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Chapter 1

Introduction

Two thousand five hundred years ago, Plato [1] had the brilliant insight that
space, time and matter as we see it might very well be only a pale shadow of a
much more complex underlying reality, inaccessible by direct observation. In a
beautiful paper [1], he described the following gedanken experiment. Imagine a
bunch of people sitting next to each other, staring at the wall of a cave. They
are heavily chained and only able to see this wall, and have been sitting there all
their conscious life. Behind their back, guards have made huge fires, such that
the shadows of the chained people, as well as of other objects passing in front
of the fire, are visible on the wall of the cave. The entire observable reality of
the chained is a two dimensional world of shadows. Direct observation provides
a number of rules for the shadow dynamics, though they are intricate, require a
priori specification of a large number of undetermined quantities and break down
when pushed too far. It will be exceedingly difficult for those people to arrive at
the insight that there is actually an underlying unifying three dimensional reality,
and this will most certainly require brave new ideas and far-reaching abstract
theoretical developments. As discussed in [1], it will moreover be almost impossibly
hard to convince the chained of the reality, and the intrinsic beauty, of this three
dimensional world, even if they were dragged out of the darkness of the cave and
taken outside, into the Sunshine.

Twentieth century physics has shown Plato’s insight to be astonishingly true.
As years progressed, the search for the fundamental laws of physics required a
picture of reality which got seemingly further and further removed from everyday
observations, but at the same time got increasingly beautiful and elegant. At
present, the top of this evolution is dominated by a remarkably rich and unifying
theoretical construct: the theory of strings.
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From the point of view of us, the chained, the central question in any candidate
underlying theory is of course what it implies for our observable world. In this
thesis, we will address aspects of this problem in the light of the quite drastic new
developments in string theory the past few years.

1.1 Why (not) strings?

1.1.1 Why

The fundamental laws of physics needed to understand and predict the results
of experiments in present day particle accelerators are to an impressively high
degree of accuracy given by the so called Standard Model of elementary particles.
This describes all known elementary particles together with the three fundamental
interactions between them which are relevant at the energies which can now be
reached in accelerators: the electromagnetic, weak and strong interaction.

The framework of the Standard Model is quantum field theory. In a quantum
field theory, elementary particles are represented as point-like objects, interacting
with each other by emitting and absorbing other particles; for example the electro-
magnetic force between electrons is due to exchange of photons. Each absorption
or emission has a certain probability, proportional to a certain ‘constant’ g which
only depends on the type of interaction and the energy scale! of the process. This
constant has to be determined experimentally? and is called the (effective) cou-
pling constant of the interaction. For electromagnetic interactions at low energies
this is g &~ 0.303. Clearly, the smaller the coupling constant, the smaller the emis-
sion/absorption probability, and the weaker the interaction force. If, as for the
electromagnetic interaction at presently accessible energies, g is sufficiently small,
one can hope to calculate with good accuracy the outcome of e.g. particle collision
experiments as a truncated power series in g. Such calculations are called pertur-
bative, and are in most quantum field theories the only possible way to extract
precise quantitative predictions. There exists an attractive diagrammatic repre-
sentation of such series, due to Feynman, where one has to sum over all possible
intermediate emission/absorption processes, ordered according to the number of
interactions.

For electromagnetic and weak interactions, perturbation theory is useful at all
accessible energies. For the strong interaction, this is not the case at low energies,
but at high energies (> 250 MeV) it is. All in all, it turns out that the standard

1We have in mind here the center of mass energy of a particle collision experiment, say.
2At least for one value of the energy scale. Given all the particles species which exist in
nature, the theory then provides the coupling constant at all other energies.
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model gives a very good description of presently accessible particle physics, with
strong predictive power, provided one plugs in a set of about twenty parameters
(coupling constants and particle masses).

Despite its experimental successes, the Standard Model is very likely not
the end of the story. The model shows some striking structures (such as the
appearance of three fermion generations) begging for an explanation, which the
theory itself cannot provide. It also contains about twenty a priori undetermined
dimensionless adjustable external parameters, of which many have values which
are eyebrow-raisingly unnatural in the context of the Standard Model.

The main reason to doubt about the Standard Model as the ultimate theory
however, is that it fails to describe the gravitational interaction adequately. For
gravity, the quantum field theory framework fails miserably, at least in perturba-
tion theory. Roughly, one can understand this as follows. The gravitational force
between two particles is proportional to their mass, and hence their energy. In
other words, the effective coupling constant increases with increasing energy scale.
This implies that gravity is unimportant at low energies, but on the other hand
also that it rapidly grows strong at high energies. The characteristic energy scale
determining the meaning of ‘low’ and ‘high’ here is the so called (four dimensional)
Planck mass Mp, given in terms of the Newton constant Gn as

Mp =Gy ~1.22 x 10"GeV (1.1.1)

(we use units with ¢ = i = 1). As quantum mechanics allows arbitrarily large
energy fluctuations, provided these are localized in a sufficiently small region of
spacetime, and the point particle picture of quantum field theory on the other
hand indeed allows two particles to be localized in an arbitrarily small region of
spacetime, there is no limit on the effective gravitational interaction strength in
intermediate emission/absorption processes during particle collisions. As a result,
perturbation theory breaks down unless a high energy (or short distance) cutoff is
artificially introduced. But this in turn introduces a large degree of arbitrariness
in the theory, greatly reducing its predictive power, and annihilating its credibility
as a truly fundamental theory.

There are two possible resolutions. The first one is that the problem with
gravity is an artifact of perturbation theory, and that it disappears when the theory
is solved exactly. Evidently, the latter is not an easy task, and this program has
been unsuccessful thus far. The second possibility is that quantum field theory
is simply not the right description of physics all the way down to distance scales
of order M !, where gravity becomes important. Somehow, interactions should
be ‘smeared out’ in a natural way, avoiding the short distance divergence of the
gravitational interaction, and allowing a consistent perturbative description of
gravity.
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There is at present only one known way to achieve this, and that is string
theory.? The idea behind string theory is simply to replace the different particle
species, (perturbatively) interacting with each other via emission and absorption
of other particles, by different vibrational modes of a single kind of string, in-
teracting simply by splitting and joining of strings. Instead of one dimensional
particle worldlines connected to each other in interaction vertices, we now get
smooth ‘worldsheets’ swept out by the strings in spacetime. The theory is thus
extremely simple in its basic ingredients, but nevertheless, when one tries to set
up such a consistent theory of strings (which is not manifestly incompatible with
observation), one necessarily finds the following rich set of features:

1. Gravity. Every consistent string theory contains a state with the properties
of a graviton (the particle mediating the gravitational force), whose interac-
tions reduce at low energies to general relativity.

2. Finite perturbation theory. Due to the effective smearing out of interactions,
string theory gives a perturbation theory which is finite order by order. In
particular, it provides a finite, unitary perturbative description of quantum
gravity, in sharp contrast with field theory.

3. Unification. Apart from the graviton and gravity, string theory also leads to
other particles and forces, including those of the Standard Model. There are
also particles and interactions not present in the Standard Model, but those
do not (necessarily) contradict observations. All forces are thus described
on the same footing.

4. Egztra dimensions. String theory requires a definite number of spacetime
dimensions. For all theories of which consistency has been established, this
number is 10. To be consistent with observations, six of those have to be so
small that they cannot be resolved by present* day experiments. This is com-
patible with the consistency constraints of the theory. The extra dimensions
give rise to additional particles and interactions in the four visible’ dimen-
sions, depending on the geometry of the compact internal space. Some of
the allowed geometries produce the particle spectrum of the Standard Model.
Recall Plato’s cave.

5. Supersymmetry. All established consistent string theories are supersymmet-
ric, meaning that there is a fundamental symmetry between bosonic and

3We use the word string theory here in a broad sense, including candidate nonperturbative
extensions such as the matrix model [2].

4They could be discovered in the next generation of accelerator experiments however (e.g. at
LHC): the appearance of TeV scale effects of extra dimensions are not excluded by present day
observations.
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fermionic degrees of freedom in the theory. This symmetry is clearly broken
in the world as we know it, but there is quite some evidence in favor of its
presence at the level of the fundamental theory, from theoretical as well as
experimental considerations. There is hope that the LHC collider at CERN,
under construction at the time of writing, will settle this issue.

6. No free parameters. String theory has no adjustable external dimensionless
constants. It only has one fundamental energy scale (at least in perturba-
tion theory), identified with the tension of the string, and called the string
scale Mg. Sometimes the string scale is identified with the Planck scale Mp,
but this is wrong in general (see below). Now though there are no external
adjustable constants, there are in a certain sense ‘internal’ adjustable ‘con-
stants’: string theory seems to allow a huge continuous family of different
consistent ‘vacua’, with different expectation values of certain massless fields
(which can be considered as ‘condensates’ of the corresponding massless par-
ticles). Particular examples are the metric g,, and the ‘dilaton’ field ®. The
vacuum expectation value of the exponential of the latter, g, = (e®), appears
as a sort of coupling constant in string perturbation theory: a string world-
sheet with v donut holes and n boundary components gives a contribution
proportional to g5 22975 String perturbation theory is therefore accurate
when g5 is small. Incidentally, the ratio of the ten dimensional Planck scale
and the string scale turns out to be Mp10/Ms ~ 9;1/4, implying that the
string mass scale is always smaller than the (10D) Planck scale at weak string
coupling.

7. Uniqueness. Though there are several distinct perturbative string theories,
those are now believed to be just different perturbative expansions about
different, vacua of a single underlying theory, of which the fundamental for-
mulation is not yet known.

1.1.2 Why not

Despite its theoretical successes, also string theory is very likely not the end of
the story, at least not in a formulation where strings are the truly fundamental
degrees of freedom. There are some objections against string theory as described
above:

1. The theory is defined in an intrinsically perturbative way: scattering proba-
bilites of particles are given by an asymptotic series in powers of the string
coupling constant g;. The kth order term in this series corresponds to a sum

5The number x = —2 + 29 + n is called the Euler characteristic of the surface.
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over different possible string splitting and joining processes during the col-
lision, where each possibility sweeps out a worldsheet in spacetime of fixed
Euler characteristic —2 + 2g + n = k. As usual for a perturbative series,
this only makes sense for sufficiently small coupling constant gs. More-
over, perturbation theory will clearly fail to give an adequate description
of the physics as soon as there are energies involved which are sufficiently
high to produce states which are not in the ‘elementary’, perturbative spec-
trum of the theory. The prototype examples of such states are the magnetic
monopole in ‘ordinary’ quantum field theory, and the black hole in general
relativity. On top of that, any perturbative power series in a coupling con-
stant g will miss contributions to the observables which do not have a Taylor
expansion about g = 0, the most notable example being the so called in-
stanton contributions, which are typically of the form e*gL"SC’, with n > 1,
Se > 0. As the string coupling constant gy can take arbitrary values, de-
pending on the chosen vacuum, there definitely exists a sector of the theory
where the perturbative formulation breaks down completely. In absence of
a non-perturbative formulation, this is evidently a serious problem.

. Unlike particles, which can be given a non-perturbative, background in-
dependent, and at the same time very convenient description by going to
quantum field theory, strings apparently do not have such a second quan-
tized formulation, at least not of comparable elegance and simplicity. There
has been substantial work on this subject [3], but the yield has been rather
disappointing, and at present there is a widespread belief that second quan-
tized strings are not the fundamental degrees of freedom needed to go beyond
perturbative string theory.

. In its perturbative formulation, string theory has a plethora of energetically
degenerate vacua, which strongly reduce its predictive power. One hopes
that supersymmetry breaking and nonperturbative effects will lift most or
even all of this degeneracy, though this is far from sure.

. Despite recent successes in explaining the thermodynamics of some near-
supersymmetric black holes, including a microscopic derivation of the Beckenstein-
Hawking entropy, a direct understanding of the quantum mechanics of arbi-
trary black holes is still lacking.

. The extreme richness and equally extreme tightness of the theory itself hints
to the existence of underlying organizing principles which are not known yet.

. String theory fails as miserably as its predecessors in accounting for the
ridiculously low experimental value of the cosmological constant, given the
fact that supersymmetry should be sufficiently strongly broken to produce
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particle masses of the order of those appearing in the Standard Model. This
seems hard to avoid, even beyond perturbation theory, and may well be the
most outstanding puzzle of present day theoretical high energy physics.

1.1.3 Beyond perturbation theory

So there are enough reasons to go on and try to get some insight in aspects of
nonperturbative string theory, whatever the fundamental underlying theory will
turn out to be. There has really been a lot of progress here during the past five
years. This is largely due to the discovery of string dualities and D-branes,® making
it possible to probe many aspects of nonperturbative physics within the framework
of string perturbation theory.

Let us start by explaining the concept of a Dirichlet p-brane [4], D-brane in
short. Instead of introducing its definition ad hoc, we will try to argue for its exis-
tence and usefulness in string theory from physical arguments. Consider therefore
first a black p-brane in an asymptotically flat, noncompact, ten dimensional space-
time, with p < 7. This is an object infinitely extended in p + 1 dimensions (1
time and p spatial dimensions) with the property that the gravitational force is
so strong in its vicinity that anything coming too close can never escape again.
More precisely, there exists a certain 8 — p dimensional surface surrounding the
object, called the horizon, beyond which return tickets are no longer available.
A pulse signal sent out by somebody falling in will arrive to a distant observer
with ever decreasing frequency (as escaping becomes increasingly difficult for the
signal), eventually coming to a standstill when the person falling in reaches the
horizon (so from the point of view of the external observer, the person falling in
actually never passes through the horizon). One says there is an ‘infinite grav-
itational redshift’ at the horizon. Since frequency is tantamount to energy, this
implies that any object with finite energy with respect to a freely falling observer
at the horizon, will have zero energy with respect to a distant observer. Such black
p-branes are well known solutions of classical gravity theories; they are the higher
dimensional generalizations of the p = 0 case, the black hole.

One can also consider multiple black p-brane configurations, but these will in
general be unstable. Only when the gravitational attraction is exactly canceled
by another, repulsive force between the branes, such a system can remain in equi-
librium. In supersymmetric theories, such configurations can easily be realized by
taking a number of so-called BPS p-branes, aligned parallel to each other, but oth-
erwise at arbitrary relative positions. Mass and charge densities of a BPS p-brane
satisfy a very specific relation, saturating a lower bound on the mass density for
the given charge density.

6The suffix ‘brane’ stems from the word ‘mem-brane’.
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Imagine now two parallel BPS p-branes and a number of closed strings floating
around. Some of the closed strings will be captured by the first p-brane, some by
the second one, and some will float around in spacetime forever. Also, some will
be captured by both p-branes at the same time, that is, one part of the string will
be stuck to the horizon of the first brane, while the other part will be stuck to
the horizon of the second brane. As argued above, the parts of the string at the
horizons do not contribute to the total energy, due to the infinite redshift (at least
if near horizon interactions meet some finiteness conditions). All energy resides
in the part of the string stretched between the two branes. Such a (closed) string
will thus effectively behave very much like two open strings with their endpoints
confined to the brane horizons. Moving one of those two components off to infinity
along one of the p noncompact dimensions of the brane”, we are left with one
effectively open string stretched between the p-branes.

In the following, we always choose our energy units such that the string mass
scale Mg equals 1. Such units are called string units. Now suppose we send
the string coupling constant g to zero while keeping the p-branes of fixed charge
density and at fixed distance from each other. As the 10D Planck length M P, 10 ~

gi/ % which determines the strength of gravity, goes to zero (in string units) when

gs — 0, spacetime at any fixed nonzero distance from the brane becomes flat, at
least if the BPS mass density does not grow too fast when g, — 0.2 If this is
the case, then when gg = 0, we are simply left with flat spacetime containing two
rigid p+ 1 dimensional objects between which open strings can be stretched. Apart
from the stretched open strings, there can also be closed strings floating around
in spacetime, as well as open strings with both endpoints on one brane. Thus to
lowest, order in string perturbation theory, such p-branes merely provide Dirichlet
boundary conditions for string worldsheets propagating in trivial flat spacetime,
hence their name: Dirichlet p-branes, or simply D-branes.

There are other ways to arrive at D-branes in string theory, for example via
T-duality (see below) or the supersymmetry algebra. The idea of a D-brane being
established, one can try to use the D-brane prescription in string perturbation
theory in other circumstances, such as curved backgrounds, D-branes wrapped
around compact dimensions, coincident D-branes and so on. Quantizing the strings
ending on D-branes yields a spectrum of excitations which are interpreted as the
degrees of freedom of the brane, just as closed strings in bulk spacetime yield the
degrees of freedom of the bulk (including fluctuations of its geometry). As usual
in string theory, quantization gives also consistency conditions on the allowed D-

7This is of course not possible for p = 0, or for branes with finite spatial extent. Those require
a separate discussion, but we will not go into this here.

8This depends on the details of the theory. For example in type ITB string theory, this
requirement excludes the NS5-brane, which indeed cannot be represented by D-branes in string
perturbation theory.
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brane embeddings, which have the form of equations of motion for the D-branes.
As could be expected intuitively, isolated D-branes have ‘ripples’ in their excitation
spectrum, propagating as waves over the brane, with the obvious interpretation
of embedding fluctuations. For N > 1 coincident D-branes, the massless degrees
of freedom are more exotic: instead of simple coordinate fluctuations, one finds
N x N hermitean matriz fluctuations, suggesting the emergence of noncommutative
geometry.

Thus it becomes possible to study various aspects of the dynamics of branes
— objects which are clearly not in the perturbative string Fock spectrum — within
the realms of string perturbation theory. Furthermore, many aspects of their low
energy dynamics can be extrapolated to strong string coupling, and their mere
existence provides hints for string dualities (see below) and the nonperturbative
structure of the theory. D-branes thus prove to be a very powerful tool in uncov-
ering the mysteries of nonperturbative string theory.

The other cornerstone of the progress made in understanding nonperturba-
tive string theory is duality. In short, duality is the physical equivalence of two
seemingly different theories. Massive interest in dualities was sparked with the
seminal work of Seiberg and Witten in [5, 6], where an ezact expression was de-
rived for the quantum low energy effective action of N' = 2 supersymmetric SU(2)
Yang-Mills theory. Of central importance in their work was a duality between
N =2 SU(2) Yang-Mills and an A/ = 2 theory of magnetic monopoles coupled to
a U(1) abelian gauge theory. The former description is weakly coupled when the
latter is strongly coupled and vice versa, making possible accurate perturbative
calculations in one picture when one is far into the nonperturbative region of the
other one! Convincing evidence accumulated that similar and even more power-
ful dualities are present in string theory. Equivalences emerged between weakly
coupled string theories on different backgrounds (this is called T-duality and in-
cludes mirror symmetry), and between weak and (extrapolated) strong coupling
regimes of the same or even ‘different’ string theories (this is called S-duality,
strong-weak coupling duality, or string-string duality, depending on context and
author). Gradually, a picture developed in which all known perturbative string
theories can be understood as convenient perturbative expansions about different
(perturbative) vacua (or perhaps better: in different regimes) of the same under-
lying theory. With some luck, scattering amplitudes in a vacuum far outside the
validity region of one perturbative string picture can simply be calculated pertur-
batively in another picture. This does not mean that for any value of the vacuum
parameters, we have a suitable perturbative picture available, as there are vacua of
‘intermediate’ coupling where none of the perturbative string theories is adequate,
but at least it limits how exotic the theory can get at strong coupling. Perhaps
the situation here is, morally speaking, comparable to the description of water
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in different phases.” Depending on whether we have the solid, the liquid or the
gas phase, totally different (approximate) descriptions are appropriate, though the
fundamental laws are of course always the same. The fact that we have here a
‘duality’ between ice, water and steam does however not mean that we can all of a
sudden calculate all we want about e.g. water turbulence. But for somebody who
would have learned the theory of ice, the theory of water and the theory of steam
as three distinct items in a difficult green textbook, the revelation that they are
merely different descriptions of the same fundamental thing, would definitely be
quite exciting!

T-dualities, relating two perturbative descriptions in different background ge-
ometries, are pretty well under control, and in many cases rigorously established
order by order in perturbation theory. S-dualities on the other hand are equally
difficult to tackle as it would be to demonstrate theoretically the presence of a
single set of fundamental laws describing both ice and steam, in the absence of
a theory of atoms. Consequently, S-dualities are still largely conjectural, though
indirect tests and their aesthetic attractiveness have placed their existence — at
least in a rough form — beyond reasonable doubt.

Another kind of duality has emerged about two years ago: the Maldacena
correspondence [7]. This relates a string theory on a certain curved background to
a certain lower dimensional field theory without gravity, thus realizing in a certain
sense the holographic principle of 't Hooft [8] and Susskind [9]. This principle
states in its original form that the fundamental degrees of freedom of a certain
region of space should actually live on the boundary of this region, with about one
binary degree of freedom per unit Planck area.

Given all these dualities between string theories, the prize question is of course
what the underlying ‘molecular’ theory is. This as yet elusive theory has tenta-
tively been given the name M-theory.

1.2 Strings and low energy physics

One of the main results of renormalization theory is that physics at low energies
is, apart from a few parameters, independent of the details of physics at high
energies. This is fortunate, since it allows us to predict the outcome of present
day particle collision experiments without having to know anything about Planck
scale physics, but on the other hand, it also implies that these experiments will

9This simple analogy of course fails on many points: we are not (necessarily) speaking about
different ‘phases’ of string theory (there can even be regimes in which several adequate descrip-
tions overlap) and the richness and power of string dualities is of course substantially bigger.
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teach us virtually nothing about string theory or whatever it is that governs the
Planck scale.

This does not mean string theory is useless at low energy scales. There are of
course the twenty undetermined parameters of the Standard Model which string
theory might provide, but we are still far from achieving this. However, string
theory has turned out to be useful for low energy physics in a completely different
way, namely as a powerful geometrical tool in analyzing nonperturbative aspects
of quantum field theories; rather surprisingly, string theory leads to quantum field
theory results which would be virtually impossible to obtain within the conven-
tional framework of quantum field theory itself! There are two lines of attack
here. One is to exploit the appearance of nonabelian Yang-Mills theories in the
description of the dynamics of coincident noncompact branes, and to make use
of various string theory results and dualities to derive quantum aspects of those
[10]. Typical results thus obtained are exact low energy effective actions (repro-
ducing and extending the Seiberg-Witten solution of low energy quantum N = 2
SU(2) Yang-Mills), the BPS spectrum of the theory and the phase structures of
gauge theories, including confinement phases. The results are mostly restricted
to supersymmetric theories and — probably related to this fact — very elegant
and geometric in nature. The restriction to low energies, and to a certain extent
also the restriction to supersymmetric theories, is avoided in approaches based on
the Maldacena correspondence. The other line of attack [11, 12, 13, 14, 15, 16]
— the one we will follow in this thesis — is to make use of the representation
of massive charged (gauge) particles as branes wrapped around nontrivial cycles
of the six compact dimensions of spacetime, and of various nonrenormalization
theorems together with string dualities and geometrical constructions of the four
dimensional low energy effective action. This approach is usually a bit more in-
volved, but has the advantage that a larger class of field theories can be studied,
and that gravity can also be included. Here as well, the results are very elegant
but mostly restricted to supersymmetric theories.

1.3 Outline and summary of results

In this thesis, we will study some aspects of low energy physics extracted from
string theory. We will focus on two subjects: the derivation of low energy effective
actions including gravity, and low energy properties of charged (BPS) particle
states. We will work almost exclusively in the context of type IIB string theory in
a spacetime with six compact dimensions forming a Calabi- Yau manifold. Type
IIB theory is a perturbative string theory which has a thirty two supersymmetry
generators when spacetime is flat. A Calabi-Yau manifold of (real) dimension
six is a space with the property that the group of transformations on vectors
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induced by parallel transport along closed loops is isomorphic to SU(3) (instead
of the ‘usual’ SO(6)). Such a manifold has a metric satisfying the vacuum Einstein
equations. The direct product of four dimensional Minkowsky space with a Calabi-
Yau manifold is an exact solution of the string theory equations of motion. In such
a background, type IIB string theory remains invariant under eight supersymmetry
generators, yielding at low energies an N' = 2 supersymmetric theory in the four
noncompact, dimensions. We will furthermore restrict most of the time to the
so-called wvectormultiplet sector of the theory. The reason why we make these
particular choices is that they provide a setting in which exact low energy results
can be obtained which are at the same time very nontrivial.

The outline of this thesis is as follows.

In chapter 2 the concept of an effective action is introduced, both in field and in
string theory. The difference and relation between the one particle irreducible and
the Wilsonian effective action are outlined and the meaning of the Seiberg-Witten
effective action is explained in this context. Rigid and local special geometry
are defined and their central role in four dimensional A/ = 2 Yang-Mills resp.
supergravity actions is discussed. Following our work in [17, 18], we show in
general how rigid special geometry arises as a certain limit of local special geometry.
We conclude the chapter with a compendium of Seiberg-Witten theory and its
generalizations. This chapter contains mainly known material, but some effort is
done to tie up some loose ends in the usual Seiberg-Witten review literature.

In chapter 3 we study in great detail Calabi-Yau compactifications of type
IIB string theory. The bosonic four dimensional massless spectrum and its low
energy effective action is derived. The result is well known, but we use a formal-
ism which is more intrinsically geometric than usual. This is especially useful to
discuss BPS states obtained from wrapping D3-branes around nontrivial cycles
in the Calabi-Yau manifold. Before we get to this, we elaborate on how one can
(pragmatically) describe a ‘state’ in string theory, and in particular how this re-
lates to classical backgrounds. Next, we focus on BPS states in four dimensional
N = 2 theories and the supersymmetry multiplets in which they are organized. It
is explained how they are realized as special Lagrangian embeddings of 3-branes in
the Calabi-Yau manifold. Following our work in [20], we derive the precise reduc-
tion of the (bosonic part of the) wrapped D3-brane action to a BPS particle action
in four dimensions. Here in addition, we also discuss the curvature couplings. As
an application, we calculate the electromagnetic force between two moving BPS
test particles with arbitrary charges. Finally, we discuss the problem of the de-
termination of the type of supersymmetry multiplet to which a certain wrapped
D-brane gives rise. We present an easy shortcut for this which can be applied in
some cases.

Most of the remaining part of the chapter is devoted to the effective field
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theory picture of the BPS states, and in particular the attractor mechanism. We
derive the spherically symmetric equations of motion in an invariant geometrical
framework, slightly relaxing the usual ansatz made in the literature, and in par-
ticular we work out in detail the analogy with the dynamics of a nonrelativistic
particle moving in moduli space. We use this to give an intuitive discussion of the
general solution, including non-BPS black holes. We point out that the attractor
mechanism does not arise as a result of damped motion (as is often claimed in
the literature), but rather as a result of the finite energy condition together with
the unstability of the system, as usual in soliton physics. Next we turn to the
discussion of some BPS solutions, with special emphasis on the non-generic ones,
and we obtain a novel solution which first appeared in our work in [21] and which
will play a prominent role in chapter 5. We end this part on attractors with a dis-
cussion of the multicenter case and the presentation of some powerful techniques
for solving the attractor flow equations, providing an intrinsic geometrical, K&hler
gauge invariant formulation of the methods developed in [22, 23].

We conclude the chapter by presenting a discussion of the validity of D-brane
and field theory pictures in this specific setting. We sketch the Maldacena corre-
spondence is this context. When the same reasoning is applied to non-black hole
BPS states in four dimensions, we seem to find a new kind of correspondence,
which is reminiscent of the well known mathematical ‘Nahm duality’ between N
monopoles and a certain N x N hermitean matrix system. We leave this as an
intriguing open issue.

In chapter 4 we study in detail how the low energy effective action of N/ = 2
quantum Yang-Mills theory, weakly coupled to gravity, is obtained from type IIB
string theory compactified on a Calabi-Yau manifold. This is based on the well
known geometrical engineering techniques [11, 12, 13, 14]. The main novel fea-
tures here are the explicit coupling to gravity and to the ‘dynamical dynamically
generated scale’, and the fact that we derive everything directly and completely
within the type IIB theory, without restricting to local considerations and/or in-
voking S- or T- dualities. Also the reduction of local to rigid special geometry is
demonstrated explicitly. Our approach is down-to-earth but fairly general.

We start by presenting a detailed derivation of the D-brane and Calabi-Yau
geometries needed to get the correct light Yang-Mills spectra in four dimensions.
This involves some singularity theory. Next we prove the reduction of local to
rigid special geometry, and we obtain the low energy effective action, including
the (weak) coupling to gravity and the dynamical dynamically generated scale.
This reproduces and extends the Seiberg-Witten solution. We go on by analyzing
the various unification scales which emerge, and we make the connection with the
(S-)dual heterotic string picture. To get some insight in the physical content of
our results, we plug in some experimental data (though the A' = 2 models we
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are studying of course do not really match phenomenological observations). We
end the chapter with a detailed case study of an explicit example, based on our
work in [17], in which cycles, periods, monodromies and special geometry data are
constructed explicitly, with results supporting our general discussion.

Finally, in chapter 5, we study BPS states in the effective field theory picture
at weak gravity. Most results here are new. We reconsider the effective particle
picture of the spherically symmetric equations of motion in the weak gravity limit.
We point out an interesting O(G n) correction to the effective action which is, from
the microscopic quantum field theory point of view, purely due to the backreaction
of quantum fluctuations on the dynamical scale. The weak gravity attractor flow
equations are used to give a field theoretic description of Strominger’s ‘massless
black holes’, moving at the speed of light. We further specialize to the exactly
rigid limit, where gravity is decoupled completely, with as prototype example
N = 2 SU(2) Yang-Mills theory. Only for monopoles and elementary dyons, a
spherically symmetric BPS solution exists. Some properties of these solutions are
investigated, and we establish in particular the existence of stable equilibrium
points of various charged test particles at finite distance from the monopole or
elementary dyon core. Next, we investigate in detail what goes wrong in trying
to construct spherically symmetric solutions for the other charges. A picture
of those states (which include the W-bosons) as bound states of the monopole
and the elementary dyon emerges, making contact with the so-called 3-pronged
string representation of BPS states. We conclude the chapter with the start of a
discussion on the low energy dynamics of N monopoles. We give a general formula
for the moduli space metric and evaluate this for N = 1, producing the expected
result.

A note

Though a substantial part of the results in this thesis require rather sophisticated
geometrical techniques, we have tried to make the discussion everywhere as phys-
ical and intuitive as possible. Sometimes, this has been at the price of a certain
loss of rigor. However, as the power and importance of good intuitive pictures in
physics can hardly be overestimated, we hope the benefits outweigh the costs in
this case.



Chapter 2

Low energy effective field
theories

At sufficiently low' energies, any reasonable physical theory satisfying some basic
assumptions like relativistic invariance, locality and unitarity, can be given an
effective quantum field theory description (see e.g. [24, 25]). In principle, for any
theory with asymptotic particle states, one can even construct a quantum effective
“field theory” from which one can calculate any quantum scattering amplitude of
the original theory at the classical level of the effective theory, that is, in the limit
h — 0, or, diagrammatically, at tree level (no loops). In practice however, such
quantum effective theories are usually extremely nonlocal, ugly and complicated,
and extremely difficult to find (since they are equivalent to solving all amplitudes
of the full quantum theory). However, again at sufficiently low? energies, one can
approximate the full quantum effective theory by a local field theory described
by an action with at most two derivative and four fermion terms (two fermions is
equivalent to one derivative). One can of course refine the approximation by adding
higher derivative terms. Such two derivative effective field theories are usually still
very difficult to find (since they are equivalent to solving all amplitudes at very
low energy), and one has to make still further approximations, usually in the
form of a perturbative series in powers of the coupling constant. However, when
sufficient supersymmetry is present, it turns out to be possible to find the exact two
derivative low energy quantum effective action in some nontrivial cases, thanks to

IThe meaning of ‘low’ is very context dependent. In string theory, it usually means ‘lower
than the energy of any massive state of the theory’. Generically, this is the Planck scale, but as
we will see, there are important exceptions.

2again much lower than any relevant mass scale in the theory

15
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Figure 2.1: The general idea behind low energy effective actions is that the effects
of the virtual heavy particles can be summarized in effective interactions between
the light particles, obtained by integrating out the heavy ones.

the extremely strong constraints supersymmetry puts on the form of those effective
actions. For example for A/ = 2 theories in four dimensions, supersymmetry
imposes the structure of special Kdahler geometry on the two derivative part of
the action [26]. Seminal nontrivial examples of exact solutions are type II string
theory compactified on a Calabi-Yau manifold and A/ = 2 Yang-Mills theory in
four dimensions (a review of both can be found for example in [15]; we do not
intend to give complete references here).

Obviously, the low energy effective action of a theory provides a very powerful
tool to extract various aspects of the low energy physics. Often, especially in string
theory, the low energy effective theory also teaches us a lot about the structure
and symmetries of the full theory itself.

Since effective field theories and their geometrical structure play a major role
in this work, it is probably worth spending some time on the basics of this subject.
In this chapter we will therefore review some basic facts about effective actions
and special geometry. Though we will not go into much detail, we will attempt
to clarify some (but not alll) conceptual issues concerning effective actions which
are usually left obscure in the literature.

2.1 1PI, Wilson and Seiberg-Witten

The idea behind all low energy effective descriptions is to construct an action for
the light fields which gives their quantum dynamics for low energetic excitations.
One distinguishes essentially between two different kinds of effective actions: the
generating functional of one particle irreducible connected diagrams, in short the
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1PT effective action, and the Wilsonian effective action.

2.1.1 1PI effective action

In field theory, the exact 1PI effective action I' can be defined as the Legendre
transform of the logarithm of the partition function W[J] (which in perturbation
theory is the generating functional of connected diagrams). This is explained in
any field theory textbook (e.g. [25]), so we will only briefly repeat the main fea-
tures. Denoting the fields collectively by 1%, with z a generalized index (spacetime
position and other indices), we thus define:

W] = ln/p¢ oiSetl ] /Mt T (2.1.1)
L] = JL[U]e" - WI[J[¥]] (2.1.2)
where J[¥] is given by inverting the relation

ow
UV=—|J]= 2.1.3
S = () (21.3)
that is, J[P] is the external current needed to induce the expectation value ¥ for
the field ¢». One can show that I' reproduces at tree level all scattering amplitudes
of the original theory, that is, when (formally) used as if it were the classical action
Sei, I reproduces all original scattering amplitudes in the limit i — 0 [25]:
WI[J] = lim Wp[J]. (2.1.4)
h—0
Furthermore, the physical field expectation values (at J = 0) are stationary points
of I'. Thus I' indeed deserves to be called the quantum effective action.

Now in perturbation theory any connected diagram in the expansion of W[.J]
can be regarded as a tree, whose vertices consists of one particle irreducible subdi-
agrams. So in order for (2.1.4) to be correct, the perturbative expansion (in powers
of some small coupling constant) of I'[¥] must be the sum of all 1PI connected
diagrams with arbitrary numbers of external lines, each external line correspond-
ing to a factor ¥ (rather than a propagator or wave function). Hence the part
of I' which can be written as a perturbative series is indeed the 1PI generating
functional. Note however that our definition of I extends beyond Eerturbation
theory; for example it can contain instanton contributions ~ e1/9", which are
invisible in a power series expansion in the coupling constant g.

The two derivative low energy approximation of I' can simply be obtained
by putting all heavy fields to zero and expanding I’ to second order in the field
momenta (or derivatives).
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String theory doesn’t have an analogous straightforward second quantized
‘off-shell’ field theoretic formulation. It has a certain (infinite) perturbative Fock
particle spectrum however, to which one can associate fields as usual. The massless
fields can be consistently used as background for the perturbative string worldsheet
path integral, but only if they are on shell, that is, if they obey certain equations
of motion, obtained by requiring Weyl invariance of the worldsheet theory (which
is needed for its consistency).

One defines the ‘1PT effective action T for these fields directly in perturbation
theory, simply as the (or rather a)® spacetime action which at tree level reproduces
the string scattering amplitudes. In particular, the quantum equations of motion,
i.e. the minima of the effective action, are obtained by requiring the ‘tadpole’
amplitudes (amplitudes with one external particle) to vanish. Of course, to get an
effective action which is the integral over a local Lagrangian density, one has to
make a momentum expansion of the amplitudes, which by dimensional analysis is
equivalent to an o' expansion.* To get something sensible, one thus has to restrict
energies to be much lower than the string scale 1/ V!, making the effective field
theory description of string theory only useful for fields much lighter than the string
scale (these are all massless in a maximally symmetric vacuum of the theory).

Now in order for the above to make sense, the equations obtained from re-
quiring worldsheet Weyl invariance up to order k in the string coupling constant,
needed for setting up a consistent, finite, perturbation theory up to order k, should
imply the equations of motion derived from the k-th order corrected effective ac-
tion. Perhaps this statement needs first some clarification. One might think that,
since Weyl invariance is a purely local property and the Weyl anomaly is a pure
worldsheet UV effect, the requirement of Weyl invariance should in particular be
independent of worldsheet topology and hence receive no correction beyond string
tree level. This is not so. If one sums over topologies and integrates over the
Riemann surface moduli space, as one should in string perturbation theory, one
has to include worldsheets with arbitrarily small handles attached. These ‘UV
handles’ contribute to the total Weyl anomaly, thus correcting the consistency
equations of motion for the background (including particle mass corrections). Ig-
noring this contribution and simply taking the background needed for tree level
conformal invariance results in divergent loop tadpoles and related amplitudes,
so one really has to take the corrections to the background into account to get
all amplitudes finite. This is known as the Fischler-Susskind mechanism (see [27]
for a review). Fortunately, most supersymmetric backgrounds do not suffer from
these corrections.

3Considering the fact that one can only directly define scattering amplitudes with all particles
on shell in string theory, and on the other hand the fact that an action provides an (arbitrary)
off-shell extension of these amplitudes, such an action cannot be unique.

4o’ being the inverse of the string tension.



2.1. 1PI, Wilson and Seiberg-Witten 19

Let us first see how tree level conformal invariance indeed implies the tree level
tadpoles to vanish. Here ‘tree level’ means the sphere contribution for closed and
the disk contribution for open strings. The argument is taken from [28], p. 174.
Consider for instance a genus 0 massless closed string tadpole amplitude, which can
be represented as the expectation value (V(0))o of a massless closed string vertex
operator V inserted at z = 0 in a conformal field theory on the complex z-plane.
Conformal invariance means in particular that this amplitude should be invariant
under the rescaling z — Az. On the other hand, under such a transformation, a
massless closed string vertex operator transforms as V (z) — A=2V(\z). Therefore
we have

ATV (0))o = (V(0))o, (2.1.5)
so (V)0 =0, as we wanted to show.

For disk diagrams, the same trick can be used to show that tree level conformal
invariance implies vanishing tadpoles inserted at the boundary of the worldsheet.

One can further argue [30] that the higher order corrections to the background
needed for Weyl invariance of the full amplitudes at order k, are also precisely the
corrections needed to have still vanishing tadpole amplitudes at this order. So,
happily, the two ways of obtaining equations of motion from string perturbation
theory give exactly the same results.

Note that the disk diagram is of order ggl, while the sphere diagram is of
order g§2, where gg is the string coupling constant. Therefore, at tree level in
perturbation theory, the fields from the open strings will feel the fields from the
closed strings, but conversely, the closed string fields will not feel the open string
fields: the effect of their presence appears only as a correction ~ gg. For theories
with D-branes represented as spacetime defects on which strings can end, this im-
plies that to lowest order in perturbation theory, one should not take into account
the backreaction of the D-branes on the bulk fields; the bulk background should
be a solution of the sourceless field equations. This is very fortunate, since it al-
lows one to keep on doing flat space perturbation theory even when D-branes are
present (as long as the string coupling constant is small), considering backreaction
as small perturbations.

One cautionary note to end this part: from the above, one might get the
impression that string theory is exactly equivalent to a certain (complicated, non-
local) effective field theory, at all energies. In particular, its fundamendal degrees
of freedom might seem to be describable as an infinite tower of fields of increasing
mass, with interactions that are effectively cut off in the ultraviolet. This is not
the case. Of course, the exact effective field theory will be horrendously nonlocal
and can hardly be thought of as a field theory in the conventional sense. But much
deeper is the fact that the construction of this ‘field theory’ depends completely
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on string perturbation theory, which is only defined as an asymptotic series, and
which breaks down as soon as circumstances become too ‘extreme’. In particular,
perturbation theory will definitely have broken down when the circumstances are
such that states (like particles) can be produced which are not in the perturba-
tive (Fock) spectrum, e.g. in graviton-graviton scattering at energies which are
sufficiently high to produce a black hole ([31] p. 209) or certain wrapped D-brane
states. The latter possibility can even occur at arbitrarily low energies, as a matter
of fact, even at zero energy!® So we cannot draw any conclusion at this point about
the true high energy fundamental degrees of freedom of the full nonperturbative
‘string theory’ (assuming such a thing exists), and certainly not that it would be
just an infinite tower of fields.

Actually, we should be rather happy about this: equivalence with any field the-
ory, even an effectively UV cutoff one, satisfying some minimal locality principles,
would probably be incompatible with the holographic principle [8, 9], implying
among other disastrous things that string theory would not be able to explain the
Beckenstein-Hawking black hole entropy formula.

This brings us to the question: then what is string theory beyond perturbation
theory? It is probably not a theory of (second quantized) strings. It could be
M(atrix) theory [2]. It could be a more general holographic theory [7]. It could be
something completely different. Nobody knows.

2.1.2 Wilsonian effective action

The idea of the Wilsonian effective action Sw is to split the degrees of freedom of
our theory in ‘heavy’ and ‘light’ modes, and to ‘integrate out’ somehow the heavy
modes so as to obtain an effective theory for the light modes alone. Thus roughly
we define (in field theory):

oiSw [Wrigni] _ / Dnoavy €51, (2.1.6)

The scattering amplitudes for the light modes are then obtained by quantizing
the theory given by the ‘classical’ action Sy . The two derivative low energy
Wilsonian effective action is obtained by making a two derivative approximation
of Sy. As an example, the quantum field theory describing the Standard Model
can be considered as a low energy Wilsonian effective theory derived from whatever

5This is the case for example for string theory compactified on a Calabi-Yau manifold with a
conifold singularity: D-branes (which are nonperturbative states) wrapping the vanishing cycle
have zero mass, so string perturbation theory breaks down at zero energy, which explains why
the low energy theories of such compactifications are in fact singular. See chapters 3 and 4 for a
more elaborate discussion.
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will turn out the fundamental theory of nature, valid well below the energy scale
where the details of this fundamental theory become important (which is at most
the Planck scale, since there ordinary field theory obviously breaks down).

Clearly, there is some vagueness in this definition. For example the split in
heavy and light degrees of freedom can be done by introducing a scale p and
integrating out all Fourier modes of the fields above pu, or by splitting the fields
in light and heavy fields and integrating out completely the heavy ones, or in
any other convenient way, depending on the case at hand. However, as we will
see, for the two derivative approximation, in favorable circumstances (sufficient
supersymmetry), these ambiguities do not matter.

One can also define a Wilsonian effective action in string theory®, namely
as the effective action obtained as above, but restricting the string path integral
to the massive string states. This is somewhat artificial of course and indeed this
Wilsonian effective action does not respect some of the symmetries of string theory.
On the other hand, the ‘very low’ energy part (two derivative for example) has
sometimes useful holomorphicity properties which the (more physical) 1PI effective
action does not necessarily have ([31] p. 300).

2.1.3 Seiberg-Witten effective action

To make all this a bit clearer, and to discuss the relation between Sy and I' (in
field theory), let us consider the example of A" = 2 supersymmetric SU(2) Yang-
Mills theory in four dimensions. This theory was solved in the two derivative low
energy approximation by Seiberg and Witten in [5]. We will wait to give their
solution till we have discussed some necessary technicalities of special geometry,
but we will already use some properties for the purpose of illustration here. For
simplicity, we will only consider the bosonic degrees of freedom, but it is of course
thanks to the ‘balancing’ fermionic degrees of freedom that this theory is so well
behaved and under control at the quantum level.

The bosonic fields of N/ = 2 SU(2) pure Yang-Mills are a complex scalar
triplet ¢, a = 1,...,3 and a vector triplet Ay, both transforming in the adjoint
of SU(2) (the fermionic fields are two SU(2) adjoint Weyl fermion triplets ¢ and
A%, but we will not consider those further here). The bosonic part of the classical

6In a sense of course, the ‘1PI’ effective action for string theory is also Wilsonian, since it
leaves out even in principle the (usually massive) nonperturbative string states, and breaks down
together with perturbation theory at the energy scale of these states. Also, in practice, even
the perturbative massive fields are not included, and the action is written down in a low energy
expansion. Perhaps we should call the action defined here ‘string perturbative Wilsonian action’.
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action is

S = —l/D¢a/\*D(5a—/LFG/\*FQ-FLFG/\FQ (2.1.7)
g2 2¢? 167> o
1 4 abe b 7c\2
+E/d x(e " P°)7, (2.1.8)
where

D¢* = dp® + e Aby° (2.1.9)
F* = dA® +€AP A AC. (2.1.10)

This theory has ‘flat directions’, that is, a continuous family of classical minimal
energy configurations, namely

¢* = const. (2.1.11)
ertegpbpt = 0. (2.1.12)

One can eliminate such flat directions from the path integral by fixing ¢ at spatial
infinity. Take ¢ = ad§. Note that, by the Higgs effect, for nonzero a, the fields
o', %, A}, A2 and their superpartners are massive with mass ~ [a|. We will
define our "Wilsonian’ effective action here as the action obtained by integrating
out completely those massive fields, and integrating out the momentum (Fourier)
modes of the massless fields above a scale u. The range of validity of our effective
theory is then for energies lower than p and the W-boson mass scale |a|. Denote
from now on with ¢ the low momentum modes of ¢*, and with A, those of A3.
We thus have:

et SwioAl = /D¢g>up¢17)¢2 S efSlOT AT (2.1.13)

It can be shown that the supersymmetry prevents the generation of an effective
potential for the massless fields. That is, the flat directions remain flat and the
derivative (momentum) expansion of the bosonic part of Sy gives

1 _
Sw= = [ e
1 0(¢/A)

where the dots indicate higher derivative terms, and g(¢/A), 8(¢/A) are the field-
dependent effective coupling constant resp. theta-angle, which also depend on
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A, the dynamically generated ‘scale’” of the theory, replacing the classical 7 =
0/2m + idw/g* as a free parameter of the theory.

An exact expression for the two derivative part of Sy was derived by Seiberg
and Witten in [5] from supersymmetry and a number of physical consistency argu-
ments (see section 2.3). Their arguments are valid for any strictly positive value of
the massless momentum cutoff scale p, and since those arguments determine the
two derivative part of Sy uniquely,® we conclude that the two derivative part of
Sw is actually independent of u. Since lowering p means including more quantum
corrections from the massless field loops to Sy, this is equivalent to the statement
that the two derivative part of Sy does not receive quantum correction from the
massless fields (at nonzero momentum). Presumably, this nonrenormalization the-
orem can be argued directly from supersymmetry. Note for example that there are
no 1-loop diagrams of the microscopic theory involving the massless fields only.
Since it is known that, thanks to supersymmetry, there are no perturbative correc-
tions beyond one loop, this implies indeed that the only perturbative corrections to
the effective action of the massless fields come from (single) massive particle loops.
It is not clear to us how to extend this argument to nonperturbative corrections,
so we leave this point open. See [32] however for a possible starting point to the
relevant literature.

This nonrenormalisation theorem also implies that we can calculate the exact
quantum scattering amplitudes of the massless particles in the (very) low energy
limit simply at tree level from the two derivative part of the Wilsonian effective
action Sw. Or in other words, the 1PI quantum effective action I'y/[¥] obtained
by taking Sw as ‘classical action’ (with ¥ and J only consisting of modes with
momentum below g and only path integrating over the ‘remaining’ modes with
momentum below p) has the same two derivative part as the ‘tree level’ effective
action Sy [¥].° This eliminates already one of the ambiguities of the interpretation
of the Seiberg-Witten effective action.

One could also wonder whether the 1PI effective action I'yy obtained by using
Sw as classical action is the same as the full 1PI effective action I with the massive
fields put to zero. This is indeed the case: denoting all fields collectively as ¥®

7A is a complex number, so it is not really a scale. It’s rather its modulus, |A|, which
deserves this name. We will however follow common parlance and call A the scale anyway. The
complex character of A is needed because it takes over the role of the complex free parameter
T =0/27 + idmw/g? of the classical theory.

8 Actually, even if the action is written in the form independent of a scalar vacuum expectation
value, their arguments only fix a family of actions, differing from each other by the dynamically
generated scale A. So in the following, when we talk about ‘the’ Seiberg-Witten effective action,
we actually mean this complete family.

9There is a loophole here: our argument does not exclude that there are extra contributions
to Ty from loops at zero momentum. These and other infrared subtleties do indeed occur in
generic NV = 1 supersymmetric theories, but apparently not here [32].
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with a the adjoint SU(2) index, we have
Lo = /Ja[‘I’]‘I’“ —ln/Dw giSellylt [ Jav (2.1.15)

where J,[¥] is the external current needed to induce the vacuum expectation
value W@ for 9% Now if J; = Jo = 0 (and a = ¢3(00) # 0), we always have
(') = (4*) = 0, no matter what .J3 is. This follows physically from the fact that
excitations of the 1? fields alone do not act as sources for the ! and ? fields,
and mathematically from the invariance of Su[¢] + [ J,¥°, the P.I. measure and
the boundary condition ¢(c0) = a (and hence of T') under ¢! — —pt, )2 — —)?
when J; = J, = 0, so that indeed (') = —(y') = 0 and (¥?) = —(»?) = 0. So
the external current .J needed to induce the vacuum expectation value zero for ¢!
and 2 has simply J; = J> = 0, that is: J22[¥U! = U2 = (0] = 0. Therefore (with
U and J3 only consisting of modes with momentum lower than p):

[0 =0, ' = ¥? = (] (2.1.16)
= [ J5[¥]¥ —In / DYE_ Dyt DYLDy? SV ST (51 17

= / J5[]¥ — In / Dy, eSwiIH[ sley? (2.1.18)
Ty [¥] (2.1.19)

Thus we conclude that the two derivative low energy parts of T[T = ¥2 = (],
I'w and Sy are in fact identical. We can simply refer to this object as the two
derivative low energy effective action, without having to worry about potential
ambiguities in the meaning of the word. From the arguments it follows that we
will always be able to do this as long as

e the massless fields do not renormalize the two derivative terms in the low
energy effective action and

e pure massless field excitations do not act as sources for the massive fields.

2.1.4 Relation with beta-function

Let us further consider the example of SU(2) N/ = 2 Yang-Mills. An obvious
question is what the relation is of the effective coupling constant g(¢/A) (which is
determined by the Seiberg-Witten solution, still to be discussed) in (2.1.14) with
the usual running coupling constant §(M) in field theory, and in particular if we
can see the beta function appearing. Let us see what we can say about this.
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If we define the running coupling g(M) of the SU(2) theory e.g. as in [25] p.
125, we have that g?>(M) is proportional to the single photon exchange diagram
of the effective action I', between two charged (heavy) particles at momentum
transfer ¢> = M?2. Therefore, since at vanishing momentum transfer, the photon
propagator is obtained from the two derivative low energy part of the effective
action I' as given in (2.1.14), we have:

g(M =0) =g(a/A). (2.1.20)

On the other hand, at weak coupling, we have for M > |a|, because of asymptotic

freedom:
dg g 7’

M— =8(9§) = ——==2N,—Ny) = ——, 2.1.21
hence
! ! 1 M (2.1.22)
= =-—ln— 1.
g> 2m |A)
where the integration constant A is the dynamically generated scale introduced
earlier'®. Together, this gives a picture for the running coupling §(M) which

starts at § = g(a/A) for low values of the energy scale M and then matches onto
the asymptotic running (2.1.22) for large values of M.

If on the other hand we define the coupling §(M) in the spirit of [25] p. 127,
we should take our energy scale M = |(¢}| = |a|, and simply put

g(M) = g(¢ = M). (2.1.23)

Clearly, both definitions are quite different in the low energy region. However,
as argued in [25], p. 138, any “reasonable” definition of the coupling gives the
same f function up to fourth order in the coupling constant. Therefore (because
of asymptotic freedom), we expect the same asymptotic running for M — oo for
both definitions. In particular, this means we should find for large ¢/A

1 1
PEYINI 5,2 In(lg/Al). (2.1.24)

Happily, this indeed turns out to be the case. Despite some claims made in
the literature, much more is not known about the relation between exact beta
function and the Seiberg-Witten effective action [32].

0without further specification at that time; here we see the emergence of its meaning, at least
of its modulus. The phase of A is defined by removing the modulus signs and replacing the left
hand side with the complexified coupling constant 7/4mw
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2.2 From local to rigid special geometry

The two derivative part of the action of any four dimensional N' = 2 supersym-
metric theory describing massless abelian vector multiplets is governed by special
Kaéhler geometry: local special Kahler if the supersymmetry is realized locally (that
is, if it is a supergravity theory), rigid special Kahler if it is realized only globally
(that is, if it is a quantum field theory in flat space without gravity).

We give a quick review here, referring to [33, 34] for more details.

2.2.1 Local special geometry

A (local) special K&hler manifold M is an n complex dimensional Kahler manifold
with K&hler potential of the form

K =—In(-iVtQ™'V), (2.2.1)

where V is a certain holomorphic local section of a rank 2(n + 1) symplectic vec-
tor bundle over M and @ an invertible, antisymmetric and constant matrix, the

symplectic form. The Kihler metric is given by g,; = %%K, where the z%,
a =1,...,n are complex coordinates on M. Transition functions between differ-

ent local sections should be such that the Kihler metric is globally well defined.
The symplectic section furthermore has to satisfy the following integrability con-
dition!?:

(D V)'Q DyV =0, (2.2.2)

where D, = 9, + 0,K.

Assuming a symplectic basis has been chosen such that @ is of standard form

Q= ( _Oﬂ g ) (2.2.3)

and such that V can be split as V = (X', Fy), I = 1,...,n + 1 with the Fr
(locally) expressible as functions of the X7, a particularly efficient device encoding
all geometric quantities in special geometry is the prepotential F'. This object is
defined locally as a degree 2 homogeneous function of the Xy, given by F(X) =
LX7FT. We then have, thanks to the integrability condition (2.2.2), F; = 25
and, in ‘special’ coordinates t* = X%/X° and with F(t) = 1/(X°)?F,

e K = LXOPIAF - F) — (1~ 1) (Fa + o)l (2:2.4)

1'We will not address here the subtleties arising for the case n =1 [33].
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The curvature of M satisfies in these coordinates the constraint
. _
Ragczf = Yab9cd + Yad9eb — e’ Cacegefcfj, (225)

with Cype = 0,0,0.F. This is yet another intrinsic geometrical object, named
quite differently depending on the physical or mathematical context: Yukawa cou-
plings in V' = 1 heterotic compactifications, magnetic moments in type II ' = 2
supergravity, operator product coefficients or 3-point functions in the context of
conformal or topological field theory on the worldsheet and triple intersection num-
bers from the point of view of Calabi-Yau geometry. We will simply call it the
3-coupling.

In geometry, a moduli space is usually a space parametrizing a family of dif-
ferent possible geometrical structures, like complex structures, K&hler structures,
quaternionic structures and so on. In field theory, a moduli space is a space
parametrizing different possible scalar vacuum expectation values (and thus a
family of degenerate vacua). If these scalars are dynamical and described by
an (effective) action, the physical metric on moduli space is given by the scalar
kinetic term (at zero energy).

Four dimensional N' = 2 supergravity coupled to ny vector multiplets has a
ny complex dimensional scalar moduli space My on which supersymmetry im-
poses local special geometry [26]. The form of the (two derivative) action is com-
pletely determined by special geometry (actually by an integral over superspace
of the prepotential). The bosonic part has the following form:

Lo 51 / :
=— V- — 2¢g,;dz* -— . 2.2.
S 23 /d xvV—GR 9,5 dz A xdz yoe F'AGr (2.2.6)

Here k4 is the gravitational constant, G, is the spacetime metric, with determi-
nant G and Ricci scalar R, the 2% a = 1,...,ny are the (mass dimensionless)
scalar moduli fields, 7! (I = 1,...,ny + 1), is the 2-form field strength of an
abelian 1-form potential A!, v is a constant depending on the normalisation of the
AT (of order one with the usual conventions), and

Gr =ReNp F) —ImNpy* F7, (2.2.7)
where N7 is a moduli dependent symmetric matrix:

(Im F]K)XK(IHI FJL)XL
XM(ImFMN)XN ’

NIJ = F]J + 27 (2.2.8)

with Fr; = 010y F and F the prepotential. In order for the vector kinetic energy to
be positive, Im A7 should be negative definite. The 3-couplings also appear, but
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only in the fermionic part of the action. The fully general A" = 2 two derivative
action, including fermions and hypermultiplets, can be found in [35].

For type IIB string theory compactified on a Calabi-Yau manifold (which
will be analyzed in detail in the next chapter), the vector multiplet scalar moduli
space coincides with the complex structure moduli space of the internal Calabi-Yau
manifold. This space has local special Kahler geometry with

Vs = / Q
Cs

Rsa = Cx-Ch, (2.2.9)

where (2 is the holomorphic 3-form on the CY, {Cx} is a basis of 3-cycles, and
the dot denotes the intersection product.

2.2.2 Rigid special geometry

A rigid special Kahler manifold M is an r complex dimensional Kahler manifold
with K&hler potential of the form

K =ivtg 0. (2.2.10)

Here v is a holomorphic section of a rank 2r symplectic vector bundle with sym-
plectic form ¢, and the Kéahler metric is given by g;; = %%K , where the u?,
i = 1,...,r are coordinates on M. Transition functions between different local
sections should be such that the Kihler metric is globally well defined. The inte-
grability condition now is:

(Oiv)tq 00 = 0. (2.2.11)

Assuming a symplectic basis has been chosen such that ¢ is of standard'? form

q:2< _0]1 g ) (2.2.12)

and such that the v can be split as v = (¢, ¢p,a), A = 1,...,r with the ¢p 4
(locally) expressible as functions of the ¢4, we can again define a prepotential F.
For rigid special geometry, this is no longer a homogeneous function. Using the
integrability condition (2.2.11), it can be defined as a function of the ¢* by

oF
Gt = 9.40). (2213)

12The factor 2 is introduced to get the standard rigid special geometry formulas, in the con-
ventions of e.g. [5].
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Again, all geometrical objects can be derived from the prepotential, for example

K =Tm q{A%, (2.2.14)
and in the coordinates ¢*:
gap =ImTap (2.2.15)
where 74p is the moduli dependent symmetric matrix given by
TaB = 0a0BF. (2.2.16)

Rigid A/ = 2 supersymmetric U(1)" Yang-Mills field theories have an r com-
plex dimensional scalar moduli space M, on which supersymmetry imposes a rigid
special geometry. As with supergravity, the form of the (two derivative) action is
completely determined by rigid special geometry (again by an integral over super-
space of the prepotential). The bosonic part has the following form:

Y B SV 5, 1 4
S = /47rg,43d¢> A3 + —FANGa. (2.2.17)

Here the ¢4, A = 1,...,r are the (mass dimension 1) scalar fields, F4 is the
2-form field strength of an abelian 1-form potential A4, and

Ga=ReTapFP? +Tmrsp + FB, (2.2.18)

with 74p as in (2.2.16). Note that in order for the kinetic energy to be positive,
Im 74p should be positive definite. Our conventions are those of [5].

The reason why we use mass dimensionful scalar fields here rather than di-
mensionless ones as we did for supergravity, is that we do not want to introduce
a dimensionful parameter in the classical Yang-Mills theory with constant scalar
metric. In the supergravity theory, we already had such a parameter: the gravita-
tional constant. (Of course, there, we could equally well have chosen to work with
dimensionful scalar fields.) However, the presence of dimensionful scalars implies
that we will have to introduce a dimensionful parameter as soon as the scalar
metric is no longer constant. This parameter indeed appears in quantum effective
actions: it is the dynamically generated scale. So in the quantum case, since we
have this scale parameter anyway, we could equally well work with dimensionless
scalars. Note that with these conventions, the symplectic vector has dimension
mass, and the K&hler potential dimension mass squared (while in supergravity,
these quantities are dimensionless).
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Rigid special geometry is realized on the complex structure moduli space of
certain classes of Riemann surfaces as follows:

vy = A/ Asw (2.2.19)
dox = Co-Cx (2.2.20)

where A is a scale parameter (the ‘dynamically generated scale’), Agw is a certain
meromorphic 1-form on the Riemann surface, and {cy}, is a certain set of 2r inde-
pendent 1-cycles. Not any class of Riemann surfaces endowed with a meromorphic
one-form and a set of 1-cycles satisfies the axioms of rigid special geometry. It is
an open question what the criterion is for a subspace of moduli space to have rigid
special geometry.

Such geometric moduli spaces appear beautifully in the exact solution of the
quantum low energy effective action of AV = 2 field theories, as we will see in the
section 2.3.

2.2.3 The rigid limit of local special geometry

Quite generally, a rigid limit of local special geometry can be obtained as follows.
Suppose there is a region in moduli space where we can choose a subset of coordi-
nates (ug,...,u,) and symplectic vector components (Vi,...,Va,.) = v such that
the Kahler potential (2.2.1) can be written as

K=—-In(L>—iv'¢ "o+ R), (2.2.21)

where L is real and independent of the u;, ¢ is a real, invertible and antisymmetric
matrix, and R is a remainder such that

vtqT U R
-0, ——
L2 vtq— 1o

-0 (2.2.22)

when approaching a certain locus in this region. Then close to this locus, we can
make the following expansions:

vo= wvoH... (2.2.23)
1

K = —1nL2+§iv3q*1@0+... (2.2.24)

Dy = Oyvo+-.. (2.2.25)

where the dots indicate subleading terms that can be neglected in the limit under
consideration. Note that (2.2.24) is, up to a u-independent term, the expression
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for the Kéahler potential in rigid special geometry. Moreover, the integrability
condition (2.2.2) reduces to
(Ouv0)g ™ vy =0, (2.2.26)

which is precisely the integrability condition defining rigid special geometry. Thus
we find that the geometry of the moduli subspace parametrized by the moduli u;
and endowed with the symplectic vector vy, is essentially rigid special Ké&hler.

The limit described above will be called a rigid limit, and can be thought
of as sending the Planck mass to infinity, effectively decoupling gravity from the
degrees of freedom associated with the rigid moduli u;. We will come back to this
in great detail in chapter 4.

2.3 Low energy effective action of N' = 2 Yang-
Mills theory

For generic expectation values of the scalars of a nonabelian N = 2 super Yang-
Mills theory, the gauge group is broken (at low energies, by the Higgs effect) to its
Cartan subgroup U(1)", where r is the rank of the original gauge group. Therefore,
from the above discussion, it follows that the exact solution of the two derivative
quantum low energy effective action of such theories simply amounts to finding
the correct underlying rigid special K&hler manifold.

It turns out that, for a very large class of such theories, this can be done in
terms of a certain moduli space of Riemann surfaces. This was originally argued
for the pure SU(2) theory by Seiberg and Witten in [5] and later extended to
include matter hypermultiplets [6, 36] and higher rank gauge groups [37, 38], by
using physical arguments based on spectrum considerations, monodromies and
asymptotic behavior from the one loop beta function. As we will deduce these
low energy effective actions directly from string theory in chapter 4, we will not
review those arguments here (some good reviews are e.g. [15, 16]). Instead we
will just give a compendium of the relevant moduli spaces and some aspects of the

corresponding physics (without justification), for a number of example theories:!

e Pure SU(2):

This is the case originally considered by Seiberg and Witten [5]. The rank of
SU(2) is 1. The rigid special Kdhler manifold underlying the effective action

13For the non-expert reader: the details of the following summary are not really necessary
to understand the main line of this thesis. We will make contact with Seiberg-Witten theory
in chapter 4, and use some of the formulas for the SU(2) moduli space metric given below in
chapter 5.
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is the moduli space of genus 1 curves X, given by the equation
1 1
§(Z+;) =22 +u (2.3.1)

where z,z are the ambient space coordinates and u is the modulus deter-
mining the vacuum:
_ L
u = §<F>VAC' (2.3.2)
Here ¢ is the at weak coupling ‘elementary’ scalar field of the unbroken U (1)
vector multiplet and A is the dynamically generated scale. Fig. 2.2 shows
the structure of the Seiberg-Witten Riemann surface, and fig. 2.3 gives a
picture of the moduli space metric g,z- The set of two independent 1-cycles
is a basis («, 8) of H1(X%,Z) with a8 = 2. The meromorphic Seiberg-Witten
1-form is given by
A -1 x %
W 22z -

When « is chosen to be equal to twice the unit circle in the z plane (lifted to
the Riemann surface) and 3 to be the cycle encircling the branch points given
by 1(z 4 1) = u in the z-plane, we have ¢ = A [ Asw and ¢p = Afﬁ Asw,
where ¢p can be shown to correspond to the scalar of a dual, magnetic U (1)
massless vector multiplet, which becomes weakly coupled when the original
electric theory becomes strongly coupled (see below).

(2.3.3)

The theory contains massive charged BPS particles (these are particles with
minimal mass for the given charge), with electric and/or magnetic charges.
A BPS particle with electric charge n and magnetic charge m has mass
equal to v/2|n¢ + m¢p|. In the conventions we use, particles in the adjoint
of SU(2) have integer electric and magnetic charges, while particles in the
fundamental have half-integer electric (and integer magnetic) charges. By
the BPS condition and the triangle inequality, the BPS particles are abso-
lutely stable, except when ¢p/¢ is real, then they are only marginally stable.
Marginal stability occurs in the u-plane on a closed ellips-like line passing
through v = 1. Outside this line of marginal stability, the theory is well
described in terms of the original variables, with the coupling running to
zero (by asymptotic freedom) for 4 — oo and running to oo at the singu-
laritues v = %1 in moduli space. Outside the curve of marginal stability,
the BPS spectrum consists of the W bosons (charge (+1,0)), a magnetic
monopole (charge (0,1)), which becomes massless at © = 1, an ‘elementary’
dyon (charge (£1,1), depending on cut conventions), which becomes mass-
less at w = —1, and dyons of charge (n,1), n € Z (and of course all charge
conjugates of those). Note that the latter can be obtained from the monopole
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Figure 2.2: Schematic picture of the Seiberg-Witten Riemann surface, represented
as a 2-sheeted cover of the z-plane. The z-plane is mapped (by 2z — Inz) to a
strip with opposite sides identified. The two sheets of the surface are represented
by two such strips, connected via the branch cuts running to infinity from z =
—u £ +vu? — 1. The «a cycle consists of two disconnected loops (one on each sheet)
running from one side of the strips to the other. The 8 cycle runs around the
branch points, encircling the hole in the picture. More details can be found in the
text.
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Figure 2.3: The metric g,z on the SU(2) Seiberg-Witten moduli space, plotted as
a function of u. The spikes at u = 1 are strong coupling singularities produced
by integrating out massless charged particles.

or the elementary dyon by a monodromy u — e2™

such a monodromy transforms « and (3 als follows:

u about u = co. Indeed,

a = -« (2.3.4)
g = —-B+2a. (2.3.5)

From our general discussion on effective actions, one would expect the ef-
fective action approximation to break down at points where integrated-out
charged particles become massless. This is indeed the case: the moduli space
has singularities at u = £1 (see fig. 2.3).

Inside the line of marginal stability, the only stable BPS particles in the
spectrum are the monopole and the elementary dyon. The theory in the
neighborhood of the strong coupling point (in the original variables) u = 1
is well described in terms of the dual magnetic massless U(1) field coupled
to the light monopole. Such a theory is infrared free and becomes weakly
coupled for u — 1. See fig. 2.4. Analogously, close to u = —1, one finds es-
sentially a dual ‘dyonic’ U(1) theory coupled to the elementary dyon. There
is no point in moduli space where the original SU(2) gauge symmetry is
restored.
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Figure 2.4: The dual coupling constant squared g%, ~ 1/94pn> Plotted as a
function of u in a neighboorhood of v = 1. At u = 1, the dual coupling is zero.

Approximate expressions for some special geometry quantities near u = 0o

are:
P/ = V2u (2.3.6)
ép/A =~ %\/ﬁlnu (2.3.7)
K/|IA? =~ M1n|u|2 (2.3.8)
™
1 In |ul?
g/ A? ~ o |'u|' (2.3.9)
2. ¢
9op = ;111 Nk (2.3.10)
and near u = 1:
4 1
/N ~ ———(u—-1)In(u—-1) (2.3.11)
T 27
i
dp/A ~ Su-1) (2.3.12)
1 1
2 o _ 112 12
K/|IA® =~ 7rRe(u 1)+87r|u 117 1n Ju — 1| (2.3.13)
AN élnlu—ll‘2 (2.3.14)
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1. |¢p|™
Jopdn ~ —Inj7= (2.3.15)

The prepotential in the weak coupling region has the following form [5]:
i ) 2 o'} A 4k )
= —¢°In— — . 2.3.1
Fé) = o0 nA2+;ck<¢> s (23.16)

The first term is the one-loop correction while the kth term in the sum arises
as a contribution from k instantons. The Seiberg-Witten solution amounts
to an exact specification of all coefficients cg.

The results for SU(2) can be generalized in various directions, either by
generalizing the gauge group or by adding matter. We now consider some of
those generalizations.

Pure SU(N,):

The rank of the group is r = N, — 1. The relevant Riemann surfaces form an
r dimensional family of hyperelliptic genus 7 curves embedded in C?, given
by the equation

1
(z+ ) =2 turaa™ 4wt u, (2.3.17)

DN | =

where z,z are the ambient space coordinates and the u; are the moduli. As
set of 1-cycles, we can just take any basis of 1-cycles, which wil contain indeed
precisely 2r 1-cycles. The meromorphic 1-form is again given by (2.3.3).

SU(2) with one massive fundamental hypermultiplet:

Actually this generalization requires a slight extension of the rigid special
geometry framework presented in the previous section, since special geometry
only governs the low energy effective action of vector multiplets. However, it
turns out [6] that the low energy theory of asymptotically free or conformal
invariant ' = 2 Yang-Mills theories with additional matter multiplets is
still completely determined by the geometry of a certain family of Riemann
surfaces endowed with a certain meromorphic 1-form. Since we will mainly
restrict to the pure Yang-Mills case in this thesis anyway, we will not go into
the details of this construction.

The relevant curves for SU(2) with one hypermultiplet of mass m in the
fundamental of SU(2), are given by [6]:

1 1
5(22 +2mz + =) = 2% +u, (2.3.18)
z
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where, as in the pure Yang-Mills case, u is identified with %(d’—Z)) Again,
the meromorphic 1-form is (2.3.3), the metric on the vector multiplet moduli
space is rigid special Kéhler, constructed as for the pure SU(2) case, and
BPS masses can be calculated simply as periods of Asw (if we consider a
residue of Agy also as a period).

e Pure Ej:

We include this case [39, 38] just to show that life isn’t always that easy.
For the Eg exceptional group (without matter), the meromorphic 1-form is
as usual, but the moduli space is given by the following 6-parameter family
of genus 34 surfaces:

1
53:622 —Q12° Z+Qy =0, (2.3.19)
where
1
Z = z+4+ -+ ug,
z
Q1 = 270" + 342u 2" + 162ui 2t — 252us2™ + (267 + 18u3)2”
—162uusz® + (6uius — 27ug)x” — (30uuy — 36us)z’
+(27u§ — Yuyug)z® — (Busus — 6ugus)zt — 3u1u§w3
—3ususT — ug,
1
Q2 = 5(@% - P} P,),
P = 782" + 60uz® + 14u%:ﬂ6 — 33usz” + QU3:U4 — Bugus T’ — ugz?>
—UsT — ug,
Py, = 1229 + 12028 + 4u%m6 — 12u92° — dujusx® — 2ugz® + dusx + ug.

Out of the 68 independent cycles spanning H;(X,Z), there are 12 special
ones providing the 12 independent periods defining rigid special geometry.
The construction of those cycles can be found in [39]. The underlying orga-
nizing structure under this apparent mess is of course group theory, here Fg
representation theory. Other unifying connections are Toda integrable sys-
tems and singularity theory. The latter connection emerges naturally from
string theory. We will come back to this in chapter 4.

Many other generalizations have been constructed, for which we refer to the
literature [37, 36, 38, 14].

In summary, we have argued in this chapter that we can safely talk about
‘the’ (two derivative) low energy effective action of a certain quantum N = 2
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Yang-Mills theory. Its form is beautifully governed by the rigid special geometry
of a certain geometrical moduli space of Riemann surfaces, in the sense that for
example the scalar kinetic term of the low energy effective action appears with the
natural special Kadhler metric on this moduli space.



Chapter 3

Calabi-Yau compactifications
of IIB string theory

In this chapter we will investigate some low energy aspects of type IIB string
theory compactified down to four dimensions on a Calabi-Yau manifold. We will
start by demonstrating how four dimensional N' = 2 supergravity, coupled to a
number of vector- and hypermultiplets, arises as the low energy theory of the four
dimensional massless fields. Next we will study the massive particle-like BPS states
in the 4D theory, originating from 3-branes' wrapped around nontrivial cycles of
the Calabi-Yau manifold. These BPS states can also be obtained as solitonic BPS
solutions of the low energy 4D effective field theory. As we will see, these solitons
have the remarkable property of being “attractors” for the scalars in the vector
multiplets; that is, towards the center of the soliton, the scalars always flow to
certain fixed values, only dependent on the electric and magnetic charges of the
state. We will study the attractor solutions in quite some detail, emphasizing the
physical intuition behind the equations. We conclude the chapter with a discussion
of the range of validity of field theory and D-brane pictures.

Part of the material in this chapter is a review of well known facts, though we
will present these in a not so conventional way and we will elaborate a bit more
than usual on some conceptual issues.

11- and 5-branes cannot generate 4D BPS states in this way since there are no nontrivial one
or five dimensional cycles in a Calabi-Yau manifold (at least with the definition of a CY manifold
which we use).

39
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Figure 3.1: Sketch of a Calabi-Yau compactification. The moduli of the Calabi-
Yau X can vary over the noncompact, curved, four dimensional spacetime Mj.

3.1 Four dimensional low energy effective action

We will immediately turn to the tree level two derivative low energy action® of
the massless fields in the theory. For the world sheet perspective, higher order
corrections, and many other aspects which we cannot cover here, Polchinsky’s
book [31] is highly recommended. We will also use mostly his notations and
conventions.

3.1.1 Type IIB string theory

Low energy type IIB theory has N' = 2 supersymmetry (32 supersymmetry gen-
erators) in 10 dimensions, with equal chirality. The supersymmetry algebra is

{Qé) Qg} = _26ABP,U,(H+IW)QB, (3].].)

2this means we consider the effective action for these fields to leading order in the string
coupling constant gs ~ e® and the gravitational constant k1o (or o).
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where

1+7T
m, = (3.1.2)
2
with T' =Ty...T9, and A, B =1,2, a,8 = 1,...,16. The high amount of super-
symmetry completely fixes the low energy theory (at tree level), which is just 10D
type IIB supergravity. The massless bosonic fields are

e A scalar ®, a 2-form potential B with field strength Hs, and the metric g
(Neveu-Schwarz - Neveu-Schwarz sector).

e A scalar Cy, a 2-form potential Cy with field strength F3, and a 4-form
potential Cy with selfdual field strength F5 (Ramond-Ramond sector).

We adopt conventions such that the mass dimensions of all components® of the
potentials are zero. To write down the action, it is convenient (and it makes
S-duality manifest) to define

T = Cp+ie ?®, (3.1.3)
_ 1 |7)? —Rer
Mz] — E < —ReT 1 > 9 (314)
i _ H;
Fi = ( . ) : (3.1.5)
. 1 1
Fs = F5— 502/\H3+ 5Bz/\F3. (316)

We will also work always in the Einstein frame, which has canonical Einstein-
Hilbert term and is related to the string frame by Gg ., = e~*/2>Gs ., Where ®
is the dilaton (g = (e®) is the string coupling constant). Due to the presence of the
self-dual 5-form field strength, there is actually no (simple) manifestly covariant
action for this theory, but the following comes close:

S[[B = L/dwl‘\/—GR

2
2K7,

1 1 B . ) 1 - N
—4nf0 /7(Im7-)2 dr A xdf + M;; F5 A xFY + §F5 A xFy (3.1.7)

+%C4/\F§/\Fg.

At the classical level, one only has to impose the additional selfduality constraint
xFy5 = Fy, after varying this action, to get the correct equations of motion. The

350 the dimension of the p-form itself is (length)P
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constant k1¢ is related to the constant o' appearing in the worldsheet action of
string perturbation theory by o/ = 273/27=7/4 51/? [31]. Tt can be identified as
the ten dimensional gravitational constant. Note however that this scale on itself
doesn’t have a physical meaning: only ratios of mass scales are meaningful and
measurable. Which combination of k19 and the coupling constant we call ‘the’ ten
dimensional gravitational constant is therefore purely conventional. Something
which does have a physical meaning for example is the ratio of the mass of the
lowest excited string oscillator state (2¢g'/*/a/'/? in the Einstein frame) and the
physically measured 10D Planck mass ;. This ratio is [(47)7¢%]'/8 and in-
dependent of frame; it tells how strong spacetime is deformed when a minimally
excited string is present. Notice that the meaning of k1o as used e.g. in [31] in
the string frame is different from the meaning of k19 in the Einstein frame: in the
Einstein frame it is the physically measured gravitational constant, in the string
frame it differs from the physical gravitational constant with a factor g. Confusion
can always be eliminated by calculating mass ratios.

The action (3.1.7) is invariant under the following SL(2,R) symmetry:

ar +b
— 1.
T cr+d’ (3.1.8)
. d c .
Fi = (b a)F;, (3.1.9)
F, — F (3.1.10)
Guw — Gu. (3.1.11)

There is strong evidence that the discrete subgroup SL(2,Z) is actually an exact
symmetry of string theory (not only at tree level and low energies): this is the
type IIB S-duality group.

Type IIB string theory contains Dirichlet p-branes with odd p. We are in
particular interested in the case p = 3, which has the following tree level low
energy action for the bosonic degrees of freedom:

Sp3s = Sps,pBr + Sp3,wz, (3.1.12)

The first term is, apart from curvature corrections [40], of Dirac-Born-Infeld
form and independent of the R-R fields. In the Einstein frame and without the
curvature corrections, this is:

SD37DBI = _H_ﬁ / d4f\/— det(hab + e_q)/QBab + 27TO¢'6_<I)/2Fab), (3.1.13)
10
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where h,p and B, are the pull-back of spacetime metric and NS-NS B-field to the
brane, and Fy; is the field strength of the gauge field A living on the brane: F =
%Fabd.r“ Adx? = dA.* The curvature corrections are of a rather complicated form
(see [40]) and we will not give them here. For the cases we are interested in, these
terms happen to cancel anyway (in a nontrival way however). The second term
is of Wess-Zumino form. Apart from the curvature couplings, it is independent of
the metric and the other NS-NS fields:

Spawz = n—\/j/a; + (27a'F + Bs) A Cy

(2ra’)?
96

+ ((27ra'F+B2)2 + (trR% —trR?V)> Co, (3.1.14)

where Rr (Ry) is the curvature of the tangent (normal) bundle of the brane
[41, 40]. There are further nonperturbative instanton corrections to Sps, making
this action invariant under S-duality, as it should.

3.1.2 Calabi-Yau manifolds and special geometry of the com-
plex structure moduli space

We assume the reader is familiar with the basic facts about differential geometry
and Calabi-Yau manifolds. Excellent reviews can be found in [42, 43, 29]. See also
[44]. We define a Calabi-Yau n-fold as a compact n complex dimensional Kéahler
manifold with vanishing first Chern class and no nontrivial 1-cycles, equipped with
a Ricci-flat metric, which has SU(n) holonomy. A theorem of Calabi and Yau says
that for any fixed complex and Kahler structure of the manifold, such a metric
exists and is unique.

In the following, we restrict to the case n = 3. The moduli space of complex
structures of a Calabi-Yau 3-fold X, equipped with arbitrary complex coordinates
2% a=1,...,h*!, has (local) special geometry. We will not prove this well known
fact here, but merely review the main features and introduce some notations which
we will need in the sequel. Readers not interested in the technicalities of special
geometry can probably skip this section.

Denote the (up to normalisation unique) holomorphic 3-form on X by Q. The

4We will adopt the following general notational convention for form components: F =

I%Ful___#pdx“l A ...AdzHp. This is as in [31] (cf. page 450).



44 Chapter 3. Calabi-Yau compactifications of IIB string theory

Kaihler potential for the moduli space metric is®

K= —lni/ QAQ, (3.1.15)
X
with Kahler metric

9as = 0uO5K. (3.1.16)

The 3-couplings (aka Yukawa couplings/magnetic moments/3-point functions/triple
intersection numbers) are

oa,,CZ/ QA 0,050.90. (3.1.17)
X

Choose a symplectic basis of 3-cycles {A!, B;}, I =1,...,h*! +1 and denote the
corresponding periods as X', Fy:

x! = /Q (3.1.18)
Al

Fr = /Q (3.1.19)
Br

With this choice, the prepotential is given by

1
F= iXIFI (3.1.20)

and (X7, Fy) is of course nothing but the symplectic vector of special geometry.
One furthermore has the property:

Q e H* (3.1.21)

2.0 € H* 4 Hg*! (3.1.22)
0,000 € H** 4 H>' 4 H'? (3.1.23)
0.000.2 € H*®+ H> + H"? + H (3.1.24)

Defining the Kihler covariant derivative

Do = (8, + 8.K)9, (3.1.25)

5We attribute mass dimension zero to €2, as well as to other abstract geometric quantities
such as cohomology classes (and hence periods).
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we see from (3.1.15), (3.1.22) and (3.1.16) that D,Q, a = 1,...,h*!, forms a basis
of H*'(X), and that

g5 = —ie /X D.Q A DyQ. (3.1.26)

Thus we can decompose any (real) harmonic 3-form I' on X according to the
Hodge decomposition theorem

H*(X,C) = H**(X) + H>"(X) + H"*(X) + H*3(X) (3.1.27)

as
F:ie’CQ/ TAQ — ie’CDanag/ T'ADyQ + cec. (3.1.28)
X X

This decomposition is useful because it diagonalizes the Hodge star operator:
*TP37P(X) = (—=1)PilP3*P(X) (3.1.29)

It can be used to find an explicit expression in terms of central charges for the
intersection and Hodge scalar products on X:

/ Fl N F2 = 2Im [—Z(Fl) Z(Fg) + gaE DaZ(Fl) D;Z(Fg)], (3130)

X

/ Fl A *FQ = 2Re [Z(Fl) Z(Fg) + g“g DaZ(Fl) D;Z(Fg)] (3131)
X

where we defined the “central charge” Z of T as

Z(F)zem/FQ:/XF/\Q, (3.1.32)

and D,Z = (8, + %(%IC)Z .5 Here, by slight abuse of notation, we have denoted
I' and its Poincaré dual by the same symbol. If no confusion is possible, we will

always do this, that is:
/F/\BE/BEF-B, (3.1.33)
X r

where the dot denotes the intersection product: the number of points in the in-
tersection, counted with signs. We will use the same notational conventions for
forms and cycles of any degree. Note also the relative minus sign between the first
terms in the r.h.s. of (3.1.30) and (3.1.31).

bIn general, for an object f which transforms as f — APA?f under a Kihler transformation
Q — A\Q, we define Dq f = (8, + p8.K)f and Daf = (0a + q0ak)f.
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3.1.3 Four dimensional massless spectrum

The four dimensional massless spectrum of type IIB string theory compactified
on the Calabi-Yau manifold X can be deduced as follows (see e.g. [15]). Choose
a basis 04, A = 1,...,h"" = by = by of Ho(X,Z) (or by Poincaré duality of
H*(X,7Z)), and denote the corresponding dual basis of Hy(X,Z) (H?(X,7Z)) by Ta,
i.e. T4 08 = 6%. As above, choose a symplectic basis {Af, Bf}, I =1,...,h®1 +1
of H3(X,Z) (or H3(X,Z)). X has h®>! complex structure deformations and h'*
Kahler class deformations. By Torelli’s theorem, the complex structure deforma-
tions can be parametrized (locally on moduli space) by the periods of the holo-
morphic 3-form Q on X,

Q=X'Br - FrAL. (3.1.34)

Note that indeed since *{) = —iQ2 and the normalisation of () is irrelevant, a set of
h*! independent variables, e.g. ' = X/X?0, is sufficient to parametrize (locally)
all complex structures. The complexified Kéahler class deformations on the other
hand can be parametrized (again locally) by the periods of the complexified Kahler
form w = B +iJ, where B is the NS-NS 2-form potential and J the usual K&hler
form on X:

t17a (3.1.35)
/ w. (3.1.36)

As already mentioned above, Yau’s theorem states that there is a unique Ricci flat
metric on X for any given complex structure and (real) Kéhler class. The relation
between metric fluctuations and complex structure and Kahler class deformations
is given by

w

tA

(6@)mn = (6S)mn (3.1.37)
(6g)mn = (6Q)mF§QF§n/HQH2 (3138)

where ||Q[|? = Qnr Q™77

Now the 10D massless fields produce 4D massless descendants by decomposing
them according to the compactification M9 = M4 ® X in the harmonic form bases
constructed above:

p'Cy = A'@B—-BroA" +T* @74+ Sa®o? (3.1.39)
WCy = @714+ Coup (3.1.40)
w’B = b @714+ Bup (3.1.41)
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Here p is an arbitrary mass scale parameter which has been introduced to give
the four dimensional fields their usual dimensions (that is, our 4D forms have
dimension zero). Note that the selfduality constraint on Fj relates the 1-form A’
to the 1-form By, and the scalar S4 to the 2-form T4.7

Now dualize the 4D 2-forms Byp, Cs 4p and T4 to B’, C and T4 respectively
(so for example dB = %dByp). Then t* and i4 = ¢ + iT4, together with
t = B +ie~® and ° = C + iCy form the bosonic fields of ng = A + 1 4D
hypermultiplets®, while the four dimensional metric G4p, the vectors A’ and the
scalars X! (mod X1 ~ AXT) form the bosonic fields of the gravity multiplet plus
ny = h>! vector multiplets.

This is precisely the bosonic spectrum of four dimensional A" = 2 supergravity
coupled to ng = hb! hypermultiplets and ny = h>! vectormultiplets. Apart from
the precise number of vector- and hypermultiplets, this could have been deduced
purely from supersymmetry. Indeed, it is known [29] that a compactification on
a Calabi-Yau 3-fold preserves one quarter of the original supersymmetries, i.e. 8
supersymmetry generators, or A" = 2 in four dimensions.

For later use, we record here the D = 4, N' = 2 supersymmetry algebra in its
most general form including central charges of point-like objects:

{Qa,QF} = —26*PP,Th ; — 2ic"P(Re Z up + Im Z T3 ), (3.1.42)

where A;B = 1,2 and a,3 = 1,...,4 (Majorana rep.). Z is the central charge,
which commutes with all other generators of the super-Poincaré group. We added
the tilde to distinguish this operator from the geometric object Z as it was intro-
duced in (3.1.32). We will later see that Z and Z are in fact simply proportional
to each other.

3.1.4 Four dimensional action

Since in this thesis, we will only be interested in the physics of the four dimensional
massless vector multiplets, we will take all four dimensional massless hypermult-
plet fields to be trivial (constant scalars). It can be checked from the type IIB
action (3.1.7) and the dimensional reduction formulas (3.1.39)-(3.1.41) that this
is a consistent truncation of the theory: the vector and gravitational fields do not
appear as sources of the hypermultiplet fields.

7So only half of these 4D fields are independent; which fields we choose as fundamental degrees
of freedom is a matter of choice, different choices are related by duality transformations.

8We don’t bother about the precise grouping and normalisation of these scalars here, since
we will not consider the massless hypermultiplets in detail in the remaining part of this thesis.
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In that case the dimensional reduction of the action (3.1.7) yields, taking into
acount? the selfduality constraint on Fs and using (3.1.39), (3.1.38) and special
geometry of the complex structure moduli space:

Sip = 2—12 / d'sV/=GR — 295" Axdz® — — [ F'AG;,  (3.1.43)
K1 J My 4% S
where
ki = Kiy/Vol(X) (3.1.44)
v = kot = kg/Vol(X)u (3.1.45)

(with p defined in (3.1.39)), 7! = dA!, and G; = dBy is to be considered as a
function of A!, given by the selfduality constraint on Fj:

F'' @ Br — G © AT = x4 F! @ xx By — x4Gr @ +x AL (3.1.46)

Here %4 denotes the Hodge star operator on the spacetime manifold M4 and *x
the one on the Calabi-Yau manifold X. Integrating this equation over A’ B; and
using (3.1.31) gives a system of equation which can be used to express the G; in
terms of the F':

Gr =ReNr F/ —Tm N7+ F7, (3.1.47)
where N7 is a moduli dependent symmetric matrix. We will not need its explicit
form, but give it here anyway for completeness:

(ImF[K)XK(Im FJL)XL
XM(IHI FMN)XN

with Fry = 910;F and F the prepotential as given in (3.1.20). We will discuss
the range of validity of this action in section 3.4.

N[J:F[J+2i

(3.1.48)

While the action is only determined up to a choice of symplectic basis (A’, By),
the electromagnetic energy is unambiguously defined once a space/time decompo-
sition has been chosen. Introducing the notation

A=F=p'Fs=F @B -G oA, (3.1.49)

(where the second equality is just (3.1.39) with the hypermultiplets taken to be
constant) and denoting the spatial components of F as Fg, the electromagnetic
energy density is simply given by:

1
Hemdt = 4—72 /X Fs A *10Fs (3150)

9Because of the subtleties associated to the selfduality constraint, the action for the vectors
(which come from the selfdual 5-form) is actually determined by requiring that the correct
equations of motion are reproduced, and by matching the expressions for e.g. the energy to get
the right normalisation. See also [45].
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This can be given a more explicit expression using special geometry. Denote

n= eK/Q/ F, AQ, (3.1.51)
X
then, from (3.1.28):
1 _ -
Hemdt = 2_72(17 A %477 + g Dan A x4 D57j). (3.1.52)

The low energy theory thus obtained is, as expected, N' = 2 supergravity
coupled to ny vectormultiplets, with scalar manifold given by the complex struc-
ture moduli space of X. The action (3.1.43) is indeed identical to (2.2.6). In
principle, (3.1.43) is just the classical low energy effective action, and though its
form is fixed by supersymmetry, there could still be an infinite number of very
complicated string loop and worldsheet instanton corrections. However, a miracle
happens. From considerations of supersymmetry and special geometry [26], it can
be shown that there cannot be any couplings between massless vector- and hyper-
multiplets (at the two derivative low energy level). Since the dilaton & in type II
theory is in a hypermultiplet, and since the string coupling constant is given by
e®, there can therefore be no string loop corrections (to the vectormultiplet action,
at this low energy level). Furthermore, since string worldsheet instantons always
come with factors ~ exp [ B + i.J, which again contain hypermultiplet fields'©,
there can also be no worldsheet instanton corrections. So we conclude that the
two derivative low energy effective action of D = 4, N' = 2 supergravity coupled to
a number of vector multiplets does not receive any quantum corrections. It is ex-
act. The importance of this result cannot be overestimated. It allows us to extract
exact quantum results from classical geometry, and is at the core of such diverse
things as curve counting via mirror symmetry [46], exact solutions of quantum
field theories [14] and possibly even the solution of Hilbert’s twelfth problem [47].

3.2 BPS states from wrapped 3-branes

3.2.1 States in string theory

String theorists tend to be a bit sloppy about the meaning of the word “state”.
This is in part because it is simply not clear what the full set of states of string

10Tn type IIA theory on the other hand, these are vector multiplet fields, and indeed, the 4D
low energy vector multiplet action obtained from type IIA string theory does receive this kind
of corrections.
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theory is, and in part just a manifestation of the often convenient habit of abusing
terminology in physics. We will try to explain this word in the context of string
theory a bit more precisely here, though we do not intend to give a full, solid
definition.

Stated abstractly, a state is (roughly) just something which associates ex-
pectation values to physical observables. In a quantum theory, usually, but not
necessarily, states are given a Hilbert space representation. In string theory one
usually talks about states with this Hilbert space framework in mind, though a
more general framework might actually be more appropriate (or even necessary),
as string theory in its present formulation does not allow a constructive definition
of its full underlying Hilbert space. This is simply because, unlike in quantum
field theory, the nonperturbative fundamental degrees of freedom of string theory
are not known.'!

Note that we are talking about states of the full spacetime theory here, not
about the states of one of the specific worldsheet theories arising in perturbation
theory from the string path integrals. Those two are not entirely disconnected how-
ever. For example the states of, say, the type IIB worldsheet theory on a cylinder
in a flat ten dimensional background provide the different one-particle states of
the type IIB spacetime theory ‘expanded’ around the flat ‘vacuum’. These are the
quanta of the spacetime degrees of freedom. Incidentally, replacing worldsheets by
worldlines, the same applies of course to field theory (though there one needs dif-
ferent types of worldline theories to get different types of particle species). When
the flat spacetime in which we were considering our type IIB example also contains
a D-brane, we can analogously consider the states of the worldsheet theory on a
strip with boundaries glued to the D-brane (cf. chapter 1). This gives a spectrum
of 1-particle states living on the brane, which are the quanta of the brane degrees
of freedom: ripples and so on.

As in field theory, one can consider scattering experiments, with several widely
separated and effectively free particles in the far past and future, interacting for a
finite time with each other in the laboratory. String theory in its original formula-
tion does nothing more than giving a prescription how to calculate such scattering
amplitudes as a perturbative series (ordered according to worldsheet topology),
and the main good news here is that the results are free of UV divergencies. Now
we can consistently formulate all this with strings propagating in various back-
ground geometries, with or without D-branes, and with various other fields turned
on, possibly including solitonic configurations, at least provided all those objects
satisfy certain equations of motion. The important thing to remember is however

MU There does exist a sort of a second quantized string field theory[3], but there are quite some
objections against it, and it is now widely believed that this is not the proper description of
nonperturbative string theory [30, 31].
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that in string theory, a priori, scattering amplitudes are all we have to probe the
physics. We could equivalently say that the physical observables we have at our
disposal (in this perturbative framework) are built out of particle annihilation and
creation operators in the far past and future.

What is the meaning of the classical backgrounds then? They are definitely
not directly observable. However, different backgrounds will in general give differ-
ent scattering amplitudes (i.e. different expectation values of our observables), so
they do define different states. Of course, by the usual path integral saddle point
argument, at sufficiently large time and distance scales, the scattering amplitudes
will be very much as we would expect from classical particles propagating in the
given classical background. Usually in string scattering theory, the background is
taken to be time independent and stable, and then one refers to the corresponding
state as a (perturbative) ‘vacuum. Note that, though it may still seem odd that
for example a D-particle at rest and localized at a certain point in space, could
give rise to a consistent quantum state in perturbative string theory, this actually
is not that strange: when the string coupling g is sent to zero, the mass of the
D-particle diverges in string units, so the quantum mechanical spreading of its
wave function is indeed suppressed (with respect to the string scale) when g — 0.
At finite ¢ however, the use of such classical particle-like'? solutions having finite
mass is questionable in perturbative string scattering theory. We will encounter
precisely such particle-like states. However, as their low energy properties, which
we will study, turn out to be independent of g (in the Einstein frame), we can
always imagine g = 0, so that the mass of the particle diverges in string units and
we don’t have to face this complication.

Apart from varying the background within a given perturbative string theory
(like type I, type ITA, type IIB, Eg x Es heterotic, and so on), we can also change
the perturbative string theory itself. The picture which emerged during the past
five years is that after such a change we are not looking at another fundamental
theory, but merely at another perturbative description of the same underlying
theory. For example it can be proven that type ITA perturbative string theory
on a space with one compact dimension of radius R in string units and string
coupling g, has actually precisely the same physics as type IIB string theory on a
space with one compact dimension of radius 1/R and string coupling g/R. A IIA
string winding n times around the compact circle corresponds to a IIB string with
momentum 7 along the circle. Scattering amplitudes are likewise mapped to each
other. So, at least to all orders in perturbation theory, we have an identification
of the (ITA,R,g) and the (IIB,1/R,g/R) state. This is T-duality. It shows very
clearly the fact that the background geometry doesn’t have an absolute meaning,
it is just part of a (nonunique) state label. Similar equivalences between ITA and

12For higher noncompact branes there is no problem of this kind.
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Figure 3.2: An artist view of the coninuum of states described in the text, including
M-theory. What the picture wants to emphasize is the connectedness of this
space, the different perturbative theories being no more than different suitable
perturbative descriptions in different ‘corners’ of the space.

IIB exist when D-branes are added (even branes in ITA corresponding to certain
odd ones in IIB), or when the geometry is made more complicated, for example
Calabi-Yau compactifications, where the map is given by mirror symmetry.

Note that the above ITA and IIB perturbative string theories between which
the T-duality map acts are actually both at the same time sensible perturbative
descriptions only if ¢ < 1 and g € R. So in some regions of the labels ITA is
accurate, in some I'IB, in some both, and in some none. Another kind of duality,
which is much harder to test as it interchanges strong and weak coupling and
hence requires always a sort of extrapolation of the theories away from perturbation
theory, is S-duality. An example is the SL(2, Z)-duality of type IIB theory, already
mentioned in section 3.1. Another example is the duality between heterotic theory
on T* and type ITA theory on K3. Most of the tests of S-dualities rely on low
energy extrapolations combined with supersymmetry constraints.

One thus arrives at a picture of one fundamental theory with a coninuum of
states, of which some ‘corners’ have a good description in terms of one perturbative
string theory, and others in terms of another. Some states might have no pertur-
bative string description whatsoever. However, thanks to various S-dualities, the
extreme strong coupling limits are often dual to weak coupling and hence pertur-
bative string limits. The most notable exception is the strong coupling limit of
type ITA theory. This is the magical, mysterious, matricious M-theory, which at
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low energies reduces to eleven dimensional supergravity! [48] It does certainly not
have a consistent perturbative string description. How to do quantum physics in
this regime is therefore not clear. The number one candidate for this is the matrix
model of Banks, Fischler, Shenker and Susskind [2]. The picture one thus gets for
this coninuum of states is shown in fig. 3.2.

3.2.2 BPS branes

An important step towards understanding nonperturbative aspects of strings has
been the discovery that often, perturbative particle states in one perturbative
string picture are realized as D-branes in another, S-dual, perturbative string
picture. This is very useful, because strong coupling aspects of these states in
one picture can then be calculated simply at weak coupling in the other picture.
We will see examples of this below. Till now, quantitative results have been
mainly obtained for BPS states, which have a certain amount of supersymmetry
and therefore relatively controllable quantum corrections. We will especially be
interested in such BPS states arising in type IIB Calabi-Yau compactifications
which have a particle (or black hole) interpretation in the 4D low energy effective
theory.

Let us therefore briefly recall what is meant by a BPS state in a 4D N = 2
theory. Consider a state with definite central charge Z and energy-momentum P,
and go to a Lorentz frame where the spatial momentum P; is zero (and Py = M).
On such a state, the algebra (3.1.42) becomes

{Q4, Q5T = 2M6*P5,5 + 2ie*P(Re Z T4 + Im Z (T°T°) 49). (3.2.1)

The left hand side, considered as a matrix in (Aa, BB) is non-negative definite,
so the eigenvalues M + |Z| of the right hand side have to be non-negative as well,
implying

M >|Z). (3.2.2)

A state is called BPS when its mass is minimal for a given Z, i.e. M = |Z|. From
the algebra, it then follows that half of the 8 supercharges annihilate the state, so
we keep N' = 1 supersymmetry. The remaining four supercharges can be taken
together [31] to form 2 complex fermionic operators, say b; and be, furnishing
together a spin 1/2 representation of the little group (SO(3) for a massive state)
and satisfying the fermionic oscillator algebra

{b;,b1} = 0y, (3.2.3)

The smallest representation of this algebra is four dimensional, so any BPS state
(ina D = 4, N = 2 theory) will be part of a multiplet of at least four states,
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degenerate in mass (since the b:f commute with Pp). One can construct such a
multiplet by starting from one or more fermionic oscillator ground states (also
called fermionic oscillator vacua)'® |0),, labeled by an index r, which are supposed
to furnish again a representation of the little group and to satisfy b;|0), = 0, and
subsequently acting on those with one or more of the creation operators b;f. For
single particle states, this gives typically one of the following BPS multiplets (for
M > 0):

a half-hypermultiplet: this has one spin 0 fermionic oscillator vacuum, 4
states. The ‘spin content’ is (0%, 1).

a full hypermultiplet: two spin 0 fermionic oscillator vacua of opposite
charge, 8 states. Spin content is (0%, %2)
e a vectormultiplet: spin 1/2 fermionic oscillator vacuum, 8 states. Spins:

2
0,57,1).

(BPS massive) ‘gravity’ multiplet: spin 3/2 fermionic oscillator vacuum, 16

states: (1, 32,2).

Such BPS multiplets can be seen as Goldstone multiplets of broken supersymmetry.

Note that these BPS multiplets are shorter than generic massive multiplets: a
generic massive state breaks all supersymmetry and is therefore part of a multiplet
of at least 2% = 16 states. This is why in an N = 2 supersymmetric vacuum, a
particle which is in a short BPS multiplet at vanishing coupling, is expected to
stay BPS (M = |Z|) when interactions become stronger, at least as long as it
exists as a stable state: the opposite would imply a discontinuous jump upwards
in the number of states in the multiplet. This argument and analogous reasonings
underly many results in strongly coupled string theory, since it allows one to
extend some quantities obtained in the D-brane picture at weak string coupling
(where the D-brane can just be represented as an object on which strings can end,
without having to take into account backreaction on the ambient space), to the
strong coupling regime.

Let us turn now to the D-brane representation of these 4D BPS states in
type IIB string theory compactified on a Calabi-Yau manifold. Type IIB theory
contains only odd branes, and since the only odd dimensional nontrivial cycles
in a Calabi-Yau have dimension 3, the only possibility to get particle-like BPS
states in four dimensions from D-branes, is to wrap a 3-brane about a 3-cycle
in the Calabi-Yau, in such a way that one half of the supersymmetries remains

13the different fermionic oscillator vacua are usually also connected to each other by cre-
ation/annihilation operators constructed from certain fermionic zero modes, see e.g. [49].
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intact. More precisely, the latter condition means that it should be possible to
compensate the action of one half of the 8 supersymmetries of the given Calabi-
Yau background, on the (fermionic) fields of the 3-brane worldvolume theory, by a
worldvolume k-transformation. We will call such an embedding supersymmetric.
This problem was studied by Becker, Becker and Strominger in [50], resulting in
the following criterion for the embedding f of the 3-brane in the Calabi-Yau, to
be supersymmetric:

1. The pullback of the Kéhler form to the brane should vanish:
f*J=0. (3.2.4)

2. The pullback of the holomorphic 3-form should have constant phase:
11 = ép(6) e, (3.2.5)

where o is a constant, the ¢, i = 1,...,3 are coordinates on the spatial part
of the 3-brane, and p is a real positive function on the brane.

In the mathematics literature, a submanifold satisfying these conditions is known
as a special Lagrangian submanifold. It can be shown [50] that a 3-brane satisfying
these conditions has minimal volume in a given homology class (see also below).
The analysis of [50] implicitly assumes triviality of all background fields, including
the worldsheet U (1) field strength, except for the metric and selfdual 5-form field
strength (since the brane itself is a source for these fields). This is compatible with
the assumptions we made earlier!*. Considering the known curvature corrections
to the D3-brane action [40], one could worry about the fact that these curvature
couplings could cause the wrapped brane to act as a source for Cy and ®. This
is not the case for supersymmetric branes, as can be shown directly from the ex-
pressions in [40], at least if the property holds that a supersymmetric cycle in a
Calabi-Yau manifold is totally geodesic. The only terms to worry about are those
in the DBI part of the action, since those in the WZ part vanish automatically
because of the direct product structure of the brane. Under the assumption of
being totally geodesic, using the fact that normal and tangent bundle of a super-
symmetric cycle in a Calabi-Yau manifold are isomorphic [51], we find that the
various terms in the DBI part as given in [40] cancel exactly.

Not every homology class has a supersymmetric representative. The existence
of such a representative is equivalent to the existence in the 4D effective theory of a
BPS state with charges corresponding to the homology class under consideration.
Unfortunately, it is not easy to establish existence of supersymmetric cycles in a
generic Calabi-Yau.

MWe did not say anything about the worldsheet U(1) field strength yet, but it is clear that
turning on this field would add extra energy to the state, which would move it away from the
BPS bound and break the remaining supersymmetry — not what we want.
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3.2.3 Mass and charge of wrapped 3-branes

Let us now compute the mass and charges of such a BPS particle obtained from
wrapping 3-branes about Calabi-Yau 3-cycles. This can be most easily done by
studying how the D3-brane action (3.1.12) reduces to a particle action in four
dimensions.

We consider the brane as a ‘probe’; that is, we neglect backreaction on the
spacetime fields. As discussed in sections 2.1.1 and 3.2.1, this is what we should do
if we want to use the branes as Dirichlet-branes in lowest order string perturbation
theory. In particular this means that the moduli are taken to be constant over the
four dimensional spacetime. When one does take into account backreaction, the
moduli at the worldline are (for a BPS state) always at their so-called attractor
values (see section 3.3), and the ‘mass’ one thus finds by reduction of the D3 action
is not the actual mass of the state, but only the ‘bare mass’ of the minimal brane,
as measured by an observer at r = 0 (which is the horizon when the BPS state
is a black hole). From the point of view of an observer at infinity, the complete!®
mass of the state is in the surrounding fields (as will be shown in section 3.3). It is
perhaps surprising that the (bare) mass in the probe brane picture is the same as
the mass of the fields when the full backreaction is taken into account. However,
this is just a consequence of supersymmetry: it is the BPS mass formula at work.

We will deal with the backreaction issue in section 3.3, and discuss the validity
of the D-brane and effective field theory pictures in section 3.4. For now, we simply
put the branes in a fixed background.

Aspects of the relation between wrapped D3-branes and black hole solutions
are studied e.g. in [52, 53]. Boundary states for wrapped D3-branes were studied
in [54].

Now with our assumptions about the background fields, the D3-brane action
(3.1.12) becomes:

Sps = YT /d‘*g “dethy + YT /04. (3.2.6)
K10 K10
We first consider the DBI part. Dimensional reduction gives

Sppr = _H\/Tf ds Vps(s), (3.2.7)

where s is the proper time measured with the 4D metric and Vp3 is the volume of
the spatial (wrapped) part of the brane:

Vs = / 06 /det . (3.2.8)

15the bare mass, if any, is redshifted away
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Denote with y™ the holomorphic coordinates on the Calabi-Yau manifold X. Then
in general

oy™ oy™
but if the first BPS condition f*J = 0 is satisfied, we can drop the symmetrization:
oy™ oy™
J G 85’ 857 (3 0)
and
ay™|?
det h;; = det G |det 8—51 . (3.2.11)
Now note that
QU = Qi Q™™ = 6(det Grn) ™" Q123 (3.2.12)

Using this equation and the fact that Q is covariantly constant over X (so ||Q||?
is simply a constant), we find:

ek = z/ QA Q= 48)Q*Vx, (3.2.13)
X

where Vyx is the volume of the Calabi-Yau X. Plugging this back into (3.2.12), we
obtain

det G = 8 - 626X Vx [Q123)2. (3.2.14)

Using this in (3.2.11) to compute det h;;, we get the following expression for the
volume (3.2.8) of the 3-brane (if the first BPS condition is satisfied):

Vs = 22 VXeK/2/|f*Q|. (3.2.15)
So we find the inequality
Vps > 2V/2 VXeK/2|/f*Q|, (3.2.16)

where equality is satisfied if and only if the phase of f*{2 is constant, which was
precisely the second BPS condition. So, recalling (3.1.32), we conclude that for
a BPS 3-brane wrapped around a 3-cycle I' in X, the DBI part (3.2.7) of the
D3-brane action reduces to

72\/21/W/|Z(F) 2\/ﬁ/|Z(F)|ds.

|ds = —
K4

Sppr = — (3.2.17)
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Therefore, the mass of the 4D BPS particle is:

221 70y = L 2m)) (3.2.18)

Ry VGnN

with Gy the four dimensional Newton constant. This also suggests the following
relationship between the geometric ’central charge’ Z and the central charge Z
from the supersymmetry algebra (3.1.42):

Mpps =

~ 1
7 =——7. (3.2.19)
VG N
This can indeed be verified from the representation of the supersymmetry algebra
on the type IIB fields, but we will not go into this.

The reduction of the WZ part of the D3-brane action is straightforward.
Recalling the notation (3.1.49), we get from (3.2.6) and (3.1.39):

VT [ (3.2.20)

Swz = —;
H- K10

so if our D-brane is wrapped around a cycle I' = ny AT + m! B, we find (recalling
the definition v = k1ou* given under (3.1.43)):

Swy = g/r A= g /n,AI +m!Br. (3.2.21)

So if we consider the A-vectors (as opposed to the B-vectors) as the elemen-
tary massless excitations of the theory, we can identify!'® the electric charges with
winding numbers about the A-cycles, and magnetic charges with winding numbers
about the B-cycles.

From the equations of motion obtained from the total action S = Syp + Sps,
with Syp as given in (3.1.43), it follows that the electromagnetic field produced by
a static brane wrapped around I' at r = 0, in a spherically symmetric background,
is in the notation (3.1.49), given by

F=w®l+ *xw®*xxI, (3.2.22)

where
Y

Var

16Note that this is purely a conventional identification, there is a priori no invariant distinction
between A and B cycles, and no invariant distinction between electric and magnetic charges. This
manifests itself as the electric-magnetic duality of low energy theory.

sin 6 d A dg. (3.2.23)

w =
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Here 6 and ¢ are spherical coordinates about r = 0. This can be expressed in
components using (3.1.49) and (3.1.31). More interestingly, we can use the same
formulae together with (3.2.21) to calculate the electromagnetic force on a test
particle with charges I'1, moving with velocity @ in the field of a static charge I's.
From (3.2.21) and (3.1.49) , we find this is

—

— 1 €r

1

)

(Ty-T2) = x 7. (3.2.24)

N | =
<

Here the dot denotes as usual the intersection product: ' - T = fX ' ATY, which
can be calculated for linear combinations of integral cycles and their Hodge duals
using (3.1.31). In particular, for two particles with colinear charges I'; = Q;T", we
thus obtain

.
er

ﬁ = QlQQV(Z,Z) 7"2’ (3225)
with
1 . _ . _
V(z,2)= 5T+l = |Z? + gD, ZD3Z = | Z|? + 49%°0,| 21051 Z],  (3.2.26)

with Z the central charge of T.

3.2.4 Spin

It is a much more difficult problem to determine the 4D spin of the particles
obtained from wrapped branes, or more precisely, to determine the kind of ' = 2
supermultiplet one obtains by wrapping a brane about a particular cycle. In
principle, this could be done by investigating the spectrum of strings ending on
the D-brane, but in practice this is way too involved.

When the homology class under consideration has a unique supersymmetric
representative, there is usually no problem: in that case, one expects a unique
fermionic oscillator ground state (which must have spin zero since higher spin
implies a degenerate ground state), on which one can build a half-hypermultiplet
by acting with combinations of the 4 broken supersymmetries, as outlined above.
The other half of the hypermultiplet is obtained by CPT conjugation, which simply
reverses the orientation of the brane (and hence the charge).

The situation becomes problematic when there is a continuous family (or mod-
uli space) of supersymmetric cycles in a given homology class. The superpartners
of these moduli are fermionic zeromodes which can be used to build up a degen-
erate fermionic oscillator vacuum, on which one can then build ' = 2 multiplets
in the usual way. However, the degeneracy and spin of these fermionic oscillator
vacua, and hence the kind of multiplet, is a priori undetermined, and in principle
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a detailed analysis of supersymmetric quantum mechanics on the moduli space is
needed to figure this out. This is analogous to the determination of the spin of
e.g. a monopole in field theory, which can also be quite nontrivial (see e.g. [49]).

Fortunately, in some cases there is a shortcut. We would like to present a
particularly simple and useful one here. The idea is the following. Suppose we can
increase the number of remaining supersymmetries, e.g. from 4 to 8 generators
(of the original 32 generators of type IIB string theory), by a change of the com-
pactification geometry away from the brane. For example, if the compactification
manifold is a K3 fibration over a certain base manifold B and the 3-brane a K3
2-cycle fibration over a nontrivial circle in B, we can put the brane in a T2 x K3
compactification (B — T?) to double the supersymmetry. Often, more supersym-
metry makes it easier to deduce the multiplet(s) produced by the brane, because
there are fewer possible multiplets, and because the compactification geometry is
usually simpler as the holonomy group becomes smaller. Suppose we thus man-
age to find the multiplet in the case with higher supersymmetry. As usual, this
multiplet can be constructed with creation/annihilation operators which are com-
binations of the supercharges broken purely by the presence of the brane. Those
supercharges are spinors invariant under the holonomy of the compactification
manifold. Now when we restore the original compactification geometry, the holon-
omy group increases and some of these supercharges will no longer be invariant
under it. Consequently, some of the states in the original extended susy BPS
multiplet will become noninvariant under the holonomy and leave the multiplet
of BPS states.!” States remaining invariant will stay to form a multiplet of our
original supersymmetry algebra.'® 19 A state which always satisfies this is the top
spin state of the extended multiplet, e.g. the vector in an N' = 4 vector multiplet
or the graviton in an A = 8 gravity multiplet. Indeed, this state is always invari-
ant under the local Lorentz group of the compactification manifold (since there is
only one highest spin state in a supermultiplet, and the spin value has to remain
invariant under internal symmetries, this state must be in a singlet of the local
Lorentz group of the compactification manifold), so a fortiori under the internal
holonomy group. On a more pedestrian level, we could simply say that this is
because the top spin field ‘has all its indices in the noncompact spacetime’.

So in the cases where such a trick is possible, the brane produces at least

"However, by adding one ore more suitable extra fermionic zero-modes which might be induced
by the change of compactification, this noninvariance can be canceled again, leading to more
multiplets. To analyze this requires a more sophisticated approach, involving twists of the Lorentz
algebra, see e.g. the third reference in [55].

181t is possible that the brane produces still more multiplets, by the mechanism discussed in
the previous footnote.

9Note that nothing guarantees the original fermionic oscillator vacuum itself to stay in the
multiplet, since the original annihilation operators can get mixed up with the original creation
operators under the enlarged holonomy group.
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the N/ = 2 multiplet labeled by this highest spin state: a (massive BPS) vector
multiplet if the extended multiplet is of vector type, or a (massive BPS) gravity
multiplet if the extended multiplet is of gravity type. In the above example of
the K3 fibration, we would get a vector multiplet. We will discuss this and other
examples in much more detail in the next chapter.

3.3 BPS states from the 4D effective action: at-
tractors

At least for sufficiently low energies, that is, for slowly varying field expectation
values, it should also be possible to find the BPS states of our theory as solutions
of the four dimensional low energy effective action. Furthermore, there should
also be a nontrivial representation of the four broken supersymmetry generators
on the fields, generating a ‘multiplet of BPS solutions’ (which upon quantiza-
tion should reproduce the quantum multiplet structure discussed earlier in section
3.2.2). Thus, the two complex Grassmann parameter family of BPS solutions gen-
erated out of a single spherically symmetric (‘spin 0’) BPS solution will correspond
to a half-hypermultiplet, while the family of BPS solutions corresponding to a vec-
tormultiplet will be generated out of a more intricate family of BPS solutions.2°

For an example of how the generation of superpartner solutions works con-
cretely in A" = 2 supergravity, see [56], where a “hypermultiplet of solutions” is
constructed from a spherically symmetric black hole solution. Another example
is the N' = 2 SU(2) monopole, which is worked out in detail, including non-BPS
bound states, in [57]. In [58], some physical properties of the superpartner solu-
tions are studied.

In this thesis, we will restrict ourselves mainly to static spherically symmetric
BPS solutions, which thus should correspond to BPS hypermultiplets of the four
dimensional N = 2 theory.

20Tt is not entirely clear to us how exactly this family should look like, but it will definitely
not be a spherically symmetric solution, since this corresponds to a hypermultiplet. We will call
them ‘spin 1/2 fermionic oscillator vacuum solutions’, in analogy with the spin 1/2 fermionic
vacuum state used to build the quantum vector multiplet. At this point, this is just a name.
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3.3.1 Static spherically symmetric configurations

We take a general?! static spherically symmetric ansatz for the metric:

1
ds? = —e2UM g2 4+ 6_2U(r)(f(r)2 dr® +r2dQ3), (3.3.1)
or, changing variables r = ¢/sinh er, f(r) = h(7) cosh cr:
ds®> = —eUdt* + e_QU(i ¢! dr? + ¢ dQz). (3.3.2)
h? sinh* 1 sinh?cr

Here U(r) and f(r) are functions of the radial coordinate r, to be determined by
the (BPS) equations of motion. We require asymptotic flatness of spacetime, so
U — 0and f,h — 1 at spatial infinity (r — oo, 7 — 0). We furthermore assume
the moduli and electromagnetic fields to be spherically symmetric and produced
by a source with charge I' € H3(X,Z) at r = 0, that is, according to (3.2.22),

F=w®l + xqw Q@ *xT, (3.3.3)

. 22U . .
where w = \/%7 sinfdf A do = *4(\/%7 &—dr A dt). Note that with this ansatz, the
equations of motion for F are automatically satisfied.

The metric (3.3.2) has Ricci scalar

.. . . 2
T+ R0 =) — 250y Ly (334

92U sinh* e
= e —_— -
sinh et sinh? er h

R c4

Putting all fermionic fields to zero and plugging all ansétze for the bosonic fields
into (3.1.43), we find for the effective action?? modulo boundary terms:

1 > . K 2U
Sip/T - / dr {W(U? + 9,352 — &) + anE— V(z,2)
2GN Jo h
2 1
- (h+=—-2)}, 3.3.5
sinh? CT( h )} ( )

21This ansatz is more general than the one used in [59]. However, it reduces to the latter by
the equations of motion, as we show here.
22The action S4p/T = 7# [ FL AGr + -+ is only determined up to symplectic duality

transformations (i.e. up to choice of symplectic basis (A’, Br)). However, to get a manifestly
consistent reduced action principle at fixed field strength F, F! = dA! should only appear in
the action such that the action is not varied via changes of F! when the other fields are varied.
With the ansatz we use, this is the case when we choose our basis such that I'- By = 0, and then
the electromagnetic part of the action is equal to the electromagnetic energy (3.1.52), leading to
the above expression for Syp.
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where T = [ dt is the elapsed time and the dot denotes %. The “scalar potential”
V(z, 2) is derived from (3.1.52), (3.3.3) and (3.1.32):

V(2) = |Z)> + g™ D, 2Dy Z = | Z|? + 49°°0,|Z|5;| Z). (3.3.6)

Note that, as usual for static solutions, the action per unit time is equal to minus
the (potential) energy (possibly up to boundary terms).

Now the equation of motion for h(7) obtained from variations of (3.3.5) corre-
sponding to radial diffeomorphisms (i.e. 6f(7) = e(7)f(r) for a function f), acting
on the fields U, z® and h, together with the dh equation of motion, actually implies
h=1+ C% tanh? er, with k an arbitrary parameter. Solutions with different values
of k are related by a radial diffeomorphism corresponding to a change of the — till
now arbitrary — constant ¢. Let us now gauge fix this remaining diffeomorphism

by putting k =0 (so h = 1).
Varying h on the other hand implies at h = 1 the constraint:

U2 + g,55%58" — GneUV (2) = 2. (3.3.7)

However, since at h = 1, by T-translational invariance of the reduced action (3.3.5),
the left hand side is a conserved quantity along 7-translations anyway, this just
determines the value of ¢ (from the boundary conditions), leaving no nontrivial
constraint independent of the other equations of motion. Bearing this in mind, we
can simply put h =1 and write (3.3.5) as

1 -b

Sap T = ——— / dr {02 + g52°5 — @ + Gne?VV (o)), (3.3.8)
2GN Jo

or, by completing squares, as:

1 o0 . = _
Sip/T = ﬂ/ dr {(U £ /G eV |Z)? + 120 + 2y/Grel g5 2| — 2}
0

+

(3.3.9)

T=
T=00

eU 7
Va2
3.3.2 BPS solutions: the attractor flow equations

We will first try to get some intuition in the general solution of the model, and
then proceed to the more precise and technical study of the equations.

Looking at the form of the action (3.3.8), we see that our system is equivalent
to a particle moving on R x M, with R parametrized by U and M the complex
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Figure 3.3: Sketch of the potential —e?UV in which the effective particle is mov-
ing, plotted as a function of >V and the moduli z. For generic initial conditions,
the particle will run away to infinity, producing an unphysical (singular, antigrav-
itating) supergravity solution (trajectory a). If —U(T = 0) is sufficiently large,
the particle keeps on moving all the way to U = oo, at least if 2(7 = 0) is at the
same time tuned such that (7 = co) = 0. This corresponds to a finite energy,
(nonextremal) black hole solution with ADM mass Mpy = —U(t = 0)/vGx
(trajectory b). The critical trajectory, with minimal M4pys for given initial z,
barely reaching the top of the potential at 7 = 0o, corresponds to an extremal
black hole (trajectory c).

structure moduli space of X, subject to the potential —e?YV. The minus sign in
front of the potential is crucial. The parameter 7 € R plays the role of time.

Contrary to what is usually claimed in the literature, the motion on this space
is not damped, as energy is conserved according to (3.3.7). Close to local maxima
of e2UV |, we expect oscillatory solutions. Close to local minima of e?U V', we expect
unstable behavior and runaway solutions, ezcept when the initial conditions are
fine-tuned such that the particle climbs the hill with just enough energy to reach
the top, ending its motion there (see fig. 3.3). Such finite particle action solutions
correspond to finite energy field configurations in our original field theory: they
are the solitons we are looking for!

Since critical points (minima in particular) of e2UV are thus of central im-
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portance to find finite energy solutions, let us study those a bit closer. Clearly,
critical points of |Z| are also critical points of V', with V. = |Z..|?. The converse
is not necessarily true. A counterexample is given e.g. by taking (essentially)
Z = z+0(2?%) and ¢g*% = 1+ 0(z?), which has 9.V =0 but 9.7 # 0 at z = 0. We
will mainly focus on critical points of Z, as they will turn out to be the relevant
ones for BPS solutions. Using some special geometry identities, one can show [59]
that at critical points of | Z| we furthermore have (0,05V)er = (0,0 Z])er = 0 and
(0a05V )er = 4(0u05|Z|)er = 29,5 Zer|?. Therefore, since the metric g, is positive
definite, such critical points are always minima. Happily, minima are precisely
what we want.

For finite U, minima of V are only minima of e?VV if Z., = 0, that is, when
the 3-cycle I' under consideration has a vanishing point in moduli space. This case
will be discussed in section 3.3.3 and in chapter 5. In the generic case however,
Z.r # 0 and in order for e2VV to be critical, we need U — —oo. Therefore,
recalling 7 — oo corresponds to r — 0, finite energy solutions must have U = —o0
at r = 0. Typically, this gives a black hole with horizon at » = 0. Now U = —o0
is always a critical point of e2VV, for any finite z. Therefore, for sufficiently large
—U(T = 0), the motion in the U direction has no turning point and the particle
runs all the way to the U = —oo top of the —e2UV hill, at least if we tune (7 = 0)
such that at the same time Z — 0 when 7 — oo (if not, the motion will in general
explode due to unstability of the system, and the particle will fall back). Hence in
this case we always find a finite energy solution, with no preferred moduli values at
the horizon. This is not surprising, since the ADM mass of the solution is given by
Mapy = —U /v/Gn, and we indeed expect (nonextremal) black hole solutions for
any sufficiently large value of M 4ppr. Now for fixed initial values of the moduli,
when we start to lower —U, at a certain point, —U will fail to reach infinity for all
initial moduli velocities and consequently finite energy solutions no longer exist.
The critical trajectory, with minimal ADM mass for the given moduli at 7 = 0,
will have U = 0 at 7 = oo and we expect?® it to just reach a minimum of V' there
(since minimal V' means minimal ‘push-back’ force —0y7(—e?YV) = 2¢2UV in the
positive U direction, leaving no room to lower the initial |U/| even more while still
reaching the top of the mountain in the U direction). Consequently, for such a
critical solution we have both kinetic and potential particle energy equal to zero
at 7 = 00, implying ¢ = 0 according to (3.3.7). Thus we expect to find solutions
with minimal mass for the given charge and moduli at infinity, which furthermore
are extremal (¢ = 0). Again, this is not surprising: such solutions are simply the
extremal black holes of N' = 2 supergravity!

From the above argument, we thus expect that the moduli at » = 0 (the

23This limit is of course a bit subtle, but we will see below that this intuition is indeed confirmed
by the equations.
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horizon) will be fixed at a critical point of V', invariant under continuous variations
of the moduli at infinity. This is the famous attractor mechanism [60]. The
attractor property has nothing to do with damping of the effective particle motion,
as often wrongly stated. Quite the contrary: it arises from the finite energy
condition thanks to the unstability of the particle motion, in a way which is actually
very common in soliton physics.

Note that eztremal black holes (i.e. solutions with ¢ = 0) are not necessarily
BPS. If we have a critical point of V' at z = z, which is not a critical point of Z, and
we take say z(7 = 0) = 2. (s0 z = const.), straightforward solution of the equations
of motion derived from (3.3.8) yields the ¢ = 0 solution U = —In(1 + vVGNV'T),
with /GNMapy = VV = /|Z]2 +489Z|0,]Z] > |Z|. The converse is true
however: BPS black holes are always extremal.

Let us see now how we get the BPS solutions from the equations.

From (3.3.9), it is clear that the reduced action at fixed values of ¢ and the
boundary moduli, has a minimum when

U = —/GyeY|Z| (3.3.10)
¢ = —2/GneV g5 7). (3.3.11)

Equation (3.3.7) then implies ¢ = 0, so r = 1/7 and
ds® = —e*Vdt* + e 2V di. (3.3.12)

which has Ricci curvature?*

R, = &Ur'U
R, = &VrtQU? -1) (3.3.13)
Rly=R’y = U (-0)

Assuming asymptotic flatness, i.e. U — 0 at spatial infinity, these solutions satu-
rate the BPS bound

M (r = 0)]. (3.3.14)

1
= —|Z
\/GN|
Here we have dropped the 7 = oo boundary term since (3.3.10) and (3.3.11) im-

ply that both eV and |Z| are monotonously decreasing functions (see also equation
(3.3.18) below) satisfying the estimate eV|Z| < min{|Z(0)|/(1+vGn|Z(c0)|7),|Z]|},

24The nonextremal metric with ¢ # 0 is obtained from this one simply by replacing the factor
74 by sinh? er/c?.
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and hence eV|Z| — 0 when 7 — co. Note that this estimate also implies that when
Z(00) # 0, the solution is a black hole with horizon at » = 0. Indeed, from the
form of the metric (3.3.2) and direct analysis of equation (3.3.10) in the limit
T — 0o, we then get an AdS, x S? near horizon metric

1
ds’ = ————————dt* + Gn|Z 2r2dz? 3.3.15
with horizon area
A = 471G N|Z(00)]?, (3.3.16)
and hence with thermodynamic Beckenstein-Hawking entropy
Spi = A = |Z(c0)|? (3.3.17)
BH = (oo = | Z(00)|". 3.

Choosing the other sign possibility in (3.3.9), does not give an acceptable?®
solution: now eV and |Z| are increasing functions, satisfying the estimate eV|Z| >
|Z(7)|/(1 =G N|Z(1:)|T) for any fixed 7, hence any nontrivial solution develops
a singularity at finite distance from the origin, and has infinite action and energy.
Furthermore, these solutions would be gravitationally repulsive. They correspond
to the unstable solutions falling down the hill along BPS trajectories in the effective
particle picture. Note however that in a finite region of spacetime, preventing 7
to run to infinity, such solutions might be acceptable and possibly important.2®

Equations (3.3.10) and (3.3.11) are called the attractor flow equations. This
is because their solutions converge to fixed moduli values at 7 = oo, namely to
those values for which |Z| is minimal. Indeed, from (3.3.11), we see:

d . i
12l = —4\/GneV g™ 8,121 85| Z] < 0, (3.3.18)

so the moduli will flow “down the hill” till a minimal value of |Z| is reached (with
vanishing norm of its gradient). This is intuitively clear in the brane picture, since
we expect the 3-brane to “pull” the moduli such that its volume is as small as
possible. It is of course also precisely what we expected from the intuitive particle
picture described above.

To describe the flow in moduli space, it is sometimes convenient to introduce
a ‘scale’ variable u = eV /y/Gxy in terms of which the attractor flow equations

25at least not for our purposes; in [61], it is discussed in what sense such solutions could still
be meaningful.

263 comparable situation is perhaps the occurrence of exponential “tunneling” solutions of
Maxwell’s equations between two dielectrics.
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take the form

dp

= =1z (3.3.19)
dz" -

”dZ = —g®31n|ZP, (3.3.20)

suggesting an interpretation as a renormalisation group flow in moduli space [47].

The attractor flow equations can also be obtained from the requirement of
conservation of one half of the supersymmetries [60, 62, 22]. Solutions and gener-
alisations have been discussed for example in [47, 62, 22, 23, 63, 64, 21].

Before we go on, we would like to make the following side remark (which
is further not consequential for this thesis). Suppose we restrict the region of
spacetime which we consider to r > € (7 < 1/e), with € very small. The ac-
tion principle tells us that for any value of the fields on 7 = 1/e and 7 = 0,
we can find a solution of the equations of motion. Suppose we keep z (and U)
fixed at 7 = 0 and 7 = 1/e, deviating a finite amount from the attractor val-
ues at the latter point. Now let ¢ — 0. Because of the instability of the effec-
tive particle system, the solution (U, z). of the equations of motion given these
boundary values will be arbitrarily close to the attractor flow solution (U, z)a¢¢r
for 7 not too close to 1/e. More precisely, for any fized and finite 7 we have
lime_,o(U, 2)e(1) = (U, 2)attr (7). Also, some closer analysis of the action (3.3.8)
shows that for black holes, the action of the deviating solution approaches that
of the attractor solution: lim. o S[(U,2)] = S[(U, 2)attr] = —T|Z(t = 0)|//GN
(essentially because the deviating solution only differs significantly from the at-
tractor one close to r = €, but there the factor e is very small, damping out all
difference in action®”). On the other hand, the value of the moduli at r = € — 0
(hence at the horizon) of lim._,o z. will, by construction, differ from the attractor
values by a finite amount. The limiting solution is discontinuous and therefore not
acceptable as a smooth classical solution, but it indicates the presence of degrees
of freedom at the horizon of which the excitations have zero energy as seen from
any finite radius. The solutions deviating from the attractor flow infinitesimally
close the horizon would be as important as the attractor flows themselves in a
Feynman path integral. This can be understood as an infinite redshift effect. The
degenerate excitations on the horizon give the black hole an entropy, which by
extensivity we expect to be proportional to the area A of the horizon — in agree-
ment with the Beckenstein-Hawking formula. Unfortunately, when one actually
tries to count the excitations on the horizon in this way, the result is divergent
when arbitrarily short wavelengths are allowed. A cutoff of the order of the Planck
scale is needed.

27this is not the case for non-black hole solutions
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String theory should effectively provide such a cutoff in principle, but going
into the subject of string theory counting of black hole states [65] would lead us
way to far afield, so we will drop the subject here.

3.3.3 Existence of the BPS state

We can trust the low energy supergravity approximation if the curvature stays
sufficiently small. From (3.3.13) and the attractor flow equations, it follows that
this is the case if and only if

GN2eV TV (2) < 1. (3.3.21)

Note that, as long as the curvature is everywhere finite, we can always make
it arbitrarily small by adding (equal) charges at » = 0. Indeed, obviously, the
solution & = (U, z%) to the attractor flow equations for multiple charge NT' can
be obtained from the solution for single charge I' as

dn (1) = ®1(NT). (3.3.22)

The curvature then scales correspondingly as

1
Ry(r) = le(NT)a (3.3.23)
so we can always make the curvature, if finite, arbitrarily small (such that it satis-
fies (3.3.21)) by taking N large. The same argument holds for the derivatives of the
curvature (and of all the other fields). So in general, we can expect supergravity
to be reliable in the large N limit, which is of course no surprise.

Let us see what the attractor flow equations can teach us about the existence
of a BPS hypermultiplet?® with given charge I' and given moduli at spatial infinity.
There are three possibilities:

1. |Z| has a nonvanishing local minimum, say at z = z,. The flow gradient
field (given by the r.h.s. of the attractor flow equations) in moduli space is
shown schematically in fig. 3.4. In this case, as outlined above, we get a
black hole solution with near horizon metric given by (3.3.15). The condition
(3.3.21) for our supergravity approximation to be valid, translates then to
|Z(2«)| > 1, which can always be obtained by taking a sufficient amount
of charges. Therefore, in this case, the low energy theory establishes the
existence of a BPS hypermultiplet of the given charge.

28 A spherically symmetric solution gives a hypermultiplet, as we argued earlier. The nonex-
istence of a static spherically symmetric solution does however not exclude the existence of
non-spherically symmetric solutions, and hence of multiplets built on those solutions.
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Figure 3.4: Typical flow gradient field in moduli space (represented by the z-plane)
close to a generic attractor point with finite Z..;;. The gradient vectors vanish at
the attractor point.

We argued earlier that the existence of a BPS state is equivalent to the
existence of a supersymmetric representative in the given homology class,
so a remarkable connection emerges here between existence of special La-
grangian embeddings in Calabi-Yau manifolds and existence of solutions to
the attractor equations [47]. More concretely, in the case at hand, this
connection predicts the existence of a special Lagrangian representative in
homology classes I' which have nonzero minimal |Z(T")|. From the mathe-
matical point of view, this is a rather nontrivial conjecture. But one can
go even further: the degeneracy of the black hole ground state predicted
by the Beckenstein-Hawking entropy formula grows for large Z according
to (3.3.17) as exp[n| Zasr|?]. This degeneracy supposedly is (roughly) equal
to the dimension of the moduli space of the wrapped 3-branes, that is, the
moduli space of special Lagrangian embeddings of the given homology class
[66]. The mathematical consequences of this statement are enormous, as was
realized and worked out by Moore in [47], and further in [67]. It could even
lead to a solution of Hilbert’s twelfth problem [47]. We will not go deeper
into this fascinating but very difficult subject however.

. Z has a zero at a regular point z = 2, in moduli space. Regularity implies
that the holomorphic period Y = fF 2 then must have a zero at z = z,. The
holomorphic equation X (z) = 0 in a regular neighborhood of z,, actually
defines a complex codimension one set of zeros of Z in moduli space. Take
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Figure 3.5: Flow gradient field in the transversal Y-plane close to a regular locus
Y = 0 in moduli space where Z = 0. The gradient vectors do not vanish at the
attractor point.

Y as the coordinate transverse to the zero locus.?? Close to Y = 0, the
attractor flow is approximately given by

U —keVY] (3.3.24)
Y = —keY/|Y], (3.3.25)

where k; and ko are certain positive constants. See fig. 3.5. The approximate
solution for small Y of this system is

argY = const. (3.3.26)
|Y| = k‘3 — k‘4T (3327)
U = —ks+ke|V|?, (3.3.28)

where the k; are again positive constants, whose precise relation to each
other and to k; and k5 is not important here.

We’ve got a problem here: from (3.3.27), it follows that we reach ¥ = 0 at
finite 7, and that beyond this point, we cannot continue the solution! The
flow breaks down; a spherically symmetric BPS solution to the equations

29Here we are assuming Y does not have a double zero in the point under consideration (we
classify such a point as singular). If it does, the analysis and conclusions will change drastically.
See item (3).
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of motion does not exist in this case. Continuing the flow by just keeping
Y = 0 in the interior does not yield a solution of the equations of motion.
Continuing the flow by inverting the sign of the r.h.s. of the attractor flow
equations does not give an acceptable solution either, because it is highly
singular and antigravitating, as discussed earlier. Note that if the metric
component g¥Y has nonvanishing gradient at ¥ = 0 (which is the generic
case), the point under consideration will not even be a stationary point of
V', so, from the effective particle picture, we do not expect it to be a true

attractor point for any solution, BPS or not.

On the other hand, the curvature (and all its derivatives) stays everywhere
finite, so (at least for large charge N) we can trust this low energy analysis.
We are therefore led to conclude that there does not exist a BPS hyper-
multiplet with the given charge in this case (that is, for moduli at infinity

sufficiently close to the ¥ = 0 locus).

Fortunately, this is exactly what we would expect physically. Indeed, if such
a BPS hypermultiplet would exist, we would have a massless charged hyper-
multiplet in a vacuum with Y = 0. This should however give logarithmic
corrections to the dynamics of the U(1) vector multiplet, and in particular
there should be a singular one-loop correction to the moduli space geometry,
as in [68], producing a singularity at ¥ = 0, which would contradict our

initial regularity assumption. So this all fits nicely.

Finally note that these considerations do mnot exclude the existence of an
extremal (¢ = 0) but non-BPS solution to the equations of motion with the
given charge and moduli at spatial infinity (actually, by lowering the ADM
mass of a nonextremal black hole, one eventually expects to end up with an

extremal one, so extremal solutions should generically exist).

3. Z has a zero at a singular or boundary point of moduli space. In this case,
the analysis is much more subtle an depends strongly on the case at hand.

We give three examples here, following and extending [47].

Example 1

Consider a one parameter family of Calabi-Yau manifolds near a ‘large com-

plex structure’ limit?3°

. Denoting the modulus with ¢ and taking the large

complex structure limit to be at Im# — oo, the Kahler potential and metric

at large Im ¢ for this case can be taken to be

e X = (Imt)? (3.3.29)

30The precise geometrical meaning of this is not important at this point. The reader not
familiar with such terminology can follow the example starting from the given expressions for

Kahler potential and periods.
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Figure 3.6: Flow gradient field in the (eV,Imt)-plane for a cycle with vanishing Z
in the large complex structure limit Im¢ — oo.

3 -
gz = Z(Imt) 2, (3.3.30)

There are four independent periods, (asymptotically) proportional to 1,#, 2, ¢>.
Combinations of the first two periods have vanishing central charge in the

limit Im¢ — oo: cat
z=N"91" (3.3.31)
(Im¢)?
Let us take ¢; = 0 for simplicity. The more general case yields qualitatively
the same results, though some exponents etc. in the solutions are different.
The attractor flow equations in this limit are then

U = —qgo/GneY(Imt)=3/? (3.3.32)
i = 2ig/GneY(Imt)~"/? (3.3.33)

(fig. 3.6) with large 7 asymptotics:

eV o~ /A (3.3.34)
t o~ ir)l/? (3.3.35)
This solution has a naked singularity: the curvature diverges at the origin

of spacetime (7 — o00). At a finite radius, the supergravity approximation
breaks down. So in principle, we cannot draw conclusions about the existence
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in the full string theory of a BPS hypermultiplet with the given charge (close
to the large complex structure limit). However, the (physically undesirable)
appearance of a naked singularity for all values of the parameters leads us
rather to believe that such a hypermultiplet does not exist. This would also
be in agreement with physical expectations based on the brane picture and
mirror symmetry. Indeed, a 3-brane wrapped around the cycle considered
here corresponds in the type ITA theory on the mirror Calabi-Yau to a 0-
brane [51].31 A O-brane in a background with 32 supercharges (e.g. a torus
compactification) is in a BPS massive gravity multiplet (256 states). By the
trick discussed at the end of section 3.2.4, we conclude that it should also
give rise to a BPS massive gravity multiplet in our Calabi-Yau background
(8 supercharges). This has 16 states, with a spin 3/2 fermionic oscillator
vacuum. Therefore, we indeed do not expect a valid spherically BPS solution
of the bosonic low energy effective action for this charge (as this would give
a hypermultiplet). It would be interesting to check whether a nonsingular
non-spherically symmetric multiplet of BPS solution can be constructed. We

have not done this.

Example 2

For our second example, we consider a vanishing cycle near a conifold locus
in moduli space. Since the internal Calabi-Yau degenerates at this point,
we cannot necessarily trust the supergravity approximation. However, the
results obtained in this case are interesting, so we will ignore this potential
problem and proceed. For simplicity, we will again consider only one mod-
ulus, z, which we take to be the period of the vanishing cycle. Then the

Ké&hler potential and metric for z — 0 can be taken to be:

1
e® = K+ %|z|2ln |2|” 4+ k2Re 2 (3.3.36)

1
gZZ - 27Tk%

In|z|72, (3.3.37)

where k; and ko are positive constants. This is similar to the geometry
near the singularities 4 = %1 in the Seiberg-Witten plane, discussed in the
previous chapter (see also fig. 2.3). The central charge of N times the

vanishing cycle close to z = 0 is

N

7=,
by

(3.3.38)

31 Actually it is not necessary to go to the mirror for this argument: the 3-brane considered here
is a 3-torus, which as a wrapped brane in a 6-torus compactification would also give the N' = 8
BPS massive gravity multiplet in four dimensions. However, the “trick” part of the argument is
perhaps clearer in the 0-brane picture, and furthermore it is nice to see how the mirror symmetry

conjecture works out fine again.
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Figure 3.7: The potential V (z, Z) for the conifold cycle as a function of z near its
minimum at the conifold point z = 0. The gradient vectors vanish at the attractor
point.

The form of the corresponding potential V (z, Z) near z = 0 is shown in fig.
3.7. The flow gradient field in the z-plane is given in fig. 3.8. The attractor
flow equations in this limit are

: 1
U = —k—\/GNNeU|z| (3.3.39)
1
1
. = 27k /GyNel = —— 3.3.40
‘ TRV EN A 22 (3.3.40)

with solution (approximately for z — 0) given by:

argz = const. (3.3.41)

|z|ln|z| ' = |20|In|z0| ! — whki\/GNNT (3.3.42)
1

U = oI (|2)* In 2|72 = |20)* In 20| 72). (3.3.43)

Again, the flow terminates at finite distance from the origin, namely at

1/7~:7':7'* = |Z0|1n|2’0|_1. (3344)

1
7Tk1\/ GNN

However, this time the flow can be smoothly®? continued beyond this point,

32actually only once continuously differentiable, but this can be interpreted as an artifact of
the two derivative low energy approximation we are using
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Figure 3.8: Flow gradient field for the vanishing conifold cycle in the transversal
z-plane close to the conifold locus z = 0 in moduli space.

just by taking z(7) = 0 and U(r) = U(r) for 7 > 7, (fig. 3.9). Indeed,
U,% — 0 when 7 7 7., as can be seen immediately from the attractor flow
equations. Also, the curvature is easily seen to stay everywhere finite (in
fact arbitrarily small for large N or small zp). Only the higher derivatives of
curvature and modulus diverge close to 7. So strictly speaking, the low en-
ergy approximation breaks down there. Nevertheless, we believe that higher
derivative corrections will not alter qualitatively the conclusions; we expect
those merely to smooth out the solution, e.g. by replacing the constant
“inner” solution by an almost-constant exponentially decreasing one.?3 In
any case, as long as we stick to the low energy approximation, this solution
is perfectly well behaved and physically acceptable. Therefore, we are here
rather led to conclude that such a BPS hypermultiplet indeed exists. Again,
this is in agreement with physical expectations: starting with the work of
Strominger [68], one has argued from various points of view that there should
indeed be a BPS hypermultiplet near the conifold with charge corresponding
to the vanishing cycle.>* It is this hypermultiplet which is held responsible

33Morally speaking, this is analogous to the fact that we do not expect the motion of a falling
piece of inelastic mud to the surface of the earth, to be influenced much by higher derivative
corrections, though its idealized motion definitely has divergent derivative of acceleration at the
‘attractor point’ (the surface of the earth).

34The issue whether the N > 2 states can be bound (i.e. of single particle type) cannot directly
be addressed here. Of course, if there exist an N = 1 state, there will exist an unbound N-particle
state for any N (see also next section), but to check for bound states, one should find out more
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Figure 3.9: The space dependence of the modulus z for the conifold attractor.
Inside a critical radius r = r,, the modulus is constant and equal to its attractor
value z = 0.

for the appearance of the conifold singularity in moduli space (hence in the
low energy dynamics): in the low energy action as given earlier, this hyper-
multiplet is, as all other massive states, integrated out. However, precisely
at the conifold point this hypermultiplet becomes massless and we should no
longer integrate it out: if we still do so, the one loop correction of this hy-
permultiplet produces a (logarithmic) singularity in the low energy effective
action of the other massless fields.

Note that an alternative solution of the equations of motion is obtained by
inverting the signs in the r.h.s. of the attractor flow equations for 7 > 7.
However, again, as discussed earlier, such a solution is very unphysical: it is
antigravitating, has singular curvature at finite radius, and infinite energy —
in stark contrast with the smooth finite energy solution found by stopping
the flow.

‘Conifold transitions’ are not possible either in this case, since this requires
more than one cycle vanishing at the same time [69].

The unphysical ‘inverted flow’ solution has appeared a number of times, in
various guises, in the literature (e.g. [64, 23]), causing quite some confusion.
The finite energy solution was missed because of the fact that the earlier

about the dynamics, e.g. in a low energy soliton moduli space approximation. It has been argued
from the precise form of the loop corrections to the moduli space geometry [68] that N > 2 BPS
bound states do not exist in this case.
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analysis was done in a formalism and with coordinates on moduli space which
precisely become ill defined at the conifold singularity of moduli space. To
get an idea what goes wrong, consider the (nonholomorphic) coordinates

r = TIm(e” %) (3.3.45)
y = Im(e ™izlnz™h), (3.3.46)

where o = arg z(7 = 0). These are (roughly) the natural coordinates arising
in the formalism of [23] as the imaginary parts of a symplectic period basis
in a particular Kahler gauge. The advantage of these coordinates is that
they are harmonic functions on spacetime for BPS solutions: indeed, using
Af(r) ~ 82 f(r) and (3.3.42) we see that trivially Az = Ay = 0. One would
then be tempted to conclude that the solutions are either constant or 1/r
divergent. This would correspond to an ‘inverted flow’ solution. For our
solution with a flow terminating at 1/r = 7., we have x = const. = 0 and
Y~ T — %, but the latter only for r > 1/7.. For r < 1/7,. we have y = 0.
Our solution is smooth (continuously differentiable) when expressed in good
coordinates on moduli space, but not when expressed in the y coordinate,
simply because y is not a good coordinate around the conifold point y = 0!

The proper treatment of the (exterior) conifold attractor flow, and in par-
ticular the fact that the flow terminates, appeared for the first time in [47].
In [21], we observed that the flow could be smoothly continued to the in-
terior, and the physical acceptability of this solution (and its generalization
to weakly gravitating effective Yang-Mills BPS states) was emphasized. Re-
cently, analogous ‘spontaneous cut-off’ solutions have emerged in the context
of Dirac-Born-Infeld brane dynamics [70, 71].

Properties of this and similar solutions will be discussed in detail in chapter
3.

Example 3

As a third example we consider a zero of order 1 + v of Z at a point with
nondegenerate metric, say Z = z'*t7 and ¢.- = 1. Again, starting sufficiently
close to Z = 0 will give only small variation of the metric function U, while
a short calculation, analogous to the above examples, gives for the central
charge itself if v # 1:

12 = (¢ = Dr + |20 ] T3, (3.3.47)

and if y =1:
|Z| = | Zole 7 (3.3.48)
The phase is again constant. For —1 < v < 0 we find a flow which stops at
finite 7 and cannot be continued. These cases also correspond to (divergent)
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maxima of V' in stead of the required minima. For 0 < v < 1 the flow stops
at finite 7 but can be continued as Z = 0 to the interior region. For v > 1,
the flow runs smoothly all the way to 7 = oo. At least for sufficiently small
Zy, none of these solutions is a black hole.

It could be interesting to compare these solutions with the perturbative het-

erotic BPS string states which should correspond to it by heterotic - type IT duality.
This would extend the results in [72].

3.3.4 Multicenter case

The previous discussion is readily extended to the extremal multicenter case with
equal charges®®, by introducing an effective “radial” coordinate

| N
T N;Ti, (3.3.49)

where ¢ runs over the N different centers and 7; is defined as 7 in the previous
discussion, relative to the ith center. Surfaces of equal 7 can be considered as
equipotential surfaces for the multi-source configuration (fig. 3.10). The ansatz
for the metric is the extremal

ds? = =2V dt? 4 e 72V (g2, (3.3.50)
The electromagnetic field is given by superposition and has exactly the same form

as (3.3.3), with w = Y~ w; = N x4 (y
to be functions of 7 only.

\i% dr A dt). The scalar fields are supposed

Since the complete setup is formally the same as for the spherically symmet-
ric case, so are the attractor flow equations. Therefore, everything said about
the (extremal) spherically symmetric case applies to the (extremal equal charge)
multicenter case as well.

It is easy to see that the total force between equal static BPS particles indeed
vanishes. The magnitude of the (repulsive) static electromagnetic force is, from
(3.2.25), given by

5 (121 + 49 0:] 2152 (3.3.51)

35Multicenter solutions with charges corresponding to different elements of H3(X,Z), and
in particular with mutually nonlocal charges (=nonzero intersection product), are much more
difficult to study, and their existence is not clear.
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Figure 3.10: Some surfaces of equal 7 in the 2-center case.

The first term is compensated by gravity, the second one by scalar exchange.

One could also contemplate replacing the function 7 with an arbitrary har-
monic function. However, in order to get nonsingular solutions of the attractor
flow equations, this function should be bounded from below. Therefore all consis-
tent harmonic functions are equivalent to a distribution of equal charge sources.
In particular single center harmonic functions containing spherical harmonics do
not give consistent solutions.

3.3.5 Attractor technology

Here we would like to give some formulas which can be useful for solving the
attractor flow equations (3.3.10) - (3.3.11). The results in this section provide
among other things an intrinsic, K&hler gauge independent formulation of the
formalism developed in [22, 23].

We will put the Newton constant Gx = 1 throughout this section.
Using 9;|Z| = Le®D;Z, with a = arg Z (and D; = 0; + 18;K), we can rewrite
the attractor flow equations as
e = —eVZ (3.3.52)
ezt = VgD 7, (3.3.53)
From this, a straightforward but slightly tedious calculation shows that the central
charge Z' of a charge I satisfies:

d ) _ - _
d—(eUe_’o‘Z') =—-eZ'Z + gD, 7' D; Z] (3.3.54)
-
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and
d

l
Taking the real part of (3.3.54) and the imaginary part of (3.3.55) and using
(3.1.30)-(3.1.31) gives the following nice geometric formulae:

e Ve i7"y = —[-7'Z + ¢g"*D,Z' D} Z]. (3.3.55)

d ; 1
—Re (Ve @7y = ——&®UI" .4 (3.3.56)
dr 2
; 1
ilm(e—Ue—mZ') = —_T'.T. (3.3.57)
dr 2

Since the intersection product is a topological invariant, the second of these equa-
tions can readily be integrated:

Im(e 7" =eV{— %r’ ‘T7+[Im(e Ve ™Z")],=0}. (3.3.58)

This is a very powerful identity, since by choosing for I a basis of 3-cycles 'y,
it gives, provided U is known, the solution of the attractor equations in terms of
coordinates Im (e~#*Z,) on moduli space (where some care has to be taken to
check that the flow does not pass through a singularity where it could stop, as in
some of the examples above). By choosing a (position dependent) normalisation
of Q such that Z is real and K = 2U (this is a choice of Kihler gauge3®), and
writing Zy = eX/2X,, (3.3.58) becomes for I' =Ty and T’ = NAT,:

1
Im X, = —iQAgNE 7+ eY[Im Xa]r—o, (3.3.59)

where Qax = I'j - ' is the intersection matrix. This expression can be compared
with [22, 23].

Note that (3.1.30) implies at a nonsingular®” T' attractor point, we have:
= 1
Im (ZZy) = —EQAENE. (3.3.60)

This equation in principle determines the position of the regular attractor points
in moduli space. It is therefore often called the attractor equation.

3.4 Validity of the D-brane and field theory pic-
tures

To end this chapter, we would like to make some comments on the domain of
validity of the effective field theory (supergravity) and the D-brane pictures of

36Note that this gauge choice is singular at a black hole horizon, where U — —co.
37At a conifold singularity, the gradient term in (3.1.30) does not necessarily vanish.
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the dynamics of nonperturbative states. We will also briefly touch the Maldacena
conjecture and speculate on a possible extension.

The D-brane picture in the sense of Polchinski’s prescription (spacetime de-
fects where strings can end) is in general expected to be a good description of the
physics when the string coupling constant g is sufficiently small such that string
perturbation theory is adequate. In case we have a stack of a large number N of
D-branes, we must have that g/N is small, since the sum over the different branes
makes gN rather than g the effective coupling in brane amplitudes [31], as in the
large N ’t Hooft expansion of field theories.

The low energy field theory picture on the other hand is expected to be a
good description for sufficiently slowly varying fields, which is in general expected
to be the case when the system under consideration is ‘macrosocopic’, i.e. at large
N.

So one would expect the regime where the D-brane picture is valid and the
regime where the field theory picture is valid to be more or less complementary in
general.

These statements are of course rather vague and imprecise. In particular the
meaning of ‘large’ and ‘small’ is not really clear. Let us therefore try to make this
more precise in the case of type IIB Calabi-Yau compactifications.

Massive states limiting the field theory picture

Consider the effective action (3.1.43). In general, in order for a low energy effective
field theory of the massless fields to makes sense, all relevant energy scales have to
be much smaller than the lightest massive states in the full theory which couple to
the massless fields. Higher derivative terms in the effective action are suppressed
by inverse powers of these masses.

Now which of those light massive states can we possibly have in type IIB
string theory compactified on a Calabi-Yau manifold? Candidates are fundamen-
tal (F) strings, D-strings, wrapped D3-branes (either completely around a 3-cycle
or partially around a 2-cycle, producing an effective string in four dimensions),
wrapped NS5- and D5-branes (partially, around a 4-cycle), wrapped (1,0) or (0,1)
D7-branes (partially, around the full Calabi-Yau), and of course also simply excita-
tions of the 10D massless particles in the internal space X (Kaluza-Klein states).?®
Actually it is not entirely clear whether we should include partially wrapped brane
states leading to strings in four dimensions. This is in the spirit of the ‘self-dual

380ne can also consider more generally (p, q) strings and D7-branes, and other bound states,
but it is sufficient to consider the ‘extremes’ (i.e. (1,0) and (0,1)) to single out the lightest ones
(which of those two will be the lightest depends on whether g is larger or smaller than 1).
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strings’ arising in IIB K3 compactifications from partially wrapped 3-branes [73],
used in [66, 74] to count black hole microstates. We don’t know of any reason not
to include such states here as well. Mirror symmetry also supports this point of
view. Indeed, type IIB D-strings living in four dimensional spacetime are mapped
to certain partially wrapped D4-branes in the mirror type ITA theory. It is then
natural to consider arbitrary partially wrapped type IIA D4-branes, which are in
turn mapped back to certain wrapped D3-, D5- and D7-branes in type IIB. On
the other hand, it is not clear that we can simply treat those objects as effective
strings and deduce features of their excitation spectrum accordingly. Nevertheless,
we will do so in the following and see what comes out.

Denote the IIB string coupling constant e® with g. The mass of the low-
est excited F-string states is, in the string frame, of the order of 1/v«a' (where
o/ =273/2p=7/4 ;1/2) ‘hence in the Einstein frame (in which we have been work-
ing), Mg p ~ g1/4/$1_01/4. The Einstein mass of an excited D-string is Mg p1 ~
g’1/4n1_01/4. The mass of the lightest excited (in the 4D effective string sense)
partially wrapped 3-branes is Mg ps ~ kgVXI/ﬁnfolﬂ, where Vx is the volume
of the Calabi-Yau X and k» is a dimensionless factor depending on the Ké&hler
moduli of X. That of a completely wrapped D3-brane is My p3 ~ cVX1/2n1_01,
where ¢ is the modulus of the central charge of the lightest 3-cycle (depending
on the complex structure moduli). For a partially wrapped D5-brane we have
Ms ps ~ k4g1/4VX1/3n1_03/4, where k4 again is a dimensionless factor depend-
ing on the Ké&hler structure moduli, for its NS5 analogon we have Mg ns5 ~
k4g’1/4VX1/3n1_03/4 and for a partially wrapped (1,0) / (0,1) D7-brane Mg p7(1,0) ~
g2V 2kt resp. Ms pro,1) ~ g 12Vx1/2k . Finally the mass of a typical

low Kaluza-Klein excitation in X is Mgg ~ V;l/ﬁ.

Expressed in units where the four dimensional Planck length k4 = mOVX_l/ 2
equals 1, and introducing the dimensionless ratios

1/6 176\ /%
p = VX1/4 - (= (3.4.1)
K10 Foa
V- 1/6
o = ]\;71 =g'4p (3.4.2)
S,F

(which can be considered as the ‘radius’ of X in 10D Planck units resp. F-string
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units), this becomes:

Mgx ~ p* go*
Msp ~ g/ip3 - go 3
Mspr ~ g /1y — gl/253
Msps ~ kop™2 = kag'/?072
Msps ~ kyg'/4p~t = kug'/?0! (3.4.3)
Mg nss ~ kyg 4p' = kyo!
Mg praoy ~ g+/* = g'/?
Mg pro,)y ~ g /2 = g /2
Myps ~ ¢ = c

In 10D Planck units, all this has to be multiplied by Iii(/)4/li4 = p? = g 303,
Note the invariance of the spectrum under g — ¢g~!, which is of course just type
IIB S-duality.?®* We can therefore assume g < 1.

As a warm-up example, we see for instance that for fixed energies in 4D or
10D Planck units, the four dimensional effective field theory description breaks
down when p — oo or ¢ — oo. This is evident, since this limit corresponds to
decompactification. A perhaps more surprising feature is that for fixed Calabi-Yau
moduli (i.e. fixed ks, k4, ¢ and p or o), and again fixed energies in Planck units,
the four dimensional effective field theory description always breaks down in the
weak string coupling limit ¢ — 0, simply because e.g. the fundamental string mass
becomes much lighter than the 4D Planck mass.

The limit ¢ — 0 with fixed ¢ and fixed X moduli

When g — 0 with o and the other compactification moduli fixed, corresponding
to vanishing string coupling with a fixed internal space size compared to the string
scale, the IIB perturbative string states with fixed KK and oscillator excitatition
number (masses proportional Mgk and Mg ) have vanishing mass compared to
the nonperturbative wrapped D-brane states. The bulk dynamics of the fields at
energies finite with respect to the string scale is in this case perfectly well decribed
by IIB string perturbation theory. At energies far below the lowest massive string
state (Mg, r) and the lowest Kaluza-Klein state (Mkk), the (two derivative) low
energy 4D field theory description?® of the bulk fields is moreover perfectly good
as well.

39 Actually, we have assumed for simplicity that the R-R scalar Cp = 0 in deriving our mass
formulas. A nonzero value would make the mass formulas (and S-duality) a bit more complicated,
without altering qualitatively the conclusions however.

4Owhere the action is, since we are in the weak string coupling regime, the 4D string tree
level effective action. This can differ from the dimensionally reduced 10D action by worldsheet
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The description of the dynamics of the nonperturbative states on the other
hand is more subtle. In the limit under consideration, the Compton wavelengths
of the nonperturbative objects become vanishingly small compared to the string
scale Mg };, so they are seen as localized objects from the perturbative string point
of view. Moreover, when g — 0 with fixed D-brane charges, since the string scale
becomes much larger than any other relevant distance scale in the 10D theory,
interactions between different D-branes and backreaction of D-branes on the bulk
fields vanish at any in string units fixed distance from the branes, at least if this
interaction and backreaction fall off with distance.*! Therefore one can set up
a good perturbative description of the nonperturbative states as D-branes repre-
sented as spacetime defects on which strings can end, simply superposed on the
original background, without backreaction. Interactions between the branes and
backreaction on the bulk fields are then taken into account as perturbative cor-
rections. Subsequent terms in the perturbative expansion with increasing number
of string boundary components on the branes become smaller with powers of gV
when o > 1 and powers of 0 3gN when o < 1, where N is the order of magnitude
of the brane charges under consideration. The factor N comes from summing
over the different branes on which the strings can end. The factor o3 can be
understood from the fact that when o is small, the Dirichlet boundary conditions
eliminate for every string boundary component 3 translational degrees of freedom
in X.*2 This factor is also the reason why the four dimensional gravitational back-
reaction of a wrapped 3-brane is independent of o, though its mass compared to
the string scale Mg p grows as o when o is increased.

The stringy (type IIB) perturbative description of these states is therefore
valid as long as

gNo 3 «1foro<1l, gN<lforo>1 (3.4.4)

In particular, this implies that in this regime, the dynamics of N coincident 3-
branes totally wrapped around a certain supersymmetric 3-cycle I', at energies well
below Ms p = go~3/k4, will be given by a certain twisted [75] supersymmetric
U(N) Yang-Mills theory on R x T". For generic cycles ', the KK modes of the fields
on the brane will have energies of the order of the KK modes of the bulk fields
in X,ie Mgg~ oflMS,F, so for energies below this scale as well (automatic if
o is of order 1 or less), the low energy dynamics will actually be this Yang-Mills

instanton corrections ~ e*kZ"Q, corresponding to eucledian string world sheets wrapping non-
trivial 2-cycles in X. Such corrections only affect the hypermultiplet part of the two derivative
low energy effective action, since the instanton factors involve hypermultiplet moduli, and those
are by supersymmetry forbidden to couple to the vectors at the two derivative level [26].
41This is not the case if there are confining interactions present.
42When o is large and the different endpoints are close to each other those degrees of freedom
are eliminated automatically by the tension of the string.
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theory dimensionally reduced*? to the worldline of the corresponsing 4D particle,
that is, a matrix model. The D3-brane worldvolume Yang-Mills coupling constant
is [31] g(23) = 27g, so the coupling constant of the matrix model is, using (3.2.15),

by 1 3

———g9gM 3.4.5
\/i U3|Z| g S,F» ( )

900y = VDsg(s) =

where Z is the central charge of I'. The effective perturbative expansion parameter
for N coincident branes at energy scale E will be g%O)NE*B. If we stay in the low
energy (F < Mg, r) regime, the dynamics of the branes will keep on being described
by the U(N) matrix model even when N is increased such that (3.4.4) is no longer
valid, though the model is effectively strongly coupled now and perturbation theory
can no longer be used.

What about the 4D effective field theory description of these states? Consider
again the case of N coincident totally wrapped BPS 3-branes. As we have seen in
the sections on attractors, the spatial gradient of the dimensionless fields — and
hence the energy scale E — of the corresponding effective field theory solution
scales as N~'. More precisely, as the total field energy My p3 of such a state is
generically of order 1 in 4D Planck units, we have E ~ N~'x;'. As discussed
above, in the limit under consideration, validity of the 4D field theory picture

requires E to be much less than Mg r and Mgx, that is,
gNo > 1foroc<1, gNo *>1foro>1. (3.4.6)

Comparison with (3.4.4) learns that for ¢ < 1, the 4D field theory and string per-
turbative regimes are precisely complementary. For ¢ > 1, there is an additional
‘gap’: this is the regime where 10D field theory is the good description. Note that
for the dynamics of N coincident branes at energies far below Mg r and Mgk,
we have two valid descriptions if (3.4.6) is satisfied and g — 0: 4D effective field
theory and a (strongly coupled) U(N) matrix model. As the relevant energy scale
of this regime of simultaneous validity goes to zero with g compared to the 4D
Planck scale, the relevant effective field excitations (in the generic ¢ ~ 1 case) are
forced to vanish everywhere except infinitesimally close to the horizon, where the
diverging red shift factor allows finite field excitations with arbitrarily low ener-
gies. As the geometry is AdSs x S? there, we thus arrive in this limit at a duality
between low energy field theory on AdS, x S? and a strongly coupled U(N) matrix
model. Similar considerations hold in higher dimensions. This is the celebrated
Maldacena conjecture [7].44

43This ‘reduction’ can be nontrivial, as the embedding geometry of the 3-brane can induce
field twists and additional zeromodes.
44 Actually, precisely in the AdS> case this duality turns out to be much more subtle than in
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The ¢ — 0 case

In this thesis, we will be mainly interested in BPS states produced by totally
wrapped 3-branes with mass My ps very much smaller than the 4D Planck mass,
that is, the ¢ — 0 case. We have already seen the example of a brane wrapped
around a vanishing conifold cycle in section 3.3.3. In chapter 5, we will study
such states in detail. Gravity decouples in this limit, and the states are rigid field
theory states, not black holes.

If g, 0 and the remaining K&hler moduli are kept fixed while sending ¢ — 0,
the lightest states in the spectrum are the totally wrapped 3-branes of mass ~ ¢
in 4D Planck units. Type IIB string perturbation theory has clearly broken down
at the energy scale of these states (however, via heterotic-type II duality, heterotic
perturbation theory can be used at energies sufficiently above this scale, as the
wrapped 3-brane then correspond to weakly coupled perturbative string states in
the heterotic picture; this will be discussed in more detail in chapter 4). The
field theory picture of IV coincident BPS particles on the other hand is valid when
the energy scale of the field variations is much lower than the mass ¢/k4, which
amounts simply to N > 1 when only light charges (M ~ ¢/k4) are considered,
and to ¢N > 1 when generic charges (M ~ 1/k4) are involved.

If one wants to keep type IIB perturbation theory valid in a certain energy
range as well, one should take g down to zero together with ¢, in such way that
moreover g/¢c — 0. Then perturbation theory is valid for energies finite with
respect to the string scale. Note that this energy range necessarily goes to zero
with respect to the mass of the 3-brane states. Taking ¢ = 1 for simplicity,
the condition for perturbation theory to be valid in the presence of N coincident
wrapped D3-branes is now

gN <1, (3.4.7)

while the condition for the field theory picture to be valid becomes
g
EN > 1. (3.4.8)

In their respective regimes, the perturbative description yields a U(N) matrix
model for the dynamics while the field theory description can be truncated to two
derivatives, provided the energy scale E is far below the lightest massive states,
ie.

E< L =90y ps. (3.4.9)
K4 C

higher dimensions [76]. This is related to the fact that unlike their noncompact higher dimen-
sional generalisations, the 4D BPS particles have also arbitrarily low energy modes corresponding
to slow translational motion away from each other.
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Note that (3.4.7) and (3.4.9) can easily be satisfied simultaneously. At energy
scales given by (3.4.9) the dynamics of rigid QFT states in the large N limit can
thus be described by a weakly coupled matrix model. This seems to be a new kind
of Maldacena-like correspondence, giving a holographic description of a rigid quan-
tum field theory (at least at low energies). Interestingly, the Atiyah-Donaldson-
Drinfeld-Hitchin-Manin-Nahm-Nakajima construction of the moduli space metric
of N (nonabelian nonsupersymmetric SU(2) Yang-Mills) monopoles [77] is based
precisely on a (purely mathematical) correspondence with a certain (bosonic)
U(N) matrix system, which is of the form one would expect for the correspondence
we propose here! We believe this deserves further study.

Other limits

The limits considered in the previous discussion were adapted to type IIB F-
string perturbation theory, most naturally expressed in terms of the radius o of X
compared to the F-string scale. From (3.4.3), one sees that S-duality is manifest
when all masses are expressed in terms of p, the radius of X expressed in 10D
(Einstein frame) Planck units. A natural limit to consider in these coordinates is
g — 0 with fixed p. Assuming partially wrapped D-branes behaving effectively
like strings in four dimensions indeed exist, (3.4.3) shows that in this limit, type
IIB string perturbation theory breaks down, since the lightest massive states in
the spectrum are now partially wrapped (1,0) 7-branes rather than strings. Low
energy effective field theory will be valid at energies far below this mass scale,
g'/?k;'. However, even at zero energy, the hypermultiplet*® action will have
instanton corrections which — unlike in the fixed o case — do not vanish when g —
0: euclidean NS5, D5, D3, D1, F and D(-1) branes (and their (p, q) combinations)
can wrap X, a 4-cycle, a 2-cycle or a point. Their contributions are weighted
roughly with the following e~ factors:

D(-1): e /s
F: e—ke0’ = e ker®g"?
D1: e k2079 = gkap®gT!/?
D3 - okl fg  _ okt (3.4.10)
D5: e="/9 = e
NS5 : A/ AT A

As it should, in the ¢ — 0, o fixed limit where string perturbation theory is
supposed to be valid, the nonperturbative instanton corrections are exponentially

45 As the nonrenormalization theorem for the two derivative low energy effctive action of the
vector multiplet action does not rely on perturbation theory, the exactness of the classical vector
multiplet action continues to hold in this regime as well.
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small. The only surviving instanton contributions are those from euclidean F-
strings wrapped around nontrivial 2-cycles , which are included in perturbation
theory. They become arbitrarily small in the large radius limit ¢ — oc. When
on the other hand p is fixed while ¢ — 0, instanton corrections from eucledian
wrapped F-strings, D5-branes and possibly (for small p) D3-branes are important.

It is not clear if there exists a weakly coupled dual formulation of the theory
in this regime.

Another interesting limit is the one arising from the M-theory matrix model,
mirrored to type IIB [78], which amounts to sending g and o to zero with o ~ g%/3.
The relevant energy scale here is the energy of states with finite eleven dimensional
light cone energy in eleven dimensional Planck units, Epgxps = gl/3MF. The
field theory breaks down at this scale in the limit under consideration, due to e.g.
partially wrapped D5-branes. Indeed, physics is (supposedly) not described by a
field theory in this regime, but by a U (N) matrix model describing the dynamics of
N 4D particles obtained by wrapping a 3-brane around a certain supersymmetric
T3 3-cycle in X.
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Chapter 4

Quantum Yang-Mills +
gravity from IIB strings

Till about 1995 [48], type II string theories were considered to be incapable of
describing phenomenologically interesting nonabelian gauge theories, since their
bulk perturbative spectrum can only carry a very limitited range of gauge groups
— too limited for the standard model, as it turns out. For example, as we have
seen in detail in chapter 3, type IIB compactified on a Calabi-Yau manifold has
typically only a U (1)’12’1 abelian gauge theory sector. Heterotic and type I theories
on the other hand support big nonabelian gauge groups, and therefore those were
considered to be the only possibly phenomenologically relevant theories.

This turned out to be completely wrong. With the advent of string dualities
and D-branes, probing nonperturbative aspects of string theory, it became clear
that actually, type II theories even do better: they do describe nonabelian gauge
theories, and often even their exact (low energy) quantum dynamics. The first
indications of this remarkable fact emerged [79] from Heterotic - type II dual-
ity [80, 81]: evidence accumulated suggesting that (nonperturbatively completed)
heterotic string theory compactified on T2 x K3 is equivalent to certain ITA (and
hence IIB by mirror symmetry) Calabi-Yau compactifications. Since the former
theory has nonabelian vectors, so should the latter. The obvious question is then
where the nonabelian vectors are hiding in type II theory. The answer turned
out to be beautifully simple: those are precisely the states obtained by wrapping
D-branes about nontrivial cycles in the compactification manifold! [55]. Once this
was realised, a magical window was opened to the derivation of quantum field
theory results from string theory. For example, this insight can be used to obtain

91
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Figure 4.1: A sketch of a Calabi-Yau manifold which, at low energies in a compact-
ification of type II string theory, gives rise to a (nonabelian) gauge theory weakly
coupled to gravity. Branes wrapped around a generic cycle T will have typically
Planck scale masses. However, after suitable tuning of the moduli, some cycles
can become much lighter than the Planck mass.

the exact quantum two derivative low energy effective action for a plethora of four
dimensional N = 2 field theories [11, 12, 13, 14] (a good review can be found
in [15]). Indeed, by tuning the compactification moduli such that the masses of
a number of the branes corresponding to nonabelian vectors becomes very small
compared to the Planck mass (fig. 4.1), one expects their low energy dynamics to
be governed by an A" = 2 nonabelian Yang-Mills theory (possibly with additional
matter).

Now we only get an effective action for the massless, unbroken U(1)" vectors
from string theory, but at energies well below the mass of the wrapped branes, this
is sufficient. On the other hand, as we have seen in chapter 3, the straightforwardly
obtained 4D two derivative low energy effective action of type IIB string theory
compactified on a Calabi-Yau manifold, does not receive any quantum corrections.
So if we manage to identify the (nonabelian) quantum field theory governing the
dynamics of the light branes, we have obtained the exact quantum two derivative
low energy effective action for the massless fields in this theory!

The price we have to pay for exact quantum results is the restriction to low
energies. Indeed, as discussed in chapter 2, perturbative string theory, and hence
the effective actions extracted from it, breaks down at energies of states not in
the perturbative spectrum. Usually these states have masses of the order of the
Planck mass, but precisely in the case at hand, they are much lower, since the
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nonperturbative wrapped D-brane states have to provide the gauge particles. So
there is really no hope to extend these exact results in the perturbative type II
picture to energies higher than the lightest gauge particle masses, not even in
principle. (However, this is precisely where the perturbative heterotic picture
takes over!)

In many cases, the procedure outlined above reduces the local special geom-
etry of the Calabi-Yau moduli space to the rigid special geometry of the mod-
uli space of a certain class of Riemann surfaces, reproducing and extending the
Seiberg-Witten solution of N = 2 quantum Yang-Mills theory. Furthermore, many
features of quantum field theory have a beautiful geometrical interpretation in this
framework, and this provides quite elegant solutions to problems which would be
hard to tackle with ordinary field theory techniques, like for example the existence
and stability of BPS states [12, 15, 16] or confinement [82].

Note that such a reduction from local to rigid is, by our discussion in chapter
2, necessary if we want to extract rigid quantum field theory results from string
theory. Decoupling gravity is tantamount to going to a rigid limit of special
geometry. This limit will therefore play a central role in this chapter.

A very large class of N = 2,d = 4 quantum field theories (and even more
exotic theories) can be “engineered” and solved geometrically in this way. The
usual procedure [13, 14] is to find a local ITA model which in the rigid limit
produces the field theory to be solved; to map this ITA theory to an equivalent 1TB
theory using local mirror symmetry; and finally to solve this IIB theory exactly
(in the low energy limit) using classical geometry. One argues that the restriction
to local models and local mirror symmetry — where “local” means that one only
considers a certain small region of the Calabi-Yau manifold — is allowed roughly
because the relevant (light brane) degrees of freedom are all localized well inside
that region. The drawback of such strictly local considerations is that one cannot
see directly how the rigid limit is obtained in the low energy string theory, and,
more important, that one looses all information about the coupling of the gauge
theory to gravity and the rest of the ‘ambient string theory’. In the literature, the
focus has consequently been almost entirely on the decoupled rigid field theory
aspects of this construction.

We will directly work in the type IIB theory, without assuming a priori that
we can restrict ourselves to local considerations. The reduction of local to rigid
special geometry will be demonstrated explicitly. This will allow us to derive
the lowest order coupling of the effective quantum field theory to gravity and the
other remaining string theory degrees of freedom, which, as we will show, has a
universal form. Some interesting physics will be derived from this as well, like the
gravitational backreaction of quantum fluctuations of the gauge theory, and the
dynamics of the dynamical dynamically generated scale.
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Apart from the ‘geometric engineering’ strategy discussed above, there are
several other methods to extract nonperturbative quantum field theory results
from string theory [10, 7]. Unlike the bulk spacetime approach of geometrical
engineering, these alternatives all have as starting point the realization of gauge
theories on (multiple) D-brane world volumes. In [10], one considers various em-
beddings of ‘large’ branes into (possibly compactified) ten dimensional spacetime,
where time together with three noncompact spatial directions of the brane form
the four dimensional spacetime on which the quantum field theory under study is
defined. By making use of various properties of M-theory and/or brane dynamics,
one derives the low energy quantum gauge theory dynamics in a fairly straight-
forward and elegant way. In [7], an exact equivalence is conjectured between four
dimensional A" = 4 large N SU(N) Yang-Mills theory and type IIB string theory
on AdSs x S® with N units of Fs-flux. The string perturbative expansion cor-
responds to a certain 1/N expansion of the Yang-Mills theory. This remarkable
correspondence makes it even possible to go beyond the low energy approximation
of the quantum Yang-Mills theory.

Though these alternative approaches are often more powerful, or at least
simpler, than the approach we will follow, they are not very useful for our purposes,
since nothing can be learned from them about the interplay between Yang-Mills
theory and gravity and other stringy degrees of freedom. This is because brane
worldvolume theories never contain gravity. From the point of view of physics, this
is the main advantage of our approach (and approaches based on bulk spacetime
compactifications in general).

This chapter is organized as follows. We first discuss the geometric structures
needed to get nonabelian Yang-Mills theories in four dimensions. We will argue
that Calabi-Yau manifolds which are locally of ‘near ALE fibration’ form give rise
at low energies to a V' = 2 Yang-Mills theory weakly coupled to gravity. Next we
consider this weak gravity limit and derive its universal form. Finally, we comment
on the interpretation of the low energy effective theory thus obtained, including
the effects of gravity, and compare with the dual heterotic picture. To illustrate
and clarify the general results, we conclude this chapter with the detailed analysis
of an explicit example. This example inspired the general arguments, and if the
latter would get too obscure to the reader at a certain point, it could be helpful
to have a look at the example first.

In the next chapter, we will use these results to discuss BPS states, and in
particular the attractor equations, in the weak gravity limit.
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Figure 4.2: The compactification T2 x K3. A 3-cycle can be constructed as a
product of a K3 2-cycle o and a torus 1-cycle 7.

4.1 Near ALE fibrations and the light BPS spec-
trum

4.1.1 Vector branes

From the previous discussion and chapter 3, it follows that we have to look for
Calabi-Yau manifolds with 3-cycles which, by wrapping 3-branes around them,
give rise to light massive BPS vector multiplets in four dimensions. To find out
what kind of 3-cycles produces vector multiplets, we are going to use the trick
explained in chapter 3 (section 3.2.4). Thus, let us first try to find out which
cycles produce a vector multiplet in an A" = 4 compactification.! To get N' =4 in
four dimensions by compactification of type IIB string theory in the way described
in chapter 3, we have to take the compact manifold to be T? x K3 (fig. 4.2). Since
K3 has no nontrivial odd dimensional cycles, all nontrivial 3-cycles in T2 x K3
have to be the product of a torus 1-cycle v and a K3 2-cycle 0. Denoting the
embedding of o in the K3 by f,, the conditions (3.2.4) and (3.2.5) to have a

LA massive BPS A/ = 4 vector multiplet has 16 states, with spin content (0%, %4, 1).
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supersymmetric 3-cycle become

fodks = 0 (4.1.1)
arg frQlxs = « = const. (4.1.2)

Here Qg3 and Jg3 = igmnadz™ A dzZ™ are the the holomorphic 2-form resp. Kéahler
form on K3. By a suitable choice of the phase of Qk3, we can take a = 0. To
get better insight in the meaning of these conditions, let us recall some basic
facts about K3 geometry (for a review, see [43]). A K3 manifold (defined as the
up to diffeomorphisms unique two dimensional Calabi-Yau manifold) has actually
3 independent, anticommuting, covariant constant complex structures J1, J2, J3-
Denote the associated 2-forms by J;, that is, J; u» = gu,Ji. A choice of complex
structure specifies the K&hler form Jx3 and the holomorphic 2-form Qg3 in terms
of these, for example

Jrz =Ji; Qs = Js +iJ3, (413)

or any other choice corresponding to a rotation of the .J;.2 Now let us go back to
our original K'3. There we already assumed a certain choice of complex structure,
but we can also consider another (rotated) one, defined by specifying (for o = 0)

Jis =ReQxz; Qs =ImQxs — iJks. (4.1.4)

In the primed complex structure, the condition for a supersymmetric cycle thus
becomes simply
[iQys =0. (4.1.5)

If we choose complex coordinates (z{,z5) compatible with the primed complex
structure and describe o locally by writing 2} as a function of z{ and z{, (4.1.5)
0z,
82? =
duces to holomorphicity of the embedding of ¢ with respect to the primed complex
structure.

immediately gives 0. So the condition for a supersymmetric cycle simply re-

Now, in contrast to special Lagrangian embeddings of 3-cycles in Calabi-Yau
3-folds, holomorphic embeddings of 2-cycles in K3 are extensively studied and
very well understood in the mathematics literature. A mathematical result [83]
which is very important for us is that a K3 2-homology class with self-intersection
29 —2 (g > 0) has a g (complex) parameter family of holomorphic representatives
of genus ¢g.> The area of these curves is minimal in the given homology class and

2Note that for any Kahler form .J, we have (by a short calculation) st JNJ = 8Vks.
Therefore (4.1.3) implies for a given K3 volume Vi3 a choice of normalisation (modulo phase)
of QK3: fﬂ /\Q = 16VK3

3This implies that the 2-brane moduli space has complex dimension 2g: ¢ from the embedding
deformations, and ¢ from the flat U(1) brane worldvolume gauge field deformations. Such brane

ground state degeneracies can be shown to reproduce exactly the Bekenstein-Hawking entropy
formula for black holes [74]!
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A, = /JK3 |/QK3| (4.1.6)

In particular, for cycles with self-intersection —2, we have a unique holomorphic
representative which is a minimal area sphere. One can also show that the volume
of cycles with g > 1 is actually bounded from below on K3 moduli space (with
lower bound proportional to /g [74]). Since we are looking for branes which can
be made aribtrary light, this leaves us with the g = 0 cases as candidates for
branes representing gauge particles.

given by*

Does such a 3-cycle give rise to a N/ = 4 vector multiplet in four dimensions?
The easiest way to see this is to perform a T-dualtity on the 72 in the direction
of ~. This maps IIB to ITA and our 3-brane to the 2-brane given by o, but leaves
the physics (and in particular the type of multiplet which our brane gives in four
dimensions) invariant. Let us first consider the theory as ITA compactified to six
dimensions on K 3. This has /' = (1,1) supersymmetry in six dimensions. Since
for a fixed position in the 6D spacetime, ¢ has a unique supersymmetric repre-
sentative, the 2-brane has a unique (zero mode) fermionic oscillator ground state
(where the fermionic oscillator creation and annihilation operators are composed
of the supersymmetries broken by the brane, cf. chapter 3). Therefore this ground
state (or ‘vacuum’) must be in the trivial representation of the SO(4) C SO(1,5)
little group. Consequently, the six dimensional N = (1, 1) supersymmetry multi-
plet of 16 = 2% states built on this ground state is a (6D) (massive BPS) vector
multiplet. When we compactify further on T2, this 6D vector multiplet trivially
reduces to a 4D N = 4 (massive BPS) vector multiplet, which is precisely what
we were looking for!

All in all, we conclude that the light four dimensional A" = 4 vector multiplets
are produced in type IIB compactified on T2 x K3 by 3-branes wrapped around
the product of a T2 1-cycle and a K3 2-cycle with self-intersection —2 (which is a
minimal area sphere).

Now what about N = 2 compactifications? How can we get our light vector
multiplets there? We follow the reasoning outlined in chapter 3 (section 3.2.4).
We transform our N = 4 T? x K3 compactification to an N' = 2 compactification
by changing the geometry away from a set of N' = 4 vector 3-branes v x o;. This
can be done for example by making the moduli of K3 position dependent on T2,
replacing the direct product by a K3 fibration. We can furthermore change the
basis B of the fibration away from v to e.g. a sphere or a higher genus Riemann
surface, or change the K3 geometry away from the o; to another 2-fold K (fig.

4With a more general normalisation of €, the right hand side is replaced by
1/2 f QKS‘/IQ/\Q 1/2
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Figure 4.3: We break A/ = 4 supersymmetry to A = 2 by deforming the T2 x K3
direct product geometry to a (Calabi-Yau) fibration geometry with fiber K and
base B.

4.3). Of course, the resulting manifold should be Calabi-Yau in order to have
an A/ = 2 compactification. We furthermore take care that our 3-cycles remain
nontrivial and that the geometry in their neighbourhood does not change too
much; let’s say we assume that the geometry in a neighborhood of the 3-cycles can
be continuously deformed to the original product geometry in this neighborhood,
and that we take the deformation parameters sufficiently small, such that we still
have a supersymmetric representative of topology S' x S2 for each of our 3-cycles.
Thus at least some of the 16 BPS states in the A' = 4 multiplet will survive the
change of compactification geometry. Not all however, since the holonomy group
of the compactification manifold has been enlarged from SU(2) to SU(3), and
therefore some of the states (which are defined by annihilation/creation operators
composed of the 16 supercharges invariant under the SU(2), but not necessarily
the SU(3) holonomy) will leave the multiplet. As argued in section 3.2.4, it is not
guaranteed that e.g. the original fermionic osillator ground state remains in the
multiplet, but certainly the highest spin state of the multiplet does, that is, the
vector. So we are again left with at least an A" = 2 massive BPS vector multiplet!

A massive BPS N = 2 vector multiplet has 8 states. The fermionic oscillator
ground state is a spin % doublet. In the context of the above argument, this doublet
corresponds to two states of the original 16 states in the A/ = 4 multiplet which
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remain invariant in passing from SU(2) to SU(3) holonomy, and which are anni-
hilated by the annihilation operators formed with the A" = 2 supercharges. Note
that this ground state degeneracy is not in contradiction with our earlier assertion
that a unique supersymmetric representative gives a spin 0 fermionic oscillator
ground state: the representative is not unique here, since a 3-brane with topology
S1 x 82 has at least one real modulus corresponding to turning on a flat U (1) brane
worldvolume gauge field along the S component +, and one corresponding to em-
bedding deformation of the brane [51]. The deformations can be thought of as a
shift of 7 in the base B of the fibration. A nontrivial brane moduli space indeed
typically gives rise to such a multiplet of fermionic oscillator ground states (with
respect to the fermionic creation/annihilation operators made from the N’ = 2
susy generators), but a direct computation of this requires a detailed analysis of
supersymmetric quantum mechanics on the moduli space (analogous to monopole
moduli space analysis). From general considerations, we expect however that in
a background with 8 unbroken supercharges (as is the case here), the number of
fermionic oscillator ground states is equal to the number of holomorphic forms on
moduli space (satisfying certain boundary conditions if there is a boundary). If
we take our base manifold B to be a sphere, the moduli space will be one complex
dimensional and topologically a cilinder, so indeed we expect no more than two
harmonic forms (the constant function and a holomorphic one form). Therefore,
in this case®, we expect precisely one vector multiplet for every 3-cycle of the kind
described above.

This vector multiplet can be made arbitrarily light by tuning the moduli such
that the 2-cycles o; in K remain arbitrarily small in a neighborhood of v in the
base B. What does K look like in the neighborhood of these almost vanishing
spheres? Consider first the case where we have just one sphere. Then in the limit
of a zero size sphere, we have an A; singularity [84]. Any complex deformation
of an A; singularity which is locally Calabi-Yau is locally given by the following
equation in C3:

w? +y° + 2% = u, (4.1.7)

where u is the deformation parameter and z,y,w are coordinates on C*. This
space is an (A4;) ALE (Asymptotically Locally Euclidean) space. The 2-sphere is
given by the intersection with Im [u~'/?(z,y, w)] = 0. Taking the natural choices
0= % and J = i(dx A dZ + dy A dj + dw A dw) , it is easy to see that this
representant is also the supersymmetric one. Its area is proportional to |u|.

If we have more spheres, the limiting singularity and the local geometry de-

5Tf B is a torus with K3 fibre independent of the base, we get an extra A” = 2 hypermultiplet,
as this is simply the N' = 4 case. The correspondence of states with holomorphic forms does not
longer hold because of the enlarged number of supersymmetries. We have not analyzed other
cases.
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Figure 4.4: The deformed D, (SO(8)) singularity has a basis of four vanishing
spheres intersecting each other as indicated.

pend on the way those spheres intersect. Mathematicians discovered a beautiful
correspondence between singularities and Lie algebras [84]. In this correspondence,
nontrivial spheres in the deformed singularity are identified with Lie algebra roots,
and sphere intersections with (minus) the inner product of the roots.® Correspond-
ing to the set of positive roots, there is a set of ‘postive spheres’ in terms of which
all other spheres can be expressed (as linear combination in homology) with only
negative or only positive coefficients. The possible intersections, hence the possi-
ble singularities, can be encoded by Dynkin diagrams: a dot indicates a sphere,
and each line connecting two dots indicates an intersection. Fig. 4.4 shows as an
example the Dy (SO(8)) case. In the cases which we are considering (singulari-
ties appearing by collapsing spheres in K3 ), all spheres have self-intersection —2
and mutual intersections 0 or 1. Therefore the corresponding Lie algebra will be
simply laced. Actually, as it turns out, it will be of A-D-E type (such singularities
are called simple [84]). For a singularity of type S, the local geometry is given by
complex deformations of Wg = 0, where

Wa, = w?+y?+a"! (4.1.8)
Wp, = w®+y’z+zh! (4.1.9)
Wg, = w’+y°+2* (4.1.10)
Wg, = w’+y°+y2® (4.1.11)

6Note that, as it should for this correspondence to make sense, the set of spheres is indeed only
a subset of the total integer homology group: for a homology class to have a (supersymmetric)
sphere representative, its self-intersection has to be -2 (at least in the cases relevant to us, by
the result stated under (4.1.6)).
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Figure 4.5: A 2-sphere can be constructed as a circle fibration over an open path,
with vanishing circle fibres at the endpoints.

Wg, = w?+y®+2°. (4.1.12)

It is sufficient to consider deformations up to polynomial orders strictly lower than
0.Ws (2 = w,y, z) since higher order deformations can locally be absorbed in a
coordinate transformation. For example, the A, | deformations are

w2—|—y2+$n+Un—2$n72+"'+U1$+U0 =0. (4.1.13)

The 2-cycles in this space can be constructed as follows. First note that the
space defined by (4.1.13) at fixed z, consists of 2 copies of the complex plane
connected with a throat (so this space has cylinder topology). The nontrivial 1-
cycle around the throat vanishes when P(z) = 2" +U,_oz™ 2+---+Uz+Uy = 0.
So by transporting this nontrivial 1-cycle along a path in the z-plane running from
one zero z; to another zero z; of P(z), we obtain a 2-cycle o;; with S? topology
(fig. 4.5). We can carry out this construction for all n(n — 1) oriented pairs of
zeros of P(x), so we expect to find n(n — 1) different oriented minimal 2-spheres,
of which n — 1 are also homologically independent. Note also that

Oij - Okt = 0t + Ojk — dik — Oji- (4.1.14)

In general [84], the number rg of linearly independent homology classes in the
space given by Wg = 0 equals the rank of the corresponding Lie algebra S, e.g.
r4, = k. This is equal to the number of deformation moduli (one can consider the
periods of a basis of 2-cycles to be the moduli). The number of (supersymmetric)
spheres, counting separately opposite orientations, equals the number of roots of
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the corresponding Lie algebra, i.e. the dimension of the adjoint representation
minus rg.

An interesting property of the nontrivial 2-spheres of the space given by Wy is
that they are permuted by Weyl reflections of the Lie algebra S under monodromies
in the deformation moduli space [84]. Indeed, by the Picard-Lefschetz formula, a
2-cycle «a transforms as follows under a monodromy about a locus in moduli space
where the two-sphere o; vanishes:

a—a+o;-a. (4.1.15)

Consequently, the 3-brane states |¢) constructed from the 2-cycles o; will be only
physically distinguishable up to Weyl transformations. Since Weyl transformations
are precisely the residual gauge transformations which one has after spontaneous
breaking of the gauge symmetry, the nonabelian gauge theory supposedly describ-
ing the dynamics of the (massive) vector multiplets corresponding to the |i) must
have a gauge group with Lie algebra S. The massless vector multiplets corre-
sponding to the unbroken U(1)"S gauge group (which is generated by the Cartan
subalgebra) are the vector multiplets associated to the deformation moduli (cf.
chapter 3). Note also that the results of chapter 3 imply that the massive vector
multiplet states |i) have precisely the right charges under this unbroken U(1)"s
which one would expect for a gauge group with Lie algebra S. To see this, choose
the symplectic basis (A”, Br) of 3-cycles such that a subset of the A-cycles are
given by A® = v x o; (by this we mean that A’ is a fibration over the nontriv-
ial 1-cycle 7 in the base B, with fibre 0;). From the discussion around (3.2.21),
it follows that the vector multiplets corresponding to 3-branes wrapped around
v x n'o; have U(1) charge n* w.r.t. the massless vector A/, .

Thus we arrive at the following picture for Calabi-Yau compactifications of
type IIB string theory. Suppose we have a Calabi-Yau X which locally can be
continuously deformed to a product of a cylinder and an S type ALE space. Then
the 3-brane states, obtained by wrapping the brane on the nontrivial cylinder 1-
cycle and the ALE 2-spheres (deformed to X,7) together with the massless vector
multiplets from the perturbative string spectrum, fill out a nonabelian vector mul-
tiplet of the Lie algebra S. This vector multiplet can be made arbitrarily light by
shrinking the ALE 2-spheres. Therefore, when the spheres are small, we expect
the dynamics of this vector multiplet, at energies much smaller than the Planck
scale, to be given by an N = 2 Yang-Mills theory (possibly with matter coming
from other 3-branes in X') with gauge group algebra S, weakly coupled to gravity.
In the limit of vanishing 2-spheres, gravity decouples completely from the vec-
tor dynamics. In particular, since the two derivative low energy effective action

7"We assume the deformation sufficiently small such that the supersymmetric representative
exists throughout the deformation.
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(3.1.43) of the massless vector multiplets in type IIB compactified on a Calabi-Yau
does not receive quantum corrections (cf. chapter 3), we expect to reproduce the
Seiberg-Witten solution for the low energy effective action of quantum N = 2
Yang-Mills theory. This will indeed turn out to be the case. Moreover, we will be
be able to extend their result by deriving the coupling of this theory to gravity.
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Figure 4.6: Construction of a nontrivial 3-sphere in X. The different elements are
explained in the text.

Figure 4.7: Distribution over the base B of the points where a 2-sphere in the fiber
vanishes. The base manifold B, locally a cylinder, is represented as the punctured
complex plane, with v mapped to the unit circle. The 2-sphere o; (here i = 1,2, 3)
vanishes in precisely 2 points, P(c;) and P’(0;), one inside and one outside +.
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4.1.2 Hyper branes

In general, the nontrivial fibration structure of our Calabi-Yau manifold X, as
opposed to the trivial direct product structure of the A' = 4 T? x K3 compacti-
fication, yields new nontrivial 3-cycles, and therefore new massive charged (BPS)
particles in the spectrum. Typically, this goes as follows. Because of the non-
trivial dependence of the fibre K on the position in the base B, some nontrivial
2-cycles o in K will vanish at one or more points P;(¢) in the base. One can then
construct a 3-cycle in X as a fibration with fiber o over a path 7 in B starting
and ending on elements of {P;};, such that the fibre o vanishes at the endpoints
(fig. 4.6). If o has the topology of a 2-sphere, the resulting 3-cycle will have S®
topology (this is analogous to the construction of the S? in fig. 4.5). Assuming
there exists a supersymmetric representative for this 3-cycle, we thus find another
N = 2 BPS multiplet. Now since supersymmetric deformations of 3-cycles on
Calabi-Yau manifolds are in one to one correspondence with harmonic 3-forms on
the brane worldvolume [51], the supersymmetric embedding of such a brane with
S3 topology is unique. By the same reasoning as used in chapter 3, section 3.2.4,
and in this chapter in the N/ = 4 case, we thus expect a unique N = 2 fermionic
oscillator vacuum in four dimensions, which has necessarily spin 0 (since it should
support a representation of the little group SO(3)). Consequently, it is in a half-
hypermultiplet. The conjugate half-hypermultiplet is obtained by reversing the
orientation of the brane.

Generically, if we tune the moduli of X such that the S! x S? vectormultiplet
branes become light, also some S? hypermultiplet branes will become light, namely
(at least) those constructed with the vanishing (ALE) 2-spheres in K (and a finite
path 7 in B). So the hypermultiplet content of the four dimensional field theory
describing the light BPS states will be determined by the dependence of the local
ALE (i.e. the singularity deformation parameters) on the base B.

For concreteness, suppose we want to obtain pure SU(n) A" = 2 Yang-Mills.

Then we should have the following properties of the hypermultiplet spectrum:

1. From semiclassical considerations, it is known that at weak but nonzero cou-
pling, there are BPS hypermultiplets with nonzero magnetic charge, namely
the monopole and dyon hypermultiplets.

2. By definition, there are no purely electrically charged hypermultiplets.
Translated to the brane picture of the spectrum, this means:

1. There should be some light S® branes, and so, by the above construction,
some points Pj(o;) in B where an ALE 2-sphere o; vanishes.
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2. For a given o3, the Pj(o;) should be distributed such that necessarily, the
interconnecting paths 7 intersect the path v (which was the base for the
vector multiplet 3-cycles), since no intersection means no magnetic charge.
In other words, there should be precisely one zero of ¢; at both sides of
(fig. 4.7), and there should be no other nontrivial 3-spheres except those
constructed from a path interconnecting those pairs of zeros.

We already know that in order to have an SU(n) vector multiplet, the local
ALE fibration should have an A,,_; fibre. The dependence of the fibre on the base
points is given by specifying the U; as (analytic) functions of a coordinate ¢ on
the base. We choose the coordinate ¢ such that the local cylinder structure of B
is represented as the punctured (-plane, and the nontrivial 1-cycle wrapping the
cylinder is given by the unit circle || = 1. From the discussion below (4.1.13),
it follows that the points in the base where an ALE 2-sphere degenerates are the
zeros of the discriminant A(u(¢)) of P(z) = 2™ + Up_2()z" 2 + -+ + Ui ()z +
Uo(¢), where two zeros of P(z) coincide. From elementary considerations about
polynomial zeros, one can see that the only possibility to satisfy the above two
requirements to have a pure N' = 2 Yang-Mills spectrum in this case, is to have
all U;(¢) = u; independent of ¢, except Up((), which should be given by

Uo(¢) = g(C+%)+uO, (4.1.16)

where b(# 0) and ug are constants. The constant b can be put to 1 by a suitable
rescaling of coordinates and moduli.

Indeed, the symmetry ¢ — 1/ guarantees a pairing of zeros on the two sides
of 7y (the unit circle |¢| = 1), and with the above ¢ dependence of the U;, there are
precisely n — 1 homologically independent 2-spheres in the ALE fibre which vanish
each at a point inside the unit circle. (fig. 4.7 shows a typical n = 4 configuration).
Higher powers of ¢ or {-dependence of the U; with ¢ > 1 would introduce more
than n — 1 zeros of the discriminant on one side of the unit circle, with (since the
dimension of the ALE 2-homology is n — 1) necessarily some of the corresponding
2-cycles homologically dependent on the others, which would make it possible to
construct S® 3 — cycles not intersecting the unit circle.

With this choice of (-dependence, there are n — 1 homologically independent
53 3-cycles, precisely as many as there are S' x S? 3-cycles. Together they form a
set of 2(n—1) independent 3-cycles with nondegenerate intersection matrix (which
can be put in standard symplectic form after suitable recombination of the basis
elements), and they can be taken to form part of a basis of 3-cycles of the full
Calabi-Yau.
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This ALE fibration can be written in nonsingular polynomial form as
W =C?+w? +a2" +-+up) + b2 +1) =0. (4.1.17)

Considering this as a local approximation for an algebraic Calabi-Yau manifold,
the unique holomorphic 3-form on this manifold is (in the patch w # 0) given by
yACANde Ndy v dC dx A dy

where v/ is an arbitrary normalisation factor. Note that sending b to zero in
(4.1.16) corresponds to the deformation to the trivial direct product fibration con-
sidered in section 4.1.1. The dyon hypermultiplets become infinitely massive in the
limit b — 0, so this should correspond to turning off the Yang-Mills coupling (since
in semiclassical Yang-Mills theory, dyon masses are proportional to 1/gyas2).

Analogous considerations can be made for the other A-D-E gauge groups.

Thus we conclude that in order to have a pure Yang-Mills spectrum in four
dimensions, the dependence of the ALE fiber on the base coordinate ¢ must be
given by (4.1.16), with all other U; constant.

4.1.3 Reduction to Seiberg-Witten periods

We consider again the pure SU(N) case. Consider a ‘Yang-Mills’ 3-cycle ~;;
constructed as a 2-sphere fibration over a path v in the {-plane, with the 2-sphere
fibre o;; constructed as under (4.1.13) from a path in the z-plane running between
zeros x; and x; of

1 1
With the holomorphic 3-form Q given by (4.1.18), the period of v;; is then
d
0= ﬂ'iljl /(l‘] — l‘l)—C (4120)
Yij Yy C

Here we used that § dy(y> —k?)~'/? = 2mi for a contour encircling the cut between
y = £k in the y-plane. Equation (4.1.19) describes precisely the genus N — 1
SU(N) Seiberg-Witten Riemann surface, as given in (2.3.17). Moreover, if we
denote by 4;; the 1-cycle on this Riemann surface obtained as the lift of v to the
sheet z; minus the lift of v to the sheet z;, we find

/ Q=2v27% | Asw, (4.1.21)
.

ij Yij
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where Asw = 2\}% x% is nothing but the Seiberg-Witten meromorphic 1-form

(2.3.3). Thus (in the local ALE fibration approximation of the Calabi-Yau X)
our light periods reduce precisely to the Seiberg-Witten periods! Note also that
(4.1.14) implies that, up to a sign, the intersection product is conserved under the

map vi; — Yij:

Yij - Ve = (V-7 it + Ok — Gir — 65u) = —Hij - - (4.1.22)

4.2 The weak gravity limit

We will now study in more detail the procedure of tuning the Calabi-Yau moduli
such that the branes wrapped around the "Yang-Mills cycles’ (i.e. the small cycles
producing the Yang-Mills spectrum) become very light compared to the Planck
mass. From (3.2.18), it follows that this is equivalent to tuning the periods of
those cycles to be much smaller than the periods of the ‘generic’ cycles. Assuming
a specific but rather general form of the Calabi-Yau, we will deduce the behavior
of the periods in such a limit, and from this we will obtain the general form of the
Kahler potential on the complex structure moduli space in this limit. We call this
limit the ‘weak gravity limit’, since the Yang-Mills dynamics on which we focus
will be arbitrarily weakly coupled to gravity in this limit.

We will restrict to the pure SU(N) Yang-Mills case, though generalizations
are clearly possible.

Consider an arbitrary compact algebraic Calabi-Yau manifold X, embedded
in a projective space and given in a certain affine coordinate patch with coordinates
(¢,z,y,w) by a polynomial equation

W(¢,x,y,w) = 0. (4.2.1)

To get a manifold X which is locally given by the pure SU(N) ALE fibration
(where we take ‘local’ to mean small z,y,w and finite ¢) with the Yang-Mills
(ALE) periods much smaller than the others, we assume W to be of the form:

W = ((Wa.r. +W(z,y,w0)), (4.2.2)
where

1 1
War =w?+y?+aN+ L2 Nuy 5oV 24 LNy m+L*1uO+L*1§(C+Z)

(4.2.3)
with L very large and the u; finite, and where W' is a polynomial containing only
terms of order V1!, w?, 4, L='~¢ and higher, possibly still depending on moduli
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different from the u; (which will not be important in what follows).® Indeed,
by rescaling w = L~Y20, y = L~Y?j and = L~'/V&, we see that for finite
tilde variables (which correspond to small non-tilde variables z,y,w), we get the
required local geometry (4.1.17):

1
WaWap =L@+ 4+ 2 +unv_odV 2+ +u & +uo) + 5((" +1)].
(4.2.4)
For obvious reasons, we will call the moduli u; the rigid moduli.

The holomorphic 3-form on the other hand is (in a patch with 9,,WW # 0):

d¢ Ndx N dy d¢ dx A dy
Q=v—>—"—F7—"=Vv 2N 4.2.5
YT oW O 2w 1 oW (42.5)
where v is an arbitrary normalisation factor. For finite tilde variables indeed
reduces to (4.1.18) (with v/ = L='/Ny):

v d¢ i ndj

O~ LY
2 ¢ B

(4.2.6)

We will assume that it is possible to construct a basis of 3-cycles for X entirely
localized in the coordinate patch parametrized by finite (, x,y,w. This puts some
constraints on the global structure of X. For example, it excludes the possibility
that X is a fibration over a higher genus Riemann surface (of which ¢ would
then parametrize only a certain coordinate patch). Roughly, this assumption thus
says that X is a fibration over a sphere (the (-plane), but actually we don’t have
to be that precise®, since how exactly X is compactified ‘at infinity’ (w.r.t. the
coordinates z,y,w, () does not matter for our purposes.

Now choose a (maximal) set {v,}, of 2(N — 1) independent Yang-Mills 3-
cycles, which are compact on the ALFE fibration, i.e. finite in the tilde variables.
Denote the (nondegenerate) intersection matrix by ¢,n = 7, + va. Extend this
basis with 3-cycles I's; to a basis for H3(X, Q), in such way that I's. -y, = 0. Since
¢-x is nondegenerate, this is always possible (however, in general it is not possible
to construct such a basis for H3(X,Z)). Denote the intersection matrix of the T’

cycles by Qsa.

Note that since there are no intersections of the I' cycles with the ~ cycles,
there is no obstruction for deforming the I' cycles away from the region of small

8This can be generalized to cases where W’ also depends on ¢, but to keep the — already
quite technical — arguments a bit transparent, we will not consider this here. We will see an
example of this in section 4.4 however.

9for example, the fibration structure does not necessarily have to be extendable to the points
at infinity w.r.t. the coordinates (z,y,w, ().
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Figure 4.8: If a cycle T fibred over a path in the (-plane encircles (or stretches
between) branch points moving to infinity (¢ = 0, 00) when L — oo, this cycle will
be “stretched” to infinity.

(z,y,w) (finite tilde variables), where the =y cycles are localized. We will further-
more assume that we can keep the I cycles at finite values of z,y, w when L — oo
(which is not a strong assumption).

The v periods fv Q can be seen from (4.2.6) to be proportional to L~'/N.

As explained in section 4.1.3, they can be reduced to Seiberg-Witten periods.
Furthermore, in that section it was also explained that the intersection form of
those cycles equals (minus) the corresponding intersection form on the Seiberg-
Witten Riemann surface.

We now turn to the I' periods. These can be divergent when L — oo, but
since for L — oo the I cycles stay finite in z,y,w and away from the singularity
locus (finite tilde variables) so that 0,W/({ = 2w+ 0,,W'(w, x, y) is bounded from
below on I, the only potential source of divergencies is the fact that X factorizes (in
the coordinate patch under consideration) as a direct product of the punctured
¢ plane and a complex 2-fold (W/({ becomes independent of ¢) when L — oo:
consequently, some I' cycles can (and will) be “stretched” to infinity in the (-
plane (fig. 4.8). Since W is polynomial in ¢, such cycles will be typically stretched
to values of ¢ proportional to certain positive ({ — oo) or negative (¢ — 0) powers
of L. So we see from (4.2.5), since we assumed w, ,y to stay finite and away from
the singularity locus on the I' cycles, that these stretched cycles will at most be
logarithmically divergent, that is

/ Q=asInL+bs +- - (4.2.7)
I's
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where ay, and by, could a priori still be dependent on all moduli different from L.
We will now show however that, if the normalisation factor v is u-independent, the
leading order u-dependent term is actually at most proportional to L=2/NInL, so
that ax and by, must be independent of the rigid moduli u;. Indeed, using (4.2.2),
(4.2.3) and (4.2.5), we find

0 1 82W 8W
— [0 = - Q— 4.2.
L—1+k/N/Q TRt ¢k (4.2.9)
2+62W'
1+k/N 2k
L~ /Q S0 L DT (4.2.10)

Again because I' stays finite in z,y, w and away from the singularity locus of finite
tilde variables (so that 9,,W/( stays bounded from below), the integral factor in
the r.h.s. of (4.2.10) can at most be proportional to In L, and since k < N —2, the
full period at most to L=2/N1n L.19 This is what we wanted to show. Now since
u-independence of the ay and by, will turn out to be essential to extract the rigid
limit as described in general in section 2.2.3, we will thus take the normalisation
factor v to be u-independent.

Combining all this to compute the form of the Kéhler potential (3.1.15), we
find

K = —ln(i/ QAQ) (4.2.11)
X
= —1n(¢QEA/ Q/ Q+iq">‘/ Q/ Q) (4.2.12)
I's Ta o by
= —In(aln|LP + b+ |L|">VK (u,q) + ---) (4.2.13)
|L|—2/N

Q

—In(aln|L|* +b) — K (u, ). (4.2.14)

aln|L|>+b
Here a and b are u-independent real constants (because ax; and by, are), a > 0,
K (u, @) ESW4|I/|2iq"’\/ ASW/ Asw, (4.2.15)
Yo ¥
(here we used (4.1.21) and (4.2.6), and the dots include u-independent terms

of nonzero order in L~V and u-dependent terms higher than second order in
L~'/N. The reason for the absence in (4.2.13) of terms proportional to In L 1n L or

10Note that this argument fails for the v periods because on these 9, W is not bounded from
below, and indeed the u-derivatives of those periods are proportional to L~/N!
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In(L/L) is the fact that e * =i [\ QAQ must be invariant under the monodromy
L — e*™NL. The presence of the divergent term can also be inferred from the
form of Q and the fact that X degenerates to the direct product of an infinite
cylinder (the punctured (-plane) and a compact manifold. The integral over the
cylinder (parametrized by () gives a logarithmically divergent factor. Note that
this divergent term would be absent for compactifications on e.g. the direct prod-
uct of a torus and K3 (yielding N' = 4 in four dimensions). Such a = 0 cases
could be discussed along the same lines, though some features will be qualitatively
different.

Note that the form of the Kahler potential we find is precisely the one needed
to have a reduction from local to rigid special geometry for the u-moduli, as was
explained in chapter 2, section 2.2.3. Clearly K (u,a) is closely related to the
SU(N) Seiberg-Witten Kahler potential Kgw(u, @), but let us make this more
precise. From (4.1.22), (2.2.10) and (2.2.19), it follows that

K(u,i) = —87* v |A| 2K sw (u, @), (4.2.16)

where A is the scale of the gauge theory, which appeared as an arbitrary param-
eter in chapter 2, equation (2.2.19): it is the proportionality factor between the
dimensionful Yang-Mills scalars and the dimensionless geometric periods (recall
that the Kahler potential in rigid Yang-Mills theory has dimension mass squared,
that is, expressed in the u variables, it has an overal factor |A|?). A is fixed here in
terms of L and the four dimensional Planck length x4 by requiring the Yang-Mills
fields to have canonical kinetic terms, as in (2.2.17). Comparing the scalar kinetic
terms in (2.2.17) and (3.1.43), we see that this puts

3270y LN

AP = .
A k3 aln|L]>+b

(4.2.17)

Alternatively, one could compare the BPS mass formulas in rigid Yang-Mills theory
and supergravity (cf. chapter 3), or, to fix the phase of A as well, compare central
charges:

Zsugra \/_
TSI = 2 sy 4.2.18
o Y ( )
This gives
472+/2 LN
A= VATY (4.2.19)

Ka4 (aln|L|? +b)t/2°
Large L therefore corresponds to a gauge theory scale which is small compared
to the Planck scale, hence sending L — oo while keeping A finite (and k4 — 0
in the way prescribed by (4.2.17)) corresponds to decoupling gravity from the
finite energy nontrivial gauge theory dynamics. The relationship with k19 and the
volume of X is given by (3.1.44).
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So all in all we find

1 1 1

—K =—-=In(aln|L|® +b) + —Ksw (A, u, @)+ ---. 4.2.20
K= g aIn L 4 0) 4 g Kow (A7) + (4.2.20)
Note that the terms we have dropped are proportional to positive powers of k4.

Thus we see how the Seiberg-Witten solution for the two derivative low energy
effective action of the massless fields in N/ = 2 Yang-Mills indeed beautifully
emerges from purely geometric concepts in type IIB string theory. But we have
more now: we have a powerful geometric representation of the massive BPS states
as supersymmetric 3-branes wrapped around Calabi-Yau 3-cycles, and we have a
consistent embedding of quantum low energy Yang-Mills theory in string theory,
including gravity.

4.3 Unification scales and the heterotic picture

In order to compare our results with standard treatments of gauge theory physics
in heterotic string theory (see e.g. [31] chapter 18), we assume InL > L and
rewrite (4.2.20) with

b
S=InL*+ - ~InL? (4.3.1)
a
as
LK~ =2 1n(S + 57 + — Kew (Al u, @) + (4.3.2)
’@21 ~ ”in T SW , U, U R 3.

(where we have dropped an irrelevant term ~ Ina) and

1 exp[=S/(2N)]

A= —k 4.3.3
Ky vReS ( )
where
472/2
=L VTV (4.3.4)

Ja

Note that |k| is independent of the choice of normalisation of Q since y/a scales
as |v| under rescaling of Q. It depends on the details of the chosen model for X
however, including moduli different from L and the u;, if those are present.

The asymptotic running of the pure N' = 2 SU(N) Yang-Mills coupling (which
can be extracted from the solution of the low energy effective theory we have found,
agreeing with the well-known 1 loop N/ = 2 beta function) is then given (for energy
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scales M > A) by:

1 2N . M
o~ Zm— 435
9227 (M) sr2 A (4:3.5)
1 2N Mgy
= —ReS—-——1 43.
caReS— o —r, (4.3.6)
where .
Mgy = — |k| (Re S)~1/2, (4.3.7)
4

The mass scale Mgy can be interpreted as the string gauge unification scale: if we
would have several SU(N) gauge groups induced by the Calabi-Yau compactifica-
tion'!, this would be the value of M where the different gauge groups have equal
coupling, equal to

82
ReS’
to be compared with [31], eq. (18.6.7). Note that, from a phenomenological point
of view, the string gauge unification scale is not necessarily equal to the scale
Mcur where the standard model group SU(3) x SU(2) x U(1) unifies to a simple
group (like SU(5)), though this would be quite pleasing of course.

gy u(Msy) = (4.3.8)

The string gauge unification scale is closely related (but not equal) to the

string scale Mg, which can be extracted from the low energy gauge physics as
([31], eq. (18.3.1)):

M 2 2
_gvuMsy) _ T T gy (4.3.9)

M. =
s \/5%4 I€4\/m |k|

Expressions similar to the above formulas typically appear in the context of
four dimensional gauge theory physics obtained from (heterotic) string theory.
Compare for example (4.3.2) with (18.8.16a) and (4.3.6) with (18.8.2) in [31]. In
heterotic string theory S is the dilaton-axion scalar: S = e~2%¢ + ia, where ®,
is the four dimensional heterotic dilaton and a is the axion ([31], eq. (16.4.10)).
This is a manifestation of the duality between heterotic and type II string theory
[79]. Let us have a short closer look at this correspondence. Consider for example

" Though we did not consider this case, it can be obtained straightforwardly by replacing the
polynomial in z in (4.2.3) by a polynomial which has two or more finitely separated bunches of
closely spaced zeros. We will see an example of this in the next section. The unification scale is
then the energy scale of the gauge theory branes when the u moduli are taken so large that all
zeros are more or less equally spaced. Generically, this is indeed close to the string scale, but if
it happens that two bunches of zeros are already quite near each other at order 1 u values, the
corresponding two gauge groups can already get unified at considerably lower energies.
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the expression for the rigid prepotential in the SU(2) case, equation (2.3.16).
Substituting A = Mgye S/4 gives

. o0 4k
frig(¢) = ﬁ¢2[5 — 41n M;U + Z Ck (%) exp(—kS)]. (4310)
k=1

Since Re S is identified with e 2®42et ~ 1 we see that, from the heterotic point
S,het

of view, we have an infinite series of (1 loop) perturbative and nonperturbative
quantum corrections!

In heterotic string theory, the string scale Mg is related to the constant o
appearing in string perturbation theory: o}, = Mg?. It is not directly related
however to the constant o' appearing in type IIB perturbation theory: of;5 =
2-3/27=T/4 (1% = 9=17=5/4 (Vy JRe S)/4 Mg '/? (we used (3.1.44) and (4.3.9) for
the second equality). So it is the dual heterotic string scale «j,, rather than the
type IIB string scale ;5 which appears naturally in the low energy gauge physics
we are studying. This can be understood from the fact that type IIB perturbation
theory breaks down here at energies higher than the mass of the lightest massive
gauge particles (since these particles are non-perturbative states in type IIB), while
heterotic perturbation theory is valid for energies above the gauge particle masses
and all the way up to (and beyond) the unification scales (it can break down at
low energies however because the gauge coupling becomes strong in the infrared
for rigid moduli of order 1). So the relevant perturbative string theory for energies
near Mg is heterotic, hence the relation with the heterotic a'.

Now though these A/ = 2 theories are probably not directly relevant to phe-
nomenology, let us nevertheless consider some experimental data [31], to get a more
concrete idea of the physical meaning of the above results. Measurements of the
running of couplings together with the (experimentally quite plausible) assump-
tion of minimal SU(5) supersymmetric unification'? suggest Mapr ~ 10161403
GeV and ¢3,;(Mgur) = 0.50. Let us assume Msy = Mgyt and see what we
get. From (4.3.9), using the unified coupling value and ;" = 2.4 x 10'® GeV, we
find Mg ~ 1.2 x 10'® GeV. Now in order for Mgy = %Ms to be equal to Mgur
within the error bars, we must have 0.03 < £ < 0.13. Using the relation between
Mg and Mgy obtained in the context of heterotic string orbifold compactifications
([31] eq. (16.4.36)), one obtains k = 2.717.... This is clearly too big. Some pos-
sible solutions are explained in [31]. In the example we will work out in the next
section, we will however find & = 0.122.. ., which is compatible with experiment.
From (4.3.8), again using the unified coupling value, we get Re S ~ 158. Thus,
generalizing (4.3.3) in an obvious way to arbitrary Yang-Mills theories (possibly

12This is the minimal GUT supersymmetric extension of the SU(3) x SU(2) x U(1) standard
model. In this model, the gauge group is SU(5) at energy scales M > Mgyr.
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with matter), we find for the scale of such a theory (taking the experimentally
most favored k = 0.07):

A =e'8/1.3%x10'%GeV, (4.3.11)

where b is the beta function coefficient of the theory (b = Ny — 2N, for N = 2
SU(N.) with N flavors). Since k is dependent on the details of the chosen Calabi-
Yau manifold, considerations of this kind might put (together with spectrum con-
siderations) constraints on candidates to find realistic type II Calabi-Yau compact-
ifications. But since such compactifications seem to have too much supersymmetry
to make them realistic anyway, and since a serious analysis of the phenomenology
would lead us too far afield (and by insufficient expertise of the author) we will
leave this subject here.

4.3.1 Dynamics of the dynamical dynamically generated scale

In the following, we will consider Calabi-Yau manifold X which gives rise at low
energies to an arbitrary asymptotically free gauge theory with simple gauge group,
and assume the Calabi-Yau manifold X has no other complex structure moduli
than the rigid moduli u; and S. Furthermore we will assume S > 1, asin 4.3. Gen-
eralizing (4.3.3) in an evident way to arbitrary gauge theories, with beta-function

coefficient b < 0, gives the following expression for the dynamically generated scale
A:
1, esp(=5/lb)

K4 VReS
Since S is a dynamical field, we see that the dynamically generated scale itself

is dynamical; it can vary over spacetime. Let us see what we can say about its
dynamics.

A= (4.3.12)

We will assume S is always large (if not, the whole weak gravity approximation
breaks down). Then the contribution from spacetime variation of the denominator
of (4.3.12) to spacetime derivatives 9, A is suppressed by a factor (ReS)™! <« 1
w.r.t. the contribution of the exponential. We will assume that this factor is
sufficiently small such that this contribution can be neglected. Then we can rewrite
(4.3.12) as

A = Mgy exp(—S/|b)), (4.3.13)

with the string unification scale Mgy as in (4.3.7), assumed to be a constant.

Plugging this in the expression (4.3.2) for the Kahler potential, we get

1 1 1 .
—K ~ -~ In(ln |Msy/AI?) + E|A|2K5W(u,ﬂ) + e (4.3.14)
4 4
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where Ksw (|A|,u, @) = |A2Ksw (u

, @) and we have dropped the constant — In |b].
The corresponding effective action (3.1

.43) for the graviton and the scalars is

9 2

_ 1 4
5 = ﬁ/ A YV ASINBE

- i / |A|28153K'5Wdu’ A sda? (4315)
+2Re (AO; K swdu’ A xdA) + Kgw |dAJ”.

From this we see that generically, the A-field will couple to the gauge theory
fields, but almost'?® as weakly as gravity, because of the factor 1/x3 in front of the
A kinetic term. Therefore in circumstances where gravity effects are very small
(for instance in accelerator experiments), the effects of having a dynamic A will
be very small as well (i.e. dA/A <« 1). Note also that there is actually no coupling
between the gauge theory fields and A when Kgyw is the classical Kihler potential
and if one uses the period variables ¢¢ = Af ; Asw instead of the u; variables,
as follows immediately from (4.3.14) together with Kgw ciass = nl]¢’q§f where
n;7 is constant. From the microscopic Yang-Mills field theory point of view, the
backreaction of the gauge theory fields on the gauge theory scale is thus entirely
a (stringy) quantum effect.

In a certain sense, one can also interpret the spacetime variation of the scale
as a spacetime variation of an effective Newton constant with constant scale. To
see this, write

e? = AJ(A), G, = exp(2Re0)Gyy, (4.3.16)
and substitute this in (4.3.15):
1 2
S = /— d*'zv/-G'R' — (—6+ —————5—)do A ¥'d5
eXp(R )I‘é4) [ ( (ln|%|2)2) ]
/ [(A 8 ngdu A ' du? (4.3.17)
+2Re (0; K swdu’ A +'d5) + Ko do A 'd3). (4.3.18)

So we see k4 gets replaced by an ‘effective’ exp(Re o)k4. A review on the physical
consequences of a varying Newton constant can be found in [85]. This interpreta-
tion is perhaps less natural here considering the coupling of ¢ to the scalar fields
(including hypermultiplet scalars) this rescaling induces. Of course, this situation
(and the action) is very similar to what one has with the usual dilaton scalar in
the role of . In the light of the discussion on heterotic - type II duality in section
4.3, this is not surprising at all.

Bsomewhat stronger actually because of presence of the extra factor In Mgy /A|2.
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Finally note that dynamical gauge theory scales (and hence dynamical gauge
coupling constants) could produce interesting, and perhaps measurable, physical
effects. In particular, considering the time dependendence of the matter density in
the universe, and the fact that the gauge theory scale couples to this according to
the picture we have developed, one would expect the gauge coupling constant(s)
to have some time variation. There are indeed some (cosmological) experimental
indications that this is the case [86]. One could also contemplate the possibility
of strong spatial variations of gauge theory scales near black holes. This would
certainly produce rather spectacular effects, since some particles might suddenly
become unstable by a change of the scales, leading to violent explosions, gamma
bursts, dark matter production, black hole jets, and all that. Or, more realisti-
cally perhaps, fine structure constant fluctuations (waves) might be measured by
equipment of similar sensitivity as gravitational wave detectors. Considering the
fact that extremely high precision measurements of the fine structure constant are
possible, such experiments might be worthwhile.

4.4 An explicit example

In this section, we will study in detail an explicit example [17] to illustrate (and
perhaps clarify) some of the topics we have discussed more or less in general in
this chapter.

4.4.1 Fibration structure

We take as example the Calabi-Yau manifold X7, 55 15[24]. The details of the
general construction of algebraic Calabi-Yau manifolds will not be important for
us. We will define this manifold simply as the hypersurface W = 0 with
B 1 1 1
W = ﬂ(a:f‘l + 234 + 1—1%2 + gﬂfi + 53:%
1 6_ 1 12
—11]0 T1X2L3T4T5 — 6’(/)1 (1'11'21'3) — Ei/ls (1'11'2) (441)

and identifications

(z1,20, T3, 24,75) ~ (Ax1, Axa, N223, N2y, N 25) (4.4.2)
~ (amp,a tag, w3, 24, 5) (4.4.3)
~ (atzy,a ey, a’xs, 14, 25) (4.4.4)

where A € C* and a = exp(2mi/24). It is also understood that all singular points
induced by the identifications (i.e. the fixed points) are blown up. This introduces
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additional K&hler moduli, which are however not important for us, as we will only
deal with the complex structure moduli. Note that these singularities lie all on
the locus zyzo23 = 0. As it turns out, we can for our purposes simply ignore
this locus and always work in the patch z1zox3 # 0 (as we will do from now
on). X713 12[24] is the mirror of X 1 5 g 12[24], which is defined by W' = 0 with
W'(z1, 29,23, 24, 25) the general polynomial invariant under (4.4.2) with A = «,
with identifications (4.4.2) but without (4.4.3) and (4.4.4). Similarly, W could
have been defined as the general polynomial invariant under (4.4.2) with A = « as
well as under (4.4.3) and (4.4.4). This indeed yields, up to isomorphisms, (4.4.1).
For an introduction to algebraic Calabi-Yau manifolds, see [29] p. 441 or [42]. See
also [44].

The space X7, 5 512[24] has h*! = 3. The complex structure moduli space
is hence parametrized by 3 coefficients of W. We choose to work in the gauge
s = —1 (instead of the more usual B = 1).

This Calabi-Yau manifold (as well as its mirror) is a K3 fibration, with K3
fibre X7 ,6[12] (resp. X, ,4[12]). The change of variables needed to exhibit
this is

& = ag ¢ (4.4.5)
@y = ay/PCY (4.4.6)

which is well defined because of the identifications (4.4.3)-(4.4.4). This gives as
defining polynomial for the K3 at fixed (:

1 1 1 1

1
—oToTIT4T5 — E¢1 (zox3)®

where
=S+l (4.47)
2 ¢
and the following identifications remain:
(C,z0, 3,74, 5) =~ (( Axo, Az, N2y, Noas) (4.4.8)
~ (¢,a 2z, 0’23, T4, T5). (4.4.9)

The K3 fibre itself is an elliptic fibration. Actually, it can be fibered in
two ways. The most evident one, which also works for the mirror manifold and
is suitable for discussing the large complex structure limit, can be obtained in
complete analogy with the above construction. The fibre is X7, 3[6] = X1 2 3[6]
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and there are no identifications left. The other possibility does not apply to the
mirror (where it would lead to a genus 5 fibre) but is more suitable for discussing
the rigid limit. Both possibilities are exhibited by the following change of variables:

v = gl te /R (4.4.10)
ry = gl (4.4.11)
1
Ty = w+§¢§y§ (4.4.12)
1
T = y+toyor + UG, (4.4.13)

again well defined because of the identifications. The projective 'gauge’ symmetry
acts on these variables as

(Cﬂfay():m:y) = (C7£7>\y07>\2w7>\3y)' (4414)

There are no discrete identifications left. Fix the projective gauge symmetry by
putting yo = 1 (which can be done because we work in the patch yg = 12223 # 0).
This gives
1 1 B’ 1
W=-y’+—=(E+—)+=P 4.4.15
50+ 56+ )+ §P@. (4.4.15)
where

P(z) = 22° — ;ng - %(wg + 2¢y). (4.4.16)

The first fibration is obtained by considering the ¢ plane to be the base manifold,
the second one by taking the x plane instead. Indeed, in both cases (4.4.15)
defines a (punctured'?) torus for any fixed generic base point. From now on, we
will consider only the second fibration.

The holomorphic 3-form on the Calabi-Yau manifold is

oy _ L d& 1d¢
A0 = s AT (4.4.17)

Note that Q10 = %m%% is the (up to a constant factor unique) holomorphic
1-form on the torus fibre, and Q*?) = Ldz A Q1)) the holomorphic 2-form on
the K3.

4 The punctures can be removed (and the tori compactified) by going to a projective description
of the torus fibres. This yields X1,2,3[6] as the torus fibre for the first fibration, and X7, ,[4] for
the second fibration.
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Figure 4.9: Branch points, cuts and cycles of the torus fibre.

4.4.2 Construction of cycles and periods

We will explicitly construct a basis of 3-cycles and their corresponding periods.
To achieve this, we exploit the fibration structure of the model; first we study the
cycles and periods of the torus fibre, then those of the K3, and finally those of
the Calabi-Yau manifold itself. The explicit construction of the cycles allows us
to compute monodromies and intersection forms in a straightforward way. For the
torus and K3 fibres, we furthermore obtain closed expressions of the periods in
terms of hypergeometric functions.

Torus cycles and periods

Branch points: If we consider (4.4.15) to be an equation for y as a function of
&, we get the torus as a 2-sheeted cover of the ¢ plane. The sheets coincide at the

branch points, which come in pairs symmetric under ¢ < B%, and are located at

¢=-P+\/P2— B (4.4.18)

and at
& =0,00. (4.4.19)
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Cycles: In the following, /z denotes the positive square root of z: /z > 0
(and /=1 = i). Define 8 to be the 1-cycle || = |B'|'/? passing counterclockwise
through the point (£ = iVB',y = ﬁ\/ﬁ), and « the shortest cycle encircling the
pair of branch points (4.4.18), with orientation such that a-3 = +1. This is shown
in figure 4.9.

Singularities and vanishing cycles: The torus degenerates when two branch
points coincide. There are two possibilities:

e P2 — B’ = 0: the branch points (4.4.18) coincide and « vanishes. The locus
in the (¢, z)-plane where this occurs is a genus 5 Riemann surface, as can
be seen by substituting the expressions for P(z) and B'(¢). We denote this
surface by ¥. Since a collapses to a point on X, this surface can be lifted
trivially to the full Calabi-Yau. By slight abuse of notation, we denote the
lifted surface by ¥ as well. Thus X is the locus of elliptic fibre singularities of
the Calabi-Yau. We could also view the full 10D spacetime My x CY as an
elliptic fibration. Then the locus of elliptic fibre singularities gets promoted
to a 5+1 dimensional manifold M, x X.

e B’ = 0: one of the branch points (4.4.18) coincides with the branch point
& = 0, and 8 vanishes. The surface where this occurs consists of two copies
of the z-plane at fixed ¢ positions, and is denoted by X'. Again, this surface
can be lifted to the full Calabi-Yau or promoted to a 5 4+ 1 dimensional
submanifold of spacetime.

Cuts: There are jumps (or cuts) in the definition of a at values of P/v/ B’ where

there are two homologically different cycles encircling the two branch points with

equal minimal length. This occurs when the branch points (4.4.18) are colinear,
P

i.e. when 7B is imaginary (type A cut). Jumps in the definition of 8 occur when

the branch points lie on the circle |¢| = |B|'/2, i.e. when = 0 lies on the real

B
interval [—1,1] (type B cut). There is yet another type of cut, for both « and 3,
namely where our prescription for the orientation of 8 (and hence «) is ambiguous.

For fixed B’, this is the case when P is real and negative (type C cut).

The cut structure in the P/+/B’-plane is shown in fig. 4.10. The transfor-
mation rules for continuous transport of torus cycles across the cuts (yielding the
monodromies) are:

A A a—a+2p (4.4.20)
B,B': f-fB+a (4.4.21)
C: a,f— —a,—0 (4.4.22)
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Figure 4.10: Singularities and cuts in the P/(B')'/?-plane.

Notice that the origin of the P/+/ B'-plane is not really singular, as the mondromy
about this point is in fact trivial.

Periods: The following expressions for the periods can be obtained by direct
integration. Denoting k2 = §(1 F \/LB—,), we find:

/ Q0 — 27‘/6(1@)—1/2 K(kZ) (4.4.23)

for \/LB—, close to +1, and

™

/BQ(LO) _ ‘/é(i\/ﬁ)—lﬂ k;Fl K(k;F?) (4.4.24)

for \/% far from +1. Here K(u) = 2F(3,%,1;u) is the complete elliptic integral

of the first kind. These expressions can be extended to other values of P/v/ B’ by
standard analytic continuation.
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Figure 4.11: (Elliptic) fibre singularities, cuts and cycles of the K3 manifold.

K3 cycles and periods

As explained earlier, the K3 fibre (at a fixed generic value of ¢, and hence of
VB’ ) is itself an elliptic fibration, with base parametrized by z. Accordingly, the
relevant 2-cycles of the K3 fibre, that is, those which are in the transcendental
lattice, can be constructed as circle fibrations over certain paths in the z-plane,
where the circle is a 1-cycle in the torus fibre.

Points with degenerating elliptic fibre: The z-plane can be viewed as a
3-fold covering of the P/ V/B'-plane considered in 4.4.2, as  is fixed and P is of
degree 3 in x. Therefore, in the z-plane, there are 3 copies of every ingredient
(cuts, singularities, ...) of fig. 4.10. This is shown in fig. 4.11. In particular, the
g = 5 Riemann surface X, on which « vanishes, intersects the z-plane (having a
fixed value of () in 6 points. As ¥ splits in two branches ¥4 corresponding to the
solutions of P(z)/v/B' = +1, we can divide those six points accordingly in two
groups of three, which we label by 1t,2%,3% and 17,27,3~. Choose numbering
such that the type B cuts connect it with i~ (see figure).

Cycles: The idea is to construct K3 2-cycles as circle fibrations by transporting
a certain torus 1-cycle c along a path 7 in the z-plane. The path « can either be a
closed loop without monodromy for ¢, or an open path terminating on the points
i*, with ¢ vanishing at both endpoints. The first possibility will produce a torus
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and the second a sphere. This gives us the following 2-cycles (see fig. 4.11):
e s : c =« (at it) and v running between it and j*. This is a sphere.
e s..:c=a (at i7) and «y running between i~ and j7; again a sphere.

e t;; : ¢ = B (at iT) and vy a closed path encircling i*,i~,j%,j. This is a
torus.

Note that it is not possible to construct a 2-cycle by taking v to run from iT to
j~ because such a path necessarily passes through an A type cut, so we cannot
have a as circle fibre at both endpoints.

Actually we haven’t given a precise description yet of the above cycles in
general, only for the specific case of fig. 4.11. To define this set in the general
case, we can proceed as follows: first, we require the cycles to be compatible with
the above description including the homological relations and intersections. Any
set of cycles obtained by continuation from the specific set of fig. 4.11 will satisfy
this. Because continuation is in general not unigely defined (due to monodromies),
there are still many possibilities, corresponding to the choice of cuts. We will not
try to fix the remaining ambiguity here in general, but assume that in any case a
prescription is adopted such that siij vanishes whenever i approaches j*.

At the level of homology, we have the following relations:
tiy = s5—si; (4.4.25)
sh+sh+ss, = 0 (4.4.26)

This implies that of the 2-cycles constructed above, only four are independent.

Intersections: Combining the the intersections of the paths 7 in the base (as
shown in fig. 4.11) with the known intersections of the torus 1-cycles (taking into
account their transformation when passing a cut), all 2-cycle intersections can be
calculated in a straightforward way:

51:2 : SiQ = =2 sfhspy = =2 53::2 “tiz = 0
S127 83 = 1 s% S35 = 2 sjpctey = 1 (4.4.27)
sfhos5, = 0 st ts1 = —1 tij-ty = 0

and all cyclic permutations hereof. The first two equations can be summarized as

Siij 8k = O + Ojk — ik — 01, (4.4.28)

+

Note that this is precisely (minus) the intersection of the O-cycles j* —i* and

It — k*.
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Singularities and vanishing cycles: The K3 degenerates when two (or more)
of the points 1%, 2%, 3% coincide. There are several possibilities (corresponding to
the marked points in fig. 4.12):

e B'=0: here 17 =17, 2% =27, 3% = 37, and the tori #;; degenerate to
lines (recall that § vanishes at B' = 0).

e B’ = (48 + 11)?: Keeping in mind that we have defined v/ B’ to have positive
real part, there are two possibilities:

— if Re(y§ +11) < 0, two of the zeros 17,2%,3% of P = +v/ B’ coincide,
and the corresponding sphere SZ vanishes.
— if Re(¢§ +11) > 0, two of the zeros 17,27,3~ of P = —v/B' coincide,

and the corresponding sphere s;; vanishes.

In each case, we call the vanishing sphere at this point v,.

e B’ = 2: Again, there are two cases: if Ret); is positive (negative), there is
a vanishing s;; (sj;) Call this vanishing sphere vj.

Define t, = t;; if v, = s?;, and similarly for ¢,. The tori ¢, and ¢, degenerate
at B' = 0. The set (vq,vp,tq,t) forms a basis of the Picard lattice, which has
rank four here.

We have constructed different bases depending on the signs of Re (/8 + 1)
and Re;. We therefore also expect the corresponding intersection matrix to
depend on these signs. To calculate this matrix when, say, Re(¢§ + 1) > 0
and Retyy; > 0, we consider the case where ¢; is very close to ¢; + ¢§ (which
is the case shown in fig. 4.11). Then it is easy to see, by direct inspection of
the roots of P(z)? — B’, that v, and v, are to be identified with s;, and s, if
one chooses suitable numbering of the roots. This identification, together with
(4.4.27), provides the complete intersection matrix. An analogous procedure can
be followed for the other cases.

The results are:

e If Ret; and Re(¢; + 9§) have the same sign:

-2 10
1 -2 1
0 10

-1 0 0

7= (4.4.29)

OO O

We recognise the SU(3) Cartan matrix in the upper block and therefore call
this part of muduli space the “SU(3) sector”.
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e If the real parts of ¢ + 9§ and ¢; have opposite sign:

-2 0 —
0 -2

1

0

T = (4.4.30)

0
-1

OO O

0
1
0
0

Here we recognize the SU(2) x SU(2) Cartan matrix; accordingly we call
this part of moduli space the “SU(2) x SU(2) sector”.

Notice that our division of the moduli space in an SU(3) and an SU(2)xSU(2)
sector is dependent on the sign convention for /B’ (except on the subspace ? =
(1 + 9§)?). Therefore, though the convention we have taken is quite natural,
especially when we are close to a rigid limit, one can not expect the boundary
between these sectors to have any physical significance'® However, we shall see that
there exists a certain region inside the SU(3) sector (close to the SU(3) rigid limit)
where a 4D low energy observer indeed sees SU(3) Yang-Mills physics (weakly)
coupled to gravity, and similarly for SU(2) x SU(2). Outside these regions, 4D
low energy physics might not look at all like a particular nonabelian gauge theory.

Monodromies From the explicit construction of the cycles and the Picard-
Lefschetz formula, it is easy to calculate the monodromies about the singular
points B’ = 0, B' = (¢ + ¢§)?, B' = ¢? and B’ = co. The monodromies are of
the form

Vg Vg
? > M ? (4.4.31)
23 ty

The resulting monodromy matrices are:

e About B' = (1 + ¥§)?
— In the SU(3) sector of moduli space (Retr - Re (1 + §) > 0):

M=T, = (4.4.32)

O =

OO = O
o= O O
-0 oo

15A physically significant definition of e.g. the SU(3) sector would be the region of moduli
space where BPS states exist which can be identified as SU(3) gauge bosons. Unfortunately, for
a generic point of moduli space, the existence of these states is very difficult to check analytically,
if not impossible.
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— In the SU(2) x SU(2) sector of moduli space (Ret); - Re (¢1 +1§) < 0):

-1 0 0 0
o 01 00
M=T,= 00 10 (4.4.33)
-1 0 0 1
e About B’ = ?: In the SU(3) sector:
1 1 00
0 -1 0 O
M=T,= 0 1 1 0 (4.4.34)
0 0 01
In the SU(2) x SU(2) sector:
1 0 00
v _ |0 =100
M=T = 0 1.1 0 (4.4.35)
0 0 01
e About B’ = 0: In both sectors, this is
10 -1 0
01 0 -1
M =B= 00 1 0 (4.4.36)
00 0 1

The matrices T,, T,, Ty and T, have Jordan form diag(—1,1,1,1), hence an
expansion of the periods in a variable z around the corresponding singularity has
terms of the form 2" and z'/2*". B on the other hand has Jordan form

1 1 0 0
01 0 O

BJordan - 00 1 1 (4437)
0 0 0 1

so period expansions have terms z" and z"In z.

The matrices T, and T} generate the group Ss, the Weyl group of SU(3),
while 7)) and T} generate Sy x Sa, the Weyl group of SU(2) x SU(2).
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Periods An integral representation for the K3 periods can be given by making
use of the elliptic fibration structure and (4.4.23)-(4.4.24). Note in particular that
when i* and j* come close to each other, we have

ot
6 j 6
/i Q0 ~ %(4—-\/3’)‘”2 /i dr = %(4_-\/3')—1/2(xji “re),  (4.4.38)

where the z;+ are simply found by solving P(z) = v B’.

Though not really necessary for the discussion of the rigid limit, it is possible,
using Picard-Fuchs techniques, to find a closed expression for a basis of (noninte-
gral) periods of the K3, namely [17]:

V12 €1(r) &2(s)
7| Vo | _ A7 [ &(r)&ls)
Y= g | = T3 | a0 as) (4.4.39)
Va2 &2(r) &2(s)
where
El(’u‘) = Bl uil/GQFl (%7%717%>
&(u) = B u=>/6 o Fy (g, g, g; %) , (4.4.40)
with (2) ( 2) s
_ TG I'(=3) __V3
Bl - ]-—\2(%) ) B2 - F2(%) ) B1B2 = dr (4441)
and
1 VE§+9)? =B =i - B
ro= B} + 208 (4.4.42)
1 VE§+d) =B +/i-B
s = 3 + 208 . (4.4.43)

For a derivation of this, we refer to [17].

The monodromies of these solutions can be calculated using the well known
continuation formulae of the hypergeometric functions. By comparing monodromies,
one obtains the expression of the periods of v,, vy, t, and ¢, in this basis up to
an overall factor. The overall factor can be determined by comparing asymptotic
expansions in a limit where these can be calculated easily on both sides, e.g. in a
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Figure 4.12: (K 3) fibre singularities, cuts and cycles of the C'Y” manifold.

rigid limit (see later). The result for the SU(3) sector is, with w = e2/7/3:

no

Va V1o —iw W 0 0
—1 i 0 0
=5, Va1 ; Sp=] w & ¥ w (4.4.44)
ta U Vi VB V3 B
tp Vas 1 4 1 1
V3 V3 V3 VB

CY cycles and periods

Since the Calabi-Yau 3-fold under consideration is a K3 fibration, one can con-
struct the CY 3-cycles as K3 cycle fibrations over paths in the base manifold (the
¢-plane). Denote the path in the base by v and the K3 cycle which is transported
along v by ¢; v can be open, with ¢ vanishing at both endpoints, or closed, with
trivial monodromy for ¢. The corresponding CY period is given by

1 d¢ P

i | 20O (1.4.45)

where 6(¢) denotes the period of ¢ in the K3 fibre above (.

A basis of 3-cycles can be constructed as follows (see fig. 4.12):
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e V.. : ¢ =v, and v running between the two solutions of %(( + %) +1=
(18 +41)2. This is an S,

e V,,: ¢ =1, and v running between the two solutions of £ (¢ + %) +1 =193
Again an S3.

e Ty.: ¢ = v, and 7 the unit circle. This has topology S' x S2.
o Ty, : same as T,,, but with ¢ = vy.

e Vi.: c =t, and v running between the two solutions of £ (¢ + %) +1=0.
Topology: S% x S1.

o Vi, : same as V¢, , but with ¢ = vy.
e T : c=t, and ~y the unit circle. Topology: T3.

o T : same as T¢_, but with ¢ = .

Formal connection with brane picture

We can also consider the CY cycles constructed above as circle fibrations over
certain ‘2-branes’ in the (x,() space. These 2-branes can either be closed with
trivial monodromy for the circle fibre, or open and ending on the fivebrane My x ¥
(a fibre) or My x X' (3 fibre). The topology of the 2-brane can be either a disc
(gives S? CY 3-cycle), a cylinder (S x S? 3-cycle) or a torus (T2 3-cycle). This
is of course very similar to the 2/5 brane picture ‘solutions’ of field theories via
M theory [10, 87]. There are several other similarities, like the conditions for a
brane to be supersymmetric and the topology - multiplet type correspondence, but
we will not discuss them here. One could wonder whether this connection could
hint to a generalisation of the usual derivation of effective field theories without
gravity from branes in a trivial background, to effective field theories with some
gravitational corrections from branes in a nontrivial background. We will not
pursue this question here however, also because it is not clear what the physical
basis would be for such gravitational corrections from branes, since branes do not
have a dynamical intrinsic metric.

4.4.3 The SU(3) rigid limit
Definition

The SU(3) rigid limit is reached when three sheets of the Riemann surface ¥ co-
incide, or equivalently, when the CY considered as an elliptic fibration acquires
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an I5 singularity according to the Kodaira classification (i.e. a curve of A, singu-
larities). This occurs when simultaneously B = 0, ¢y = 0 and ¢; = £1. However,
as some periods are ill defined in this limit, we have to specify how we approach
this point. We set e = L™' and take

B = e (4.4.46)
b = 1+§/\1 (4.4.47)
Yo = €/%N. (4.4.48)

and let ¢ — 0 while keeping b, A; and Ay finite. It will become clear that this
prescription is indeed essentially the one given in equation (4.2.3) of the general
discussion. Note that a rescaling (b, A1, \o) — (u®b, uSA1, uXo) yields the same
rigid limit; hence these variables give a projective description of the residual moduli
space in the rigid limit.

The above choice of € dependence keeps the branch points in the (-plane with
vanishing v, or vy at finite positions, resp. given by:

1 1 1
3C+D) = Fu+00 (4.4.49)
1 1 1
50+ = A2 +0() (4.4.50)

while the branch points with vanishing ¢, and ¢, given by

1.1, 1
2= (4.4.51)

are sent to infinity. This choice gives rise to light BPS states (namely D-3-branes
wrapped around the basis cycles V,_, V,,, Ty, Tv,) which can be identified as
the massive gauge bosons and dyons of the pure N = 2 SU(3) Yang-Mills theory.
Furthermore we will show that in this limit, local special geometry indeed reduces
to SU(3) rigid special geometry on the rigid moduli space parametrized by b, \;
and Ag, justifying the above choice of e-dependence.

Choice of period basis
We start with the basis of CY 3-cycles as defined in section 4.4.2. Close to the

rigid limit, we clearly are well inside what we earlier called the SU(3) region of
moduli space. Thus the intersection matrix of v, v, ta, tp is given by eq. (4.4.29).
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From this, it follows that the full CY intersection matrix is:

0 -1 -2 1 0 0 0 -1
1 0 1 -2 0 01 0
2 -1 0 0 O 10 O
-1 2 0 0 -1 0 0 O
@= o 0 0 1 0o -2 0 0 | (4.4.52)
o o0 -1 0 2 00 O
o -1 0 O O 00 O
i1 0o o0 o0 0 00 O

where the order of the basis cycles is the order in which they were defined. As
the periods of v, and v for finite values of ( become small in the rigid limit (we
will show this explicitly below), we expect the first four CY basis cycles to give
rise to the light D-brane states corresponding to gauge bosons and dyons. To
isolate the contribution of those to the Kahler potential, we have to redefine the
last four basis elements such that the intersection matrix becomes block diagonal.
To accomplish this, we put

1 2 1
I p— —_ —_ —_ =
Vie = Vi, + 3Vva + 3va 3Tva (4.4.53)
2 1 1
Vo = Vo= 3V =3V — 3T (4.4.54)
1 2
T, = T+ 3T +3Ty (4.4.55)
' 2 1
Ti, = Ty —3To, — 3T, (4.4.56)
b 3 3
The new (noninteger) basis has intersection matrix
0 -1 -2 1 0 0 0 0
1 0 1 -2 0 0 0 0
2 -1 0 0 0 0 0 0
" -1 2 0 0 0 0 0 0
@ = o 0o o0 o 0 -I % _% , (4.4.57)
0 0 0 0 % 0 —3 2
0 0 0 0 3 % 0 0
0 0 0 0 3 —3 0 0

To deduce the form of the e-dependence of the periods, it is sufficient to calculate
their monodromies under ¢ — €2>™’¢. The calculation of these monodromies is a
bit tedious, but can be done from the construction of the cycles without knowing
any detailed expressions for the periods. The result is (denoting the periods with
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the corresponding caligraphic letters):

Va Via
o sw| b (4.4.58)
7275 77]!)
where w = 2™, and

Vi, 11 2 2 vy,

Vi 10 -2 0 Vi,

e ) S S | I (4.4.59)

T+, 0 0 1 0 T,

It is convenient to go to a basis of periods for which this monodromy matrix is in
Jordan form. Therefore we replace again the last four basis elements, by

T = VYV, -wV, (4.4.60)
Vi = T -wT (4.4.61)
T = T, —wT] (4.4.62)
Ve = Vi —wV (4.4.63)

The new basis indeed has the e-monodromy in Jordan form:

Ti 1 0 0 O T
Vi -2 1 0 0 Vi
1=l 00 2 o r (4.4.64)
V2 0 0 —2w? w? V2

This implies the following behaviour:

Vou: Vors Tous Tow = €/% analytic (4.4.65)
71 = analytic (4.4.66)
1
Vi = —2n—6,7'1 + analytic (4.4.67)
2me
T2 = €/%analytic (4.4.68)
1
V2 = —2¥7Lz + €2/3 analytic (4.4.69)
i

Small periods and the Seiberg-Witten curve

In the region of moduli space under consideration, the paths in the z-plane defining
the K3 2-cycles v, and v, stretch between sheets of ¥_, the branch of the g =5
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Riemann surface ¥ given by the equation £_ : P(xz) = —y/B'({). Expressed in
the variables b, A1, A\p and ¢, this equation becomes:

b 1
2373—;62/3A3x—§()\g+)\1)+ %(<+Z)+1—1:0 (4.4.70)
or, rescaling = €'/?# and expanding the square root, for finite ¢:
3 3.4. 1 4 b 1
7 —Z/\Oa:—z(/\0+)\1)+g(C+E)+O(e) =0 (4.4.71)

which is the equation for the genus 2 SU(3) Seiberg-Witten Riemann surface
(2.3.17), if we put b =4, up = —+(A§ + A1) and u; = —3J. Thus we see that in
the SU(3) rigid limit, a genus 2 branch of our general genus 5 Riemann surface X
degenerates and produces the Seiberg-Witten surface, with punctures ‘at infinity’,
where the rest of the genus 5 surface is attached.

For finite ¢ we furthermore have, using (4.4.38):

/ 0= §e“ H&- — &) + O(). (4.4.72)

ij

So for a CY cycle /A s;; obtained by transporting s;; along a path v in the (-plane,

we find
/ Qo) _ a/3Y3 / Asw, (4.4.73)
VA8 ™ Yi— Y-

where as in (2.3.3)

1. d¢
Asw = —— 2T = 4.4.74
sw=3 e ( )
and
v;- =~y lifted to sheet i of ¥_. (4.4.75)
Note that ;- — ;- is always a closed cycle on the SW Riemann surface (single

loop if 7 is open, double loop if closed). Thus, since Agw is also precisely the
Seiberg-Witten meromorphic one-form, we find that the first 4 CY periods are
nothing but the Seiberg-Witten periods. Note that these periods are indeed ‘small’,

as they are proportional to €'/3. Comparison with (4.1.21) furthermore yields
v 1By — V3
2273 "

Finally, using (4.4.28) and the comment below it, it is not difficult to show
that the intersection matrix of the 4 small Calabi-Yau basis cycles is precisely
equal to minus the intersection matrix of the corresponding four SW cycles. This
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is crucial to show the reduction of the local Kahler potential to the rigid Kahler
potential (see below).

It is clear that higher order e-corrections (gravity and other stringy effects)
to e.g. the SW BPS mass formula can in principle be calculated systematically in
this setup. There are two sources of corrections: the surface itself is corrected as
well as the meromorphic one-form.

Large periods

From (4.4.46)-(4.4.48), we see that the regular part of the CY periods should
become independent of the rigid moduli b, A1, Ag in the limit € — 0, since on one
hand the regular part of those periods should be continuous in B, )y, (at their
limiting values 0, 1,0) while on the other hand B, %, and 1 themselves become
independent of the rigid moduli when € — 0. This, together with (4.4.66)-(4.4.67)
implies in particular:

Ti = ki+0(e) (4.4.76)
Vi o= —212n—6(k1 + O(€)) + k2 + O(e) (4.4.77)

with kq, k2 constants independent of the rigid moduli (and k; # 0). Alternatively,
one could follow the argument outlined in the general discussion to establish the
independence of the rigid moduli of these constants.

Though not really necessary for the conclusions, it is possible to calculate
k1 from the exact solutions of the K3 periods given earlier. The result is k; =
V3iw? £, with By and Bj as in (4.4.41).

Kaihler potential and reduction to rigid SG

The Kéhler potential is expressed in terms of the periods as follows (in the second
line the small/large periods and corresponding intersection matrices are denoted
as in the general treatment):

K = —ln<‘/ Q/\Q)
= (e [ o] ova [ o] o)

14
= ~In (2 VT4 Vi) + 2 Tal? = [TiP) 416K

_ 14
|k1|2 + 2Tm (K ky) — E|k1|2 + |e*PK + 0(e4/3)> .

= —In
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This is precisely of the form (4.2.13), with L = ¢7!, a = @, b=2Im(kiks) —
\%|k1|2 and K as in (4.2.15) with |v|* = 25. We can therefore proceed exactly as
in the general discussion (which we will not repeat here). Note in particular that

we find for the SU(3) scale

31 L~YN
A=y2—— 2 44.
\/; k1 (aln|L)Z + )1/ (4.4.78)

Moreover, since we have the exact value of k1, we can also compute

ﬁ=\/§ @)

3
r(3)
and hence the constant k = 2r Mgy /Mg determining the ratio of string and string
gauge unification scales, defined in (4.3.4), is

_V3IGR)

CArT2(2)

=47 ~ 8.0075, (4.4.79)

&
B,

_B2

= ~ 0.122035. 4.4.80
= (44.80)




138 Chapter 4. Quantum Yang-Mills + gravity from IIB strings




Chapter 5

Attractors at weak gravity

Having studied the brane representation of BPS states in weak gravity quantum
Yang-Mills theory, one could wonder how these states look from the effective field
theory point of view. Are they also attractors, as the A/ = 2 black holes described
in chapter 37 From the general discussion there, one would expect they are. But
are they black holes then? Have they naked curvature singularities? Or are they
smooth solutions with only weak backreaction on the spacetime metric, like clas-
sical nonabelian Yang-Mills monopoles? Physically, one would expect the latter.
Indeed, as long as the fields are sufficiently slowly varying — which, recalling the
general discussion in chapter 3, can always be arranged by taking the charge IV of
the state sufficiently large — the effects of the massive nonabelian degrees of free-
dom are taken into account to an arbitrarily good approximation in the quantum
(abelian) effective action. Furthermore the nonabelian gauge bosons are always
massive in an A = 2 theory, and the monopoles/dyons decouple from the massless
fields in the infrared, so we don’t expect the effective action description to break
down in a fatal way anywhere if the charge is sufficiently large. Thus we expect at
least curvature singularity free solutions of the effective action corresponding to
semi-classical monopoles. Only then we can really say gravity can be consistently
decoupled from the effective theory, something which we expect to be the case for
an asymptotically free theory.

These arguments are of course rather heuristic, but we will see that, in a
quite subtle way, our expectations are indeed confirmed. By careful analysis of
the attractor flow equations in the weak gravity limit, we will be able to show that
we obtain indeed monopole solutions free of physical singularities, with finite mass
entirely residing in the fields, thereby solving some paradoxes and puzzles which
were encountered in earlier studies of this subject [64, 23, 89]. Not unexpectedly,

139
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these solutions are very similar to the conifold states we discussed in section 3.3.3.

Note that the above physical arguments do not hold for N/ = 4 Yang-Mills:
this theory has points in moduli space where the gauge bosons become massless,
and is not asymptotically free. The two derivative low energy abelian effective
action for an N = 4 Yang-Mills theory is indeed classical, and it is well known that
classical abelian gauge theories do not have singularity-free monopole solutions.
The discrepancy in this respect with the full nonabelian theory can be understood
from the fact that at the attractor point of the flows in moduli space , the gauge
bosons are massless and the coupling constant finite, so that they can definitely
not be neglected near the monopole core.

The outline of this chapter is as follows. We first derive the form of the
effective reduced action (3.3.5) for spherical solutions in the weak gravity limit,
which in principle should yield all static spherically symmetric solutions, BPS or
not. To sharpen our intuition, we give again an interpretation in terms of a particle
moving in a certain potential. We then restrict to BPS solutions, in other words,
the attractor flow equations in the weak gravity limit. We discuss properties of
the solutions we find, and comment and speculate on possible extensions of our
results.

An extensive review on classical dyons coupled to gravity can be found in [90],
while aspects of quantum dyons without gravity are studied e.g. in [91, 89, 92]
and in particular by Chalmers, Rocek and von Unge in [93]. Some related work
can be found in [63].

5.1 Attractor flow equations in the weak gravity
limit

In the following, we will make the same assumptions as in section 4.3.1. In par-
ticular, we will assume the ratio of gauge and Planck scales Ak4 to be very small.
We will also frequently make use of the notations and formulas introduced there
and elsewhere in chapter 4.

5.1.1 Spherically symmetric configurations at weak gravity

The weak gravity metric on moduli space, derived from (4.3.14) is (as can also be
read off ffrom (4.3.15)):

1 1 K3

i — 4+ =K 1.1
9AR (IH|MSU/A|2)2 |A|2 + dr sw (5 )
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Ki

95 = Egsum'; (512)
K21
gx N ﬁXBisz- (5.1.3)

where g, ;5 = 8i55sz is the Seiberg-Witten metric on rigid moduli space and
the string unification scale Mg, as introduced in section 4.3, is given by M2, =
R L R [k

3 Res ™ w3 |b|In(|A]"1k; 1)
under consideration and k a model dependent constant. In the approximation we
are making, the inverse metric is:

, with b the beta function coefficient of the gauge theory

g™~ (In|Msu/AP)? |A)? (5.1.4)

— 4 -~

g7~ gl (5.1.5)
Ky

g%~ —A(n|Msy/A?)? 9,0, K . (5.1.6)

We consider one of the ‘light’ 3-cycles 7. The relation between the supergravity
central charge Z(v) and the Seiberg-Witten central charge Zg,(7) is given by

(4.2.18):
Z = \/2GNZsp = N (5.1.7)

With this information, we can calculate for a given charge the potential V' as
defined in (3.3.6):

V 2 |V Zswl|2 + 2GN (I | Mstr /A1) X | Zsw|® + 2GN| Zsw|?, (5.1.8)

where
X=1—-(VIn|Zew|®, VK u)sw (5.1.9)

and we have denoted the scalar product (norm) on the Seiberg-Witten moduli
space by <'7'>sw (“ ’ ||sw)7 that is: (vfa vh)sw = Re [g;jwazfaﬁh] and ||vf||§w =
(V,Vsw- It is straightforward to check that y = 0 when the moduli space
geometry is ‘classical’, that is when Ky, is quadratic and the metric flat. From
the microscopic quantum field theory (or heterotic) point of view, the second term
in the right hand side of 5.1.8 can therefore be interpreted as a ’gravitational
(i.e. ~ Gn) backreaction’ correction to the potential! which is caused by loop and
nonperturbative quantum field theory effects. x also vanishes in the ultraviolet free
(vanishing electric coupling) limits of moduli space (¢ — oo in SU(2) case), since
the Kahler potential becomes effectively quadratic there. However, it does not
vanish (it even diverges) for the infrared free (vanishing dual magnetic coupling)

IRecall the physical meaning of the potential V is the energy density of the electromagnetic
fields (including the graviphoton).
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Figure 5.1: —x|Zsy|? plotted as a function of u in a neighborhood of u =1 for a
purely magnetic charge.

limits (¢p — 0 in the SU(2) case) as the Kéhler potential does not become
effectively quadratic there (see for example (2.3.13)). On the other hand, the full
second term in V diverges in the ultraviolet free limits, while it is zero in the
infrared free limits if the charge under consideration is that of the particle with
vanishing mass in this limit (in fact, the complete potential then vanishes, as it
should of course for the energy density of the fields of a zero momentum massless
particle). In general, xy can be positive or negative, depending on the relative
angle of the gradients of K and In |Z|?, but at weak electric coupling, it is always
positive. In fig. 5.1, —x|Zsw|? is plotted as a function of u in a neighborhood of
u = 1 for a purely magnetic charge. Note also that the factor 2Gn (In |[Msy/Al?)?

G’NL]\;‘%Z with Mg the string scale and b the beta-function
s
coefficient of the gauge theory. Hence in a large N (i.e. large b) limit with fixed

string and Planck scale, this term will be suppressed as well.

in front of x is equal to

We will come back to this term and give a geometrical interpretation below.

Finally, we plug the expressions for the moduli space metric in the reduced
effective action (3.3.5) (with h = 1) for general static spherically symmetric solu-
tions, and obtain:

1 o0 .
T - 2 _ 2
Sin/ 2GN/0 dr {07 — & +

[A/AP
(In [Mse/A?)?
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—/ A7 {gou 70"’ + (i Ksui' 5 + c.c) + 527V} (5.1.10)
0

with V as in (5.1.8).

From this action, by completion of squares, or simply from (3.3.10) and
(3.3.11), by substitution of (5.1.4)-(5.1.6), one obtains the weak gravity approxi-
mation to the attractor flow equations:

U = —V2GneY |Zwl (5.1.11)

AJA = —V2Gn eV (In|Msy/AP)? f(u, @) (5.1.12)

Wt = V299, eV 8| Zswl, (5.1.13)
where . B

Flu,@) = (1—g;zﬂaiszaj ln|st|2) | Zsw| (5.1.14)

As expected, the variation of the scale A and the metric red shift factor eV vanishes
when G — 0. The factor f appearing in the r.h.s. of (5.1.12) is closely related to
x in (5.1.9): x|Zsw| = Re f. Analogous to the analysis of x earlier, it can be seen
that f vanishes in any ‘classical’ limit of moduli space, where the coupling of the
charge I' to the electromagnetic field vanishes. Decomposing Agy cohomologically
as Asw = )\g‘;‘e) P )\g)‘;é) =N B Ei%, some elementary manipulations give the
following geometrical interpretation to f:

f=eio / AOD. (5.1.15)
Y

Here « is the phase of Z. This expression makes it obvious that f vanishes in
the classical case, since Agw itself is a holomorphic (1,0)-form then. From the
microscopic nonabelian field theory point of view, the space variation of the gauge
theory scale A is therefore entirely a quantum effect, in the presence of gravity
(that is, string theory).

Massless and Schwarzschild charged black holes

The weak gravity solution can be used to study Strominger’s massless ‘black holes’
[68]. If we take Z to be already zero at spatial infinity, the attractor flow equa-
tions gives simply flat space with constant moduli (but still the — energyless —
electromagnetic field of a point charge). We shouldn’t expect more of course for
a massless particle at rest! However, we can let the rest mass approach zero and

2This name is purely historical. They are just particles, not black holes.
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simultaneously boost the solution along the z-axis to approach the speed of light,
keeping the energy E = v/2|Z (7 = 0)|/v/1 — v? fixed. When v = 1/v/1 —v2 = o0,
the boosted metric is given by

ds® = dt* — dz’® + 4y°U(dt — dzx)? — dy® — dz?, (5.1.16)

and, for nonzero x — t, 7 — =

ﬁ . Denoting U' = 7*U and YV = V22,
we have |[Y(r = 0)] = E, and from the weak gravity attractor flow equations
(5.1.11)-(5.1.13):

A = const. (5.1.17)
du’
= - Y 1.1
7 Gn|Y]| (5.1.18)
dy] k
=0 - ___ - 1.1
do ey (5.1.19)

with k a positive constant. This implies |Y'| = const. = E and U’ = —GnEo.

So we find a simple but nontrivial solution, with Z = 0 everywhere, the
electromagnetic field strength of a point particle boosted to the speed of light, and
a “shockwave metric” (due to the combined effect of expansion of the core region
in the rest frame and longitudinal Lorentz contraction while taking the limit):

4GNE

ds? = dt* — dz?® — dy?® — dz? —
|z — 1]

(dx — dt)>. (5.1.20)

This is the Aichelburg-Sex] metric for a massless particle [94]. It is locally flat and
can be brought to standard form by changing coordinates as t' = t F2GEIn |t — x|,
' = 2 £ 2GEn|t — x|, where the upper (lower) sign is to be used for t —z > 0
(t—z <0).

At conifold points of moduli space (Z(y) = 0), the low energy effective field
theory also allows 7y-charged Schwarzschild black holes with arbitrary mass, with
moduli fixed at the conifold, as can be seen immediately from the action (3.3.8).
Their extremal limit are the Strominger massless BPS states. This freedom corre-
sponds to the freedom to add a bare mass to the massless monopoles at the u =1
point in Seiberg-Witten moduli space, thus breaking (in field theory) explicitly
supersymmetry to A" = 1. From the point of view of the effective particle motion,
this corresponds to a trajectory on the top of the —V potential, with arbitrary
initial velocity in the U direction, as was already indicated in fig. 5.2.
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5.1.2 Rigid limit

If we send Gy all the way to zero (i.e. if we take the rigid limit), the dynamics of
the gravitational field and the scale decouple and we can consistently put U = 0,
A = const.. Then (5.1.10) becomes simply

e i 1
Sun/T = _/ A7 (G 008 + 519 Zu 2, (5.1.21)
0

which could also have been obtained directly from the rigid effective action of
course. By completing squares, one finds immediately the attractor flow equations
in the rigid limit:

~S4n/T = £V2( Zsu (0)] ~ | Zsu(c0)]) + / dr i + V29,351 Zoul I, (5.1.22)
0

which is minimized when
Wt = —V2gY 35| Zsu)- (5.1.23)

The other sign again leads to an unphysical infinite energy solution. A very useful
property of the rigid attractor flows is the fact that the phase of the central charge
is constant along the flow, as can be verified by a short calculation. Essentially,
this is thanks to the holomorphicity of Z in the rigid limit.

The rigid limit of the formulas of section 3.3.5 is also very useful. In particular,
equation (3.3.58) becomes

) 1 )
Im (e~*V22!,) = 57" v 7 4 [Im (e 722" r—o, (5.1.24)

with e!® the (constant) phase of Z,,.
The rigid limit of (3.1.30)-(3.1.31) is of practical interest as well:

Y12 = 2Im [g,zg];u aist,l 55st,2] (5125)
Y1-*¥Y2 = 2Re [g,zg];u 6ist,l éstw,2] (5126)

5.1.3 Solutions in the rigid limit

Since the O(GN) corrections are small, it is sufficient in first approximation to
investigate the exactly rigid case. We will do so by reconsidering the analysis in
section 3.3.2. Again the system is equivalent to a particle moving in a certain
potential, —V in the exactly rigid case, —e?YV if we do consider the gravity
perturbation. Crucial again are thus the critical points of V. In the following, we
will drop the subscript ‘SW’ to indicate rigid quantities, since we will restrict to
the rigid case anyway for now.
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Critical points

Evidently, critical points of Z are automatically minima of V = [[VZ|?, with
critical value V.. = 0. Also, since Z is analytic, and since we already know from
section 3.3.2 that |Z| can only have minima, Z must be zero at its critical points.
Alternatively, one can see this as follows. From (5.1.26) it follows that [yAxy =0
at a critical point of Z, where 7y is the cycle under consideration. Since the Hodge
product is positive definite, this implies that v is a vanishing cycle, which has
Z = 0 (at finite points in moduli space).

In the pure SU(2) Yang-Mills case (completely decoupled from gravity), the

converse is also true, in the sense that minima of ¥ must be minima of | Z|. Indeed,
2
for a central charge Z = n¢ + m¢p, we have V = % = % with 7= 03¢p

m__ 3 Minima of V are therefore maxima of Im 7. Since 7 is analytic,

n+mrt
this maximum has to be a pole, so 0 = V = ||V Z||? at this point, that is, it is a

critical point of Z as well (and by the previous argument also a zero of Z). It is
not clear to us if and how this generalizes to higher rank gauge groups.

and 7 = —

Anyway, let us focus now on critical points of V' which are also critical points
of Z. Then, since V., = 0, the potential —e2VV is flat in the U direction at the
critical point, as shown in fig. 5.2.

Rigid BPS solutions

As argued above, the cycle v must vanish at the critical point. Therefore, we
expect the situation close to a critical point to be very similar to our discussion of
the conifold attractor in section 3.3.3. Take the example of SU(2) Yang-Mills. The
candidates for spherically symmetric BPS solutions are the charges which can have
vanishing mass: here the monopole and the elementary dyon*. Note that these
are the only candidates: there will be no spherically symmetric BPS solution for
example for a purely electrical charge (a W-boson). This is a good thing, since
the W-bosons are in a BPS vector multiplet, and by the arguments of section 3.3,
we do not expect a rotationally invariant bosonic solution for N' = 2 BPS vector
multiplets. We will come back to this later. A quick glance at (2.3.13) and (3.3.36)
learns that close to u = £1, the geometry is indeed that of a conifold point. The
exact potential —V for v a magnetic charge in a neighborhood of u = 1 is given
in fig. 5.3. Note that we have indeed a maximum for —V. Though the top is a
sharp spike, the details of the equations are such that we can find a continuously

3We assume m # 0. The case m = 0 is completely analogous.

4In the usual cut conventions (i.e. all cuts as much as possible to the left in the u plane), the
elementary dyon has charge 4(1,4+1), the relative sign between electric and magnetic charges
depending on how the singularity is approached (+ if from Imwu > 0).
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Figure 5.2: The effective particle potential —e?VV near a critical point in the weak
gravity limit. The potential is flat in the U direction (equal to zero) at the critical
point of V. Trajectory a is a typical weakly gravitating BPS solution. Trajectory
b is a charged Schwarschild black hole with vanishing electromagnetic energy in
a Z = 0 vacuum. Trajectory ¢ correspond to a generic non-BPS black hole. V
itself is drawn as a smooth potential for the sake of the picture, but actually, it
will have a sharp spike-like top in general.

Figure 5.3: Potential —V for the effective particle in a neighborhood of u = 1 in
the Seiberg-Witten plane.
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Figure 5.4: Value of |u — 1| as a function of the radial distance for N units of
magnetic charge, with u(r = oo) = 2 + 4. The attractor point is reached at
r = r, = 1.56NA. Though the radial derivative of the solution does not look
continuous on this picture, it actually is, but the drop to zero slope happens over
a very small distance.

differentiable BPS (attractor flow) solution for the effective particle motion, ending
at the top, as we have seen for the conifold case in section 3.3.3. For flows not close
to the critical point, numerical analysis is needed. As an example, the numerically
integrated flow for N units of magnetic charge, with u(r = co) = 2 + i is shown
in fig. 5.4. The mass of such a monopole is 0.942NA (the mass of the gauge
boson at this point in moduli space is 2.947A). The attractor point is reached at
the finite radius r = r, = 1.56 N/A. This core radius increases when u(r = o)
moves towards the attractor point. Inside the region r < r,, the modulus v is
constant, 4 = 1. Only the electromagnetic field F is nonvanishing here, since it is
as always given by (3.3.3) (here with eV = h = 1). However, this electromagnetic
field contains no energy, as can readily be seen by recalling the fact that 87r1T4V is
nothing but the electromagnetic field energy density €. A plot of the e.m.f. energy
density as a function of radial distance for our example is given in figs. 5.5 and
5.6. Note that this is half of the total energy density for BPS solutions, as implied
e.g. by (3.3.7) (or directly from the attractor equations).

An exact formula for the core radius of a charge N magnetic monopole can
be obtained from (5.1.24) together with .- 3 = 2 and the fact that Z'(r,) = £ for



5.1. Attractor flow equations in the weak gravity limit 149

Figure 5.5: Electromagnetic energy density € as a function of the radial coordinate
for the flow of fig. 5.4. This is half the total energy density. The density drops to
zero inside the core r < r,. The dotted line is the energy density the electromag-
netic field would have if the moduli were kept constant. This diverges of course at
r=0.

Figure 5.6: Energy distribution over space, as in fig. 5.5. Most of the energy is
localized in a shell surrounding the core.
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7' = a (as can be read of from (2.3.11)):

_ E |¢D(0)| )
A V2Im [6p(0)((0) — 2)]

(5.1.27)

T

When u is large (i.e. weak electric coupling), this reduces approximately to
N 1 N
Ty R ——— = ———,
A2y /lul V200l

which is exactly equal to the core radius of a classical nonabelian 't Hooft-Polyakov
monopole.

(5.1.28)

Force fields and potentials

Apart from the energy, another measurable property of an electromagnetic field is
the force it exerts on a test particle. For a test particle of unit magnetic charge in
the field of a magnetic monopole, this is given by (3.2.25) as F = NV (u(r))/r?,
plotted for our numerical example in fig. 5.7. The force drops to zero inside the
core, in agreement with the fact that the ‘dual’ electromagnetic coupling constant
is zero at u = 1 (in fact, it is not difficult to see that V' is actually proportional to
the dual coupling).

More generally, also for more general groups, from (3.2.21) and (3.2.22), it
follows that the electromagnetic force, on a test particle with charge s, in the
field of a particle at rest with charge 1, is given by (3.2.24):

— —
—

1 e 1 €
Fem. = 571 %72 = tanoe 5 X7, (5.1.29)
where ¥ is the velocity of the test particle. Using (5.1.26), this becomes:

_ e 1 e .

Fe.m. = (VZl,VZQ) 7‘_2 + 5’)/1 " Y2 7‘_2 XU (5130)
If the fields satisfy the attractor flow equations for the charge v, of the particle at
rest, a short calculation using (5.1.23) shows that the force can be nicely derived
from a potential:

~ . ) e o (1
Fom ==V (=V2Re(e ™ 2)) - L2 <;> x 7, (5.1.31)

where «; is the (constant) phase of Z;. For colinear charges, i.e. 71 ~ 72, the
potential is equal to F1/2| Zs|, the sign depending on the relative sign of the charges
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Figure 5.7: Static electromagnetic force F’ as felt by a test particle of unit magnetic
charge, in function of the radial distance from the monopole of fig. 5.4. This is
half the total force felt by a static test particle with unit magnetic charge opposite
to the charge of the monopole at r = 0. The force drops to zero inside the core, in
agreement with the fact that the ‘dual’ electromagnetic coupling constant is zero
at u = 1. The dotted line shows the force if the moduli would be kept constant.

(minus for equal signs). The attractor flow equations imply this potential to be
strictly monotonous till the core is reached, and approximately Coulomb at large
r.

On the other hand, the force on the test particle (72) due to scalar exchange
is easily seen from (3.2.17) (giving in the rigid limit Sppr = [ Mds = [/2|Z|ds)
to be

— =

F.. = —V[V2| 2. (5.1.32)

Therefore the total static potential W for the test particle - in the BPS field of
M is '
W = V2[|Z2| — Re (e 1 Z,)]. (5.1.33)

Denoting the (variable) phase of Z, with a2, we can rewrite this as:
W:2\/§sin2(¥)|Z2|. (5.1.34)

Note that W is always positive, and that it will reach a minimum (zero) when
a; = as (it is of course flat zero when the charges are positively colinear). This
result is interesting: it shows that when the attractor flow of 1 passes through
a point where the phases of Z1 and Zs are equal, there is a stable point for the
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Figure 5.8: The static force potential W for a positive electric test particle in the
field of a positive charge N magnetic monopole, with modulus at infinity equal to
—1.2i. The minimum of W is located at the radius where the flow intersects the
curve of marginal stability.

test particle v in the field of 1. Note that in a vacuum with equal phases of Z;
and Z,, the heaviest of the two particles is only marginally stable w.r.t. decay to
the other (plus a particle with complementary charge of course). For the SU(2)
case, this means that such minimum, if it exists, is always located at the radius
where the flow intersects the curve of marginal stability. A numerically integrated
example is given in fig. 5.8. The appearance of stable points suggest the possibility
of bound states. We will come back to this later.

Returning to the SU(2) example, we get for the static electromagnetic force
coefficients linear combinations of the following cycle products: -3 = —1/Im 771,
B-*a =Rer/ImT, a-*xa =1/Im7. From e.g. the approximate expressions (2.3.11)
and (2.3.14), it is straightforward to check that also the e.m. force on a static elec-
tric test particle ~ a - %3 ® will drop to zero at a monopole core. However, the
magnetic force on a moving electric particle will stay finite, since always o - 5 = 2.
The e.m. force between two Coulomb electric test particles on the other hand is
proportional to a-*a, which diverges when approaching the core region — a signal
of electric charge confinement at u = 1.

5Note that this is due to a nonzero theta-angle Re 7.
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Figure 5.9: The potential V' for an electric charge (« cycle). V is multi-valued
when one allows encircling singularities of moduli space (such that « transforms
to another cycle, a + 2nf in this case). There are no extrema at finite u.

Electric BPS states and suicidal flows

Having found these nice solutions for magnetic monopoles and elementary dyons,
one of course wonders what happens for the other BPS states which exist at weak
coupling: the (n,1) dyons, and the pure electric charges. Let us consider for
example the electric particle (corresponding to the « cycle). The potential V' does
not have a minimum at finite u for this charge. This follows from the argument
that the cycle under consideration must vanish in a critical point of V', plus the
fact that neither the «a cycle, nor any of the cycles generated by monodromy from
it, vanish in a point of moduli space. For example in a neighborhood of u = 1,
the potential V' for an electric charge is shown in fig. 5.9, which also elucidates
probably how it can be that V' has no extrema at finite points of (the covering
space of) moduli space for this charge.

There is a minimum of V' at u = oo (in the rigid approximation; it can indeed
be checked from (2.3.9) that lim,_,o V = 0), but since (5.1.22) implies that the
energy of a solution is always larger than v/2|Z(c0) — Z(0)|, the energy of a solution
flowing to infinity is infinite, so certainly not acceptable as a BPS state. This does
not exclude solutions flowing to large values of u when gravity is turned on again,
only that these solutions then will involve gravity in an essential way. It can indeed
be seen from (5.1.8) that the minimum at infinity will get displaced to finite moduli
values when the Newton constant G is turned on. The corresponding solution



154 Chapter 5. Attractors at weak gravity

will be a black hole, and will not be BPS. It cannot be identified with the field
theory vector multiplet.

If we try to solve the attractor flow equations for v = «, we find a ‘false’ or
‘suicidal’ flow, as in case 2 in section 3.3.3, terminating on a regular point of the
line of marginal stability where Z = 0. We will discuss this phenomenon in more
detail for the (n,1) dyons.

All in all we conclude for SU(2) that there are no electrically charged, spher-
ically symmetric BPS solutions at weak gravity. We should be happy with this of
course, since the electric BPS states are in a vector multiplet, and as explained in
section 3.3, we do not expect a spherically symmetric solution without fermionic
excitations in this case.

We can understand the unevitability of this situation purely from asymptotic
freedom and the unstability of the electrically charged particles at strong coupling.
Asymptotic freedom means the coupling grows when the mass of the electric par-
ticle decreases. On the other hand, attractor flows tend to minimal mass, hence
maximal coupling in this case. Given the fact that the particle does not exist
at strong coupling, it is therefore impossible to have a legitimate attractor solu-
tion. Turning this argument around, we conclude that the field theory describing
BPS hypermultiplets at weak gravity must be infrared free. This is also what one
expects from the general V' = 2 beta function results.

Of course, there does exist a purely electrical BPS multiplet in the N' = 2
SU(2) theory. So how is it realized in the effective field theory? We believe it
should be considered as a bound state of an elementary dyon and a monopole with
opposite magnetic charges. Evidence for this proposal is the charge matching, the
stability of the constituents at all moduli values and the appearance of a potential
as in fig. 5.8 for the force on a test dyon in a monopole field and vice versa.
This suggests one should look for a 2-centered BPS solution with charges (1,1)
resp. (0,—1) in the centers. We have not been able to find such a solution however.
Other possibilities worth looking at are solutions with fermions turned on (of which
some should give a spin zero solution according to the A" = 2 multiplet logic) and
solution with charge distributed over a surface in stead of concentrated in points.
The connection with 3-pronged strings (see below) and the ‘3/7 brane picture’ of
N = 2 theories could provide useful hints towards the solution of this problem.

Below, for the higher dyons, we will present a quantum mechanical picture of
such bound states which is quite attractive, and makes contact with the 3-pronged
string picture.



5.1. Attractor flow equations in the weak gravity limit 155

Figure 5.10: Monopole attractor flows to u = 1 in the Reu > 0 part of moduli
space. The fat line represents a cut.

Higher dyons

The higher dyons, with electric charge |n| > 2 and magnetic charge |m| = 1,
present a puzzle. In general, the same problems as for the purely electric charge
arise; a spherically symmetric BPS solution does not exist.® On the other hand,
such BPS states can be obtained at weak coupling either from a monopole (for
even n) or an elementary dyon (for odd n) by performing a number of times the
monodromy u — €2™u, as can be seen from (2.3.4)-(2.3.5). It seems quite unlikely
that the attractor flow would all of a sudden cease to exist at a certain point while
we are continuously varying the moduli at infinity as u — €?*®u, ¢ € R, for a large
initial value of u. Nevertheless, this is exactly what happens.

To see this, consider the flows to a (0,1) monopole core while we are thus
varying the modulus at infinity. In the part of moduli space with Reu > 0,
nothing can go wrong, as can be seen from fig. 5.10. But when we keep on
varying counterclockwise the modulus at infinity — which we assumed to be large
— we get into the Reu < 0 part, where eventually (when exactly depends on
the precise choice of cut position), the cycle under consideration will be assigned

6Depending on where one puts the cuts in moduli space, there can be a limited range of
moduli at infinity for which such solutions still exist for charges obtained from the monopole or
elementary dyon by a single monodromy about u = co. Such objects should rather be considered
as elementary dyons or monopoles however, since the corresponding flows necessarily pass through
this cut again, such that sufficiently close to the attractor point, the charge is again a multiple
of the vanishing monopole or dyon charge. See also fig. 5.11.
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Figure 5.11: Monopole attractor flows to v = 1 in the Reu < 0 part of moduli
space. The dotted lines indicate the ‘false flows’ which one obtains when one tries
to pull the flows through the u = —1 singularity. The fat straight line to the right
of the singularity represents a cut. In the usual conventions, there is also a cut to
the left, but we have not indicated this one her.

charge (2, —1). So let us follow the flows further there in fig. 5.11. Here something
does happen. Everything goes well till we reach the flow touching the v = —1
singularity. When we try to ’pull’ the flow through the singularity, i.e. when we
rotate the modulus at infinity a little bit further, a catastrophe happens: the flow
now passes through the cut at the right side of u = —1, such that its charge changes
identity w.r.t. the neighboring flow at its left hand side, and in particular is no
longer a ‘good’ monopole charge. The solution breaks down; the flow turns into a
‘false’ one, again terminating on a regular point of the line of marginal stability,
as in case 2 in section 3.3.3. Let us clarify this a bit.

First, consider fig. 5.12, where the potential V (u, @) for the effective particle
describing the u(7) dynamics in this case is plotted as a function of u. The
indicated trajectory corresponds to the fattened flow in fig. 5.11. When moving
the starting point of the particle more and more to the right (corresponding to
counterclockwise rotating the modulus at infinity ), at a certain point, the particle
will no longer be able to reach the top of the monopole potential (at least not in
a BPS way, that is, such that its total energy is zero). This makes it intuitively
clear why the spherically symmetric BPS solution ceases to exist.

One can also understand this at the level of the flows. The attractor flows are
gradient flows for the function |Z], that is, they flow down the hill towards minimal
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Figure 5.12: The potential V(u,u) for the effective particle describing the u(7)
dynamics, in the situation shown in fig. 5.11. The indicated trajectory corresponds
to the fattened flow in fig. 5.11. When moving the starting point of the particle
more and more to the right, at a certain point, it will no longer be able to reach
the top of the monopole potential (at least not in a BPS way, that is, such that
its total energy is zero).
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Figure 5.13: |Z] as a function of u for the flows of fig. 5.11. The indicated flow
corresponds to the fattened flow in fig. 5.11. Beyond a critical flow, ‘down the
hill’ no longer leads to the monopole zero of Z.

|Z]. In fig. 5.13, |Z] is plotted as a function of u for the case at hand. Again, the
indicated flow corresponds to the fattened flow in fig. 5.11. Rotating the modulus
at infinity, at a certain point (namely at the flow touching v = —1), ‘down the
hill’ no longer leads to the monopole zero at u = 1, but to a certain regular zero
of Z (on the line of marginal stability), as shown in fig. 5.14 (a). This is a false
flow however, in that it does not correspond to a genuine solution of the equations
of motion. Indeed, as one can see in fig. 5.14 (b), the effective particle potential
is not extremal at this point; it is just an ordinary regular point, and the particle
will simply continue its journey down the potential hill there, corresponding to
an ‘inverted” BPS flow, which, as we have seen several times already, leads to an
unphysical, singular, infinite energy solution.

Now if the higher dyons are not realized as spherically symmetric BPS solu-
tions, what are they then? And how can they be continuously connected to the
spherically symmetric monopole or the elementary dyon? Again, we believe they
are realized as bound states of monopoles and elementary dyons. In the case at
hand, this would be two elementary dyons of charge (1, —1) bound to the original
charge (0, 1) monopole.

There are good reasons to believe in this. First of all, when considering
the dyons as test particles in the monopole field, or vice versa, we find in the
situation at hand a stable equilibrium at finite distance, as in fig. 5.8. Furthermore,
quantum mechanically, such a bound state would indeed be continuously connected
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Figure 5.14: Left (a): |Z| as a function of w for the continuation of the flows of
fig. 5.11 beyond the critical flow. This connects smoothly to the lower sheet of
fig. 5.13. The indicated flow corresponds to one of the dotted lines in fig. 5.11.
It is a false flow, terminating at a regular zero of Z. Right (b): the corresponding
effective particle potential. Here we see clearly that the flow is indeed a false one,
not corresponding to a solution of the equations of motion. The dotted lines show
how the true particle motion continues beyond the false attractor point.
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to the monopole, in the following sense. Suppose we have a monopole with wu(r)
infinitesimally close to the critical flow. Now deform u(r) to a trajectory in moduli
space which lies just at the other side of the critical flow (this does not have to be
a solution to the equations of motion and in particular will be excited in energy
above the BPS bound). Denote the radius at which u = —1 in the critical flow by
r.. Now imagine that just before the move a virtual monopole-antimonopole pair
was created, to be destroyed again just after the move, and that the monopole
happened to be at r > r. when the critical trajectory was crossed, while the
antimonopole was at 7 < r.. Then the spacetime trajectory of the monopole
antimonopole pair, mapped to moduli space via u(r, t), encircles the point u = —1.
Consequently, there is a monodromy on the monopole charge, of which the net
result is that we are left with two (almost massless) elementary dyons when the
monopole-antimonopole pair is destroyed again! Now if the presence of the dyon
charge manages to relax the energy of the complete configuration back to its
BPS bound, this state born out of a quantum fluctuation will actually survive
as a stable state, which we can deform further maintaining the BPS property by
further rotating the moduli at infinity!

How would such a bound state look like quantum mechanically? The following
picture has some satisfying features, though it is not clear how serious one can take
it. Fix the overall translational zeromode” by putting the origin of our coordinate
frame at any of the particle positions. Say we put it at the monopole position.
We expect the wave function of the dyons to be concentrated at r = 7,5, the
radius where the v modulus is at the line of marginal stability, since there lies
the minimum of the potential for the dyon considered as a test particle in the
monopole background. A charge distribution with a (0, 1) monopole at r = 0 and
2 units of (1, —1) dyon charge smeared out over a spherical shell at r = rp,s will
produce a BPS field configuration which is a (2, —1) attractor flow for r > rp;s
and a (0,1) flow for r < 7,,5.> See fig. 5.15. The mass of the dyonic shell is
2v/2|Zy,_1(ms)|, with Z; _;(ms) the dyon central charge at the marginal stability
point u(ry,s). The mass in the fields outside the shell is according to (5.1.22) equal
t0 V/2(|Z2,—1(00)| — | Z2,—1(ms)|), with Zs _;(c0) the central charge at 7 = oo of
(2,-1), and Z> _1 (ms) the same thing at the marginal stability point. The mass of
the fields inside the shell is in obvious notation v/2|Zp ; (ms)|. Thanks to the fact
that the phases of Z; _1(ms) and Zy are equal at the marginal stability point,
the total mass of the system (assuming supersymmetry eliminates the zero point
energies) adds up to \/§|Z27_1(oo)|, that is, the BPS bound is saturated! The

"This should be considered as giving a boundary condition to calculate expectation values of
fields with the effective field theory. Also for the case of a single monopole, the position had to
be fixed before we could use the effective field theory. In the same spirit, the moduli at infinity
had first to be fixed, as they have a flat potential.

8The flow for r > rys also determines the value of 7.
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Figure 5.15: Two possible representations of the BPS bound state of two dyons
and a monopole, depending on how we eliminate the translational zeromode. Left:
monopole at the center, dyons in a shell. Right: dyons at the center, monopole
in a shell. The attractor flows are indicated by arrows and labeled by the charges
they correspond to.

dyonic shell can also be represented as a charge 2(1, —1) flow ‘inserted’ at 7 = ry,s
in the {(2,-1), (1,0)} flow, starting from the marginal stability point. This is how
the field expectation values would look around the dyons if we would have started
by taking the dyons at the origin of our coordinate frame in stead of the monopole
(in that case the monopole would be represented as a flow insertion). This can all
be summarized nicely in a ‘3-pronged flow’ picture as in fig. 5.16.

Analogously, (n,£1) dyons are represented as bound states of n elementary
dyons and n £ 1 monopoles, with opposite magnetic charge.

Note that the construction implies that as the modulus at spatial infinity
approaches the line of marginal stability, the distance between the components
of the bound state will grow (since marginal stability is reached closer and closer
to 7 = 00), till eventually, when one reaches the MS line, the components are at
infinite distance and the state decays in its components. This is a very pleasing
physical picture of the decay of these states, which is indeed known to occur when
the vacuum crosses the curve of marginal stability in moduli space! [5] Also, the
above construction of bound states is clearly not possible inside the MS curve,
again in agreement with physical expectations.

There is a remarkable connection with a completely different picture of N' = 2
SU(2) Yang-Mills theory in string theory: in type IIB string theory, one can
reproduce the Seiberg-Witten effective action as the low energy effective action of
a noncompact 3-brane in the background of a (0,1) and a (1,+1) 7-brane, placed
at finite distance from each other [95]. The geometry transverse to the 7-branes
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Figure 5.16: The ‘3-pronged flow’ picture representing a charge (2, —1) bound
state of a monopole and two dyons. The state can be considered as a (2, —1) flow
followed by a (0,1) flow, with a 2(1, —1) flow ‘inserted’ at the transition point (at
marginal stability), or as (2, —1) followed by 2(1,—1) with a (0, 1) insertion. The
picture is the same in both cases. The total energy is just the sum of the energies
of the different flows, and saturates the BPS bound. The dotted line indicates the
false flow obtained by continuing the original (2, —1) flow. ‘MS’ indicates the line
of marginal stability.
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turns out to be precisely the Seiberg-Witten geometry. BPS states correspond
to (0,1) or (1,£1) strings stretching between the 3-branes and the corresponding
7-branes, the former giving rise to monopoles, the latter to elementary dyons [96].
The minimal energy stretched strings turn out to coincide with the attractor flows
in the transverse plane. Precisely at the critical flow considered above, also the
single stretched string ceases to be the minimal energy solution. Instead, the
so-called three pronged strings further represent the BPS states [97, 98]. Such
3-pronged strings look exactly as the 3-pronged flows in fig. 5.16 (which was of
course also inspired by the string picture). The pure electric charge corresponds to
a three-pronged string as well in this picture. Incidentally, the ‘spontaneously cut-
off’ solutions we found for the monopole and the dyon were recently reproduced
in the 3/7 brane picture in [70]. There are some similarities with [71] as well.

Charges not in the BPS spectrum

Quantum A/ = 2 SU(2) Yang-Mills theory is believed not to have other BPS states,
apart from those having (a multiple of) the charges we have considered thus far.
Can we see this from the low energy effective field theory?

Clearly, none of these charges will have a spherically symmetric BPS solution.
For many of them, a ‘bound state’ construction as e.g. for the (n,1) dyons is
furthermore not possible, because an interaction potential with stable points at
finite distance, as in fig. 5.8, does not arise. However, it seems that the above
considerations do not exclude bound states which are not actually in the BPS
spectrum, though more careful study could perhaps achieve this.

A similar problem arises in the 3-pronged string picture of BPS states. There
this is solved by lifting string theory to M-theory.

It would be interesting to study non-BPS states of the field theory in this
context. These have attracted quite some interest recently [99]. The relation with
the non-BPS bound states found in [57] could also be worth investigating.

5.2 Multi monopole dynamics

As explained in section 3.3.4, the results for spherically symmetric solutions can
immediately be extended to equal charge N center solutions, simply by replacing
T by the potential

11
e 21
T N;n, (5.2.1)
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Figure 5.17: The boundary of the core of an N-monopole configuration is simply
given by the equipotential surface 7 = % Zf;l 1/r; = r., where r, is the one
monopole core radius.

where r; is the distance to the ith center. An example of how such a configuration
can look like is given in fig. 5.17.

An interesting and important question is what can be said about the low en-
ergy dynamics of such N-center configurations. A beautiful and very powerful tool
to tackle this problem is the moduli space approximation [100]. This amounts to
separating collective coordinates from fluctuations, integrating out the fluctuations
and considering the limit of small time derivatives of the collective coordinates.
This produces an effective action for the collective coordinates x%, which will be
of the general form

1 dz® dx®
Seoll = §/dtGab(l‘)Wﬁ'

The collective coordinates parametrize a space called the moduli space (not to
be confused with the moduli spaces encountered thus far), and Gg(z) can be
considered to be the metric on this space. The action (5.2.2) is then simply the
action for nonrelativistic geodesic motion on moduli space.

(5.2.2)

The moduli space metric for Reisner-Nordstrom black holes was obtained in
[101]. Some aspects of the classical N' = 2 SU(2) Yang-Mills monopole moduli
space were discussed in [102].

For a classical SU(2) BPS N monopole configuration, the collective coor-
dinates can be identified with the monopole positions together with an internal
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angle for each monopole, associated with the unbroken U(1) gauge symmetry. If
the angles can effectively be considered as compact S* dimensions of moduli space,
one would expect these modes to freeze out when doing quantum mechanics and
considering the extreme low energy limit, as there will be a mass gap to the ex-
citations of the angles. The internal angle is in a certain sense still visible in the
low energy theory however: its excitations correspond to the (n,1) dyons. So (if
the mass gap indeed exists) we expect only the monopole positions to remain as
collective coordinates. This is indeed what we seem to get.

Our aim is thus to obtain the moduli space metric on our collective coordinate
space M = ]RSN/SN, in the U(1) low energy Seiberg-Witten theory. Denote
the vector potential as in (3.1.49) by A. For a static multicenter monopole BPS
solution, we have from (3.3.3), generalized to the multicenter case:

A=A4Ap;, ®8, (5.2.3)
where zszir is the Dirac multimonopole vector potential, satisfying

V x Apir = V. (5.2.4)
Here we have put for convenience v/v/4m = 1 in (3.3.3).

We expect from general considerations [102] that, in the gauge V-A=0, the
action (5.2.2) is here

2

Scout = i/dt/d% ‘ % 2 + % (5.2.5)
1 dul> 1 ax\’
= E/dt/d%:guﬂ T + iﬂ-*ﬁ (E) (5.2.6)
1 dul® dx\’
= E/dt/dSwgm—b 7 + 9“0y ? (E) (5.2.7)
(5.2.8)

We have no direct proof for this however. A short calculation involving the rigid
attractor flow equations (5.1.23) transforms the latter expression to

Sean= [l2 [ e Wby (e o)

The quantity between square brackets is purely geometrical and can in principle
be calculated with elementary methods for arbitrary monopole positions and ve-
locities. The effect of the interactions with the integrated out massive charged
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Figure 5.18: Weight function —% for a two monopole configuration.

particles resides entirely in the weighting of the integral over space with the factor
—%, which can be interpreted as a mass density per unit of 7. The heighest
weight is thus given to a shell surrounding the core of the N monopole solution,

as illustrated for N = 2 in fig. 5.18.

For a single particle at the origin, moving at speed v, say in the z direction, one
finds (4)2 = r%v? cos? @ and (41)? = 74v? sin” §. Hence the collective coordinate
action is simply

Seoll = %/dt \/§|st(7- = 0)|, (5210)

which is indeed what one would expect for a particle of mass v/2|Zg, (T = 0)].
Note that the central charge is evaluated at spatial infinity, not at the particle
worldline. That is, the mass appearing in front of the action is not the bare mass,
but the true, physical, quantum corrected exact mass of the monopole.

Studying the dynamics of the rigid BPS solutions in moduli space approxima-
tion, and for example comparing this with [101, 103], would be very interesting.
We will keep this for another occasion however.
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Samenvatting

Niets is wat het lijkt. Als er iets is dat het besluit mag zijn van de twintigste
eeuwse natuurkunde is dat het wel. De zoektocht naar de fundamentele wetten van
de natuur leidde tot een beeld van de ‘werkelijkheid’ dat steeds verder verwijderd
scheen van de dagdagelijkse realiteit, maar tegelijk steeds mooier en eleganter werd.
Op dit ogenblik wordt de top van die evolutie gedomineerd door een merkwaardig
rijke en unificerende theoretische constructie: stringtheorie.

Hoe bevreemdend efficient esthetische overwegingen ook gebleken zijn bij het
ontrafelen van dit beeld, de werkelijke waarde van om het even welke kandidaat
fundamentele theorie zal steeds bepaald blijven door wat die theorie ons kan leren
over onze observeerbare wereld. Een veel gehoord cliché over stringtheorie is dat
ze enkel relevant is voor processen waarbij (quantum-)gravitatie een belangrijke
rol speelt. Aangezien dit pas het geval is bij een energieschaal die zich verhoudt tot
de energie bereikbaar in de huidige deeltjesversnellers zoals de afstand aarde-zon
zich verhoudt tot de dikte van een blad papier, lijkt de situatie hier vrij hopeloos.
Dat cliché is evenwel fout, om volgende redenen:

1. Er bestaat een twintigtal ‘elementaire’ natuurkonstanten, zoals deeltjesmassa’s
en koppelingsconstanten, die alleen zullen kunnen voorspeld worden door een
theorie die een consistente beschrijving geeft van de natuurwetten tot op wil-
lekeurig hoge energieschalen, zoals wellicht stringtheorie.

2. Het is niet noodzakelijk zo dat de schaal waarop specifieke stringfysica zicht-
baar wordt dezelfde is als die waarop de gravitatiekracht belangrijk wordt;
dit kan al bij veel lagere energie het geval zijn. In principe is het zelfs moge-
lijk dat er stringfysica tevoorschijn zal komen bij de eerstvolgende generatie
acceleratorexperimenten.
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Appendix A. Samenvatting

3.

van

Stringtheorie blijkt als kader ook bijzonder nuttig te zijn voor de beschrijving
en analyse van lage energie fysica die traditioneel door quantumveldentheo-
rie wordt gegeven. De recente doorbraken in niet-perturbatieve stringtheorie
hebben geleid tot nieuwe resultaten in (supersymmetrische) quantumvelden-
theorie die met traditionele technieken zo goed als onbereikbaar zouden ge-
weest zijn. Het succes van stringtheorie hierin is vooral te danken aan het
diep meetkundige, unificerende beeld dat ze levert voor tal van veldentheo-
retische objecten. Deze opmerkelijke resultaten tonen aan dat stringtheorie
méér is dan gewoon gravitatie in een quantumkleedje; de theorie leidt tot
een nieuw begripskader van de natuurkunde in haar geheel.

Deze thesis sluit aan bij het derde punt. We bekijken een specifieke klasse
modellen, namelijk type IIB stringtheorie gecompactificeerd op Calabi-Yau

manifolds, en we bestuderen in dit kader een aantal aspecten van de lage energie
fysica die uit deze modellen voortvloeit. We spitsen ons voornamelijk toe op twee
onderwerpen: de afleiding van exacte lage energie quantum effectieve acties van

niet-

abelse N/ = 2 supersymmetrische Yang-Mills theorieén, inclusief koppeling

aan gravitatie, en de studie van lage energie eigenschappen van BPS toestanden
(BPS toestanden zijn massieve, geladen, deeltjesachtige toestanden, elementair of

niet,
zijn;

die minimale energie hebben gegeven hun lading en daardoor absoluut stabiel
het prototype voorbeeld is de magnetische monopool in spontaan gebroken

ijktheorieén).

De belangrijkste nieuwe resultaten in deze thesis zijn, in order of appearance:

de uitwerking tot een nuttige analysetechniek van de analogie tussen sferisch
symmetrische oplossingen van de vier dimensionele lage energie effectieve
actie en de beweging van een niet-relativistisch deeltje in een bepaalde po-
tentiaal op de moduliruimte (scalar manifold) van de theorie.

de directe, expliciete afleiding van Yang-Mills lage energie effectieve acties in
het kader van speciale meetkunde, volledig binnen IIB string theorie, zonder
gebruik te maken van T- of S-dualiteiten.

de fysische interpretatie van de parameters in de algemene limietprocedure
van locale naar rigide speciale meetkunde.

de exacte koppeling van de effectieve quantum Yang-Mills theorie aan gra-
vitatie en aan de ijktheorie schaal, die blijkt dynamisch te worden wanneer
de gravitatiekracht verschillend is van nul.

de beschrijving van quantum Yang-Mills BPS toestanden bij zwakke gravi-
tatie, met bijzonder aandacht voor de overgang van ‘elementaire’ naar ge-
bonden toestanden.
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e de eerste stappen in de analyse van lage energie multimonopool dynamica in
N = 2 quantum Yang-Mills theorieén, inclusief een mogelijke connectie met
een (veralgemeende) Nahm constructie via een Maldacena-type correspon-
dentie.

Deze samenvatting volgt de struktuur van de thesis, met de bedoeling dat
het mogelijk wordt om bepaalde delen afzonderlijk in meer detail te gaan lezen
in de thesis zelf. We richten ons in deze samenvatting in eerste instantie op de
geinteresseerde niet-expert. We zullen om die reden ook relatief veel aandacht
besteden aan de omkadering van de resultaten.

Hoofdstuk 1: Inleiding

De inleiding is ook in eerste instantie op de geinteresseerde niet-expert gericht. We
motiveren de introductie van stringtheorie als fundamentele theorie en bespreken
de voornaamste sterke punten en tekortkomingen in de huidige (perturbatieve)
formulering ervan. Vervolgens introduceren en bespreken we de hoekstenen van
de recente vooruitgang in het inzicht in niet-perturbatieve aspecten van de theorie:
D-branen en dualiteit. Tenslotte wordt het gebruik van stringtheorie als kader voor
lage energie fysica toegelicht. We besluiten het hoofdstuk met een samenvatting
van de resultaten in deze thesis. In wat volgt nemen we aan dat de begrippen
ingevoerd in deze inleiding gekend zijn door de lezer.

Hoofdstuk 2: Lage energie effectieve veldentheorie

In dit hoofdtuk voeren we het concept van een (lage energie) effectieve actie in,
zowel in string- als in veldentheorie. Het onderscheid tussen de ‘1PI’ effective actie
en de Wilson effectieve actie wordt geschetst, en we leggen uit wat de betekenis
is van de Seiberg-Witten effectieve actie in deze context. Rigide en locale spe-
ciale meetkunde worden gedefinieerd en hun centrale rol voor N' = 2 effectieve
acties wordt toegelicht. Ons werk in [17, 18] volgend, leggen we uit hoe rigide
speciale meetkunde tevoorschijn komt als een bepaalde limiet van locale speciale
meetkunde. We besluiten het hoofdstuk met een compendium van Seiberg-Witten
theorie en haar veralgemeningen. Dit hoofdstuk bevat voornamelijk welbekend
materiaal, maar we doen een inspanning om een aantal losse eindjes in de gebrui-
kelijke Seiberg-Witten review literatuur aan elkaar te knopen.

Het is voor de geinteresseerde niet-expert die wil weten wat precies de fysische
inhoud is van de effectieve veldentheorieén die beschouwd worden doorheen deze
thesis, wellicht nuttig hier even uit te weiden en een aantal elementen uit deze
korte samenvatting in meer detail toe te lichten.
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Bij voldoende lage energieén heeft om het even welke fysische quantumthe-
orie die aan een aantal basisprincipes voldoet een beschrijving als een effectieve
veldentheorie [24], waarbij de lichte elementaire deeltjes van de theorie de quanta
van de beschouwde velden zijn, en de (quantum gecorrigeerde) bewegingsvergelij-
kingen van die velden gegeven worden door extremalisatie van een effectieve actie.
Dit is een functionaal die gegeven wordt door de integraal over de ruimte-tijd van
een bepaalde (niet noodzakelijk lokale) uitdrukking in de velden. Bij voldoende
lage energie kan men deze uitdrukking meestal goed benaderen door termen met
ten hoogste twee afgeleiden (dit komt neer op een momentumexpansie tot tweede
orde). De effecten van de hoge energie vrijheidsgraden zijn ‘uitgeintegreerd’ en
bepalen enkel de precieze vorm van de effectieve actie.

De theorieén die we bestuderen in deze thesis hebben N = 2 supersymmetrie,
dat wil zeggen dat hun deeltjesspectrum en dynamica invariant is onder een be-
paalde symmetriegroep die buiten translaties en Lorentz transformaties ook trans-
formaties bevat die bosonische en fermionische velden op een bepaalde manier
met elkaar vermengen. Bovendien beperken we ons in eerste instantie tot de be-
schrijving van de lage energie vrijheidsgraden die in een zogenaamde massaloze
vectormultiplet representatie van deze supersymmetrie-groep vallen, al dan niet
gekoppeld aan gravitatie. Een dergelijk vector multiplet omvat twee spin! 0 deel-
tjes (de scalar, beschreven door één complex scalair veld), een spin 1 deeltje (het
foton, beschreven door een vectorpotentiaal) en twee spin % deeltjes. Wanneer ook
(super)gravitatie beschouwd wordt, hebben we in het spectrum van de theorie ook
een spin 2 deeltje (het graviton, beschreven door de ruimte-tijd metriek G, ), een
spin 1 deeltje (het gravifoton, beschreven door een vectorpotentiaal) en twee spin
% deeltjes.

Men kan aantonen [26] dat V' = 2 supersymmetrie vereist dat het bosonische
stuk van de lage energie (quantum) effectieve actie van een aantal aan super-
gravitatie gekoppelde neutrale? vectormultipletten, beperkt tot maximaal twee
afgeleiden, noodzakelijk de volgende vorm heeft:

S = Sgraviton + Sscalar + Sfotona (]-)
waarbij Sgraviton de gebruikelijke Einstein-Hilbert gravitationele actie is:

1
Sgraviton = m

/d‘*;c\/IR (2)

L Aangezien het hier over massaloze deeltjes gaat, komen met een ‘spin s’ deeltje twee toe-
standen overeen met heliciteit +s (als s > 0).

2Dit zijn ook de relevante lage energie vrijheidsgraden voor spontaan gebroken niet abelse
N =2 Yang-Mills theorieén, aangezien de niet-neutrale vector multipletten massief worden door
de spontane ijksymmetriebreking.
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(R is de scalaire kromming , G de determinant van de metriek G, en Gn de
Newton constante), en waarbij de actie voor de scalars de volgende vorm heeft:

1
Sscalar = _87TGN

/d4m V=G g,5(2) 8,,2'“8"25. (3)

Hierbij is 2%, a = 1, 2, ... het complexe scalaire veld van het a-de vectormultiplet,
en g,;(z, Z) een hermitische, positief definiete matrix die in het algemeen afhanke-
lijk is van de z%, en de interpretatie van een metriek heeft op de ‘scalaire manifold’
M3 Supersymmetrie vereist dat deze metriek van een zeer bijzondere vorm is,
namelijk een zogenaamde locale speciale Kdihler metriek. Voor de technische defi-
nitie van speciale Kdhler meetkunde verwijzen we naar de thesis. Essentieel komt
het erop neer dat de metriek afleidbaar is van een K#hler potentiaal, die op haar
beurt afleidbaar is van een bepaalde meromorfe (eventueel meerwaardige) functie
op M die de prepotentiaal genoemd wordst.

De actie Sfoton voor de fotonen en het gravifoton heeft ook een zeer specifieke
vorm, eveneens afleidbaar van de prepotentiaal, maar daarvoor verwijzen we naar
de thesis zelf. Hetzelfde geldt voor het fermionische stuk van de actie.

Wanneer een theorie zonder gravitatie wordt beschouwd, krijgen we een ana-
loge vorm voor de effectieve actie, met analoge beperkingen, maar nu met als
relevante meetkundige structuur rigide speciale meetkunde.

Het is duidelijk dat speciale meetkunde zeer sterke beperkingen oplegt op de
mogelijke effectieve acties. Sterk genoeg, zo bleek uit het baanbrekend werk van
Seiberg en Witten [5], om tot niet-triviale ezacte oplossingen te kunnen komen. Uit
het bovenstaande volgt dat het vinden van een exacte oplossing neerkomt op het
vinden van de relevante speciale K&hler manifold. Seiberg en Witten ontdekten dat
de speciale Kihler manifold die de exacte oplossing van de lage energie effectieve
actie van A" = 2 SU(2) Yang-Mills theorie geeft, niets anders is dan de 1 complex
dimensionale moduliruimte die de complexe structuren op een genus 1 Riemann
oppervlak (een torus) parametrizeert, met de speciale Kihler metriek gegeven in
termen van integralen over niet-samentrekbare lussen van een bepaalde meromorfe
1-vorm op dat Riemann oppervlak.

De Seiberg-Witten oplossing gaf het startschot voor een massale zoektocht
naar het antwoord op twee voor de hand liggende vragen:

e Hoe kan de enigmatische verschijning van een meetkundige moduliruimte in
veldentheorie begrepen worden?

e Hoe kan dit veralgemeend worden naar andere (ijk)theorieén?

3De globale structuur van deze manifold hangt af van het concrete fysische model dat be-
schouwd wordt.
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Het antwoord op de eerste vraag, en op die manier ook een systematische aanpak
van de tweede vraag, werd op een bijzonder mooie manier gegeven door string-
theorie. Ijktheorieén hebben vaak een geometrische oorsprong in stringtheorie, en
dit leverde de link tussen de exacte oplossingen van lage energie effectieve acties
enerzijds en meetkundige structuren anderzijds. Het unificerende geometrische
kader van stringtheorie gaf bovendien ook een elegante en nuttige meetkundige
interpretatie aan tal van veldentheoretische objecten, zoals bijvoorbeeld BPS toe-
standen.* Deze laatste blijken in stringtheorie dikwijls voorgesteld te kunnen wor-
den door D-branen (cf. hoofdstuk 1) gewikkeld rond niet-triviale cycles (gesloten
niet samentrekbare lussen, oppervlakken, volumes, etc.) in de manifold die de zes
kompakte ruimte-tijd dimensies vormt.

In het overblijvende deel van deze thesis bestuderen we hoe de exacte oplossin-
gen van lage energie effectieve acties precies tevoorschijn komen uit stringtheorie,
en analyseren we een aantal implicaties voor lage energiefysica (inclusief gravita-
tie), voor unificatie en voor de dynamica van BPS toestanden.

Hoofdstuk 3: Calabi-Yau compactificaties van type II stringtheorie

In dit hoofdstuk bestuderen we uitvoerig de compactificatie van type IIB string
theorie op een Calabi-Yau manifold X (fig. A.1). Dit geeft een N' = 2 super-
symmetrische theorie in vier dimensies. Het bosonische massaloze spectrum in
vier dimensies en de overeenkomstige effectieve actie worden afgeleid. De vec-
tormultiplet sector hiervan heeft de vorm bepaald door speciale meetkunde zoals
besproken in hoofdstuk 2. De specifieke speciale Kihler manifold M is hier be-
paald door klassieke meetkunde: het is de moduliruimte van complexe structuren
van de Calabi-Yau manifold X. De metriek is bepaald als volgt. Op een Calabi-
Yau manifold bestaat er een unieke holomorfe 3-vorm €, die holomorf afthangt van
de complexe structuur moduli 2% van X (de z* vormen tevens de scalairen van de
4D vectormultipletten). De metriek op M is dan

gaE = aﬂgﬁ’C' (4)

waarbij de Kéhler potentiaal K gegeven is door
IC:—ln(i/Q/\Q) 5)
X

De integraal in het rechterlid kan berekend worden in termen van de integralen van
2 over een (homologie-)basis van niet-triviale 3-cycles (de zogenaamde perioden)

4De reden waarom men zich hier beperkt tot BPS toestanden is dat die een deel van de super-
symmetrie van het vacuum behouden, net genoeg zo blijkt om nog een aantal exacte uitspraken
te kunnen doen (zoals bijvoorbeeld een (quantum) exacte massaformule).
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Figuur A.1: Schets van een Calabi-Yau compactificatie. De complexe structuur
moduli van de compacte Calabi-Yau manifold X kunnen varieren over de niet-
compacte, gekromde, vier dimensionale ruimte-tijd My. Deze modulivelden vor-
men de scalairen van de vectormultipletten in de vierdimensionale theorie.

van X. De andere elementen in de 4D lage energie effectieve actie worden ook
uitgedrukt in termen van Calabi-Yau meetkunde. Een belangrijke eigenschap van
type IIB Calabi-Yau compactificaties is dat bovendien de vector multiplet sector
van de klassieke lage energie actie (tot tweede orde in de afgeleiden) ezact is;
quantumcorrecties zijn verboden door supersymmetrie.

Vervolgens (sectie 3.2) spitsen we ons toe op BPS toestanden in A" = 2 super-
symmetrische theorieén in vier dimensies en de verschillende multipletten waarin
ze georganizeerd kunnen zijn. Deeltjesachtige BPS toestanden in vier dimensies
kunnen uit type IIB stringtheorie bekomen worden door D3-branen rond niet-
triviale 3-cycles te wikkelen. Er zijn geen andere mogelijkheden omdat type IIB
stringtheorie alleen oneven BPS D-branen heeft, en er geen niet-triviale 1- of 5-
cycles in een Calabi-Yau manifold bestaan. De BPS voorwaarde legt op dat de
inbedding van de D3-braan in X ‘speciaal Lagrangiaans’is, hetgeen o.a. impliceert
dat het volume ervan minimaal is. Ons werk in [20] volgend, leiden we de preciese
reductie af van de D3-braan actie tot een deeltjesactie in vier dimensies, waaruit
onmiddellijk de massa van deze toestanden volgt. Voor een D3-braan gewikkeld
rond een 3-cycle I is dit

M = —=|Z(T)], (6)
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waarbij
Z(T) = &7 / 0, )

met K gedefinieerd in (5). Deze uit klassieke meetkunde bekomen formule is me-
teen ook quantummechanisch exact, omdat correcties verboden zijn door super-
symmetrie. Als toepassing berekenen we de (quantum exacte) electromagnetische
kracht tussen twee bewegende BPS testdeeltjes met willekeurige lading. Tenslotte
bespreken we het probleem van de bepaling van het type supersymmetrie multi-
plet waartoe een bepaalde gewikkelde D3-braan aanleiding geeft. Dit hangt af van
inbedding en topologie van de 3-braan. We stellen een eenvoudige shortcut voor
die een aantal gevallen kan worden toegepast.

De rest van het hoofdstuk (sectie 3.3) is in hoofdzaak gewijd aan het effectieve
veldentheorie beeld van de BPS toestanden, dat is, de BPS toestanden beschouwd
als oplossingen van de lage energie effectieve actie. Centraal hier staat het attractor
mechanisme, ontdekt in [60]: de scalairen van de vectormultipletten vloeien steeds
naar vaste waarden wanneer men naar het centrum van de BPS oplossing toe gaat
(d.i. de horizon wanneer dit een zwart gat is). Die vaste waarden worden bepaald
door de lading, maar zijn onafthankelijk van de waarde van de scalairen op oneindig.
We leiden in een invariant meetkundig formalisme de gereduceerde effectieve actie
af voor sferisch symmetrische oplossingen, vertrekkend van een ansatz die wat
algemener is dan gebruikelijk in de literatuur, en in het bijzonder werken we in
detail de analogie uit met een niet relativistisch deeltje bewegend in een bepaalde
potentiaal op de moduliruimte.

Meer in detail ziet dit eruit als volgt. De ruimte-tijd metriek is van de vorm
ds? = =2V dt® + e 2V (1 + (¢/r)?) "  dr? + r(d6? + sin® 0d¢?)}, (8)

met ¢ een constante. Voor een BPS toestand afkomstig van een D3-braan gewik-
keld rond een 3-cycle I is de gereduceerde actie (vgl. (3.3.8) in thesis):

1

Sre = — o~
1T TGy

o0 -
/ dr (U2 + 9,328 — & + GneVVn(2)), ()
0
waarbij de ‘tijd’ T gerelateerd is aan de radiele codrdinaat r via r = ¢/ sinh c7, een
punt de afgeleide naar 7 voorstelt, ¢ de ‘energie van de beweging’ is (¢ = 0 voor
BPS oplossingen), en de effectieve ‘potentiaal’ gegeven is door —G ne?U V1 (z), met

Vi(2) = |Z(D))” + 4 0. Z(T)| 35| 2(T)|. (10)

GN is nog steeds de Newton constante en g,; de metriek (4) op de complexe
structuur moduli ruimte. We gebruiken deze equivalentie met een bewegend deeltje
voor een intuitieve analyse van de algemene oplossing, inclusief niet-BPS zwarte
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Figuur A.2: Schets van de potentiaal —e?VV waarin het effectieve deeltje beweegt,
uitgezet als functie van Y en de moduli z. Traject (a) (generieke beginvoorwaar-
den) correspondeert met een onfysiche supergravitatie-oplossing (sterk singulier en
antigraviterend). Traject (b) correspondeert met een niet-BPS zwart gat. Traject
(c) correspondeert met een BPS zwart gat.

gaten (fig. A.2). We maken zo ook manifest dat het attractor mechanisme niet
veroorzaakt wordt door dissipatieve demping (zoals dikwijls beweerd wordt in de
literatuur), maar integendeel juist als gevolg van een eindige energie voorwaarde
samen met de sterke instabiliteit van het systeem, zoals gewoonlijk in solitonfysica.
Het (ruwe) verband tussen deze instabiliteit en de entropie van zwarte gaten wordt
kort geschetst.

BPS oplossingen hebben ¢ = 0 en voldoen aan de zogenaamde attractor flow
vergelijkingen:

U = —/GneY|Z| (11)
¢ = —2\/GneV g 5;|Z). (12)

De moduli convergeren voor 7 — oo steeds naar een welbepaalde waarde, enkel
afhankelijk van de keuze van I', namelijk die waarde die |Z(I')| minimaliseert.

In sectie 3.3.3 bekijken we een de oplossingen van de attractor flow vergelijkin-
gen voor een aantal modellen, met speciale nadruk op de niet-generieke gevallen,
en we bekomen in het bijzonder een totnogtoe onopgemerkt gebleven oplossing
[21], overeenkomend met een D3-braan gewikkeld over een zogenaamde conifold
cycle (voorbeeld 2). Dit is een niet triviale 3-cycle die tot nul volume kan krim-
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Figuur A.3: Een schets van een Calabi-Yau manifold die in vier dimensies een niet-
abelse N/ = 2 Yang-Mills theorie zwak gekoppeld aan gravitatie oplevert. Branen
gewikkeld rond een generieke cycle I hebben typisch Planck schaal massa’s. Door
fijnregeling van de moduli kunnen sommige cycles v echter veel lichter gemaakt
worden dan de Planck massa, en zo aanleiding geven tot de benodigde zwak gra-
viterende Yang-Mills deeltjes.

pen door variatie van de moduli. Deze oplossing zal een prominente rol spelen in
hoofdstuk 5. We eindigen dit deel over attractors met een discussie in 3.3.4 van het
multicenter geval en de presentatie in 3.3.5 van een aantal krachtige technieken om
de attractor flow vergelijkingen op te lossen, daarbij een intrinsiek meetkundige,
Kaihler ijk invariante formulering van de methodes ontwikkeld in [22, 23] leverend.

We sluiten dit hoofdstuk af met een analyse van de geldigheidsdomeinen van
de D-braan en veldentheorie beelden van de BPS toestanden. We schetsen de be-
roemde Maldacena correspondentie in deze kontekst. Wanneer dezelfde redenering
toegepast wordt op BPS toestanden die geen zwarte gaten zijn, schijnen we een
nieuw soort correspondentie te vinden, die sterk doet denken aan de welbekende
wiskundige ‘Nahm dualiteit’ tussen N monopolen en een bepaald N x N hermitisch
matrix systeem. We laten dit als een intrigerende opening naar verder onderzoek.

Hoofdstuk 4: Quantum Yang-Mills + gravitatie uit IIB strings

In dit hoofdstuk bestuderen we in detail hoe de lage energie effectieve actie van
N = 2 quantum Yang-Mills theorie, zwak gekoppeld aan gravitatie, bekomen
wordt vanuit type IIB string theorie gecompactificeerd op een Calabi-Yau mani-
fold X. We baseren ons hier op welbekende ‘geometrical engineering’ technieken
[11, 12, 13, 14]. De voornaamste nieuwe elementen in onze behandeling zijn de
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expliciete koppeling aan gravitatie en aan de ‘dynamische dynamisch gegenereerde
schaal’ van de quantum Yang-Mills theorie, en het feit dat we alles rechtstreeks en
volledig binnen type IIB string theorie afleiden, zonder ons te beperken tot locale
overwegingen of gebruik te maken van string S- of T-dualiteiten. Ook de reductie
van locale tot rigide speciale meetkunde wordt expliciet aangetoond.

De basisidee is als volgt (fig. A.3). Wanneer we een D3-braan wikkelen rond
een generieke cycle I' van X krijgen we typisch een BPS deeltje met massa van de
orde van de Planck massa in de vier dimensionale theorie, dus zeker geen goede
kandidaat voor een ijkdeeltje dat slechts zwak interageert met de gravitatiekracht.
Door fijnregeling van de complexe structuur moduli van X, namelijk door X op
een bepaalde manier bijna-singulier te maken, kunnen sommige cycles 7 echter veel
lichter gemaakt worden dan de Planck massa. Als we dit bovendien op een ma-
nier doen die ervoor zorgt dat de overeenkomstige BPS deeltjes in vier dimensies
precies het massieve BPS spectrum opleveren van een of andere N' = 2 Yang-Mills
theorie met ijkgroep G, met in het bijzonder een aantal massieve vector multi-
pletten die samen een irreducibele representatie dragen van de Weyl groep van G
(geinduceerd door monodromieén in de moduliruimte), dan kan aangenomen wor-
den dat de dynamica van deze massieve BPS toestanden samen met de massaloze
vectormultipletten die we al hadden, gegeven wordt door die NV = 2 Yang-Mills
theorie met ijkgroep G. Anderzijds hadden we vanuit type IIB string theorie al de
exzacte quantum lage energie effectieve actie (tot tweede orde in de afgeleiden) van
de massaloze vector multipletten gevonden (cf. hoofdstuk 3). Dus we bekomen
op deze manier bijna zonder inspanning de exacte oplossing van de lage energie
quantum effectieve actie van de beschouwde Yang-Mills theorie!

Het moeilijkste deel van de constructie is dus te bepalen welke Calabi-Yau
manifolds, en welke limieten van de complexe structuurmoduli, overeenkomen met
een bepaalde ijktheorie. Hieraan is sect. 4.1 gewijd. We beargumenteren dat een
ijkgroep met Lie algebra S, waarbij S van type Ay, Dy of E} is, bekomen wordt bij
een Calabi-Yau die lokaal de structuur heeft van een (licht) gedeformeerde S-type
singulariteit [84] gefibreerd over een cylinder. Een S-type singulariteit is ruwweg
een singulariteit bekomen door in een twee complex dimensionale variéteit een
aantal niet triviale 2-sferen die elkaar snijden volgens het Dynkin diagram van de
Lie algebra S (zie fig. A.4 voor het voorbeeld van een D4 (of so(8)) singulariteit),
tot punten te laten krimpen. Dit geeft een toch wel zeer mooie correspondentie
tussen de classificatie van singulariteiten en de classificatie van ijkgroepen.

In sect. 4.2 bestuderen we de zwakke gravitatielimiet, waarbij we de 3-cycles
corresponderend met de ijktheorie-deeltjes laten degeneren tot volume (=massa)
nul. We bewijzen de reductie van locale tot rigide speciale meetkunde in deze limiet
en bekomen de volledige, exacte quantum effectieve actie, inclusief de koppeling
aan gravitatie en aan de dynamisch geworden dynamisch gegenereerde ijktheorie
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Figuur A.4: De gedeformeerde D4 (of so(8)) singulariteit heeft een basis van vier
tot punten krimpende sferen die elkaar snijden zoals aangegeven door het D,
Dynkin diagram.

schaal. Dit reproduceert en veralgemeent de Seiberg-Witten oplossing. In het bij-
zonder wordt de metriek op de rigide sector van de moduliruimte gegeven door de
speciale meetkunde van een bepaalde klasse Riemann-oppervlakken voorzien van
een zekere meromorfe vorm gy, beide éénduidig bepaald uit de (lokale) Calabi-
Yau meetkunde. De lichte 3-cycles v op de Calbi-Yau manifold corresponderen
met welbepaalde 1-cycles v op het Riemann oppervlak.

In sectie 4.3 analyseren we de verschillende unificatieschalen die tevoorschijn
komen, en we maken de connectie met het (S-)duale heterotische beeld expliciet.
Om wat inzicht te krijgen in de fysische inhoud van onze resultaten, beschouwen we
wat experimentele data (hoewel de NV = 2 theorieén die we bekijken uiteraard niet
volledig overeenkomen met observaties). Tenslotte bestuderen we de dynamica van
de dynamische dynamisch gegenereerde schaal A. We stellen vast dat deze ont-
koppelt van de ijktheorie wanneer de verhouding tussen ijkschaal en Planckschaal
nul is, é6f wanneer de koppelingsconstante van de ijktheorie nul is. We concluderen
dus dat de beivloeding van de schaal door de Yang-Mills-vrijheidsgraden vanuit
microscopisch veldentheorie standpunt puur een quantum (stringy) effect is.

De lage energie quantum effectieve actie die we vinden voor het graviton, de
Yang-Mills massaloze scalars u* en de schaal A van de Yang-Mills theorie is

2

dA

s = =~ [dav=GR - 2 e

2K3 (In |[Msy/AJ?)?
1 _ . .

— 4—/|A|2 8i8jK5W du® A xda’ (13)
/I
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+2Re (A9; Ksw du’ A xdA) + Kgw [dA[”.

Hier is Kgy de dimensieloze (veralgemeende) Seiberg-Witten Kihler potentiaal
voor de beschouwde Yang-Millstheorie, gegeven in termen van de speciale meet-
kunde van een welbepaalde klasse Riemann oppervlakken. Mgy is de (in goede
benadering constante) string unificatie schaal:
5 1 |?

~

N (14)
SUT R b In(JA R

met k3 = 87Gy, b de beta-functie coefficient van de beschouwde ijktheorie en k
een Calabi-Yau model afhankelijke constante.

In sectie 4.4 werken we in uitvoerig detail een expliciet voorbeeld uit voor een
specifieke Calabi-Yau: we onderzoeken een limiet van de Xa4[1,1,2,8,12] Calabi-
Yau manifold die in vier dimensies pure SU(3) Yang-Mills theorie zwak gekoppeld
aan gravitatie oplevert. Cycles, perioden en monodromieén worden expliciet ge-
construeerd. De resultaten ondersteunen de algemene argumentatie. Voor de
waarde van k in de formule voor M2, hierboven geeft dit voorbeeld de waarde

_ VBTN
k= sy ~ 0.122035.

Hoofdstuk 5: Attractoren bij zwakke gravitatie

Hier bestuderen we de BPS toestanden bij zwakke gravitatie in het effectieve vel-
dentheorie beeld. Het gros van de resultaten in dit hoofdstuk zijn nieuw. We
herbeschouwen het equivalente effectieve deeltje bewegend in een potentiaal op
de moduliruimte om intuitief inzicht te krijgen in de sferisch symmetrische oplos-
singen. We isoleren en bespreken een interessante O(G ) ‘correctieterm’ in de
gereduceerde effectieve actie die vanuit het microscopische quantumveldentheorie
standpunt volledig afkomstig is van de interactie tussen de dynamische ijktheorie-
schaal en de quantum fluctuaties van de ijktheorie vrijheidsgraden. De zwakke
gravitatielimiet van de attractor flow vergelijkingen wordt afgeleid en gebruikt om
een expliciete beschrijving te geven van Strominger’s massaloze ‘zwarte gaten’,
bewegend aan de snelheid van het licht.

Omdat de O(Gn) correcties klein zijn voor de BPS toestanden in het spectrum
van de Yang-Mills theorie, en in het bijzonder niet van belang voor de kwalitatieve
eigenschappen van de oplossingen, specialiseren we verder tot de volledig rigide
limiet Gn = 0, met als prototype voorbeeld SU(2) Yang-Mills theorie. Gravitatie
en schaal ontkoppelen volledig, zodat U en A constant gesteld kunnen worden. De
attractor flow vergelijkingen vereenvoudigen in dit SU(2) geval tot

U= _\/ﬁggg 511|st|- (15)
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Figuur A.5: Energiedichtheid € als functie van de radiale coordinaat r voor magne-
tische lading N met u(r = co) = 241, numerisch geintegreerd. De dichtheid wordt
nul in een kern met straal r, = 1.65NA. De streepjeslijn toont de energiedicht-
heid die het electromagnetische veld zou hebben indien de moduli niet dynamisch
zouden zijn (zoals in Maxwell electromagnetisme). Dit divergeert uiteraard voor
r — 0.

Hier is g“% de inverse metriek op de Seiberg-Witten moduli ruimte en Z,, de peri-
ode van de meromorfe Seiberg-Witten 1-vorm bij modulus u, over de beschouwde
l-cycle v: Zgp = A f7 Asw- Een interessante eigenschap van de rigide limiet is dat
de faze van Z,, constant is langs de flow.

Enkel voor magnetische monopolen en elementaire dyonen (dit zijn precies
de BPS toestanden die massaloos kunnen worden voor bepaalde waarden van de
moduli) vinden we een sferisch symmetrische oplossing. Deze zijn van dezelfde
vorm als de eerder al besproken ‘conifold oplossingen’ (sectie 3.3.3, voorbeeld 2).
Ze zijn continu differentieerbaar, maar hebben een eindige energieloze ‘kern’ waarin
de modulus constant is, gelijk aan zijn attractorwaarde (fig. A.5). De totale massa
is eindig en zit volledig in de velden rond de kern. De straal van de kern (en de hele
schaal van de oplossing eigenlijk) is proportioneel met de lading N van de toestand.
Voor geen enkele waarde van de lading vormen deze toestanden zwarte gaten;
door het attractor mechanisme geraakt de massa nooit geconcentreerd binnen haar
Schwarzschild straal!

We onderzoeken een aantal eigenschappen van deze oplossingen en vinden o.a.
dat de krachtpotentiaal voor een testdeeltje afkomstig van een D3-braan gewikkeld
rond een cycle -, in het BPS veld van een deeltje afkomstig van een D3-braan
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Figuur A.6: De kern van een kubische 8-monopool configuratie.

gewikkeld rond een cycle 7y, gegeven is door

a(r) — ag

W (r) = 2v2sin*( )| Ze(r)], (16)
waarbij ag de (constante) faze is van Zy en oy de (variérende) faze van Z; in het
BPS veld van 9. Wanneer de attractor flow van 9 dus door een punt passeert
waarin de fazes van Z; en Zj identiek zijn®, vinden we een stabiele afstand voor
een testdeeltje 7, in het veld van 7. Dit suggereert sterk de mogelijkheid van
gebonden toestanden.

Vervolgens bestuderen we in detail wat er — gelukkig, zoals we beargumen-
teren — fout loopt wanneer we proberen een sferisch symmetrische BPS oplossing
te construeren voor puur electrisch geladen deeltjes (het W-boson multiplet) en
de hogere dyonen. De puzzel stelt zich het scherpst bij de dyonen, aangezien die
door continue monodromietransformaties met elkaar verbonden zijn. We komen
zo tot een aantrekkelijk beeld van een overgang naar een gebonden toestand van
monopolen en elementaire dyonen. Het W -boson is in dit beeld bijvoorbeeld een
gebonden toestand van 1 monopool en 1 elementair dyon, met tegengestelde mag-
netische lading. Op deze manier wordt ook (kwantitatief) contact gemaakt met
de ‘3-pronged’ string representatie van BPS toestanden. Een interessante vraag is
of dit mechanisme kan veralgemeend worden naar BPS zwarte gaten.

We besluiten dit hoofdstuk in sect. 5.2 met de eerste stappen in een analyse
van de lage energie dynamica van N monopolen (fig. A.6). We geven een algemene

5dit is een punt waarop het zwaarste deeltje slechts marginaal stabiel is voor verval naar
het lichtste plus nog iets, dus dit punt ligt noodzakelijk op de zogenaamde lijn van marginale
stabiliteit in de moduliruimte.
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formule voor de N monopool moduli ruimte metriek en evalueren dit voor N =
1, hetgeen het verwachte resultaat oplevert. Een verdergaande analyse van de
multimonopool metriek zou bijzonder interessant zijn, zeker in het licht van een
mogelijke connectie met een (veralgemeende?) Nahm constructie via de eerder
aangehaalde Maldacena-type correspondentie.
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