. An important probe for new physics are low-energy experiments looking
for small corrections in high-precision experiments and exotic decays of mesons involving ALPs
(see e.g. Refs. [178[]182]|185||189, |212]). In order to have a complete effective description of
such effects below the electroweak (EW) scale, we will also derive an operator basis for the
so called low-energy effective field theory (LEFT) extended with an ALP.

To simplify the procedure of building an operator basis, we will use the Hilbert series
techniques introduced in Sec. [2.5.2]to count the number of independent Lorentz- and gauge-
invariant operators made from the SM fields below and above the EW scale extended with an
ALP with all IBP and EOM redundancies removed. To further investigate the effects of CP
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violation in the EFTs, we will employ the implementation of CP in the Hilbert series language
as was introduced in Sec. allowing us to perform the counting of CP-even, CP-odd and
CP-violating couplings. Since their introduction, these tools have proven helpful in many
analyses of different EFTs [64, 85} |105} 215, 2254228 1300+305| to build operator bases and to
study different aspects of these EFTs like their behaviour under CP.

We will demonstrate how the Hilbert series can provide a clear and concise understanding
of the separation of the shift-symmetric and shift-breaking sectors in the ALP EFTs. We
highlight that these two sectors can be distinctly categorised above mass dimension 5, without
any observed mixing between them. We will furthermore show that, making a change of basis
that is often considered in the literature and convenient to work in in the presence of shift-
breaking effects, one has to consider more seemingly shift-breaking operators with completely
constrained Wilson coeflicients.

7.2 Hilbert Series Techniques for ALP EFTs

We have already introduced most of the necessary tools and jargon in Sec. As we want
to study EFTs of ALPs, in a next step we have to implement the shift symmetry of the ALP
in terms of the conformal characters introduced previously.

7.2.1 Implementing the ALP Shift Symmetry

The Hilbert series for theories with shift-symmetric scalars was first discussed in Ref. |64],
where a general treatment was introduced within the framework of non-linear realisations of
symmetries. This approach has been applied to construct operator bases, such as the operator
basis for the shift-symmetric scalar coupled to gravity [301| and for the O(N') non-linear sigma
model [228|. Because the axion arises as the Goldstone boson of the spontaneously broken
U(1)pq, we can use the Hilbert series machinery for non-linearly realised symmetries based
on the CCWZ construction |173||174| developed in Ref. |64| to impose its properties in the
Hilbert series. It is common to parameterise the Goldstone degrees of freedom 7¢(x) of a
spontaneously broken symmetry G — H c G, using the following matrix field

int(z)X?

fay=eh (7.1)

where X? are the broken generators living in the coset space G/H and f, is the pion de-
cay constant. To construct the EFT of the pions of the pions of the spontaneously broken
symmetry, one further defines the Cartan form

w, = €19,6 = uLXi +opT" = uy, + vy (7.2)

decomposing the degrees of freedom along the broken generators X* and the unbroken gen-
erators 7% As the ALP is the Goldstone boson of the simple symmetry breaking pattern
U(1)pq — @, the discussion reduces drastically. There exists only one broken generator and
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we can simply write

€= ei%, Wy = Uy = zQ (7.3)

f
In the following, instead of working with the Cartan form w,, we will work with the simpli-
fied expression u, ~ d,a for the ALP. In order to implement this explicitly shift-symmetric
derivative coupling of the ALP, the scalar itself has to be removed from the list of building
blocks for the Hilbert series of the EFT, which is achieved by removing the first entry from

the single particle module of the scalar in Eq. (2.104). This yields

O, @

Or,,, 0
Rog=| “tm%® [ (7.4)
0411y Oz Oy

The first entry of the single particle module in Eq. can be removed with the help of
conformal characters by applying another shortening condltlon on top of the previous one in
Eq. that eliminates the EOM redundancy By summing over the characters of the
remaining elements (note that the first sum starts at n = 1 now) of the scalar single particle
module, we obtain the character of a shift-symmetric singlet scalar |64

Xaa (D7 x) = Z Dn+daXSym (w)

n=1

n+dg
(3:4) W-nij’ Nsymr2(4.9)
(7.5)

= pla (_1+ %ansym (x) - anxsym (;,é)(x))
n=

=D((1-D*)P(D,z)-1).

ll
22

The characters of all other building blocks for the EFT can be found in Ref. |64]|. We will fix
the exact spurion content and some other conventions in Sec.

Because we also want to study CP effects in the EFT of ALPs, we have to discuss how
to implement the action of CP on the ALP in terms of characters. In Sec. we have
presented how to include C and P transformations for the remaining fields appearing in
the EFT. However, since the ALP is a singlet under the SM gauge group, the previous
discussion no longer holds true and, in particular, the terms in the odd powers of the plethystic
exponential of characters, which were vanishing for the SM fields due to their behaviour under
C transformations, are non-vanishing for the ALP. The characters of the non-shift-symmetric
and shift-symmetric axions appearing in odd powers of the Hilbert series are given by

X, (D,z) =x} (D,#) =-D(1-D?) P.(D,%), (7.6)
Xoa (D, ) =Xp, (D, %) =-D((1-D*) P_(D,7)-1) , (7.7)

'For the construction of a Green’s basis, the tower of EOM-redundant terms in Rs, has to be kept in the
calculation of the character. It corresponds to the negative term in the first line of Eq. (7.5). Without the
subtraction of the EOM redundancy, the character for the Green’s basis is given by xaa(D,z) = D(P(D,z)-1).
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where P_ is defined in Eq. and an overall minus sign was introduced to capture the
pseudo-scalar nature of the axion under P transformations. The even-power characters are
given in Eq. and Eq. respectively with where P(D,z) has to be replaced with
P.(D,z) = P(D,z).

7.2.2 Conventions

As motivated in the introduction, we want to construct operator bases for the ALP EFTs
above and below the EW scale, i.e. we will consider both the SMEFT and LEFT extended
with an ALP, which we will refer to as aSMEFT and aLEFT in the following. Depending on
the fate of the shift symmetry (or correspondingly the PQ symmetry) in the EFT, we define
four EFTs with different spurion contents

e aSMEFTpq: SMEFT extended with a shift-symmetric axion
{D78a7 Qv QTv La LT, H) HTa U,UT, d’ dT» €, eTa BLa BRa WLa WR, GL7 GR} ’

e aSMEFTpg: SMEFT extended with a non-shift-symmetric axion
{D.a,Q,Q" L, LY, H,HY u,u’,d,d", e, ', By, Br, W1, Wr,GL,GR},

e aLEFTpq: LEFT extended with a shift-symmetric axion

{D7aa7uLvUTL7UR7u}gadL7dTLvded‘i]-;{aeL?ezv€R7627VL7V£7FL7FR7GL7GR} )

e alLEFTpg: LEFT extended with a non-shift-symmetric axion

{D7a7uLauE>uRvUTRadLadTLvdRadTRveL>eTLa eRaeTRv Vi, V£7FL7FR7GL7 GR} :

Here, we follow the conventions of Ref. [85| by adding only left-handed Weyl fermions, living
in the (%,0) representation of the Lorentz group, to the Hilbert series, also for the right-
handed SM fermion, for which we drop the superscript “¢’ uER),d‘éR),eER) € (%,0) in the
computation of the Hilbert series for brevity. For the field strengths X = F, B,W,G we use
the chiral components X fZ/R = 2(XM + iX"), which excite a gauge boson of helicity +1 and
hence, transform as (1,0) and (0,1) under the Lorentz group, respectively. The axion field
transforms as a singlet under the Lorentz and SM gauge group, but transforms with a sign
under parity transformations as was discussed in the last section.

For the computation of aSMEFTpe the Haar measures and characters for all spurions
that we just presented can be found in Ref. |85| and the full Hilbert series can be directly
computed from Eq. . The only difference compared to the SMEFT lies in the inclusion
of the axion field a, which is achieved by adding an additional PE for the spurion a in the
calculation of the Hilbert series. For aSMEFTpq, we only need to change the spurion a to
Oa, and adopt the character in Eq. , after which the calculation of the Hilbert series will
also be straightforward.

For the EFT below the EW scale, all left-handed and right-handed fermion fields are
completely independent as a UV completion could be chiral (LEFT captures both SMEFT-
and HEFT-like UV completions). The SU(2)r, xU(1)y part of the SM gauge group is broken

to U(1)em, whose charges are given by @ =Y + T5. The calculation of the Hilbert series of
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aLEFTpq and aLEFTpe follows the same fashion as for the EFT above the EW scale, except
that we need not integrate over the SU(2) group, simplifying the calculations further. As for
the aSMEFT, we have to use the appropriate spurions da and a with their the corresponding
character to capture the shift symmetry of the ALP correctly.

At low energies, the EFT with quarks and gluons as degrees of freedom eventually has to be
matched to the chiral Lagrangian of QCD, in order to properly describe phenomena like exotic
meson decays with final states including axions. Therefore, we also want to briefly comment
on how to construct the Hilbert series for the QCD chiral Lagrangian extended with an axion.
Following the analysis in Ref. |227|, one would have to define two Cartan forms v and
uSCD, where uﬁLP as defined in Eq. (7.3) describes the ALP degrees of freedom and uSCD

ﬁLP USCD

describes the low-energy QCD degrees of freedom. In contrast to u transforms

under an internal SU(Ny)y symmetry, as low-energy QCD with Ny light flavours has the
more involved symmetry breaking pattern SU(Ny)r x SU(N¢)r — SU(Ny)y. Therefore,
the character for USCD has to be multiplied by the character of the adjoint of SU(Ny) with
respect to uﬁLP [227]. With the resulting Hilbert series, all operators for the QCD chiral
Lagrangian can be easily constructed. If operators which break the shift-symmetry of the
ALP are also of interest, a pseudoscalar with the character given by Eq. (2.110) has to be

added to the Hilbert series along USCD.

Since, we want to construct the EFT order by order in the EFT expansion, it is convenient
to grade the fields in the mass dimension. This will allow us to easily truncate the Hilbert
series at the right order. For this, we will rescale the spurions with their mass dimensions
¢ — e for scalars, 1 — €/%¢) for fermions, X — ¢2X for field strengths, da — €2da and
D — ¢D for the covariant derivative. We define the graded Hilbert series as H(e) = ¥, ¢H,;.
It should be noted that the calculation of the full Hilbert series is impossible. However, in
the construction of the operator basis, it suffices to focus only on a specific mass dimension.

The computation of the Hilbert series can be significantly simplified by always truncating
terms appearing in the integrand of Eq. as early as possible in the mass dimension.
In practice, this means that we expand PE/P to the desired mass dimension first and then
perform the integration over the Haar measures. Nevertheless, expanding the integrand itself
becomes challenging at higher mass dimensions. To address this, a FORM code called ECO
(Efficient Counting of Operators) |302| has been developed specifically for efficient Hilbert
series calculation. For this project, the Mathematica code CHINCHILLA was developed, which
efficiently computes the Hilbert series by cleverly expanding the integrand of the Hilbert
series. The code will be published in a forthcoming paper [260).

7.3 aSMEFT

We are now ready to calculate the Hilbert series and construct all operators of the SMEFT
extended with a light pseudoscalar. We will start with an ALP, i.e., a pseudoscalar with a
shift symmetry, stemming from its Goldstone boson nature under the spontaneously broken
global U(1)pq symmetry.
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7.3.1 aSMEFTpQ

Using the tools introduced in Sec. and the spurion content defined in Sec. we
will first compute the Hilbert series of the EFT with a derivatively coupled pseudoscalar Oa.
Evaluating Eq. for the given spurions, we find the Hilbert series for one generation of
fermions up to mass dimension 8 to b

’HEQ =9aQQ" + dauu' + dadd’ + da LLT + daee’ + da HH'D
- 9a By D - daBrD - daD?,

HE?Q = (8a)?HHT

HEYQ =0aQQBL + 00 QQ'Br + 06 QQG L + 0 QQIG R + 82 QQTW, + 82 QQT W
+dauu' By + dauwu' Br + dauwu' G + dauu'Gr + dadd' By, + dadd' Bg
+0add Gy +0add'Gr +0a LL'By, + da LL' B + da LL'W, + 8a LLTWpg,
+0aee' By, + daee' B + 200 QQTHH' + dawu' HH' + da dd' HH'
+20a LL'HH' + daee'HH + 9a BLHH'D + 9a BRgHH D + 0a W HH'D
+9aWrHH'D + 8a H*H*D + 20a QuHD + 20a QTu' H'D + 206 QAH'D  (7.8)
+20aQ'd"HD + 20a Le H'D + 20a LTe' HD,

HEQ = (9a)* + (0a)2QQ!D + (9a)?uu'D + (9a)dd'D + (8a)?LL'D + (9a)?ee'D
+(0a)?B? + (0a)*BBr + (0a)?B% + (0a)*G3 + (0a)*GGR + (0a)*G%
+(8a) W} + (0a)* W Wg + (0a)* W3 + 8a Qd™ LT + a Q1d* L + da ud' L1
+8au'dL? +2(0a)? HH'D? + 20a L* H*D + 20a L' H™D + (9a)*H*H ™
+(00)2QuH + (0a)?QTu'HT + (8a)*QdH + (80)*Q'd'H + (0a)*LeH'
+(8a)’Lie'H .

Every term in the Hilbert series can be interpreted as an effective operator with the field
content given by the spurions and the prefactor counting the number of operator with that
field content. For instance, for the first term in ’H?Q, we expect a single operator with the
field content Bua,Q,QT. Using this this information, it is straightforward to write down a
gauge- and Lorentz-invariant operator d,a QY Q.

The negative terms appearing at dimension 5 do not correspond to non-redundant oper-
ators and are cancelled exactly by other terms in AH, which can be computed immediately
from the expression of AH given in Ref. |64]. Evaluating the expression, we find for the terms
containing an ALP ﬁel

AH = da By D + 8a BRD + daD?, (7.9)

ZNote that 7—[5PQ here only corresponds to the first term in Eq. (2.112) and we still have to add AH, which
is non-trivial here, to get the correct full result. Furthermore, we have only kept the axion-dependent terms.

3Note, that the D? term that usually appears in Ho and is cancelled by a term in A does not appear
here because we only keep terms in the Hilbert series which include at least on ALP field a.
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which exactly cancel the negative terms in Hy. The form of the terms is similar to those
found in the discussion of the QCD chiral Lagrangian in Ref. [227|, where a more involved
case of a non-linearly realised symmetry is analysed. The only difference to our analysis lies
in the counting of the mass dimension of the field spurions capturing the Goldstone degrees
of freedom. As mentioned in the last section, because of the simple symmetry breaking
pattern under which the ALP arises as the Goldstone boson, we have simplified u, = zaLfa
where we put the 1/f suppression into the Wilson coefficient. Hence, in our case [da] = 2,
whereas usually [u,] =1. That is why AH gets ALP-dependent contributions at dimension-
5 here, whereas usually it only has terms of mass dimension 4. For instance, terms like
u By, D ~ 0a By D appear at dimension 5 here. The last term in Eq. can only appear here
due to the gauge-singlet nature of the ALP, while the other two terms are also generated for
non-Abelian gauge groups if the scalar transforms in the adjoint representation.

For brevity, the Hilbert series in Eq. only takes one flavour of fermions into account,
which is enough to construct most operators. However, in some cases multiple flavours are
necessary for certain operator structures to be non-vanishing and the above Hilbert series
is not enough to construct the operator basis. To compute the Hilbert series for a general
number of flavours Ny, Ny copies of the corresponding fermions’ PE have to be added in
the Molien-Weyl formula, which is equivalent to simply adding a factor of Ny in front of the
fermionic part of the PE (c.f. Eq. ) Indeed, looking at the dimension-8 Hilbert series

for generic Ny, we find the following terms
PQ _ 1 2/ n2 3 1 o/ 3
Hy 2 SN (Nj-1)dadPe+ SN (N} 1) dad’l, (7.10)

which evidently vanish for Ny = 1. These terms can only appear for Ny > 1 because of the
antisymmetric colour structure of the down quarks in the corresponding operator which only
gives rise to a non-vanishing operator if the down-type quarks come in at least two different
flavours (c.f. operator Oggeq in Tab. .

Even after adding AH to the Hilbert series in Eq. (7.8)), it still does not quite give the
correct number of non-redundant operators and some further adjustments have to be per-
formed. First of all, the redundant operator Oy,g = 0*a (HTZ'(B)#H) corresponding to the

term da HHD in HEQ is not removed automatically This is due to the fact that the oper-
ator can be removed by a global hypercharge transformation on the Higgs field which we have
not implemented into the Hilbert series. As discussed in Sec. all derivative couplings
of the ALP to SM particles are only defined up to redefinitions by exact global symmetries.
We have not imposed the condition 9,,j = 0 for conserved currents in our approach, which as
discussed in Sec. can remove operators with derivatively coupled classically conserved
currents d,a j* from the EFT. In principal, we could remove redundancies of the form d,j* = 0
using an appropriate shortening condition for a conformal character as was done to remove
the EOM redundancies [64|. In order to do this, one would have to use the conserved currents

“We can check that this does not happen again at higher mass dimensions using Eq. . Without
imposing a shift symmetry any operator that exactly gives an EOM-redundant operator upon using IBP will
be removed because one derivative is no longer fixed to the ALP by demanding derivatively coupled ALP
interactions.
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themselves as building blocks in the Hilbert series. This is impractical in our case, because
all fermions obviously not only come in the form of such currents and hence, it is easier to
just remove such redundancies by hand at the end.

Secondly, there are the anomalous operators of the form aF F at mass dimension 5 which
do not appear in the Hilbert series. This is because we use da as a building block to directly
impose the shift symmetry of the ALP. One can easily show by moving the derivative from
the first field strength by IBP to the ALP that this operator is shift-symmetric (up to non-
perturbative effects). Then however, the gauge field A, appears by itself and we would have
to use the gauge fields themselves as a building block which is practically unfeasible with the
Hilbert series, and would also be inconvenient from the perspective of constructing gauge-
invariant operators. To include these operators systematically, it will prove useful that we
also build an operator basis for an ALP without a shift symmetry in Section where we
use just a as a building block. Noticing that the aF f—type operators will remain after taking
the shift-symmetric limit we have a way of taking these operators into account.

For most terms in the Hilbert series shown in Eq. (7.8) it is straightforward to build
Lorentz- and gauge-invariant operators from the spurion content and get the correct number
of independent operators as indicated by the Hilbert series. There is one exception that is
a bit more involved, the operators of type (0a)2X? at dimension 8. From the Hilbert series
in Eq. , we can read off that we should expect three non-redundant operators X%(aa)Z,
X1, Xgr(0a)? and X%(0a)?. However, one can naively build 4 operators

duad*aB,,B"", 9,a0"aB,,B"", 0,a0"aB"’B,,, 0,a0"aB"’B,, (7.11)

sharing a complicated relation that renders one of the operators redundant. We can use the
Schouten identity (see e.g. Ref. [306])

Juv€apys t Gua€pyév t Gup€yéva + Guy€svap + Jus€vapy = 0 (7'12)

to relate the two operators with a dual field strength. Contracting the indices in the identity
with a generic rank-2 tensor 7" (which we identify with 0*a0”a) and an anti-symmetric
rank-2 tensor X, yields

- 1 _
T XX, = 11X, X (7.13)

explaining the number of operators of that type in the Hilbert series. Our complete basis up

to mass dimension 8 can be found in Tabs. and in App.|7. A1

There are several ways to cross-check our results. As a sanity check for our implementation
of the Hilbert series we can use the a’ terms to compare our results for the Hilbert series with
Ref. |85] and the operators with the SMEFT operator basis up to dimension 8 |63/ |87}89].

Furthermore, some results for the ALP EFT are available in the literature up to dimen-
sion 7. Our results at dimension 5 are consistent with the usual basis at dimension 5 (see e.g.
Ref. [175]). The results at dimension 6 are consistent with Ref. |176| 196, 296, 297|. Some
results at dimension 7 can be found in Ref. |196} [298| and are consistent with our operator
basis. More results for higher-dimensional operators can be found in Ref. [194] where the
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authors match some of the operators in the chiral electroweak EFT extended with an axion
to the one in a linear realisation. All operators they find are either in our basis or equivalent
to operators in our basis due to field redefinitions and IBP.

It is also rather straightforward to construct the Hilbert series for a Green’s basis of the
ALP EFT by using the characters computed with the long representations that include EOM
redundancies. A complete discussion is beyond the scope of this work. Instead, we show a
simple example of the Hilbert series at dimension 6 for the Green’s basis. After the characters
for the long representations are used as an input for the Hilbert series, it can be computed
just like for the EOM-reduced single particle modules. The dimension-6 Hilbert series takes
the following form

HE?Q = (8a)?HH' + (8a)?D?. (7.14)

Comparing with the dimension-6 Hilbert series in Eq. , the first term is the same as in the
non-redundant basis, which correspond to the operator 8Ha8“a|H |2, while the second term
is an EOM-redundant term and corresponds to the operator 02ad%a. All other operators at
higher mass dimensions can in principle be constructed in the same way using the Hilbert
series as a guide.

To understand how the number of operators # (’)Z_Q behaves as a function of the number
of flavours at each mass dimension d;, we set all field spurions in the Hilbert series with full
flavour dependence to unity such that only the dependence on Ny remains. By furthermore
rephasing all fermionic spurions with lepton number and baryon number transformations
respectively, i.e. £ — epl, {1 — ezlﬁ and g — 613/3(], ¢ - e_Bl/3qT, we can in addition obtain
the number of operators that break lepton and baryon number at each mass dimension. Then
for each power of ep, in the following expressions, baryon number and lepton number are
violated by one unit. After taking care of the caveats we have mentioned above by hand, we

ﬁn

#0,% = 2- Ny +5N7,
#0520 =1,
#07% = 5+ 39NF,
2N? 8N}
#0FQ = (13+11N%) + (_Tf + Tf) eper, + (ANF +2N}) €2, (7.15)

(7.16)

The total number of operators is obtained by setting ep ;, — 1. More results for the higher mass
dimensions are shown in Ref. |2| and its ancillary material. Notice, that baryon and lepton
number-breaking operators only appear at mass dimension 8. This is due to the derivative
coupling of the ALP that only allows for baryon and lepton number-breaking terms through
the coupling of J,,a to 4-fermion operators.

5 After all terms have been simplified, we make the replacement €;™ — €/, such that all operators breaking
baryon and lepton number by a positive or negative value n w.r.t. the conserving case are counted in the same
way.
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Figure 7.1: The number of operators in the aSMEFT with and without a shift symmetry for the ALP plotted
against the mass dimension for Ny = 1 and Ny = 3 number of flavours.

In Fig. 7.1, we have plotted the number of operators of the ALP EFT up to mass di-
mension 15 for one and three flavours of fermions. It can be seen that the operators grow
rapidly with the mass dimension as is common in effective theories [307]. There exist also
some unusual features due to the derivative nature of the shift-symmetric ALP couplings. For
instance, at dimension 6 there exists only a single operator. At higher mass dimensions on the
other hand, the multiplicity of operators increases in the same manner as one is accustomed
to from other EFTs.

7.3.2 aSMEF Tpg

In this section, we will work out the difference between an ALP and a generic pseudoscalar.
To this end, we relax the assumption of a shift symmetry for the pseudoscalar, which no
longer necessarily has to be connected to the spontaneous breaking of a PQ symmetry. How-
ever, there can still be such a connection by assuming that the spontaneously broken global
symmetry is only approximate. Then, all shift-breaking operators are understood as small
corrections to those that conserve the shift symmetry and it is important to understand the
limit of an exact shift symmetry.

As the shift symmetry is now relaxed, the field a itself is now the appropriate building block
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for the Hilbert series. As before, the Hilbert series is computed by evaluating Eq. (2.112) with
the appropriate characters and Haar measures for the given field spurions and symmetries.
For one generation of fermions we obtain up to mass dimension 7

7-[)53@ =a® + aB? + aB% + aG2 + aG% + aW? + aWh + HH' + aH*H™ + aQuH
+ aQTuTHT + anHT + aQTdTH +aLeH" +aLtelH
:aHEM +a®+a*HHT,

HEL =01 aH? L + aHPP L + PHHID?

HED =0 15 4 a HEMPET 4 0QQTBLD + aQQT BRD + aQQTG LD + aQQ'GrD
+ aQQTWLD + aQQTWRD +auu BLD + auu' BRD + aun' G D + aun' GRrD
+add' By D + add' BRD + add' G D + add'GrD + aLL'ByD + aLL'BgD  (7.17)
+aLL'W.D + aLL'WgrD + ace' B, D + aee' BrD + 2aQQ'HHD
+auw' HH'D + add"HH'D + 2o LLYHH'D + ace' HH'D + o B, H H D?
+aBrHH'D? + oW, HH'D? + aWrHHD? + a H> H™?D? + 2aQuHD?
+2aQ T HID? + 2aQdHD? + 2aQ'd'HD? + 2aLe H'D? + 2aLTe’ HD? .

At dimension 5, there exists no term where the ALP is derivatively coupled to fermions
corresponding to HEQ computed previously. We haveﬁ

HED = a1V UM, (7.18)

which is the well-known result that, at dimension 5, the fermionic operators with the deriv-
atively coupled ALP are redundant by the EOM [176] |194, 212 [213]| and can be projected
on the ALP-Yukawa operators. Hence, only keeping the ALP-Yukawa operators is sufficient
to capture both shift-breaking and shift-preserving terms. Allowing for the lepton number-
breaking Weinberg operator in the dimension-5 SMEFT, we find the following relation at the
level of the Hilbert series

HED = aHED + a HEMEFT L 9[Q (90 — aD) . (7.19)

Here, 7—[1}%7 is the Hilbert series of the ALP EFT with a as a building block, HZSMEFT is the
Hilbert series of the SMEFT and HEQ is the Hilbert series of the ALP EFT with Oa as a
building block, each at mass dimension ¢. The expression in the bracket is understood as
replacing the spurion da of the derivatively coupled ALP with the ALP spurion a and the
spurion of the covariant derivative D. This simplifies identifying the explicitly shift-symmetric
derivatively coupled interactions between the ALP and the SM particles.

We conjecture that this relation at the level of the Hilbert series holds true at any mass
dimension beyond dimension 5 In general, we conjecture that the Hilbert series fulfils the

SHere, H3™ does not contain the kinetic term of fermions and scalars, because they are proportional to the
EOM |64].

"We have checked explicitly that this separation appears up to mass dimension 15 and believe that it



158 7.3 aSMEFT

following condition at mass dimension n

HEQ - GHJEE +a HMEFT L 24PQ(9a - aD) , n>>5 (7.20)

which we have verified to hold true up to n = 15. In the following, we will refer to this
relation as the Peccei—Quinn breaking isolation condition or shift-breaking isolation condition.
We want to emphasise the importance of this equation. It states that above dimension 5 the
EFT splits into a part generated by simply multiplying the operators at the previous mass
dimension with an ALP field — which immediately follows from the singlet scalar nature of
the ALP — and a second part which is exactly the EFT built with a derivatively coupled,
i.e. explicitly shift-invariant ALP. This separation of the shift-breaking and shift-symmetric
sectors of the ALP EFT can be captured with the Hilbert series in a concise way. We will
explore the implications of this further in Section m

Constructing the operators for the shift-breaking interactions of the ALP is trivial, as
the ALP is a singlet both under the Lorentz and the gauge group. Then, any gauge- and
Lorentz-invariant operator can be multiplied by an ALP to receive a new Lorentz invariant
operator. Following Eq. , it can be seen that, by this construction, a complete operator
basis is obtained after adding the derivatively coupled terms that we have constructed in

Section

Our complete basis for an ALP without a shift symmetry coupled to the SM particles at
mass dimension 5 can be found in Tab. and the operator bases up to mass dimension 8 can
be constructed easily with the shift-breaking isolation condition (see App. for details).
Since a potential can be written down for the ALP after relaxing its shift symmetry, we will
also show the renormalisable part of the Lagrangian here listing the remaining terms we have
not constructed thus far. The renormalisable Lagrangian is given by

2
1 m
&= 50u00"a~ TO @’ +Csa® +Cpaa* + Cyppo a|HI? + Co gz | HI? . (7.21)

To cross-check the completeness of our operator basis, we have compared it with the operator
bases of Refs. [276}|308| and find agreement for the terms breaking the shift symmetry.

As before, we can obtain expressions for the number of operators as a function of the

number of fermion generations at each mass dimension by setting all spurions to unity. We
find

#02% =9+ 6N?,
# 0P - (10+6NF) + (Ny + N3) el

holds also true for all higher order operators. To get a redundancy like at dimension 5, an operator with a
derivatively coupled axion has to fulfil an EOM relation upon moving the derivative from the axion to the rest
of the operator using IBP. As the operators become more and more complicated for higher mass dimensions,
it is less and less likely that through this procedure a structure is obtained which exactly resembles the EOM
of an SM particle as at dimension 5.
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315N2 N3 107N% IN? 19N4
#(’)?Q:(30+ 4f+7f+ 4f + 3f+NJ§+ 3f eBeL+(Nf+NJ§)e%,
359N% N3  107N? 41N? 3TN?
#0290 = [43+ Lo LT3N, + L4 N3+ L) (7.22)
8 A 9 4 FT3 T

+ (2N} + 16N}) eper .

In the case of a generic pseudoscalar, lepton number-violating terms already appear at dimen-
sion 6, whereas for a shift-symmetric ALP lepton and baryon number-violating terms only
appear at dimension 8. This is because the ALP no longer has to be derivatively coupled,
and can for instance simply multiply the Weinberg operator of the SMEFT to give a lepton
number violating operator at dimension 6. More results can be found in Ref. [2].

In Fig. we have also plotted the number of operators against the mass dimension for the
SMEFT extended with an ALP without a shift symmetry. Since new singlets under the gauge
and Lorentz group can trivially be built by multiplying operators appearing at earlier mass
dimension by the ALP field a once the shift symmetry is relaxed (c.f. Eq. (7.20)), the total
number of operators counted by the Hilbert series increases steadily with the mass dimension.
Comparing the number of operators at dimension 5 between the explicitly shift-symmetric
and non-shift-symmetric Lagrangian in Fig|7.1| the difference 63 —-44 = 19 corresponds exactly
to the number of shift-breaking invariants (13) constructed in Chap. |§| plus the number of
conditions that have to be imposed on the bosonic shift symmetry breaking operators (6) (c.f.
Tab. . We will discuss the shift-symmetric limit in more details in Sectionm

7.3.3 Taking the Shift-Symmetric Limit

We have already discussed the implications of the EOM redundancy in the ALP EFT at di-
mension 5 in Sec. and Chap.ch: ALPEFTShS. To properly take the shift-symmetric limit,
the Wilson coefficients of the dimension-5 fermionic operator EFT of a generic pseudoscala

L% = -LY.He - QY,Hu-QY;Hd + % (LCueHe + QCauHu+QCugHd) +hec..  (7.23)
have to take the following form to describe a shift-symmetric ALP
Cou =1(CQYy, - Yy Cy), Coa=1(CoYy-YqCy), Coe =i (CrY. -YcCe) . (7.24)

These matrix relations lead to difficulties in the interpretation of the shift symmetry in the
EFT picture because the same operator has to capture physics corresponding to the shift-
breaking and shift-symmetric sector which usually arise at very different scales. Furthermore,
taking the shift-symmetric limit in the EFT where one uses a as a building block requires some
care. This is resolved by the 13 order parameters for shift symmetry constructed in Chap. @
allowing to implement the different power countings of the shift-breaking and shift-conserving

8Here, we have introduced new notation for the Wilson coefficients to make the conventions for the operator
basis later more systematic.
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sector in a straightforward way. From now on, we will refer to the Lagrangian in Eq. (7.23)
as the Yukawa basis given that the relations in Eq. (7.24) are fulfilled.

We will now explore if similar relations, that have to be imposed in order to take the
shift-symmetric limit, exist in the non-shift-symmetric EFT at higher mass dimensions using
the operator basis we have derived above. The first observation we want to make is based
on the Peccei-Quinn breaking isolation condition in Eq. (7.20). For n > 5 we have found
previously

HPU = o 1L - g HSMEET L 4PQ (g aD) (7.25)

The Hilbert series which is obtained by imposing the shift symmetry explicitly, ”HEQ, appears
fully in the Hilbert series of the theory where a itself is used as a spurion. This implies that
beyond dimension 5 no further EOM redundancies appear and all operator structures stay
non-redundant in the presence of shift-breaking interactions. Therefore, if one decides to work
in the operator basis with derivatively coupled interactions at dimension-5, all shift-symmetric
couplings are exactly captured by the derivative interactions.

This is however only true in the operator basis, where the ALP is derivatively coupled to
the fermions at dimension 5. One has to be more careful when working in the Yukawa basis,
which is the more natural basis in the presence of shift-breaking effects as we will comment on
below. Here, care has to be taken while removing the EOM redundancy at dimension 5 when
higher-order operators are considered in the EFT. To remove the redundancy at dimension 5
in the presence of higher dimensional operators, field redefinitions have to be used instead of
simply plugging in the classical EOM of the fields to remove the derivatively coupled operators
at dimension 5 and all terms generated by the field redefinitions up to the considered order in
the EFT have to be kept. We have done this carefully in App. where we find that the field
redefinition removing the EOM redundancy at dimension 5 indeed generates more (seemingly
shift-breaking) operators whose Wilson coefficients are fully constrained by relations similar
to those in Eq. restoring shift symmetry in the EFT.

It is important to keep track of this at higher mass dimensions, as in the Yukawa basis the
same operator captures shift-breaking and shift-preserving effects, which can come with very
different suppression as the spontaneous and explicit breaking of the PQ symmetry usually
arise at very different scales. To implement the power counting correctly for both sectors,
flavour invariants acting as order parameters for the ALP shift symmetry as presented in
Ch. @Should be constructed for the matrix relations of the higher order operators generated
by the field redefinition removing the EOM redundancy at dimension 5.

These matrix relations should also be kept in mind while taking the shift-symmetric limit
going from the EFT of a generic pseudoscalar to the EFT of a shift-symmetric scalar in the
Yukawa basis. Instead of setting all non-derivatively coupled operators to zero, one should
set them to the constrained form that is found applying the appropriate field redefinitions.
Alternatively, after constructing the flavour invariants one can simply perform the compu-
tation without keeping the shift symmetry in mind and express the final result in terms of
the invariants. Then, it is straightforward to identify the shift-breaking and shift-preserving
contributions.

Note that the Yukawa basis is in some sense the more natural basis to perform this
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limit, because the EFT of a generic pseudoscalar only contains the Yukawa couplings of
the pseudoscalar to the SM fermions, but not the derivatively coupled interactions due to the
EOM redundancy. Working in the shift-symmetric EFT in the Yukawa basis allows to directly
take the shift-symmetric limit or compare the couplings in the case of a weakly broken shift
symmetry. If one were to work in the derivatively coupled basis instead, there is no direct
way to map or compare the shift-breaking couplings of the EFT of the generic pseudoscalar
to those of the shift-symmetric scalar. We discuss further relations that have to be imposed
besides those presented in Eq. (7.24) in App. where we perform the necessary field
redefinitions to go from one basis to the other while carefully keeping track of all generated
terms up to the necessary mass dimensions.

The additional constrained interactions are crucial for explicit calculations in the Yukawa
basis. If the additional terms are not included, one will run into results in the shift-symmetric
EFT in the Yukawa basis which are not shift-invariant. E.g. if two insertions of the dimension-
5 ALP-Yukawa couplings are considered, one must also add the diagram with the constrained
interaction of the dimension-6 ALP-Yukawa coupling (see for instance Refs. [309-311| for
recent studies, where these effects where correctly taken into account). Note that up to
dimension-7 only the ALP-Yukawa operators with higher powers of the ALPs have to be con-
sidered and only starting at dimension-8, more operators with constrained Wilson coefficients
are generated by the field redefinition. In addition, because ALP-dependent field redefini-
tions on the SM fermions are applied to change the operator basis, also SMEFT operators are
affected by these field redefinitions, which first appear at dimension 7 for a lepton number-
conserving SMEFT. Therefore, if mixed SMEFT-ALP EFT corrections are computed, those
effects also have to be taken into account to preserve the shift symmetry up to the given order
in the EFT.

It is also instructive, to perform the analysis with on-shell amplitudes |312| by imposing
Adler’s zero condition [313|(314|. Here, by carefully imposing Adler’s zero condition the well-
known conditions on the dimension-5 couplings and more relations at higher mass dimensions
are found, consistent with our analysis with the Hilbert series and field redefinitions. In the on-
shell approach, these relations can be understood from fundamental properties of amplitudes
like analyticity and regularity of the amplitude in the limit of soft ALP momenta (for details
see Ref. |312]).

For the aLEFT, that we will construct in Sec. an analysis of the shift-symmetric limit
can be performed in a similar fashion as the one presented here. Therefore, we will skip the
discussion of the shift symmetric limit there.

7.3.4 CP Violation in the aSMEFT

Adding C and P transformations to the Hilbert series as described in Section enables
us to count the number of CP-odd and CP-even parameters in the effective Lagrangian sep-
arately. In Tab. we have summarised the results for the aSMEFT with and without a
shift symmetry for the ALP. Furthermore, we show the number of CP-violating couplings
which are the number of CP-odd couplings that cannot be removed after using the freedom
of performing rephasing transformations on all fermion fields that leave the renormalisable
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i | aSMEFTpq aSMEF Tpey
‘ CP-even  CP-odd CP-violating ‘ CP-even CP-odd  CP-violating
5 6 0 0 6 9 9
29 15 9 30 33 27
6 1 0 0 11 7 6
1 0 0 40 36 24
7 26 18 18 60 86 81
189 167 128 1647 1830 1062
8 22 10 6 123 85 61
271 249 33 2872 2667 912
9 427 356 332 942 1042 945
12662 12336 6807 37345 37999 20476
10 356 289 134 1678 1511 979
12702 12299 1733 95929 94872 21555
11 7053 6717 5926 15978 16437 13942
513504 509377 235519 1651318 1654805 702019
12 7491 7184 2812 29909 29143 16295
910536 908691 60630 4301474 4296142 759162
13 127404 125817 104553 285800 287958 227861
19442371 19421423 7978922 61499879 61539007 22689934
14 166364 164745 54104 583011 579234 279807
45535198 45521724 2494107 194761001 194708399 25144913
15 2400015 2392287 1868885 5279487 5289614 3909730
810986291 810842733 284971909 | 2403111000 2403360999 764583481
Table 7.1: Number of CP-even, CP-odd and CP-violating operators for aSMEFTpq (left) and

aSMEFTpe (right) from dimension 5 to 15. In each dimension, the two rows correspond to Ny = 1 and
Ny = 3 respectively.

part of the Lagrangian invariant, i.e. U(l)%i x U(1)p rephasings for the aSMEFT. In this
analysis we turn on one operator at a time, such that all possible rephasings can be used for

each operator.

In the bosonic sector this counting is straightforward, because all bosonic operators in
our basis are eigenstates of CP. Then, those operators which transform with a sign under CP
are CP-violating. In the fermionic sector the identification of all CP-violating couplings is
complicated by flavour transformations, which can be performed on top of the CP transform-
ation to remove CP-violating parameters. Therefore, it is advisable to use flavour invariants
to characterise CP-violating parameters as was discussed for the SM in Sec. and for
the SMEFT in Sec. The flavour invariants automatically keep track of this additional
reparameterisation freedom that we have just described.
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In the aSMEFTpg;, the dimension-5 CP-violating Hilbert series is given byﬂ
%J;gPV =a®+aB*+aW?+aG? + a*H? + aH* + 3aLHe + 9aQHu + 9aQHd , (7.26)

from which we can count the number of CP-violating parameters in each operator. In the
fermion sector of the dimension-5 aSMEFTpgy, all couplings are described by 3 generic complex
3 x 3 matrices Cye, Cyq and Cyq.

Following the procedure for the SMEFT operators [103} [104| summarised in Sec.
the following flavour invariants can be found capturing all primary sources of CP violation in
the leptonic sector of the EF

ReTr(CoeYy), ReTr(X.CoeYd), ReTr(X2C.Y/]), (7.27)

where we repeat the definition of X, 4. = Yu,d,eYJ,d,e' Note, that the number of flavour
invariants exactly match the corresponding term +3aL He in the Hilbert series. Setting these
invariants to zero yields the sufficient and necessary conditions for CP conservation in the
presence of the operator at hand. In the quark sector we find the following independent
invariants

Loooo (CauYy)) s L1000 (CauYy ) s Lotoo (CaunYy)), Li100 (CauYyl) s Lotio (CanYy), (7.28)

L2200 (CanYy)) s Lo220 (CanYy), Liazo (CauYy) s Lotz (CanYy) .
where we have defined Lgpq(C) = Re Tr (X{fXSX;XgC ) and similar relations hold true in the
down sector with CauYJ - CadeT. These are exactly the flavour invariants, we have already
found in the previous chapter in Eq. . Here, we have verified this counting by comparing
the 18 flavour invariants to the terms +9aQHu + 9aQQHd in the Hilbert series. In total, 21
CP-odd flavour invariants for Ny = 3 have to vanish for CP conservation in the fermionic
sector of the EFT and 6 CP-odd operators in the bosonic sector have to be set to zero, which
can be easily identified in Tab. This is consistent with the counting in Tab. For
higher dimensional operators, the CP-even, CP-odd and CP-violating Hilbert series can be
found in Ref. |2].

In the dimension-5 aSMEFTpq, all couplings are described by 5 hermitian matrices in the
derivatively coupled basis. Interestingly, no primary sources of CP violation can be written
down for the leptonic sector because there exist no quantities charged under rephasings of
the lepton fields in the SM Lagrangian. This is consistent with the results in the aSMEFT pey
where we have to impose shift symmetry on the invariants in Eq. (7.27). Because these CP
invariants are identical to those capturing the shift symmetry presented in Eq. , there

9We have redefined ¢ to ¢ to simplify the notation here.

10 A5 introduced in Sec. we denote all CP-odd couplings as primary, which can form a flavour-invariant
quantity at leading order in the EFT. For instance, the complex 3 x 3 matrix C,. has 9 CP-odd parameters.
However, there only exist three flavour-invariant CP-odd quantities at the leading order in the EFT expansion
as can be seen in Eq. . All other CP-odd parameters can only appear at subleading orders in the EFT
expansion. This changes in the quark sector due to the existence of the CKM matrix which being charged
under rephasings can give rise to more primary sources of CP violation. See also Ref. [103]|.
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are no remaining primary sources of CP violation in the leptonic sector of the shift-symmetric
EFT. This is also captured by the CP-violating Hilbert series

HE qpy = 30a.Q* +30au® + 30ad?, (7.29)

where no terms including lepton fields are present due to the application of lepton family
number rephasings.

In the quark sector we find the following CP-violating invariants for the couplings Cy,.q

L1100 (Caq) s L2200 (Coag) » L1122 (Coag) (7.30)

where Eabcd(c) = ImTr (XgXSXfLXg’C and similar relations can be found for Cy,, and
Caqaa by replacing Cp.g — YuCaauYJ and Cpaq — YdCaadeT respectively. The number of
flavour invariants matches precisely the number of CP-violating couplings counted by the
Hilbert series in Eq. .

We can again compare with the EFT of a generic pseudoscalar by taking the shift-
symmetric limit. For the ALP-Yukawa couplings in the aSMEFT pgy, we have found 18 flavour-
invariant quantities at leading order. Following our discussion in Chap. @ 9 of those have
to be set to zero, in order to obtain a shift-symmetric Lagrangian giving agreement with the
shift-symmetric theory in the Yukawa basis. We can furthermore compare with the counting
in Tab. In the aSMEFTpq, all CP-violating couplings are forbidden in the bosonic sector
and, as we just counted, there are 9 CP-odd flavour invariants for Ny = 3. This is consistent
with the counting at dimension-5 in Tab.

7.4 aLEFT

Following our previous implementation of the SM particle spectrum extended with an ALP
for the Hilbert series, it is relatively easy to also construct the Hilbert series for the EFT
below the electroweak scale.

As discussed in Section the three main differences are the different particle content
where the heavy particles of the SM, the W, Z, h and t, now have been integrated out, the
fact that the left-handed fermions are no longer related through their appearance in SU(2)
doublets and the smaller gauge group SU(3).xU(1)em due to the breaking of the electroweak
symmetry group SU(2)rxU(1)y. Since the gauge group below the EW scale is only SU(3). x
U(1)em, both a linear and a non-linear realisation of the EW symmetry can be captured in the
LEFT. Hence, we can describe effects of HEFT-like ALP couplings to the SM particles [194,
202} 315| in the LEFT extended with an ALP.

Knowledge about the effective description of interactions at those energies is also of phe-
nomenological importance for experiments operating at these scales. For instance, exotic
meson decays give strong bounds on the flavourful couplings of the ALP to the SM fermi-
ons |189|. Running further to lower energies, constructing the QCD chiral Lagrangian |145|

" The difference between L and L is the imaginary and real part that is taken for the respective invariants,
such that both invariants capture the CP-violating couplings in the EFT.
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175, 212} |316| extended with an ALP and matching it to the aLEFT would complete a full
EFT description beyond leading order at all scales. Here, depending on the mass of the axion,
it can also be integrated out above the QCD scale and captured in a low energy EFT of the
QCD mesons without the ALP in the particle spectrum.

7.4.1 aLEFTpq

We compute the Hilbert series for the effective operators order by order in the same way as
for the EFT above the electroweak scale. Up to mass dimension 7, we find

H;LEFTPQ =0da uLuTL +da uRuE +0a deTL +0a deE +0a I/Ll/z +da eLeTL +da eRe}r%

- 0aF1D - da FrD - daD?,

aLEFTpq
He =0,
’H;LEFTPQ = (da)’upup + (8CL)2quLu1rL2 +(da)’dpdg + (E)ML)QQZEdeL2 +(da)?v? + (8@)21122

+(0a)?erer + (80,)2626;% +0a uLuTLFL +0a uLuEFR +0a uLuEGL (7.31)

+ 3auLuEGR + aauRuEFL + aauRukFR + 8auRu;r%GL + &LuRuJIf{GR

+dadrd) Fr, + dadgrdl, Fy, + dadpd} Fg + dadgrd},Fr + dadrdl G
+dadrd,Gp, +dadpd) Gp + dadprdl,Gr + davivl Fi + davpy! Fr

+ 6aeLeTLFL + Oda eReTRFL + Oda eLeTLFR + aaeReTRFR,

and more results can be found in Ref. |2|. With these numbers as a guide, the effective
operators can be constructed, which like in the aSMEFT is mostly straightforward up to
some relations among operators due to relations in the algebra of the groups appearing in the
problem. Due to the increased number of independent fermions below the electroweak scale,
one particularly challenging class of operators to construct is those of 4-fermion operators
coupled to da at dimension 8. Here, one has to keep track of all the Fierz identities among
the operators (see e.g. Refs. [272)317|), which eventually leads to our set of non-redundant
operators found in Tab.

Below the EW scale, the exact flavour symmetries of the renormalisable Lagrangian change
with respect to those above the EW scale, as the left-handed fermions no longer come together
in doublets. Therefore, all mass terms can be diagonalised and the misalignment captured
by the CKM matrix that one finds above the EW scale is only present at 1 /m%v in the EFT
expansion allowing for more possible rephasings for the quarks. As in the lepton sector above
the EW scale, every quark flavour can now be rephased by itself instead of the universal
baryon number rephasing. In the lepton sector, the charged leptons keep their lepton family
number rephasing properties while the neutrinos do not benefit from any flavour symmetries
due to the lepton number breaking mass term v7,v7 +h.c. that we allow for in the most generic
low-energy Lagrangian. These classically conserved symmetries lead to N, + Ny+ N, conserved
currents that can be used in the dimension-5 Lagrangians to remove operators by imposing
Oug* = 0 after integrating by parts. As in the aSMEFT, we have to impose these conditions
by hand after calculating the Hilbert series. Furthermore, we have to add the anomalous
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Figure 7.2: The number of operators in the aLEFT with and without a shift symmetry for the ALP plotted
against the mass dimension for N, = Ny = N, = N. =1 and N, =2, Ng = N, = N, = 3 number of flavours. Note
that the y-axis has a linear scaling between 0 and 1 to accommodate for the 0 at mass dimension 6.

operators aF'F,aGG to the operator basis by hand as well.

Our complete basis up to mass dimension 8 for an ALP coupled derivatively to all particles
in the SM below the EW scale can be found in Tabs. 7.8, 7.9 and 7.10 in App. 7.B.1. The
operator basis at mass dimension 5 in the aLEFT is consistent with the operators used in
Ref. [212]. As before, we can use the ALP-independent terms in the Hilbert series as a sanity
check for our implementation of the Hilbert series and compare them with the known results
for the operator bases up to dimension 8 in the LEFT [291, 318, 319].

After computing the Hilbert series, we will repeat the analysis of the flavour dependence
as was done for the aSMEFT. As before, we count the number of independent operators for
a generic number of flavours using lepton and baryon number rephasings to single out the
lepton and baryon number breaking operators. Using N, = N, = Ng'? to keep the expressions

12We keep N, independent here, since we want to take the limit N, = N, = Ny = 3, N,, = 2 later amounting
to the usual flavour content of the EFT right below the EW scale after only the top quark out of all quarks
is integrated out.
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more concise, we find

#OMFTPQ _9 9N, 4+ 5NZ - N, + 2N2,
” OaLEFTpQ -0,
#OXPTIPQ _ (18N2 4 10N2) + (Ng+ N3) €2,
# O3 IR (74 23N2 4 36N + 16NN, + 14N? + 52NIN2 + 8N (7.32)
+ (_ﬁ L 10NG 16N3N,, + 16N3N5) eper
TN? 26N} 3 2272 .2
( Nd+T+ +16NdNu+4NdNu)eL

As before, shift symmetry protects from lepton number breaking due to the specific struc-
ture of the derivatively coupled ALP. The lepton number-breaking, gauge-invariant neutrino
mass term U5 vy, +h.c. that can be written down below the EW scale allows for lepton number
breaking already at dimension 7 w.r.t the lepton number-breaking terms at dimension 8 in
the EFT above the EW scale.

7.4.2 aLEFTpgy

We will now proceed by calculating the Hilbert series for the LEFT extended with a generic
scalar field a that can but no longer necessarily has to be connected to the spontaneous
breaking of a PQ symmetry. The first two orders in the expansion of the Hilbert series in the
mass dimension of the operators are given by
LEFT
7—[; P2 -+ dPupup + CLQ’U,EUI{ +a’drdg +a dJr dJr +a IJ% + a21/22 +a’erer

+ aQeTLe}i +aF? +aF3 +aG? +aG%

aLEFT 9
Hg P a8 v dPupup + aguzu}f{ +aldrdp + a3dJr dJr +a 1/]% + CLSI/E +adleren

3.7t

(7.33)
ta’epen+ aQFL + a2FR + aQGL + aQGR +aurupkFy, + aupurGy,

+ auTLuRFR + auLuRGR + adeRFL + adJr dl pFR+adpdrGy

+adT dt rGRtaererly +aeL FR

From these two orders it is already clear that the Hilbert series features the same structure
as the Hilbert series of the aSMEFT. As before, operators can simply be built by multiplying
operators at the previous mass dimension with a due to the singlet pseudo-scalar nature of
the ALP. Furthermore, we have checked up to mass dimension 15, that there exists a similar
PQ-breaking isolation condition beyond dimension 5 that we have found for the aSMEFT

,HaLEFT/BQ ,HaLEFT% %LEFT ,HzLEFTpQ (8@ - aD) (734)

Therefore the same discussion about shift symmetry that we will present in the following
section also applies to the aLEFT. The complete operator basis at dimension 5 can be found in
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Tab. Based on the shift-breaking isolation condition in Eq. , the higher dimensional
operator bases can be constructed easily, see App. for details.

In the aLEFT, one finds that the operators coupling one ALP field to the fermions naively
already appear at dimension 4 by studying the renormalisable part of the Lagrangian

2
1 m B
24 :iauaﬁ“a - TmOQZ + Ca3a3 + C’a4a4 + % (ELCEEUR + dLC;?de + éLCfeReR (7 35)

+7CoFVE +hie.)

that we have neglected up to this point. If one performs a matching of the aSMEFT to the
aLEFT one obtains
02

{Cauacadacae} and Cgf=3 aLH (736)

V2

after expanding the Higgs around its VEV v and the operators can be identified with dimension-

{CSR CS;Z CSR —

au

5 and dimension-6 operators in the aSMEFT. This leads to subtleties in the counting of the
operators, since the dimension-4 couplings are not properly counted by the Hilbert series and
we have to rely on the next mass dimension to perform a comparison to the derivative basis.

We perform this comparison by considering the numbers in Fig. to see if we can
understand the results in terms of the invariants constructed in the low-energy limit in Chap. @
As in the dimension-5 aSMEFT, the derivatively coupled ALP interactions with the fermions
become redundant in the presence of the dimension-5 ALP Yukawa couplings for a generic
pseudoscalar. We have just discussed that the Yukawa ALP operators already appear at
mass dimension 4 in the aLEFT, which we have to keep in mind in our discussion. Looking at
Tab. we can see that the same number of ALP-fermion interactions appear at dimension 4
and dimension 5 in the aLEFT because one operator can just be obtained by multiplying the
other one by a. Hence, we can rely on the numbers at dimension 5 to understand the counting.

The difference at dimension 5 in Fig. can be explained as follows. Following our
discussion in Sec. the 13 conditions for shift invariance reduce to 8 invariants below the
electroweak scale at the leading order in the EFT. The four invariants appearing due to the
correlations induced by the left-handed quark doublet get shifted to higher mass dimensions
in the l/m%/v expansion after breaking the EW symmetry in the aSMEF and one more
invariant is removed because the top quark is integrated out. With respect to the discussion
in Chap. @ where we neglected neutrino masses, we also allow for lepton number-breaking
neutrino masses here. This implies that there are an additional 3 relations in the fermionic
sector, totalling 11 conditions that have to be imposed in the fermionic sector of the EFT
below the EW scale for shift invariance to be preserved. Then, we have to subtract the 11
conditions obtained from the fermionic sector at dimension 4 (which are counted in the same
way at dimension 5), the 1 condition obtained from removing the operator a® and the 2
conditions obtained from removing aF'F and aGG from the 61 terms at dimension 5 which
yields exactly the 47 terms in Fig.

131f one starts from a HEFT-like scenario, these correlations will not be there in the first place which is both
captured in the aLEFT in higher-dimensional operators upon matching to a HEFT-/SMEFT-like scenario.
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We have also once more performed the counting of operators for each mass dimension
by setting all spurions to unity and applying the same procedure as before to single out the
lepton and baryon number violating terms. We find

# O _ (5 AND 4 2N2) + (Ng+ N3) €2,
# O _ (50 10N2 + 6N2) + 2N2€2
131N? 3N3 87Nj] f
#OaLEFT% (7 + d 2d * 4 1 10N3N, + 19N> + 32N3N? + 5N3)
4N2 10N}
- - Nd 4NdN +10NdN +10NdN €ERBE],
+(Ng+ 3Nd +2Nj3 +6N] + 10NJN, + NgN2 + 3NIN2) €7
N2 N4
( ) €L (7.37)
3351\72 N3 303N
O e (14 ;20 +# L 4 4NN, + 53N] + 1LONIN + 17N;1)
4N2 34N§ 2 3 2772

+ (4Ny + 10N7 - 3NJ + 19N, + 34NN, — NyNZ + 9N N7 ) e,

N? Ni
+-—4+ 4 EL-
6 6

Again, we only show the leading results here and the remaining results with full spurion and
flavour dependence can be found in Ref. [2|. Note, that due to the operator avv§ +h.c., a
lepton-number violating term can already be written down at dimension 4 (it has the same
dependence on the number of flavours as the corresponding term at mass dimension 5 quoted
at the end of #(’)SLEFT% in Eq. ), which is the operator that captures the effects of
the derivatively coupled operator d,a v;y"vy, that does not violate lepton number. This only
makes sense if the coefficient of avvf + h.c. is proportional to the renormalisable spurion of
lepton number breaking m, which is indeed the case as one can check from the usual relations

(c.f. Eq. (2.78)) expected at dimension 5.

7.4.3 CP Violation in the aLEFT

In this section we will discuss CP transformations in the aLEFT. The same general discussion
as for the aSMEFT in Section applies. As discussed before, in the aLEFT all fermions
are independent fields and are no longer subject to correlations through linear electroweak
symmetry breaking. This yields the larger exact flavour group U (1)‘:31 xU (1)%1 xU (1)31_, leaving
the renormalisable SM Lagrangian below the EW scale invariant. Keeping this in mind, we
find the following Hilbert series counting the CP-violating couplings in the aLEFTpg at
dimension 5

LEFT
HZ,CPV% =a’ +aF%+aG? + 3d%erep + 6a°v? +2a*upup + 3adrdR, (7.38)
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i | aLEFTpq aLEFTper
‘ CP-even CP-odd  CP-violating ‘ CP-even CP-odd  CP-violating
5 6 0 0 6 7 7
30 17 3 30 31 17
6 0 0 0 12 11 11
0 0 0 69 68 32
7 15 15 15 68 103 85
107 107 49 2995 3231 634
8 116 106 72 294 249 173
4830 4808 698 10620 10362 1467
9 370 307 205 951 1025 709
13691 13379 1860 41320 41790 6120
10 1444 1369 901 4312 4163 2521
61565 61082 8224 455647 454694 33450
11 6836 6518 3759 17727 18058 10168
836128 831563 53634 2683815 2686081 163719
12 28965 28717 15483 75775 75196 38924
4726245 4724749 271917 14249141 14245379 763605
13 126851 125623 63572 321876 323610 158051
25222133 25205553 1305402 94093443 94131583 3848880
14 554379 553104 262485 1385189 1382180 630296
180283648 180272804 6861666 601237390 601188406 19339749
15 2436838 2430984 1084823 5956959 5964595 2569894
1176447813 1176339580 35693696 | 3620363967 3620570946 98145863

Table 7.2: Number of CP-even, CP-odd and CP-violating operators for aLEFTpq (left) and aLEFTper (right)
from dimension 5 to 15. In each dimension, the two rows correspond to Ny de =1 and Ny =2, Nge, =3
respectively.

while the counting of CP-even, CP-odd and CP-violating couplings in the aLEFT up to mass
dimension 15 can be found in Tab.
The number of primary CP-odd invariants decreases in the quark sector and we find the
following three invariants in the aLEFTpey at dimension
SR SR 2SR
ReTr (Cyffm}), ReTr(X,C5fm}), ReTr(X7C5fmi) (7.39)

a

for each type of fermion f =wu,d,e,v. Here, X, gc, = mu,d,eyme,d,e,y'

As we have discussed in the last section, the leading ALP-fermion interactions will move
to dimension 4 in the aLEFT that can be matched to the dimension-5 interactions in the
aSMEFT. We can still use the flavour invariants at dimension 4 to check the results for the

dimension-5 ALP-Yukawa operators because they have the same structure in flavour space.

1f we set Ny =2 and Ng,e =3, there will be only two non-redundant flavour invariants for f = u, and in
total 2 + 3 x 3 = 11 flavour invariants for fermions f = u,d, e, v.
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We just have to keep track of the CP properties which is different for a and a? multiplying the
fermion bilinear. However, since completely generic as well as symmetric coupling matrices
have the same amount of CP-even and CP-odd parameters, the numbers do not change here.

The 11 CP-odd flavour invariants together with the 3 CP-odd bosonic operators at leading
order give 14 CP-violating parameters that can appear in observables at the leading order in
the EFT expansion. Comparing this to the expression of the CP-violating Hilbert series in
Eq. , we find what looks like a mismatch between our counting with flavour invariants
and the Hilbert series in the neutrino sector. However, one has to keep in mind that the
Hilbert series counts all CP-violating couplings, i.e. all couplings that are CP-odd and cannot
possibly be removed by rephasings of the fermion fields. The flavour invariants capture all
physical degrees of freedom that can interfere with the SM at leading order. These numbers
agree if there is a CP-odd rephasing invariant of the Wilson coefficient corresponding to the
flavour invariant at the same order in the EFT power counting.

The Wilson coefficients of the electrons, for instance, allows for the CP-odd rephas-
ing invariants Cge 4 at leading order in the EFT corresponding to the flavour invariants
Re Tr(Xg’l’QCfele) that capture the interference of the EF'T and the SM. Due to the Ma-
jorana nature of the neutrinos, no rephasing invariant exists at leading order in the EFT
that only contains the Wilson coefficient of the effective ALP-neutrino operator. Only after
using the spurious transformation of the neutrino mass term under rephasings of the neutrino
fields, one can build a rephasing invariant quantity which are exactly the flavour invariants
shown in Eq. . This is not captured by the Hilbert series, as it only counts the number
of parameters for each effective operator which cannot possibly be removed by a rephasing.
Once the difference between the number of CP-violating parameters (6) and those parameters
that can interfere with the SM (3) is taken into account, the numbers in Tab. and the
counting using the flavour invariants matches again. For operators at higher mass dimensions,
similar consideration should be taken for operators involving neutrinos.

Turning to the aLEFTpq, we find

Heoy T2 = 30a} . (7.40)

All CP-odd bosonic operators are forbidden by the shift symmetry. In the fermion sector
all couplings are hermitian matrices whose phases can not interfere with the renormalisable
part of the Lagrangian due to the lack of a parameter that is charged under rephasings
below the electroweak scale. Therefore, from our flavour invariant analysis we expect no
CP-violating parameters that can interfere with the renormalisable part of the Lagrangian.
This is compatible with Eq. if the neutrinos are properly taken into account as we just
discussed for the aLEFTpgy.

7.5 Application: Positivity Bounds in the ALP EFT

As an application of our basis, we can study the positivity bounds that are enforced by
fundamental principles of Lorentz-invariant QFT: analyticity, causality and unitarity [320}
321]. The bounds can be imposed by using the optical theorem and contour integrals to
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relate elastic 2-to-2 amplitudes in the forward limit, reduced by the Mandelstam variable s2,
to cross-sections, which are fundamentally positive objects. Interpreting the low-energy as an
EFT, the amplitudes can be computed in terms of the Wilson coefficient of the EFT. Due to
the momentum behaviour of the amplitudes, computing the residue of A/s? corresponds to

differentiating the amplitude w.r.t. s2.

By imposing the minimal conditions of analyticity,
causality and unitarity on the Lorentz-invariant UV theory and its EFT, the positivity bounds
to be derived below have to hold.

The bounds for the operators in the ALP EFT have in the meantime appeared in Refs. [322]
323|, while Ref. |2| and this thesis were written. We will briefly reproduce the results here,
using FeynArts [324|, FeynRules [325| and FormCalc [326| to compute the elastic forward
amplitudes. Considering the 2-to-2 scattering of a superposition of the ALP a and any of the
components of the Higgs fields H = (¢1 + ig2, 3 +igy) gives the following generic structure

of the amplitude
C

s

with some positive numerical prefactor # depending on which particles are scattered. In the

Appsop (5,1) = # (32 +12+ u2) , (7.41)

forward limit (¢ — 0) this reduces to
c ,
Appsos (5) = Apgsope (5,1 = 0) =2#—5 (7.42)

by using s+t +wu =0 (s = —u in the forward limit) for massless particles in a 2-to-2 process.

Scattering generic scalar states s152 — s152 which are defined as

4

4
s1) = Y ailgi) +asla),  Is2) = ;bi!¢i>+b5\a) (7.43)

i-1
gives the following dependence in the forward limit

Coa o

Asysy-s150 (8) = s? [‘ME%% + 2a5bs (a1by + agbs + agbs + asby) —851;4DHQ
1 0(2)

+5 (a§ (b3 + b5 + b3 +b3) + b2 (af +aj + a3 +a3) +2asbs (a1by + asbs + azbs + asbs) ) 8a;fH2 '

(7.44)

Making different choices for the a;, b; one can obtain different positivity bounds on the Wilson
coefficients (see Ref. |322]). For instance, choosing a1.4 = b1,4 = 05a5,b5 = 1 yields the
positivity bound

Coas 20 (7.45)

on the operator only consisting of axion fields. Other choices can give positivity bounds on
linear combinations of the Wilson coefficients appearing in Eq. .

We can get more bounds by considering amplitudes with fermions. In particular there
are two elastic amplitudes which give non vanishing bounds, for both chiralities of fermions.
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They generically have the following form in the forward limit

Coaq
At sapr (8) = z‘s#% (41)2]
Co (7.46)
. a2 D
A (5) = zs#—fi’R [4[1]2),

where # is again some positive numerical factor which depends on the representation of the
fermions under the SM gauge group. We can simplify the spinor structure following the
discussion in Ref.s [327}(328|. We know that

—(12) [12](14) [14] = —su 2° 2,

— [41](12) "2’ 5.

Therefore,
[4]12) = [41](12) =°s. (7.47)

Following the discussion in Ref. [329|, we scatter superposition of flavour states. We get for
the simplified amplitudes in the forward limit

Coa2
* _ 2 * a ’1/1R/LD7P7“
ipljp Ayt sayt, (8) = #8 upu, o

(7.48)
where we have trivially marginalised over the colour index 4. Defining p,. = uyu, as in
Ref. |329|, we find the following bounds for the Wilson coefficients of the fermionic operators

Coa2¢D,pr Ppr 2 0. (7.49)

Lastly, we can bound Wilson coefficients by considering amplitudes with vector bosons. In
the forward limit the amplitudes have the following form

Aaqvisay+ (8) = #5202V (7.50)

where # is again a positive numerical prefactor. Then we get the following positivity bounds
for the operators with vector bosons
(2)

Coaoy <0 (7.51)
Note, that as for the fermion operators only the amplitude where the vectors have the same
helicities is elastic. Therefore, only one kind of operator, chi)zvv out of the 3 operators with
2 ALPs and 2 field strengths at that mass dimension can contribute to the elastic amplitude
in the forward limit.
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Appendices to Chapter 7

7.A Operator Basis for the aSMEFT up to Mass Dimension 8

Using the Hilbert series as a guide, we have constructed independent operator bases for
aSMEFT, encompassing dimensions up to 8, for both shift-symmetric and non-shift-symmetric
theories, which are shown explicitly in the following two appendices.

7.A.1 With Shift Symmetry

For aSMEFT with a shift symmetry, the operator bases from dimension 5 to dimension 8 are
constructed, they are grouped in Tabs. and respectively. To show the different
classes of operators appearing in the operator basis we have defined a reduced Hilbert series,
where we identify fermions with ), field strengths with X, and the Higgs with H, and also
keeping da as a building block. The Hilbert series with N; = 1 for each mass dimension is
reduced to the following

HEQ =500y +3aX?,  HEQ = (9a)?H?,

HEQ =200 ¢* X +40a X H?D + 70a* H? + da H'D + 120a¢* HD,

HEQ = (9a)* +5(9a)**D + 9(da)> X? + 40ab* + 2(Da)? H*D? + 49a > H*D
+(8a)?H* + 6(0a)** H + {20a ¢},

(7.52)

where for the Hilbert series at dimension 5, we have taken care of the caveats discussed in
Section i.e., operator where the ALP is coupled to a Higgs current and the negative
terms are removed, while we have added the aX? terms by hand. As already mentioned in
Section setting Ny = 1 will lead to vanishing terms. In order to construct an operator
basis for general Ny, such vanishing terms should also be taken into account, which are
given as additional terms in the brackets in Eq. and the corresponding operators are
marked with (%) in the tables of operator bases. For instance, the additional terms {20a¢?}
correspond to the operator Oggeq + h.c. in Tab.
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O(’)aL
O@ae

(OF e,
Oaau

Oaad

da? aX?

oua (I_/y“L) 0,5 aBWE’“’
dua (ete) | O, aWJyWI’”V
Oua (QV"Q) | 0,6 aGe,GoH
Opa (uy"u)

oua (cf’y“d)

Table 7.3: Operators in the aSMEFT at mass dimension 5 with da as a building block. Note that Opon =
Ma (HTiDuH) is a redundant operator and can be removed via a global hypercharge transformation |175/212].

Imposing lepton and baryon number conservation at the level of the renormalisable Lagrangian, 3 (1) flavour-
diagonal entries of the operators coupling the ALP to leptons (quarks), for instance Oaqr,ii and Oseg,11, can
be removed |176|. Furthermore, we have used that the shift in the operators of class aX 2 can be removed
using anomalous chiral transformations on the fermion fields making the operators shift-symmetric without
an explicit derivative on the axion field.

Table 7.4: Operators in the aSMEFT at mass dimension 6 with da as a building block.

(0a)?H*

Oaa2H2

dpadtalH|?
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da’X da XH?D

Ooars  0a (IV"L)Bu | Opanp  Opa(H'iD,H)B"
OsuLB ota (I}y”L) E;w Os.HE oua (HTZ'(I_)),,H)E’“’
ObueB 0"a (ev"e) By OsuHW oua (HTiBVIH)WI’“”
Oiucs "a (e7"e) B O sz oua (HTiBVIH)WI’“”
Ovagp  0"a (Q7'Q) Bu dap*H?
Opaos 00 (Q1'Q)Bu | O5) 1o dua (LyPL) | HJ?
Qo Oa (iy'u) By | OF) o 8ua (Ly*o'L) (Hlo'H)
Oyuuis ota (uvy"u) EW OsacH? d,a (ey*e) |H|?
Opaan  0%a (dy'd) Bu, | O5) Oua (Q1'Q) | HI?
Oyudis ota (c]’y”d) EW (’)éi)QHQ oua (Q’y“aIQ) (HTO'IH)
Oparw  a (Lo LYWL, | Opgun dua (uytu) |HJ?
Oporiv  9Ma (f/y”aIL) ’W;{u Obadm? oua (Jq/“d) |H|?
Osaqw  0*a (Q’y”alQ) W/f,, day>?HD +h.c.
Ogaqiy  0"a (@"0'Q) W;{u Oé?eHD Oua(DML) He
Osage *a (QV'T°Q)GS, | O 1) d,a LH (D"e)
Opage  9"a (@"1°Q) GZV ng)uHD Oua (D"Q) Hu
Oowu; Oa (wy'Tu) G2, | O 11 8,a QH (D u)
Opauy O (a"Tu) éfw Oé}z)dHD Oua (D'Q) Hd
Opadc~ Oa (dy'Td)G%, | O, 0 8,0 QH (D*d)
Opuaec O"a (dy'Td) G2, da H*D

Oparr ot (HYiD,H )| H

Table 7.5: Operators in the aSMEFT at mass dimension 7 with da as a building block.
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(9a)*X? (8a)*y*D
(9((92)23 ouadta B, ,B"? Opa2rp  Ouadya (DWBV )
Oéi)gB 0,00"a B* B, Oba2eD ouad,a (é’y“D”e)
Oy duad*a B,,B"° Opa2gp  Opadya (Q’y“(ﬁ”Q)
Oéi)gw Ouadta WJPWI’”p Obu2uD ouad,a (@'y"(l_))”u)
Oéi)gw Opad”a Winrw ! o Osa2aD dpadya ( M DV d)
S;W dyadta WVIPWI”"D (0a)*?H +h.c.
00 904G | Opan  OuadbaLHe
o®), . 0,a0"a GHHPGE Ovazun duad"a QHu
Oyp2c dpadta Gl‘ﬁpéa”’p Opa2dm d,adtaQHd
(Oa)* (a)?H?D?
Ot 8,,a0"ad,ad"a o) e 9uad*aD,H'D'H
(9a)2H* 0P, 1 0uadaDFHID'H
Oga2 g4 d,adta|lH|*
B and L terms
day* + h.c. da?*H?D +h.c.
Osutan 0, (IL) (00) | Oy Oy (FH) (1 DAL)
Ovarqi  €779pa (Eda) (Q,?ﬂ“dv) Oé?LHD Ipa (ECD“H) (HTL)
Opuea (*) 19,0 (dsd5) (1)

Table 7.6: Operators in the aSMEFT at mass dimension 8 with da as a building block. Note that the operator
Ogaeqa marked with () only exists for Ny # 1 because otherwise all contractions of the antisymmetric colour
structure will sum to zero (the first current in the operator is symmetric under a <> 3 for one generation of

fermions).
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7.A.2 Without Shift Symmetry

For aSMEFT without a shift symmetry, we can use the shift-breaking isolation condition in

Eq. (7.20) to construct the operator basis.
P9 = o P 4 g LSMEFT  £PQ (7.53)

for n > 5. We start with the dimension-5 operator basis shown in Tab. the dimension-
6, 7, and 8 operator bases can be constructed successively. For instance, the operators at
dimension 6 can be constructed with E?Q = aﬁ?q + aﬁgMEFT + L’gQ, where the operators
in EEMEFT have been shown in Ref. |63, and the dimension-6 shift-symmetric operator basis
associated with ﬁgQ is given in Tab. The construction of operator bases of dimension 7
and 8 follows the same manner, for which the SMEFT operator bases at dimension 6 and 7
are needed [87}|88|. For completeness, the axion-dependent renormalisable operators can be
found in Eq. (7.21).

V(a, H) aX?

Oy a® | Oup  aBu,B"™
Opz  a’|HP* | O,5 aB,, B"
Oupa alH|* | Oaw  aWL, W

ap?H+he. | O aWlL W

Owe aLHe | Oy aG%,GY
Owi  aQHu | O,  aGs,GH
Oua  aQHd

Table 7.7: Operators in the aSMEFT at mass dimension 5 with a as a building block.

7.B Operator Basis for the aLEFT up to Mass Dimension 8

7.B.1 With Shift Symmetry

By setting N, 4, — 1 and restoring the vanishing terms, the reduced Hilbert series for
operator basis up to dimension 8 are given by

HgLEFTpQ -79a 1/}2 n 2aX2 7 HZLEFTPQ _ 07 H?LEFTPQ _ 8(8@)21/)2 +922da ¢2X ,
TP~ (9a)t + 7(0a)**D + 6(0a)> X2 + 320a > XD + 1769a1)* + {60av?} . (7.54)

The dimension-5 and dimension-7 operator bases are given in Tab. and Tab. respect—
ively, while the dimension-8 operator basis is presented in Tabs. [7.10] [7.11]and [7.12]
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dap? da1p? (cont.)

oYL dua (epyter) | O¥E 9, (JL’y“dL)
Oga}z 8Ma (erYteRr) Oé)ad o*ta (JR’yudR)

oyt 9,a (vpy*vr) aX?

oYL 3MCL (ﬂLv”uL) ) P aFWFV’“’

O¥R Oua (ury'ur) | O, oG, G

Table 7.8: Operators in the aLEFT at mass dimension 5 with da as a building block. Note that imposing lepton
and baryon number conservation, 3 flavour-diagonal entries of the operators coupling the ALP to leptons and
quarks, for instance (’)3,1e iis Oaau i and ogaﬁl,ii, can be removed |176|. Furthermore, we have used that the
shift in the operators of class aX? can be removed using anomalous chiral transformations on the fermion
fields making the operators shift-symmetric without an explicit derivative on the axion field.

(0a)?1? + h.c. da X1)?* (cont.)
Ojete  Ouad¥a (cren) | Oplty 9 (ary"u) Fu
OaaQV (L) 8ﬂaaua (DLVE) OaadF aua (JL'YVdL) F, v
(’)gféu Opad*a (urupr) OaadF ota (JRfy”dR) F
(’)gf;d 8Ma8“a (CZLdR) OgaLdF 8“& (JL’YVdL) FMV
da X1)? OgaZF o*ta (JR'y”dR) F

OaaeF Ma (éLnyeL) F/U/ OaauG ota (aL’YVTauL) GZI/
oy, O"a (éry’er) Fu | O3 0'a (ugyTur) Gy

oyt oa(ey’er) Fu | OFF o 0"a (upy'Tur)GY,
VR 0%a(ery’er) Fu | OYE . 0ta (agy"Tur) Gy,

OaaVF 0*a (vpy'vr) Fuw OaadG oMa (JL’)/VTadL) Gy

O(‘?/al;ﬁ’ Oa (vy've) Fuw | O8 e 0"a (dpy"TdR) Gy

OaauF o"a (upy’ur) Fu OgaLdG ota (JL’y”TadL) G

Oyl 0"a (ary’ur) Fu Ogafzé 0"a (dpy"TdR) G
VL

dauF d"a (QL/YVUL) FMV

Table 7.9: Operators in the aLEFT at mass dimension 7 with da as a building block. The lepton number
violating operator O5%  is marked with ().
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day* + h.c.

da* +h.c. (cont.)

Opacs "
Ohucr
O
O
O
i
Opadi -
Oad”
Oaid”
O "
O "
O
O -
O -
O
O
O
O
O™
O
O "

VL8,TR
Oaadu

VR1,SR
Oaadu
VR8,SR
O@adu
VR1, TR
Oaadu
VRS, TR
Oaadu
VL,SR
Oaaeu
VL,SR
O@auued
VL,SR
O@aeuud
VL,SR
O(’)adeuu
L
OV SR

Oavedu

dua (ery*er) (eLer)
Oua (ery"'er) (€Ler)
Opa (ury*ur) (upur)
dpa (upy"Tur) (apTur)
Oua (upy"ur) (urur)
Opa (upy*Tugr) (0T uR)
oua (JL'y“dL) (JLdR)
Oua (dpy*Tedr) (dTedR)
dua (dpy*dr) (drdr)
oua (JRfy“T“dR) (JLT“dR)
Ooua (Vry*vr) (€rer)
Oua (ryvr) (ELo*er)
Opa (ury*ur) (drdg)
Opa (ury*Tur,) (JLT“dR)
Opa (urywur) (dpodr)

Opa (ury, T ur) (CZLU’“’T“dR)

dua (ury*ur) (drdr)
Oua (upy'Tug) (d T dR)
dua (arysur) (dLo™dr)

Opa (ury, T ur) (CZLUWT“dR)

aua (JL’yudL) (ﬂLuR)
Aua (dpy*Tdy) (upT up)
8ﬂa (JL’yydL) (apo*uR)

6Ma (C{L'YVTadL) ('ELLUMVTGUR)

dua (dry"dr) (trug)
8Ma (JR’y“TadR) (ﬂLT“uR)

6ua (JR’yydR) (Z_LLO'“VUR)

6,ua (JR’YyTadR) (ﬁLJ‘uyTauR)

Iua (epy'er) (urur)

8ua (ﬂLq/p’VL) (éLdR)
Eha (EL’YMVL) (aLdR)

8ua (JLv”eL) (ﬁLuR)
Oua (py'er) (drug)

VL,TR _ B

Oaa;u 8Ma (eL’YVeL) (ULO"U‘V”U,R)
VR,SR _ B

Oaaeu aﬂa (eR’yMeR) (ULUR)
VRTR _ B

Oaaeu aﬂa (GR%,BR) (ULO'IWUR)

Oyt dua (exyer) (drdr)
OgaLe;iTR a,ua (éLfYVeL) (CZLO"W/CZR)
O’ ua (erver) (drdr)

Oy TR dua (erwer) (Lo dr)

O™ dua (ury"ur) (erer)
Oga%eTR oua (uryyur) (€Lo™er)
Oy dua (ury'ur) (ELer)
OgﬁfR oua (ary,ur) (ELoter)

OgaLdLSR dua (dry*dr) (erer)
OgaLd}TR dua (dpydr) (epot”er)
Oy RSt dua (dr"dr) (erer)

OgaZQTR dua (drydr) (€Lt er)

VL,SR _ B
O Opa (vpy"'ve) (Upur)
LT _ B
Ogau’u f aﬂa (VL%/VL) (ULO'/W’LLR)

OgaLy,gR dua (7py*vr) (drdr)

O(‘?/aLugR Opa (VLywvL) (JLU””dR)

Obaive e (dir"ur) (7rer)
Oy oot dua (7oy"ur) (drer)
Ogajfzif Oua (JRWMUR) (Trer)
Oga]jlif dua(dpyer) (VpuR)
(0a)?X?
O,g?z r oyadta F,,F"P
Oéi)z I3 0ua0”a FHPF,,
Opguzi Ouadta Fl,va”p
o). Buadta Gl G
o). Buad” a GG,
Oy duadta G ,G*P
(9a)*
O Ouadtad,ad”a

Table 7.10: Operators in the aLEFT at mass dimension 8 with da as a building block.
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da*X D +h.c. (cont.)

Opfsep  Ouadya (éL’Y“D”eL)
<>
OaaQeD auaaua (éR’Y'uDyeR)
o3k 0,a0,a (7~ D"
da2vD paopa \ VLY v,
<>
08a2uD aﬂa&/a <_L’YﬂDuuL)
OVR a 8 _ 'U’(BV
da2uD ~ OpdOv@ \ URY UR
VL = #<—>V
Odazap  Ouadva (dL’Y Dvdy,
- <>
Oaa2dD duad,a (dR’Y“D”dR)
dap’ XD +h.c.
OSF.p  Oua F™ (e, Dyen)
Obdirep  OuaFyp(ero™ DPep)
ngeD 8Na F#V (éLDueR)
O(‘)aFuD 8Ma Fr (ﬂLDVUR)

OdaFuD aua Fl/p (ELU“VDPUR)
ngﬁ‘uD Oua ' (arDyug)
Obeap oua F* (JLDVdR)
OBaFdD a,ua Fup (JLO'MVDde)
Ofaian Oua F# (d,Dydp)
OaaGuD aua GYH (ﬁLTaDVUR)
Obatup  Oua Gy, (apo"T*DPup)
O o  9uaG (4 T*Dyug)
O38.p  0.,aG™™ (dT°D,dR)
Ogagap  Oua Grp (dpo"*TDPdg)
Oatap  One G (dLT*DydrR)

Table 7.11: Operators in the aLEFT at mass dimension 8 with da as a building block. [Tab. continued. |
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B and L terms

da* + h.c. da1p* + h.c. (cont.)
Odacr " dua (e17"er) (7Lvf) OFESE  8,0e (&5 ur0) (d5 sun,y)
OESH G (emen)mus) | OUER 0.0e (dy aturs) (Shuns)
O " Opa (apytur) (PLvp) Oppnde Oua €™ (ar.a7"ufy ) (drqef)
Opai ™ Oua (Gry'ur) (PLVf) O Oua e (dpa7ufy 5) (Wr€5)
O Oua (drydy) (FLvf) Oy Oua e (ap oye) (wr,5d5 )
Opaty Oua (drv"dr) (L) Opuniue Ona e (ur,aydsy 5) (rqef)
O Oua (ur*dy) (ervf) Oyl e (mards,,,) (depus )
UL O @) (it | OMGR 0,0e (dy iy ) ()
Ogaléfuﬁ(; Oua (eLy"ug) (VLdr) Ogﬁ;fjfl Aua e (dpoy*ve) (g 5d5, )
Oaruea Oua (717"uy) (ELdR) Op Buae™™ (w5 1 dr ) (1)
Ojarend Oua (P1*e5;) (udp) Oblioh Buae™™ (dg ywe) (85 yun,y)
O Oua (7€) (L) SESR e (dpayuy ) (diovf)
O dua (i y"er) (drur) O Oua e (& Adr5) (PLuR,y)
O e Oua (Vi ur) (drer) Opuiiova  Ona €™ (df o1 "ur5) (VLdr.y)
Ops™ () dua (') (mvg) | Opiiin (5 9uae™™ (diy yer) (dupds )
Op ot 0,0 (d5 A dpg) (ELdry) | Opinll (+)  Ouae®® (epytdpa) (% sdry)
Ogaﬁﬁlf dua e (JL,afY“d%ﬁ) (dr~er) da?>XD +h.c.
ONESE 9uae™ (57 una) (W pdry) | OS5 p B0 F™ (1,0,,,0°05)
Opaiae Ona e (&5, ;1" unp) (Wi )

Table 7.12: B- and L-breaking operators in the aLEFT at mass dimension 8 with da as a building block. Note
that the operators marked with (*) do not appear when the number of fermion flavours is set to 1. Some
errors in the original table published in Ref. |2] have been corrected here thanks to Ref. [330|. [Tab.
continued|.
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7.B.2 Without Shift Symmetry

For aLEFT without a shift symmetry, once again, we can use the PQ-breaking isolation
condition Eq. (7.34) to construct the operator basis

aLEFT%
n—1

L

aLEFT
n PL_qrL

+a CLEFT | palEFTrq (7.55)

for n > 5. As a starting point, we show the operator basis at dimension 5 in Tab.
The higher-dimensional operator bases can be easily constructed with the LEFT operator
bases |291]318| and the shift-symmetric operator bases. For completeness, the axion-dependent

renormalisable operators are shown in Eq. (7.35).

V(a, H) a*y? + h.c.
5 SR 25

Os a Oa% a‘erer
2 SR 2-

aX O (L)  a*vpvf

Our aFMVF'LW OEQ}Z aQELuR

O, aF,F" O aPdpdg
Ou aGY, G

. a Fda,uv
O, oG G

Table 7.13: Operators in the aLEFT at mass dimension 5 with a as a building block. It is worth noting that
the dimension-5 ALP Yukawa couplings in the aSMEFT in Tab.become dimension-4 ALP-dependent mass
terms in the aLEFT. The lepton number violating operator O,2,, is marked with ([).

7.C Details on the Basis Change from the Derivative to the Yukawa Basis

Previous discussions of the shift symmetry in the presence of the EOM redundancy at dimen-
sion 5 focused on the effect on the leading order interactions and did not take the effect of
the field redefinition on higher order operators into consideration. Furthermore, the effect on
ALP-independent effective operators built from SM fields are also ignored. In this section, we
will study the effect of the field redefinition on those operators.

7.C.1 ALP-Dependent Operators

We will first ignore the SMEFT operators and start with the full derivatively coupled Lag-
rangian up to dimension-7, i.e., all operators in Tabs. To keep the discussion concise,
we only show the calculations for one higher order operator, while the calculations for the
other operators follow in a straightforward way. Furthermore, we ignore the bosonic operators
here, as they are irrelevant to the discussio The first derivatively coupled fermionic oper-

15 Apart from the anomalous dimension 5 operators including gauge fields. Those have been treated previ-
ously in the literature.
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ators beyond the leading order appears at dimension-7. Eventually, we consider the following
Lagrangian

C Y Gily - (QVuHu+ QYaHd+ LY He v he)+ 2L S Goncyy
eSM f pesM (7.56>

3#

e (LY’ CoarBL) Buw + . ..

where the dots collect all the other terms in the derivatively coupled EFT that follow the same
discussion. Redefining the fermion fields by ¥ — exp (iC’d,%) 1, trades the derivatively coupled
operators at dimension-5 for the ALP-Yukawa couplings but also generates more operators at
higher dimensions. We find

— 0 - — _iCHQ iCa ~ — _iCHG i, a
- Y il - W ~ (QeT@T Y, T Hu+ Qe 0T Y T HA  (7.57)
peSM 1peSM
7 —iCp % iC. % 8Ha - 8“a F —iCL% o iCp %
+Le IYee efH@+h.C.)+W+—3(Le Fv"Caar e fL)BW+...
DeSM /

Expanding these exponentials in the SM Yukawa couplings to leading order yields the usual
relations at dimension-5. Here, we will also study how they alter the dimension-7 operators
and the rest of the tower of interactions that is generated by expanding the exponential of
the ALP appearing after the field redefinition is performed.

Focusing only on the leptonic terms, we have after expanding the exponentials

2
-3 zZilZ)w—L[Y;+ Si(YeCo - CLY,) + = (CLYC - (czye+yec§))+...]He
YeSM
8,“
Y ( |:C<9aLB+?'L(C<9aLBCL CLC'aaLB)+f2 (C’LCaaLBCL (7.58)

1
2 (C2Courn +CaaLBC%)) " ...]L)B,W il

2
Notice that expanding the exponential introduces more shift-breaking interactions beyond
what is usually shown in the literature. As for the dimension-5 Yukawa couplings, the Wilson
coefficients of those shift-breaking operators have to fulfil relations dictated by the exponen-
tiated form of the ALP interactions. We find for the operators shown in the Lagrangian

Cae =1 (CLY; - }/;Ce) ’
C.n, = (% (C2Y, +Y,C?) - CLYece) :
| (7.59)
CovarB =1 (Coar.BCL — CLCoaLB)

1
Ca28aLB = (CLcaaLBCL - 5 (C%C(?aLB + CaaLBC%)) ,

where we have used the notation introduced in App. for the shift-breaking operators.
Note that the parameter counting in the EFT before and after the field redefinition is still
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consistent after including the higher order operators as well. At dimension 5, the relations
remove the finite difference between the couplings captured in the shift-symmetric and non-
shift-symmetric EFTs. At higher mass dimension, the relations fully saturate the freedom in
the Wilson coefficients of the shift-breaking operators and no new parameters are added, as
expected. This happens due to the exponential generating a tower of interactions proportional
to the same Wilson coefficient of the shift-symmetric operator that is affected by the chiral
rotation.

In order to obtain a shift-symmetric ALP EFT in the Yukawa basis beyond dimension
5, the additional interactions with fully constrained Wilson coefficients have to be included.
Otherwise one will run into shift-breaking results while doing computations. Only when all
the additional diagrams from the operators generated by the field redefinitions are considered,

one will recover a shift-symmetric result.

7.C.2 SMEFT Operators

The ALP-dependent chiral transformation also affects SMEFT operators, which were pre-
viously completely ALP-independent. We will give some examples here, working with the
following Lagrangia

LsmerT = |H’ LCEHHe t e 12 Cl(elq)u ijkl (Eiej) € (Qkul)

‘ 2
?

(1)
f2 [Clequ ijkl

2
LI:CBH+ —i(CegCe - CLCBH)-F (CLCeHC (C%CeH+C€HCe2)):| He

(1) 1 ) (1) 3 (1)
+ fl (Clequ zj’klc ej'j Clequ zykl’Cuvl'l - Clequ,i’jleL:ZZ/ N Clequ,ijk’lCkak’

1 1
f2 (Cl(eq)u i’ ]rleL,ii’Ce,j’j - Cl(eq)u,i’jk’lCL n’CQ kk' t Cl(eq)u i ]kl/CL,ii’Cu,l’l
o) CoiriComt—CL) o CjriCugn + O Co i C
lequ ij k1 €3 QKK lequ,ij/kl! ~e3'3~u,l'l lequ,ijk/l'~ QKK “~w,l'l
1 1 1 1
D) (Ol(eq)u i’ jk‘l(C%/)” + Cl(eq)u zj’kl(CQ)J it Cl(eq)u zjk’l(cg?)kk' + Cl(eq)u,ijkl’(cg)l’l)) ] x
X (Liej) € (Qkul) .

Comparing to the generic shift-breaking Lagrangian, similar relations are found as before.
They become more and more complicated as more fermions appear in the operators. One can
simply read off the relations from the Lagrangian and we will not give them explicitly again.

In order to derive these relations one can also start in the aSMEFTpgy, where the shift
symmetry is not imposed explicitly, by demanding that a shift of the ALP a — a + ¢ can be
removed by a field redefinitions, while staying in the same operator basis. We have checked
explicitly with our operator basis up to dimension-8 that one obtains the same relations this
way.

For simplicity we have taken the operators with and without an ALP to be suppressed by the same UV
scale f. Depending on the structure of the UV theory and the details of PQ-breaking the operators can also
come with a suppression of different scales corresponding to different UV sectors.
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To this end, a field redefinition should be used that allows to remove the shift ¢ in the
Lagrangian while keeping the kinetic terms of the fermions invariant and at the same time
not generating new operators outside of the operator basis we start with. The only such

transformation is given by redefining the fermion fields with powers of the shift % as Y —

Y+ iy cl(f) (?)kw, where the cz(f) are generic hermitian matrices. We keep the terms
in this expansion up to the order that is relevant for the EFT expansion in each step of
the discussion. Getting consistent relations for all terms that are proportional to the shift for
operators with more than one power of an ALP requires the following choice for the coefficients
in the field redefinition cfbn) =i"1Cy/(n!), ie. 1 - exp (iC’w%) 1. This is reminiscent of the
chiral transformation used to change from the derivative to the Yukawa basis.

7.C.3 List of Additional Relations in Yukawa Basis

In this appendix we list all the constrained Wilson coefficients of operators that have to be

added in the Yukawa basis up to dimension 8. Due to the length of the relations obtained by

performing ALP-dependent chiral rotations on the fermions in SMEFT operators, we restrict

ourselves to the operators which are already ALP-dependent before the field redefinition here.
At dimension 5, we find the well-known relations

Cae =1 (CL}/e - }/ece) ) Cau = l(CQYu - YuCu) ) Cad =1 (CQYd - chd) . (760)

Since at dimension-6 the only existing operator is bosonic, the only relations at this mass-
dimension come again from the ALP-Yukawa operators. They read

Cure = (5 (CBYe+YiC2) - CoYCL), Cuou = (5 (CHYu+YaC2) - G,

) (7.61)
Coa = (5 (C2 Y+ YaC2) - CQchd) .
The same is true at dimension-7
Core = ¢ (VO3 - CRY.) + £ (CRY.Co - CY,C2),
Cvu = = (VuC2 - C¥) + £ (C3YAC, - CaCE), (7.62)
Cusg = % (V4G - C{Yy) + % (CRY4Cq - CQYyCy) .

Only at dimension-8 there exist relations introduced by new fermionic operators at dimension-

7 reading as follows

1 1 1
Ca4e = 6 (C%)/ece + CL}/ECS) - ZC%}/;CS - ﬂ (Céye + }/603) ,
1 3 3 1 2 2 1 4 4
Ca4u = 6 (CQYuCu + CQYuCu) - ZCQYUCU - ﬂ (CQYU + YuCu) ,
1 1 1
Coaq = 6 (CEHYaCq+ CoYyCy) - ZC%YdCﬁ “ o (CHYa+YyCy)
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Ciéje)H =1 (Cé}zf}zmc CLC('()iLeQI){D) (7.63)
1,2 1,2 1,2
C(E(?(MEH =1 (Céau}IDC CQ C(((?au;{D )
(1,2) (1,2) (1,2)
Codadtip = (CaadHD CaadHD)
Covapnrz =1 (CoapzCy = CypConymz)
aaad) =1 (Cﬁaz,/;VCl/J Cw Caawv)

For the last relation, the same relation holds true for the operators with the dual field strength.
Furthermore, some shift-symmetric operator at dimension-8 get shifted as follows

Couwrers = Couzops +1i (C(gi)eHDce - chgi)eHD) ,
Coazurr = Coazur +1 (CéaLHDC CQCéflzZLHD) (7.64)

Coazarr = Coaran +1 (C(‘()aZlHD Ca - CQCégaZlHD) ’

due to the derivative acting on the fermions in the operator corresponding to the last relation
in the previous equation.






Small Instanton-Induced Flavour Invariants and

the Axion Potential

8.1 Introduction

We have introduced the axion solution to the strong CP problem in Sec. There, we
saw that one of the main ingredients of the axion solution to the strong CP problem is the
mixed anomaly of the PQ symmetry with QCD. This allows the axion to receive a potential
only from non-perturbative QCD effects ensuring that it has a minimum that exactly cancels
6. For this to work, one has to implicitly assume that the non-perturbative QCD effects are
the dominant source of explicit PQ breaking. Generically, shift symmetry-violating terms
(which may be CP-violating) arising from interactions of the axion with gravity spoil the
axion solution by misaligning the minimum of the axion potential. These contributions must
therefore be sufficiently suppressed, leading to the so-called axion quality problem. However,
even under the assumption that the irreducible shift-violating operators in the axion EFT
generated by quantum gravity are sufficiently suppressed, another aspect of the axion quality
problem concerns non-gravitational effects that can generate a misaligned potential for the
axion.

One might ask if the perturbative source of CP violation in the SM already poses a problem
to the axion solution by introducing radiative corrections to 6, thus misaligning the axion
potential. However, it turns out that the corrections induced by the CKM phase, first appear
at seven loops [331}332| through RG running, while finite contributions appear at four loops
although still highly suppressed [333|. The high suppression in the SM is due to the flavourful
nature of CP violation in the SM, which requires the Lagrangian parameters responsible for
CP violation to appear in a specific way, which is invariant under the change of a flavour basis
as discussed earlier in this thesis. The problem can be exacerbated considering BSM physics,
which can be parameterised in higher-dimensional terms of the SM fields, potentially causing
order-one shifts in § thereby potentially invalidating solutions to the strong CP problem [334].
This has been studied in the context of the SMEFT, where higher-dimensional CP-violating
terms induced at a scale Agp can shift § and misalign the axion potential [335/337].

The new sources of CP violation are highly dependent on the specific UV completion.

189
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If the main source of PQ breaking is still due to low-energy QCD effects and only the new
source of CP violation arises at a high scale, then the effects on the axion potential and
the neutron EDM generically depend on Afﬂ and decouple as Agp — oco. Alternatively,
there has been renewed interest in the old idea to modify QCD at a UV scale, such that
instanton effects breaking the PQ symmetry become relevant at high scales. These small
instanton effects, present at a scale Agy can increase the axion mass while still solving the
strong CP problem (239! {240} 335, [3381345|. If in addition to this modification of QCD in
the UV there also exist new CP-violating sources, they can also be enhanced by the UV
instantons, whose effects are no longer suppressed due to the assumed larger QCD coupling
at the scale Agr. These contributions misalign the minimum of the axion potential, where
the leading contributions to § then scale as A%I /AQQF [337| which do not necessarily decouple
(i.e. when Agr, Agp — oo with a finite ratio Agi/Acp) and give rise to important constraints
on CP-violating couplings in certain UV scenarios. For a sufficiently small (although large)
QCD gauge coupling these effects can be computed by performing a 1-instanton calculation
which provides the dominant contribution to the action. However, when the QCD gauge
coupling becomes non-perturbative, the dilute instanton gas approximation breaks down and
non-perturbative methods must be used

The effects of CP violation arising from higher-dimensional operators in an instanton
background, including a 4-quark SMEFT operator were computed in Refs. 337} 352 |353]
and estimated using an instanton naive dimensional analysis (NDA) in Ref. |242|. However,
different CP-violating UV scenarios can give rise to many other operators [80}81| and therefore
previous estimates of the contributions to # should be generalised for the complete list of
SMEFT operators.

As discussed throughout this thesis, observable quantities — like contributions to 8 — must
be independent of the flavour basis, and hence can be written in terms of flavour-invariant
quantities constructed from the Wilson coefficients and other renormalisable flavourful coup-
lings. As we will see below, the CP-odd flavour invariants of the SMEFT will allow for an
estimation of the physical consequences of the Wilson coefficients — especially when used to-
gether with other NDA techniques |242| — prior to any explicit computation. These advantages
have been previously been used for physical estimates |257} 331} 332| 13541356.

Besides providing an order parameter to estimate CP-violating physical effects, the CP-odd
invariants enable the systematisation of the complicated instanton computations by predicting
the form of the contribution of a given Wilson coefficients, such as the number of Yukawa
coupling insertions or loop factor suppressions. For example, we will show that semi-leptonic
operators generate a 6 but are suppressed by one extra loop-order and an extra lepton Yukawa
factor compared with 4-quark operators. Furthermore, knowing the number of up, down and
lepton Yukawa couplings needed to construct the invariants, we will be able to classify the
leading contributions for arbitrary Wilson coefficients. Another advantage of the invariants
is the simple application of different flavour scenarios in the given UV completions. Lastly,
most computations in the literature have focused on the limit of completely diagonal Yukawa
matrices but, which is generalised in a straightforward way to the case of generic Yukawa

L All topological configurations contribute equally in the non-perturbative regime. Thus, multi-instanton
solutions and the interactions between among the instantons need to be taken into consideration [346H351|.
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couplings by the use of flavour invariants.

Due to the CP nature of 6, the induced € in the presence of different SMEFT operators
can be captured via the CP-violating invariants introduced in Sec. based on Refs. |103|
104/, where a basis of CP-odd flavour invariants was put forward to describe the leading order
sources of CP violation in the SMEFT. The invariants introduced there all came in the form
of the imaginary part of a trace of flavourful matrices. We will show in this chapter that
the invariants appearing in the instanton computations all have determinant-like structures
instead of the traces. We will construct a new basis for these determinant-like invariants
and show that they can be expressed as complicated combination of CP-even and -odd trace
invariants. We will show explicitly that these determinant-like structures naturally arise in a
Grassmann integration that appears in the instanton computations.

While the flavour invariants introduced here allow to make estimates for 8 induced by
CP-violating operators in the SMEFT, we will also perform the detailed computation of
6 in the presence of small instantons, showing explicitly how these invariants appear in the

computations. In particular, we generalise previous results on the insertion of the CP-violating
(1)
lequ -
dipole, Q4 operators. Subsequently, we use the stringent upper bound on 6 to set bounds

4-quark operator Oéi)q 4 and calculate the effects of the semi-leptonic, O, and gluon chromo-
on the Wilson coefficients of the operators in different flavour scenarios improving previous
bounds, where the contributions from off-diagonal SM Yukawa couplings were neglected. For
the leading order operators, such as the 4-quark and gluon dipole operators, we find that Agey 2

10°% Ag, assuming a minimally flavour violating (MFV) scenario for the SMEFT couplings.
(1)

lequ’
lead to the weaker constraint Agpy 2 10* Ag;. The bounds become more stringent if there is

Under these same flavour assumptions, the loop-suppressed contributions, arising from O

no flavour structure in the Wilson coefficients, such as the anarchic flavour scenario. In this

case, assuming all the Wilson coefficients are of order one, we obtain Agp 2 10" Agr for the
(1)
quqd’

for the semi-leptonic operator O

Agp 2 108 Ag; for the gluon dipole operator Ogg and Agp 2 107 Agr
(1)

lequ”

4-quark operator O

8.2 Flavour Invariants Featuring 0qcp

The single source of perturbative CP violation in the SM arises as an intricate collective
effect that can only be properly described by a combination of Lagrangian parameters. It
can be most effectively described by the Jarlskog invariant Jy = Im (Tr [Xu, Xd]3), discussed
throughout this thesis, where X , =Y, dYJ q- The Jarlskog invariant is the order parameter
of perturbative CP violation in the SM as it’captures the single physical phase in the renorm-
alisable SM Lagrangian in a flavour basis-invariant way (c.f. Tab. . Here, we have used the
fact that U(3)° = U(3)qx U(3)uxU(3)axU(3)L, x U(3)e. is the largest possible flavour group
allowed by the SM fermion kinetic terms and is only broken by the SM Yukawa couplings
and global anomalies. The Lagrangian can be formally made invariant under this symmetry
by promoting the Yukawa couplings to spurions transforming under U(3)° as given in the
Tab.

This discussion can be extended to the non-perturbative source of CP violation in the SM,
the QCD #-angle, which also transforms under the Abelian part of the U(3)® flavour group
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UBle UB UB) UBL U@B)e

efaco 1 4 1_3 1_3 1 1o
Yu 341 3 1 1 1
Yy 3. 1 3.1 19 1o
Ye 1 1 1 3.1 3.,

Table 8.1: Behaviour of 8gcp and the Yukawa coupling matrices Yy 4. under flavour transformation of the
SM fermion fields. The subscripts of the SU(3) representations denote the charge under the U(1) part of the
flavour symmetry.

(see Tab. . Given this transformation, the flavour invariant
Jg = Im[e~QcD det (Y, Yq)], (8.1)

captures the mon-perturbative source of CP violation in the SM Lagrangian specifically
6 = 0qcp + argdet[Y,Yq]. The contribution of the SM Lagrangian in the presence of an
instanton background has the following dependence |143||239|

‘ 3
V (6qep, Ya, Ya) o< €02 T Gui G, (8.2)
i1

where i, Ja,; are the Yukawa matrix eigenvalues and ¢ labels the quark flavours. Later, the
eigenvalues will sometimes be referred to by their particle name, i.e. for instance 9,3 = ys.
This is reminiscent of the invariant just defined and the flavour dependence of the result can
be reproduced from Jy or Ky = Re[e ?2cP det(Y,Yy)] (depending on the CP parity of the
contribution to V') by expanding the invariants in the limit of diagonal SM Yukawa matrices.
This suggests that the flavour invariants can appear directly in instanton calculations provided
general flavourful couplings are used in the computation.

In this chapter, we want to consider the contribution of new sources of CP violation
in the UV, parameterised by SMEFT operators, to the vacuum energy in the presence of
(small) instantons. Therefore, we expect some modified form of the CP-odd SMEFT invariants
introduced in Sec. to show up in the instanton computations. The effect of the 4-fermion
operator (9((]1) = QuQd in the Lagrangian, £ > oW Oél) /AQQF, on the correlator, xquqd, in

uqd ~ quqd " quqd
an instanton background, was calculated in Ref. [337] (see Fig.|8.1a)). In the limit of diagonal

Q_For instance, the correction to the axion mass in the SM is proportional to Ky = Re[e™9Q¢P det (Y, Yq)] o
cos®, leading to the well-known cosine potential {144} |150|, whereas the linear term of the axion potential
generated via non-perturbative QCD effects in the SM is proportional to Jy o< sin 6.
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SM Yukawa couplings the contribution has the following form [337]

3
(1) Siboen S T4 g
V (0qop, Ya, Ya, Clig) o< e oo o k|:|1 Pkl (8:3)

where ¢;; labels the two possible flavour structures ¢;; = oW or ¢;j = c® that can

quqd,iijj quad,ijji’
appear in the computations, and k labels the six entries of the diagonal Yukawa matrices.
The proportionality factor in Eq. (8.3) depends on the details of the instanton calculation,

which we will perform in detail in Sec.

From the expression in Eq. it is not apparent that the result can be expressed in
terms of the previously considered CP-odd trace invariants of the SMEFT. As mentioned
in the introduction, determinant-like invariants are much better suited to describe instanton
calculations. Respecting the assignments of representations introduced in Table we can
build the following simplest leading order (in the EFT power counting) invariant

(1,8)y _ —if ABC _abc_DEF _def (1,8)
I(Cquqd) =Im [6 QCPe € € € Yu,AaYu,Bquuq(LC'chYd,EeYd,Ff] ) (84)
which contains the Wilson coefficient Cc(llll’(ig ikl and we sum over repeated indices. Note

that this exact invariant had already been proposed in App. F of Ref. |103|. In the limit of
diagonal Yukawa couplings and vanishing fqcp (assumed in Ref. [337]), the SMEFT invariant
in Eq. (8.4) has the following form

3 3 (1.8)7.

(i) =4(H ykydk) ) M (8.5)
k=1 i,5=1 yu,zyd,]

which matches the flavour structure in the instanton computation of the potential shown

in Eq. (8.3). The other flavour structure appearing in the instanton computation can be

recovered by expanding a second CP-odd determinant-like SMEFT invariant obtained by

interchanging the indices C' and D of the invariant in Eq. .

At this point, we would like to understand several points about these new invariants: Why
are they more appropriate to describe the flavourful part of instanton computations and how
exactly do they arise in those calculations? How can their knowledge help to systematise
and simplify those computations? Can a complete basis of the determinant-like invariants be
constructed for all SMEFT operators and how are they related to the trace invariants we have
previously introduced in Sec. We will start answering these questions by constructing a
complete set of determinant-like invariants for all SMEFT operators next and show explicitly
how they arise in instanton computations in Sec.

3The CKM matrix is assumed to be unity here, which is possible in the SM below the TW-boson mass, since
all effects of the CKM matrix can be put into effective operators.
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8.2.1 A Basis of Determinant-Like Flavour Invariants

In this section, we will show how to construct a complete operator basis of CP-odd flavour
invariants of the determinant-like type for all SMEFT operators, suitable for instanton cal-
culations featuring fqcp, by discussing some explicit examples. By complete, we understand
that the flavour invariants capture all sources of CP violation induced in the UV and captured
by the SMEFT Wilson coefficients. We do not include opportunistic effects where the inter-
ference of the real part of a Wilson coefficient with the CKM phase induces CP violation, as
previously considered in Ref. [104], i.e. we assume Jy = 0 in the following or at least that these
contributions are subleading. Note also, that we only work at the leading order in the EFT,
i.e. all flavour invariants will be linear in dimension-6 Wilson coefficients. Higher order effects
of multiple insertion of dimension-6 operators or higher dimensional operators are negligible
as we estimate in App.|[8.A.1

To test our set for completeness we will use the transfer matrix method presented in
Eq. , which was initially introduced in Ref. [103] to determine the completeness of the
sets of CP-odd SMEFT trace invariants. To determine if our set captures all necessary and
sufficient conditions for CP violation, we simply compute the rank of the transfer matrix,
which has to match the number of phases in the Wilson coefficient which cannot be removed
by a field redefinition. Note that, here we do not consider Yukawa matrices with any special
values, e.g. degenerate masses, zero masses or texture zeros in the CKM matrix, that enlarge
the flavour symmetry of the SM left unbroken by the Yukawa couplings.

Oun operator: The first example for building a complete basis with determinant-like invari-
ants we will discuss is the modified Yukawa operator of the up-type quarks, Oy = |H |2Qﬁ U.
In order to accommodate for e QCP appearing in the instanton calculations, we have to
construct an object that simultaneously removes the U(1) rephasings of the exponentiated
f-angle, while at the same time being invariant under the non-Abelian part of the flavour sym-
metry and linear in the Wilson coefficient. Following the previous discussion, the simplest

combination of Lagrangian parameters fulfilling all these requirements is
Im [e_ieQCD GIJKGijkYuJiYu’Jj CuH,Kk: det Yd] y (8.6)

where the rephasings of the Yukawa couplings and the Wilson coefficients precisely cancel
those of e*acp and the determinant-like structure of the Levi-Civita symbols ensures the
invariance under the SU(3) part of the flavour group. Starting from the form in Eq. , we
can now systematically construct flavour invariants that can capture all phases in the Wilson
coefficient Cyp by using the matrices X 4 =Y dYJ, 4> transforming in the adjoint of SU(3)q,
to project out different entries of the Wilson coefficients.

Using the transfer matrix method, it can be easily verified that a set of flavour invariants
capturing all sources of CP violation in the Wilson coefficient of the operator O.g, for Jy =
Jp =0, is

Z0000(Cutr)s Z1000(Cunt)s Zo100(Cutr), Z1100(Cuni)s Zo110(Cun),

(8.7)
T9200(Cutr)s Z0220(Cun )» Z1220(Cunr), Zo122(Cun) ,
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where we have defined

Y,

Iabcd(CuH) =Im [eiiaQCD GIJKeijkY u

u,li

i (XEXEXEX{Cun) , det Ya] . (8.8)

(1,8)
Oquqd
mion operator that only contains 9 CP-violating parameters, we will return to the 4-fermion

operator Ogi)q 4> and its SU(3) adjoint form Oéizl 4 that appeared in the introduction. Fol-

lowing similar considerations as for the last operator, a complete invariant basis can be con-

operators: After completing this rather straightforward example of a bilinear fer-

structed for these operators by defining the following two structures

ay,b1,c1,d1 (1,8)y _ -ibqcp ,ABC _abc DEF def a1 vbi yvel vdi o
‘Aaz,bz,CQ,dz(Cquqd) =Imje € € ¢ € Yu,AaYu,Bb (Xu Xd Xu Xd )C

x Cc(llll.fcg,C'CD'd (XSQ dez XSQXélQ )DD/ Yd,EeYd,Ff] ,
8.9
Butrea (U I [e—“’@wGABCeabceDEFedefyuyAayu,Bb (xexlxoxd) -
x Cc(llllfd),C'cD'd (Xﬁm de2 X§2Xg2 )cD’ Yd,EeYd,Ff] :
Here, the index assignment A8888(C((1111’(2) corresponds to the invariant in Eq. (8.4) and

88888 C(glll’qgg) corresponds to the second invariant mentioned in the last section, where the

indices C and D are interchanged. The operator Oéi’sg has 81 phases that can interfere with
the marginal SM Yukawa couplings. The full set of 81 determinant-like invariants for these

operators can be found in Ref. [3].

(91(62’3) operators: Determinant-like flavour invariants can also be built for operators con-
taining lepton fields, like the semi-leptonic operator Ol(elcfu = (J:Je) (Qu) and its SU(2) adjoint

form Ol(e?gu. The invariants capturing the 27 CP-odd parameters of their Wilson coefficients

Cl(eldi) have the following form

f (1,3)y = —if 1JK _ijk b dy L mN _(1,3)
Iabcd(Clequ ) =Im [6 Yacbe e Yu,IiYu,Jj (XngXSXd)K (Y:?TXG{) Clequ,NmLk det Yd] .
(8.10)

The index assignments for a complete set of CP-odd flavour invariants can be found in Ref. |3].

O§I1q’3) operators: As a last example, we will discuss the construction of determinant-like

invariants for an operator which is not charged under the U (1) rephasings of the flavour group.
<> —

One such operator is the hermitian operator (’)I({lq) = (HTZ'D“H) (Qv“Q) and its SU(2) adjoint

form Oélgci , for which the CP-odd parameters in the Wilson coefficients C’Sf’) can be written
in a flavour-invariant way as follows

11100(01({1(1’3) ), 12200(01({23) ), 11122(01({23) ) (8.11)
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where we have defined

zabcd(cl({f))zlm[e**’QCDe”KeU’“Y Yuui (nggxgxgcéﬁf)yu)deetyd]. (8.12)

u,li
Following this procedure for the remaining flavourful dimension-6 operators in the SMEFT, a
complete set of flavour invariants for those operators capturing all their CP-violating effects
can be built for all operators in the Warsaw basis [87], that is suitable for non-perturbative
computations featuring an exponentiated dgcp. A full set of flavour invariants for all operators
can be found in Ref. |3|.

Let us once again emphasise that these new invariants are redundant in the presence of
the trace invariants, as those were already a complete basis of invariants which fully char-
acterise the CP-violating phases of the flavourful dimension-6 SMEFT. Hence, there must
exist relations, that express the determinant-like invariants in terms of the trace invariants
and vice-versa. These relations can be found by index manipulations of the determinant-like
invariants and by employing identities of the Levi-Civita symbol. For example, the invariants

in Eq. (8.11) can be rewritten as

' L
Tunea(C52) = (%60 det (viYa)) P er (X245 x0CHY) ]

=2 (JH Rabcd(cl({l(;g)) + Ky Labcd(cl({lq’g) ) ) (813)

where Rypeq(C) = Re [Tr (X$X5XEX3C) ] and Lapea(C) = Im [Tr (X$XJX5X{C)], as defined
in Ref. |103|. There exist similar relations for all other operators, such as

Tabed(Curt) = 2 (Jo Ra-1ypea(Cant¥d) + Ko Lig 1ypea(CuantYd)) (8.14)
f (13)y _ f (1,3) f (1,3)
Z.abcd(cflequ ) =2 (J9 Im A(afl)bcd(clequ ) + K9 Re A(afl)bcd(clequ ) s (815)
where Aibcd(clg(ﬁ)) = Xg’ji (XngXﬁXg)lk YeijYu nlcl(el({i)imkn' This procedure allows us to

map all determinant-like invariants directly to the trace invariants of Ref. [103| for all operators
up to the invariants of the form Zyp.q(Cyum), where inverse Yukawa couplings appear in the
trace invariants (c.f. Zpooo(Cumr) in Eq. (8.14)). We refer to Ref. [3|, for a discussion on
how these latter invariants featuring powers of inverse Yukawas can also be mapped to the
old trace basis of Ref. [103|. The relations also make apparent, that the determinant-like
invariants capture both the CP violation due to the phases induced by SMEFT operators and
the one due to the interference between the CP-even parts of the SMEFT operators with the
SM strong CP phase.

8.3 The Interplay of Topological Susceptibilities and Flavour Invariants

Before jumping into the instanton computations, we will first clarify how new sources of CP
violation can contribute to the axion potential. In particularm, we want to compute how the



8.3 The Interplay of Topological Susceptibilities and Flavour Invariants 197

CP-violating SMEFT operators

Ci
L2 507 (8.16)

o

can offset the minimum of the axion potential in the presence of small instantons, where D is
the mass dimension of the EFT operator O and i, 7, ... are its flavour indices. In the following,
we will focus on the dimension-6 SMEFT operators only and will justify in App. why
they give the leading contribution. Because we only consider CP-odd SMEFT operators, the
operators can only contribute linearly to the part of the #-dependent vacuum energy linear in
0 |357|

V(0.Cy) == (ug 02 +2upo 0 Cy +uo C2) | (8.17)
where the objects ug, ug o, uo can be computed in terms of SM and SMEFT operators After
making 6 dynamical by adding an axion to the theory, we can understand Eq. as the
effective potential of the axion after integrating out all of the SM fields. Then, U, Ug O, UO

can be obtained by performing a matching computation for the effective action of the terms
up to quadratic order in # and the SMEFT operator O

~ 1

~ 1
up ~ <(GG)2>, upo ~ +p=3 (GG O), 4o~ \eps

- O? (8.18)
Agpf4 e ( )

As such, the up term can be neglected compared to the other two terms. Note that Eq.
introduces a linear term in @, which if non-zero shifts the minimum of the vacuum energy.
By explicitly promoting 6 to the dynamical axion field a/f,, the induced value of 0 = {(a/f,)
is determined by Eq. (8.17). To be concrete, the potential can be re-written in terms of the
axion field a

2
V(@ = xo + 0 (£ (5.19)

where we have introduced x(0) and x,, (0) to replace ug and uy o, respectively, which is defined

as [44] [169] [358] [359)
Ho> , (.20)

2
- _iTi 4., ik g
x(0) ——11161_{1(1)_[61 ze' I(O‘T{32W2

known as the QCD topological susceptibility and

. 2 ci
— il 4,. ikx g p,l/ D,ij--
Xo(0) zllcl_I}(l)fd ze (O‘T{?)ZWQ (z), AD 5507 (O)H ) (8.21)

Minimising the potential in Eq. (8.19), yields the following expression for the shift of the
minimum in the axion potential

Xo(o)
NOR (8.22)

ind = —
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Experimental bounds on the neutron EDM lead to the constraint #i,q < 107'°, which can be
used to obtain limits on any UV parameters contained in x,,(0).

Usually, models of axions or axion-like particles (ALPs) are constructed with a U(1)
Peccei—Quinn symmetry in mind, which dictates the ALP couplings to the SM particles —
either directly or in an EFT after integrating out the heavy modes from the theory. If one al-
lows for some explicit breaking of the U (1) symmetry responsible for the Nambu—Goldstone
boson nature of the ALP, an axion potential can be generated in ordinary perturbation the-
ory. The interactions of the ALP with the SM particles, including those breaking the shift
symmetry, can be captured in an EFT in a relatively model-independent way. In this case, the
axion potential can be determined by calculating the Coleman—Weinberg potential in the ALP
EFT including operators that break the shift symmetry of the ALP explicitly. The tadpole
term of the resulting potential should be proportional to the invariants presented in Chap. @
that capture all sources of shift symmetry breaking at the leading order in the effective theory
(see also Ref. [273]).

8.3.1 Topological Susceptibilities

In this section, we will clarify how to compute the correlators appearing as the coefficients
in the axion potential in Eq. in the instanton background from the path integral. In
particular, we will summarise the main points introduced in Sec. that are relevant for the
computation in the instanton background following the computations of Ref. [143].

To illustrate the different steps in evaluating the correlator with an insertion of an effective
operator defined in Eq. , we consider a generic dimension-six operator O[¢r, @], where
1 are fields whose zero modes take on a special form in the instanton background (e.g. gluon
and quark fields), and ¢ denotes the other fields unrelated to instanton dynamics (e.g. Higgs
or lepton fields). The correlator associated with O is given by

2

T 4, ik 9 A &
Xo(0) = ilim [ d'ze (o‘T{?)%zGGm,Aé?om,so](m}‘o}

“ifgen dp al (0) ,£(0)
- ¢a _[d4x0/;d]v(p)/£[l(pd§fo dg(™) (8.23)

2 ~
><chpe‘SO[‘P]‘Si“t[“"“"]fd41: 9 GG(x)%O[@I,QO](O)
Alw

)

32> 1-(a.-)inst.

where Sp[¢] is the free Euclidean action of the fields ¢ independent of the instanton dynamics
and Sint[¢1, ¢] is the interacting actions between the fields ¢1 and ¢. The correlators are eval-
uated by performing perturbation theory with the non-zero modes around the semi-classical
instanton background field given by the explicit expression of the zero modes in the instanton
background. Due to the explicit form of the zero modes, the instanton computations simplify
drastically. We summarise the essential steps of the computations as follows

4Even if this explicit breaking is not introduced by hand it will be generated by quantum gravity effects as
discussed earlier in the context of the axion quality problem.
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o [ields with instanton solutions ¢r: The field ¢ is expanded in eigenmodes, where the
zero modes of ¢y take on the form dictated by the BPST instanton solution constructed
in Sec. Most importantly, the fermion fields are expanded as

V(@) = ;éﬁ’%(k), NOE ;éﬁ’“)i}(k), (8.24)

where §J(ck), Sj(f“) are Grassmann variables, f is a fermion flavour index and the explicit
form of 1(9) is given in Eq. . Following the discussion in Ref. |143|, in all explicit
computations that follow, we will expand the interacting action between the zero modes
and non-zero modes to zeroth order. This will allow us to integrate out the non-zero
modes of 1 from the path integral. The path integral over the zero modes reduces
to the integration over collective coordinates as introduced in Sec. Thus, we can
directly replace the path integral of ¢ using 't Hooft’s result |143|

. Ny _
[ Doy e~ Srle] _, mifacn f d'z f 2 e (p) f [T (pde{”agl™y, (8.25)
P f=1

where in particular the integration over the fermion fields in the path integral reduces
to a simple Grassmann integration with dﬁ(o), dﬁ_(o) the Grassmann integration meas-
ure and dy(p) is the instanton density in the SU(N) theory (see Eq. ) with p
denoting the instanton size.

o [ields without instanton solutions ¢: The remaining fields ¢, are treated like in or-
dinary perturbation theory. After expanding the exponential of the interacting action
e int[w’“@ one can compute the non-vanishing contributions to the correlation function
by contracting the fields ¢ appearing in the correlators to propagators by evaluating the
path integral with the exponentiated free action (c.f. Eq. ) Diagrammatically,
this can be understood as closing the remaining field lines of the fields ¢ not related to
the instanton dynamics in the interaction vertices with the fields ¢ directly coupled to
the instanton vertex, see e.g. Fig.

e In a last step, the zero mode profiles of @1 given by Eqgs. (2.129) and (2.144) are sub-

stituted into the expression and the remaining loop integrals due to ¢ and collective
coordinate integrals due to ¢r are evaluated. Most of these calculations are carried out
in App. Finally, the integral over instanton size p is performed in Sec. for which
a specific UV completion responsible for the instanton dynamics has to be specified.

The other correlation function appearing in Eq. (8.19) is (to the accuracy we work in the
SMEFT) the QCD topological susceptibility defined in Eq. (8.20). This two-point correlation

5There are two different contributions. The first one is due to the Grassmann variables of the zero modes,
which are simply expanded to the non-vanishing order dictated by the Grassmann nature of these variables
and the Grassmann integration. The second type of contribution are those where the interacting action only
features fields which do not take part in the instanton dynamics, as we will see in the computation of the
semi-leptonic operator in Sec.
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function has been computed in the literature, assuming that x(0) only receives contributions

from the SM. Within the perturbative regime and in the 1-instanton approximation it is given
by |20} 239|

() = -31250) i [ P (r) s (8.26)

(67 2)3 7
where Ky = Re [e‘wQCD det (Yqu)] as introduced in footnote

8.3.2 Relevance of Determinant-Like Flavour Invariants

Before we show all of the details of the instanton computations, we want to put the focus on
how the determinant-like flavour structures, that we previously claimed would appear, arise
in the computations. The essential point that allows us to understand the appearance of the
invariants is the treatment of the fermionic contributions in the instanton background. In
particular, as we just learned, the fermion fields are expanded in their eigenmodes, such that
the path integral over the zero modes, which obtain a specific functional form in the instan-
ton background, reduce to a simple Grassmannian integral. Due to the rules of Grassmann
calculus,

fdgg:l, fdglzo,, €2-0, (8.27)

for a single Grassmann variable &, only some terms of the exponentiated interacting action will
survive. Furthermore, the different terms in the power expansion of the exponential will come
with different signs due to the anti-commutation property of Grassmann variables {£1,£2} =0
for two Grassmann variables &; 2. Using these facts, it is straightforward to prove that the
following Grassmann integration identities hold true

f B ey 148 - detA,
[ d3§1d3§2 €€1A52§1352 2112136]1]2J3A“]1Azthlst ,
1 o
[ BB eadPeydiey 5142868 O, = 561112@36]1]2]3Ai1j1AinQC’igj3 det B, (8.28)

1
[d3§1d3§2d3§3d354 6£1A§2+£3B§4§ C&y&3DEy = 4 2112236J1J233A“]1AQJQCZS]S

kikoks 11l
x €122 B 1 Broly Diats

where &1, 4 are three-dimensional Grassmann variables and A, B,C,D are 3 x 3 matrices.
These identities are at the origin of the appearance of flavourful objects contracted with
Levi-Civita symbols in the calculation, which we refer to as determinant-like.

As such, in computations where the CP-odd SMEFT operator inserted in a correlator
contains quark zero modes, which are integrated over in the Grassmann integration, the
determinant-like invariants introduced in Sec. are better suited at describing effects of
CP violation. This is because, as we will show in all details below, in the computation of the
correlator these invariants will arise naturally and in contrast to the trace basis of CP-odd
invariants, no further relations have to be used to fully express the final result in terms of the

CP-odd SMEFT invariants and the SM flavour invariants shown in Eq. (2.98).
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(c¢) Instanton diagram with an insertion of a

non-chirality-flipping effective operator OI({lq).

N
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H

(b) Instanton diagram with an insertion of the

effective operator O((l‘ll)q 4 and additional Yukawa
coupling insertions, corresponding to invariants
of higher order in the Yukawa couplings.

S
H

(d) Instanton diagram with an insertion of an
effective operator, giving rise to mixed trace and

determinant-like invariants. One example is the
(1)

insertion of the effective operator Olequ'

Figure 8.1: Examples of instanton diagrams corresponding to invariants discussed in the text. Here, the grey
blob depicts the instanton background that the fermions (solid lines) are coupled to. The fermion lines are
closed via Yukawa interactions with the Higgs (dashed lines).

Furthermore, a direct relation between diagrammatic contributions and invariants is evid-
ent. Consider the example of the calculation performed in Ref. [337|, where the correlator
from an insertion of the effective operator (’)C(IB1 4 Was studied. Diagrammatically this process
can be understood as that of Fig. In the diagram, one can observe that all fermion legs of
the effective operator are connected to the instanton background and hence, all the fermions
in the effective operator will simply be the zero modes, which take on the special form shown
in Eq. in the instanton background. Therefore, whenever a fermion line is directly
connected to the instanton background, the indices of those fermions will be contracted in
a determinant-like manner in the flavour structure of the resulting contribution. Indeed, as
we will prove explicitly in the next section, the diagram in Fig. gives a contribution

C

proportional to the introduced invariants AJ900 Céizld) and B ( quad)-

Another interesting contribution which illustrates the previous points is the contribution

from the insertion of the operator oW The corresponding diagram is that of Fig.|8.1d|and

lequ’
only the quarks emerging from the effective operator have zero modes, as the leptons are
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not charged under the SU(3). gauge group responsible for the instanton dynamics. Indeed,

looking at the leading invariant IOOOO(CI( ), we see exactly that only the quark indices are

contracted with the anti-symmetric e- strilqcuture, whereas the lepton indices are contracted in
a trace-like manner over a matrix product with a lepton Yukawa coupling.

A final illustrative example is that of rephasing invariant operators such as OI({Q. In this
case, even at the lowest order in Yukawa couplings, one cannot build an invariant where both
quark indices are directly contracted with an e-structure; at most one index is contracted,
as shown in the invariant Iabcd(CI({z)). Diagrammatically, this means that only one of the
fermion lines is directly connected to the instanton background and only one of the fermions
in the effective operator can be a zero mode. This case is illustrated in Fig.

These examples have given us an intuitive understanding of why and how the determinant-
like invariants (and no extra flavour structures) appear in the instanton computations. Next,
we will show how these patterns arise explicitly, after which we will generalise our examples

to generic selection rules on all CP-odd SMEFT operators guided by the flavour invariants.

8.3.3 Four-Quark Operator

Usually, in instanton computations the open fermion legs coupled directly to the background
are closed by the use of mass terms or Yukawa couplings, each giving a different scaling of
the integrand with the instanton size p |240|. In the presence of effective fermionic operators,
they can also be used to contract some of the open fermion legs.

We will make use of this in the first example we want to explicitly discuss, the operator
Ogutt
SU(3). instantons here, the SM SU(2) gauge group is unrelated to the instanton dynamics

which can give rise to the instanton diagram in Fig. |[8.1a] Since we only consider

and the SU(2) indices of the quarks can be treated in the same way as a flavour index. As
for the flavour indices, the explicit form of the zero mode will therefore also not depend on
the SU(2) index, which is just another label for the Grassmann variable in the expansion of
the fermion fields in their eigenmodes. The correlator, Eq. (8.21), induced by the 4-fermion
operator can be calculated aaﬁ

(1)d
u 1
S St el o)

qu

ét)qd(())l ~inst. zhmfd‘%e”” (O T

327

o [ iz, [ ©La(p) [ DHDH! S0l f H pPde()de)Ey))  (3.29)

(1)
« of A2 QVuHu+QYaHd+hc)(z) 1 fd{»g GG(x) Cq“qu Qd(0) +h.c.|,
3272 Qp

where d2§ ©) d§ ¢(0) df ¢©) for the two components of the SU(2) quark doublet. Here, we have
already performed all of the steps described in Sec. up to the expansion of the exponential

5Note, that all computations are done in Euclidean space by Wick-rotating the time coordinate everywhere
in the calculations.
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of the action and the Grassmann integration. In the 1-instanton background with topological
charge @Q = +1 only the zero modes of the right-handed fermions u, d, QT have the particular
functional form of Eq. , while the other chirality is vanishing and will instead contribute
in the anti-instanton scenario.

The next step is to expand the exponential of the interacting action of the fermions and
Higgs, such that precisely enough fermion fields appear in the Grassmann integral to obtain
a non-vanishing result. We will also make the SU(2) indices of all SU(2) doublets explicit in
the following calculations by giving all SU(2) doublets upper case indices. We find

3
ét)qd(o)l inst. *ZOQCD /d4x0/ —dN(p)[DHDHT -So[ HH H( dfgg)d§(0)d2f(0))

1 _ _ ~
X [ d43}1d4l’2d4$3d4l’4 Z z g((QOI) (¢(0)Yu,i1j1 HIPRQ!)(O))(:El)as?Z
" Ltormion fields

Xf_g)} (O H Proy ™) (2) € 5_8)}% (&(O)Yd,klllHKPRl/)(o))(963)551?1) (8.30)
ig

(0) (0) (0) © [ g, GG(x) Céi;dmnop (0) 0) . 1.(0)y(0)
<€ (0o, H Pro @) ()l [ ate= 2 50 | =250 (000 Py el enr
oY

<N (O Pry™)el) (0)]

where the indices m, M of f( ) denote the flavour and SU (2) indices, respectively, of the
zero mode Grassmann vector £Q, which in this case is six-dimensional. In the next step,
we essentially rederive the identities shown in Eq. (8.28) by integrating over all Grassmann
variables of the zero modes and considering all the permutations over the fermion fields
appearing after expanding the exponential. Then, as expected, we find that the Levi-Civita
structures appear explicitly

(1) 1-inst. 1 -i0qQcp umm Jijan 1)
quqd( ) W e 9 € Y‘J d1j1tu 12]20
oF

kikoo l1lap

quqd,mnop € Yd7klll

19 Ie legm Jijan (1) kikoo lilap 4 dp 6
acb € Yuiij Ul?JZCquqd onmp® € Y ks Ya kot d xo p_5dN(P)P

Y4, kols

2
x[DHDHTe_SO[H’H” [[ d4$1d4$’2(¢_}(0)H}-EIJPRQZ)(O))(131)(?/_)(O)EJKHKPR?/)(O))(ZL'Q):I

=21 [ ddzrdiwa (900 Prip(@) (21) A (21 -2 )er 1671 (O Prop(©) (w2)] =21 72

/ y GG
< (arne ™ FO Pry® §O Pp®) (0) [ d'a 32(;”).

(8.31)

The factor of 1/4 at the beginning of Eq. (8.31) appears because the integral over the fermion
zero modes is expressed in terms of the Levi-Civita symbols (see also Eq. (8.28)). The last
step is to integrate over the Higgs field in the Euclidean path integral. This can be achieved



204 8.3 The Interplay of Topological Susceptibilities and Flavour Invariants

employing the definition of the Higgs propagator in position space
_ t
/DHDHTe SolHHI [ () HY (22) = Ay (21 - 20) 61, (8.32)
after which we are left with the integral
I=2 f d*zyd oy (VO Pro) (1) A (w1 = 22) (00 Py @) (a2) (8.33)

multiplying the invariant structure that we set out to find. After some simplifications, we
finally arrive at

A0 g d
1 ins uqd uqd 14 - n
X0yt = S 2l gty 90 () 072 (5O P ® g Py (0)
P P
(8.34)
where we have defined
A((;J)qd 6_10QCD leQmE]lenYH Zl]lyu i2j20(gll121d mmnop klkgoellhpyd:klllYd7k2l27 (8 35)

BW _ -ifqep giriam jijany

1) kikzo lilap
quqd u,i1]1 Ul2]2Cquqd onmp € Yd7k111

Y4 kol -

The same calculation can be performed with the anti-instanton solution. In this case, the
non-vanishing contributions will arise from the Hermitian conjugate terms in the calculation.
Furthermore, the winding number [ d*x Gé(:p) will flip its sign, which also induces a sign
flip in the exponential of fqcp and due to the anti-self-dual property (c.f. Eq. ) of the
anti-instanton solution, the GG term in the correlator will also flip its sign, giving the total
contribution an overall negative sign. After summing up the instanton and anti-instanton

contributions, the full result for the correlator induced by oW

quad reads

(1)
quqd(o) Xquqd 0)|1—inst. quqd(o)‘l a.-inst.

1 _ -
- 5z (A Biiaa) ) [ a0 [ SEan(o) T (50 P 5O Prv®) (0)

1-inst.

1 d _ _
o (A Bla) [ o [ Lan (oo (90 P O Py ) (0)

A,QGF 1-a.-inst.
(8.36)
Substituting the explicit form of the fermion zero modes from Eq. (2.144) gives
_ _ 42 1 _ _
LT L S S L I T
1-inst. d (‘TO tp ) 1-a.-inst.
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which in turn leads to the result
M) oy . 2 (1) (1) 4 dp 6240 1
Xquqd(o)_ A/Q@P/Im(Aquqd-’-Bquqd)[d wO/FdN(p)pI [F(%g-i'—/ﬂ)(; . (838)

As expected, the final result depends explicitly on the determinant-like CP-odd invariants

introduced in Eq.

1 1 1 1
Im(AQ0) = ARG (Chuda) - Im(BLL) = BEGS (Ol

quq quq quqd ) . (8 : 39)

We can perform an NDA estimate following Ref. [242| to compare how closely it approximates
the full results. The NDA results state the loop factor suppression, (47)~% is given by

a=z-2v+2p, (8.40)

where z is the number of fermion zero modes, v the number of vertices and p the number
of propagators in the instanton calculation. The diagram in Fig. allows us to read off
all the required quantities and we find o = 12 - 10+ 4 = 6 for the insertion of Oéi)q q- After
plugging in the explicit form of the zero modes, our final result in Eq. has a suppression
of 1/(457%). While the powers of 7 are correctly predicted by the NDA, the numerical factor
differs significantly. The difference arises because the computations here have been performed
in the unbroken EW phase, whereas the NDA predictions where made without the SU(2)
structure. Furthermore, there are some small combinatoric factors which the NDA estimate
cannot take into account. Taking all of this into account, the estimate of the NDA predicts a
suppression factor of 1/(2567%) in Eq. , which is within one order of magnitude compared
to the full calculation.

8.3.4 Semileptonic Four-Fermion Operator

In Sec. |8.2.1] we showed that the semi-leptonic operator Ol(el(fu can also furnish invariants

featuring fqcop, raising the expectation that the operator can also give a non-vanishing con-
tribution to the axion potential in an instanton background. As the leptons are neutral under
SU(3). responsible for the instantons, they are not coupled to the instanton vertex directly.
Instead, they should be treated as in ordinary perturbation theory like the Higgs field in the
last section, which will have consequences for the invariant structure of the lepton couplings
in the computation, as we will see now. We will compute the correlator with an insertion of
the operator Ol(el(;u, where this time the leptons are kept in the path integral compared to the
previous computation. As before, we will split off the quark zero modes and integrate over
the non-zero modes of the fields. This yields

(1)
1 —inst. 1. ikx 1 =~ Cle u (1
X (0) 7 :_zgnofd%ek (0 T4 55500(), 55" oL (0) o),

= ¢~#aco f dizo f d—ng(p) / DHDH ' DLDLDeDE e 0lHH'] ¢=S0[L.L] =Sole.e]
P
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3 U _
X/H(P dggg>d§(°)d2£(°)) [ d*z(QYyHu+QY.Hd+LY. Heth.c.)(z) (8.41)
f=1

cW
/ d*z GG (x) lequ LeQu(0) +h.c.
QF

As previously, we will now expand the exponential of the action containing the fermion and
Higgs field. We expand the exponential over the quark Yukawa couplings in the zero modes
as before and neglect the quark non-zero modes. Then, as is usually done in perturbation
theory, we expand the exponential of the lepton Yukawa interaction order by order in the
small Yukawa coupling. Expanding the exponential to first order will be sufficient to obtain
a non-vanishing result

. . d _
A 0yt = i f 4z / D i (p) f DHDH'DLDLDeDe S0l ']
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Note that in comparison to the computation of (’)(u 4 an extra down Yukawa coupling is
(1)

quqd
In the next step, we will perform the integration

needed to get a non-vanishing Grassmann integral, because the down-quark bilinear in O
(1)

lequ”
in the path integral over the Higgs and lepton fields, as well as the zero mode integrals. Using

is replaced with the lepton bilinear in O

the definition of the lepton propagator
/ 'DwD'LZ 6_30[1’[1’&] Ib[(xl)i/_u(xg) = Ap(xl - 372) (5[J R (8.43)

the lepton fields are contracted to form a loop The resulting expression reads

(1) (0)1—inst. _

Xlecu 1 e~ 10qep civiam jijany, (1) det Yy

2A2 w4171~ 222 ~ lequ,opmn e po

e
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"The indices I, J represent all internal indices, like the flavour and SU (2) gauge group indices.
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x 3! /d4a:0[d—§dN(p)p61'2 /d4aj5d4x6 (@(O)PRw(O))(3:5)AH($5—$6) (8.44)
p

GG(z)

X tr (PRAF(% -0)PLAR(0 - 366)) (&(O)PRID(O)) (0) eope’™® f d'z 39,2

The final result is obtained by adding the anti-instanton contribution, which leads to the
complex conjugate invariants appearing with the opposite sign in the final result. Thus, the
final result is again proportional to the CP-odd invariant of the semileptonic operator

t (1)

i iriam_j1jan 1 1
lequ) =Im [e bacp crizmjijony y oD YT det Yd] = T0000 (Cl(eq)u) , (8.45)

w171 " u,i2j2 ~ lequ,opmn = e,po

that we have defined in Sec. multiplied by a complicated integral. In App. we
evaluate the integrals in Eq. , where we find a divergent loop integral due to the lepton
loop. We explicitly verify that working in renormalised perturbation theory of the SMEFT,
the appropriate counterterm cancels this divergence.

In addition, we can also apply the NDA estimate of Ref. [242] to this result and find a
suppression of (47)~® matching the 7 suppression of the final result obtained in Eq. with
a numerical factor ~ 1/(4507%). Taking into account the combinatoric factors as well as the
additional factors from the unbroken SU(2) group, the NDA estimate of 478 is approximately
half of the full result.

This analysis can be repeated for all other operators in the SMEFT following the same
procedure. We present calculations for the insertion of the gluon dipole operator O4¢ in
App. that will also be considered in a phenomenological study in Sec. For some
SMEFT operators, the leading contribution might not arise by directly connecting all their
fermion legs to the instanton background through their zero modes. Indeed, considering non-
zero modes of the quarks in the effective operators is also needed to obtain the invariants with
more powers of Yukawa couplings introduced in Sec. We will discuss the calculations
in these cases next.

8.3.5 Higher-Order Invariants and Selection Rules

Throughout the last sections we have explicitly shown that the invariants constructed in
Sec. naturally appear in instanton computations. However, we found that the contribu-
tions we computed only come with the invariant least suppressed in the Yukawa couplings.
We expect the higher-order invariants to appear by computing higher-loop diagrams, where
more Yukawa couplings insertions are generated through fermion-Higgs couplings. We have

)

depicted such a diagram for the 4-quark operator (’)C(;lq

while performing those computations, because Yukawa interactions mixing the zero and non-

4 in Fig.|8.1b} One has to take care

zero modes of the fermions charged under the instanton group have to be kept in the path
integral. In the invariants, these interactions will connect the determinant-like structure gen-
erated by the zero modes by a matrix product to the further Yukawa insertions due to fermion
propagators.

Explicitly performing this calculation is beyond the scope of this work but we will comment

on how these calculations work in principle. Instead of just including the quark zero modes
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in the calculations, one would have to include the non-zero mode interactions in the action
as well. These should be treated perturbatively as was done for the leptons in Sec. As
a consequence, the non-zero mode part of the path integral no longer comes in a Gaussian
form that allows us to simply integrate of them as done in Eq. (8.25). Hence, 't Hooft’s
computations have to be redone without performing the non-zero mode integration, which
amounts to removing the factor of €*?92¥s from the instanton density in Eq. and
treating the non-zero modes of the coloured fields as perturbations around the instanton
background. This leads to further questions about the propagation of these modes in an
instanton background. If the propagator is not simply that of the free quark fields, the
computations could be further complicated.

In summary, the invariants with more powers of Yukawa couplings are generated in com-
putations where the Yukawa interactions contain mixed terms with zero- and non-zero modes
of the quarks and the terms with only non-zero modes. Then, matrix products of the extra
Yukawa couplings are generated by Kronecker deltas upon contracting the quark non-zero
modes to flavourful propagators in the perturbative calculation (c.f. the calculation with
the semi-leptonic operator in Sec. . The zero mode indices remain contracted in a
determinant-like manner via Levi-Civita symbols.

In addition, using flavour invariants we can understand why operators invariant under the
Abelian part U(1)® of the flavour group (shown in Table cannot enter through zero mode
contributions in instanton calculations. One such operator is Og Of , which is invariant under
flavour-universal U(1)q rephasings Q@ — €“@Q (and trivially under the remaining U(1)*
rephasings). Because the operator is rephasing invariant, other flavourful objects besides
the Wilson coefficient are needed to counteract the rephasing of e that necessarily
appears in instanton calculations. Due to the linearity of the flavour invariants in the Wilson
coefficient, this object can only be constructed by SM Yukawa couplings. There are two
options to construct a flavour invariant given these constraints. The object counteracting the
rephasing of e~#QcD can either be det Y, Yy with the Wilson coefficient appearing in a trace
invariant or a determinant-like invariant of the Wilson coefficient where, even at lowest order,
the Wilson coefficient multiplies one of the Yukawa couplings (c.f. Eq. ) As we have
discussed previously, both traces and matrix products can only appear through propagators in
perturbative calculations of the non-zero modes of quarks around the instanton background.
Hence, the flavour invariants imply a selection rule on all operators that are invariant under
flavour-universal U (1)%7% 4 rephasings to only contribute in instanton calculations when the
non-zero modes of the fermions are considered.

In general, the flavour invariants can be used to systematise the instanton computations
by understanding how the contribution from any SMEFT operator will look like before per-
forming any computations, as we have anticipated in Sec. The invariants also give an
idea about which contribution is the most important by counting insertions of Yukawa coup-
lings and loop factors, which usually come with the higher-order invariants. Therefore, using
the invariants for instanton computations in the presence of effective operators enables the
refinement of the NDA estimates of instanton effects in the spirit of Ref. |242].

8These two types of invariants are equivalent as we show explicitly in Eq. (8.13) for the operator (’)gg and
all arguments presented here work for both forms.
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8.4 Constraints on Dimension-6 CP-violating Operators

We can utilise the results obtained in the previous sections to set bounds on the scale Agy
associated with dimension-six CP violating operators. To perform the integrals over the
instanton size p, we have to assume a specific realisation for the modification of QCD at a
scale Agy, such that instanton effects are enhanced, while the 1-instanton approximation still
remains valid. As we will see below, the induced shift in § will parametrically go as A%I JA?
which can be much bigger than similar effects in ordinary QCD scaling like A(QQCD /Aélg We
will set bounds on the ratio Agi/Agy by assuming that the induced theta term in the small
instanton background saturates the experimental bound obtained from the neutron EDM, 6 <
10710 [43]. Using the determinant-like flavour invariants derived in the last section will allow
us to easily assess different flavour scenarios and take into account off-diagonal contributions
of Wilson coefficients appearing due to the CKM matrix.

To achieve an enhancement of the strong gauge coupling, we will consider two different
UV models modifying the UV dynamics of QCD. We will briefly review them here.

Product Group Models In the first model, we consider an extension of the gauge group
of QCD to a product of several SU(3) groups, which is subsequently spontaneously broken
by the VEVs of some scalar fields o. In such a model, the instanton density dy(p) is modified
by an exponential factor

dx(p) > dy(p)e ™ 7 Ee O, (8.46)

where the sum extends over all the scalars o that Higgs the gauge group. The VEV of
the scalars provides a natural cutoff ~ 1/|(o)| for the integration over the instanton size
p. For definiteness, we consider the product group model introduced in Refs. [240} |344],
where the gauge group SU(3)1 x SU(3)2 x---x SU(3)y, is Higgsed to the diagonal SU(3). via
bifundamental scalars . When the theory is eventually matched to QCD at a scale M, where
all the heavy gluons from the theory can be integrated out, the matching condition reads as
follows

(8.47)
%AD ;f@f

Hence, to remain compatible with the QCD coupling at low energies each of the gauge coup-
lings g; has to be larger than the strong coupling g5 at the matching scale M. In particular, the
higher the total number k of SU(3) subgroups appearing in the product group, the stronger
the coupling in each of the SU(3) subgroups has to be.

5D Instantons In the second model we consider the strong coupling is enhanced by up-
lifting the BPST instanton presented in Eq. (2.129) to a compact extra dimension of size
R |360|, which modifies the running of the effective gauge coupling in Eq. above the
compactification scale 1/R. The effective action then becomes

—§+%m5, (8.48)
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where by is the 1-loop coefficient of the QCD [-function and the linear term R/p is due
to additional contributions in Eq. (2.146) from the Kaluza—Klein modes. This leads to a
modification of the instanton density by an amount

dn(p) > dn(p) e’ (8.49)

The dilute instanton gas approximation holds true in computations of the topological sus-
ceptibility in this model as longs as the 5D perturbativity condition

2472
g’

AgiR < (8.50)

is enforced, where Agy is identified with the cut-off scale of the 5D gauge theory.

8.4.1 Bounds from Induced 6

As discussed in Sec. new sources of CP violation in the SMEFT can induce a shift in
6, which leads to observable effects such as a non-vanishing neutron EDM. In principle, all
CP-violating operators in the SMEFT can contribute to an induced theta term, where the
form of the contributions are dictated by the invariants presented in Ref. |3|. Hence, due to
the different flavour structures necessary to built invariants for the different operators, there
are only a few invariants that contribute at the leading order.

In the following, we consider three different flavour scenarios to study their impact on the
constraints obtained from the neutron EDM bound on the induced #-angle. We will briefly
introduce them here.

1. The simplest flavour scenario we consider is the anarchic flavour scenario, in which
all entries of the Wilson coefficients have an O(1) value. Compared to the SM, this will
in particular lead to large flavour-changing interactions.

2. A slightly more restrictive flavour assumption is the MFV scenario. As we have noted
earlier, in the SM the only breaking of the U(3)® flavour symmetry of the fermion kinetic
term is due to the SM Yukawa couplings. Taking the Yukawa couplings to be spurions
under this symmetry (c.f. Table[8.1), makes the Lagrangian formally invariant under this
approximate symmetry. In MFV we assume that also in the UV sector, that generates
the non-renormalisable operators of the SMEFT, the only couplings breaking the U(3)5
flavour symmetry are the SM Yukawa couplings. Thus, all SMEFT Wilson coefficients
are polynomials in the Yukawa couplings dictated by the spurious transformations of
the Wilson coeflicients under the flavour group.

3. Lastly, we consider an FIN scenario that offers an explanation for the size of the SM
lepton and quark masses as well as the parameters in the CKM matrix. We have already
introduced this model in Chap. to obtain a single parameter description of the SM and
SMEFT flavour sector, which allowed us to organise the SMEFT flavour invariants, and
in Chap. @in combination with a PQ mechanism to generate flavourful ALP couplings.
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We will briefly introduce the main aspects of the mechanism in more details here to
set the stage for the analysis of the flavour invariants. In the FN scenario, the SM
field content is extended by a complex scalar field ¢ which is a singlet under the SM
gauge group and has charge —1 under a new global U(1) symmetry. Constructing a
Lagrangian invariant under the SM gauge group and the newly postulated U(1) yields

¢* qQ; +quj . ¢* qQ; +qdj g~ qb* qr, +q€j ~
£=- (AFN) CijQit; = (AFN) CijQitld; - (AFN) CijLiHe;,
(8.51)

where the FN charges of the left-handed fermions Q, u!, df, L, el are denoted as q0,

Gus 9d, 9L, qe, respectively, qg = 0, Apy is the effective scale where the Froggatt—
Nielsen scenario is UV completed and the coefficients C’Zyj’d’e are O(1) complex numbers.
Eventually, the global U(1) symmetry is broken by the VEV of the complex scalar,
which yields hierarchical Yukawa couplings as powers of A = % ~ 0.2 dictated by the
FN charges. One set of charge assignments that can reproduce the SM Yukawa couplings

to large accuracy is

qQ = {33 27 0}7 qu = {57 27 0}7 qd = {47 3’ 3} ; (852)

for the quarks and
qrL = {97 5, 3}a qe = {Oa 0, O} ) (853)

for the leptons. This construction can be extended to the effective operators of the
SMEFT |[361], resulting in hierarchical entries for the Wilson coefficients.

We begin by identifying the leading order invariants amongst those given in Sec. This
can be easily achieved by studying the FN scaling of the invariant with the least number of
Yukawa matrices for each operator. Consider the topological susceptibility of QCD, x(0) o<
Ky, e.g., which scales as o< \27. This compares with the SMEFT invariants in Sec.[8.2.1|which
scale as

1,3 1,3 :
11100(01({(1 M, Igooo(cl(equ)) oc A (8.55)

This scaling helps to determine which invariants are the least suppressed and hence phe-
nomenologically the most interesting. For instance, Eqgs. (8.54) and (8.55) indicate that the
Oy qg) or O

operators Oy and (’)C(li’jc)l lequ > i.e. if the Wilson

coefficients are assumed to be of the same order (reduced by the appropriate A scaling in the
(1,8)
quad
(or (’)gcf)). This can also be understood from the diagrams in Fig.|8.1aland Fig.[8.1d|-

lead to larger effects compared to

FN scenario), the contribution of the operator O

(1,3)
Olequ
the latter diagram, corresponding to the semi-leptonic operator, contains additional loops and

(or Oun) to Oipng dominates over that of

Yukawa couplings compared to the former diagram, corresponding to the 4-quark operator,
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and the leading order contribution from x(0).

Below, we study in more detail how these invariants contribute to the shift of the axion
potential minimum, 6,4, for the two leading-order operators — the 4-quark operator Oéi)q q

and the dipole operator Oq¢, as well as the sub-leading semi-leptonic operator Ol(el(;u.

For this analysis, the MFV (at leading order) and FN flavour scenarios result in the same
scaling for the Wilson coefficients, which occurs because we only consider the contribution

1)

from chirality-flipping operators to one observable. For instance, the scaling of (’)quq q s

(1) MFV

3 (1) FN 4Q;+qu; +4Q, +4d
quad,ijkl caYuijYam+O(Ysa), C ~ e AT TR (8.56)

quqd,ijkl

where ¢; are O(1) coefficients. Since by the FN construction, Eq. (8.51), Yy ~ \%@*% and
Yy ~ \@*9d we explicitly see the same scaling in both scenarios. Therefore, in the following
we will only present constraints on Agp (for a given Agr) under the anarchic and the MFV
scenario for the considered operators.

Four-Quark Operators For the 4-quark operator (9((;121 4 the topological susceptibility is
computed in App. [8.A.1] where the final result up to the integration over the instanton size
can be found in Eq. (8.68). Performing the integral over p in the product group model
SU(3)" - SU(3). and setting |(o)| = Ag1, we obtain

167
Oina = 57— (A3 (Caue

A%
5(bo - 6) Kg quad ) o~ (8.57)

)+ B2ges (Con o

quqd
where by = 13/2 for the first subgroup SU(3)1, by = 10 for the middle k& — 2 subgroups
SU(3)2, ... SU(3)k-1 and by = 21/2 for the last subgroup SU(3); of the product gauge
group, yielding an additional factor of 2 on the right-hand side of Eq (8.57). In the case of
5D instantons, we obtain

quqgd

))555-. (8.58)

A
,@P/

0000 (1)
5K, quqd) + Bgooo (C

As a consequence of Higgsing the product gauge group, the model has a natural IR cutoff
on the instanton size p, which leads to a mild dependence on the § function coefficient, by in

Eq. (8.57). In contrast, the dependence of the instanton density of the 5D instanton model in

Eq. (8.49) on the instanton size implies that the integral over p is dominated by instantons of

size p ~ 1/Agr. Therefore, all the susceptibilities for the 5D model only depend on Agp, up to an
overall factor. This factor cancels when taking the ratio of susceptibilities, implying that 6;,q
is independent of the 8 function coefficient, by. The constraints arising from Egs. and
on the scale of CP violation Agp as a function of the scale of small instantons Agp are
shown in Fig. where for the product group model, we use by = 13/2 since it gives the most
stringent constraints. For easy comparison, we will use the same value of by to constrain both
the semi-leptonic and gluon dipole operators. In the anarchic flavour scenario, we find that
Acp 2 10'9(10') Ag; for the 5D (product group) model. As expected, the constraint is relaxed
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Figure 8.2: Limits on the UV scale Agg of the 4-quark operator Oéluzld in different flavour scenarios as a

function of the small instanton scale Agr. The shaded regions are excluded by the non-observation of the
neutron EDM. The striped red region, which corresponds to scales above the Planck mass, is plotted for

reference.

in the MFV scenario due to the additional Yukawa suppression of the Wilson coefficients —
Acp 25 x 10°(10°) Ag; for the 5D (product group) model, which differs exactly by a factor of
~/YuYd, as indicated by Eq (8.5). This matches the MFV scenario considered in Ref. [337],
up to an overall factor due to the Higgs doublet structure. In addition, the invariants help us
to easily incorporate off-diagonal Yukawa couplings which improves the previous estimate of
Oind in Ref. [337] by ~ 6%.

Semi-Leptonic Operator For the 4-fermion operator (’)l(elcfu, the susceptibility up to the
integration over the instanton size can be found in Eq. (8.81). In the case of the product

group model, performing the integral over p gives

18000(01(1(1) )[11 6 A 3 (b A2
equ Yol 0 SI
nd = e = 2 og [ =2 ) 4y — logdr ) + S (2 - 3) [ 5L 8.59
d (bo —G)Kg [25 5 ( Og( ASI ) 8 ) 5 ( 2 )] A,QGP’ ( )

where W(z) is the digamma function and vz is Euler’s constant, while in the 5D instanton

model we obtain

9000 (Cla) [11 6 A A2
nd = ——— = | — 4 — (1 —Q") -1 2)]—51. 8.60
17 T8K, [25+5(°g(ASI e Ve (8.60)
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Figure 8.3: Limits on the UV scale Age of the semi-leptonic operator olcqu in different flavour scenarios
as a function of the small instanton scale Ag;. The shaded regions are excluded by the non-observation of
the neutron EDM. The striped red region, which corresponds to scales above the Planck mass, is plotted for
reference.

We present the constraints arising from Egs. (8.59) and (8.60) in Figure 8.3. As expected, the
constraints in this case are much weaker than for the 4-quark operator, because the invariant is
more suppressed by the lepton Yukawas, an additional loop factor appears in the computation
and more quark Yukawas have to appear in the determinant-like structure of the invariant to
close up all of the fermion legs appearing in the flower diagrams. For the anarchic and MFV
flavour scenarios, we obtain Age 2 10%(107) Agp and Agp 2 5 x 103(10%) Agy, respectively, for
the 5D (product group) model. From Eq. (8.10), we see that the largest term in IgOOO(Clez)u)
~ (1)), and ~ Kyy? for the MFV

scenario (Cl(ez)u Nk ~ Ye.NmYu,rk). This results in a difference by a factor of ~ | /y, y- between
the two flavour scenarios. In comparison to the result for the 4-quark operator, the difference
can again be understood in terms of a loop factor and different Yukawa couplings entering the

invariants Agggg(CéBld), Bs(C étlle 4) and OOOO(C’le qu) — for MFV, there is a relative factor

of ~\/y2/1672 = \/A6/1672 whereas for the anarchic case the factor is ~ \/y,ya/1672.

is approximately ~ Kyy;/y, for the anarchic case (C(l)

lequ

Gluon Dipole Operator Next, we consider the gluon dipole operator Ogqg = (Qo**T4d)H GAV

. . . . (1,8)
This operator contributes to the topological susceptibility at the same order as (’)quq 4> and

has the same functional form in terms of instanton parameters. The flavour structure of this
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Figure 8.4: Limits on the UV scale Agy of the gluon dipole operator Oqc in different flavour scenarios as
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reference.

operator is similar to Oy presented in Eq. (8.8), and the leading order invariant is given by
Too00(Cac) = Im[e7Pecr ! TK by, 1y 5:Cac, ki det Yy ] (8.61)

The computation of the susceptibility for this operator is given in App. 8.A.3, where the result
up to the integration over the zero modes is presented in Eq. (8.87). In this case, the product

group model gives the result

~ Toooo (Cac) 144m*  AG
- SL
Ky 5(b—6) A2,

Oina (8.62)

where by and |(o)| are similarly defined as in Eq. (8.57). In the case of the 5D instanton model

we obtain )
_ Zoooo (Cac) 18 Ag

SL
Ko 5 A2,

Oina (8.63)
The constraints coming from 6,4 in Egs. (8.62) and (8.63) are presented in Figure 8.4. In the
anarchic scenario, the constraint is approximately, Agp 2 5 x 107(108) Agy for the 5D (product
group) model. In the anarchic and MFV flavour scenarios we have Cyg;; ~ 1 and Cqg ~ Yq,
respectively, resulting in bounds differing by a factor of ~ | /yq (see Eq. (8.61)). This is much
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less pronounced than the difference between (9((:121 q and OW where a difference of multiple

lequ’

Yukawas arises. It is worth noting that the constraints arising from both the operators O((;l)q d
(1)

and Ogg are similar in the MFV scenario, while those from Olequ are the weakest among the
three, as expected.

Finally, note that for simplicity we have assumed that the small instanton-induced #-angle
provides the entire contribution to the neutron EDM. However, in principle, there can be dir-
ect contributions to the neutron EDM from the same CP-violating SMEFT operators, which
should also be taken into account for a consistent analysis. These contributions from para-
meters other than 6 have been considered in Refs. 5| 44//48] and we expect contributions of a
similar size. Due to the random numerical matrix elements in front of the different contribu-

tions, we do not expect any large cancellations between the direct and indirect contributions.
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Appendices to Chapter 8

8.A Evaluating Loop and Collective Coordinates Integrals

8.A.1 Four-Quark Operator

In the main section of this chapter, we have shown explicitly that the correlation function
(1)
quqd

invariants. There, we have not solved the 1ntegral 7 and the integral over the instanton centre

(0) with an insertion of the operator (9( ) o is proportional to its determinant-like flavour

xg appearing in the computation, which we will do explicitly here to obtain analytical results
that can be used in the phenomenological analysis performed in Sec. The integral Z has
previously been calculated in the literature |239) 240} 337| and reads,

I:e[JeIde4x1d4x2 (&(O)PRQb(O))(xl)AH(J}l—.T,'Q)(QZ(O)PR'Lﬂ(O))(xQ) (8.64)
zkml ika k Ki(k 2
- [ dinidie [tk L — i fd4 p2 1(ko)] ,
278 x +p) k2 +mi, (:z: +p 8 (kp)? + (mmup)

where we have plugged the zero mode profile of the fermions in Eq. (2.144) and the (Euclidean)
scalar propagator into the first line of Eq. (8.64). The integrals over the Euclidean coordinates
x1, 9 are performed using the identity [ d*ze /(2% + p?)? = (22/2)(k/p)K1(kp), where
K1 (kp) is the modified Bessel function of the second kind. In the small instanton limit, i.e.,
mpp < 1, the integral in Eq. evaluates to the following expression

1
ACA D 8.65

Secondly, we can evaluate the integrals over the collective coordinate (zo in Eq. (8.38)) res-
ulting from the insertion of the 4-quark operator:

1
d* . (8.66
f xo 7T4 (23 + p2)6 5772/)4 (8.66)

Finally, substituting the results derived in Eqs. (8.64) and (8.66) into Eq. , we obtain

[ da0(8) Py ® 5O Preryv @) (0)

1-(a)-i.

Vo ) = (AR (CAh) - 588 (CE0)

2 212 2
X/p_/;dN(p)pﬁ[#fd% (kp)*K7(kp) ] 2 (5.67)

(kp)?+ (mpup)*] 5m2p*

In the small instanton limit, mpgp < 1, the correlator Xq g d(0) is given by

(1) (UV) 0000 ( ~(1) 0000 ( (1) dp 20 2
Xquqd (0) - A2 (AOOOO (Cquqd) BOOOO (Cquqd)) / p N(P) (671’2)2 571' p . (868)
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The integration over the instanton size, p, can be performed once the details of the UV
dynamics effects are known that enhance the small instanton effects. Some examples of UV
models will be explored in Sec.

The results obtained in this appendix also allows for the estimation of higher-order con-
tribution in the EFT with an insertion of the CP-odd phase from O(gluzq q and a CP-even
parameter from the same operator. This extra insertion of the SMEFT operator can be used
to connect two of the petals in a flower diagram in Fig. instead of using a Higgs. Hence, in
the final result has one power of the integral Z, Eq. , is substituted by one power of the

integral in Eq. (8.66). As such, the higher-dimensional contribution will be suppressed by an

2
additional factor of (ﬁi) . At the same time, two Yukawa couplings are traded for another
Wilson coefficients. As long as one can assume that the flavour suppression by these additional

2
Yukawa couplings is larger than the additional scale suppression ([fi) , these contributions
will be subleading, which is the case even for anarchic flavour scenarios in Sec.

8.A.2 Semi-Leptonic Operator

The remaining integrals with an insertion of the semi-leptonic operator (’)l(el(iu, that where
not solved in the main section, can be evaluated starting from Eq. (8.44) after adding the

anti-instanton contribution. The topological susceptibility, Xl(el(iu(O) reads

1 ? 1 dp
Nieau(0) = 77~ Zooo0 (Cieu) [ “Lan (o) (36°7%) T (8.69)
op 1Y

where the insertion of Ol(el(iu appears in the integral Zjq,, defined as

Tiequ = €ope?” f d*zodz5d w6(P D Pry ) (25) Ag (25 - 26 ) x
x tr (Pr Ap(z6 —0)Pr, Ap(0 - x6)) (Y Pry(©)(0), (8.70)

which contains a divergent loop integral that needs to be regulated.

Evaluating the Divergent Part of Zj,, Next, we substitute the (Euclidean) scalar and
fermion propagators into Eq. (8.70) to give

Ilequ =2 f d4x0(&(0)PR¢(O))(O)

d4k dd +k —ikxs 3
S @ [ G | Gy “[PR%PL&W]kim;{(w(“)PRw(”)(xs)- (5.71)

Here, we have used the integral representation of the 4-dimensional Dirac delta distribution
to eliminate the integration over xg. We regulate the divergent loop integral by employing
dimensional regularisation in the MS scheme in the semi-naive approach |362| of dealing with
4 matrices in d = 4 — 2¢ dimensions. We find for the UV-divergent part of the loop integral
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in Ilequa
div. A ) > _./(0) d'k kK2 e ™ oy (o)
T = o 26 f d*zod zs (9 Pry©)(0) O R (zp P @) (z5)| . (8.72)

This integral contains a UV divergence manifested as a %-pole, which can be cancelled by
identifying the appropriate counterterms.

Divergence Cancellation and Relation to the SMEFT RGEs. Using the results for
the SMEFT RGEb in Ref. [96] we can extract the appropriate counterterm needed to cancel the

divergence in Xlequ(o) The SMEFT RGESs reveal that the only counterterm that can cancel
(1)

quqd
(all other counterterms either have the wrong flavour structure or require additional insertions

the divergence in Xlequ(O) is the one responsible for the running of the on-shell operator O

of gauge couplings). However, since we are requiring the divergence cancellation at the level
of correlation functions, which are not invariant under field redefinitions |65} 67|, we need to
consider the counterterms in an enlarged Green’s basis instead. For this particular case, we
can verify that the contribution of (’)l(elcfu to the RGE of Oéﬂl q is fully determined by a Green’s
basis operator. Considering the Green’s basis of Ref. |363|, we find [96]
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where G{fﬁbl mn 18 the Wilson coefficient of the redundant Green’s basis operator Ouup1 =

QuD?H that is reduced to (’)(1) o« via field redefinitions — which can be easily verified at this

order in the EFT by replacing D2H with the Higgs EOM. To cancel the ——pole in Xl(e )udlv (0),

we need to compute the correlation function with an insertion of the Green’s basis operator
with the counterterm Wilson coefficient
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1—inst.

using similar steps to those used previously in Sec. Eventually, we obtain
c.t. _ i @d | 672
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where the invariant Iynp1, supplemented by the counterterm in Eq. (8.73), yields
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(8.76)
The integral Z,uyp1 reads

Zup1 = 2 f d4$0(1/;(0)PR¢(0))(0) / d4x5 ﬁer—_ik%(J}(O)quﬁ(o))(l«S) (8.77)
(2m)* k%2 +m?,
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where we have used the fact that the Green’s basis operator contains derivatives (in Euclidean
space) acting on the Higgs, hence the path integral over the Higgs fields yields

dik k2e—ik(m1—m2)

01y .
2m)* k2+m?,
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(8.78)

At this point, we have found that the integral Z,up; in Eq. (8.77) obtained from including the
counterterm is the same as the integral Ilg“l’l in Eq. (8.72) up to the overall factor 1/(1672%¢).

Thus, substituting Eqs. (8.76) and (8.77) into Eq. (8.75), one can easily observe that x ip; (0)

precisely cancels the %—pole in Xl(el(iu(O).

Evaluating the finite part of 7, We can also extract the finite contribution of the
integration over the loop momentum ¢ in Zjeqy
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where p is the renormalisation scale. As before, we first integrate over x5 and the instanton
centre zg. The final integral over the momentum k can be performed in the limit of mg — 0
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Finally, substituting Eq. (8.65) and Eq. (8.80) into Eq. (8.69), the finite part of the topological

susceptibility Xl(elofu(O) induced by the operator Olelqu becomes
DEnUY) KB 1) dp 3! 11 +30(log (pAgp) +E — log 2)
Xlequ (0) - 0000 (Clequ) [ —dn ( ) (6 2)2 6007r4p2 )

(8.81)

The dependence on the renormalisation scale p in Eq. ) has already been removed by
performing the RG evolution induced by C’l(e )u, rendermg the final result of 0,q independent
of the renormalisation scale as expected. The result in Eq. (8.81) will be used in Sec. to

place bounds on the scale Agp.
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8.A.3 Gluon dipole operator

In the computation with an insertion of the gluon dipole operator Oqg = Qo**T4d H ny
in the correlation we set the field strength tensor in O4¢ to its instanton background value,
while the rest of the calculation proceeds in a similar fashion to the other effective operators.
Since, the gluon dipole operator is also a chirality-flipping single bilinear operator, its flavour
invariants have a similar form as those of O,y presented in Eq. . Following the previous
calculations, combining both the instanton and anti-instanton contributions, the topological
susceptibility xqq(0) can be written as a flavour invariant multiplied by the integral

XdG(O)— Ioooo(CdG)f—dN(P) 310°7% Ty, (8.82)

where the Oqq operator is included inside the integral Zyq, and defined as

Tac = €15€" f d*z f d*z3 (PO Pryp ) (23) Ay (23) (0O TA PRy O G |, )(0).
(8.83)

The computation of xqa(0) proceeds in the same way as the integral of Xquq Cl(O) Plugging

the zero modes of fermions (2.144) and gauge fields (2.133) into this expression, the integral
Taq becomes
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Here, we have integrated over zg and used the following identity

—ikxo 1 o 2 e—ikaco 7T2 o 2 k 7T2 k 3
ey S LD g 0 e ] (6
[ @2y 12092 ez e 2 \ap) |k | = g5 () Kalhe)
(8.85)
where we have used that 6%2 [pinKn(k:p)] = —%%Kml(kp). As before, we evaluate the last

integral in Eq. (8.84) in the small instanton limit, mpyp < 1,

vy, 6
Tic = S (8.86)
Substituting Egs. (8.65) and into Eq. , we obtain
ARI(0 36 8.87
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which we will use in Sec. to set bounds on Agp.
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In the second part of the thesis we have studied different aspects of symmetry breaking in
ALP EFTs using flavour invariants and the Hilbert series.

In the first third of Part II, we have reformulated the well-known matrix relations that
impose shift symmetry on the couplings of the dimension-5 ALP EFT into a flavour-invariant
description. The flavour invariants capture the necessary and sufficient conditions for shift
symmetry to hold, hence yielding a set of 13 order parameters for shift symmetry in the
dimension-5 ALP EFT. They are explicit and algebraic relations, that only depend on the
dimension-5 Wilson coefficients and SM Yukawa couplings in a flavour basis-independent way.
The order parameters make it clear, that shift symmetry in the dimension-5 ALP EFT is a
collective effect induced by the EW gauge interactions, which connect the up- and down-
sector of the theory through the left-handed quark doublet. After computing the RGEs of
the invariants, we observe that they are a closed set of differential equations. Hence, the set
of flavour invariants is closed under RG flow as expected as the shift symmetry captured by
the invariants is preserved by RG flow.

We have illustrated different features of the invariants by explicitly performing the match-
ing of various UV scenarios to the ALP EFT. We have checked that the invariants indeed
vanish if the UV completion features an exact PQ symmetry, i.e. shift symmetry, and have
shown explicitly that the invariants will be proportional to the spurion of the shift symmetry
breaking if such effects are present in the UV. We have also illustrated the collective aspect
of the shift symmetry by considering scenarios that only make the invariants featuring both
up- and down-type couplings non-vanishing.

We have shown that there exists a close connection between CP violation and shift sym-
metry at the leading order in the ALP EFT: all but one order parameters for the axion shift
symmetry are CP-odd. The numbers in this relation can be explained by considering the field
redefinition that allows to remove the shift of the ALP in the EFT. The field redefinition relies
on a non-vanishing renormalisable SM Yukawa coupling, setting the number of constraints
that have to be imposed.

Furthermore, we emphasised that the collective aspects of the invariants disappear when
a non-linear realisation of the electroweak symmetry is considered and in the low-energy
EFT, where all heavy particles of the SM are integrated out. Nevertheless, matching the
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low-energy theory, which captures both a linearly and non-linearly realised EW symmetry,
to a UV completion with a linearly realised EW symmetry, we were able to show that the
extra constraints implied by the linear realisation are stable under the RG flow in the IR.
This allowed us to study constraints on the dimension-5 Wilson coefficients at low energy
experiments like atomic EDMs with the constructed invariants. Furthermore, the flavour
invariants allowed us to derive sum rules from the contribution of the ALP EFT to the
running of the SMEFT Wilson coefficients.

Finally, we have extended the discussion to the non-perturbative breaking of the PQ
symmetry induced by the coupling of the axions to gluons. We have identified the corres-
ponding order parameter, which captures the mixed anomaly between the PQ and the SU(3),
symmetry, whenever a PQ symmetry exists at the classical level. We have shown that the
additional order parameter does not run at 1-loop.

The results can be extended in several ways. We could connect the results to more CP-
odd observables, which give strong constraints on new physics, due to the majority of the
order parameters being CP-odd. It could also be interesting to study the collective nature of
the order parameters at the level of observables and to further study the interplay between
the flavourful axion couplings studied here, shift-breaking bosonic couplings of the axion and
the axion mass. Lastly, it could also be interesting to compute the RG running below the
EW scale at the next loop order to study to which precision the matching conditions to a
linear realisation of the electroweak symmetry are preserved by the RG flow. Finite threshold
corrections arising during the matching procedure at loop-level could also be included.

In the second third of Part II, we have studied how the shift-breaking effects in ALP
EFTs above and below the electroweak scale can be captured beyond the leading interactions
at dimension 5. To this end we have computed the Hilbert series of an ALP EFT with
and without a shift symmetry above and below the EW scale. The Hilbert series allows us to
perform the counting of the effective operators with full flavour dependence Ny, split into their
transformation under CP and with and without lepton and baryon number conservation, which
we have performed up to mass dimension 15. Using this information we have constructed
operator bases for the ALP EFTs with and without a shift symmetry and above and below
the EW scale up to mass dimension 8. Furthermore, we have constructed the invariants
capturing the sources of CP violation of the leading order effective interactions.

The Hilbert series takes on a special form, which we call the PQ-breaking isolation condi-
tion, stating that beyond mass dimension 5 the operators describing shift-breaking couplings
of the ALP to the SM are clearly isolated from the shift-preserving couplings. This is in
stark contrast to what happens at dimension 5, where the EOM redundancy, relating the
derivatively coupled operators with fermions to the ALP-Yukawa couplings, mixes the two
sector of the EFT. The PQ-breaking isolation condition implies that no other such EOM
redundancies exist at higher orders at least up to dimension 15, that we have checked. This
means that at higher order only the effects of the EOM redundancy at dimension 5 on other
higher-dimensional operators has to be tracked. We construct the relations on the higher-
dimensional Wilson coefficient explicitly up to dimension 8, where also field redefinitions on
SMEFT operators have to be taken into account, which a priori seem to be independent of
the discussion in the ALP EFT. As an application of our operator basis, we derive positivity
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bounds on the dimension-8 Wilson coefficients in the ALP EFT above the EW scale.

The work could be extended as follows. First, we could study how the how the higher-
dimensional shift-symmetric operators influence the phenomenology of ALPs. Since at di-
mension 5 the ALP already receives couplings to all SM particles except the Higgs, and at
dimension 7 the ALP is coupled to all SM particles, we do not expect large corrections. The
only exception could be specific channels which do not get a contribution in the EFT at
lower mass order or which rely on intermediate particles from the SM implying that their
amplitudes do not grow (as fast) with energy as a pure contact interaction. We could also
study the interplay of shift-symmetric and shift-breaking operators if the scale of explicit PQ-
breaking is not much larger than the scale of spontaneous breaking. In regards to low-energy
experiments, our complete basis for the LEFT extended with an ALP should prove helpful to
perform analyses beyond the leading order (c.f. for instance Ref. |189}212]). Finally, with a
complete basis one could extend the efforts of Refs. |212}213]|286] and calculate the renor-
malisation group equations of operators of higher mass dimension and their contributions to
the renormalisation group equations of operators at dimension 5. For these computations it
would be helpful to construct a Green’s basis, which we will do in an upcoming publication
by computing the Hilbert series of the EFT keeping all EOM redundancies with the package
CHINCHILLA, mentioned in Chaps. [3]and

In the last third of Part II, we have considered new sources of CP violation in the UV
in the presence of a small instanton background, which can destroy the axion solution to the
strong CP problem by shifting the minimum of the axion potential.

To make the study independent of a specific UV model that provides the new sources of
CP violation, we have parameterised the sources by CP-odd SMEFT operators. To capture
the physical flavour-invariant sources of CP violation in those SMEFT operators, we have
derived a new complete set of determinant-like flavour invariants, featuring the strong CP
angle 0, which necessarily appears in instanton computations. The instanton computations
were performed in the 1-instanton approximation, for which we have assumed that the strong
coupling is large but still perturbative.

Because physical observables should be independent of a choice of basis, in particular a
choice of flavour basis, the flavourful couplings should appear in the form of flavour invariants.
Keeping all flavourful couplings generic in the instanton computations, the results of the path
integral computation indeed depends on the determinant-like flavour invariants constructed
earlier for all SMEFT operators. The old basis in terms of single-trace flavour invariants of
Ref. [103], is less suited to perform these computations, which is obvious when the basis of
determinant-like flavour invariants is projected on the trace basis: the trace invariants appear
in complicated rational functions of polynomials. We have shown this explicitly for different
examples.

Furthermore, the determinant-like invariants allow for a systematisation of the instanton
computations. The structure of the invariants implies selection rules on which kind of oper-
ators can appear at the leading order in the instanton calculation since they determine the
number of Yukawa couplings and loop factors. We have also shown that rephasing invariant
operators cannot contribute only via fermion zero modes which usually give the dominant
contribution. We showed, for instance, how to read off the additional loop suppression ex-
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pected from the semi-leptonic operator (’)l(elq)u directly from the invariant. In addition, the
flavour invariants allow to easily impose different flavour scenarios on all couplings in the
theory. To this end, we have explicitly studied an anarchic, Froggatt—Nielsen, and minimally
flavour-violating scenario. After also fixing the mechanism that enhances the effects of the
small instantons in the UV, the experimental bound on 6 from the neutron EDM can be used
to set bounds on the scale of new physics as a function of the scale where the small instantons
arise. Comparing the operators oW

quq
a similar bound of Age 2 105 Agp for the MFV scenario, while for the anarchic scenario we

q and Oqg in the product gauge group scenario, we find

obtain a limit of Age 2 10" Agr for O((;l)q qand Agp 2 108 Ag; for Oy, where we always assume
that the contribution to € is entirely due to the effect of the small instantons.

The cancellation of divergences appearing in the loop integrals can be used as a non-trivial
cross-check of our calculations. The divergences in the correlation functions are cancelled by

including the counterterms of the SMEFT in a Green’s basis. This cancellation has been

1)

lequ 1O obtain a divergence-free result that is

explicitly shown for the semi-leptonic operator O
then used for the phenomenological study.

This work can be extended in several directions. The most immediate extension would
be to perform a computation of the leading effect of all operators in the SMEFT to 6i,q,
explicitly verifying the appearance of all other constructed invariants. In addition, including
higher orders in the Yukawa couplings could be interesting to see the higher order invariants
of the already considered operators arise. Another generalisation could be the inclusion of
higher order effects in the EFT power counting (e.g. the double insertions of dimension-6
SMEFT operators or a single insertion of dimension-8 SMEFT operators), which would lead
to new invariant structures with respect to the ones considered here. While we estimated

that the higher order effects in the EFT are suppressed in the case of the double insertion

of (’);1121 4 in Appendix |8.A.1} it would still be interesting to perform such a study explicitly

to understand the size of the corrections when all numerical factors are correctly taken into

account.

Furthermore, here we have only considered the corrections to the minimum of the axion
potential. In a future publication, we will also address the question how the small instanton
scenarios considered here can also generate other shift-breaking operators of the axion like
a mass term or even shift symmetry-breaking couplings to other SM fields. Here, the order
parameters constructed in Chap. @ could prove useful to check if the generated effective
couplings indeed break the shift symmetry.

* %k %

To close off this thesis, we want to return to the questions posed in the introduction. We have
shown that flavour invariants are extremely useful tools in many situations in the presence
of flavourful couplings. In particular, flavour invariants can be constructed to capture the
necessary and sufficient conditions for CP conservation in a flavour-basis invariant way. To
this end we have shown, how to construct the flavour invariants of the vSM and vSMEFT
in Chaps. |3|and [4] how to build a complete set of CP-odd flavour invariants more suitable
for instanton computations in Chap. |8| and we have constructed a complete set of CP-odd
trace invariants for the ALP EFTs in Chap.|7] We have developed a graph-based algorithm
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that proved to be helpful for the brute-force construction of the invariants in the vSM but
also for the systematic construction of the flavour invariants of the ¥YSMEFT, where many
flavourful couplings are present at the same time. This answers the questions of how the
CP-odd invariants of commonly used EFTs look like and how to construct a basis for them
suitable for computations.

In Chap. @ we have shown that flavour invariants can also be useful in other contexts to
describe the other aspects of symmetry breaking, in our case the ALP shift symmetry. To this
end, we have presented how to disentangle the shift-preserving and shift-breaking interactions
in ALP EFTs by using flavour invariants, that make it possible to properly implement the
power countings of the shift-preserving and shift-breaking sector of the EFT. Besides this,
the main advantage of the invariants is that they explicitly illustrate several features of shift
symmetry, like its collectiveness due to the SU(2) gauge structure of the EFT, the number
of independent constraints that have to be imposed and its close connection to CP violation.
We have also answered the question of how the relations imposing shift symmetry in the EFT
can be generalised to higher orders in the EFT expansion in Chap.

The last question we posed in the introduction was if the EFT flavour invariants are really
the fundamental objects that appear in computations without further suppressions or en-
hancements by other flavourful but flavour-invariant objects. In the instanton computations,
where we have calculated the shift of the axion potential minimum induced by CP-violating
SMEFT operators, we have shown explicitly that this is indeed the case. Note however, that
this was strongly basis-dependent. Had we used a basis of single-trace flavour invariants,
the result would have been a complicated rational function of polynomials as we showed in
Sec. Because the computations do not care about the chosen set of basis invariants,
it is likely that invariants outside of the chosen basis will be generated that subsequently
have to be projected back onto the original basis. Here, the numerical algorithm presented
in Chap. [3| could prove useful to find all the relations that relate an invariant from outside
of the basis to the basis invariants. What remains to show is that the same is also true for
perturbative computations of CP-odd observables. If the invariants there come suppressed
with other flavourful but flavour-invariant objects, it could again be due to a bad choice of
an invariant basis or simply because the EFT invariants should indeed not be interpreted as
a quantitative measure of CP violation. Either way, the invariants still qualitatively capture
fundamental properties of the EFT, like the violation of CP or shift symmetry, and are hence
useful tools to organise computations.

A lot of exciting experimental work lies ahead of us in the upcoming years and decades
improving the precision of our knowledge of several corners of the SM. The high-luminosity
upgrade of the LHC, for instance, will give us unprecedented precision in particular in the
Higgs and electroweak sector with measurements starting in 2029. This will improve our
reach for BSM physics in those areas significantly. Furthermore, the ever-increasing precision
in neutrino experiments will soon allow us to pin down the value of neutrino masses and the
existence and size of CP violation in the neutrino sector. This is particularly exciting as both
results would be a definite sign for new physics guiding us towards a UV completion that can
resolve the problem of neutrino masses in the SM and potentially can potentially also explain
the baryon asymmetry through leptogenesis. Other thrilling experiments are also proposed,
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further improving sensitivity to CP-violating new physics. For instance, a storage ring for
protons was proposed to measure the proton EDM, improving the reach for new sources of
CP violation by four orders of magnitude |364|. Another exciting development are small
tabletop experiments, which despite their smallness have an incredible constraining power
for BSM physics. One particularly interesting example is the ACME experiment, measuring
the electric dipole moment of the electron. The upcoming results of the third stage of the
experiment will push the open window left for CP-violating BSM physics hiding below current
limits even closer to the SM background. Lastly, many experiments are also looking for axions
and ALPs. For instance, the ALPS experiment at DESY looks for ALPs with their coupling
to photons by measuring if light can be shined through a wall by intermediately converting
it into an ALP with magnetic fields [365|.

Hence, many areas of well-motivated new physics will be probed in the next few decades.
In this upcoming precision era of particle physics experiments, EFT tools will be indispensable
in systematising, simplifying and improving the interpretability of these results. In partic-
ular, significant progress is made in the measurement of CP-violating observables in several
directions. Here, the CP-odd flavour invariants developed in this thesis could help in effi-
ciently interpreting the results of those experiments. Should an ALP be detected in any of
the ongoing searches, one of its important properties that needs to be further investigated
is its coupling to gluons and whether it has a shift symmetry, which could identify it as the
QCD axion. Hence, pushing forward the understanding of the shift symmetry of ALPs in
the EFT language is a vital step in properly interpreting possible future experimental results.
Together, these EFT tools will hopefully make a contribution in bringing us a step closer to
a more fundamental understanding of our Universe.
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