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Chapter 1

Introduction

A long standing problem in physics is the unification of all known forces in nature.
These are gravity and the strong, the weak and the electromagnetic force. The last
three forces are combined in what is called the standard model of particle physics.
This model has been developed by Salam, Glashow and Weinberg between 1970 and
1973. Combining the standard model with gravity is however a complicated issue.
String theory is one of the most promising attempts to achieve this. The full mathe-
matical structure of string theory is complicated and unfinished, only perturbatively
the description of a string is by now well understood. A non-perturbatively descrip-
tion is still lacking.

As the name suggest, in string theory the fundamental objects are strings. These
can be thought of as one-dimensional objects that trace out two-dimensional surfaces
in time. Different vibrational modes of the string are associated to different particles
and forces. One of these modes is the graviton. For this reason string theory is a
candidate for unifying the known four forces in nature. The graviton belongs to the
massless sector. The first massive states have masses around the Planck mass ~ 1072
grams or energy ~ 10'°GeV. This corresponds to lengths of about 10733 centimeters.
Since this is out of reach of today’s accelerators, the main focus is on the massless
sector.

One of the surprising things about string theory is that, although we start from a
string, the massless spectrum gives rise to higher-dimensional objects. For example,
think of a two-dimensional membrane. A second intriguing aspect of string theory is
that it requires a ten-dimensional space-time instead of the four-dimensional universe
we live in. It is therefore not surprising that we have even higher-dimensional objects
than membranes, these are called branes. Branes will play a central role in this thesis.
These objects tell us about non-perturbative aspects of string theory.

One way to learn more about string theory, is by looking at its low energy limit.
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There is also a good physical reason to do this. Namely, the aim of string theory is to
unify the standard model with gravity. However the results of experiments done so far
in accelerators can be explained by the standard model. A new milestone in accele-
rator physics is the Large Hadron Collider (LHC) which will come online this summer
at CERN. The energy scale of this accelerator is of the order of ten tera-electron-Volt
(10'2 eV). This corresponds to lengths of about 1071 meters. Any deviation from
the standard model possibly observed at LHC should then be explainable by the low
energy limit of string theory.

The low energy limit of string theory leads to so-called supergravities. A su-
pergravity is a classical theory which extends Einstein’s theory of general relativity
to fermions in such a way that bosonic degrees of freedom are related to fermionic
degrees of freedom, the number of bosons equals the number of fermions. The low
energy limit of string theory leads to five different supergravities, but these theories
are related through a whole web of dualities. This suggests that each of these five
theories are different limits of a single theory called M-theory. There is very little
known about this theory.

We mentioned that string theory requires a ten-dimensional space-time. Our ob-
servable universe is only four-dimensional including time. Somehow we have to ra-
tionalize away six dimensions. The standard way is via dimensional reduction. With
this we mean that we assume that the ten-dimensional universe can be considered as a
direct-product space of our four-dimensional universe and a compact six-dimensional
space which is of small size. The extra dimensions need to be smaller than 10718
meters else we would have observed them by now!.

Let us get back to the branes. In this thesis we are going to study branes that
are solutions of the two so-called type Il supergravities that follow from considering
the low energy limit of string theory. The dimensions of the extended object form
the worldvolume of the brane. For example, in case of the string we would have a
two-dimensional worldvolume consisting out of time and one spatial direction. The
other space-time dimensions form the transverse space. The main focus will be on
two types of branes. If time is part of the worldvolume the brane is called a (timelike)
p-brane. The p stands for the number of spatial directions of the worldvolume. In
total we have p + 1 dimensions. If time is not part of the worldvolume it is called an
(spacelike) Sp-brane. Here p stands for the number of spatial worldvolume directions
minus one. In this way p refers in both cases to a (p 4+ 1)-dimensional worldvolume.

To investigate these brane solutions we could try to solve the equations of motion
that follow from the action of the supergravity directly. This is however not the way
we are going to proceed. As the title of the thesis suggest, we are going to look at

IThere is however a different string theory scenario where not all extra dimensions have to be
small. This is the so-called brane world or Randall-Sundrum scenario [1,2]. In this model all
interactions except gravity are restricted to a four dimensional hyperplane, which represents our
universe. This model has the advantage that, since gravity is spread over the whole space-time, it
gives an explanation as to why the gravitational force is weak compared to the other three forces.



branes from a particle point of view. With this we mean that we are going to look
at brane solutions whose dynamics depends only on one parameter, just like particles
do. This parameter will be related to a coordinate of the transverse space. Because
of this the worldvolume coordinates do not appear explicitly in the solutions. In this
way we see that the worldvolume directions do not really matter. For this reason we
first reduce over the worldvolume via dimensional reduction and then try to solve the
remaining lower-dimensional equations of motion. This is the first step in reducing the
problem of finding brane solutions. Since we have reduced over the worldvolume the
theory is a (p=—1)-brane, such that we indeed have a zero-dimensional worldvolume.
If time is part of the reduced worldvolume, the lower-dimensional theory lives in a
Euclidean space-time. Such a solution is called a (—1)-brane or instanton. If time is
not part of the reduced worldvolume, is it called an S(—1)-brane.

Alternatively, we will show that we can reduce over the transverse directions that
are not related to the parameter describing the dynamics of the solutions. As it turns
out, this way we can generate a potential in the lower-dimensional action, which we
then call a massive theory. A theory is called massless if there is no potential. If
the lower-dimensional theory requires a Minkowski space-time we have two different
solutions. We call it a cosmology if the solution depends explicitly on time only. If it
does not depend on time explicitly, we call it a domain-wall. This can be considered
as the stationary version of a cosmology?.

It is important to mention that we will only consider consistent reductions. With
this we mean that we can always undo the steps of the reduction in such a way that
we are guaranteed that we also have a solution of the action we started with. In
this way we construct a solution of the higher-dimensional theory. This procedure is
called uplifting or oxidation.

To solve the lower-dimensional equations of motion we have to make a difference
between the massless and massive theories.

The massless case is the easiest. Due to the dimensional reduction, the lower-
dimensional action will have a much bigger symmetry group than the action we started
with (not including diffeomorphisms). This we can use to simplify our quest for brane
solutions further. In solving the lower-dimensional equations of motion we will first
see that we can decouple the scalar sector from the gravity sector. As as result, we
solve the metric independently from the scalar fields. We will not need to look for
the most general scalar field solutions. Instead we will look for much easier solutions,
namely generating solutions. With this we mean that if we act with the symmetry
group on this solution, we automatically find the most general solution possible.

In case we have a massive theory, a general solution is difficult to give due to the
presence of the potential. There is no decoupling from the gravity sector. Instead
we will show when we can write the second order equations in terms of first order

2In chapter 6 and 7 we consider a few examples where we have a Euclidean theory with a potential.
‘We call these solutions instantons as well.
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equations.

In this thesis we want to achieve the following. We are first going to show that
p- and Sp-branes can be linked to lower-dimensional actions whose solutions are re-
spectively given by instantons or S(—1)-branes if we reduce over the worldvolume of
the brane. And similarly, if we reduce a p-brane or Sp-brane over all but one of its
transverse directions we find a domain-wall or a cosmology. The main goal of this
thesis is: Derive the solutions that correspond to the lower-dimensional action. In
case the lower-dimensional theory is massless we look for the generating solution. For
a massive theory the focus will be on re-writing the second order differential equations
as first order equations. We will further see that a specific class of massive solutions
behave as if there is no potential at all.

If we would uplift our solution back to the original theory we have constructed a
general brane solution of the original theory. Along the way we will see that there
are all kind of links between the lower- and higher-dimensional solutions.

The plan of the thesis is as follows. In the next chapter we begin with giving a
short introduction to string theory. The focus will be on introducing the relevant
concepts. In particular we will spend some time on the p- and Sp-branes.

In chapter 3 we are going to explain how one does a dimensional reduction. We
will restrict to two different types of reductions relevant for branes. At the end of the
chapter we explain how dimensional reduction can be applied to branes.

In chapter 4 we look for time-dependent Sp-branes via reducing over its world-
volume. This way we will obtain a massless theory. With the help of the generating
solution and the symmetry group we will be able to construct the most general Sp-
brane with deformed worldvolume.

In chapter 5 we are going to look at massive theories, i.e. cosmologies and domain-
walls. Solving a theory with a potential is more complicated, but we will show that
often the equations of motion can be written as first order equations. Furthermore we
will show that under certain conditions the problem is basically the same as looking
for solutions of a model without a potential.

There is a link between these two solutions, which is called the domain-wall / cos-
mology correspondence. The correspondence can be summarized roughly as stating
that for every cosmology there exists also a domain-wall and wvice-versa. In chapter
6 chapter we are going to see what happens if we put this correspondence in a su-
pergravity setting. We will see that this leads to a new type of brane, the so-called
Ep-brane. We point out a relation to Sp-branes.

All the solutions considered so far live in a Minkowski space-time. In chapter 7 we
are going to consider solutions that require a Euclidean space-time i.e. instantons. In
chapter 3 we show how such theories can be obtained from dimensional reduction of
ordinary Lorentzian supergravities. The main focus will be on finding the generating
Euclidean solutions.

The last chapter will be about conclusions and possible future research.



There are four appendices. Appendix A contains all the necessary conventions
that we use for general relativity and differential geometry. Appendix B is concerned
with spinors in arbitrary dimensions. This is used in chapter 6. In appendix C we
give an overview of Lie groups and Lie algebras. In the last appendix we give the
published papers.






Chapter 2

String Theory

In this chapter we begin with introducing the relativistic point particle and the free
bosonic string. We then move to the superstring and focus on its low energy limit,
obtaining supergravities. This allows us to introduce Dp- and Sp-brane solutions,
which will play an important role in the coming chapters. We will not give many
details, for this we refer to books and lecture notes such as [3-7].

2.1 Classical String Theory

Before discussing string theory, it is interesting to remind ourself how to describe
a free relativistic particle of mass m > 0 in a Minkowski space-time, given by the

D-dimensional flat metric 7, = (—1,1,...,1) with line element
D-1
ds? =, detda” = —*dt? + Z (dz®)?, (2.1.1)
i=1

where c is the speed of light, ¢ is the time coordinate and z* are spatial coordinates.
Since we are dealing with a free particle, we expect it to trace out a straight line in
space-time. The action for such a particle is given by the shortest path

Af
S = —mc/ VvV —ds? = —mc/ V N avdA, (2.1.2)
P Ai

where c is the speed of light, 2/# = da*/d\ for some parameter A describing the curve
z#(X) and A; and Ay are the values of A at the initial and final points of the world-line
P. The presence of mc is dictated by requiring the right units for an action S. To see
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that this is the action we are after, we note that with the help of (2.1.1) and using

A =t we can rewrite it as
ty 'U2
S = —mc/ c\/1— —dt, (2.1.3)
t; ¢

where the velocity squared is given by v? = Zf):_ll(dxi /dt)?. This clearly shows that
v is bounded by the speed of light ¢, in agreement with the special theory of relativity.
Also note that a Taylor expansion around small v/c leads to the Lagrangian

1
L= —mc®+ imUQ , (2.1.4)

which is the expected expression for a non-relativistic free particle. From now on we
take ¢ = 1.

The action (2.1.2) can be extended to a curved space-time described by the metric
9w () via replacing the line element (2.1.1) with

ds? = g, (z)dztdz . 2.1.5
“w

By extremizing the corresponding action and using for A an affine parameter!, we
derive the equations of motion

d2gm dz? dx”
[p—— = 2.1.
oz g =0 (2.16)

with the Christoffel symbol I';,, given by (A.2.2). This equation is called the geodesic
equation. If we use g,, = 7, we find the equations of motion for a free particle
in Minkowski space-time. We can interpreted the action (2.1.2) as a map from the
parameter space A to an embedding in a D-dimensional space-time described by x*.

A string is the two-dimensional extension of this. Instead of the world-line we
have a two-dimensional surface called the world-sheet ¥ of the string. It is common
to describe this world-sheet by the parameters (7,0). We then consider the mapping
from the (7, o) world-sheet to the D-dimensional space-time described by X* 2.

What is the action describing a string in a Minkowski space-time? The particle is
parameterized by A, the “metric” induced on the one-dimensional world-line is given
by

da* da¥

9N =y e s (2.1.7)

! An affine parameter means that A is related to s = [, v/—ds? via A = as+b with a,b € R. This
means that we parameterize the curve by the distance along the curve, # = zH(s).

2In string theory it is conventional to use capital letters for the embedding coordinates, i.e. X*
instead of x#.
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and we note that the determinant (Det) g of gxx appears in the integrand in (2.1.2).
For the string we have the natural extension to the so-called Nambu-Goto action

dX* dX”

S = —T/dZC\/T, with g;; = Tgide"“”’ (2.1.8)
where (' = (7,0) and g = Det(g;;). The fields X* are the coordinates of the string in
the Minkowski space-time described by the flat metric 1,,. The tension 1" has units of
force. It is the force which tries to pull the string together to a point and is therefore
called the string tension. It is often rewritten as T = 1/27a’ = 1/I2. The parameter
ls is called the string length and introduces a fundamental scale in the theory. Instead

of working with (2.1.8) it is more convenient to work with the alternative action
T g
5=—3 /E 2V TREI 9, X0, X 0y, (2.1.9)

This is called the Howe-Tucker-Polyakov action [3]. Here h;; is an independent metric
on the worldvolume, independent of the induced metric g;;. From the equation of
motion for h;; we obtain

1
5hij(habg,ﬂ,) ) (2.1.10)

This can be used to show that (2.1.9) is classically equivalent to (2.1.8). From (2.1.9)
it follows that h;; allows for a conformal re-scaling symmetry

hij = F(QOhij, (2.1.11)

with f(¢) an arbitrary function of the world-sheet coordinates. This is called the
Weyl re-scaling. The action (2.1.9) has two more symmetries. Namely general co-
ordinate transformations on the world-sheet and global Poincaré transformations in
D-dimensional space-time

gij =

Xt — X'* = A XY 4 at, (2.1.12)

where A* is an SO(1,D — 1) matrix obeying A" A¥*\1,, = 7. and a* is a constant
vector.

It is a well known result of two-dimensional geometry that a coordinate re-para-
metrization allows an arbitrary metric h;; to be cast locally in a conformal flat metric

hij = p*(Onig (2.1.13)

where 77 = diag(—1, 1) and p is called the conformal factor. The action (2.1.9) in this
conformal gauge reduces to

T .
S = _E/Edz’gn”aixuajxww. (2.1.14)
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£ "

Figure 2.1.1: The figure on the left (right) represents a closed (open) string.

and (2.1.10) becomes in this gauge the constraint
2
(aTX“ + agX“) —0, (2.1.15)

where the square means a contraction with 7, .

Now we are going to derive the equations of motion for X*. Given an initial
and a final condition at 7; and 77, we need to vary (2.1.14) with respect to X*,
ie. 60XH(r;,0) = 0X*(ry,0) = 0. We now have to make a difference between open
and closed strings, see figure 2.1.1. As the name suggests, an open string has two
end-points labeled by ¢ = 0 and ¢ = [. The variation of (2.1.14) leads to

Tf
68 = T/ d*¢OX"5X, + T/ dr0,X"6X 9= = 0. (2.1.16)
> T,

(3

The first term on the right-hand side of the expression above leads to the well known
wave equation

o 02

OXH(r,0) = (ﬁ - ﬁ)XM(T,a) =0, (2.1.17)
with the general solution
Xt(r,0) =Xt (t—0o)+ X (T+0). (2.1.18)

The subscript — (4) stand for right (left) moving modes on the string. There are two
ways to make the second term on the right-hand side of (2.1.16) zero.
First we can choose to work with so-called Neumann boundary conditions. These
are specified by
0, XH(1,0) = 0, XH(7,1) =0. (2.1.19)

The end-points of the strings can move freely. Alternatively we can choose to keep
(some of) the end-points of the string fixed. For this we have to restrict the variations
to

OXH(1,0) = 6XH(7,l) =0 — X*(7,0 or I) = constant . (2.1.20)

These are called Dirichlet boundary conditions. Because the string is fixed in the di-
rections where these Dirichlet conditions are applied, momentum cannot be conserved
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in these directions. Therefore these boundary conditions imply that the open string
has to couple to a dynamical object which is called a D-brane. The name comes from
the Dirichlet boundary condition and the word brane generalizes the concept of a
membrane. D-branes are an important class of extended objects in string theory and
have played a crucial role in understanding the non-perturbative structure of string
theory.

Extended objects are in general called p-branes. Here p stands for the number of
spatial directions of the extended object. The free relativistic particle we discussed
before is in this language a 0-brane and the string a 1-brane. An open string that
has both endpoints confined to the same Dp-brane satisfies Neumann conditions in
the (p + 1) directions which make up the worldvolume of the brane. Note that time
is considered part of this worldvolume. The (D — p — 1) Dirichlet conditions are
transverse to this plane. An exception is the D(—1)-brane or D-instanton. This
brane lives in a Euclidean background, the time coordinate has been replaced by a
spatial direction and all these spatial directions are transverse to the brane. If we
instead take for the time coordinate a Dirichlet condition the brane is called an Sp-
brane, which has by definition a Euclidean (p+ 1)-dimensional worldvolume and time
is one of the transversal coordinates [8]. This means that the time coordinate X°
obeys a Dirichlet condition. The S stands for the spacelike worldvolume. In section
2.4 we will discuss both p- and Sp-branes.

Finally for the closed strings the same variation as given in (2.1.16) holds. The
difference is that the end-points do not exists and we have to demand a periodic
boundary condition specified by

XM r,0)=X"(1r,0+1) YV u. (2.1.21)

2.2 Quantization of the Bosonic String and Curved
Backgrounds

So far we have been working with classical bosonic strings in a Minkowski background
9guv = NMuv- In this background the theory can be quantized exactly. The first note-
worthy feature is that to regain Lorentz covariance the space-time dimension needs
to be D = 26. The oscillation modes for the open string lead to the following mass
spectrum

e the vacuum with mass squared M? = —h/a/, corresponding to the tachyonic
scalar T,

e the first excited state with M? = 0, corresponding to a massless vector A, ,

e an infinite tower of massive modes.
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The tachyonic particle has M? < 0, which leads to an instability of the theory®. The
mass gap between each subsequent mass level is ii/a’.

The first two closed string spectrum levels are

e the vacuum with mass squared M? = —4h/a/, corresponding to a tachyonic
scalar T,

e the first excited state with M2 = 0, consisting out of a symmetric traceless field
Juv, an anti-symmetric 2-form field B, and a scalar field ¢ called the dilaton .

The field mediating the gravitational force is identified with the symmetric traceless
tensor g,,. This identification follows from the fact that the degrees of freedom
of a classical D-dimensional gravitational field is carried by a symmetric, traceless
tensor field with number of independent components 1/2 D(D —3). The closed string
spectrum shows that gravity is part of the quantized closed bosonic string. For this
reason it is believed that string theory could form the basis of a theory of quantum
gravity.

So far we have only considered non-interacting strings, moving in a flat Minkowski
background. Just as we did for the particle, we now want to extend this to a more
general background g, (X). A possible starting point is the Howe-Tucker-Polyakov
action (2.1.9), but now with g, instead of 1,,. We can think of this string moving
in a coherent background of gravitons [3]. We have seen that the graviton is itself an
excited state of the string, so we can generalize this by also turning on backgrounds
for the other two massless fields appearing in the closed string spectrum. Therefore
we consider the closed string in a background consisting out of the massless states ¢,
guv and B,,,. The action can be obtained in the following way. We assume at most
two world-sheet derivatives and we extend the symmetries of the action (2.1.9) to this
case. That means that we require general covariance on the world-sheet and in the
target space, as well as local Weyl invariance. It turns out that the following action

3The instability can be understood as follows. Consider a scalar field ¢ with mass M2 that
depends only on the time ¢. The equation of motion of such a particle with potential V = %M2¢>2
is given by
42 (t)
de?

In case M2 > 0 we see that the solution for ¢ is given by ¢(t) = ¢osin(Mt + «) with ¢o,a two
integration constants. The scalar field can “sit” at ¢ = 0 forever since it is a stable point. If on
the other hand M?2 < 0 we see that the general solution is given by ¢(t) = A cosh(mt) + B sinh(mt)
with m given by M? = —m? and A, B two constants of integration. It is clear that for A = 0 and
[t| — oo the scalar field |¢| blows up. This time ¢ = 0 is a maximum of the theory. So if the scalar
field sits at ¢ = 0, a small perturbation d¢ will cause the field to start rolling down the potential [6].

+ M2%p(t) =0. (2.2.1)
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will do*

T ) .
=73 ,/2 AV (h 0 X0, XY — €9 B0 X1, XY — ol 6R()),  (22.2)

where R(h) is the Ricci scalar of the world-sheet metric h;;. This action is an example
of a non-linear o-model. A non-linear o-model is a scalar field field theory in which
the scalar fields take on values in some non-trivial manifold M. The last term in
(2.2.2) plays a special role. Assume that we have a constant mode of the dilaton ¢y.
The Gauss-Bonnet theorem [9] states that

X = 4i d*¢V—hR(h) =2(1 —g), (2.2.3)
T J%

where the genus g is the number of handles of the world-sheet. One can now calculate
scattering amplitudes between different string modes via the string path integral based
on the action (2.2.2). From (2.2.3) we see that the amplitude of a string diagram of
genus ¢ is multiplied by (e?°)2972. As a consequence every interaction will have
an associated string coupling constant g, given by the expectation value of e?o. A
world-sheet with genus g can therefore be seen as the g-th loop correction to string
theory.

The scattering amplitude for the massless modes can be summarized by an effective
action. For the closed bosonic string it is given by [10]

1

S = gz [ @ ov=ge (Rlg) + 400)° -

= O T

2(31)

where kg is related to the 26-dimensional Newton’s constant Gog via kK = Kggs =
V/8mGag and H pvp = = 30}, B, Note that this is not the standard Einstein-Hilbert
action as given in appendix A.4. The Ricci scalar is coupled to the dilaton in a

specific way. This defines the so-called string frame g,ﬁ?. Via the conformal mapping

gf[?,) = ed’/Qg,(f:) we find the action in the Einstein frame (E)

S = A% 2/g® (R ( 8(;5)

e )HWPHWP) (2.2.5)

We thus see that the bosonic string action leads to the effective 26-dimensional action
(2.2.5). In the next section we are going to include world-sheet fermions and obtain
effective actions via the method mentioned here.

4At the quantum level Weyl invariance is broken by an anomaly and the last term in the action
(2.2.2) is needed to restore the symmetry.
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2.3 Superstrings and Supergravities

The free bosonic string of the previous section has two drawbacks. First there are
the tachyons signaling an instability. Secondly, there are no fermions present in the
theory. To fix this we add fermions to the world-sheet and we will see that this also
solves the tachyon problem. In this section we will work in the conformal gauge.

The standard way to proceed is by adding D world-sheet fermions y* = (¢, ")
to the Howe-Tucker-Polyakov action (2.1.9) via the term

5=—7 /E Q¢ (090 X10;X, + i 050, (23.1)

where 47 are the I'-matrices in two dimensions

%_(‘2 é) 71—(‘; _OZ> (2.3.2)

satisfying {v;,7;} = mij, see appendix B for more details. The action (2.3.1) is
invariant under the following world-sheet supersymmetry transformations

SXH =ept | St = —i( PXM)e, (2.3.3)

where € = (e4,e_) is a constant spinor. For the free theory we are considering in
this section we see that the bosonic and fermionic sector decouple. We have the same
bosonic solution (2.1.18). A variation with respect to 1)# gives the following equations
of motion

(0r F 95)0% =0, (2.3.4)
together with the boundary condition
o=l
(whows, —vtaw,)| _ =0 (2.3.5)

From (2.3.4) we see that the most general solution is given by ¥ (7 + o), where 1,
(1) is called the left (right) mover.

Let us first focus on the open strings. Then (2.3.5) is satisfied if ¥/} = +¢* and
dp = £y . Since an overall sign in the boundary conditions is irrelevant, we can
set Y (0 = 0) = ¥ (¢ = 1). We find the following two possibilities for an open string

Ramond (R) : % (I,7) =v"(l,7),

Neveu-Schwarz (NS) : i (I,7) = —¢" (I, 7). (2.3.6)

For the closed string we have the periodic identification for o. This means we can
impose (anti)-periodicity for the left- and right-moving component /{ separately
Ramond (R) : ¢/ (0,7) =4 (l,7),

Neveu-Schwarz (NS) : ¢/ (0,7) = —¢4 (I, 7). (2.3.7)
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As a result we get four differen sectors for the closed string: R-R, NS-NS, R-NS and
NS-R.

We can now quantize the free superstring. To regain Lorentz covariance we find
that we need to require D = 10. To have space-time supersymmetry we apply the
Gliozzi-Scherk-Olive (GSO) projection. This basically truncates the states that do not
have a counterpart in the other sector. This projection also eliminates the tachyonic
ground state from the spectrum. Due to the space-time supersymmetry we refer
to this theory as the superstring. Choosing several combinations for the boundary
conditions in the open and closed string case leads to five differen supersymmetric
string theories. Namely type ITA, type IIB, Type I and heterotic Eg x Eg and
heterotic SO(32). The type ITA and type IIB are closed string theories, containing
N = 2 space-time supersymmetry. In type IIB the supersymmetry parameters have
the same chirality, in type ITA they are opposite. Type I is the only open string
theory and has A/ = 1 supersymmetry. The heterotic theories also have N/ = 1
supersymmetry, they differ in their gauge group.

2.3.1 Supergravities

In section 2.2 we mentioned that we can obtain a 26-dimensional effective action for
the free bosonic string. This method can similarly be applied to the five superstring
theories. As it turns out these theories are supergravities. This means that the
symmetries of such a theory combine general coordinate transformations and local
supersymmetry. That is the spinor € depends on the space-time coordinates. In this
section we will only write down the bosonic sector (in the string frame). In chapter 6
we will make use of the fact that these are local supersymmetric theories.

Type ITA

The action is given by the following expression

1
Sua = —53 /dlox |g|{e_2¢[— R — 4(8¢)2 + %H ' H}
2K70
2 1
L1\ gl gen) gcs} , (2.3.8)
‘2 v
where
Les = — 4.2142 ghaio 8#101(2)%#4 aﬂs C/(L?S)M7N8 BHQMO ’ (2'3'9)

and we have the following expressions for the field strengths

H=dB, G® =dc®, GW=dc® —H® rcW, (2.3.10)
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Here 2 is related to the physical coupling x? via

1 %o

—_— = . 2.3.11
252 2K2 ( )

Type IIB

The action is given by the following expression

1 _ 2
Sup = —2,{%0/(11055 |g|{e 2¢{—R—4(3¢) —&-%HH}

3/2
LN e g s L) g L

n=1/2 \/H

ECS}, (2.3.12)

where

1 ISRYIEY
Lo = _WE; v g O Ol O Buopuno - (2.3.13)
The scalar C(?) is called the axion and we have the following expressions for the field

strengths
GV =dc®, g® =qc® - gBcO (2.3.14)

To get the right number of degrees of freedom, we must impose that the five-form
field strength is self-dual
GO = «G®) (2.3.15)

This constraint is added to the equations of motion. We will not write down the other
three AN/ = 1 supergravities resulting from type I and the two heterotic string theories
since we will not make use of them. They can be found in e.g. [11].

11d Supergravity

Although Lorentz covariance requires superstrings to live in D = 10, there does exist
a supergravity in D = 11 [12]. Its bosonic action is given by

1
/dllm |g|[—72+ iG(‘l) -GW
! (2.3.16)

1 11 1 ..o v
— 12 /d .73@ gHt 4B1---Bap pGal.A.a4G61..ﬂ4Cpupa
11

we see that it has a 3-form gauge potential related to G0 = 40, Cype)- It is a
theory with A/ = 1 supersymmetry.



2.3 Superstrings and Supergravities 17

2.3.2 T-duality

Let us go back to the bosonic string in 26 dimensions. We assume that the 25th

coordinate X2° has the topology of a circle S' with radius R. This can be achieved

by imposing that all points along this direction are identified if they differ by 27 R.
For the closed string we have to modify the boundary condition (2.1.21) as

X®(r,04+1) = X*(1,0) + 2rRm,, (2.3.17)

where the integer m now indicates how many times the closed string is wrapped
around the circle. This leads to quantized momentum along this direction

- (2.3.18)

with k& an integer. This follows from e X

(2.3.17). The mass spectrum is given by

together with the boundary condition

(2.3.19)

M2 o (k2 m2R2)

BT

It is invariant under the inversion of the radius with a simultaneous interchange of k

with m

O/

R——, k—m. (2.3.20)
R
This transformation is called T-duality.

The surprising thing is that if we apply T-duality to type ITA string theory we
will end up with type IIB string theory. This can be shown for example by noting
that when both type II supergravities are reduced to nine dimensions the same action
appears. This winding is a stringy effect, in field theories particles cannot wrap around
a compact dimension.

2.3.3 S-duality

This type of duality is a strong-weak duality. Let us show this for type IIB super-
gravity. We combine the dilaton ¢ and axion C©) in a complex scalar 7 via

r=C0 4 9. (2.3.21)
The scalar part of (2.3.12) containing ¢ and C©) can be written as

C 1 1 10707
— _ 75((9(;5)2 _ 562¢(8C(0))2 =3 = (2.3.22)
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where 75 is the imaginary part of 7. Note that we are working in the Einstein frame.
Define now the following fractional linear transformation on 7

ar +b
cr+d’

T —

with a,b,¢,d € R and ad —bc=1. (2.3.23)

We can group these numbers in a SL(2,IR) transformation A

A= b)) 2.3.24
(¢0) (23.21)

Under this SL(2,R) transformation the full type IIB supergravity is invariant if the
two 2-form potentials transform as a doublet

c®) c®)

while the 4-form transforms as a singlet. Assume that we have a background in which
C) vanishes. An S-duality transformation is the specific SL(2,IR) transformation
with a = d =0 and b = —c = 1 such that

p——¢, C? B2 BA_,_c®, (2.3.26)

This means that the string coupling gs goes to 1/gs. If g5 is small initially, (2.3.26)
maps the theory from weak to strong coupling.

The five string theories we mentioned above turn out to be related to one another
by dualities such as T- and S-duality, see for example [11]. This suggest that these five
theories represent various limits of one single fundamental theory, called M-theory.
The idea is that the 11d supergravity (2.3.16) is one of the low energy approximation
of M-theory.

2.4 Brane Solutions

In this section we will discuss two different types of brane solutions belonging to type
IT supergravities. First we discuss time-independent p-branes, after that we will look
at time-dependent Sp-branes.

2.4.1 p-branes

In section 2.1 we have introduced D-branes as objects arising due to the Dirichlet
boundary conditions applied to open strings. We will now focus on the type II super-
gravity actions and show that the Dp-branes are a special class of p-branes.
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In the previous section we have seen that both type II theories and 11d super-
gravity contain higher rank gauge fields C(*+1)

. 1 3
IIA - {Ol(i )7C£LI)HQMS} ’
B : {C<0>,q§§>u2,cﬁ‘?..u4} ,
1d (€} - (2.4.1)

For a charged 0-brane (or a point particle) we know that the coupling to a one-form
gauge field A is of the form

1
Sz—mc/ ds+q/ AWM — f/ «dAM A dAW (2.4.2)
P P 2 Jm

where ¢ is the electric charge of the O-brane, A = A, dz" the one-form gauge field,
M the space-time manifold and P the world-line. We see that the 0-brane couples
naturally to a one-form gauge field A().

The existence of the higher rank C'("*1) gauge field suggests a coupling to a higher-
dimensional object, namely a (p = n)-brane instead of a 0-brane. In section 2.1 we
mentioned that a p-brane is a (p+ 1)-dimensional object in space-time. The coupling
of a (n + 1)-rank gauge field to a (p = n)-brane generalizes to

1
T/Ed”“C(n n 1)|aalxm D, G P (2.4.3)

Here T is called the brane tension and ¥ is the (n + 1)-dimensional worldvolume of
the brane. The expression (2.4.3) is called the Wess-Zumino (WZ) term®.

From the type II supergravities (in the Einstein frame) it is clear that there are
in general couplings between the field strengths and the dilaton. The action for a
p-branes is given by

1 1 1 0 . dA A
S=53 (R—g*d¢/\d¢—§e «dA, 1 Ad n+1), (2.4.4)

where we allow for an arbitrary dilaton coupling parameter a. The equations of
motion together with the Bianchi identity are given by

1 n+1 6 2 1 9
v = 0,000 — JEOOF2, L e"(F2, ), (2.4,
Ruw = 3060900 = 5 oy 2 9 Fre ¥ rpyn® By (2:45)
d(*eanﬁ) = () P=mgR2 4 g0t qR L, =0, (2.4.6)

5Besides the Wess-Zumino term, we can also add the D-brane low energy effective worldvolume
action. This term is called the Dirac Born-Infeld action [13].
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a
Op = ————F2,,e% 2.4.
O rapie 24.7)
where J("*+1) follows from the variation of the WZ-term (2.4.3), [J is given by (A.2.8)
and F?_, and (F?2,,),. are given by (A.4.9).

From (2.4.6) we see that d x J("*1) = 0, so we define the electric charge Q. as

Q. xe®® pn+2) (2.4.8)

7 .
o 2/{2 SD—n—2

where is the higher-dimensional sphere surrounding the brane.

We will ignore the WZ-term and focus on the bulk action (2.4.4). This action has
an electric/magnetic duality. To see this we define the dual field strength F(P—"~2)
via Hodge duality F(P~"~2) = 4xe® F("+2)  The equations of motion (2.4.5-2.4.7) are
invariant under the following “duality transformations”

SD—n—Z

ap — —ap, (n+2) — (D—n-2), FOF2  pO-—n=2) (2.4.9)

Under this duality the Bianchi identity and equation of motion for F("*2) swap their
role. This means that there exists also a magnetic solution with charge

1
Qm = \/ﬁ/s . Fn+2) (2.4.10)

The action (2.4.3) therefore has both an electric solution with a (n -+ 1)-dimensional
worldvolume and a magnetic solution with a (D —n — 3)-dimensional worldvolume.
Let us present these solutions in some detail.

We denote the worldvolume coordinates of an arbitrary p-brane by z° with i =
0,1...p and the coordinates of the space transverse to the brane by y* with a =
p+1,...D —1. We assume that the worldvolume has Poincaré symmetry ISO(1, p)
and the transverse space SO(D — p — 1). The following Ansétze will do

ds? = A dxtdatn,; + 2P dy dybs.,,  é(r), (2.4.11)

with 7 = /y%yb0. and A, B are arbitrary functions. As discussed above, there
are now two different solutions, namely an electric (p = n)-brane or a magnetic
(p = (D —n —4))-brane. Solving the equations of motion gives the following metric

~4(D—p-3) S 4(p+1)
ds® = h D=5 nijda'da’ + e Sapdy®dy®, (2.4.12)
where the parameter A is given by [14]

(p+1)(D—-p-3)
D—2 ‘

A=a*>+2 (2.4.13)
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The electric (p = n)-brane is given by [14,15]
2
¢ _ 12a/A (n+2) _ 0 n —1
e’ =h , F = —da" A... ANdx" Adh(r . 2.4.14
~ (r) ( )

For the magnetic solution we prefer to work with transversal coordinates given by
Sapdy®dy® = dr? + r2dQ2D7p72 . (2.4.15)
Here d©22, is the metric on the S™ sphere see (A.2.15). The magnetic (p = (D—n—4))-
brane is described by
2
VA

where gg(n+2) is the determinant of the metric on S*2). The function h(r) is the
harmonic function of the transverse space. For p < D — 3 we have

Q
D

e® =p2/8 0 phnt2) - Vs ddt AL AdOTE (2.4.16)

h=1+

(2.4.17)

In both cases @ is related to either the electric or magnetic charge of the brane.
Note that the metric approaches Minkowski space-time when r goes to infinity. For
the special case that p = (D — 3) we have a logarithmic harmonic function, while if
p = (D —2) we have a linear harmonic function.

It can be shown that the electric Q. and magnetic charge @Q,, satisfy a Dirac
quantization condition [11,16,17]

QeQ =271, n = integer. (2.4.18)

This is the generalization of Dirac’s quantization for electric and magnetic monopoles.
The SL(2,IR) symmetry we mentioned earlier (2.3.23), is broken down to SL(2,Z) in
the quantum theory due to this charge quantization.

2.4.2 Dp-branes

So far we have discussed general p-branes. To make contact to the type II supergrav-
ities we choose D = 10 and a = (3 — p)/2 5. We defined Dp-branes in section 2.1
as hyperplanes on which open strings can end. They are a special class of p-brane
solutions with a coupling to the RR-potentials and satisfy Dirichlet boundary condi-
tions along their transversal spacelike coordinates”. The above discussion of p-branes

SNote that this is a consistent truncation of the type II supergravities, with this we mean that
any solution of the truncated theory is also a solution of the full theory.

7A different Dp-brane picture is given in [18]. Here one considers a stable Dp-brane as a tachyonic
kink solution on the worldvolume of an unstable D(p + 1)-brane.
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showed us that a (n + 1)-gauge potential leads to a (p =n)-or a (p = (D —n —4))-
brane. From (2.3.8) we see that in type ITA we have odd-form gauge potentials. These
give rise to DO-, D2-, D4- and D6-branes. In type IIB there are D1-, D3-, D5- and
D7-branes coupled to even-form potentials. The D3-brane is special in that its dual is
the D3-brane itself. It is a dyonic solution, which means that it carries both electric
and magnetic charge. The field strength should be self-dual, see (2.3.15)8.

There are two special branes that play an important role in this thesis. First there
are the p = (D — 2)-branes. These are called domain-walls, since the brane has only
one transverse direction, separating space-time into two regions. The corresponding
field strength is a zero form. Such a term can for example be added to type ITA
supergravity, obtaining massive ITA [19].

From the field content of type IIB we see that there is also an axion present, this
leads to a D(p = —1)-brane or the D(—1)-instanton. As the name suggest, we have
a zero-dimensional worldvolume and all the transversal directions are spatial. This
branes lives in a FEuclidean background and is dual to the D7-brane.

Finally note that in both type II theories there is also the NS-NS 2-form B, .
This couples to the fundamental F1-string and its dual the NS5-brane.

One of the successes of the D-branes is the Maldacena conjecture [20-22] or
AdS/CFT correspondence. This correspondence arises from considering the near
horizon limit of a N D3-branes in which we consider the region close to r = 0, where
the metric has geometry AdSs x S®. Here AdSs is a five-dimensional Anti-de Sitter
space and S° a five sphere. On the other hand, far away from the D3-brane we have
free bulk supergravity. From the D3-brane action perspective, the dynamics far away
from the brane is also free bulk supergravity. However near the brane we have a
supersymmetric SU(N) gauge theory. The conjecture is that N' = 4 SU(N) super-
Yang-Mills theory in 3+1 dimensions is the same as (or dual to) type IIB superstring
theory on AdSs x S° [22].

All these branes can be shown to preserve half of their supersymmetries. Such
solutions have the property that they fulfill some first-order differential equations
which arise from demanding that the fermion supersymmetry transformations van-
ish. These first-order equations are now referred to as Bogomol’nyi or BPS equations,
named after Bogomol'nyi [23] and Prasad and Sommerfield [24]. Witten and Olive
showed in [25] the relation to preserved supersymmetry of solitons in supersymmet-
ric theories. Nowadays the term BPS—equation is used for first order equations of
motion that are found by rewriting the action as a sum of squares. In general super-
symmetric solutions belong to this class. Stationary non-extremal (see below) and
time-dependent solutions cannot preserve supersymmetry in ordinary supergravity
theories. Nonetheless, we will later see that these solutions often can be found from
first—order equations. Even more, we will see that a time-dependent solution some-
times does preserve supersymmetry if we embed it in a so-called star supergravity [26].

8This can be obtained from our solution if we replace F5 — %(F5 + xFy).
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Such a theory is closely linked to the supergravity theories of subsection 2.3.1.

In the literature these supersymmetric branes are also called extremal. The word
extremal comes from the fact that the branes obey a relation between the mass and
the charge of the D-branes. To be precise, when the mass equals the charge a brane
is called extremal [27,28]?. When this is not the case the brane is called non-extremal.

Non-extremal p-branes

There are two standard types of deformations of the extremal p-brane. In the
literature these are called type 1 and type 2 non-extremal p-branes [30].

For type 1 deformations the form of the D-dimensional metric Ansatz remains the
same as in the extremal case, namely

ds? = e*Ada’dain;; + *P (dr® +17dQ},_, ), (2.4.19)

where A and B are functions of r only. For the extremal case we discussed above
these two functions are related via

X=(p+1)A+(D—-p—3)B=0. (2.4.20)

For the type II supergravity D-branes this relation follows from the requirement that
the brane solutions preserve some unbroken supersymmetry see e.g. [15,27]. For the
non-extremal type 1 deformations we have X # 0.

The type 2 deformation begins from a modified form for the metric Ansatz [31,32],
namely

ds? = e*A(—e*/ dt? + da'da 6;5) + 2B (e 2 dr® + r2dQ%7p72) . (2.4.21)

Here f is a function of r only and in this case the relation X = 0 still holds.

Although both type 1 and type 2 deformations introduce an additional function,
namely X or f, the way in which they enter the metric Ansatz is quite different. The
two become equivalent when p = 0.

2.4.3 Sp-branes

In the previous section we discussed p-branes. A natural question is what happens
if we choose a Dirichlet condition for the time-coordinate [8]. Since time is then no
longer part of the worldvolume, we have a brane with a Euclidean worldvolume. Such
branes are called spacelike branes or S-branes for short.

9However, an extremal brane is not necessarily supersymmetric, see for example [29].
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Just as for a p-brane, an S-brane is carried by a metric, a dilaton and a (p+2)-form
field strength. An Sp-brane will have a (p + 1)-dimensional Euclidean worldvolume
and D — p — 1 transversal coordinates of which one is the time coordinate.

In [8] the S-branes were first introduced. The metric of an Sp-brane describes a
time-dependent geometry which schematically looks like

ds? = —e*AO Q2 4 2BW 5, dyady® + eZC(t)dH% (2.4.22)

—p—2-
The d4, makes sure that we have a Euclidean worldvolume with symmetry ISO(p+1).
The transverse space consists out of time and a (D — p — 2)-dimensional hyperbolic
space, see appendix A.2. This gives the symmetry SO(D —p — 2,1). In [8] it was
argued that this is the required symmetry for an S-brane Ansatz. In the gauge where
A = C the Ansatz looks like that of the metric of a p-brane (2.4.11). In [33-39] many
different S-brane solutions are given.

By now this has been extended to many different time-dependent Ansétze. Such
as Ansétze where the hyperbolic space has been replaced by a compact sphere. It is
unlikely that this has anything to do with the original Sp-branes of [8]. For example,
when ¢ goes to infinity these solutions do not even approach flat Minkowski space
any more. Nonetheless, in this thesis we will define Sp-branes in this generalized
sense. That is, we call a time-dependent solution carried by a metric, possibly a field
strength and a scalar field an Sp-brane.

Due to the time-dependence the S-branes belonging to type II supergravities are
not supersymmetric. As a result the solutions are more complicated to write down.
We will not discuss general Sp-branes as we did for the p-branes. Instead we will
focus on S(—1)-branes. In this section we will consider the S(—1)-brane belonging to
type IIB supergravity. This brane can be considered as the time-dependent ’twin’ of
the Euclidean D(—1)-instanton.

The action for the S(—1)-brane follows from the truncation of type IIB supergrav-
ity to its scalar sector (for D = 10)

S = / dPz/—g (R - %(8@2 - %e%(ax)Q) : (2.4.23)

where ¢ is the dilaton and we denote the axion with x instead of C(®). Observe that
we can introduce a metric G;; on the scalar manifold. With this we mean that we
can write the scalar part of (2.4.23) as follows

%(8@2 + %e%(ax)Q = %Gijaqsiaqu . (2.4.24)

If we consider ¢ and x as coordinates, we can read of what G;; has to be. In general
it depends on the scalar fields. To show that G;; indeed describes a metric on the
scalar manifold, consider the following action with N scalar fields ¢’

S = _% / dPxy/=g Gij0,0' 0" . (2.4.25)
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The scalar fields ¢ define a local map from a space-time parameterized by the coor-
dinate z* to a N-dimensional Riemannian manifold parameterized by ¢*

d) : Mspacc—timc — Mgcalar : 2" — (,bl(x) . (2426)

Let us show that G;; indeed transforms as a metric under coordinate transformations
on Mscalar

00' 097 _ ., 06'(8)) 081(¢)) 06 08" _ ., 09" 09"

i =G; = . 2.4.27
I O v 70k At Ozt dav FEoar dzv ( )
We see that G;; transforms as a bilinear.
The equations of motion that follow from (2.4.23) are given by
1 1
Ruw = §au¢au¢ + 56%8;0(8”)(7 (2.4.28)
Ou (e2¢\/—gg“”8,,x) =0, (2.4.29)
9, (Fggwayqs) — /ge*0, 0" = 0. (2.4.30)
When p = —1 all space is transverse so the part containing B is not present in the
Ansatz (2.4.22). We choose the gauge where e?¢ = 2 and we generalize the Ansatz
to
1
ds? = — f(£)2dt? + t2(1 ——dr?+ TQdQZ,‘J_Q) , (2.4.31)

such that it is valid for all k. The part between brackets describes for k = 0 flat
space, for k = +1 a sphere and for £k = —1 a hyperboloid, see appendix A.2. Only for
k = —1 there is an expected string theory interpretation. This follows from the fact
that when t goes to infinity the metric describes a flat Minkowski space-time only for
k = —1 (if f approaches one), see for example (2.4.32). The two scalars depend only
on t.

In section 3.5 we will show a way to solve the equations of motion (2.4.28-2.4.30)
in a structured way. Basically this comes down to realizing that the scalar fields trace
out a geodesic on the scalar manifold described by the metric G;;. For now let us just
give the metric solution

dt? 1

2 _ _ 2 2 ,.2902

ds® = T (1 ——dr? 4 dQD_Q) . (2.4.32)
2(D-1)(D—2)

Here ||v]|? is a strictly positive number. This constant will turn out to be the affine

velocity labelling the geodesic. The scalar fields are given by

¢(t) = log (cl cosh(]|v||h + 02)) ,
) (2.4.33)

x(t) = j:C— tanh(||v]|h + c2) + ¢35
1
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Here ¢; are constants of integrations and the harmonic function h is given by

_ 1 - 2o _ ||v]?
h(t)fmlog’\/&t2 P4 \/at( D)fk‘Jrc, aiQ(D—l)(D—Q)’

(2.4.34)
with ¢ a constant.
The link between the two scalar fields and the geodesic is due to the following
relation

(On9)* + € (Onx)* = ||v][*. (2.4.35)

We give an explanation of this in section 3.5.

For k = —1 we have the S(—1)-brane of type IIB supergravity [33]. For k = 0 the
brane describes a so-called power-law universe in FLRW-coordinates. With this we
mean that after a coordinate transformation we find that the metric is given by

ds? = —dr® + a(r)* (dr? + 12d%,, ) (2.4.36)

Here a(7) is called the scale factor for an obvious reason. For the S(—1)-brane solution
we discuss here we find that a(t) = 7 with p = 1/(D — 1). Such a scale factor is
called a power-law.

In case k = 1 we cannot really consider it as an S(—1)-brane, actually the metric
(2.4.36) describes a transition from a Big Bang to a Big Crunch for a closed universe
[40]. For example, in three dimensions we easily derive that a(7)? o (||v]|?/4—72) > 0.
At 7 = £||v||/2 the Ricci scalar blows up and hence we see that this describes a Big
Bang to a Big Crunch universe. A different reason to use the FLRW metric instead of
(2.4.32) is that the latter has a coordinate singularity for some finite ¢. In the FLRW
frame the metric covers the whole manifold, but finding explicit expressions for h(7)
and a(7) is difficult in general.

In chapter 4 we will use the relation between geodesics and the scalar fields to
write down the most general Sp-brane with a deformed worldvolume.

A supersymmetric brane obeys the extremality condition (2.4.20), i.e. X = 0.
In [41] it was shown that if one demands that the extremality condition also holds for
an Sp-brane with £k = —1 one finds that the resulting field strength is imaginary. This
shows that the extremality condition cannot be satisfied for real S-brane solutions.
However, in chapter 6 we will see that there is a different interpretation possible for
the imaginary solution.

In subsection 2.4.2 we mentioned the AdS/CFT correspondence. For S-branes
this leads to a proposed dS/CFT correspondence [42,43]. Since the worldvolume of
an S-brane is Euclidean, the field theory will be a Euclidean conformal field theory.
Unlike the AdS/CFT correspondence there is not much support yet for the dS/CFT
one.



Chapter 3

Dimensional Reduction of
Branes

In the previous chapter we mentioned that the superstring requires a ten-dimensional
space-time. To make a connection to our four-dimensional universe we introduce in
this chapter dimensional reduction to link a higher-dimensional theory to a lower-
dimensional one. We will restrict to torus reductions and reductions on maximally
symmetric Einstein spaces.

In the last section we show that via dimensional reduction over the worldvolume
of a brane we obtain a link between p-branes and instantons, and similarly between
Sp-branes and S(—1)-branes. If on the other hand we reduce over the maximally
symmetric transverse space of a brane, we generate a potential. This way we have a
relation between branes and domain-walls and cosmologies. These observations form
the basis for the rest of the thesis.

Some useful references about Kaluza—Klein reductions are [44,45].

3.1 Dimensional Reduction

Consider a free scalar field QS inD=D+1 dimensions, depending on the coordinates
x# = (x*,y). We put hats on the fields when they are in D + 1 dimensions. What
happens if we reduce the theory to D dimensions via compactifying the coordinate y
on a circle S! of radius R? The first thing we can do is expand the scalar field é in a
Fourier series. Due to the circle we have to impose the following boundary condition
on the scalar field

d(x",0) = ¢(x, 27R).. (3.1.1)
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We expand qg as
Pat,y) = dn(z)e™/ (3.1.2)

We obtain a discrete spectrum of fields ¢, (x) with quantized momentum k = n/R,
see (2.3.18). The equation of motion for ¢ is

1 = (O + 8,0). (3.1.3)

Using (3.1.2) we see that the lower-dimensional scalar fields ¢, (x) obey

n2

dn(x) =0. (3.1.4)
We thus see that ¢g(x) is a massless field in D dimensions and that the other modes
are massive fields with masses m? = n?/R?. The usual Kaluza-Klein approach is to
assume that the radius R of S! is very small, in which case the masses of the modes
with n # 0 will be enormous. This holds for general compact internal spaces and
fields qAS This is the physical reason as to why we can choose to work with fields
independent of y, since when we take the radius R of the extra dimension to be small
so that we do not observe it, the massive fields ¢,, become extremely massive and will
not play a role in the effective D-dimensional theory. On the level of the equations of
motion (3.1.4) this means that we truncate the fields ¢,~0. These massive fields are
knows as Kaluza—Klein states and when they are truncated we see from (3.1.2) that
gZ; is independent of the extra dimension y.

Let us therefore assume that all higher-dimensional fields are independent of the
coordinate y. For a scalar field we just have that ¢(z) = (,ZAS(:Z?), but for fields that
transform non-trivially under coordinate transformations we need to do something
more. A vector will give A; = (A,(x), x(x)), i.e. it gives a D-dimensional vector
A, (x) and a scalar field x(«). The metric g, will give rise to a D-dimensional metric
Guv, & vector A, (x) and a scalar field (z), since we can write it as

) , A
Gap = < gj]:l/ b > . (3.1.5)

If we would start in D 4+ 1 dimensions with a scalar field, a vector and a metric, we
would have in D dimensions three scalar fields, two vectors and one metric.

Not all compact manifolds are allowed, since a reduction must be consistent. This
means that a solution of the lower-dimensional theory is also a solution of the higher-
dimensional theory via tracing back the steps of the reduction. This procedure is
called uplifting or oxidation.

An example of an inconsistency is choosing the scalar field ¢ to be a constant
in the reduction (3.1.5). This follows from the equation of motion for ¢, i.e. the
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details of the interactions between the various lower-dimensional fields prevent the
truncation of the scalar ¢. A different inconsistency can appear from the truncation
of the massive modes in the expansion (3.1.2) and similarly for the metric and other
fields. It can be that turning off the massive modes is not allowed, although one
can show that this is not a problem for our S' reduction. For example, suppose we
had kept all the modes in the Fourier expansion. It could have been that from the
resulting equations of motion for these higher modes we would have found that it is
not allowed to take the modes with ¢,~o to be zero. In more complicated Kaluza—
Klein reductions, the issue of the consistency of the truncation to the massless sector
is a tricky one. For these reasons it is best to reduce the equations of motion instead
of the action. However in the examples we will consider this consistency is know to
be in order.

If the massive sector of a certain reduction cannot be consistently truncated this
does not automatically mean that the reduction is of no use. Assuming that the
massive modes are very heavy, it is probable that the massive modes have negligible
interactions with the massless sector because they are so heavy. So even in the case
that the massive modes cannot be consistently truncated, leaving them out of the
theory at low energies might still be a good approximation.

We will also use dimensional reduction for a different reason. We will show that
reducing a theory over some of its dimensions leads to a theory which is easier to
solve than the original one. Via uplifting the solution back to D dimensions we have
generated a solution of the higher-dimensional system. This way we have constructed
a solution-generating technique. It is clear that for this to work, the reduction must
be consistent to be sure that it leads to a solution of the higher-dimensional theory.

So far we have focussed on a compact internal manifold such as S'. Later we
will see examples where the internal manifold is not compact. The only thing we
require is that we can consistently truncate to the massless sector, although there
is no physical motivation as to why we should do this truncation. For the solution-
generating technique this turns out to be useful. Such a reduction is called a non-
compactification, in contrast to a compactification on a compact manifold.

3.2 Torus Reduction of Gravity

As a first example we will work out the sphere reduction we introduced in the previous
section. From (3.1.5) we see that the metric of the higher-dimensional theory is given
by dsQD+1 = ds?% + d¢? + 24, dz*dy. We could use this Ansatz and plug it in the
higher-dimensional Einstein-Hilbert action

S = /dD“m\/fgfz. (3.2.1)
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The resulting action would not look familiar, for example we will not find the standard
Einstein-Hilbert term. We would have to introduce some field redefinitions to fix this.
To avoid this we will use the following (D + 1)-dimensional metric

ds? = e**ds% + e*P?(dy + A,dat)?, (3.2.2)

with .
a2:2(D_1)(D_2), B=—(D-2)a. (3.2.3)

These constants are chosen such that the lower-dimensional action immediately con-
tains the Einstein-Hilbert term. The conventions we use for the Christoffel symbol are
given in appendix A.2. Plugging (3.2.2) in (3.2.1) leads to the following D-dimensional
Lagrangian

1 1
L=4Rp— 5 *dpAdp— 5e—2(17—1)0*¢ *dAAdA. (3.2.4)

Due to the coupling between ¢ and A we cannot take ¢ to be zero.

Let us now consider the reduction over a n-torus T”, i.e. T? = S! x ... x S!
(n times). This reduction can be obtained from further reducing pure gravity on a
series of circles. For each step the reduction of the metric generates a Kaluza—Klein
vector A* and a Kaluza—Klein scalar ¢*. The vectors that are already present from
an earlier reduction give rise to a lower-dimensional vector and a scalar called axion.
After reduction on an m—torus we count n vector fields A™, n dilaton scalars ¢™
that correspond to the radii of the circles and n(n — 1)/2 axions x®. The dilatons
and axions together parameterize the coset GL(n,IR)/ SO(n) = R x SL(n,IR)/ SO(n).
The concept of a coset will be discussed in more detail in section 3.4.

Instead of doing a circle by circle reduction, it is easier to do the torus reduction
in one step. Similar to the case of S! (3.1.5) we now write

N G Ay
Gpp = ( [m %:n ) , (3.2.5)

with ., a symmetric strictly positive definite matrix of scalars, it contains the
n(n + 1)/2 axions and dilatons. It is positive definite since we are reducing over a
Euclidean torus. The indices p,v (m,n) run from 1,...,D (D+1,...,D +n). To
avoid having to introduce field redefinitions in the lower-dimensional theory, we define
Omn = €28% M, with e2P¢ the determinant of ©mn- This means that ¢ determines
the volume of the torus. It is therefore called the volume modulus or the breathing
mode. The (D + n)-dimensional Ansatz that gives us the Einstein-Hilbert action in
D dimensions is

ds?, ., = e**¢ds?) + 7 My, (dy™ + A™) @ (dy™ + A™), (3.2.6)



3.2 Torus Reduction of Gravity 31

with

o2 = n , B= _(D =2 )
2(D+n-2)(D-2) n
In doing this reduction we need the inverse of the metric Ansatz. This can best
be achieved by using the vielbeine éf related to the metric as

(3.2.7)

Nap>  Nap = diag(=1,1,...,1), (3.2.8)

see appendix A.2.1. Indices raised and lowered with 7 are underlined for clarity here.
For the metric Ansatz (3.2.6) we derive that

. a el efvAPL M
ey = ( Ou eﬁwznmp ) . (3.2.9)
Here L is the vielbein of the torus

and k,l run from D +1,..., D 4 n. Since the vielbein (3.2.9) is upper triangular it
can easily be inverted. From this we find the inverse metric

&7pib (3.2.11)
where éf;” is the inverse vielbein. The inverse metric can be written in terms of My,
again.

If we plug (3.2.6) in the (D + n)-dimensional Einstein-Hilbert action we find the
Lagrangian

1 1 1
L£=+Rp—gxdpAdp+sdMpn AAM™ — 5e2<ﬂ*°‘>swtmn *dA™AdA™ . (3.2.12)

Here M™" means the inverse, i.e. M™ = (M~1),,,. It is consistent to put A™ to
zero.

As mentioned, the scalar field ¢ is called the breathing mode since it describes the
overall volume of the torus. The scalars in M can be interpreted as shape-moduli of
the torus. These scalars parameterize the coset SL(n,IR)/SO(n). Together with the
breathing mode ¢ we have the coset GL(n,IR)/SO(n) = R x SL(n,IR)/SO(n).

3.2.1 Torus Reduction over Time

Above we considered the Euclidean torus reduction of pure gravity. If we want to
include time in the dimensional reduction as well we need to reduce over a n-torus
with a Lorentzian signature T" 11, The Ansatz (3.2.6) is still valid, but with the
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difference that now Det M = —1 due to the Lorentzian signature of the torus. To
take care of this we replace M (3.2.10) by

M=LnL", pn=diag(-1,1,...,1). (3.2.13)

The reduction leads to the Lagrangian (3.2.12) but now with M given by (3.2.13). The
scalar coset parameterizes GL(n,IR)/SO(n — 1,1). We have a non-compact version
of the SO(n)-subgroup due to the reduction over the Lorentzian torus.

Something special happens if we reduce down to three dimensions. Due to Hodge
duality (A.3.10) we can dualize all gauge potentials A™ to scalars. Schematically this
goes as

-1
Ou¢ §e,pr”p , (3.2.14)

where F' = dA™ and ¢, the three-dimensional epsilon tensor see (A.3.7). The three-
dimensional gauge potential A™ can be described by the new scalar field ¢™. If we do
this for all the gauge potentials this leads to extra scalar fields in three dimensions.
As a result, there is a symmetry enhancement since it can be shown that the extra
scalars combine with the existing scalars into the coset SL(n + 1,1IR)/SO(n — 1,2).
There is no decoupled R in this case.

For the reduction over a Euclidean torus from 3 + n to three dimensions we have
the coset SL(n 4+ 1,IR)/SO(n + 1).

Due to the non-compactness of the subgroup, such as SO(n —1, 1), the theory will
contain ghosts. A ghost is an axion field with the opposite sign for the kinetic term
in the Lagrangian. For future use let us discuss the ghost content for the theory with
scalar coset GL(p + q)/SO(p, q).

For a general coset GL(p+¢q)/ SO(p, ¢) the number of ghosts is pg. For the Kaluza—
Klein moduli spaces this can be seen as follows. When one considers a reduction over
time then there are two possible origins for ghosts. Ghost fields x* appear as the
time-component of a one-form A? in the higher dimension, that is, A* = yAdt + A2,
Alternatively, extra ghost fields appear in three dimensions upon dualisation of the
one-forms. The extra minus sign is due to the fact that the three-dimensional theory
is Fuclidean. Therefore, imagine we reduce Einstein gravity in D 4+ n dimensions to
D +1 dimensions over a spacelike torus and then perform a subsequent reduction over
a timelike circle, then the n — 1 Kaluza—Klein vectors in D + 1 dimensions give n — 1
ghostlike axions. This fits with the fact that the scalar coset is GL(n)/SO(n—1,1). If
D = 3 then we can further dualise those n—1 descendants of the Kaluza—Klein vectors
to n — 1 ghostlike axions, thereby doubling the number of ghosts. The Kaluza—Klein
vector that appears from the last timelike reduction does not dualise to a ghost but
to a normal axion since that vector appeared with a wrong sign in three dimensions.
This indeed explains why there are 2(n — 1) ghosts in SL(n 4+ 1)/SO(n — 1, 2).
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3.3 Maximally Symmetric Compactification

The torus reduction we considered so far did not generate a potential V' in the lower-
dimensional theory. In this section we want to show an example where this does
happen.

For this let us consider gravity with the following metric Ansatz

ds® = e**?g,,, (z)datdz” + €**¢g,,, (y)dy™dy", (3.3.1)

with the same a and (8 as before but note that g,,, depends on the coordinates y™.
The only scalar field is the breathing mode ¢(z). The indices u, v run from 1,...,D
and m,n run from D+1,..., D+ n. To see what kind of condition g,,, has to satisfy
we work out the higher-dimensional Ricci tensor

Ry = R + a(09)2 gy + 00,00, + V.0, 0 — g, O,
7?/mn = Rmn - ﬁe2(ﬁ_a)wgmn|:|§0, (332)
Rym = Rump = 0.

The coeflicients a, b and c¢ are given by

a=—(D—-2)0a?-nBa, b= (D-2)a*+2naf—pF*n, c=—(D-2)a—nf.
(3.3.3)
Let us now focus on the internal manifold metric g,,,. We assume that g,,, is a
n-dimensional Einstein space. Such a space is defined by

Rin = dGmn — Rn =dn, (3.3.4)

with d a constant and R,, the Ricci scalar of the n-dimensional internal manifold.
From (A.2.18) we see that if we have a sphere S™ (k = +1), a hyperboloid H" (k = —1)
or flat space E" (k = 0) that d = (n — 1)k. From the Einstein equation R, = 0
(3.3.2) we see that, if g, is one of these three Einstein spaces that this becomes an
equation of motion for ¢ coupled to some potential V.

To be precise, the n-dimensional field equations (3.3.2) can be derived from re-

ducing the (D + n)-dimensional Einstein-Hilbert action

/ V—§R = Vol(M,,) / \/%(RD - %(330)2 + e2<°‘*ﬁ>¢7zn) , (3.3.5)

where Vol M,, is the volume of the internal manifold and we ignore the total derivative
Op. When g, belongs to one of the three Einstein spaces discussed above R,
simplifies to dn. This means that we can identify the potential V as [46]

V(p) = —kn(n — 1)e2(@=P¢ (3.3.6)
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In case we restrict to positive potentials, we see from (3.3.6) that k = —1. However,
H" is not a compact space and Vol(M,,) is not finite. To resolve this we mention
that H"™ can be seen as the coset SO(n,1)/SO(n), just as the sphere S™ is the coset
SO(n+1)/SO(n). To make H" compact, we can mod out with a discrete non-compact
symmetry. Since the metric is local, it does not care about topological issues such as
discrete identifications.

To make contact with S- and p-branes, we add to the higher-dimensional theory
a (p — 1)-form gauge potential and a dilaton ¢

L=+R— % s dg A dep — %ew «dA,_y AdA,_; . (3.3.7)

The equations of motion and Bianchi identity are

_ 1 o p=l g, 1 g
Ruw = 28M¢81,¢ 5D = 2)(p!)g,we Fy+ = 1)!26 () » (3.3.8)
d(*ea¢Fp) =0, dF,=0, (3.3.9)
O¢ = — F2e09 (3.3.10)

pl2- P

The Ansatz for the metric is again (3.3.1), but now we have that D = p. For the field
strength we use a Freund-Rubin [47] like Ansatz

F, = felPamnBle=ade, (piy - ¢ = p(zH). (3.3.11)

Here f is a constant and ep is the D-dimensional epsilon tensor (A.3.7). This ex-
pression for the field strength is in agreement with the equation of motion for F}, and
its Bianchi identity (3.3.9). One can now again reduce the higher-dimensional equa-
tions of motion (3.3.8-3.3.10) by using the Ansétze for the field strength and metric.
As it turns out, these lower-dimensional equations can be derived from the following
Lagrangian

1 1
Lo =v=9(R=5(06)* = 5(00)* = V(6.9)) . (3:312)
where the scalar potential V' now gets a positive contribution from the p-form flux
2
Vg, ) = f?eQ‘D*”“*"*a“’ — kn(n —1)eX@=Ae (3.3.13)

Here the first term comes from the flux and the second term we already found in
(3.3.6). We see that the flux adds a positive contribution to the potential. In case
k = 0 and if the scalar fields can be fixed this leads to a positive cosmological constant
A. Due to the charge quantization condition (2.4.18) A would be quantized.
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It is important to mention that in the above reduction we reduced the equations of
motion and not the action. Had we reduced the latter we would have found the wrong
sign in front of the flux contribution. This is because filling in an Ansatz means filling
in on-shell information and that can lead to problems. An Euler-Lagrange variation
with respect to the remaining (unfixed) degrees of freedom can be inconsistent. For
this reason it is better to reduce the equations of motion and then see what kind of
action leads to these equations of motion. For the torus reduction discussed in the
previous section such a problem does not appear.

An interesting generalization was considered in the papers [48-50]. We will use
the result of [45]. Consider the internal manifold as a product of M different spaces
M,

M =112, X M, (3.3.14)

The dimensions of each internal spaces is M; = n;, obeying the sum ). n; = n. Each
space M is assumed to be an Einstein space

(Ri)a, B, = ki(ni —1)(gi)a, B, - (3.3.15)

The generalization of the metric Ansatz (3.3.1) is

M
dsh,, = 2@ g drtda” + 2P Z X;(2)(gi)a, B, dyidyPi . (3.3.16)
i=1
To consider ¢ as the field that determines the overall volume of the internal manifold

we have to require that
mM, X =1. (3.3.17)

With this condition we see from (3.3.16) that the only z-dependence of the determi-
nant of the internal manifold is given by ¢(z). Due to (3.3.17) we have only M — 1
independent X°®. It is therefore convenient to write

X; = e B9 (3.3.18)

where ; - q; = Zﬁ;l Birdr, with ﬂ_; a constant (M — 1)-dimensional vector. In this
case we see that we have M scalar fields in total. From (3.3.17) we find that the
vectors (3; satisfy

M
> nifir=0. (3.3.19)
=1

The reduced Einstein equations for the metric Ansatz (3.3.16) can be derived from
the action

M—-1

1 1 P .
S:/*R—i*dgo/\dcp—52*d¢ Ado! — Vg, d), (3.3.20)

I=1
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with the multi-exponential potential

M
Ve, ‘5) = —e*a=P Z kini(n; — 1)6Bi'¢ . (3.3.21)
i=1

3.4 Coset Geometry

When we discussed the torus reduction in section 3.2 we found out that the scalar
fields parameterize the Riemannian coset GL(n,IR)/SO(n). In this section we want to
give a general discussion about cosets G/H with H the maximal compact subgroup
of G. In particular we will show how we can obtain for such cosets a metric G;;.
We comment later on the case when H is non-compact due to a reduction over a
Lorentzian torus.

Let us begin by defining what we mean with a coset G/H. Let G be a group
with a subgroup H. The coset space G/H is the set of elements [g] of G with the
equivalence relation

l9] =1g'] if ¢'=gh, (3.4.1)

where h is an element of H. As an example, let G be a Lie group and H any subgroup
of G. We can form the coset G/H. This coset space admits a differentiable structure
and G/H becomes a manifold M with dim G/H=dim G-dim H.

Assume now that G is a Lie group which acts transitively on a manifold M. That
means that given any point p € M, the action of G on p allows us to go to all the
points of M. Such a manifold is called homogeneous. For example, let H(p) be an
isotropy group of p € M, then G/H is a homogenous space. In fact, if G, H(p) and M
satisfy certain requirements it can be shown that G/H (p) is diffeomorphic to M [51].
As an example consider the Lie group SO(3) acting transitively on S2. The isotropy
group H is SO(2) and as a result we have that SO(3)/SO(2) = S2.

Let us focus on coset manifolds of the form G/H with H the maximal compact
subgroup. We want to define a metric G;; on G/H, which fixes the kinetic term for
the scalar fields

e 'L o< G(¢);;00 00 . (3.4.2)

This metric will not be unique, but we make the demands that the isometry group
must be G and that we have invariance under local H-transformations. We mention
[44,52-54] as a few examples about the use of cosets in supergravity.

If we succeed in parameterizing G/H with some coordinates y, then a coset
representative L(y) is a representation of G/H with the extra condition that if y # 3/
then there cannot exist an element h of H for which L(y) = L(y")h. This is because
of the coset requirement (3.4.1). On the other hand, for a given y there exist multiple
L(y) since for all h € H, L(y)h is an equivalent representation of the same coset
element.
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It is not difficult to construct a coset representative using the Lie algebras & and
$ of G and H respectively. Since H is a subgroup of G we have the decomposition
B = H P F, with § the complement of § in &. For a given representation of the
algebra & we define a coset representative via

L(y) = exp(y'fy) , (3.4.3)

where the f; form a basis of § in some representation of &. This defines correctly a
representative since if we assume L(y) = L(y')h we find that y = ¢/ as is required for
a representative.
We will be interested in a decomposition & = $ ® § which can be done in such a
way that
9,919, [59CF, [§.8CH. (3.4.4)

Such a coset is called a symmetric space.
To derive the metric we define a Lie algebra valued one-form from the coset rep-
resentative L(y) via
L YdL=E+Q, (3.4.5)
where F takes values in § and € in $. We notice that L~dL is invariant under left
multiplication with an y-independent element g € G. Multiplying L from the right
with local elements h € H results in

E—-h'Eh, Q—=ht*Qh+h"tdh. (3.4.6)

In supergravity the parameters 3° are scalar fields that depend on the space-time
coordinates y' = ¢*(z). The one-form L~'dL can be written out in terms of coset-
coordinate one-forms d¢? which themselves can be pulled back to space-time coordi-
nate one-forms d¢’ = 9,¢'dz". Now we can write

L7'dL = E,da* + Q,dz". (3.4.7)

Under the ¢-dependent H-transformations h(¢(z)) we have that Q, — h=1Q,h +
h_lauh and B, — h_lEuh. We see that F,, is covariant under local H-transformations
and ), transforms like a connection. Using this connection €2,, we can make the fol-
lowing H-covariant derivative on L and L~!

D,L=0,L-L1L%,, D, L '=0,L7'+Q,L". (3.4.8)
To find a kinetic term for the scalars we notice that the object
Tr[D,LD*L™ Y = —Tr[E,E"], (3.4.9)

has all the right properties as it contains single derivatives on the scalars, it is a
space-time scalar, it is invariant under rigid G transformations and under local H-
transformations. Thus,

e Lcatar = —Tr[E,EB"] = —3G($):;0,6'0" ¢ . (3.4.10)
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So far we have been completely general, that is we did not specify the coordinates
@' nor the representation. Let us therefore make a connection to section 3.2, i.e. we
focus on a coset where H is the maximal compact subgroup SO(n) of G in the funda-
mental representation. The Lie algebra of SO(n) is the vector space of antisymmetric
matrices and we have the split

_ L7AL + (L7'dL)T L=YdL — (L=1dL)T

FE = 5 , Q= 5 , (3.4.11)
and a calculation shows that
e Locatar = —Tr[E*] = +ITr[OMOM ™| = —1G(¢);0,0'0" ¢ . (3.4.12)
Here M is the SO(n)-invariant matrix
M=LLT. (3.4.13)
Under the global isometry group G it transforms as
M= M =gMg", gecd. (3.4.14)

To find the metric G(¢);; from (3.4.12) we still need to use an explicit realization
of the Lie algebra. This means a choice for the coordinate frame on G/H. However
we found that (3.4.12) still has local H-invariance. We use these h-transformations
to bring L in a 'nice’ form for computations, i.e. we make a gauge choice.

Let us look for the 'nice’ gauge in case H is the maximal compact subgroup of G.
The gauge we will be using is due to the Iwasawa decomposition [44,55]. This states
that every element g in the Lie group G can be obtained by exponentiating the lie
algebra & as follows

9 =9gngegH (3.4.15)

where gy is the exponentiation of the positive-root part of the algebra &, gc the
exponentiation of the Cartan subalgebra and gy is the maximal compact subgroup
H in G. In appendix C we present a short overview of Lie algebras and Lie groups.

For the algebra of G we denote the Cartan generators by Hy with I = 1,...,r
and r is the rank of the algebra. All the positive root generators are denoted by Fi,.
The commutation relations read

[H], HJ] = O7 [HI7Ea] = CY]Ea , [Ea, E@] = N(a,ﬁ)EaJrﬁ . (3416)

The last line is to be understood as follows. If a+ 3 is not a root we have N(«, 8) = 0,
else we have [Eq, Eg] < E,13. We call the algebra formed by H; and the positive
root generators E, the Borel subalgebra. For the Borel Lie algebra the matrix repre-
sentation can be chosen such that all elements of it are upper-triangular [55]. We can
then parameterize the coset elements in this gauge as

L = expls], (3.4.17)
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with s = C @ Y E,, the sum is over all the positive roots a. To be precise, as a
representative L we take

1
L= Haexp[XaEa]HIexp[§¢1H1] , (3.4.18)

where the ¢! are called the dilatons and x® the axions. The number of dilatons is
given by the rank of g and the number of axions is given by the number of positive
roots.

In terms of the Iwasawa decomposition (3.4.15) we see that our coset representative
is written in terms of L = gygc. If we now multiply this representative from the left
with an element g € G and make use of the Iwasawa decomposition we see that we
must be able to write gL(y) as

9L(y) = Ly )gn , (3.4.19)

where L(y') = g/yg>. We can now use a local h € H to remove gy such that we
are back in the Borel gauge. This is the gauge obtained via exponentiating the Borel
subalgebra.

What we have done here is only valid in case G is so-called mazimally non-compact.
A group G is maximally non-compact if the Iwasawa decomposition allows the repre-
sentative to be given by all the Cartan generators.

In general the Iwasawa decomposition ensures the existence of a solvable Lie al-
gebra! Solv, that is a real semisimple Lie algebra & of a group G can be written
as & = § @ s, where s is a solvable Lie algebra consisting out of the non-compact
part of the Cartan generators and a subset of the positive root generators [53, 55].
One can then similarly use this solvable algebra as the basis for the representative.
For the case we have a maximally non-compact G the solvable gauge is called the
Borel gauge. In case not all Cartan generators are in s we call G non-maximally
non-compact. See [52] for a discussion of this in the case of dimensionally reduced
heterotic supergravity.

3.4.1 The Coset SL(n,IR)/SO(n)

Now we specify to G = SL(n,R), which has rank n — 1 and SO(n) as its maximal
compact subgroup. The number of positive roots is n(n — 1)/2. There are therefore
n—1 dilatons ¢! and n(n—1)/2 axions y®. The Cartan generators are given in terms
of the weights 3 of SL(n,R) in the fundamental representation

(H)ij = (Bi)i; - (3.4.20)

LA solvable Lie algebra is defined as follows. Let ° = & and for k > 0 we define &*t1 =
[®F, &*]. If for finite n this series terminates, i.e. ™ = 0, then we call the Lie algebra & solvable.
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The weights can be taken to obey the following algebra
. P
Zﬁu =0, Zﬁuﬁu =201y, Bi-Bj=20i— o (3.4.21)

The first of these identities holds in all bases since it follows from the tracelessness of
the SL generators. The second and third identity can be seen as convenient normal-
izations of the generators. The positive step operators E;; are all upper triangular
and a handy basis is that they have only one non-zero entry [E;;];; = 1. The negative
step operators are the transpose of the positive. The SO(n) algebra is spanned by

the following combinations

\%(Eﬂ —E_p). (3.4.22)

The action will generically look complicated but when all axions are set to zero L is
diagonal L = diag[exp( —% Bi - ¢)] and the action becomes

+1TrOMOM ™ = =3(> " BisBir) 06" 067 = —$61,00' 047 . (3.4.23)

This action describes n — 1 dilatons that parameterize the flat scalar manifold IR™ .
Above we have set all the axions x® to zero, this should be consistent with the
equations of motion that follow from (3.2.12)

Ou(v/—gM O M) = 0. (3.4.24)

In general one can truncate a set of scalar fields that parameterize a scalar manifold
M to a smaller set of scalar fields that parameterize a submanifold M’ Cc M if M’ is
a totally geodesically submanifold [56]. This means that any geodesic in M’ is also a
geodesic in M.

The simplest example is SL(2,IR)/ SO(2). The algebra is given by

[H,Eo) = 2By, [H,E_y)=-2F_5, [EyE_o]=H. (3.4.25)

The two-dimensional fundamental representation is
1 0 0 1 0 0
H_(0_1>, E2_<00>’ E_2_<10>. (3.4.26)
From which we find the coset representative

1
L= exp[ng]eXp[§¢H] = < 0 oy (3.4.27)
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which leads to the kinetic term
1 1
L= _5(&;5)2 - 5e*w(ax)2 . (3.4.28)

This is the SL(2,1R)/ SO(2)-coset of type IIB supergravity?. In section 2.3.3 we found
that the SL(2,IR) extends to the whole Lagrangian, leading to S-duality. We refer
to [45] for a realization of the somewhat less trivial example SL(3,IR)/SO(3) with
five scalar fields.

From the above we can construct the Lorentzian version of this coset, that is
SL(2,IR)/SO(1,1). This gives rise to the D(—1)-instanton of type IIB. As explained
in section 3.2.1 we can use the same expression for L, but need to modify M to LnL™
with n = (=1,1). We find the Lagrangian

L=—=(0¢)*+ %e*w(ax)2 . (3.4.29)

1
2
Indeed we see that the metric is no longer positive definite.

It is important to mention that for maximally non-compact G the Borel gauge
only covers the whole manifold if the subgroup H is its maximal compact subgroup.
As we saw from the torus reduction this is no longer true when we reduce over time.
The Borel gauge does not cover the whole manifold any more as shown in [57].

This can also be seen explicitly for the coset (3.4.29). We can rewrite it as

1 1
£ =~ (060 + e (0", (3.4.30)

which is the metric on two-dimensional anti-de Sitter space (AdSsz) in terms of the
coordinates (e?,x). It is known that these coordinates do not cover the whole mani-
fold. Whereas we can rewrite (3.4.28) as Euclidean AdSs,, which does cover the whole
manifold.

It is therefore better not to rely on the Borel gauge for this kind of computation
at all, but it seems that a general good gauge choice (a gauge that can always be
imposed) is unavailable [57]. To avoid this problem with the Borel gauge, we will
work in chapter 7 on the level of M directly when we discuss the generating solution
for instantons.

3.4.2 Maximally Extended Supergravities

Let us now see what happens if we consider the dimensional reduction of type ITA
and type IIB on a n-torus and eleven-dimensional supergravity on a (n + 1)-torus.
As it turns out, we find the unique maximal supergravities in D < 10. That is
D-dimensional supergravities, whose supersymmetry is the maximal allowed by the

2The minus sign in the exponent can be removed via the field redefinition ¢ — —¢.
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Minkowskian Euclidean
D =10 SO(1,1) SO(1,1)
b=y | ugm e
D= | R R | v - 3
por| R |
D=6 S[OS((E?)(i’g)(S)] 58((;’8
e it
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Table 3.4.1: Cosets for mazximal supergravities in Minkowskian and Euclidean signa-
tures.

space-time dimension D. The reason that we obtain maximal supergravities is that
a torus reduction does not break supersymmetry.

One can classify these (maximal) supergravities by the scalar field interactions
in the Lagrangian. Just as for example the SL(2,IR)/SO(2) coset specifies the La-
grangian (3.4.28). The scalar fields parameterize a Riemannian manifold whose ge-
ometry fixes the interactions terms in the supergravity Lagrangian. We summarize
the scalar manifolds of the maximally extended supergravities that appear after di-
mensional reduction of 11-dimensional supergravity on a torus in table 3.4.1 [58]. For
future use we show it both for Minkowskian and Euclidean maximal supergravities?.
The cosets G/H in the left column are all maximally non-compact since G is the
maximal non-compact real slice of a semi-simple algebra and H is the maximal com-
pact subgroup. Since H is compact the metric is strictly positive definite and the
coset is Riemannian. The cosets G/H' in the right column only differ in the isotropy
group H' which is some non-compact version of H and as a consequence G/H' is not
Riemannian.

There is a third class of maximally extended supergravities which we did not put
in the table. Namely the so-called star supergravities [58,59]. These are Lorentzian
theories, but do have a non-compact isotropy group H. We will meet these theories in

3The relation between supergravity theories and geometries is not always completely one-to-one.
For example, in section 3.3 we have seen that a reduction can also generate a potential V. This
potential is in general not determined by the geometry.
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chapter 6 and show how they are related to the Minkowski theories in the left column
of table 3.4.1 for the case D = 10.

3.5 From Branes to “Particles”

As we discussed in section 2.4, many supergravity solutions have the structure of
p-branes. That is, they are charged electrically under a (p + 1)-form gauge potential
Ap+1 or magnetically under a (D — p — 3)-form gauge potential Ap_,_3, where D is
the space-time dimension of the supergravity theory. Another characteristic of brane
solutions is that the brane geometry has a flat (p + 1)-dimensional worldvolume, see
for example (2.4.12).

In general two different kinds of brane solutions are considered; timelike p-branes
that are related to the string theory D-branes [60] (or M-branes) or spacelike p-branes
(known as S-branes) who are conjectured to describe time-dependent phenomena in
string theory [8]. Timelike p-branes have a Lorentzian worldvolume and are stationary
solutions whereas Sp-branes have a Euclidean worldvolume and are explicitly time-
dependent. The metrics are given by*

timelike brane: ds? = eQA(T)anx“dx” + e2B(T)(dr2 + r2dQ2D7p72),

spacelike brane: ds? = eQA(t)élwdx”dx" +e2BM (—ar? + thH%_p_Q) , (3.5.1)

where A, B are arbitrary functions and J,7 are respectively the Euclidean and the
Lorentzian metric. There exist less symmetric solutions that break the worldvolume
symmetries (ISO(p, 1) and ISO(p+1)) and the transversal symmetries (SO(D —p—1)
and SO(D —p, 1)). There are two standard ways to achieve this. First there are extra
functions multiplying the dzdz-terms on the worldvolume. Secondly, there are off-
diagonal terms that mix worldvolume directions with transversal directions (dzd#@),
like for rotating timelike branes or twisted spacelike branes [39].

Solutions that are carried by a metric and scalars alone have a simpler mathemat-
ical structure then those solutions that are carried by non-trivial p-form potentials.
At first sight, there is only a restricted class of brane solutions that can be found as
solutions of a scalar-metric Lagrangian of the type

L= J@(R - %Giﬁdfﬁqﬁj - V(qs)) : (3.5.2)

where G;; is the metric on moduli space and V(¢) is a scalar potential. If we regard
a scalar potential V' as a 0-form “field strength” then it can couple magnetically to
(D —2)-branes, thus domain-walls (timelike) and cosmologies (spacelike) based on the
reasoning explained in section 2.4.

4We choose A = C' in (2.4.22).
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On the other hand 0¢ is a 1-form field strength and can therefore couple mag-
netically to (D — 3)-branes and electrically to (—1)-branes. Note that for timelike
(—1)-branes the worldvolume is zero-dimensional and the transverse space covers the
whole space. Timelike (—1)-branes are solutions of Euclidean supergravity, i.e. they
are instantons®.

Apart from the (D — 3)-branes (like the IIB 7-branes) the scalars only depend on
one coordinate and the Ansatz is given by

ds?, = ef(r)%dr® + g(r)Qgﬁ_ldxadxb, "= ¢'(r). (3.5.3)

The function f corresponds to the gauge freedom of re-parameterizing the r-coordinate.
For € = —1 the radial coordinate corresponds to time (r = t) and g is a metric on a
Euclidean maximally symmetric space (the three possible FLRW geometries). When
€ = +1 (3.5.3) this describes an instanton geometry with = the direction of the tun-
neling process. For ¢ = 4+1 and gfbfl a Lorentzian maximally symmetric space (AdS,
Minkowski or dS) (3.5.3) is a domain-wall geometry with r the transversal distance
from the wall. The difficulty with (D — 3)-branes is that these solutions depend on
one complex coordinate rather that on one real coordinate. For this reason we do not
consider (D — 3)-branes in this thesis.

Let us now explain that also the other p-brane solutions can be related to the
Lagrangian (3.5.2).

The worldvolume of a p-brane corresponds to Killing directions of space-time, and
for that to be valid the matter fields do not depend on the worldvolume coordinates.
This implies that one can “dimensionally reduce” a p-brane over its worldvolume®.
In the dimensionally reduced theory the p-brane then corresponds to a (—1)-brane,
since the worldvolume is zero-dimensional. These reductions are the torus reductions
we described in section 3.2. Comparing (3.5.1) with (3.2.6) we see that we have to
turn off the Kaluza—Klein vectors. Furthermore, the worldvolume of the theory is
identified with M,,,. We see that in general M,,, breaks the worldvolume sym-
metries (ISO(p, 1) and ISO(p + 1)), since we will obtain extra terms multiplying the
dxdz-terms on the worldvolume. If we reduce to D = 3 we dualize all Kaluza—Klein
vectors to scalars, see (3.2.14). These Kaluza—Klein vectors will lead to off-diagonal
terms that mix worldvolume directions with transversal directions dzdé6.

We see that p- and Sp-branes reduced over their worldvolume lead to a system
containing gravity and scalar fields only! In the case of timelike branes this is probably
best known for the correspondence between four-dimensional black holes (0-branes)
and three-dimensional instantons [56,61]. We refer to [62] for a similar discussion in
the case of spacelike p-brane solutions in maximal supergravity.

5In chapter 6 and 7 we consider a few examples where we have a Euclidean theory with a potential.
We call these solutions instantons as well.
SWe put dimensionally reduce between

«“

since the worldvolume is not compact.
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Dp-brane in d dim. Sp-brane in d dim.

flat WV curved spherical flat WV curved hyperbolic
reduction reduction reduction reduction

/ . / \

D(—1) — instanton in Domain wall in S(—1) — instanton in Cosmology in

(d—p—1) —dim.(V = 0) (p+2) — dim.(V # 0) (d—p—1) —dim.(V = 0) (p+2) —dim.(V # 0)

Figure 3.5.1: Starting from a brane in a Lorentzian d-dimensional space-time we show four
possible reductions. The worldvolume reduction of a Dp-brane leads to an instanton in the
lower-dimensional theory. Reducing over its transverse space gives a domain-wall. Starting
from an Sp-brane, the worldvolume reduction leads to an S(—1)-brane, while the reduction
over its transverse space leads to a cosmology.

If we instead compare the metric Ansétze (3.5.1) with that of (3.3.1) we see that
it should also be possible to reduce a brane solution over its transversal space; a
(D — p — 2)-sphere (szD—p—2) for timelike branes and a (D — p — 2)-hyperboloid
(dEzD_p_2) in case of a spacelike brane.

As we showed in section 3.3, after such a reduction the reduced brane is a (D —2)-
brane that couples to a non-zero scalar potential V(¢). In case of timelike p-branes this
is the known procedure to obtain brane solutions via uplifting domain-wall solutions of
gauged supergravities [63]. In case of spacelike branes this is known from the fact that
some (accelerating) cosmological quintessence-like solution obtained from hyperbolic
reductions lift up to S-branes as shown in many papers (see for instance [64,65]).

So if we start with gravity alone in the higher-dimensional space-time we see
that the branes (3.5.1), when reduced over their worldvolume or over their transverse
space, lead to the general Lagrangian (3.5.2). Furthermore, the Ansétze for the metric
and scalar fields are given by (3.5.3). Everything depends only on one parameter r.
This is like the physics of a “particle”! This explains the title of the thesis, 'Particle
Dynamics of Branes’. In the next chapter we will see that the inclusion of a higher-
dimensional (p + 2)-form field strength leads to extra axions in the lower-dimensional
theory. So again we have only scalar fields. In figure 3.5.1 we have summarized the
various reductions.

As said, an action containing a metric and scalar fields alone have a simpler
mathematical structure than those solutions that are carried by non-trivial p-form
potentials. When we have solved the lower-dimensional (scalar) equations of motion
we can lift up the solution to the original theory. This way we have a solution car-
ried by a non-trivial p-form potential as well. Let us discuss the situation with and
without a potential separately.
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(—1)-branes

In case V. = 0 we have (—1)-branes. The metric Ansatz is given by (3.5.3).
The trick in solving the equations of motion is that the scalar part of (3.5.2) describes
geodesic motion on the scalar manifold. To see this we re-parameterize the coordinate
r as the harmonic function h(r) via

dh(r) = ¢' =P fdr, (3.5.4)

then the scalar part of the action becomes

S = / Giji(9)ond O’ dh. (3.5.5)

From this it follows that the solution describes geodesic motion on the moduli space
with h as an affine parameter. Namely, in section 2.1 we have seen that the variation
of the action S x [ \/—gua’#a’ds leads to the geodesic equation (2.1.6), where a
prime means a derivative with respect to the geodesic length s. One can show that
the action

S o /gm,x’“x”’ds, (3.5.6)

leads to the same geodesic equation. Comparing this with (3.5.5) we see that G;;(¢)
takes on the role of g,,,,, the scalar fields that of * and h replaces the affine parameter
s. We see that in case there is no potential, the scalar fields trace out geodesics on
the scalar manifold. From this we know that the affine velocity ||v||? defined by

[v]|* = Gij0nd'One’ (3.5.7)

is a constant.
The Einstein equation for a (—1)-brane is given by

’R’TT = %Gijargbiard)j ) Rab =0. (358)
For the metric (3.5.3) we derive that the Ricci tensor is given by

d . . p .9
R = ~e{ S191+ 9L 4 (DT Ygnt 4 RE,

s / d (3.5.9)

g, 9f
Rrr =(D-1 —(=)+ =,
(D=1 -+ 5]

where a dot refers to a derivative with respect to r. Combining the Einstein equations
together with (3.5.7) we deduce the following first-order equation

2 _ 1E

§° = 2D 2)(D 1)f294_2D + ek f?. (3.5.10)
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A solution exists when the right-hand side remains positive. There is no equation of
motion for f since it corresponds to the re-parametrization freedom for r. We thus
see that the metric can be solved without having to know anything about the scalar
field solutions!

We now have to make a difference between the reduction of space- and timelike
branes. The former gives rise to a coset with a compact isotropy group. This means
that the metric G;; will be positive definite and hence |[v||*> > 0. So we have only
spacelike geodesics. Via uplifting the S(—1)-brane we obtain a (fluxless) S-brane.
We thus have an S(—1)-brane / Sp-brane map. This will be the subject of the next
chapter.

For the timelike branes on the other hand the isotropy group is non-compact, for
example SO(n — 1,1) instead of SO(n). Because of this G;; will not be a positive
definite metric on the scalar manifold and ||v||? can be zero, positive or negative. We
call these respectively lightlike, spacelike or timelike geodesics. We will discuss these
(—1)-branes in chapter 7. This way we obtain a (—1)-brane / p-brane map.

Domain-walls and cosmologies

Let us now discuss what happens if V' £ 0. We know that the presence of the
potential leads to domain-walls (timelike) and cosmologies (spacelike). Due to the
potential there is a priori no reason to assume that these solutions are still geodesics
of the scalar manifold. Under certain conditions however this turns out to be the
case. Namely when we have a so-called scaling solution, see subsection 5.1.3. Let us
illustrate this. A scaling solution has the property that if we calculate the on-shell
potential V' and kinetic energy T = %Gij&d)i&d)j we find that they have the same
r-dependence. Effectively, we can consider 7'+ V as some new T only. From what
we discussed above, we know that this means geodesic motion. Of course, filling in
on-shell information is rarely a consistent procedure. We analyze this in chapter 5.
There we will also show that scaling solutions are important since they correspond
to the so-called critical points of autonomous differential equations governing the
evolution of cosmologies. The critical points say a lot about the general evolution of
a cosmology.

Besides that both type of solutions couple to a potential, their Lorentzian Ansétze
also look very much the same. In [66] it was first noted that for a given domain-wall
one also finds a cosmology. This was worked out in detail in [67] and is called the
domain-wall / cosmology correspondence. We give a summary of this correspondence
in chapter 6.






Chapter 4

Massless Time-Dependent
Solutions

In this chapter we are going to look for time-dependent solutions of the Lagrangian
(3.5.2) without a potential V. We are then discussing S(—1)-branes belonging to the
action

S = /de |g\(7z— %Gijawaw). (4.0.1)

We will restrict to scalar manifold metrics G;; which belong to maximally non-
compact cosets G/H with H its maximal compact subgroup. If we consider solu-
tions that depend only on the time, 5 is a geodesic on the scalar manifold as we
explained in section 3.5. To find the most general geodesic we are going to construct
a solution-generating technique.

From section 3.5 we know that the above action can be obtained from reducing
gravity together with a dilaton and a p-form over a Euclidean torus. If we oxidize the
time-dependent geodesic solution back to the original higher-dimensional theory we
will obtain a (fluxless) Sp-brane. This leads to the S(—1)-brane / Sp-brane map.

The work in this section is done together with E. A. Bergshoeff, W. Chemissany,
T. Van Riet and M. Trigiante [68,69].

4.1 S(—1)-brane Geometries

We want to look for solutions belonging to the action (4.0.1) which only depend on
the time coordinate ¢. The Ansétze for the time-dependent S(—1)-brane is given by
(3.5.3)

ds?, = —f2(t)dt* + g*(t)gh, tdxda®, @' = ¢'(1). (4.1.1)



50 Massless Time-Dependent Solutions

In section 3.5 we showed that the scalar part of (4.0.1) leads to a geodesic on the
scalar manifold with affine parameter the harmonic function A. In terms of this affine
parameter the velocity ||v|| is a strictly positive constant

[v][* = GijOnd'Ong’ > 0. (4.1.2)

Via combining the scalar field equations and the Einstein equations we deduced that
the metric can be found from solving (3.5.10). If we choose to work in the gauge where
g% = t? we find that the Einstein equations (3.5.10) give the following D-dimensional
metric

dt? [lvll?

S S——— ) 3 = 4.1.3
Gt 20— o YT 9 -1(D-2)° (4.13)

2 _
dSD—

while the scalar fields trace out geodesic curves with the harmonic function h(t) as
affine parameter. The harmonic function is given by

_ 1 2-D 2(2-D) _ ‘
MO = ey log‘\/at +at k| +ec. (4.1.4)

We take ¢ = 0 in what follows since it just corresponds to a shift in the affine parameter
h.

Now that we have solved the metric, we proceed by explaining how one can find
the scalar field geodesics.

4.2 A Solution-Generating Technique

To discuss geodesic curves it is useful to introduce coordinates (scalar fields) on the
moduli space. As explained in section 3.4, we use the solvable gauge which for max-
imally non-compact manifolds G/H coincides with the Borel gauge. In the Borel
gauge the scalar fields are divided in dilatons ¢! and axions x®. This is done by
choosing the coset element as follows

L =TI, exp [x*Eu] exp [ @ H/], (4.2.1)

where H; are the Cartan generators of the Lie algebra of G and the E,, are the positive
root operators. The number of Cartan generators is the rank r of the Lie algebra of G
and for the cosets listed in table 3.4.1 the rank is » = 11 — D. The number of axions
equals the dimension of the isotropy group H for maximally non-compact cosets since
the Lie algebra of H is spanned by the combinations E, — F_,, .

Our approach to understand all the geodesic curves is by constructing the gen-
erating solution. By definition, a generating solution is a geodesic with the minimal
number of arbitrary integration constants such that the action of the isometry group
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G generates all other geodesics from the generating solution. Below we will explain
that for cosets G/H where G is a maximally non-compact real slice of a complex
semi-simple group and H is the maximal compact subgroup, the generating solution
can be taken to be the straight line through the origin carried by the dilaton fields

dl(h)y=v"h, x*=0, I=1,...r. (4.2.2)

Here h is the harmonic function. This solution contains r arbitrary integration con-
stants v/, with 7 the rank of G. This theorem applies to all the cosets in the left
column of table 3.4.1.

Since the straight line solution is the generating solution, by definition G-trans-
formations on this solution generate all the other geodesic curves. The number of
independent constants in G is the dimensions of G which is r + 2dim H. In total
this gives us 2r + 2dim H arbitrary (integration) constants as expected since there
are r + dim H scalars (coordinates) for which we have to specify the initial place
and velocity. The number of dilatons is given by r, the number of axions by dim H.
However this counting exercise is no proof since it might be that the action of G does
not create independent integration constants or if the solutions lie in disconnected
areas. The latter is the case for the cosets in the right column of table 3.4.1. There
the straight line solution is not generating since the affine velocity is positive

ol => (") >0. (4.2.3)

The affine velocity is invariant under G-transformations and by transforming the
straight line we only generate spacelike geodesics. But cosets with non-compact
isotropy H have metrics with indefinite signature and therefore allow for spacelike,
lightlike and timelike geodesics. In chapter 7 we derive the generating solutions for
cosets with non-compact isotropy group SO(p, q).

Let us repeat the proof of (4.2.2) as given in [68]'. In the Borel gauge the geodesic
equation is

o' + T d? " +TL %7 + TLpxx? =0, (4.2.4)

R+ T 05+ T5,X° 07 + T8, 7% = 0. (4.2.5)

Since I'l ;- = 0 and T'Y, = 0 at points for which x® = 0 a trivial solution is given by
ot =o't X =0, (4.2.6)

for some parameter t. How many other solutions are there? A first thing we notice
is that every global G-transformation ® — ® brings us from one solution to another

ISee also the appendix of [70] for earlier remarks.



52 Massless Time-Dependent Solutions

solution. Since G generically mixes dilatons and axions we can construct solutions
with non-trivial axions in this way. We now prove that in this way all geodesics are
obtained and this depends on the fact that G is maximally non-compact with H the
maximal compact subgroup of G.

Consider an arbitrary geodesic curve ®(t) on G/H. The point ®(0) can be mapped
to the origin L = 1 using a G-transformation, since we can identify ®(0) with an
element of G’ and then we multiply the geodesic curve ®(¢) with ®(0)~!, generating
a new geodesic curve ®5(t) = ®(0)~1®(¢) that goes through the origin. The origin
is invariant under H-rotations but the tangent space at the origin transforms under
the adjoint of H. One can prove that there always exists an element k¥ € H, such
that Adj,®2(0) € CSA [71]. Therefore x§ = 0 and this solution must be a straight
line. So we started out with a general curve ®(¢) and proved that the curve ®3(t) =
k®(0)~1®(t) is a straight line. If we take t = h it follows that the scalar fields are
given by (4.2.2).

4.3 Spacelike Branes
In this section we consider the time-dependent (—1)-brane solutions in D dimensions

and their uplift to general Sp-branes in D + p + 1 dimensions.
Sp-branes are solutions of the following action

L= H(R — 1(0¢)? - mwz«}?ﬂ) , (4.3.1)

with b the dilaton coupling constant. The reduction Ansatz for the metric is as in
section 3.2

dsQDerH = 2?ds?) 4+ PP M ppd2" @ d2™ (4.3.2)
where
2 p+1 (D - 2)a
= , = 4.3.3
“ TeaD+p-1)(D-2) A p+1 (4.3.3)

The matrix M and the scalar ¢ are the moduli of the (p + 1)-torus and depend
on the D-dimensional coordinates. In particular M is a positive-definite symmetric
(p+1) x (p+1) matrix with unit determinant and the modulus ¢ controls the overall
volume. For a dimensional reduction over a Euclidean torus the scalars parameterize
GL(p + 1,IR)/SO(p + 1) where ¢ belongs to the decoupled IR-part and M is the
SL(p + 1,IR)/SO(p + 1) part. More precisely M = LLT where L is the vielbein
matrix of the internal torus and it also plays the role of the coset representative of
SL(p+ 1,IR)/SO(p + 1).

The reduction of a (p + 1)-form AP*! over a (p + 1)-torus gives a scalar y and
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various other forms of lower degree in D dimensions since

p+1
APTL = Z AD(z)dz A2 AL AdRPL (4.3.4)
i=0

Here the A are the gauge potentials of rank . If one of the non-trivial forms in the
series is a (D — 2)-form, it can be dualized to a scalar field x5 in the lower dimension.
Since we start from an electric Ansatz, we can have magnetic flux only if we have a
dyonic solution in D + p + 1 dimensions. This gives the constraint p +2 = D — 1.
Non-zero values for x and yo imply then respectively non-zero electric and magnetic
flux. The reduction Ansatz for electrical solutions is A = y(z)dz! A ... A dzPt!,

The reduced D-dimensional Lagrangian is

£ = V=g{R = 509" = 5(96) + {TOMOM™" = 3o+ 20200 ()2} (4.3.5)

If the scalar fields in M are non-trivial then M # 1 and the ISO(p + 1) worldvolume
symmetries of the brane becomes smaller. The fact that we are able to write down
the most general solution with a deformed worldvolume illustrates the power of our
approach.

After an appropriate SO(2)-rotation of the two dilatons ¢ and ¢ we get the more
familiar Lagrangian for the scalars that parameterize IR x SL(2,1R)/SO(2)

L= Fg{n — 1(0¢)? = L(9¢")? — Le=? (9x)? + iTraMaM’l} , (4.3.6)

where the / denotes that the scalars are rotated versions of the original scalars and
where the radius of the SL(2,IR)/ SO(2) part is given by

c= \/b2 p{Po2ptl) (4.3.7)

The SL(2,R) transformations ) work in a non-linear fashion on ¢’ and x, but on the
level of the scalar matrix

c 47 é 2 _C¢/ c
My = e ( TX :xe 2X > : (4.3.8)
2

the transformation is My — QM0OT.

4.3.1 Pure Gravity

We start by considering Sp-brane solutions of pure gravity. The corresponding S(—1)-
brane is given by geodesics on GL(p + 1,1R)/SO(p + 1). In section 4.2 we showed
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that the most general geodesic solution is given by the most general SL(p + 1,1R)-
transformation of the “straight line” through the origin (which is therefore the gen-

erating solution):
p=vh+c?, o =vlh, (4.3.9)

where I runs from 1 to p and v¥,¢% and v! are integration constants and h is given
by (4.1.4). The ¢! are the dilaton scalars of SL(p + 1,IR)/SO(p + 1). The dilatons
are related to the diagonal components of the metric M on the internal space via
M = LLT with L given by (4.2.1).

In case all axions are truncated we have that

M = diag(exp[Bir¢']), (4.3.10)

where the J3; are the weights of SL(p + 1,IR) in a suitable basis where they obey
(3.4.21). The affine velocity follows from (4.2.3) and is given by |[v?|| = (v¥)? +

(2.

Uplifts

Since the scalar field matrix transforms as M — QMQT with Q € SL(p + 1,IR) we
notice that we only need to uplift the straight line geodesic since all other geodesics
are just Q-transformations which can be absorbed by redefining the torus coordinates
dz’ = QdZz. The higher-dimensional geometries we find depend on the curvature k of
the lower-dimensional FLRW-space.

e For flat FLRW-spaces (k = 0) the uplift becomes the Kasner solution [68]

_ 1
ds? = —72Podr2 + Dz:l 7P (dz®)? 4 Ii 72 (d2%)?, (4.3.11)
a=1 b=1
where o
Po = Va +(D-2),
av®

+1, (4.3.12)

_ p¥ n Byrv!
=" T e

and a is given by (4.1.3). These numbers p obey the constraints

D+p D+p
Po+1=> pi, (po+1)>=> pi. (4.3.13)
i=1 i=1
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o If we consider a curved FLRW-space (k # 0) in the lower dimension then the
uplift gives a vacuum solution with a bit more complicated metric. The uplift gives

d¢? p+1

u w b
dshipi1 =W [—m + 2 dEi] + ;W v (dz")?, (4.3.14)
with
W =et?P + \/e2w2(2-D) — | (4.3.15)

—2v +1)(D— 1)
- 22\| |m/(pD+§, - (4.3.16)

D-1)
D—1
e ||UH D+p-D(p+1) HU” ﬂbﬂ) (4.3.17)

and w is left arbitrary.

If we choose v! = 0 and k = —1 the solution is the fluxless S-brane of [8, 65, 72].
For k = 0, +1 the solution is strictly not called an S-brane since there is no Lorentzian
symmetry group SO(D —p —2,1).

4.3.2 Dilaton-Gravity

Now we complicate matters by considering a non-zero dilaton ¢. In D-dimensions the
solution is
o =v%h+c?, & =v’h+c?, o' =ov'h. (4.3.18)

The uplift to a fluxless Sp-brane gives a metric of the form (4.3.14) but now there is
a non-constant dilaton ¢(¢) and ||v|| gets an extra contribution

B(t) = — ) Lot log W + ¢ (4.3.19)

ol
10]1? = (%)% + (v*)? + Z(“I)Q- (4.3.20)

When we put the dilaton to constant via v? = 0 we end up with the pure gravitational
solution (4.3.14-4.3.17).

4.3.3 ...with Non-Trivial Flux

The uplift of the general solution with x possibly non-zero requires the uplift of
all SL(2,IR)/SO(2) geodesics. But as explained before they can be obtained by an
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SL(2, IR)-transformation on the straight line solution trough the origin ¢ = v®h. Thus
we can obtain the general solution by transforming the fluxless solution (4.3.19) with
¢? = 0. The metric reads

@ dt?
2 u 2 z 2 2 2
dsDip1 =W (C’ W=+n ) [—m +t dzk}+ (4.3.21)
p+1 y
Sowe (W ) (de)? (4.3.22)
b=1
with
4(p+1 D—
r= bz(D+p71)(i2(g—2)(p+1) Y= —pr% (4.3.23)
—2v% (p+1)(D-1)
u= ; 4.3.24
D=2\ D+p-1 (4.324)
¢ _ ® _
L bv? +2(D —2)aw? [2(D —1) (4.3.25)

[|v]] (D-2) "

The function W is defined in (4.3.15), w; is given by (4.3.17) and ||v|| by (4.3.20).
The dilaton and the form field strength are given by

_ 2(D+p—1)b 21177 2 v®  [2(D-1)
¢(t) = b?(D+p—1)+g(D—2)(p+1) log(CI W= +n ) TRV (D=2 log W',
Fiiy iy = (2(D - 2)x/5<77w) X (4.3.26)

tl—D\/m_’_ewt?y—QD
(ch—x-l[caw—cw + n2]2\/m) Eiyoipyr -

Let us explain the various integration constants. As before w is left arbitrary and a
and c are defined as before. The parameters ¢’ and 1) are given by

(4.3.27)

(= Cg ; (4.3.28)
— 2(D-1) 1
v = _cHIvH D—2 (b'ud’ +2(D—-1) WMULF) , (4.3.29)

where ¢,  come from the SL(2, IR)-transformation

Q:(Z 2) A — 3¢ =1. (4.3.30)

The numbers v¥ and v? are the “velocities” of respectively ¢ and ¢ in the fluxless
solution. One readily checks that the choice 2 = 1 indeed reproduces the fluxless
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solution given in subsection 4.3.2 with ¢® = 0. If we restrict to D =10, b=2,p = —1
and v¥ = 0 we have the S(—1)-brane of type IIB in a different coordinate frame as
discussed in section 2.4.3.

In this section the have written down the most general Sp-brane with a deformed
worldvolume.

SO-brane

As an illustration we consider the four-dimensional SO-brane considered in [8]. We do
this for three reasons. First of all to show that we indeed reproduce known S-branes.
Secondly, the parameters labelling the solutions do not yet have a physical meaning
and finally to show that from a higher-dimensional point of view not all parameters
are independent.

The four-dimensional non-dilatonic SO-brane belongs to the action (4.3.1) if we
take D=4, p=0and k = —1

S:/H%JQKR—i@). (4.3.31)

There is no dilaton present, so we need to take b = v® = 0. We then have four
remaining parameters w,v¥,( and 7.
The SO-brane follows from (4.3.21) if we require

2 1
(v¥)? — ?27—0 ;W g log(13), n*— %, (4.3.32)
together with the new time coordinate 7 defined as
t2=7% 72, (4.3.33)
From these relations we derive the metric
Q> T 2 7027'2_7'(? 2 Q22 2
ds? = % ———dr? + 2 — 0422 + “72dH2. 4.3.34
6 T2~ 18 Q> 7 7 2 ( )

This is the SO-brane as given in [8].

Not all parameters we started from are independent parameters from the four-
dimensional view point. From the explicit metric and field strength expressions we
can see that v¥ only appears in the field strength via a. Furthermore, { always appears
in the combination (+/a. So ¢ and v¥ are not independent variables. This agrees with
the first relation in (4.3.32). We can choose ¢ = 1 without loss of generality. Similarly
one can show that there is one relation between the other three parameters.
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Actually, we can also remove the parameter 7y from (4.3.34) via re-scaling the
coordinates as follows

Q 7o
t=—71, r=—z. 4.3.35
= Q (43.55)
If we do this we end up with
dt2 2
ds® = —— (1- t—Q)dTQ + t%(d6? + sinh?0 dp?) (4.3.36)

t2

from which it follows that @ is related to the electric charge. The symmetry of the
metric (4.3.34) is SO(2,1) x R. Here the SO(2,1) is the symmetry transverse to the
brane worldvolume and is referred to as the R-symmetry.

The SO-brane (4.3.34) is a singular solution [8], this follows for example from
considering the invariant R,,,,R*"?" where R, is the Riemann tensor. There
are two ways that the singularity might disappear in the full theory. Namely the
singularity might be smoothed out by stringy effects which are non-perturbative in o’
or gs [8]. All the original isotropic S-branes have singularities similar to the SO-brane.

In 2004 non-singular S-branes were found via a different way. Let us illustrate this
with the examples given in [39,73]. The original S-branes are homogenous, isotropic
and time dependent. These solutions can be derived from known isotropic p-brane
solutions via analytic continuations. For example, the SO-brane we described above
follows from an analytically continuated Reissner-Nordstrom black hole with mass m
and charge Q). To be specific, if we apply the following set of analytic continuations [73]

t—iar, r—ait, 0—10, m—im, (4.3.37)

to the Reissner-Nordstrom metric we find

dt? 2m 2
Tt
1= -%

ds? = — )dr? + t2(d6? + sinh?0 d¢?) . (4.3.38)

If we consider the massless limit this becomes (4.3.36) [74]. Similarly, the other S-
branes can be related to analytic continuations of isotropic p-branes.

A new class of S-branes can be found by deforming the SO(D — p — 2,1) R-
symmetry of the S-branes. The easiest way is to consider the analytic continuation
of known non-isotropic branes. In [75] is was shown that an analytic continuation
of rotating p-branes leads to non-singular S-branes. In general, the rotating p-branes
have singularities for large angular momenta. However, after the analytic continuation
the resulting S-branes are regular everywhere. These branes are called twisted S-
branes. Reducing the R-symmetry is thus one way to cure the singularity problem of
the original S-branes.
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4.4 Discussion

In this chapter we first introduced the concept of a generating solution. A generating
solution is a geodesic with the minimal number of arbitrary integration constants
such that the action of the isometry group G generates all other geodesics from the
generating solution. We then presented the theorem that for maximally non-compact
cosets G/H, with H its maximal compact subgroup, the generating solution can be
constructed from the Cartan subalgebra only.

We illustrated this technique for Sp-branes. That is we studied a Lagrangian con-
taining gravity, a dilaton and a (p 4 1)-form potential. Reducing this over the world-
volume of the Sp-brane gives the coset GL(p + 1,IR)/SO(p + 1) x SL(2,IR)/SO(2).
Using the above mentioned theorem we presented the generating solution for the
S(—1)-brane belonging to this coset. Acting with the SL(2, R)-group on this solution
and oxidizing to the higher-dimensional theory we obtained the most general Sp-brane
solution with a deformed worldvolume. This is the S(—1)-/Sp-brane map.

However, we made various simplifications. First we did not dualize any forms to
scalars in the reduced theory which would add magnetic flux to the above Sp-brane
solutions. Secondly we did not consider intersections of S-branes which are carried
by multiple forms with different degrees. Nonetheless with our approach they can be
found with some extra effort. These extensions would just add extra axions to the
lower-dimensional Lagrangian which extend the coset to the cosets in the left column
of table 3.4.1. All the geodesics on these cosets must correspond to specific time-
dependent S-brane solutions. Since the generating geodesics for the cosets on the
left column of table 3.4.1 are the dilatonic straight lines, it must be that all S-brane
type solutions can be rotated to pure gravitational solutions in 11 dimensions or to
dilaton—Einstein solutions in type II supergravity. For example, if we take ¢ = 0 and
n = 1in (4.3.27) the flux becomes zero. In this way we see that the SL(2, R)-subgroup
mixes physically distinct solutions in the higher-dimensional theory.

If we reduce to three dimensions a symmetry-enhancement of the coset takes place.
The dualisation of the three-dimensional Kaluza—Klein vectors generate the coset
SL(p 4+ 2,IR)/SO(p + 2) instead of the expected GL(p + 1,IR)/SO(p + 1). However
the generating solution of the SL(p + 2,IR)/SO(p + 2)-coset has only non-trivial
dilatons and is therefore the same as the generating solution of GL(p+1,IR)/SO(p +
1). Nonetheless, there is an important difference with the time-dependent solutions
from GL(p + 1,IR)/SO(p + 1). In that case a solution-generating transformation
€ GL(p + 1,IR) can be interpreted as a coordinate transformation in D + p + 1
dimensions and therefore maps the vacuum solution to the same vacuum solution
in different coordinates. In the case of symmetry enhancement to SL(p + 2,IR) a
solution-generating transformation is not necessarily a coordinate transformation in
D +p+ 1 dimensions. Instead the time-dependent vacuum solution transforms into a
“twisted” vacuum solution. Where the twist indicates off-diagonal terms that cannot
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be redefined away. Such twisted solutions with £k = —1 have received considerable
interest since they can be regular [38,39].

The solution-generating technique presented here should be considered comple-
mentary to the “compensator method” developed by Fré et al in [62]. There the
straight line also serves as a generating solution but instead of rigid G-transformations
one uses local H-transformations that preserve the solvable gauge to generate new
non-trivial solutions. This technique is an illustration of the integrability of the
second—order geodesic equations of motion [76].



Chapter 5

Massive Time-Dependent
Solutions

In this chapter we extend the time-dependent analysis to Lagrangians with a potential

£= V(R - %Gijawaw V(). (5.0.1)

We mentioned in section 3.5 that we can regard the scalar potential V as a 0-form
field strength. This can couple magnetically to (D — 2)-branes, i.e. domain-walls
(timelike) and cosmologies (spacelike). In this chapter we will focus mainly on the
latter, although many results apply to domain-walls as well.

We begin this chapter with a brief introduction to cosmologies. We will focus
on a specific cosmological model, namely the generalization of the multi-exponential
potential we introduced in section 3.3. We will not look for the most general solution,
but restrict ourself to a critical point analysis. It turns out that these critical points
are so-called scaling solutions. The surprising thing is that these scaling solutions
are still geodesics of the scalar manifold, the presence of the potential does not upset
this. In this chapter we are going to state the condition when for a potential V' the
scaling solution is still a geodesic of the scalar manifold. For a general discussion
about cosmologies we refer to e.g. [77,78].

The work of this chapter is based on collaborations with W. Chemissany, J. Har-
tong, T. Van Riet and D. Westra [68,79].

5.1 Cosmologies

Due to cosmological observations we know now that our universe is both homogeneous
and isotropic on the large scale. This means that our place in the universe is not special
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(homogeneous) and that the universe looks the same in all directions (isotropic).
For this reason cosmological space-times are described by a Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric

ds? = —dr? + a(1)%g;;da’da’ (5.1.1)
where g;; is the three-dimensional spatial metric and a(7) is called the scale factor.

Due to the observation that our universe is both homogeneous and isotropic g;; can
written as

ds? = —— 5 dr® + 72407, . (5.1.2)
The Einstein equation
1
Ruv — 59uwR =81G Ty, (5.1.3)

2

relates the space-time metric to the matter distribution in space-time. The latter is
encoded in the energy-momentum tensor 7),,,. For the FLRW-metric (5.1.1) we derive
that this must have the form

T, = diag(p, pgij) - (5.1.4)

Here p(7) is the energy density and p(7) the pressure. The matter distribution is
called the cosmological fluid. After rewriting the Einstein equations we derive the
Friedmann equations

H2:%P*%,

i G a (5.1.5)
—=—-""(3 .

. 5 (Bp+0)

Here the function H = a/a is called the Hubble parameter and the dot is with
respect to 7. Due to the conservation of energy we have for the cosmological fluid the
continuity equations

V. TH =0—p+3H(p+p)=0. (5.1.6)

Finally, the relation between the energy density and the pressure is given by the
equation of state parameter w
pD=wp. (5.1.7)

For ’ordinary’ matter such as radiation or dust —1/3 < w < 1. All cosmological
fluids can be grouped in two different classes. Namely, those that respect the strong
energy condition (SEC) and those that violated it, see e.g. [80]. The SEC is a specific
condition on the energy momentum tensor. For the cosmological fluid this means that
the matter has to obey w > —1/3.
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For a flat universe we derive from the Friedmann equations (5.1.5) that they imply
i>0—— Bw+1)p<0. (5.1.8)

In other words, if matter does not obey the SEC we have that w < —1/3 and we see
that we have accelerated expansion (p > 0).
When w is constant we find from the (5.1.6) that

1

Using this together with the Friedmann equations we can solve for the scale factor,
in case k = 0 we find
2
a(t) o 73D | (5.1.10)

Such a scale factor is called a power-law. When k # 0 the scale factor can also be
solved but is more complicated.

5.1.1 Multi-Field Cosmology

Let us assume that we have a system consisting of N scalar fields ¢* with scalar

-

manifold metric G;; = 6;; and a potential V' (¢)

1 — — —
S = /d4x Fg[ﬁn — 10606 - V(¢)} : (5.1.11)
where k2 = 871G with G Newton’s constant and
06-06 =" 06;;0,0'0"¢ . (5.1.12)
i=1

The Ansatz for the metric is that of a flat (kK = 0) FLRW-universe (5.1.1, 5.1.2) and
accordingly the scalars only depend on cosmic time 7. The equations of motion are

H? = [T + V(&)} , (5.1.13)
H=—#T, (5.1.14)
$i +3Hdi + 0,V () =0, (5.1.15)

where T stands for the kinetic energy

T = %a&- 9¢. (5.1.16)
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Equation (5.1.15) is referred to as the Klein-Gordon equation. In terms of the fluid
language we have
T-V
=T+V, =T-V, w=—ms. 5.1.17
p p TV ( )
The above equations of motion are coupled second order differential equations.
Therefore the most general solution is hard to find. Instead we will focus on the late-
time behaviour of the cosmological solution. For this we need to find the asymptotic
behaviour of a solution. It often happens that this behaviour is determined by simpler
equations that the ones above. To see why this is so we show that we can rewrite the
equations of motion as an autonomous system.

Autonomous systems

Assume that we have a set of variables 2%(¢) that obey a first order equation that can
be cast into the following form

i'(t) = fi(z). (5.1.18)

Here f(z) depends only on the variables 2 and do not contain the evolution parameter
t explicitly. We see that we can consider f as the velocity field belonging to the curve

Z. Assume now that this vector field f has a zero at some point Zy. This simplifies
(5.1.18) to

fl@) =0=d'(t)=0. (5.1.19)

Such a point Zy is called a fixed or critical point. Such a critical point is a trivial
solutions since we can easily integrate (5.1.19).

What has this to do with late-time cosmology? A critical point can either be a
stable or an unstable solution. The stability follows from checking whether a pertur-
bation ¢° of a fixed point z vanishes or not. For this we have to plug the perturbation
zf + 8% into the equations of motion (5.1.18) and only keep terms linear in §°. This
leads to the set of first order equations

0" = (05 ") |lamao 07 - (5.1.20)
The general solutions for the perturbations ¢ are given by

5= CieMt, (5.1.21)
i

where \; are the eigenvalues of the matrix (8;f*)]s=z, and C} are real constants. If
it happens that all \; are negative, we see from (5.1.21) that the perturbations decay
exponentially. Such a critical point is called an attractor or sink.
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If on the other hand some of the \; are positive these perturbations grow exponen-
tially. Such a critical point is called a saddle point. When all eigenvalues are positive
the point is called a repeller or source.

Let us now answer the question we posed above. Although we cannot solve for a
general solution, it will generically be a curve in phase space interpolating between two
critical points. For example, the curve can start at a repeller and will asymptotically
reach the attractor. Thus we see that critical points, determined by the properties of
the vector field f; are important in understanding the general interpolating solution.
In particular, the late-time cosmology is determined by the attractor critical point.
Due to the exponential behaviour the attractor will not be reached in finite time.

We will now illustrate this with a specific potential.

5.1.2 Generalized Assisted Inflation

In section 3.3 we found the multi-exponential potential (3.3.21). Such exponential

potentials also arise in models motivated by string theory such as supergravities ob-

tained from dimensional reduction (see for instance [46,81-84] and references therein),

descriptions of brane interactions [85-87], nonperturbative effects and the effective de-

scription of string gas cosmology (see for instance [88]). Also, these models allow to

find exact solutions, which correspond to critical points in an autonomous system!.
Let us generalize (3.3.21) to a sum of M exponential terms

M
V(g) = Agexpl—r (aa, 6], (5.1.22)

where (a, , ¢) = Zf\il 0qi®;. There are M vectors a, with N components ag;. The
indices %, 7,... run from 1 to N and denote the components of the vectors ¢ and
. The indices a,b,... run from 1 to M and label the different vectors a, and the
constants A,.

Let us now make use of linear field redefinitions. If the scalars transform linearly
as ¢ — ¢’ = S¢, where S is an element of GL(R, N) then the vectors «, transform
in the dual representation o, — o/, = S~Ta,. This can be seen from the definition
of o,

(aa, ¢) = (ag, ¢). (5.1.23)

Field redefinitions that shift the scalar fields leave the «a, invariant, but change the
Ag.

From the action we can deduce some properties of this system by looking at trans-
formations in scalar space. The kinetic term is invariant under constant shifts and
O(N)-rotations of the scalars. These transformations map the multiple exponential

IFor a review on dynamical systems in cosmology see [89].
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potential to another multiple exponential potential but with different A, and a,.
Such redefinitions do not alter the physics, they just rewrite the equations. Therefore
qualitative features only depend on O(N)-invariant combinations of the a,-vectors
(for example (o, , ap)). By shifting the scalars we can always re-scale R of the A, to
be 41, where R is the number of independent a-vectors

R = Rank[ov;] - (5.1.24)

The number of linearly independent vectors «, is denoted by R. If R < N one can
rotate the scalars such that ¢ri1,...,¢x no longer appear in the potential (ag; = 0
for ¢ > R). These scalars are then said to be decoupled or free.

Let us illustrate this for the single exponential potential

V = Ae®? (5.1.25)

According to the above we should be able to remove all but one scalar field from the
potential (5.1.25). To achieve this consider the orthogonal field redefinition ¢ — ¢’

—_

= —a ¢ (5.1.26)
llall~

and the ¢} (i > 1) are constructed orthogonal to this direction via a Gramm-Schmidt

procedure. This procedure is guaranteed to preserve the kinetic term, but the poten-

tial now contains only one scalar field as claimed

V = Aelldller (5.1.27)

We end up with one massive field <Z)71 and N — 1 massless fields ¢} (i > 1). Although
(5.1.25) looks like an interaction term, we find that it can be removed via field re-
definitions. The resulting theory has only one self-interaction term and N — 1 free
fields.

One can rewrite equations (5.1.13-5.1.15) as an autonomous system. For this we
first note that (5.1.14) is not an independent equation and can therefore be ignored.
Secondly, we define the following dimensionless variables

- Ii(;%i o I€2
CVeHN Y 3H?
If we write X? =), X? and Y = )__ Y, the equations of motion become

Ag expl—k (aq, 9)]. (5.1.28)

X’+Y -1=0, (5.1.29)
X! = 3Xi(—1 +X2) N \/gzam»ya, (5.1.30)
a

Y! = Ya(—\@ (a0, X) + 6X2) , (5.1.31)
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where the prime denotes differentiation with respect to log(a) 2. It can be shown that
if X2 +Y — 1 = 0 initially then equations (5.1.30-5.1.31) guarantee that it is satisfied
at all times. Hence, given the correct initial conditions the dynamics is described by
equations (5.1.30-5.1.31).

In the next section we will construct all critical point solutions of the autonomous
system (5.1.30-5.1.31). For that purpose it is useful to consider the matrix A

Awpy = (ag , ap) . (5.1.32)

The models are divided into two classes. The first class is defined by R = M and the
second class by R < M. Algebraically the two differ in the following way

1. R=M <= DetA>0, (5.1.33)
2. R<M <= DetAd=0. (5.1.34)

The first possibility, where A is invertible, is called generalized assisted inflation. We
will not discuss the second class, for this we refer to [79].

Assisted inflation

Assisted inflation is the subclass where A is diagonal. This implies that in as-
sisted inflation the «, are perpendicular to each other and that one can choose an
orthonormal basis in which a,; = @4 dq;. In that basis the potential becomes

M
V(g) = ZA“ exp|—k g da) - (5.1.35)

It is this particular form of the potential that is referred to as assisted inflation in
the literature. We want to emphasize that the latter definition is basis-dependent.
Potentials different from (5.1.35) but with a diagonal matrix A can be brought to
the form (5.1.35) through an O(NN)-rotation of the scalar fields. An O(N)-invariant
definition of assisted inflation is that A is a diagonal matrix.

In any system with multiple fields but a single exponential such as studied in [91],
the matrix A is trivially diagonal. One can perform a rotation on the scalars such
that only one scalar appears in the potential and all the others are decoupled. In
order to have a system whose scalars are mutually interacting one needs at least two
exponential terms both containing more than one scalar.

2The use of log(a) as a time coordinate fails when @ = 0. This is no problem for studying critical
points and their stability because in the neighborhood around a critical point there always exists a
region where the coordinate is well defined. In reference [90] an explicit example is given where a
becomes zero at some point.
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5.1.3 The Critical Points

Critical points are defined as solutions of the autonomous system for which X/ =
Y = 0. From the acceleration equation,

H=-%20¢-08, (5.1.36)

it follows that in a critical point H/H? is constant. If the constant differs from zero
we put H/H? = —1/p and then the scale factor becomes

a(t) =ao (—) (5.1.37)
7o
In terms of the dimensionless variables p can be expressed as
S (5.1.38)
P=3y3 1.
When H/H? = 0 the scale factor is
a(t) = agef™, (5.1.39)

and space-time is de Sitter.
The requirement that Y, = 0 can be satisfied in two ways as can be seen from

Vi = Ya(=V6 (a0, X) +6X7). (5.1.40)

a

Either Y, = 0 or the second factor on the right-hand side equals zero. If we put
Y, = 0 by hand and then solve for the X; and the remaining Y,, the critical point
is called a monproper critical point. If we put the second factor to zero by hand and
then solve for X; and Y, the critical point is called a proper critical point. The name
nonproper is given since a critical point with some Y, = 0 has co-valued scalar fields.
Therefore these critical points are no proper solutions to the equations of motion,
they are asymptotic descriptions of solutions. The proper critical points generically
have non-zero Y, and therefore are proper solutions to the equations of motion. But
in some cases one finds that Y, = 0 for proper critical points, although one did not
put those Y, to zero by hand. We will not discuss the non-proper solutions, see [79].

Regardless of whether critical points are proper solutions to the equations of mo-
tion, they are all equally important in providing information about the orbits. That
is, they are either repellers, attractors or saddle points.
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Proper critical points

To construct the proper critical points we demand that X! = Y, = 0, we have the
algebraic constraints

3, (<14 X2) +1/3 3 0w =0,

Ya(—\@ (g, X) +6X2) ~0,

(5.1.41)

To solve these constraints we multiply the first equation above with ayp; and sum over
i and use (5.1.38, 5.1.41) to find

3p—1 -1 L /3 -1
Ya =2 A ab s Xi = —A/ 3 (677 A ab - 5.1.42
o > lAY Vi aula ] (5.1.42)

b

The value of p is found by combining equations (5.1.29,5.1.38,5.1.42)
p=2> [A a. (5.1.43)
ab

In terms of the scalar fields the solutions read

6.X;
¢ = % log |7| + ¢; - (5.1.44)

The critical point constructed above does not always exist. It is clear from the

definition of the Y,-variables that they must have the same sign as the A, i.e. 3
1 _
(1; =3)> [A w20 for A, 20. (5.1.45)

b

Let us briefly discuss what happens if we couple the system we described so far
to a barotropic fluid p which represents the matter in our universe and allow the
curvature to be non-zero (k = 1) [79]. It turns out that we can classify the solutions
as curvature, matter-scaling or scalar-dominated scaling solutions. The curvature
scaling solutions have the property that k # 0 while p =0 and p = 1 in (5.1.38). For
the matter-scaling solutions we have that k¥ = 0 while p # 0 and finally for scalar
dominated solutions we have k = p = 0. Especially the matter-scaling solution are
of interest to cosmologists, since these solutions have the property that they have a
non-zero constant ratio between the energy density of the scalar fields and that of

3In [82] it is shown that critical points that violate the existence conditions can still play a role
in understanding the late time behaviour of general solutions.
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the barotropic fluid. If the matter-scaling solution are attractors they could explain
why today we see the same order of energy densities for matter and dark energy. The
dark energy is related to the scalar fields. In [79] it is assumed that there is no direct
coupling between the scalar fields and the barotropic fluid. The only interaction is
via gravity. In such cases one can derive that the power-law is given by p = ﬁ
Here w is the relation between the energy density and pressure of the barotropic fluid
(5.1.7). Surprisingly, this is the same power-law as that of only a barotropic fluid. In
this way we see that the scalar field mimics the barotropic fluid.

It was noticed in [70,79,92] that for the scaling solutions that we discussed above

there exist a field redefinitions ¢ — ¢ such that the potential can be written as

V(p) = e U(pz,...,oN)- (5.1.46)

To prove this [70] we first note that if the &, are linearly independent there exist a
vector E such that

—

aq-E=c, (5.1.47)

with ¢ a number. The above can be proven by noting that the R x R matrix

M
Bi; = Z 0l Ol (5.1.48)
a=1

is invertible since the @, are linearly independent. If we now multiply (5.1.47) with
0q; and summing over a we see that

ZBijEi =c) o (5.1.49)

Due to the existence of the inverse of B we can find E?. The above mentioned field
redefinition is given by

$=p1E+ 3L (5.1.50)

If we substitute this in (5.1.22) we see that a,; = ¢ and hence we have derive that
(5.1.46) holds.

Scaling solutions

The solution (5.1.44) is called a scaling solution. The name can be understood as
follows. If we calculate the Hubble factor and the kinetic and potential energy we
note that they have the same scaling behaviour

H> xV «T. (5.1.51)
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We take (5.1.51) as the definition of a scaling solution. These relations imply that
the scale factor is a power-law. This follows from the Friedmann equation (5.1.14)

Ho H?. (5.1.52)

From this we derive that for scaling solutions we have H? o< 772 and as a result a(7)
must be a power-law. For the scaling solution of the previous section we see from
(5.1.37) that this is indeed the case’.

Interestingly, scaling solutions correspond to the FLRW-geometries that possess a
timelike conformal vector field £ coming from the transformation

T — e, z® — elmPAga (5.1.53)

where x¢ are the spacelike Cartesian coordinates®. In the forthcoming we reserve
the indices a,b,... to denote spacelike coordinates when we consider cosmological
space-times.

Scaling cosmologies have received a great deal of attention in the dark-energy
literature, see [93] for a review and references. Apart from the intriguing cosmological
properties of scaling solutions they are also interesting for understanding the dynamics
of a general cosmological solution since scaling solutions are often critical points of
an autonomous system of differential equations as we explained in subsection 5.1.1.
Scaling cosmologies often appear in supergravity theories (see for instance [70,94]),
but remarkably they also appear by spatially averaging inhomogeneous cosmologies
in classical general relativity [95].

Let us finish this section by making one surprising observation. When we look at
the solution for the scalar fields (5.1.44) we see that this is still a geodesic of the scalar
manifold since G;; = d;;! Apparently the presence of the (complicated) potential does
not upset this. A natural question is under what condition does a solution remain a
geodesic of the scalar manifold in the presence of a potential. This will be the subject
of the next section.

5.2 First Order Formalism

In what follows we consider scalar fields ¢* that parameterize a Riemannian manifold
with metric G;; coupled to gravity through the action

S = /d%\/fg{R — 1Gig" 0,00, ¢ — V(gb)} ) (5.2.1)

4In the case of curved FLRW-universes we also demand that H ~ k/a2, which is only possible
for p = 1. But in what follows we will not consider the case k # 0.
5For curved FLRW-space-times the spacelike coordinates are invariant.
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We restrict to solutions with the following D-dimensional space-time metric
ds? = g(r)2ds?_| +nf(r)?dr?, dsh_ | = (5n)abdx“dxb, (5.2.2)

where n = +1 and 0, = diag(—n,1,...,1). The case n = —1 describes a flat
FLRW-space-time and = +1 a Minkowski-sliced domain-wall (DW) space-time.
The scalar fields that source these space-times can only depend on the r-coordinate
¢' = ¢'(r). The function f corresponds to the gauge freedom of re-parameterizing
the r-coordinate.

We will use two coordinate frames to describe scaling cosmologies

T — frame : ds? = —dr? + 7% ds%_,, (5.2.3

t — frame : ds? = —e dt? + e*'ds?,_, . (5.2.4)

The first is the usual FLRW-coordinate system and the second can be obtained via
the substitution ¢t = log 7.
If the scalar potential V(¢) can be written in terms of another function W(¢) as
follows
v =n{iciowo,w - Bwe (5.2.5)

then the action can be written as “a sum of squares” plus a boundary term when
reduced to one dimension:

g 12 hi g
s=n [ arpa? {2 W 20 -2L] - 1% + oWk

n n/d{gD—lw — (D - 1)ggD—2f—1} , (5.2.6)

where a dot denotes a derivative w.r.t. 7. The term ||¢?/f +G¥;W||? is a shorthand
notation and the square involves a contraction with the field metric G;;. It is clear
that the action is stationary under variations if the terms within brackets are zero®,

leading to the following first-order equations of motion

& +GU9o;W =0. (5.2.7)

_op_9d
W =2(D 2)fg, ;

For n = +1 these equations are the standard Bogomol'nyi-Prasad-Sommerfield (BPS)
equations for domain-walls that arise from demanding the supersymmetry-variation
(susy) of the fermions to vanish, which guarantees that the domain-wall preserves
a fraction of the total supersymmetry of the theory. The function W is then the

6For completeness we should have added the Gibbons-Hawking term [96] in the action which
deletes that part of the above boundary term that contains g.
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superpotential that appears in the susy-variation rules and equation (5.2.5) with =
+1 is natural for supergravity theories. It is clear that for every W that obeys (5.2.5)
we can find a corresponding domain-wall solution, and if W is not related to the
susy-variations we call the solutions fake supersymmetric [97].

For n = —1 these equations are the generalization to cosmologies for arbitrary
space-time dimension D and field metric G;;. We refer to these first-order equations
as pseudo-BPS equations and W is named the pseudo-superpotential because of the
immediate analogy with BPS domain-walls in supergravity [67,98]. For the case
of cosmologies there is no natural choice for W as cosmologies cannot be found by
demanding vanishing susy-variations of the fermions. The cosmological solutions is
therefore called pseudo-supersymmetric.

If we can solve (5.2.7) for a domain-wall we immediately have a cosmological
solution by construction. This is called the domain-wall / cosmology correspondence
[67,98]. In the next chapter we will discuss this correspondence in more detail.

In [98] it is proven that for all single-scalar cosmologies (and domain-walls) a
pseudo-superpotential W exists such that the cosmology is pseudo-BPS and that
one can give a fermionic interpretation of the pseudo-BPS flow in terms of so-called
pseudo-Killing spinors. This does not necessarily carry over to multi-scalar solutions
as was shown in [99]. Nonetheless, a multi-field solution can locally be seen as a
single-field solution [100] because locally we can redefine the scalar coordinates such
that the curve ¢(r) is aligned with a scalar axis and all other scalars are constant
on this solution. A necessary condition for the single-field pseudo-BPS flow to carry
over (locally) to the multi-field system is that the truncation down to a single scalar
is consistent (this means that apart from the solution one can put the other scalars
always to zero) [99].

5.3 Multi-Field Scaling Cosmologies

Let us turn to scaling solutions in the framework of these first order equations and
see how the geodesic motion arises that we found at the end of section 5.1. First
we consider the rather trivial case with vanishing scalar potential V' and after that
we add a scalar potential V. Pseudo-supersymmetry is only discussed in the case of
non-vanishing V.

5.3.1 Pure Kinetic Solutions

If there is no scalar potential the solutions trace out geodesics as we learned in section
3.5. The affine velocity G;;0,¢'0n¢’ = ||v||? is positive and for the metric Ansatz
(5.2.2) we derive the Einstein equations

o e . 2
Ror = 3Gij¢' ¢ = @ngwfz’ Rap =0. (5.3.1)
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1
In the gauge f = 1 the solution is given by g = e“2(r + C1)D~1, with C; and Cs
arbitrary integration constants, but with a shift of » we can always put C; = 0 and
Cs can always be put to zero by re-scaling the spacelike coordinates. In the case
of a four-dimensional cosmology the geometry is a power-law FLRW-solution with

p=1/3.

5.3.2 Potential-Kinetic Scaling Solutions

In a recent paper of Tolley and Wesley an interesting interpretation was given to
scaling solutions [101], which we repeat here. The finite transformation (5.1.53) leaves
the equations of motion invariant if the action S scales with a constant factor, which
is exactly what happens for scaling solutions since all terms in the Lagrangian scale
like 772, Under (5.1.53) the metric scales like €?*g,,, and in order for the action to
scale as a whole we must have

Voo BV, TG e BT (5:32)

Equations (5.3.2) imply that Giquiéj remains invariant from which one deduces that
%\Z = ¢ must be a Killing vector. The curve that describes a scaling solution follows
an isometry of the scalar manifold. It depends on the parametrization whether the
tangent vector ¢ itself is Killing. This happens for the parametrization in terms of
t = log T since

dg () — ¢(r) _ dol

A T - .
&= qx 7 lmeo ) dlog

(5.3.3)

Thus a scaling solution is associated with an invariance of the equations of motion
for a re-scaling of cosmic time and is therefore associated with a conformal Killing
vector on space-time and a Killing vector on the scalar manifold.

Pseudo-supersymmetry comes into play when we check the geodesic equation of
motion

Vidi = &V = & {Vi5by + Vi | (5.3.4)

where we denote QSZ = le(bk Now we have that the symmetric part is zero if we
parameterize the curve with t = log 7T since scaling makes (;5 a Killing vector. We
also have that V[jéi] — 0 since the pseudo-BPS condition makes ¢ a curl-free flow
b; = —f8;W. To check that the curl is indeed zero (when f # 1) one has to notice
that in the parametrization of the curve in terms of ¢ = log 7 the gauge is such that
G/g is constant and that f ~ W~ Since the curl is also zero we notice that the
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curve is a geodesic with log 7 as affine parametrization”
V' =0=¢" + T ¢". (5.3.5)

The link between scaling and geodesics was discovered by Karthauser and Saffin
in [102], but no conditions on the Lagrangian were given in [102] such that the relation
scaling-geodesic holds. An example of a scaling solution that is not a geodesic was
given by Sonner and Townsend in [103].

A more intuitive understanding of the origin of the geodesic motion for some scal-
ing cosmologies comes from the on-shell substitution V' = (3p—1) T in the Lagrangian
to get a new Lagrangian describing seemingly massless fields. Although this is rarely
a consistent procedure we believe that this is nonetheless related to the existence of
geodesic scaling solutions.

Single field

For single-field models the potential must be exponential V = Ae®? in order to have
scaling solutions. The simplest pseudo-superpotential belonging to an exponential
potential is itself exponential

ag
A e2 . (5.3.6)

W ==

If we choose the plus sign the solution to the pseudo-BPS equation is

1
o(7) = —ZlogT + Llog[°325°] . g(r) ~ 7. (5:3.7)

The minus sign corresponds to the time reversed solution.

Multiple fields

For a general multi-field model a scaling solution with power-law scale factor 77 obeys
V = (3p — 1)T from which we derive the on-shell relation

iy W2 [ 8pV
GYoO,Wo,W = — W=+ . 5.3.8

In general the above expression for the superpotential W ~ v/V does not hold off-shell,
unless the potential is a function of a specific kind:

1 GIQVV

p V2

7One could wonder whether the results works in two ways. Imagine that a scaling solution is
a geodesic. This then implies that V(;¢;; = 0 and therefore the flow is locally a gradient flow

¢i = 0; logW ~ fO;W.

(5.3.9)
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Scalar potentials that obey (5.3.9) with the extra condition that p = & < V = 0 allow
for multi-field scaling solutions. For a given scalar potential that obeys (5.3.9) there
probably exist many pseudo-superpotentials W compatible with V' but if we make the
specific choice W = /8 pV/(3p — 1) then all pseudo-BPS solutions must be scaling
and hence geodesic. As a consistency check we substitute the first-order pseudo-BPS

equations into the right-hand side of the following second-order equations of motion

§i 4+ Ti oy = — 2 GO,V — [3(105; g) — (log f)} o, (5.3.10)
and choose a gauge for which '
f1
7 4pW, (5.3.11)

then we indeed find an affine geodesic motion since the right-hand side of (5.3.10)
vanishes.

For some systems one first needs to perform a truncation in order to find the above
relation (5.3.9). A good example is the multi-field potential appearing in Assisted
Inflation [104]

V(... 0" =D Ae®? | Gy =0y (5.3.12)

The scaling solution of this system was proven to be the same as the single-exponential
scaling [92]. The reason is that we can perform the orthogonal transformation in field
space that we discussed below (5.1.46). As a result, the form of the kinetic term is
preserved but the scalar potential is given by

V=e®U@',....6" "), =Y —. (5.3.13)

The scaling solution is such that ¢1,...,¢,_1 are frozen in a stationary point of U.
This follows from the Klein-Gordon equation for the new fields and making use of
the fact that this is a critical point solution. Therefore the system is truncated to a
single-field system that obeys (5.3.9). The same proof holds for generalized assisted
inflation discussed in section 5.1.2 [79]. As shown in (5.1.44) the scaling solution reads
¢! = Allog T + B?, which is clearly a straight line and thus a geodesic.

The scaling solutions of [99,103] were constructed for an axion-dilaton system with
an exponential potential for the dilaton

S = /de\/Tg{R — 1(9¢)? — Let?(9x)* — Aea¢} : (5.3.14)

Clearly this two-field system obeys (5.3.9) and (one of) the pseudo-superpotential(s) is
given by (5.3.6). The pseudo-BPS scaling solution therefore has constant axion and is
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effectively described by the dilaton in an exponential potential. Note that this solution
indeed describes a geodesic on SL(2,IR)/SO(2) with log 7 as affine parameter. All
examples of scaling solutions in the literature seem to occur for exponential potentials,
however by performing a SL(2,IR)-transformation on the Lagrangian (5.3.14) the
kinetic term is unchanged and the potential becomes a more complicated function of
the axion and the dilaton. The same scaling solution then trivially still exists (and
(5.3.9) still holds) but the axion is not constant in the new frame and instead the
solution follows a more complicated geodesic on SL(2,1IR)/SO(2).

However another scaling solution is given in [103] that is not geodesic and with
varying axion in the frame of the above action (5.3.14). This is an illustration of the
above, since the solution is not geodesic we know that there does not exists any other
pseudo-superpotential for which the varying axion solution is pseudo-BPS, consistent
with what is shown in [99] for that particular solution.

5.4 Uplifts

In this section we illustrate with an example that the cosmologies we worked out in
subsection 5.1.3 can be uplifted over their transverse space by using the reduction
explained in section 3.3 [45,64,70]. We only consider the simple example of a sin-
gle scalar field and we illustrate that for a given cosmology we find a domain-wall
belonging to a model with minus the potential.

In section 3.3 we showed that the reduction of a fluxless brane over its maximally
symmetric transverse space with k¥ = —1 leads to a Lagrangian with exponential
potential (3.3.6)

V(p) =n(n —1)eX@=A¢, (5.4.1)

Here n is the dimension of the internal manifold and «, 8 are given in (3.2.7). The
four-dimensional k = 0 solution with x? = 1/2 is found from (5.1.43-5.1.44) to be

n+2
2
)

n 2 2
a(r) =772, (1) = ——log(7) — — log( ) (5-4.2)
with ¢ = (2(a — 8))2 = 1+ 2/n. The constant ¢; in (5.1.44) gets fixed due to the
Friedmann equations.
To uplift we plug these solutions in (3.3.1) and derive

2 2 22%" 2n 2 2 23—7% ) 2 _2-%» 4 2
st = (5 ) At 4 (o) i+ (o) T e am.

24+n 24n 24n
(5.4.3)
To identify the solution we apply the following coordinate transformations
2\ 2 ; 2\
t:< ) EEETIN 1:( ) v 5.4.4
n 4+ 2 ’ Y 24n o ( )
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and we find
dsi ., = dij5 — dt* + t*dH> . (5.4.5)

This metric describes R? x Milne,, | 1, the latter is a patch of Minkowski space-time in
unconventional coordinates. The uplifted solution describes thus a flat space solution.
The extension to the multi-exponential potential given in (3.3.21) does not lead
to any qualitative chance. The reason is that the attractor solution is such that only
one scalar field is turned on [45]. To find genuine S-branes we need to take flux into
consideration. This requires the uplift of a solution belonging to (3.3.12) [45,105].
According to (5.2.7) the four-dimensional cosmology should give rise to a domain-
wall with minus the potential as given in (5.4.1). From (5.2.2) and n = 1 we indeed
find the solution
ds? = dr? + a(r)? (de2 +da? + dyz) , (5.4.6)

with power-law and ¢ given by

n+2
2

n

2 2
a(r) =rw2,  ¢(r) = ——log(r) — —log(

). (5.4.7)

Due to the minus sign in the potential this domain-wall lifts up to a spherical trans-
verse space and we find after appropriate coordinate transformations

dsi,, = —dt* + dgs + di? +72dQ2 (5.4.8)

where dQ? is the metric of a n-dimensional sphere. This metric describes three-
dimensional Minkowski space-time x R?*1.

5.5 Discussion

In the first part of this chapter we gave a brief introduction to cosmology and focussed
on generalized assisted inflation models. These models have the characteristic that
they all have a multi-exponential potential. The analysis was restricted to critical
points via re-writing the equations of motion as an autonomous system. These critical
points turn out to be scaling solutions and we noted that they are still geodesics of
the scalar manifold.

In the second half of this chapter we explained under what condition we have
geodesic motion in the presence of a potential. For this we have studied multi-field
scaling solutions using a first-order formalism for scalar cosmologies. We derived
these first-order equations via a Bogomolnyi-like method that was known to work for
domain-wall solutions as was first shown in [106-108] and we showed that it trivially
extends to cosmological solutions. This first-order formalism allows a better under-
standing of the geodesic motion that comes with a specific class of scaling solutions.
One of the main results of this chapter is a proof that shows that all pseudo-BPS
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cosmologies that are scaling solutions must be geodesic. This complements to the dis-
cussion in [99] where the first example of a non-geodesic scaling cosmology was shown
to be non-pseudo-BPS. Moreover we gave constraints on multi-field Lagrangians for
which the pseudo-BPS cosmologies are geodesic scaling solutions.

By now the first order formalism has been extended to branes of arbitrary dimen-
sions, both space- and timelike. This has been initiated by [109] where it was shown
that the non-extremal Reissner-Nordstrom black hole solution of Einstein-Maxwell
theory can be found from first-order equations by rewriting the action as a sum of
squares & la Bogomol’nyi. In the recent paper [74] this construction of BPS-type equa-
tions is extended to branes of arbitrary dimension and to time-dependent solutions.
The authors presented the fake- and pseudo-BPS equations for all stationary branes
(timelike branes) and all time-dependent branes (spacelike branes) of an Einstein-
dilaton-p-form system in arbitrary dimensions®. As mentioned before, the word fake
refers to time-independent solutions where the superpotential W used in the deriva-
tion of the first order equations has no relation to the superpotential appearing in
the supersymmetry transformation. In case of time-dependent cosmological solutions
the word pseudo-BPS is used for the first order equations governing the dynamics of
cosmologies.

8They did not included branes with co-dimensions less than three. When the co-dimension is one,
the stationary branes are domain walls and the time-dependent branes are cosmologies. The case of
branes with co-dimension two is not included as these solutions depend on one complex coordinate
rather than on one real coordinate.






Chapter 6

Domain-Wall / Cosmology
Correspondence

In the previous chapter we showed that cosmologies and domain-walls satisfy first
order equations. Both type of solutions couple to a zero-form field strength given
by a potential, although there is an overall minus sign difference due to the relation
between the potential and superpotential. Finally, the metric Ansétze are of similar
form.

Due to the first order equations (5.2.7) we know that for a given domain-wall a
cosmology exist. This is called the domain-wall / cosmology correspondence [98]. In
the first section we give a summary of this correspondence as given in [67,110].

If a domain-wall can be embedded in a supergravity it can preserve (some fraction
of) supersymmetry. Due to the explicit time-dependence, cosmologies break all super-
symmetry. On the other hand the correspondence tells us that for a given domain-wall
there is a corresponding cosmology. In section 2 we present a discussion of the corre-
spondence in a supergravity setting. It turns out that for this to work the cosmologies
need to be embedded into the star supergravities of [58]. These cosmologies then turn
out to be also (fake) supersymmetric.

This work is done in collaboration with E. A. Bergshoeff, J. Hartong, J. Rosseel
and D. Van Den Bleeken [111].

6.1 The Domain-Wall / Cosmology Correspondence
In 1994 it was already noticed that there is a link between domain-walls and cos-

mologies [66]. This has been worked out in the papers [67,98,110,112-114] and is
called the domain-wall / cosmology correspondence. In [110] it was noticed that the
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correspondence can be extended to instantons in a trivial way. For this reason we will
repeat the arguments given in that paper.
For simplicity we consider the single-scalar field model of (3.5.2), that is

1
L= /eg(R—5(00) = V(9)). (6.1.1)
Here ¢ = 1 refers to a Euclidean signature while for ¢ = —1 we have a Lorentzian

signature.

Since we are initially interested in domain-walls and cosmologies we require a
metric Ansatz that has an one-dimensional transverse space. Furthermore, we allow
for all three possible choices of k = 0, +1. The D-dimensional metric Ansatz is given
by

dr?
1+ nkr?
When 7 = —1, dQ} describes the SO(D — 1)-invariant metric on the unit radius (D-
2)-sphere and for n = 1 it describes the SO(D — 2, 1)-invariant metric on the unit
radius (D — 2)-hyperboloid. The functions ¢ and f depend only on z while o and
are given by

ds? = —517(e"‘“"f)2dz2 + e2P¥ (—77 + rde%) . (6.1.2)

2 _ D—-1 5= 1 .

2(D—2)’ 2(D - 1)(D - 2)

To describe a cosmology we take ¢ = —1 and the choice n = —1 yields the metric of
a homogeneous and isotropic cosmology, describing a universe that is closed if k = 1,
open if £k = —1 and flat if & = 0. The coordinate z is the time coordinate. For
domain-walls we take e = —1 but now with 7 = 1. The worldvolume geometry of the
domain-wall is anti-de Sitter if £ = —1, de Sitter if £ = 1 and Minkowski if £ = 0. In
this case z describes the distance from the wall, while r is the time coordinate. The
instanton is described by a Euclidean metric, hence we take ¢ = —n = 1. The scalar
field ¢ can only depend on the coordinate z.

Let us now see how the correspondence comes about. Since we have maintained
the re-parametrization of z due to the inclusion of f we can substitute the metric
and scalar field Ansétze into the action (6.1.1). If we do this we find the effective
one-dimensional Lagrangian

@ (6.1.3)

1 . . o
Lo = 57107 = ¢%) —enfe®* Verr, (6.1.4)
Here a dot is a derivative with respect to z and the effective potential is given by
k
Verr(¢, ) = V(¢) — Tﬁge*%“" : (6.1.5)

From (6.1.4) we see that only the product en appears in the effective Lagrangian.
Even more, we see that (6.1.4) is invariant if we let en — —en together with V' — —V
and k — —k.
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The domain-wall / cosmology correspondence can be found by considering e = —1.
We observe that for every domain-wall solution of a model with potential V' there is
a cosmology of the model with potential —V and with opposite sign for k if it is
non-zero, and vice-versa.

Of course, the above also follows from what we derived in section 5.2 for the case
k = 0. There the sign difference in the potential follows from the parameter 7 in the
relation between the potential and superpotential (5.2.5). For 7 = 1 we have that the
potential is V', while for n = —1 we have —V. The analysis done in section 5.2 can
be extended to include k # 0 as well.

The extension to instantons is now straightforward. For instantons we require
a Euclidean metric so that ¢ = —yp = 1 or e = —1. This is however the same
condition as holds for domain-walls. We see that for a given potential V' we find both
a Lorentzian domain-wall and a Euclidean solution. The latter can be interpreted
as an instanton, but of a model with potential —V because instanton solutions of
a mechanical model are precisely solutions with a flipped sign of the potential, see
for example [115]. The extended correspondence of [110] can then be summarized as
follows. For every domain-wall solution of a model with potential V' there corresponds
both a cosmology and an instanton of the model with potential —V (although the
latter is actually found from the effective Lagrangian with potential V).

Let us illustrate this with the four-dimensional example we worked out in section
5.4. There we showed that a cosmology coupled to a potential V' indeed gives rise to a
domain-wall coupled to —V. According to the above we should also find an instanton
solution for this model with potential —V. Indeed we find the following Euclidean
solution

ds? = dr? + a(r)? (dx2 + dy? + dzz) , (6.1.6)

with power-law and scalar fields given by (5.4.7). After appropriate coordinate trans-
formations we find the uplifted solution to be

ds,, = di3 + di? +72dQ2 (6.1.7)

where dQ2? is the metric of a n-dimensional sphere. This metric describes R? x R" T
So indeed we see that for a given domain-wall we find both a cosmology and an
instanton.

The effective Lagrangian (6.1.4) gives rise to second order differential equations
for ¢ and ¢. On the other hand, in the previous chapter we showed that both domain-
walls and cosmologies satisfy the first order equations (5.2.7). In [67] it is shown that
one can introduces a function Z which depends on the scalar field ¢ such that one can
derive first order equations which automatically satisfy the second order equations
that follow from (6.1.4). Since the proof is rather involved, we refer to [67] for this.
For k = 0 these first order equations agree with (5.2.7).
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The analysis so far includes bosonic fields only. It is natural to ask if there is an
explanation as to why cosmologies and domain-walls satisfy first order equations such
as (5.2.7). Let us comment on these two issues for the case k = 0 [67].

The domain-wall / cosmology correspondence is based on the fact that the exis-
tence of a domain-wall solution of the effective Lagrangian (6.1.4) with potential V'
automatically implies the existence of a cosmological solution corresponding to —V.
The domain-wall solutions generically are ’fake supersymmetric’ [67,98,112]. This
implies that one can write the potential V in terms of a real superpotential W. For
the one scalar case this relation schematically looks like

V=2(W)-a*W?, (6.1.8)

where W’/ = % and « is given in (6.1.3). This is, up to a re-scaling of W, the single
scalar field version of (5.2.5).

The domain-walls allow for the existence of a Killing spinor € obeying a Killing
spinor equation that can be written in terms of the superpotential W as follows:

(D, —WT,)e=0. (6.1.9)

In case the Lagrangian (6.1.1) can be obtained as a truncation of a supergravity
theory the equations (6.1.8,6.1.9) can be understood as arising from the structure of
the underlying supergravity theory. In particular, the Killing spinor equation could in
that case be obtained by putting the supersymmetry transformations of the fermions
equal to zero. In [98] it is shown that the first order-equations for domain-walls follow
from (6.1.9). The authors also showed that almost all flat (kK = 0) and AdS-sliced
(k = —1) domain-walls preserve half of their supersymmetries. The proof of this is
based on the fact that for a given domain-wall one can construct out of this solution a
superpotential W such that the (fake) Killing spinor is non-zero. This superpotential
W is related to the function Z we mentioned earlier. For the exact constraints we
refer to [67]. In this sense the first order equations are BPS equations that guarantee
the existence of a Killing spinor. For k£ = 1 we can only have a dS-foliation of either
Minkowski or AdS space.

However, fake supergravity! is much more general and the Lagrangian (6.1.1) can
be completely general and does not need to be related to any supergravity theory. The
mapping between domain-walls and cosmologies implies that cosmologies also obey
a property that looks very much like fake supersymmetry. In this case, it turns out
that the cosmology obeys similar equations (6.1.8,6.1.9) as its corresponding domain-
wall solution, with the caveat that now the superpotential W is no longer real but is

n fake supergravity one allows for a superpotential W that is not part of a genuine supergravity.
This W is often called an “adapted” superpotential [100].
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instead purely imaginary. Redefining W = iW, equations (6.1.8,6.1.9) become

V=-2 ((W’)2 - a2W2) : (6.1.10)
(D, —iWT,)e=0. (6.1.11)

Note the change of sign in (6.1.10), which indeed corresponds to —V in (6.1.1). The
structure (6.1.10,6.1.11) for cosmological solutions was called pseudo-supersymmetry
[67,98,112]. The structure underlying the existence of the first-order equations can
be understood from Hamilton-Jacobi theory [110,112,114].

From a supergravity point of view, this correspondence is rather odd. Supersym-
metric domain-wall solutions can be found rather generically in supergravity theories.
For supersymmetric cosmological solutions this is not true. Furthermore, the corre-
spondence involves a sign change in the potential that spoils the supersymmetry of
the supergravity theory under consideration. Finally, in fake supergravity theories,
one is usually not concerned with the reality properties of the (Killing) spinors and
one works with arbitrary Dirac spinors. In real supergravity theories, reality condi-
tions on the spinors have to be imposed in order to account for the correct number of
degrees of freedom. In this respect, one no longer has the freedom to take W purely
imaginary without upsetting the reality properties of the supersymmetry rules.

A natural question is whether one can give a meaning to pseudo-supersym- me-
try in a real supergravity context. The fact that the corresponding domain-wall and
cosmological solutions differ in the reality properties of the superpotential suggests
that, if one can give an embedding of the correspondence in supergravity, one should
look for theories in which the spinors obey different reality properties. A priori, it
is possible that there are two different theories in the same signature (namely (1,9))
that mainly differ in the reality properties of the spinors. This can then account for a
difference in reality properties of the superpotential and for the sign flip in the poten-
tial. We present an example of this is in the type IT and type IT* theories in signature
(1,9). Starting from a supersymmetric domain-wall in type IIA, the corresponding
cosmological solution then turns out to be a supersymmetric solution of the type
ITA* theory. Pseudo-supersymmetry in this context corresponds to supersymmetry
in a star theory.

6.2 ... in a Supergravity Setting

In the coming sections we are going to answer the question posed in the previous
section, namely whether one can give a meaning to pseudo-supersymmetry in a real
supergravity context. Let us begin by making two remarks.

In the coming sections we will present a complex formulation of 10- and 11-
dimensional supergravity theories. One of the reasons to do this stems from the
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so-called “variant supergravities” in 10 and 11 dimensions, whose existence has been
discussed first in [26,59,116]. It was argued that upon applying T-dualities along
timelike directions new supergravities are found. In particular, timelike T-duality on
the usual type ITA theory does not lead to the usual type IIB theory, but instead leads
to a different theory, called the type IIB* theory. Similarly, the type IIA* theory is
found as the timelike T-dual of the usual type IIB supergravity. Note that both type
IT and type IT* theories share the same space-time signature (1,9). A crucial differ-
ence between type II and type IT* is that in the *-theories the RR-forms are ghosts,
i.e. they have wrong-sign kinetic terms. Upon applying more general dualities, one is
also led to type II supergravities in different signatures. Similarly, it was argued that
one should also consider eleven-dimensional supergravity in different signatures. For
instance, it was shown that the type IIA* theory could be obtained by dimensional
reduction over a timelike direction of 11d supergravity in signature (2,9).

In the next sections we derive the explicit actions and supersymmetry variations
of these variant supergravities. For earlier work on the construction of these theories
in the ITA and M-theory case, see [117,118]. We will adopt a different approach for
constructing the actions and furthermore include the IIB case. The strategy we will
follow in obtaining actions and supersymmetry transformation rules for these super-
gravities, is based on the observations made in [119]. There, it was shown that the
superalgebras underlying these variant supergravities correspond to different param-
eterizations of the unique real form of the superalgebra OSp(1]32). Our work can
be viewed as a continuation of [119], where now we construct the complex field the-
ory corresponding to the complex algebra presented there. More precisely, starting
from the complex algebra, one can impose different reality conditions on the gener-
ators. Each choice of reality conditions gives a real superalgebra underlying one of
the variant supergravities in a specific signature. Similarly we will start from a sin-
gle complex action and by imposing different reality conditions obtain the different
variant supergravities.

6.3 Type 1I Actions

In this section we will show how one can obtain supergravity actions for different
signatures as different real slices of a single complex action. Sometimes this leads to
different supergravity theories with the same signature.

The starting point of our construction will be a complex action that then can be
reduced to different real actions. In this thesis we will not address the question of how
one can in general construct sensible complex actions or investigate what a general
complex action invariant under some complexified symmetry group looks like. Instead
we will take a more pragmatic approach. The idea is to start from a known action
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in terms of some real fields? that is invariant under some real symmetry group. The
first step is to construct a complexified version of this action that is invariant under
the complexified symmetry group. We require that the real action we started from
can be obtained from this complexified action by imposing certain reality conditions
and similarly for the symmetries. At this point one faces the natural question: are
there different real slices leading to other theories? As it will turn out, theories
in different signatures are found by taking different reality conditions for a single
complex action. In the case one has extended supersymmetry it can even happen
that one finds multiple real theories in one signature. It is these issues that we will
work out in detail for ITA and IIB supergravity in this section.

This general scheme of finding different real actions as consistent real slices of
a given complex action can be applied quite generally. For the interested reader
we refer to [111] for the same analysis for M-theory. One would expect the general
procedure presented below to hold for all kinds of theories in various dimensions
although subtleties can arise and some particular details might change from case to
case.

6.3.1 The Complex Type II Action

To start we will deal with the first of the two questions posed above. We will show
how one can find complex actions that can respectively be restricted to the known
actions of ITA and IIB by reality conditions, and that are furthermore invariant under
the complexified super Poincaré group. How the different formulations of the real
10d super Poincaré algebra can be found from the unique ten-dimensional complex
OSp(1]32) algebra was described in detail in [119].

In complexifying an action it is crucial that all fields appear holomorphically in
the complex action. In other words we replace fields that take values in R by fields
that take values in C in such a way that no complex conjugates appear. If one
does the same complexification on the symmetry transformations, the complexified
action is guaranteed to be invariant under these complex transformations as checking
the invariance is a pure algebraic computation that nowhere assumes reality of the
involved parameters®.

This procedure of ’holomorphic complexification’ is rather straightforward and
only requires some more consideration in case of the spinors. Usually spinors appear
in the action through bilinears written in terms of the Dirac conjugate Y = xTA,
see appendix B for our conventions and notations regarding spinors. In this form
there appears a complex conjugation and as such the action is not holomorphic in

2By a real field, we mean a field that satisfies a reality condition, for instance a Majorana fermion.

30ne might think that complexifying the supersymmetries in a maximal supergravity theory
leads to a supergravity with 64 supercharges. This is however not the case. One should view the
complexified action as a mathematical tool and not as a new theory describing new physical degrees
of freedom.
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the spinor x. There is an easy way around this as using the reality condition on the
spinors the original real action can equivalently be written in terms of the Majorana
conjugate Y = x”C. In this form spinors appear holomorphically and complexification
now amounts to ignoring the reality condition on the spinors.

We will now illustrate this general principle in case of the ten-dimensional type 1T
theories. For our notations we refer to appendix B .

As a starting point we will take the actions of type IIA and type IIB as given
n [120]. These actions have the following field content

A {1 B 6,60, €300}
B : {gm,,Bm,,qS, c® ¢ Y ,J7¢H,A}. (6.3.1)

A combined form of the actions is given by (ignoring four fermion terms)

1 10 — 2
S = —2’%0 /d xe{e 2¢[—R(w(e)) —4(0¢)" + 3H-H
=20ty + H - x®) + 20, T"PV 1, — 2AT*V , A + ANV 1h,
3/2,2
n=0,1/2
+1G6®) . G0 ¢ %G(E’) VIS e*l,ccs} : (6.3.2)

It is understood that the summation in the above action is over integers (n =0, 1,2)
in the ITA case and over half-integers (n = 1/2,3/2) in the IIB case. In the summation
range we first write the lowest value for the ITA case, before the one for the IIB case.
Remember furthermore that G®) only appears in IIB and satisfies an additional self-
duality constraint G®) = «G®) that does not follow from the field equations. In the
ITA case, the massive theory contains an additional mass parameter G(©) = m. The
Chern-Simons terms are respectively

‘CCS = —efrmie ( 242 8 C/J2lt3,u4 a Cl(t36u7us Mo K10
0) 3 3 (0)2 R5
2. 242 e a Cltz)#slux BMO o T 5 162 Gt B -Mlo) (HA) ’(6'3'3)
1 1 (4 2)
Los = —3 242 o) a2 Os Buopno (IIB) . (6.3.4)

The bosonic fields couple to the fermions via the bilinears y(13) and ¥ which
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read

XE}) = 2"/_}1/]-—wwu - 25\FVF,U.¢V )
X&), =10, 0T, DAPY 5 + AT, Pios — NPT A,

2n
v,

_ %e*‘b;\F[m,,,Man'Pnrum])\. (6.3.5)
The supersymmetry rules read (here given modulo cubic fermion terms)

deey* =€l Yy, ,

3/2,2
1
bctbn =0+ b+ 3P By )e+ e Y i G, Pre
n=0,1/2 ’
1
+ %Gegﬁg 6(5)F1L,P5/26a
0By = — 26U, Pty
2n—1 —b —
0 CH s == € Ty gy P (20 = Do, ) = 3 1))
2n—3
+(=1)@2n=1)CE"2 6By e
2,5/2 5_9n
SA=(P0+ &5 HP)et ke 37 (=) e Genp, e
n=0,1/2 ’
Sep =3 EN. (6.3.6)

Note that for the IIB case I've = ¢, I'y9p, = ¢, and I',A = =\, with T', given by
(B.1.3).

As explained in appendix B, we work both in ITA and IIB with an implicit doublet
notation for the spinors. We use the conventions that symmetrization and anti-
symmetrization are with weight one, slashes are short notation for # = H*"*T,,,
and 4, = H,,,I'"? and the form notations used are

AW B0 = LA g,
p!

1
A(P) A B(q) = ZTq!Al(tpl)“'Mp Bl(’ill"‘ﬂerq dat A-- - Adattrte )
AP = AP A A AP (n times), (6.3.7)

where the label (p) refers to the order of the p-form. The other form conventions are
given in appendix A. For notational convenience we group all potentials and field
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strengths in the formal sums

2,5/2 2,5/2
G= Y G, c= > ¢t b, (6.3.8)
n=0,1/2 n=1,1/2

The bosonic field strengths are given by
H=dB, G=dC-dB.C+GWe", (6.3.9)

where it is understood that each equation involves only one term from the formal
sums (6.3.8) (only the relevant combinations are extracted). Also we will use the
following abbreviation:

e*? =+B+1B.B+ L1B\B\B+... (6.3.10)
In writing down type II actions, we use the following definitions
P =T1u®1ly= T52® o3 (ITA) or — 132 ® o3 (IIB), (6.3.11)
and
P, = ([11@12)" (IIA) or T3p®0t (n+1/2 even), 13,®ic? (n+1/2 odd) (IIB).

Up till now we have just written down the action of the type ITA/B in (1,9) sig-
nature in a standard form. We will now interpret the action (6.3.2) in a different
way, as a complex action. All fields are now assumed to be complex, both bosonic
and fermionic. For the fermions this means that they are arbitrary Dirac spinors,
as stated before they only appear holomorphically in the action through their Majo-
rana conjugate ¥ = x"C. The gamma-matrices with flat indices remain the standard
gamma-matrices of (1,9) Minkowski space. As we now allow the vielbein to be com-
plex, the curved gamma-matrices will be part of the complexified Clifford algebra,
see section 6.4 for more details. The supersymmetry transformations (6.3.6) are un-
derstood to be complex in the same way as the action (6.3.2). The complexified
action remains invariant under the complexified supersymmetry transformations as
basic manipulations like symmetry properties of bilinears, gamma-matrix algebra and
Fierz identities are insensitive to this complexification. In the same way the complex
action is invariant under the complexified Lorentz-group SO(10, C).

6.3.2 Back to Reality

Starting from the complex action and supersymmetry transformations of the previous
section we will now explain how one can construct different real actions by taking
different real slices. In this subsection, we will do a general analysis determining all
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variant supergravities. The result is summarized in table 6.3.1. In the next subsection,
we will illustrate the method with some specific examples.

Let us start by explaining what we mean by taking a real slice. A reality condition
on the fields cannot be chosen at will, but has to satisfy certain consistency conditions.
First of all, one can only impose a limited number of reality conditions on the fermions.
As is explained in appendix B this leads to the following general reality conditions on
the fermionic fields (see (B.2.7))

& = —enfa.CApe,
w: = —gr]tongpru , (6.3.12)
A = —enfaCAp),

where the o, represents a phase factor that can differ from field to field. On the
bosonic fields, a general reality condition is given by*:

eua* _ eMa ,
o = 9,
BZU = aBB;w » (6313)
2n—1)x* 2n—1
CP(LI"',UQ)n—l = ancl(il"'ﬂgnfl ’

where again the a-factors represent phases. Note that we have already taken the
dilaton to be real, as this is the only condition consistent with reality of the action.
We also choose to work with real vielbeine. This amounts to using the flat gamma-
matrices that are appropriate to a specific signature. The complex action is written
in terms of fixed flat I'-matrices in signature (1,9). In principle one could keep these
fixed during the whole procedure and allow for purely imaginary vielbein compo-
nents. Simultaneously redefining the vielbeine and flat gamma-matrices then brings
one back to the case where the vielbeine are real and the Clifford algebra has the
appropriate signature. For a more thorough and technical discussion of this point,
see section 6.4. This reasoning also reveals a subtlety concerning the Chern-Simons
terms. Supersymmetry of the action (6.3.2) is established thanks to the relation
Layoap, = fﬁealmaanF“m'““"“ . (6.3.14)
This relation is however only valid for the Clifford algebra with signature (1,9). As
explained above, we choose to work with the Clifford algebra that has the same
signature as space-time. For this Clifford algebra, the relation (6.3.14) is changed to
1

Fal...an = €

e et TTuLme st (63.15)

4To have a uniform notation the reality condition for G(©) is given in terms of some formal C(=1).
This is just a shorthand implying G(©* = auG(©).



92 Domain-Wall / Cosmology Correspondence

Effectively, rewriting (6.3.15) to (6.3.14) corresponds to replacing eq..9 by

0.0 — —(=)""eo 9,
09— (i) (6.3.16)

When going to a real action of a given signature, one has to replace the €(. ¢ in the
complex Chern-Simons term via the above rule to assure invariance under supersym-
metry.

The a-factors appearing in the reality conditions on the bosons and the fermions
are not independent. Demanding a real action and consistency with supersymmetry
relates them. The latter means that both sides of the supersymmetry rules should have
the same behaviour under complex conjugation. In this way, the reality conditions
on the fermions determine those of the bosons. Analyzing this in detail leads to the
relations

Qe = Qy,

Oéi = 04121) = <_77)t+1 ’

ay = (=)"*nppTopoay, (6.3.17)
ag = PTUtHU?aUtHPUs )

a, = (_)(2n+1)t(_,r])(2n+1)pTUt«Pna_t+1sz;10_ ]

The possible solutions of these equations lead to consistent reality conditions on all
fields. They are summarized in table 6.3.1. Every possible reality condition corre-
sponds to a unique real supergravity theory that has (6.3.2) as complexified action.

Given the data in table 6.3.1, the actions and supersymmetry rules of these variant
supergravities can be explicitly written down. These actions are the complex action
(6.3.2), where the fields now obey the reality properties (6.3.12,6.3.13), with the a-
factors the ones mentioned in table 6.3.1. One notices that in this form some fields
might be purely imaginary. In this case, it is more natural to redefine the fields
in terms of real fields. This leads to a change in sign of e.g. the kinetic terms of
these fields. In order to write the actions in a more conventional form involving
Dirac conjugates, one can use the following formula equivalent to (6.3.12) if (6.3.17)
is satisfied:

X = aganayX'p. (6.3.18)

This allows one to rewrite Majorana conjugates appearing in (6.3.2) in terms of Dirac
conjugates. As explained above in certain signatures one has to multiply the Chern-
Simons term by an additional factor, this factor is given in the last row of table
6.3.1, this same factor also appears in the (anti) self-duality condition of IIB. The
procedure described here will be illustrated in more detail for some specific examples
in subsection 6.3.3.
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A B

t mod 4 0 1 2 1 3
type *MT | MW *MW | Mt | MW *MW 'MW | SMW

E=n + + + + + + + +

P o3 1 o3 1 1 o3 o1 109

Qe = Q) ) 1 1 ) 1 1 1 1

) ) 1 -1 —1 1 1 1 1

ap - + + - + + - -

Qo = Qg, (/3 = Q5/9 + + - - + - - +

a1, 043/2 - + - + + - + -

—(i)t+t —i 1 1 i 1 1 1 -1

Table 6.3.1: Possible reality conditions on the fields of type II supergravities. t is
the number of timelike directions in space-time. The notation concerning the type of
fermionic reality condition is explained in appendix B. Every set of reality conditions
(column) corresponds to a different variant supergravity theory. The last row refers
to the additional factor for the Chern-Simons terms. From this table the actions and
supersymmetry transformations of all 10d variant supergravities can be constructed.

Finally let us give a short overview of the variant theories classified by table 6.3.1.
Type IIA supergravity exists in three types of signatures. Note that only in signature
t = 1 mod 4 there are two different real theories®. For IIB the situation is similar.
Although table 6.3.1 seems to suggest that there are three different theories in (1,9),
IIB* and IIB’ are related by a field redefinition that can be interpreted as an S-duality.
Note that IIB theories only exist in those signatures where a consistent self-duality
condition can be imposed. In our conventions the five form is self-dual in signatures
with ¢ = 1 mod 4 and anti self-dual when ¢ = 3 mod 4, this is due to the subtleties
concerning the appearance of g ¢ explained above.

6.3.3 Examples

In this subsection we will illustrate the previously discussed method of real slices for
type II theories in signature (1,9). We will show how to write down the explicit form
of the actions starting from table 6.3.1. To illustrate how to write down the Chern-
Simons terms in case the real slice involves an additional factor multiplying g9 we
discuss this term in signature (0,10) in detail.

5The results of table 6.3.1 almost completely agree with those found in [117] for IIA, with the
exception that only in signature (1,9) we find two inequivalent theories. In [117] additional ITA
theories for ¢t = 0 or 2 mod 4 are presented, which we are not able to reproduce in our framework.
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ITA

Our first example is how one can recover the usual type ITA theory in signature
(1,9). The reality conditions appropriate for this theory are summarized in the second
column of table 6.3.1, leading to:

e = —CAe,
Yh = —CAY,,
A = —CAA (6.3.19)
B, = Bu,
Citr, = O . (n=0,1,2).

The real action for this theory is the complex action given above (6.3.2) but restricted
to the subspace given by these reality conditions. The Majorana conditions for the
spinors (6.3.19) are equivalent to

€ = €,
Y = Y, (6.3.20)
A=\

and using these we can write the action (6.3.2) in a standard real form involving Dirac
conjugates. Plugging (6.3.19-6.3.20) into the action (6.3.2) gives

1 _ 2
Stia = — 5.2 /dlox e{e 2¢[— R(w(e)) — 4(8¢) + %H -H — 28“(/5)(&1) + H-x®
10
+ 20TV i, — 2NPTHV A+ ANTHV 0 |+ Y 3G . GBY
n=0,1,2
+ G2n) | g2n) 4 e Lghrrpo [4'2142 8#1 C£§L3#4 8#50,&(3;)#7#8 B,ugulo
0 3 3 0)2 5
-+ 2~2142 G( )amc;(iz)ltslm BM5-~M10 + 5~1162 G( ) Bm..iulo] }7 (6-3-21)
where
XP = =2, — 23TV,
X/Ea?)y)p = %'Izjgr[arul/prﬁ]rllwﬁ + j\DFuupﬁrllw,@ - %E\Drllruup/\7
‘11/8217?~)~u2n = %e—%gp[apm__m"pm (T11)" s + 56 ATy, T (D11) "0
— 2N o (T11) Ty g A (6.3.22)
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The action (6.3.21) is invariant under the following supersymmetries
dee,t =T, ,

1
(qu :(6# + i ;[J# + %1—‘11 HH)G + %ed) Z _ G(?n)l"#(]_"ll)n €,

n=0,1,2 (2n)!
8By = — 2T, 11ty
SO = = e Ty (1) (20 = D) — 3T )
+(n=1)2n—1)CE"Y By s
~(po+ drara)erie 3 St EE e,
=0,1
Sep =3 "\ (6.3.23)

As the (1,9) ITIA supergravity theory was the theory we started from before com-
plexifying, taking the real slice was rather straightforward. Things will become more
interesting in case some fields are purely imaginary. We illustrate this in the following
example.

ITA*

The action of the ITA* theory in (1,9) can be constructed by using the third column
of table 6.3.1, which leads to the following reality conditions:

6* = —CAFHG,
Y, = —CAl'uty,
A = CATyA, (6.3.24)
BY, = Bu,
C,(Qn 1) _ _C(Qn 1) (TL:O 1 2)
H2n—1 “H2n—1 9 ) .

Note that now the reality condition for the Ramond-Ramond fields implies that they
are purely imaginary. It is therefore natural to make a redefinition to real fields. We
also prefer to have the same reality condition for all the fermionic fields. Thus we
make the field redefinitions

¢ = —i),
A(Zn—l) _ _Z'C(Z”_l) , (6325)
Fer i)
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In this case the relation between Majorana and Dirac conjugate of the spinors is

€ = _EDrll )
Yu = —¢ i, (6.3.26)
¢ = —(Ty.

Similarly to the ITA case one can obtain a manifestly real action, which now reads

1
Suar == 5 /dloxe{e-2¢ [~ R(w(e)) — 4(0¢) + SH - H — 201 gD + H - €@+
10
— 2T THPY i, — 20T 1TV ¢ — 40T TV b, ) — Y FF - F2"
n=0,1,2
+ F2n ’ A(Zn) B 6—15#1"'M10 [ N2M3M4 8 Auselwus H9 K10
0 3 3 0)2 P5
+ 2. 242 F( )a Al(m)/tslm Bu5 K10 5 162 F( ) BMI Mlo} } ’ (6327)
where
fp(bl) = =20 T"T11%, + 2i"T T, T11%y
g;(l,?z)/)p = %ﬁgr[aruuprﬁ]d}ﬁ - ignruupﬁ¢ﬁ - %EDPquC> (6328)
AR, = FeTPPETIOT oy DT 1) s + 56720 Ty i TP (D11) g

i b 1
—4e 0T g (T11)" Ty 1€
The action (6.3.27) is invariant under the supersymmetries
(L@,ﬂ :€DF“F11¢M s

56¢u:(au+i¢’u 1F11H#)6+ ge’ Z

) (QH)FM(FU)H €,
n=0,1 2 ’

é Bul/ =— 2€DF[Mwy] ,
2n—1 —¢ = n .
5 A( Hz)n 1 —— ¢ ¢ 6DF[M1“'M%—2 (Fll) + (z(2n - 1)¢u2n—1] + %FNQn—l]C)

+(n=1)E2n -1 ALY 6B

‘Pan—3 H2n—2H2n—1]
56C:—i(@¢+ﬁﬂfu)e+ Le# Z
n=0,1,2

bep=— L eT1C. (6.3.29)

2n) (Fll)ne ,

Note that indeed in this real form the Ramond-Ramond fields have wrong sign kinetic
terms. Furthermore, there are additional factors of 7 appearing in the supersymmetry
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transformations with respect to standard ITA. This is similar to the i’s appearing
in the pseudo-supersymmetry of [67, 98], we will elaborate on this in section 6.5.1.
Another difference is the appearance of the chirality matrix I'y; in various spinor
bilinears. They appear for example in the variation of the dilaton, leading to a
different transformation of this field under parity®.

Chern-Simons terms

As explained above there are some subtleties concerning the Chern-Simons terms in
certain signatures. Here we will briefly illustrate how the Chern-Simons term of ITA
in (0,10) signature can be obtained, the other cases proceed analogously. Of the
fields appearing in the IIA Chern-Simons term, B becomes purely imaginary while
the others are real, as can be read from the first column of table 6.3.1. We thus make
the redefinition ~

B, = —iB, . (6.3.30)
Substituting this in the complex Chern-Simons term (6.3.3) and multiplying with the
appropriate factor i (see table 6.3.1) gives the following real topological terms:

1 ~
_ 10, _pa--pao [__1 (3) (3)
2"%0 dTee [4~242 8#1 Cﬂ2#3#4 8#5 Cus,uﬂts Bﬂ9“10

(6.3.31)

1 g0y B B3 + 5.1162 G2 B5 ] '

2-242 K1~ a3 i 7 s - f410 H1---[410
Note that apart from the changes in the Chern-Simons term also the relation between
the real potentials and field strengths gets modified, e.g.
GW =dc® 4+ dB A AV — GO B2, (6.3.32)

instead of the standard relation (6.3.9).
Similar to this example one can find the Chern-Simons terms and field strengths
in other signatures.

I1B*

As our final example we derive the action and supersymmetry equations of IIB*, the
alternate real IIB theory in signature (1,9). The reality conditions are:

e = CAPe,
v = CAPY,,
A = CAP\, (6.3.33)
B, = B,
CRm, = —CRh . (n=1/2,3/25/2).

SUnder parity we understand the transformation x* — —z* that reverses the sign of all 9 spacelike
directions.
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98
We redefine the imaginary fields in term of real fields as follows:

<A@n_l):-—ﬂj@n_n’
) o) (6.3.34)

The reality conditions for the spinors are equivalent to the conditions

¢ = &P, (6.3.35)
&u = /$37)7
A= AP

Substituting this into the complex IIB action (6.3.2) leads to

1
- 22, /dloxe{e*w [ - R(w(e)) — 4(8(1))2 +iH-H+

SriBs =
— 20" ¢S + H - (B + 20D PTHPY p, — 2APPTHV N + 45\DPF“”V#wy]

>

3/2
(1 PO pen) | pen) | A(2n)) _lpe g _ Lpe) . A®)
2 1 >
n=1/2

(6.3.36)

chiio g(4) 8usA£LZe)u7al‘sB“9”w} '

12 3 e

J— 17
¢ 32

This action needs to be supplemented with the usual self-duality for the RR-five form
F®). The bosonic fields couple to the fermions via the bilinears

¢ == 200PTV, — 2APPIT 1,
C;(ﬁj)p :%io?r[arwprﬁ]% +AP Fuwﬁwﬁ - %;\Drwp/\v

AR s = =i(3e P BETOT i, TAPPL + L0 NPTy, PP
- %e*ﬁDF[m,..M”flPPnFMn])\) . (6.3.37)
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The supersymmetry rules are

See, =eEPPI%y,
3/2

St = (8 + 16+ PHH>6—|—Ze¢ 21:/2 2

1

FOIT,Pe

+ 166 5| F( )F P5/26
§Buy = — 2T 1, ,

e A(Qn Mlz)n 1 =ie~? e F[Hl"'ﬂ2n72 PP ((2n )q/)“z" U F“% 1]>\>
+ (n — ]_)(QTL — 1) AEZW iln 3 5€B/L2n—‘2ﬂ2n71] ’
5/2 2n
i @ 2n_7 (2”)
(@¢ +13 HP)G + 7€ Z (2n)! F Pue,
=1/2
5.6 —1 PP (6.3.38)

Note that in contrast to the standard IIB action the IIB* action is no longer invariant
under the full S-duality group, but gets mapped to the IIB’ theory. Another viewpoint
is thus that IIB’ is nothing else than a field redefinition of IIB*. As such we will not
construct its action and supersymmetry transformations here. They can be obtained
either from performing an S-duality or taking a real slice with the appropriate reality
conditions in table 6.3.1.

6.3.4 Extended vs. Unextended Supersymmetry

It might be remarkable that in certain signatures different real slices exist while in
others only one real theory is consistent. This is related to the number of independent
supersymmetries. Although we always discussed theories with 32 real supercharges,
this does not necessarily mean that their supersymmetry is extended. Depending
from signature to signature the dimension of a real irreducible spinor is 16 or 32.
Only in the signatures in which it is 16, and thus the 32 supercharges imply extended
supersymmetry, different real slices can occur. This can be understood as in this case
different reality conditions can be imposed on the two independent 16-dimensional
spinors.

This suggests that in any signature only one real slice of the complex 10d A" =1
supergravities exists. These A/ = 1 supergravities can be seen as truncations of the
type II theories by a Zs truncation. Thus one would expect both the standard theories
and their star versions to truncate to the same theory. We will now show that this
is indeed the case in ITA. The truncation is made by only keeping the fields invariant
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under the following fermion number symmetry [120]:

{stg;wv B,Lw} - {¢a Guv, B;w} 5
oF R S o N (6.3.39)
{’(/};u )‘7 6} - Fll{w,ua _)‘7 6} .

One can see that both ITA and ITA* project to the same theory under identification by
this symmetry as this identification is equivalent to demanding the reality conditions
(6.3.19) and (6.3.24) to be identical. The other ITA truncation that is given in [120]
is no longer consistent.

The situation is similar in IIB. For IIB in (1,9) signature both truncations given
in [120] lead to the same result, for IIB* only one truncation is consistent with the
reality properties of the spinors while the other identification is the only consistent
one for IIB’. In the end all possible truncations lead to the same N = 1 theory.

6.4 Reality of the Vielbeine

6.4.1 Imaginary Vielbeine and Signature Change

In this section we will give some more details on the equivalence between choosing to
work with on the one hand fixed flat gamma-matrices of signature (1,9) and possibly
imaginary vielbein or on the other hand gamma-matrices of the appropriate signature
and a real vielbein.

It is important to stress that the flat gamma-matrices appearing in the complex
action (6.3.2) are elements of the Clifford algebra of signature (1,9) obeying the stan-
dard reality condition”

% = —CIyI"TyC~ L. (6.4.1)

The curved gamma-matrices I', = I'qe,® no longer obey a reality condition as e,®

(and the other fields) are complex. Because the vielbein, and thus the metric as well,
is complex there is no longer a concept of space-time signature. Note that the complex
metric is defined as g, = e#“eybné})’g), where 77&’9) = diag(— +...4).

When we impose reality conditions on the fields appearing in the action we recover
a real theory in a signature that can differ from the (1,9) signature we started from.
This can happen as some components of the vielbein can be purely imaginary such
that g, is real but has a signature different from that of 77((12’9).

As explained a choice of reality conditions for the fermions determines the reality
properties of all the bosonic fields as well. For the vielbein this happens through the

supersymmetry transformation

S, = e, . (6.4.2)

"In this section we will make the choice e =7 = 1.
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As explained in appendix B in the reality conditions for the spinors (B.2.7) the opera-
tor A appears. This A is the product of the timelike gamma-matrices. So by choosing
A in the reality conditions for the complex fermions one decides in which space-time
signature the real fermions will be consistent. As we will see below consistency of
the above supersymmetry variation (6.4.2) implies that also the real metric given by
these reality conditions has that signature. If one for example makes a real slice to a
theory in signature (¢, s), t + s = 10, fermions satisfy the following reality conditions

& = —enfa.CApe,
Y, = —en‘ayCApY,, (6.4.3)
with
A= (To)ily)...(iTs—1), (6.4.4)

where I, are elements of the (1,9) Clifford algebra, i.e. those appearing in the complex
action and (6.4.2). We propose the following reality conditions for the vielbeine:

(en)" = aje”. (6.4.5)
Using this definition and (6.4.3), one can calculate that®
ol = (=) AT T AT, (6.4.6)

by taking the complex conjugate of (6.4.2). In the case we take A of the form (6.4.4)
and divide the index a ast=1...t — 1, 7 =t...9 this implies

0 _ i _ i
a,=1, a,=-1, of =1. (6.4.7)

So parts of the vielbein are imaginary and indeed this exactly implies the metric g,
now has the signature (¢, s).

Although everything works perfectly in this way it is rather odd to work with
vielbeine that have imaginary components. This is why in the previous section we
preferred to work in a formulation where the vielbein is always completely real. This
can be accomplished by simultaneously redefining the appropriate components e ul =

i€ u’ and ="’ Tt is clear that this redefinition changes the signature of the flat metric
Nap as the Clifford algebra now has signature (¢, s). Furthermore, in all supersymmetry
transformations and the action the vielbeine and I'’s appear in pairs of the form e*,I'*
or ¢,y and as such always in a combination where one of the redefined variables
appears through its inverse. This means that we can put tildes everywhere without
changing the form of the expressions or having to add ¢’s or minus signs. One should
read the previous section with this redefinition in mind although we did not explicitly
write the tildes, i.e. in section 6.3 flat gamma-matrices appearing in real actions and
supersymmetry transformations are always elements of the Clifford algebra that has
the same signature as space-time and all vielbeine are real.

80ne has to use that aeay = (—)**!, which follows from analysing the other supersymmetry
variations.
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6.4.2 Imaginary Vielbeine without Signature Change

The discussion above brings about another point. One can also take some of the
components of the vielbein imaginary and still obtain signature (1,9) for the curved
metric. This can be achieved by taking for instance the following matrix A:

A=iTy. (6.4.8)

This still leads to a consistent reality condition for the fermions. As explained before
A determines what is space and what is time in the real slice. The choice (6.4.8)
corresponds to

ap=-1, a, =1, o) =-1, (i=1...8). (6.4.9)
The naturally redefined ﬁﬁ’g) now has ﬁé(l)’g) = ﬁle ) =1 and ﬁéé’g) = —1 while the
original n&)’g) from the complex theory had 77(%’9) = —1 and 772(1.1’9) =1= m();g).

This choice for the vielbein does not lead to new real actions. Changing the role
of different coordinates from timelike to spacelike and vice versa, but keeping the
signature fixed, amounts to no more than a relabelling of the coordinates. The action
and supersymmetry variations are not affected by this permutation of coordinates.

This is not true however for solutions of its equations of motion. A generic so-
lution is not invariant under exchange of a timelike and spacelike coordinate. For a
complexified version of such a solution, interchanging coordinates again is equivalent
to a relabelling that does not lead to a different complex solution, as there is no
notion of space or time anymore. So given a real solution, if we complexify it and
then go back to a real form by imposing different reality conditions it can happen
that two coordinates interchange their space- and timelike character. To keep track
of this effect when taking real slices of a complex solution it is most practical to work
with imaginary vielbeine. In this way one can see explicitly which coordinates will be
timelike and which spacelike in a different real form. One can see this explicitly at
work in section 6.5.1.

6.5 Domain-Walls and Cosmologies

In this section we will apply the previously discussed method of complex actions
and real slices to construct and relate different real solutions. We discuss two exam-
ples. Our first example is in massive ITA, where we find a realisation of the domain-
wall/cosmology correspondence of [67,98,112] in a supersymmetric theory. After that
we look at 9d gauged maximal supergravity. This as an example to show that our
method works in different dimensions. Note that our examples are all in theories
with extended supersymmetry, as this seems necessary to be able to take different
real slices in the same signature with our method.
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In this section we work in the Einstein frame (E), related to the string frame (S)
via o5) — o9/2(B)
Guv =€ "Guv .

6.5.1 10d Massive ITA/A*
We truncate the complex massive ITA theory (6.3.2) to the following action

21%12 /dloxe (R — %(8@5)2 — %e5¢/2m2) , (6.5.1)
10

Sm1ia =

where m = G is the Romans’ mass parameter. The fermionic part of the truncated
supersymmetry transformations is

6 = (Vi — 3—12W1"H)e,

S\ :(@¢+ %V)e.

For our theory (6.5.1) the scalar potential and superpotential are respectively

1,6W 9 1
=555 W =it W=t (6:5.3)

(6.5.2)

The complex equations of motion are given by

0= éﬁu (eg“”ﬁyqzﬁ) — Zew’mm2 ,
6.5.4
G —1(8 600 — £ 40 (g7°0,00,0) — - /22 (034

w = 5\ OnPOv 2guu g nPO0p 2g;w .

We propose the following complex Ansatz for a supersymmetric solution. As we will
show, it can be seen as the complexification of both a domain-wall and a cosmology:

e = aoHl/w(Sg,

e, = aH/'%  (i=1...8),

e, = agH"'%6 (6.5.5)
5

¢ = _ZlogHv

here a, are some constant complex numbers and H is a complex function depending
only on the coordinate z°. The complex metric is given by Juv = eﬂael,bn((lt’g), as in
the previous section 6.3. For this Ansatz the equations of motion (6.5.4) and the

supersymmetry condition from (6.5.2) reduce to:

89H = agm. (656)
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So we find the following complex solution to the complexified massive theory:
ds? = H'/S(—af(da®)? + (a;)2(da')?) + H*/ad(da)?,
e® = H 5% with H =1+ agma®. (6.5.7)
It is invariant under the following complex supersymmetries:
Tge=¢, e=HY32¢, (6.5.8)

where ¢ is a constant Dirac spinor. In section 6.3 we explained how the complex
action (6.5.1) can give rise to several different real theories by taking different real
slices. If we now apply these reality conditions on the bosonic fields to our complex
solution we will find different real solutions. The different inequivalent reality prop-
erties consistent with section 6.3 and (6.5.6) are given for some signatures in table
6.5.1, note that here we allow for imaginary vielbeine. Let us illustrate how the com-

t 0 1 2
type | mIIA* | mIIA mIIA* | mIIA
Qm + + - -
ap |+ + + -
o, - + - +
a, + + + +
al, |+ + + -
az + + - -
A 1 o iTy | il

Table 6.5.1: Possible reality conditions on the fields of the truncated massive IIA
supergravity (mlIIA), consistent with the equations of motion. t is the number of
timelike directions in space-time. When dealing with solutions it is preferable to
allow for imaginary vielbeine as explained in section 6.4. A is the product of all I'’s
that are timelike in the real theory and it appears in e.g. the reality condition for the
fermions.

plex Ansatz reduces to a supersymmetric domain-wall in massive IIA (mITA) and a
supersymmetric cosmology in mIIA* by imposing the reality conditions.

Domain-wall in mITA The standard reality conditions lead to mIIA and can be
found in the second column of table 6.5.1. As all the fields are real, the action coincides
with (6.5.1). The complex solution becomes the well known domain-wall or D8-brane
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of mITA:
ds? — Hl/8 (—(dx0)2 n (df)Q) + H3(d2)?
e = H°*  with H=1+ma’. (6.5.9)

The complex supersymmetry variations (6.5.2) become

1
6 = (Vi — @WFH)e,
SW (6.5.10)
deA :<ﬁ¢ + E)G»
where W is given by
W =e*m, withm € R. (6.5.11)

It is not difficult to verify that the domain-wall (6.5.9) has the following unbroken
real supersymmetries

Doe =€, €= H"/%%¢, (6.5.12)

where €¢g now is a constant Majorana spinor.

Cosmology in mITIA* Alternatively, we can apply the reality conditions of mITA*
to the complex solution (6.5.7). As can be read from table 6.5.1 in this case m is
purely imaginary, as are two components of the vielbein: e, and e,°. This implies
that in this case ag = ag = i. We redefine m = im, ¢,° = i¢,%, e,° = ie,”,
[0 =4[ and T = T, Substituting all this in the complex solution (6.5.7) gives us
a supersymmetric cosmological solution of mITA*:

ds? — Hl/S((dx0>2 n (df)2> — HY%(dz?)?,
e = H 4 with H=1-ma’, (6.5.13)

where 7 = F(9). Note that this is the E9-brane of [26]. Note that also the real action
of mITA* is different than that of mITA. Tt is given in terms of real fields by

1
263,

SH)IIA* = /dlox € (R - %(aQS)Q + %65(1)/27%2) ) (6514)

with the corresponding supersymmetry variations

7

Sy, :(vu 32Wru)e,
SW
%>e.

(6.5.15)
8¢ :<7i@¢ T
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The superpotential W is real and given by

W =e>/4m, withm € R. (6.5.16)

As was the case for the domain-wall it is easy to check that the cosmology (6.5.13)
preserves the following supersymmetries

iTge =€, e=HY%¢. (6.5.17)

Note that now € is not a standard Majorana spinor but satisfies a *MW reality con-
dition instead.

The domain-wall and cosmology presented above are a particular example of the
domain-wall / cosmology correspondence of [67,98,112], where an embedding in ex-
tended supergravity is possible. Indeed the truncated mIIA theory is exactly of the
gravity-scalar form as proposed there, as is its domain-wall solution. Furthermore the
truncated mIIA* theory is equal to the truncated mIIA theory up to a relative sign
in front of the scalar potential. This example places the domain-wall / cosmology
correspondence in a supersymmetric context. This means that the Killing spinor of
the solution generates a supersymmetry of the theory. Furthermore we see that what
was called a pseudo-Killing spinor in [67,98,112] now is a generator of a genuine
supersymmetry, but in a star theory. In this example pseudo-supersymmetry in an
extended supersymmetric theory coincides with the supersymmetry of a superalgebra
obeying star reality conditions.

Instanton in Euclidean mITA* In section 6.1 we noticed that for every domain-
wall of a model with potential V' there corresponds, besides the cosmology with —V/,
an instanton [113]. The first column of table 6.5.1 agrees with this. The o, is
the same for Euclidean mITA* in (0,10) and mIIA in (1,9) space-time dimensions,
hence they have the same potential. Also do we see that 042 = —1 and hence the
corresponding vielbein is imaginary. As a result we have a Euclidean theory.

6.5.2 Maximal Gauged Supergravity in 9d

In the previous example the only scalar field that played a role was the dilaton. In
subsection 5.3.2 pseudo-supersymmetry was studied in systems with explicit multiple
scalar fields. As mentioned there, in [99,103] it was shown that for the domain-wall
/ cosmology correspondence subtleties can appear when axions are included. In light
of this we consider a more general example with multiple scalar fields including an
axion.

The theory we will be working with is given by the following truncated N' = 2,
d=9 gauged supergravity Lagrangian

Loa = 3¢ [R—5(0¢)" — 56> (O1)° = §(90)* = V(L. 9)] , (6.5.18)
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with V' given by
1
V= 5e72¢+4“’/‘ﬁ(qf +26*?q1 (—qa + @1 1%) + (g2 + q1l2)2) . (6.5.19)

The details of the reduction from IIB are given in [121,122]. The scalar fields are
given by ¢, ¢ and [. The constants ¢q; and g2 specify the gauging. We group the 9d,
16-component A/ = 2 spinors ; in doublets

X = (’“) . (6.5.20)

X2

From table B.1.1 we see that e = n = —1. In this section we will use C = ~y. The (1,8)
gamma-matrices 7, are then purely imaginary. In this notation the supersymmetry
transformations of the fermions are

Octhy = [au t+wy — (ie(baul - Tig'VuW)i@] €
SN = (i §p—e 25 W)oge+e?(i Pl+e ?5,W)oy e, (6.5.21)
S A = i Pooge+ 0 ,Waore.

The superpotential W is given by
W= eQWW(e—%l +e?(ga + qll2)) . (6.5.22)

The above action and supersymmetry rules can be made complex via the method of
section 2. It turns out that there are two real slices for signature (1,8), see table 6.5.2.
We denote the star version of the truncated N'=2, d=9 theory by 9d*. Inspired by

9d | 9d*

eE=n — —

P 1| o3

Qy + -

Qe =Q) =035 | + +
Q1= q2 + —

Table 6.5.2: The two sets of reality conditions appearing in the truncated N'=2, d=9
gauged supergravity Lagrangian leading to signature (1,8).
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the domain-walls of [122], we propose the following complex Ansétze:

0 _ 1/28 50
e, = aoh’/7%0,

e, =h'/®s,  (i=1...7),
ei = agh_3/1462 , (6.5.23)
e =h72hy, VT =pTl I=cih 7T,

h=hihy — ¢,

where a, and ¢ are some arbitrary complex constants and h; and hy are functions
of 28 only. This Ansatz is a supersymmetric complex solution if

Oghy = 2agqn ,
aghg = Q(IgQQ . (6524)
In this case it has a complex Killing spinor of the form
€ = h'/%(cos fly — isin f o2)eq (6.5.25)
with 1o
1 261qlh )
= — arctan , 6.5.26
T=1 (Q2h% —qh+qc ( )
and ¢g is a doublet of constant Dirac spinors that satisfies
Vose0 = € - (6.5.27)

As in the previous subsection one can now take two different real slices leading to
a pair of real solutions in signature (1,8). Taking all the fields in (6.5.23) real leads
back to the familiar domain-walls of [122]:

d52 _ h1/14(—(d$0)2 4 de) + h_3/7(dl’8)2,

e =n"2hy, V=R, I=ch !, (6.5.28)

hy = 2q1x8 + k‘f, hoy = 2qu8 + k% and h = hihy — c%,
where k; are integration constants. As noted above there is another set of consistent
reality conditions. This second real slice of (6.5.23) will give a cosmological solu-
tion. From table 6.5.2 one can see which fields become purely imaginary. To write
everything in terms of real fields we redefine ¢; = ig;, ¢y = i¢, and | = il = iélhfl.
Consistency with the equations of motion also requires 6#0 and eM8 to be imaginary,

i.e. ag = ap =i. The Ansatz (6.5.23) written in terms of these real fields gives the
following cosmological solution:

d52 _ h1/14((d$0)2 + di;Q) _ h—3/7<de)27
e =n"2h, VP =pl, =&t (6.5.29)
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where
h=hihy+&,  hi=2a2°+ki,  hy =24z +k5. (6.5.30)

This is a real cosmological solution of the star version of the 9d theory, of which the
action can easily be constructed along the lines of section 6.3.

Again we find a natural relation between domain-wall solutions and cosmological
solutions as different real slices of a single complex solution. In this case the relation
between the two real theories is slightly more involved than just reversing the overall
sign of the scalar potential. It is not difficult to see that the scalar potential in the
9d* theory is now

1 ~ ~ ~ ~ 37 - o
V= _5e72¢+4w/ﬁ(qf — 202241 (G2 + G11%) + e* (G2 — q112)2) . (6.5.31)

So apart from an overall change in sign with respect to (6.5.19) there are also relative
sign changes between the different terms in the potential. This goes together with a
signature change of the scalar manifold in the 9d* case as the axion [ has wrong sign
kinetic term. Note that if the theory is truncated by setting the axion to zero we
again find an example where one can embed the correspondence of [67,98,112] in a
supersymmetric theory. Also in this case the pseudo-supersymmetry of the cosmology
can be interpreted as the vanishing of the fermionic supersymmetry transformations
of a theory with star reality conditions.

6.5.3 E-branes

In the previous sections we have seen that star supergravities have a non-Riemannian
scalar coset. In section 6.5.1 we gave an example of a time-dependent half super-
symmetric solution of mIIA*. This solution is called an E8-brane or Ep-brane in
general. The E stands for the Euclidean worldvolume and the p reflects that we
have a (p+1)-dimensional worldvolume®. Note that Sp-branes also have a (p+1)-
dimensional worldvolume but they are brane solutions of standard type II theories
instead of type IT* theories.

In [26,59] the full BPS-brane analysis for the star supergravities was done. Just
like Sp-branes they are time-dependent. The difference is that E-branes are BPS-
solutions of star supergravities, while Sp-branes are not supersymmetric solutions
of standard type II supergravities. At the end of section 2.4 we mentioned that if
we demand that an extremal S-brane satisfies the extremality condition (2.4.20) the
field strength turns out to be imaginary. Such a solution can be embedded in a star
supergravity. This shows that in a star supergravity we can have solutions satisfying
(2.4.20).

91n the original papers an Ep-brane means a brane with a p-dimensional Euclidean worldvolume.
We however prefer to use the same notation as that for p- and Sp-branes.
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Let us show this explicitly for the S(—1)-brane given in section 2.4. We need
to find the extremal version of this solution. The only deformation parameter of the
metric (2.4.32) is ||v||, we expect that the limit of ||v|| — 0 should give us the extremal
solution. For this we need to restrict to a £ = —1 slicing since only this describes
Minkowski space-time in Milne coordinates. However, from (2.4.33) we see that the
limit ||v|| — O gives us real and constant scalar fields. We therefore have to re-scale
the constants in a specific way.

Inspired by the extremal limit given in [123] we consider the following series of
limits

1 c gsllvll

CQHCQ+77W;3 C1 — - ) Cy — )
2 il|v]] c1

cs —icz, |lv]|—0. (6.5.32)

A direct calculation shows that this leads to the metric
ds? = —dt? + t2dH%_, (6.5.33)
and the axion and dilaton are given by
e =h, x=i(xh ' +c3). (6.5.34)

Note that the axion is imaginary as required. The harmonic function h is given by

C1

h=9:F 5 oypz

(6.5.35)
This is the solution as given in [41]. We see that the extremal limit of the S(—1)-brane
indeed leads to an imaginary solution which can be embedded in IIB* supergravity.
We have derived the extremal E(—1)-brane as given in [26].

6.6 Discussion

In the first section we gave an overview of the domain-wall / cosmology correspon-
dence. A natural question that arose is whether one can give a meaning to pseudo-
supersymmetry in a real supergravity context.

To achieve this we complexified the type Il supergravities and their supersymmetry
rules. These complex actions do not describe physical theories but are a useful math-
ematical tool that allows to write down the actions for all variant supergravities as
real slices of the complex action. We illustrated the method in detail for the standard
type II theories and their corresponding star versions in signature (1,9). Although we
restricted our analysis to 10 dimensions one can generalize it to lower dimensions, for
some related results see [124-132]. In this chapter we gave an additional example for
N =2 in 9 dimensions.
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In the last part of this chapter, we have looked at solutions of these complex the-
ories and shown that one can obtain solutions of the different real theories by taking
real slices. In particular, we have seen that in this way supersymmetric domain-walls
and (pseudo-) supersymmetric cosmologies can arise as different slices of one com-
plex solution. The domain-walls are solutions in an ordinary supergravity, while
the cosmologies arise as solutions of the star version. In this sense the pseudo-
supersymmetry of cosmologies corresponds to supersymmetry in the star theory. We
presented a ten-dimensional example where the domain-wall / cosmology correspon-
dence of [67,98,112] can be embedded into an extended supergravity context. We also
noticed that it can be extended to include instantons as well [110]. In another example
in 9 dimensions we again constructed a domain-wall and corresponding cosmology. A
noteworthy feature of this last example is that the potential no longer gets an overall
sign flip, but only certain terms in the potential change sign. Furthermore the scalar
manifold changes signature. This might hint that also in a fake supergravity context
more general changes in the potential could appear under the map of a domain-wall
to a cosmology.

In the last subsection we pointed out a relation between extremal Sp- and Ep-
branes.






Chapter 7

Instantons

So far we have considered Riemannian scalar cosets. In the previous chapter we
showed that the domain-wall / cosmology correspondence can be extended to include
instantons as well. It is therefore not surprising that the analysis we did for Rieman-
nian scalar cosets can be extended to non-Riemannian scalar cosets. Actually, we
know already from section 3.5 that if there is no potential present the instantons also
describe geodesic motion on the scalar manifold, with the complication that the affine
velocity ||v||? is no longer strictly positive due to the fact that we now have to deal
with a non-Riemannian scalar manifold. This leads to different classes of instantons,
labeled by the sign of [|v]|?.

The prototype Lorentzian scalar coset is SL(2,IR)/SO(1, 1) of Euclidean type IIB
supergravity. The extremal solution belonging to this coset is the D(—1)-instanton
[133,134]. In our language this is a lightlike geodesic. The extension to non-extremal
D-instantons was considered in [123,135]. These are related to space- and timelike
geodesics. In this chapter we are going to consider two extensions of the scalar coset
SL(2,IR)/SO(1,1).

First we begin with considering more general non-Riemannian cosets. In section
3.2.1 we noticed that reducing pure gravity over a Lorentzian torus gives the coset
GL(n,IR)/SO(n —1,1). In the next section we will derive the generating solution for
this coset and extend it to GL(p + ¢,IR)/ SO(p, q).

The second extension will be the inclusion of a potential. This extends the results
of section 5.2 to non-Riemannian cosets. After that, we restrict ourselves to a potential
given by a cosmological constant A. We will see that this potential is special in that
it never upsets the geodesic motion of the scalar fields.

The work in this chapter is done together with E. A. Bergshoeff, W. Chemissany,
A. Collinucci, T. Van Riet, M. Trigiante and S. Vandoren [40,69].
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7.1 Instanton Geometries

From section 3.5 we know that the geometry of the (—1)-brane or instanton entirely
depends on the character of the geodesic curve (spacelike, lightlike or timelike), inde-
pendently of the scalar manifold coset. The metric is given by (3.5.3) where g can be
found by solving (3.5.10) with e = +1

2
g-2 _ 5 _H;))'lp - 1)f2g4—2D + ka. (7.1.1)

Some of these solutions have appeared in the literature before [40,56,123,135,136].

° |\v||2 >0

For this class of instantons we will be using the gauge f = g. In the table
below we present the conformal factor f that determines the metric and the
radial harmonic function h. Note that for all three values of k the solutions
have singularities.

1

£) = (el 07 cos D2 (D — 20

k=-11h(r)= % arctanh[tan(%r)] +0b
1
D—2)||v|]? -
fr) = (G r) P2

B B 2(D—1)
k=0 | h(r)= D=2z 1087 +b
e 1
1(r) = (gpijp=ey) P~ sinh D=2 [(D — 2)r]

k=41 | h(r) = \/ motpagy logltanh(252r)] + b

Table 7.1.1: The Euclidean geometries with |[v?|| > 0 in the gauge f = g. The real
number b is an integration constant.

o [[v]*=0
We will be using the Euclidean “FLRW gauge” for which f = 1. It is clear from
(3.5.10) that for kK = —1 we do not find a solution and that for k¥ = 0 we find

flat space in Cartesian coordinates (¢ = 1) and for £k = +1 we find flat space
in spherical coordinates (¢ = r). This makes sense since a lightlike geodesic
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motion comes with zero “energy-momentum”'. The harmonic function is

k=0: h(r)y=ar+0b,
a (7.1.2)

In Euclidean IIB supergravity the axion-dilaton parameterize SL(2,IR)/ SO(1,1)
and for |[v||> = 0 and £ = 1 we have the standard half-supersymmetric D-
instanton [133,134].

° HU||2 <0

We will present the solutions in the conformal gauge g = fr, which has the
advantage that the coordinates cover the whole space. For k = 0 and k = —1 we
clearly have no solutions since the right-hand side of (3.5.10) is always negative.
For k = 41 a solution does exist, and in the conformal gauge it is given by

1
vll? _ _ D-2
fr) = (1 ~ sl 2P 2)) : (7.1.3)

where indeed only ||v||? < 0 is valid. This geometry is smooth everywhere and
describes a wormhole since there is an inversion-symmetry which interchanges
the two asymptotically flat regions, see figure 7.1.1. This symmetry acts as
follows [123]

D—2 —|[|v]|? —(D-2
rP=? o e B (P72, (7.1.4)

The neck of the wormhole is located at the self-dual radius defined by ri(D‘Q) =

2
S(D%;}(‘E—Z)' The two asymptotic regions are connected via a neck with a

minimal physical radius at the self-dual radius r;. This physical radius can be
calculated in the FLRW-gauge

ds? = dp? + a(p)?dQ?,_, . (7.1.5)

From this we find that the physical radius is given by a(ps)?~2 = rP=2f(r,).

The harmonic function is given by

8(D—-1 —Ilv]I? —(D-2
h('l") = 7% arctan( W r ( )) +b (716)

IThe fact that the k = —1 solution does not exists reflects that there does not exist a hyperbolic
slicing of the Euclidean plane.
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L
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e T N

r=0 r =00

Figure 7.1.1: For the class ||v]|*> < 0 the space is a wormhole with the neck of the
wormhole at the self-dual radius rs. The two asymptotically flat regions at » = 0 and
r = oo are connected via a neck with a minimal physical radius at the self-dual radius
Ts.

7.2 Solutions of Kaluza—Klein Theory

We know that the scalar fields are geodesics, but these are not described by the
Cartan subalgebra only since ||v]|? can have any sign. Let us therefore focus on the
geodesic motion that comes about. The approach that we will follow allows us to
re-derive the geodesics of GL(n,IR)/SO(n) coset but also allows for a generalization
to GL(p + ¢ = n,IR)/SO(p, q).

7.2.1 The Geodesic Curves

In the following we will not make use of a coordinate system on the coset, instead we
will work directly on the level of M, see section 3.4. So that we do not need to be
bothered with subtleties regarding the Borel gauge.

The action for the geodesic curves can be compactly written in terms of the sym-
metric coset matrix M

S = /Tr[a/\?la/\?rl], M=InL", n=(-1,1,). (7.2.1)

Here we have included the breathing mode ¢ in M, see (3.2.12), to make /\%l Here L
is a representative of GL(p + ¢ = n,IR)/SO(p, q). The relation between M and the
moduli ¢ and M is as follows

M = (|detM)* M,  |detM| = expV2np. (7.2.2)
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The equations of motion can compactly be written as
MM =0, (7.2.3)

where a prime is a derivative with respect to an affine parameter. This implies that
MM’ = K with K a constant matrix, which can be seen as the matrix of Noether
charges. The affine velocity squared of the geodesic curve is |[v|[* = $Tr[K?]. Since

M~IM’" = K the problem is integrable and a general solution is given by
M(h) = M(0)ef" . (7.2.4)

The isometry group GL(n,IR) has a transitive action on the coset space which implies
that we can restrict ourselves to geodesics that go trough the origin. Since we have
the freedom of affine re-parameterization of h we can assume that M(0) = 5. The
matrix of Noether charges K is not completely arbitrary and the only constraint it
fulfills can be derived from the properties of M

nK =K'n, (7.2.5)

where the signature of 1 depends on the isotropy group SO(p, q) we are considering,
see (7.2.1).
K is an element of the Lie algebra of GL(n,IR) and accordingly it transforms in
the adjoint of GL(n,IR)
K—-QKQ*, (7.2.6)

under which the n Casimirs TrK, TrK?,..., TrK™ are invariant. The constraints
given in (7.2.5) are not invariant under the total isometry group GL(n,IR) but only
under the smaller isotropy group SO(p, q).

In the following sections we derive the generating geodesics for the three possible
cases GL(n,IR)/SO(n), GL(n,IR)/SO(n — 1,1) and GL(n + 1,IR)/SO(n — 1,2), al-
though it can easily be extended to GL(p+¢,IR)/SO(p, q). As explained in subsection
4.3.1, for pure Kaluza—Klein theory in D > 3 all geodesics that are related through
a SL(n)-transformation lift up to exactly the same vacuum solution in D + n dimen-
sions since the SL(n) corresponds to rigid coordinate transformations from a (D +n)-
dimensional point of view. Here the SL(n, R) follows from GL(n,IR) = R x SL(n, R)
with R related to the breathing mode. So, in this sense it is absolutely necessary
to understand the generating geodesic since it classifies higher-dimensional solutions
modulo coordinate transformations. Of course, this is not true for D = 3 where
SL(n + 1) maps higher-dimensional solutions to each other that are not necessarily
related by coordinate transformations.

7.2.2 Normal Form of gl(p + q)/s0(p, q)
Consider K € gl(p+ ¢)/so(p, ¢). By definition K obeys (7.2.5)
nK =K'y, with n=(-1,,+1,). (7.2.7)
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Two eigenvectors of K, vi and va, that belong to different eigenvalues A\; and Ay are
necessarily orthogonal with respect to the inner product (, ) defined with the bilinear
form 7, because (vg, Kvyi) = (Kva,v1) and thus Aj(vy,va) = A2(vy,va). Now if
A1 # Az then this is only consistent if (v1,ve) = 0. If two eigenvectors have the same
eigenvalue we can always perform a pseudo Gramm-—Schmidt procedure such that
they become orthogonal with respect to 7, which we refer to as pseudo-orthogonal.

Assume we have a complex eigenvalue A # A with corresponding eigenvectors v
and v. If we write v = vy +ivy and A = A1 + ¢\9 then this means that

Kvy =XMvy — Aova, Kvo = Aovy + A\va, (728)

(pseudo)-orthogonality between v and v implies (vq,v1) = —(va, va).
In what follows we will construct a normal form for K using the eigenvectors as a
basis.

min(p,q) =0

In this case we see from (7.2.7) that K is a symmetric matrix. With the help of
SO(n) we can diagonalize K to a real matrix, written in terms of its orthogonal basis
of eigenvectors as

A0 0
0 0 M

Note that this result is compatible with the result given in (4.2.2). The fact that
Ky is diagonal reflects that the generating solution can be rotated to the Cartan
subalgebra only.

If we instead consider SO(p, q) we will have in general complex eigenvalues (and
its conjugates). Since M, see eq. (7.2.4), contains the scalar fields it should always
be real. One complex eigenvalue and its conjugate can always be written as a 2 x 2
real block. So for each complex eigenvalue the matrix Ky will have a 2 x 2 block.
Therefore knowing the maximal number of complex eigenvalues leads us to the normal
form. In the following we will derive the maximal number of complex eigenvalues one
can have for the coset GL(p+¢,IR)/ SO(p, ¢). We will show that this number is given

by min(p, ).

min(p,q) = 1

Assume there are at least two complex eigenvalues A, o, that correspond to respec-
tively v = vy 4+ ivg and w = wy + iwg, and that they are not related through conju-
gation (A # ). Then the four vectors vq, va, w1, wa obey (from pseudo-orthogonality
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constraints between the vectors themselves and the vectors with the conjugated vec-
tors)

(vi,v1) = —(va,v2), (W1, w1) = —(Wa,w2), (wi,vj) =0, Vi j=1,2.

(7.2.10)
From here on we write a vector v as v = (v, ‘7) Here v is the time component and
V are the spatial components of v. Now assume v; as w; are all lightlike. Lightlike
vectors then obey v? = V.V. Pseudo-orthogonality between the lightlike vectors v,
and wy implies viwy = Vi - Wi. Therefore (V; - W1)2 = v2w? = (Vi - Vy)(Wy - W),
which, according to Cauchy—Schwarz, is only possible when V; and Wl are parallel.
But in that case we find vq ~ wy. Similarly we find that vi ~ wg and vy ~ wo
which implies vi ~ vg which is impossible for complex eigenvectors. Therefore our
assumption was wrong.

Assume that one couple of vectors is lightlike, say v1,ve. Then wy is spacelike
and wo timelike (or vice versa). We can always find a frame in which wg is given by
(wy,0). Now it is straightforward that there cannot exist a lightlike vector (like vy )
pseudo-orthogonal to wo. Therefore our assumption was wrong.

Assume that no couple is lightlike. Take vo and wo timelike. In a frame in which
wa is given by (ws, 0) it is clear that v cannot exist as there does not exist a timelike
vector pseudo-orthogonal to wa.

Therefore, having at least two different complex eigenvalues, not related through
complex conjugation is a false assumption and we conclude that there can be at
maximum one complex eigenvalue (and its conjugated one).

From this we can find the normal form K. For that we write the normal form in
terms of a pseudo-orthogonal basis made from the (real and imaginary) parts of the
eigenvectors.

Assume vy is timelike and normalized, (v1,v1) = —1. Because v is timelike all
vectors orthogonal to it are spacelike. In the following we assume that the v; are
normalized (vi, vi) = +1 for i > 1. We define the orthonormal basis (uj,i = 1,...n)
where the unit vectors uj, 7 > 2 are orthogonal to v; and vg via the Gramm-Schmidt
procedure

u; =V, (7.2.11)

uz =sinavy +cosavy, (7.2.12)

where tan o = (vq,vsa). Using (7.2.8) we find that

Kuy = (A +Xztana)u; — Az cos taug, Kuz = A\ycos taug +(—Aztana+ A )us .

(7.2.13)
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From this we easily read off the components of Ky in the new basis

A1+ Ay tan o —Aycos L 0 0
Ao cos™ o —Xtana+A; 0 .0
Ky = 0 0 Az 00 (7.2.14)
: : 0 . 0
0 D

If vy is spacelike, then the above normal form is still valid if we interchange vy with
vo in the definition of the orthonormal basis.

Assume on the other hand that vy and vg are lightlike. Like before it is easy
to understand that all other eigenvectors vis2 must be spacelike (vis2, vis2) = +1.
We define an orthonormal basis (u;,i = 1,...n), again the unit vectors u;, i > 2 are
orthogonal to v; and vy via the Gramm-Schmidt procedure

uy = —1Evz (7.2.15)

2|(v1, va2)l
Vi -+ V2

V2[(vi,va)l

Here the upper sign must be chosen when (v1,vsa) < 0 and vice versa. The normal
form is given by

(7.2.16)

Ug =

M o+ 0 ... 0
:F>\2 )\1 0 e 0
Ky=| 0 0 A 0 0 (7.2.17)
: 0 .0
0 .. o

Note that the 2 x 2 block in both (7.2.14) and (7.2.
complex eigenvalue (and its conjugated one).

—_

7) correspond to at most one

min(p, q) = 2

Now, assume there exist at least three complex eigenvalues (which is possible if p+¢ >
6). This implies the existence of six vectors vi, va, W1, Wa, X1, X2 that obey

(vi,vi) = —(v2,v2), (Wi,wi)=—(W2,W2), (X1,X1)=—(X2,%X2), (7.2.18)
(Vi,Wj) = (Vi,Xj) = (Wi,Xj) = 0, A4 i,j = 1,2 . (7219)

Let us first assume all vectors are lightlike. There always exists a frame for which
vy = (v1,0,V1), va = (0,v2, Vo). Then write wy = (a,b, W;). We have that a? +b? =
W, - W,. But orthogonality implies a = ||V}||"1V; - W, and b = |[Va|| ="V - Wy. Also
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Wl is fixed and it equals a‘71 + b‘?g. Therefore all other lightlike vectors are the same
and thus parallel, which is not what we want.

So, at maximum two couples can be lightlike, say (v1,v2) and (w1, wz). Then
say X7 is timelike and thus x5 spacelike. We can find a frame for which x; = (x, 0, 0).
So all lightlike vectors perpendicular to these must have the form L; = (0, I, I:;) And
if we want the lightlike vectors to be mutually perpendicular (with respect to 1) we
find again that they are all parallel which gives rise to contradictions.

Now, maximally one couple of the vectors can be lightlike, say the couple (v1,va)
and the rest not lightlike. There must exist two timelike vectors, say wy and x;. As
before we can always fix a frame in which w; = (O,w,G) and x; = (x,0,0). But
clearly we cannot find a lightlike vector orthogonal to them.

Finally assume that none of them are lightlike. Then we have three spacelike and
three lightlike vectors. This however is impossible because they must be mutually
orthogonal with respect to 1. To show this assume vy, wy,x; are timelike. After a
boost there always exists a frame in which v4 = (v,0,0). There is still a SO(1,n)-
boost € SO(2,n) to bring wy to the form wy = (0,w, 0). Clearly there does not exist
axy = (x,y, )51) since the orthogonality condition implies z = y = 0 and thus x; is
not timelike, contrary to the assumption.

Therefore, having at least three different complex eigenvalues is a false assump-
tion and we conclude that there can be at most two complex eigenvalues (and the
conjugated ones). Similar to eq. (7.2.17), we now have in general two 2 x 2 blocks
in Ky and n — 4 number of diagonal elements.

min(p,q) > 2

In case (p,q) > 2 a similar analysis applies. Now we need at least min(p,q) + 1
complex eigenvalues to find a contradiction. We can therefore have at most min(p, q)
complex eigenvalues. The normal form of Ky will in general have min(p, ¢) number
of 2 x 2 blocks and n — 2min(p, ¢) number of diagonal elements.

7.2.3 Uplift to Vacuum Solutions

In order to uplift the solutions from D > 3 dimensions to D + n dimensions one uses
the Kaluza—Klein Ansatz (4.3.2) with Kaluza—Klein vectors put to zero

ds® = e2*?ds?, 4 27 M, dz™dz" . (7.2.20)
Consider the symmetric coset matrix M(h) = nexp Kyh with Ky the normal

form of K that generates all other geodesics and £ the harmonic function given in
section 7.1. The relation between M and the moduli ¢ and M is given in (7.2.2).
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Time-dependent solutions from GL(n,IR)/SO(n)

Although the method we use here is different from that we used in chapter 4, the
vacuum solutions are of course the same. We refer to [69] to see the vacuum solutions
in this approach explicitly.

Stationary solutions from GL(n,IR)/SO(n — 1,1)

For K we use the normal form Ky =

AN ow 0 ...00 Aa w 0 0 N 0 O 0
—w A2 O 0 —w —Ay 0 0 0 X O 0
0 0 As 0 _ 0 0 0 0 [+] O 0 A5 0
0 0 0 . 0 0 0 0 0 0O 0 O 0
0O 0 O An 0 0 0 0 0 0 0 ... X\
(7.2.21)
We exponentiate this to
a(r) b(r) 0 0
b(r) er) 0 ... 0
M(h(’l“)) _ neKNh(’l“) _ 0 0 etsh 0 ’ (7_2.22)
o 0 0 E
0o 0 0 eAnh
with (AR
a(r) = —eM ) (cosh(Ah(r)) + /\aiﬁm (A (7‘))) ,
b(r) = —we () 7Sinh(//§h(r)) , (7.2.23)
ce(r) = M) (cosh(Ah(r)) - )\asmh(j[iw) ,

and we define the SO(1, 1) invariant quantity A as

A=A —u?. (7.2.24)

There exist three distinctive cases depending on the character of A. If A is real the
above expression does not need rewriting but we can put w to zero using a SO(1, 1)-
boost and then the generating solution is just the straight line solution. If A = iA
with A real then the terms with cosh(Ah) become cos A and A~'sinh Ah become
A~'sin Ah. Finally, if A = 0 then the term A~!sinh Ah becomes just h and the term
with cosh Ah becomes equal to one.

To discuss the zoo of solutions one should make a classification in terms of the
different signs for k, |[v||> and A%2. The solutions with spherical symmetry have



7.2 Solutions of Kaluza—Klein Theory 123

the more interesting properties that they lift up to vacuum solutions that can be
asymptotically flat. Moreover, the brane solutions in supergravity always have k =
+1. Let us briefly discuss them.

e |[v]|> > 0: There are three metric solutions, depending on the sign of A2. Only
in case A2 > 0 we can diagonalize it to a straight line via a SO(1,1) boost. In
the other two cases there will be a cross-term.

e |[v]|> = 0: There are only two solutions, namely A? = 0 and A? < 0. Both will
have a cross-term.

e |[v]|? < 0: This implies that A% < 0 and hence there will be a cross term.

As an example consider ||v]|? < 0,A? < 0. The metric solution is given by

ds? =ePoh(™) £ ()2 (dr2 + rdeQD_l)

+ 1) (—d(r)dt2 + 2b(r)dtdz + E(T)de) +ePi-1dzldy (7.2.25)

where f(r) can be found in (7.1.3) and h(r) is defined in equation (7.1.6). The
numbers p; are

i=3
D—2)po—M(n—2)+ 37", N\
pL= L Jro b(z RDYE! , (7.2.27)
D —2)po+ 2\ + > s N — N
pi-1 = ! Jpo ¥ 22+ 2 , (7.2.28)
n
and the functions a(r), b(r), &(r) are given by
ar) = cos((Aln(r) + A, AN (7.2.29)

Al

b(r) = \/WW ’ (7.2.30)

sin(|\JA(r)

#(r) = cos(|AIR(r) =X =

(7.2.31)

In [69] all the different & = 41 metrics are given.
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7.3 Massive Instantons

Just as we did for time-dependent solutions, we now investigate the effect of adding a
potential to our non-Riemannian scalar coset. The analysis we did in section 5.2 can
be extended to the instanton case as well, we only consider the case k = 0.

Consider the following action

5= /de\/@{R - 1Gy0,6'0"8 ~ V(9)}. (7.3.1)
For € = 1 we have a Euclidean theory, while for ¢ = —1 we have a Lorentzian theory.

The metric Ansatz is
dsp = —nef(r)*dr? + g(r)*(—=ndp® + dZh_,), (7.3.2)

and we extend (5.2.5) to

1 vig D1 1172
v = —ne{sciowo,w - Bt w2t (7.3.3)
If ¢ = —1 we rediscover the analysis of section 5.2. That is for » = 1 we have a
domain-wall and for » = —1 a cosmology. When ¢ = 1 and n = —1 we have a
Euclidean metric. We see that both the domain-wall and instanton have en = —1,

just as we found in section 6.1. For instantons the same first order equations (5.2.7)
hold, since we derive the same effective action as (5.2.6). The only difference is that
the overall factor n has been replaced with —ne. For the Euclidean case the scalar
metric G;; is in general non-compact as we saw in the previous section.

There is therefore one complicating issue. The above analysis shows that for a
given domain-wall we find a Euclidean solution belonging to the same scalar manifold
metric G;;. We know however from the previous section that in general a Euclidean
theory contains ghost fields, while domain-walls are considered to belong to theories
without ghosts. In case we have only a dilaton this problem does not occur, see for
example the instanton of massive ITA* we discussed in subsection 6.5.1. However, let
us consider the multi-scalar case (5.3.14) with o = 0 for simplicity. Below we show
that the Euclidean version of this action requires the axion x to become a ghost.
So we have a different scalar coset. That means that for a given domain-wall we
do not have an instanton belonging to the Euclidean version of (5.3.14), instead the
correspondence gives us a Euclidean solution of the same scalar coset without a ghost.

Note that we found a similar thing in section 6.5.2 when we discussed the 9d
N = 2 domain-wall / cosmology example. When we include the ghost axions the
supergravity embedding of the correspondence does not simply require V' replaced by
-V.
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Cosmological constant

We now restrict to the case that the potential is a cosmological constant
1
S = / dDwg(R - ZTlr(a#/\/zafw—l) - A) : (7.3.4)

In chapter 5 we have seen that the solution of a theory with a potential is only under
certain conditions still a geodesic of the scalar manifold, namely when the cosmology is
pseudo-BPS. The potential that we consider here is a negative cosmological constant.
There is no coupling of the scalar fields in M to A. The equations of motion for M
are still given by

d, (\@M—laﬂ/u) ~0. (7.3.5)

That means that if we introduce the harmonic function h as the new parameter they
can still be geodesics. Indeed if we define the Noether charge as M~19, M = K and
the affine velocity as ||[v]|? = 1/2Tr(K?), the metric can be solved again independently.
The presence of the cosmological constant will only change the shape of the metric.
This is no longer true if we allow for a direct coupling of the scalars to A.

Let us now turn to the solutions. For all the cosets we considered in the previous
sections M is unchanged, since we still have geodesics on the scalar manifold. The
metric can be solved independently of M, a similar analysis as for the case A = 0
gives

dr? dp?

[[v][? —2(D-2) A 2 +Tz(l — kp>?
20-2)(D-1)" ~o=po-n" Tk p

ds® =

+ p2dQ§3_2) . (7.3.6)

As a concrete example consider the Euclidean version of the action (5.3.14) with
a=0and p=2

§— /d%\/fg{R ~ 3(00)" + 3 (0x)" ~ A} (7.3.7)

For a proper derivation as to why we need to replace in the Euclidean theory (9x)?2
by —(9x)? we refer to e.g. [137] and references therein. The scalar field solutions are
given in table 7.3.1 2.

The harmonic function h satisfies the differential equation

1
Orh(r) = (7.3.8)
[lv]]? —2(D-2) _ A 2 2(D—1
\/(2(D—2)(D—1)r (P72 — mypyr? + k2Pl
2The ||v]|? > 0 geodesic is related to ||[v||2 < 0 via the continuations ||v|| — i[|3||, c2 —
icz, ¢ — <. Similarly the [[v]|> = 0 geodesics follows from |[[v]|> > 0 if we apply c1 —

c1
[loll

gsllvll
cg — FE
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[lv]]2 >0 | ¢ = —log|cy sinh(|[v||h +c2)| | x = :I:écoth(||v||h +c2) +c3

[|lv]|> =0 ¢ = —log|e1h + g5 X ==x(cth+gs)~ ' +c3

[0 <0 | ¢ = —loglersin(|[5]|h+c2)| | x =£Zcot(|[o]|h+c2) + 3

Table 7.3.1: The scalar fields belonging to the action (7.3.7) for each sign of ||v||>. For
clarity we have defined v = i such that ||3||> > 0.

In general the harmonic function A can no longer be solved explicitly with the excep-
tion D = 3 [40]. In case ||[v|| = 0 we can solve (7.3.8), but since the solution is rather
involved we do not write it down.

There is a close connection to the S(—1)-brane of subsection 2.4.3 and the E(—1)-
brane we discussed in subsection 6.5.3. For simplicity we consider only those solutions
that are related to type IIB supergravities and have a string theory interpretation.

Let us first consider the link to the type IIB k = —1 S(—1)-brane. For this we
consider the |[v||> > 0 instanton with &k = 1 and A = 0. Consider the analytically
continuation r — it. We see from the g,,-component of (7.3.6) that ||v|[?r—2(P—=2) —
[[v]|2(=1)P—2¢=2(P=2)_ The latter should be positive for S(—1)-branes, so in general
we have to make a difference between even and odd dimensions. If we restrict to
D = 10 and apply the following analytical continuations on the instanton

r—it, p—ip, 02—>02—|—ig, c1 — —icy, c¢3— icg, (7.3.9)
we find the S(—1)-brane solution (2.4.32-2.4.34) with k = —1.
To find the non-extremal version of the type IIB* E(—1)-brane it is sufficient to
consider the Wick rotations r — it and p — ip applied to the |[v]|[> > 0 and k = 1
instanton. We derive the following non-extremal type IIB* E(—1)-brane

de?
ds® = — o +ﬁ(
Iy —16 4

log [clsinh(Hth + 02)} ,

dp?
1+ 52

+ 7703,

¢
(7.3.10)

1
X = j:—coth(Hth + 02> + s,
C1

arctanh(¢> ,
V14416 + 92

which after appropriate re-scalings can be linked to (6.5.34). Note that the spatial
part of the metric describes a nine-dimensional hyperboloid as expected and that we
can extend both (—1)-branes to theories with A # 0.

M0 = 3]
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Let us finish by relating our general solution to other known type IIB solutions.
For this we restrict to k = +1. For D = 10 and A = 0 the solutions are the
extremal [133,134] and non-extremal D-instanton [123,135] of type IIB for respectively
[[v]|> = 0 and ||v||?> # 0. For2 < D < 10 and A = 0 it can be considered as a consistent
truncation of type IIB reduced over a torus. In case we have D = 5 and consider a
negative cosmological constant, the action is a compactification of type IIB over S°.
This is the natural setting for the AdS/CFT correspondence [40,138-140].

7.4 Discussion

In this chapter we have extended the analysis of the generating solution to non-
Riemannian cosets. In particular we focussed on GL(p 4 ¢,IR)/SO(p, ¢) and showed
that the number of complex eigenvalues is at most min(p,q). For min(p,q) = 1 we
discussed the oxidation of the various generating solutions to vacuum solutions.

In the last section we looked at what happens if we consider massive instantons.
We showed that we can find similar first order equations as we derived for domain-
walls and cosmologies in section 5.2.7. The main difference is that the scalar metric
is no longer positive definite. We then focused on the special case that the potential
is a cosmological constant. The scalar fields still describe geodesic motion. At the
end of the last section we showed a link between non-extremal D(—1)-instantons,
S(—1)-branes and non-extremal E(—1)-branes.






Chapter 8

Conclusions and Future
Research

8.1 Summary

In the first chapter we pointed out what we wanted to achieve in this thesis. First
we wanted to show that p- and Sp-branes can be linked to lower-dimensional actions
whose solutions are respectively given by instantons or S(—1)-branes if we reduce over
the worldvolume of the brane. And similarly, if we reduce a p- or Sp-brane over all
but one of its transverse directions we find a domain-wall or a cosmology. See also
figure 3.5.1. The main goal was to derive the generating solution for the massless
geodesics that we obtain in the lower dimension. For the massive theory the focus
was on re-writing the second order differential equations as first order equations and
explaining why we sometimes still have geodesic motion.

The first goal was explained in section 3.5. Let us summarize the situation for
massless theories first. In section 3.5 we showed that the scalar part of the action for
massless theories, obtained after a worldvolume reduction, leads to geodesic motion.
The gravity part gets decoupled and can be solved independently. This applies both
to instantons and S(—1)-branes.

To find the geodesics for both types of (—1)-branes we introduced the concept of a
generating solution. By definition, a generating solution is a geodesic with the minimal
number of arbitrary integration constants such that the action of the isometry group
G generates all other geodesics from the generating solution. The isometry group
G is the symmetry group of the lower-dimensional equations of motion. This way
we found in chapter 4 the most general Sp-brane with deformed worldvolume via a
reduction over a Euclidean torus.

In case we reduce over a Lorentzian torus, the scalar manifold becomes non-
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Riemannian. As a result, there are different classes of generating solutions labeled by
the sign of the affine velocity. We tackled this problem in chapter 7. We showed how
to derive the generating solution for the coset GL(p + ¢,IR)/SO(p, q).

If we instead do a maximally symmetric compactification, the lower-dimensional
theory can contain a potential. This leads to both domain-walls (stationary) and
cosmologies (time-dependent). Although we also considered some examples of an
instanton with a potential. In general, the presence of the potential upsets the geodesic
motion. In chapter 5 we first showed that if we can rewrite the potential in terms of a
superpotential in a specific way the equations of motion become first order equations.
These cosmologies are called pseudo-BPS. Furthermore, we found examples of scaling
solutions that did turn out to be geodesics on the scalar manifold. To explain this we
showed in chapter 5 that all pseudo-BPS cosmologies that are scaling solutions must
be geodesic. In case the potential is a cosmological constant, the geodesic motion is
always preserved.

The resemblance between domain-walls and cosmologies is explained by the domain-
wall / cosmology correspondence. A natural question is what pseudo-supersymmetry
(pseudo-BPS) means in a real supergravity context. We answered this question in
chapter 6. The domain-walls are solutions of an ordinary supergravity, while the
cosmologies arise as solutions of the corresponding star supergravity. In this sense
the pseudo-supersymmetry of cosmologies corresponds to supersymmetry in the star
theory.

8.2 Future Research

Let us give some research problems that are natural to consider next.

e In case of the p-brane we restricted to pure gravity in the higher-dimensional
theory. A natural extension would be to extend this with a (p+1)-form potential
as well. This would allow us to write down the most general p-brane with
deformed worldvolume.

e In the non-Riemannian case we restricted the analysis of the generating solution
to the coset GL(p + ¢,IR)/SO(p,q). A natural extension is to look for the
generating solutions of the maximally non-compact supergravities given in the
right column of table 3.4.1 [69].

e The embedding of the domain-wall / cosmology correspondence was restricted
to N = 2 supergravities in nine and ten dimensions. Note however that when
one continues to lower the dimension, more possibilities could arise since one can
then have extended supersymmetry with A/ > 2. This allows for more general
reality conditions on the fermions than considered in chapter 6. The matrix p
appearing in these reality conditions will in general be a A" x A/ matrix. It might
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be interesting to find out if for A" > 2 there can be more than two inequivalent
real slices in certain signatures.






Appendix A

Differential Geometry:
Formulae and Conventions

In this appendix we fix the conventions used in the main text. We also give a brief
introduction to the Einstein-Hilbert action.

A.1 Conventions
We take the following metric signature convention,
n=diag(—---—,+---+), (A.1.1)

writing first the timelike directions and then the spacelike ones. Symmetrization of a
tensor T}, ., is given by

1
Tluyopy) = H (Tmmup + even permutations + odd permutations) . (A.1.2)

Whereas the anti-symmetrization of T, .., is given by

1
Ty = o (Tmmup + even permutations — odd permutations) . (A.1.3)

A.2 General Relativity

In general relativity space-time is a D-dimensional (pseudo-)Riemannian manifold
(M, g). This means that it is a manifold M endowed with a bilinear form g,, with
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signature (—---—,4 - - +), writing first the timelike directions and then the spacelike
ones. In components we write this as

ds® = g, (2)da* ®ds¥, pv=1,...D. (A.2.1)

To shorten the notation, we will omit the ®. For a given metric g,, we use the
following Levi-Civita connection

1
FZ,V = 59,00 (augua + aug;m' - 80,9”1/) s (A22)

from which we construct the Riemann tensor

Ruupa = apl—‘zﬁjo— - aarﬁp F’Y FH - ny F . (A23)

Vo yp vpt o

From this tensor we can define the Ricci tensors R, and the Ricci scalar R via the
contractions of the Riemann tensor

Ruw=RY,, R=R,. (A.24)
The Einstein tensor G, is defined as
1
G;u/ = R;Lu - ig,uV,R“ (A25)

The Ricci tensor of a conformal re-scaled metric g, = eQad’gW is

R(G) v = Ry — (D —2)a?(06)* gy + (D — 2)020,,68, ¢ — (D — 2)aV .0, ¢ — g, 0.
(A.2.6)
All the tensors appearing on the right-hand side are defined with respect to g,,,. The

Vq

action of the covariant derivative V,, on a tensor T},; ¢ is defined as

vnTxﬁf =0y T Vq - Fngf;}ﬁz : F"p]/»’prlljllHZ Hp—1p (A.2.7)
PTG T

Finally, the O-operator is defined as

06 = V,0"6 = ——0,(/Iglg" 09) (A2:8)

1
Vgl
where g stands for the determinant of g, .

For the cosmologies and instantons we often work in the gauge where the metric
is given by o
ds? = ef(r)?dr?® + g(r)Qggfldmldx] . (A.2.9)
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For ¢ = —1 we have a cosmology, while for ¢ = +1 this describes an instanton
geometry. The function f corresponds to the gauge freedom of reparameterizing the
r-coordinate. In case f = 1 and € = —1 we have a cosmology in the FLRW-gauge.
For the metric Ansatz (A.2.9) the Ricci tensor is given by
d 99, 99f 9\ b1, pp1 g, af
Ry = —e{ g [l 5 + (D=3 Jal T HRET L R = (0-{ =)+ 75}
where a dot refers to a derivative with respect to r.
A homeomorphism f : M — M is an isometry if it preserves the metric, in

components this is the statement

oy™ oy

Hoi 5 98 () = 9 (p), (A.2.11)

where x and y are the coordinates of p and f(p) respectively. If a displacement eX,
€ being infinitesimal, generates an isometry, the vector field X is called a Killing
vector field. The coordinates z# of a point p € M change to z* + eX*(p) under this
displacement. If f: x* — x# + eX* is an isometry, it satisfies (A.2.11). From this
we can derive that g, and X* satisfy the Killing equation

X0 + 0uX g + 0, X gux = 0. (A.2.12)

If the right-hand side is non-zero and given by g,, with i a function then X is
called a conformal Killing vector field. The metric gets re-scaled by an overall factor
related to .
The Killing vector fields represent the direction of the symmetry of a manifold.
In D-dimensional Minkowski space-time (D > 2) there are D(D + 1) /2 Killing vector
fields, D of which generate translations, (D — 1) boosts and (D — 1)(D — 2)/2 space
rotations. Those space-times which admit D(D 4+ 1)/2 Killing vector fields are called
mazximally symmetric spaces. One can prove that the Riemann tensor is then given
by
Rpour = gpugov — ovJou) + (A.2.13)

with « a constant.

In the metric (A.2.9), g;; often describes a Euclidean maximally symmetric space.
That is we have the sphere S™ (k=1) or the hyperboloid H" (k=—1) or flat space E"
(k=0). The metrics read

ds?

dr? +r2d0Q2 _, . A.2.14
n—1

T 1= k2
Also, dQ2, is the metric on the S™ sphere

dQ2, = d6? +sin?(0,)d65 + ... +sin®(6,) .. .sin?(0,,_1)d62, . (A.2.15)



136 Differential Geometry: Formulae and Conventions

Via the coordinate redefinition
1
—— _dr? = dy? A.2.16
o =4 (A.2.16)

we find the metric

k=—1: ds?=dy?+ sinh? ¢ dQ?

n—1>
k=0 : ds®=dy?+?dQ2_,, (A.2.17)
k=+1: ds®=dy? +sin?dQ2_;.

The convention is such that o« = k for these metrics. The Ricci scalar is

Rn=kn(n—-1). (A.2.18)

A.2.1 Vielbeine

Instead of writing the metric g in terms of coordinate one-forms dxz*, we can use
vielbein one-forms e” = ej;dx* for which the metric is

ds? = g dat @ da” = nape® @ e’ a,b=1,...D, (A.2.19)

where 7 is given by (A.1.1) and we used ® for clarity. We use Greek indices p,v,p. ..
to denote space-time coordinates and Latin indices a,b,c... represent the so-called
tangent directions, which are raised and lowered with 7. The determinant of the
vielbein is denoted by e.

We define the spin connection w§ = w pdz? via

de® = —w% A\ eb7 Wah = —Whq - (A220)

The spin connection can be expressed in terms of the vielbeine

1
5 <_Qabc + cha + Qcab) ) Q%C = 28[‘”63] 6’;6’2 . (A221)

Wabe = W,ubceua =

Here Qg is called the object of anholonomicity. In terms of the spin connection the
two-form curvature is given by

% =dwl +wi AW, (A.2.22)
from which we find the Ricci tensor

R = (RY) o€’ e . (A.2.23)
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The covariant derivative with respect to local Lorentz transformations is denoted
by V,, acting on spinors x as

V,LLX = 3pX + %Wpab]-—‘abX7
VX" =0ux" + T, X" + 1w, TaX” (A.2.24)

where in general we denote I'y, .4, = 'y ...T,) and 'y is an element of the Clifford
algebra, see appendix B.

A.3 Forms

Instead of working with the index notation, it is often highly preferable to work with
the language of differential forms. A differential form of order p or a p-form for short

reads in components

1

Ap = A A A (A.3.1)

where the wedge product A is defined by the totally anti-symmetric tensor product,
for example
dz#t A daz#? = datt @ dzt? — daH? ® datt . (A.3.2)

We will only give some relevant properties of differential forms, a good textbook on
this subject is for example [51], see also [44].
Due to the wedge product, a p- and a g-form obey

Ay ANBy=(—)P"ByNA,. (A.3.3)
The action of the exterior derivative d on the p-form (A.3.1) is defined as

1

dA4, = Ha[MAMMHP]dx“ AdzHt AL A datr (A.3.4)

resulting in a (p + 1)-form. This exterior derivative obeys the Leibniz rule

d(A, ABy) =dA, ABy+ (—)PA, ANdB,. (A.3.5)
In D dimensions we define the epsilon symbol €, ..., via
€r.p=1, (A.3.6)

and it is antisymmetric in all its indices. This allows us to define the epsilon tensor
€ur.opp Via

€pr..pp = \/mgltl»--#f:) . (A.3.7)
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Sometimes it is also useful to define a totally antisymmetric epsilon symbol with
upstairs indices, the components are given numerically by

ghimD — (_)tgl“m“D , (A38)

where t is the number of timelike coordinates. Contractions of the epsilon tensor (and
symbol) obey the following relation®

ettt = (<) q)(D = q) 8T (A3.9)

€pt.pqlgt1- 1D [Hg+1---1D]

The Hodge operator x is a linear map of a p-form into a (D — p)-form, whose
action on a p-form is defined by
1

*(d.’l’}’ul VAR dZC'up) = mel’bnljgl—;.ﬂp dx"l VAR dx”D"’ . (A310)

As a particular case,
¥1=e=+/|]gld"z, (A.3.11)

where we identify dPz as dz' A ... A dzP. Three frequently used expressions for
arbitrarily p-forms are

1
xA, N\B,=+«B, NA,=—A, ., Bttt sl
e PO et (A.3.12)
% Ay = (—)PPTITA,
and
(_)p(Dprrl)leap (\/mApmmupfl)
*d * Ap = Guavn - Gy A AL datPr

(»—'/]al
(A.3.13)
A.4 Euler-Lagrange Variation

To obtain the Einstein equation, we need the following relations under the variation
Guv — Guv + 5g;u/

1 1
o/—g= —ix/—ggﬂﬁg“”, o0/—g= 5\/—99"”6gw7
ogh" = —g""9"P0gs, , 0vV—9gR = —/—9G""6g, -

1We define 0! = 1.

(A41)
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The action of matter coupled to D-dimensional gravity is given by

1
§— /de o (2R + L) (A42)

where the first term on the right-hand side is called the Einstein-Hilbert action and £
is the matter Lagrangian density of the theory. Newton’s constant G is related to x,
for example in four dimensions we have that 2 = 87G. If the matter part of action
is changed under dg,,,, the energy-momentum tensor is defined by

1
5 = / AP /g T 5gpm, - (A.4.3)

From demanding that the total variation of the action (A.4.2) vanishes under 6g,.,
we obtain the Einstein equation

G =K Ty . (A.4.4)

In particular we take for the matter Lagrangian density a A,_; potential. This is
described by the action

L=%R— %e‘w «dAy 1 ANdA,_; — % «dpAdo, (A.4.5)

where a is a real number. The equations of motion, together with the Bianchi identity,
are then given by

1

1 . p—1 ag 2 ad (2
R = 5000000 = 5 —5s s gue®*Fy + e (F2) s (A.4.6)
d(*ea¢Fp) =0, dF,=0, (A.4.7)
O¢ = — F2eo¢ (A.4.8)

Copl2t P
where for a p-form field strength we have used the definitions
F2=Fyu .y For o, g™ it

p1-pptvr.vp
F2 =F F P1V1 Pp—1Vp—1 (A49)
( p),uu HP1---Pp—1 Vlll...folg - g .






Appendix B

Spinors and their Reality
Properties

In this appendix, we will recall various properties of Clifford algebras and spinors.
The purpose of this appendix is two-fold. On the one hand it serves to introduce
our conventions and notations regarding spinors. On the other hand, the discussion
on the reality conditions on spinors is also rather crucial for the results presented in
chapter 6. In the first section of this appendix, we will recall some general properties
of Clifford algebras in various dimensions and signatures. In the second section, we
will then discuss how appropriate reality conditions can be imposed on the spinors.
The latter discussion will be mainly restricted to 10 and 11 dimensions. A good
review concerning the matter presented here is offered in [141], whose conventions we
will mainly follow.

B.1 Clifford Algebras in Various Dimensions and
Signatures

In this section we will consider arbitrary dimensions d = t + s, where t is the number
of timelike and s the number of spacelike directions. The Clifford algebra is then
defined by the following anticommutation relation

{Faarb} = Qnaba (Bll)

where n,, = diag(—--+ — +---+), writing first the timelike directions and then the
spacelike ones.
We will always work with unitary representations of (B.1.1):

Il = (—) AT, A7L, (B.1.2)
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where we define A to be the product of all timelike I'-matrices : A =11 ---I'y. In this
way, timelike I'-matrices are anti-hermitian, while the spacelike ones are hermitian.
In even dimensions, we will define the chirality matrix I', as follows

r, = (_Z')d/2+tpl...rd = (I‘*)2 =1. (B.1.3)

When we restrict to 10 dimensions, we will also denote I'y by I'y;. Note that in odd
dimensions the product of all I'-matrices is always given by a power of i times the
unit matrix.

One can show that there always exists a unitary matrix C, such that

¢, = —<Cy and Il = —nC,,FaC;1 , (B.1.4)

where £, can be +1. In even dimensions, both signs for 7 are possible, corresponding
to the fact that both I'T and —T'Z" are representations that are equivalent to ;. The
two possibilities for the charge conjugation matrix are then related by

Cp=C.T,. (B.L.5)

In odd dimensions, due to the constraint on the product of all ['-matrices, only one
of the representations I'? or —I'" is equivalent to I', and hence only one sign for 7 is
possible. Once the sign of 7 is fixed, the sign of € can be determined. The possibilities
for these signs are summarized in table B.1.1.

d mod 8 0 1 2 3 4 5 6 7
(@77) (_7+) (_,_) (_7_) (+7+) (+7+) (+7_) (+7_) (_7+)

Table B.1.1: The possible signs for ¢ and n for all dimensions (modulo 8).

Defining the following matrix B,
B, = —en'C,A, (B.1.6)
equations (B.1.2) and (B.1.4) then imply that
I =(-)"*"nB,[.B,". (B.1.7)

As for the C,-matrix, in even dimensions both signs of 1 are possible, while in odd
dimensions only one possibility for 7 is allowed. Finally, note that the matrix B,
satisfies

B, B}, = —en'(—)" /21 . (B.1.8)
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B.2 Reality Conditions for Spinors
In this thesis we define the Majorana conjugate ¥ of a spinor x as

x=x'¢,, (B.2.1)
whereas the Dirac conjugate Y is given by

P =xTA. (B.2.2)

In order to formulate reality conditions in 10 dimensions, we will work with a
doublet notation, allowing us to treat type IIA and type IIB theories in a single
framework. The 64-component doublets are the following

X = (f) (type IIA),  y= (i;) (type IIB) (B.2.3)

where I',x* = £x*. Gamma-matrices and the charge conjugation matrix C, then
act on the doublets by making the following replacements

Iy — TIa®o, (B.2.4)
¢, — (C,®o0, (B.2.5)

where o is given by o7 in type IIA and by 15 in type IIB. Note furthermore that I,
can be represented by 132 ®0o3 in type ITA and by 132 ®15 in type IIB. In the following
and in chapter 6 we will always assume that matrices act on doublets as indicated
in (B.2.4), without writing the tensor products explicitly. We use the following three
Pauli matrices o;

a=(00) = (05 ) (2 0). mao

Using this doublet notation, a general reality condition can now be denoted as
follows:
X" = —en'a,C,Apx, (B.2.7)

where a,, represents a phase factor. The presence of —en'C,A is dictated by compat-
ibility with Lorentz transformations. Note that the condition (B.2.7) now contains a
2 x 2-matrix p, that can mix the two components of the doublets (B.2.3); the action
of p on a doublet should thus be interpreted as 132 ® p. We will take the following
possibilities for p :

p€{12,01,102,03}. (BQS)

Note that in the type ITA case the matrix p is required to be diagonal, since complex
conjugation should preserve the chirality of the spinor. In the type IIB case, we
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do not have to impose this restriction as both parts of the doublet now have the
same chirality. Note that upon making a field redefinition, the reality conditions with
p = o1 and p = o3 can be related . We can thus restrict to p € 1,i09, 03 without
loss of generality.

The requirement that xy** = x leads to a non-trivial requirement:

t(t+1)
2

(c"*1p)? = —en'(—)

In the IIB case, there is moreover an extra consistency condition, due to the fact that
the theory is chiral. Indeed the reality condition (B.2.7) has to respect the chirality,
which in 10 dimensions is only possible when ¢ is odd.

The different reality conditions that can be consistently imposed are then sum-
marized in table B.2.1. In this table we always choose ¢ = = 1. This is possible as

(B.2.9)

t mod 4 0 1 2 3
ITA « MW
M VW M /
1IB MW
/ MW /  SMW

Table B.2.1: This table gives all the possible ten-dimensional reality conditions of the
form (B.2.7) for a doublet of chiral spinors in type IIA and IIB respectively. t denotes
the number of timelike dimensions. Here M, *M or SM respectively stand for p = 1,
o3 or ioy. The addition of W means that the reality condition respects chirality of
the spinors.

C_ = C4T'y1, and thus (B.2.7) with the choice ¢ = n = —1 can always be rewritten
in terms of C; and n = € = 1 by redefining p and «, since I';; can be represented as
o3 or Ty in ITA respectively IIB.

Finally a word on notation. Note that in denoting the types of reality conditions on
the fermions in table B.2.1, we reserve the * when p = o3 in (B.2.7). M, MW and SMW
then correspond to what is known in the literature as Majorana, Majorana-Weyl and
symplectic Majorana-Weyl (see for instance [141]). Although *M suggests a Majorana
condition, this is not true. For instance, what we have called *M in Euclidean type
ITA, corresponds to what in the literature is called symplectic Majorana.

!Explicitly, this redefinition is given by x; = x1 + x2 and X5 = X1 — x2. Note that this
redefinition involves only real numbers. Furthermore as one can see in table 6.3.1 in the main text,
this redefinition corresponds to going from IIB’ to IIB*.
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Lie Group and Lie Algebra

A Lie Group G is a differentiable manifold which is endowed with a group structure
such that the two group operations

o - :(G ><G—>G,(g1,gz)—>91'92,

e GG, g—ygt,
are differentiable. A Lie group is abelian if a -b = b - a, Ya,b € G, else it is called
non-abelian. From now on we will write a - b as ab.

The Lie group G can act on a manifold M. The action of G on a point p of the
manifold M is a differentiable map ¢ : G x M — M which satisfies the conditions

o o(e,p) =p,

e 0(g1,0(92,p)) = 0(9192,p) »

where e is the identity element of G, g; € G and p € M. We call the action of o
transitive if for any p1, ps € M, there exists an element g € G such that (g, p1) = pa.
This means that given any point p € M, the action of G on p allows us to go to all
the points of M. Such a manifold is called homogeneous. For example, Lie groups act
transitively on themselves via the group multiplication. The isotropy group H(p) of
p € M is a subgroup of G defined by

H(p) ={g € Glo(g,p) = p}- (C.0.1)

There is a theorem that states that if a Lie group G acts on a manifold M the isotropy
group H(p) for any p € M is a Lie subgroup [51].

There are two ways to define a Lie algebra. First, the tangent space of a group
G at the identity element e can be identified with the Lie algebra & of G. Secondly,
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there is a more algebraic approach [142]. A Lie algebra is a vector space & together
with a bilinear operation & x & — & satisfying

l[az + by, 2] = alz, 2] + bly, 2] (bilinearity) ,
[z, 9] = —[y, 2] (anticommutativity), (C.0.2)
0=z, [y, 2]] + [y, [z, z]] + [2, [=, ¥]] (Jacobi identity),

where z,y,z € ® and a,b € F with F' a field over which & is a vector space, for
example R or C.
A Lie algebra is specified by its generators t, and their commutation relations

[tav tb] = falftc ) (0.0.3)

here f,; is called the structure constant. The dimension of a Lie algebra is the
dimension of the underlying vector space spanned by the generators t,.

By a representation of an algebra we mean a set of matrices 7T, with the same
commutation relations as the ¢,’s given in (C.0.3). This is a mapping of the generators
t, into linear operators T,, which act on some vector space V. When this vector space
is the Lie algebra & itself we call this representation the adjoint representation. Let
x € & and take

T — [ta,]. (C.0.4)

This linear transformation is called the ad ¢,.

A subalgebra h C & is a subspace of  which is closed under the Lie product. An
ideal is a special kind of subalgebra. Namely, if § is an ideal and = € h and y is an
element of & then [z,y] € h. If h would have been a subalgebra only, y € § instead of
®. A Lie algebra which has no trivial ideals it is called simple. The trivial ideals are
the full algebra and the ideal {0}. An algebra which has no abelian ideals is called
semi-simple.

The generators of the simple Lie algebra can be chosen so that one subset of them
generates a commutative Cartan subalgebra (CSA). We denote these generators by
hr, so that [hr,h;] = 0. The other remaining generators are eigenvectors of ad h
for every h € CSA. We call these the shift operators and denote them by e,. Here
« is a r-dimensional vector o = (q,...,,) and r is called the rank of the algebra.
The ay, I = 1,...,r, are the eigenvalues of H; in the adjoint representation, i.e.
[H;, E,] = arE,. The ay is called a root which form the root vector « and E, is the
adjoint representation of e,.

Let aq, ..., a, be a fixed basis of roots so that any other root p can be written as
p=>i_; cia; with ¢; some coefficient. We call p a positive root if the first non-zero
c; > 0, else it is called a negative root. A simple root is a positive root which cannot
be written as the sum of two positive roots. The number of simple roots equals the
rank of the Lie algebra.
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For a general representation we indicate the basis of the CSA {h;}, I =1,...r,
by matrices H; and the step operators e, by E,. The H; and E, act on vectors ¢®
in some space V. Since the H; commute we take them diagonal

Hi¢" = \egp® . (C.0.5)

The eigenvalue A} is called a weight which form the weight vector A*. We see that in
case of the adjoint representation the weights are the roots.
The canonical commutation relations can be summarized by

[H], HJ] = 0, [H[, Ea] = Oz]Ea 5 [Ecw Eﬁ} = ]\/v(Oz7 ﬁ)Ea+g . (COG)

The last line is to be understood as follows. If a+ 3 is not a root we have N(«, 5) = 0,
else we have [E,, Eg] < Eqy3.
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Nederlandse Samenvatting

Dit proefschrift heeft als doel een methode te ontwikkelen waarmee braanoplossingen'
eenvoudiger kunnen worden geformuleerd. Hieronder wordt getracht deze zin uit te
leggen op een zo’n simpel mogelijke manier en tevens een beknopt overzicht te geven
van wat er in dit proefschrift behandeld wordt. We beginnen met een korte introductie
in de snarentheorie en gaan dan over op de aspecten die in dit proefschrift worden
behandeld.

In de elementaire deeltjes fysica worden de “bouwstenen”van de materie om ons
heen beschreven. Men zoomt als het ware met een sterke microscoop in op een
materiaal en kijkt waaruit dat bestaat. Een voorbeeld van een bouwsteen is het
elektron. In de natuurkunde is de microscoop een deeltjesversneller. De krachtigste
versneller, de LHC, gaat binnenkort van start in CERN nabij Geneéve. Door de
botsingen van deeltjes te bestuderen kan men veel leren over de bouwstenen van onze
wereld.

Naast deze bouwstenen zijn er ook krachten. Er zijn op dit moment vier krachten
bekend in ons universum. Laten we beginnen met de sterke en zwakke kernkracht en
het elektromagnetisme. De eerste twee krachten spelen bijvoorbeeld een rol bij het
(in)stabiel zijn van de atoomkern. Elektromagnetisme speelt een rol bij bijvoorbeeld
elektriciteit en magnetisme. De bouwstenen en deze drie krachten zijn in de loop van
de twintigste eeuw in één theorie samengevat. Dit model heet het standaardmodel.
Gerard 't Hooft en Martinus Veltman hebben een belangrijke rol gespeeld bij het
consistent maken van dit model. Hiervoor ontvingen zij in 1999 de Nobelprijs voor
de natuurkunde.

De vierde en meest bekende kracht is de zwaartekracht. In 1915 gaf Albert Einstein
een goede verklaring voor dit verschijnsel via de algemene relativiteitstheorie. Eén van
de grote uitdagingen in de moderne natuurkunde is het ontwikkelen van één model
dat alle vier krachten plus de elementaire deeltjes samenvat. Tot nu toe is men niet
in staat geweest om een succesvolle theorie op te stellen die uitgaat van puntdeeltjes.
Hiermee wordt bedoeld dat de bouwstenen van het model geen interne structuur

IHet Engelse woord membrane wordt in het Nederlands vertaald als membraan. Vandaar dat
hier het woord braan gebruikt wordt voor het Engelse woord brane.
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ONel

Figuur D.0.1: Hier zien we vier keer dezelfde cirkel met afnemende straal. In het vierde
plaatje is het verschil met een punt niet meer te zien.

hebben zoals bij een punt. Nu komt de snarentheorie om de hoek kijken. Zoals de
naam al zegt zijn de “bouwstenen”van deze theorie geen puntdeeltjes maar snaren.
Waar een bewegend puntdeeltje een lijn in de tijd beschrijft, beschrijft een bewegende
snaar een twee-dimensionale oppervlakte. Immers de snaar zelf is één-dimensionaal
(denk aan een lijn) maar als de snaar beweegt kun je je dit voorstellen als een twee-
dimensionaal oppervlakte in de ruimte-tijd. De ruimte-tijd kun je je voorstellen als
een kaart waarbij ook de tijd is aangegeven.

Het idee achter de snarentheorie is, dat alle deeltjes en krachten opgevat kunnen
worden als verschillende trillingen van de snaar. Als de snaar op de juiste manier trilt
gedraagt het zich bijvoorbeeld als een elektron. Als de snaartjes maar klein genoeg
zijn, lijkt het voor ons als waarnemers net alsof het puntdeeltjes zijn. We moeten
heel goed inzoomen willen we een snaartje zien in plaats van een puntdeeltje. Denk
bijvoorbeeld aan een cirkel, dit is een voorbeeld van een gesloten snaar. Als we de
straal van de cirkel heel erg klein kiezen lijkt het een punt, zie figuur D.0.1. In de
natuurkunde geldt, dat hoe meer men wil inzoomen des te meer moeite men moet
doen, oftewel des te meer energie men in het systeem moet stoppen. Of de LHC in
staat is om de snaren te detecteren is maar zeer de vraag. De karakteristieke lengte
van een snaar is ongeveer 1073% meter, terwijl de LHC niet verder kan “inzoomen” dan
1071 meter (waar bijvoorbeeld 10~! = 0.1, 1072 = 0.01 enzovoort).

Hoe simpel deze uitbreiding op het eerste gezicht ook lijkt, een snaar in plaats
van een punt, de fysische consequenties zijn groot. We noemen een aantal in het
oogspringende eigenschappen. Wil de snarentheorie werken dan vereist de theorie
een tien-dimensionale ruimte! Ter vergelijking: Wij kunnen slechts drie ruimtelijke
dimensies zien (denk bijvoorbeeld aan een kubus). Samen met de tijd spreken we van
een vier-dimensionale ruimte-tijd. Deze ogenschijnlijke tegenstelling tussen vier en
tien kan worden opgelost door te “compactificeren”. Laten we dit uitleggen aan de
hand van een voorbeeld. We nemen aan dat de overige zes dimensies heel erg klein
zijn. Dit kan bijvoorbeeld door aan te nemen dat elk van de zes dimensies de vorm
heeft van een cirkel, zie figuur D.0.2. Als we de straal erg klein kiezen dan zullen
deze extra dimensies niet te zien zijn voor ons, denk aan figuur D.0.1. De sterkste
versneller op dit moment kan lengtes tot 107 meter detecteren. Willen we geen
tegenspraak hebben dan betekent dit dat de grootst mogelijke lengte van de extra
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- = (A.B)

Figuur D.0.2: De linker lijn stelt een extra dimensie voor. Om ervoor te zorgen dat we
deze dimensie niet kunnen zien nemen we aan dat deze dimensie de vorm heeft van een (hele
kleine) cirkel zoals weer gegeven in het rechter plaatje. We verbinden hierbij de punten A
en B met elkaar.

dimensies 10719 meter is?.

De oplettende lezer zal op dit moment zeggen: “Waarom zou ik stoppen bij een
snaar?”. We zouden net zo goed als bouwsteen een membraan kunnen gebruiken. Dit
is een twee-dimensionaal object, denk bijvoorbeeld aan een vel papier. In een tien-
dimensionale wereld kunnen we dit concept snel uitbreiden tot het idee van een braan.
Dit zijn hoger-dimensionale versies van de membranen. De algemene naamgeving is
p-braan. De p geeft het aantal ruimtelijke dimensies aan van de braan. We nemen aan
dat ook de tijd onderdeel is van de braan. De totale oppervlakte van de braan bestaat
dus uit (p+ 1) dimensies®. Kortom een p-braan stelt een (p + 1)-dimensionaal opper-
vlakte voor. Dit oppervlakte noemen we het wereldvolume van de braan. Bijvoorbeeld
een O-braan is een puntdeeltje (de tijd vormt een één-dimensionaal wereldvolume) en
een 1-braan is een snaar (samen met de tijd geeft dit een twee-dimensionaal wereldvo-
lume). Het mooie van wiskunde is dat het werken met tien dimensies geen probleem
is. Het is niet fundamenteel anders dan werken met “slechts”vier dimensies. Een
voorstelling hiervan in je hoofd maken is daarentegen een heel ander verhaal. ..

Het interessante van de snarentheorie is dat deze hoger-dimensionale branen au-
tomatisch verschijnen in de theorie als men deze analyseert. In zekere zin is de naam
snarentheorie dus onjuist! De reden dat we beginnen met snaren in plaats van branen
is dat men nog niet goed weet hoe om te gaan met branen. Dit is een openstaand
probleem in de snarentheorie.

Maar ook de snarentheorie zelf is nog niet volledig ontwikkeld. De zogeheten per-
turbatieve beschrijving van de theorie heeft zich in de afgelopen twintig jaar flink
ontwikkeld. Met het woord perturbatief bedoelen we dat er een kleine koppelingscon-
stante is. Dit betekent ruwweg dat de interacties tussen de objecten in de theorie zwak
zijn. Dankzij de ontwikkelingen van de perturbatieve snarentheorie weten we dat de
hierboven beschreven branen onderdeel van de theorie zijn. Deze branen zijn als het

2Er bestaan ook andere manieren om extra dimensies te hebben die we niet zien zonder aan te
nemen dat ze klein zijn. Dit kan bijvoorbeeld door zogeheten braan-wereld modellen.

3We hoeven overigens de tijd niet perse als onderdeel van de braan te zien. In dat geval is
de naamgeving nog steeds zo dat een p-braan een (p + 1)-dimensionaal oppervlakte voorstelt. We
noemen zo’n braan een Sp-braan.



162 Nederlandse Samenvatting

ware de niet-perturbatieve kant van de snarentheorie. Als de koppelingsconstante
groot is en de interacties dus sterk zijn, spelen branen een belangrijke rol.

Een ander intrigerend aspect is dat in het niet-perturbatieve regime van de theorie
een extra dimensie ontstaat. Dit kan men zich het beste voorstellen aan de hand
van een cirkel. De koppelingsconstante bepaalt de grootte van de straal. Als de
koppelingsconstante groter wordt, wordt de straal langer. Op een gegeven moment
kan men dus een extra dimensie “zien”. Denk hierbij aan figuur D.0.1 waarbij je nu
van rechts naar links kijkt. Door het ontstaan van de extra dimensie hebben we dus
niet een tien- maar een elf-dimensionale theorie. Deze elf-dimensionale theorie wordt
M-theorie genoemd. Er is weinig bekend over deze theorie?, alleen dat de bouwstenen
geen snaren zijn maar 2- en 5-branen.

Echter het feit dat we de niet-perturbatieve kant van de snarentheorie niet kennen,
hoeft niet perse een probleem te zijn. De huidige versnellers zijn bij lange na niet
krachtig genoeg om de energieschaal van snaren te benaderen (vergelijk maar de
lengtes 1073% meter en 107 meter). Het is dus belangrijk om de snarentheorie (en
M-theorie) bij lage energie te bestuderen. Het blijkt dat er vijf verschillende lage
energielimieten zijn van de snarentheorie. Het idee is dat al deze vijf theorieén op een
andere manier kijken naar M-theorie. Net zoals bijvoorbeeld de zes kanten van een
dobbelsteen allemaal deel uit maken van dezelfde dobbelsteen.

Deze vijf theorieén zijn voorbeelden van de zogeheten superzwaartekracht. Dit
is een uitbreiding van de algemene relativiteitstheorie van Einstein met extra deel-
tjes. De theorie heeft verder een extra symmetrie genaamd supersymmetrie. Dit is
een symmetrie die fermionen (zoals bijvoorbeeld het elektron) relateert aan bosonen
(bijvoorbeeld het graviton wat de zwaartekracht overbrengt). Alle deeltjes in de
natuur zijn of bosonen of fermionen. Dit verklaart ook de naam, het combineert
supersymmetrie met de zwaartekracht. In dit proefschrift zullen we ons beperken tot
deze lage energielimieten.

Een ander interessant aspect van snarentheorie is dat het geintroduceerd wordt
als een theorie die de wereld beschrijft op het allerkleinste niveau. Oftewel bij hele
hoge energieschalen. Wanneer bevond ons universum zich in een hoge energetisch
toestand? Observaties in de sterrenkunde laten zien dat ons heelal steeds groter
wordt. Gaan we dus ver terug in de tijd dan is de voor de hand liggende conclusie
dat er ooit een moment is geweest waarop alle materie in ons heelal op één punt
samenkwam. Dit moment wordt de Big Bang of oerknal genoemd. Het allereerste
moment van ons universum moet dus beschreven worden door de snarentheorie! Ook
al is de snarentheorie in eerste instantie een theorie die het allerkleinste beschrijft,
uiteindelijk heeft het dus ook veel te zeggen over het heelal als geheel. Dit is ook op
een andere manier te zien. De snarentheorie tracht alle vier de krachten die wij kennen
in één theorie samen te vatten. Zwaartekracht is dan automatisch een onderdeel van
de theorie. Op grote afstanden is het juist de zwaartekracht die regeert en dus de

47Zelfs waar de letter M voorstaat is niet echt bekend.
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evolutie van ons universum bepaalt. Dit wordt bestudeerd in de kosmologie.

In dit proefschrift zal de nadruk liggen op het bestuderen van de branen die
voorkomen in de lage energielimieten van de snarentheorie. Het doel is om een metho-
de te ontwikkelen die het vinden van expliciete braanoplossingen eenvoudiger maakt.
In principe kunnen we de vergelijkingen, die volgen uit de lage energielimiet van
snarentheorie, proberen op te lossen. Echter die vergelijkingen zijn erg moeilijk om
exact op te lossen. Zoals vaker in de natuurkunde zullen we daarom gebruik maken
van symmetrieén om het probleem te simplificeren.

Laten we dit uitleggen aan de hand van een concreet voorbeeld. Denk aan een vel
papier. Dit is een twee-dimensionaal object oftewel een 2-braan in onze taal. Zoals
gezegd, dit twee-dimensionale oppervlakte noemen we het wereldvolume van de braan.
Als we voor het gemak even de tijd vergeten kunnen we een derde richting loodrecht
op dit papier voorstellen. Te samen met het twee-dimensionale wereldvolume hebben
we een drie-dimensionale ruimte. Wij gaan op zoek naar braanoplossingen die alleen
afhangen van de derde dimensie loodrecht op het papier. De twee dimensies van het
wereldvolume spelen hierdoor geen rol. Waar we ons op het wereldvolume ook bevin-
den de oplossing gedraagt zich hetzelfde, want alleen de derde richting heeft invloed
op deze braanoplossing. Als we het vel papier samendrukken tot een klein propje is
de situatie dus eigenlijk nog hetzelfde! Zoals gezegd, dit noemen we compactificeren
of het oprollen van dimensies. Het probleem is hierdoor ineens een stuk eenvoudiger
op te lossen. In plaats van na te gaan hoe een vel papier zich gedraagt in de drie-
dimensionale ruimte hebben we slechts een punt dat zich in één dimensie kan voort
bewegen! Deze aanpak van het oprollen van dimensies van het wereldvolume (het
vel papier) is een belangrijk onderdeel van de techniek die in dit proefschrift wordt
toegepast. De effectieve beschrijving van de braan (vel papier) is dus weer een punt-
deeltje. Dit verklaart de titel van het proefschrift, namelijk “de deeltjes dynamica
van branen”. Hetzelfde kunnen we doen met alle andere branen.

Omdat we met deze truc het hele wereldvolume hebben laten verdwijnen spreken
we van een (—1)-braan. Immers onze telling was zo dat een p-braan een (p + 1)-
dimensionaal wereldvolume vormt en in ons geval is er geen wereldvolume meer (dat
wil zeggen 0 = —1 + 1 oftewel p = —1).

We moeten nu onderscheid maken naar waar de tijd zich bevindt. Als de tijd deel
uitmaakt van het oorspronkelijke wereldvolume noemen we het een (—1)-braan of
instanton. Merk op dat na het oprollen van het wereldvolume ook de tijd verdwenen
is! Hoe raar dit ook mag lijken voor ons, wiskundig is er (zoals zo vaak) niks aan de
hand. Als de tijd geen deel uitmaakt van het (oorspronkelijke) wereldvolume noemen
we het een S(—1)-braan. Na het oprollen van het wereldvolume is de tijd dus nog wel
aanwezig. De oorspronkelijke braan heet een Sp-braan. Het verschil met een p-braan
is dus dat de tijd geen deel uitmaakt van het wereldvolume (zie ook voetnoot 3 op
pagina 161).

We zullen ook nog een andere vorm van oprollen (compactificeren) beschouwen.
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In plaats van het oprollen van het wereldvolume beschouwen we nu (op één na) de
richtingen loodrecht op de braan als irrelevant. Hiermee bedoelen we dat de oplossing
weer niet afhangt van die loodrechte richtingen. Dit is een stukje moeilijker voor te
stellen, maar ook dit kan men wiskundig hard maken. De effectieve theorie bestaat
dan na het oprollen uit het wereldvolume en nog één loodrechte richting.

Ook hier moeten we weer onderscheid maken waar de tijd zich bevindt. Als de tijd
een onderdeel is van het wereldvolume spreken we na het oprollen van domain-walls
(in slecht Nederlands domein-muren). Hierbij kan men ook letterlijk aan een muur
denken. Als je in een omgeving van een domain-wall zou leven, zou je, als je van links
naar rechts loopt, halverwege een “muur”tegenkomen.

Als daarentegen de tijd de enige overgebleven loodrechte richting is, noemen we
de oplossing een kosmologie. Het verschil met S(—1)-branen heeft te maken met
een extra term in de vergelijkingen. Deze extra term noemen we de potentiaal en
verschijnt standaard bij het oprollen van richtingen loodrecht op het wereldvolume.
De aanwezigheid van de potentiaal maakt het probleem een stuk complexer om op te
lossen.

Kortom, na het oprollen hebben we dus vier verschillende situaties. Namelijk in-
stantonen (of (—1)-branen), S(—1)-branen, domain-walls en kosmologieén. We zien
dus dat alle branen uiteindelijk gerelateerd kunnen worden aan één van deze vier
verschillende mogelijkheden®, zie ook figuur 3.5.1. Elk van deze oplossingen wordt
apart geanalyseerd in dit proefschrift. Vooral de eerste twee type oplossingen (instan-
tonen en S(—1)-branen) blijken exact te kunnen worden opgelost met deze truc die
we hier hebben beschreven. Als we deze vier oplossingen hebben gevonden gaan we
de opgerolde dimensies weer uitrollen en krijgen we een oplossing van de oorspronlijke
p-braan!

Het proefschrift bestaat uit de volgende hoofdstukken.

In hoofdstuk 2 geven we een korte introductie in de snarentheorie. Hierbij ligt de
focus op het introduceren van de branen.

In hoofdstuk 3 laten we zien hoe branen effectief te beschrijven zijn als deeltjes.
Als we over het wereldvolume van een braan reduceren leidt dit tot instantonen en
S(—1)-branen. Als we over de richtingen loodrecht op de braan reduceren krijgen we
domain-walls of kosmologieén. Op deze manier zien we dat alle branen gerelateerd
kunnen worden aan deze vier type branen.

In hoofdstuk 4 beginnen we met het oplossen van de Sp-branen. Hiervoor moeten
we de S(—1)-branen oplossen. Dit doen we door middel van een genererende oplossing.
Een genererende oplossing is de meest simpele oplossing die toch alle informatie van de
S(—1)-braan in zich heeft. Elke andere S(—1)-braanoplossing is hieruit te verkrijgen.
Daarna gaan we de reductie ongedaan maken en laten we zien hoe de bijbehorende
Sp-braan eruit ziet.

5Er is één uitzondering. De zogeheten 7-branen kunnen niet op deze manier beschreven worden
om een technische reden.
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In hoofdstuk 5 bestuderen we kosmologieén. Dit betekent dat we een braan redu-
ceren over de transversale ruimte en we krijgen dan een potentiaal. We introduceren
eerst een bepaald type kosmologie, namelijk die bekend staat onder de naam “gene-
ralized assisted inflation”. Daarna laten we zien hoe we ondanks de aanwezigheid van
de potentiaal toch veel over het systeem te weten kunnen komen.

In hoofdstuk 6 gaan we verder met het bestuderen van de kosmologieén. We
laten zien dat er een directe link is met de domain-walls. Dit heet de domain-wall
/ kosmologie correspondentie. Ruwweg komt dit erop neer dat voor een gegeven
kosmologie men direct een domain-wall oplossing kan formuleren en wvice versa. De
nadruk zal liggen op het bestuderen van hoe deze correspondentie in detail werkt
binnen superzwaartekrachten.

In hoofdstuk 7 gaan we de stap maken naar instantonen. We beperken ons hier
tot de instantonen die behoren tot het zogeheten SL(p+ ¢,IR)/SO(p, q) systeem. We
leiden af wat de genererende oplossing is. Daarna bekijken we het effect van het
toevoegen van een potentiaal.

In hoofdstuk 8 presenteren we de conclusies en geven we een paar suggesties voor
verder onderzoek.

Er zijn ook nog vier appendices toegevoegd. Appendix A geeft veel gebruikte
conventies en formules voor de algemene relativiteitstheorie. Appendix B behandelt
de spinoren conventies, welke worden gebruikt in hoofdstuk 6. Appendix C geeft een
korte introductie in Lie groepen en Lie algebra’s. In appendix D tot slot geven we een
overzicht van de gepubliceerd artikelen waarop dit proefschrift (deels) is gebaseerd.
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